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ABSTRACT 

Economic transition endeavors are ubiquitous in businesses and industries every day, 

which are costly, irreversible, and uncertain in key aspects such as cost or demand. In this 

dissertation, we view these transition endeavors as options (cf. obligations), explore the optimal 

decisions, and analyze the economic consequences in the context of blockchain technology, 

asphalt roads, and cool roofs - all toward a higher level of environmental sustainability. For each 

case, we construct and analyze stochastic optimal control (i.e., real options) models to determine 

the optimal transition action and time. We also derive managerial insights and economic 

implications from analytical and numerical analyses and numerical examples.  

This dissertation mainly consists of three papers. In the first paper, we consider a 

perishable agricultural product supply chain, where the retailer decides when to switch from a 

conventional supply chain information management system (SCIMS) to a blockchain-based 

SCIMS. Blockchain technology reduces waste and disposal as a precaution during recalls by 

shortening the time to trace the contamination origination. We model the uncertain customers’ 

demand as a geometric Brownian motion (GBM) process and show how to obtain the optimal 

demand threshold above which the switch occurs and the corresponding expected time. Next, the 

model is extended by incorporating two types of government subsidies (i.e., a fixed subsidy on 

the switching cost and a variable subsidy per unit demand).  

In the second paper, we consider an asphalt road where resurfacing (i.e., placing a new 

layer over the existing pavement) is implemented upon which the pavement condition will be 

like new, and the maintenance cost is reduced to the new pavement level. Under the assumption 

that the maintenance cost of a road follows a GBM process, we construct and analyze a 

stochastic optimal control (a real options approach) model for a profit-maximizing decision-



xi 

maker where the threshold in the maintenance cost to resurface the road is the decision variable. 

Given this framework, we also mathematically derive the expected resurfacing interval, i.e., the 

average time between two consecutive resurfacing activities.  

In the third paper, we consider a commercial building that consumes electricity for 

cooling and natural gas for heating, where converting the current conventional roof to a cool roof 

will lead to lower electricity consumption but higher natural gas consumption. Under the 

assumption that the building’s electricity consumption sufficiently exceeds its natural gas 

consumption, we aim to provide decision support for the roof conversion for profit-maximizing 

decision-makers (e.g., commercial building owners). Specifically, in the basic model, the 

electricity price follows a GBM process, and the natural gas price is characterized as a constant 

multiplied by the electricity price. We analytically solve for the optimal electricity price 

threshold to implement roof conversion and the corresponding expected time. In the extended 

model, where the electricity and natural gas prices follow correlated GBM processes, we value 

the roof conversion option using the Least Squares Monte Carlo simulation (i.e., using Least 

Squares to estimate the expected payoff from continuation with current energy prices and obtain 

the option value by Monte Carlo simulation).  

Finally, we conclude with an overall summary of research findings and discussions for 

future research.  
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CHAPTER 1.    GENERAL INTRODUCTION 

Economic transition endeavors are ubiquitous in businesses and industries every day. 

Examples are the internal combustion engine vehicles to electric vehicles (Hoeft, 2021) or the 

community of Newtok relocating due to melting permafrost (State of Alaska - Department of 

Commerce, Community and Economic Development, 2019). Many of these transition endeavors 

share the common attributes of being costly, irreversible, and uncertain in key aspects such as 

cost or demand. In this dissertation, we view these transition endeavors as options (cf. 

obligations), explore the optimal decisions and analyze the economic consequences under such 

circumstances.  

Specifically, in the context of blockchain technology, asphalt roads, and cool roofs - all 

toward a higher level of environmental sustainability, we construct and analyze stochastic 

optimal control (i.e., real options) models to determine the optimal transition action and time. For 

each case, managerial insights and economic implications derived from analytical and numerical 

analyses and numerical examples are discussed.  

This document follows a journal article format consisting of three journal 

articles/manuscripts. Specifically, in Chapter 2, we consider the supply chain enhancements, 

from a conventional supply chain information management system (SCIMS) to a blockchain-

based SCIMS under the uncertainty of the demand for a perishable agricultural product. In a 

conventional SCIMS, many stakeholders in the perishable record traceability data on paper, 

while the rest record it digitally (Yiannas, 2018). Such inconsistency makes it challenging for 

stakeholders to communicate and trace the origins of the perishable agricultural product within a 

short time. As a result, during recalls, products that are potentially not contaminated are wasted 

and disposed of as a precaution. Such circumstance incentivizes the retailer to switch to a 
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blockchain-based SCIMS, where all the information throughout every step (e.g., product 

identification, batch codes, purchase orders, and time codes of harvesting, processing, shipping, 

and receiving) is collected and shared by all stakeholders (e.g., farms, distribution centers, stores; 

Walmart Food Safety & Health, 2018). Blockchain technology enables the stakeholders to 

pinpoint the contamination origination, reduce unnecessarily broad recalls (Guo et al., 2018) and 

reduce waste and disposal as a precaution during recalls (Marin et al., 2019). Moreover, 

motivated by the examples such as the government subsidizing supermarkets in high-need areas 

to improve the food environment in underserved neighborhoods (Elbel et al., 2015) and the U.S. 

Department of Health and Human Services (HHS) awarding 49 Health Center Controlled 

Networks nearly 42 million dollars to expand health information technology in health centers 

nationwide (HHS, 2019), we extend the model by incorporating the subsidies provided by the 

government to the retailer in the SCIMS switch decision as the blockchain technology improves 

the public’s welfare by enhancing the supply chain traceability.  

Under the above background, in Chapter 2, we consider a supply chain of perishable 

agricultural products that consists of a wholesaler, a retailer, and customers, where the retailer 

has an option to switch from a conventional supply chain information management system 

(SCIMS) to a blockchain-based SCIMS. Assuming that the customers’ demand follows a 

geometric Brownian motion (GBM) process, we (1) valuate the traceability in the supply chain 

to determine the optimal threshold of demand and the expected time of switching using a real 

options approach in the basic model, (2) extend the basic model by incorporating two types of 

government subsidies, namely, a fixed subsidy on the switching cost and a variable subsidy per 

unit demand, and determine the new optimal threshold of demand and the expected time of 

switching, (3) derive managerial insights and economic implications for the retailer’s switch 
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decision from analytical/numerical analyses, and (4) provide policy implications on motivating 

retailers to switch to a blockchain-based SCIMS from the government’s perspective. This 

chapter is published in the International Journal of Operations Research and Information 

Systems (IJORIS).  

In Chapter 3, we consider the resurfacing endeavor for asphalt roads under maintenance 

cost uncertainty. Resurfacing a road means placing a new layer over the existing pavement to 

extend the pavement life rather than replacing the entire roadway (Wisconsin Department of 

Transportation, n.d.; Thames Street Works, n.d.), upon which the pavement condition is like new 

(Alqadhi et al., 2018). The resurfacing decision requires a careful study a priori because it is 

costly, irreversible, and made under maintenance cost uncertainty. The maintenance cost of an 

asphalt road has been substantially increasing (Tornquist, 2007; PCA, 2012), where fluctuations 

are often observed. The escalation of the maintenance cost can be attributed to pavement aging 

(Ohio Auditor of State, 2012), a complicated and uncertain process (Solatifar, 2021).  

In Chapter 3, we assume that the maintenance cost of the road follows a GBM process 

and is reset to its initial value upon each resurfacing and model the resurfacing decision for a 

profit-maximizing decision-maker (e.g., a private-sector company under a Public-Private 

Partnership over a road where its objective is to maximize profit). Specifically, we (1) construct 

and analyze a real options approach model where the threshold in the maintenance cost to 

resurface the road is the decision variable; (2) mathematically derive how much time, on 

average, is between two resurfacing activities; (3) analytically and numerically illustrate key 

features of our model via analytical derivation and an extensive numerical example for 

managerial insights and economic implications. This chapter is under the review of the European 

Journal of Industrial Engineering (EJIE).  
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In Chapter 4, we focus on the conversion from a conventional roof to a cool roof under 

energy price uncertainties. Compared with a conventional roof, a cool roof has high solar 

reflection (ability to reflect sunlight) and high thermal emittance (ability to emit thermal 

radiation), which improves building energy efficiency (Gao et al., 2014). We consider a 

commercial building that consumes electricity for cooling and natural gas for heating (U.S. EIA, 

2021d, p. 28), where its electricity consumption sufficiently exceeds its natural gas consumption. 

The roof conversion will reduce electricity consumption but increase natural gas consumption 

(Akbari et al., 1999). This endeavor is costly yet irreversible and made under the uncertainties of 

electricity and natural gas prices. The electricity and natural gas prices increase on average and 

fluctuate over time (U.S. EIA, 2021c; U.S. EIA, 2022b), and a correlation relationship can be 

observed (Lukes, 2021; U.S. EIA, 2021a; Pressler, 2022) considering that natural gas is used for 

power generation (Maribu et al., 2007).  

In Chapter 4, we provide the decision support for the conversion from a conventional 

roof to a cool roof through two models. In the basic model, we assume the electricity price 

follows a GBM process, and the natural gas price is equal to a constant multiplied by the 

electricity price. We (1) construct and analyze the roof conversion decision using a real options 

approach; (2) derive the optimal electricity price threshold and the corresponding expected time 

on average to implement the roof conversion; (3) examine how the parameter values impact the 

roof conversion decision through a numerical example; (4) derive managerial insights and 

economic implications. In the extended model, a more general and complicated case, we assume 

that the electricity and natural gas prices follow correlated GBM processes. We obtain the value 

of the roof conversion option using the Least Squares Monte Carlo simulation, i.e., using Least 

Squares to estimate the expected payoff from continuation with current energy prices and obtain 
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the option value by Monte Carlo simulation. We also investigate how the option value is 

impacted when the parameter values change. This chapter is under the review of The 

Engineering Economist (TEE). 

Commonalities and Differences  

There are three main commonalities across Chapters 2, 3, and 4 (see Table 1.1 for 

details).  

(1) The economic decisions enhance sustainability.  

(2) Uncertainties are incorporated into the decision-making processes. 

(3) A real options approach is applied.  

Table 1.1 Commonalities across Chapters 2, 3, and 4 

Commonalities  Chapter  Details  

Sustainability 2 The switch from a conventional SCIMS to a blockchain-based 

SCIMS enhances the sustainability of the supply chain of 

perishable agricultural products. 

3 Resurfacing the asphalt road renews the pavement condition, 

improving the road's sustainability.  

4 The conversion from a conventional roof to a cool roof improves 

the sustainability of the commercial building.  

Uncertainties  2 The uncertainty of the demand for a perishable agricultural 

product 

3 The uncertainty of the maintenance cost of an asphalt road 

4 The uncertainties of electricity and natural gas prices   
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Table 1.1 continued 

Commonalities  Chapter  Details  

Real options 

approach  

2 We analytically derive the closed-form solutions for the optimal 

demand threshold to switch from a conventional SCIMS to a 

blockchain-based SCIMS with/without government subsidies. 

3 Although the closed-form solution cannot be derived, we arrive 

at an equation with which the optimal threshold of the 

maintenance cost to resurface an asphalt road can be numerically 

solved. 

4 Basic model: We analytically derive the closed-form solution to 

the optimal electricity price threshold for the roof conversion. 

Extended model: We apply the Least Squares Monte Carlo 

simulation to obtain the value of the roof conversion option.  

The main differences in Chapters 2, 3, and 4 are as follows (see Table 1.2 for details).  

(1) The numbers of GBM processes considered are different.  

(2) The changes after the conversion are different.  

Table 1.2 Differences in Chapters 2, 3, and 4 

Chapter  Number of GBM processes Change after conversion  

2 One GBM process (demand for a 

perishable agricultural product)  

Amount of wastage and disposal of 

perishable agricultural products as a 

precaution during recalls is reduced.  

3 One GBM process (maintenance cost 

of an asphalt road)  

Maintenance cost is reset to its initial 

value. 
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Table 1.2 continued 

Chapter  Number of GBM processes Change after conversion 

4 Two correlated GBM processes 

(electricity and natural gas prices)  

Annual electricity consumption decreases 

while annual natural gas consumption 

increases. 

 

This dissertation consists of five chapters. Chapter 1 is the general introduction of this 

dissertation. In Chapter 2, we show how to obtain the optimal demand threshold above which a 

retailer should switch from a conventional SCIMS to a blockchain-based SCIMS under the 

uncertainty of the demand for a perishable agricultural product. In Chapter 3, we construct and 

analyze a model for the road resurfacing decision under the maintenance cost uncertainty, where 

the threshold in the maintenance cost to resurface the road is the decision variable. In Chapter 4, 

under the energy price uncertainties, in the basic model, where the natural gas is equal to a 

constant multiplied by the electricity price, we analytically derive the closed-form solution to the 

optimal electricity price threshold, above which the conventional roof should be converted to a 

cool roof. In the extended model, where the electricity and natural gas prices are correlated, we 

apply the Least Squares Monte Carlo simulation to obtain the value of the roof conversion 

option. Chapter 5 is the general conclusions of this dissertation.  

References 

Akbari, H., Konopacki, S., & Pomerantz, M. (1999). Cooling energy savings potential of 

reflective roofs for residential and commercial buildings in the United 

States. Energy, 24(5), 391-407. 

Alqadhi, S., Ghahari, S. A., Chen, S., Volovski, M., & Woldemariam, W. (2018). Costs and 

benefits of highway resurfacing: a case study of Interstate 465 in Indiana, USA. 

Infrastructure Asset Management, 5(2), 45–55. https://doi.org/10.1680/jinam.17.00036 



19 

 

Elbel, B., Moran, A., Dixon, L. B., Kiszko, K., Cantor, J., Abrams, C., & Mijanovich, T. (2015). 

Assessment of a government-subsidized supermarket in a high-need area on household 

food availability and children’s dietary intakes. Public health nutrition, 18(15), 2881-

2890. 

Gao, Y., Xu, J., Yang, S., Tang, X., Zhou, Q., Ge, J., ... & Levinson, R. (2014). Cool roofs in 

China: Policy review, building simulations, and proof-of-concept experiments. Energy 

Policy, 74, 190-214. 

Guo, M., Liu, X. J., & Zhang, W. (2018). Using Blockchain Technology in Human Food Chain 

Provenance. WIT Transactions on The Built Environment, 179, 391-396.  

Hoeft, F. (2021). Internal combustion engine to electric vehicle retrofitting: Potential customer’s 

needs, public perception and business model implications. Transportation Research 

Interdisciplinary Perspectives, 9, 100330. 

HHS (Health and Human Services). (2019, July 25). HHS Awards Nearly $42 Million to Expand 

Health Information Technology In Health Centers Nationwide. Retrieved from 

https://www.hhs.gov/about/news/2019/07/25/hhs-awards-nearly-42-million-to-expand-

health-information-technology.html 

Lukes, T. (2021). Electricity vs. Natural Gas Generation - Utility Costs, Price Correlation, and 

How to Save Your Facility Money. Retrieved from 

https://unisonenergy.com/insight/electric-and-gas-price-correlation-means-your-

cogeneration-savings-will-stay-stable/ (report: https://www.unisonenergy.com/wp-

content/uploads/2021/06/UNI-Why-Electric-and-Gas-Prices-Are-Correlated-for-

Cogeneration-Systems-1.pdf) 

Maribu, K. M., Galli, A., & Armstrong, M. (2007). Valuation of Spark-spread Options with 

Mean Reversion and Stochastic Volatility. Int. J. Electron. Bus. Manag., 5(3), 173-181. 

Marin, M. P., Marin, I., & Vidu, L. (2019). Learning about the Reduction of Food Waste Using 

Blockchain Technology. In INTED 2019 Proceedings (pp. 3274-3277). 

Ohio Auditor of State. (2012). Are Your Road Dollars Struggling to Keep Up With 

Deterioration? 

https://ohioauditor.gov/trainings/lgoc/2012/Are%20Your%20Road%20Dollars%20Strug

gling%20to%20Keep%20Up%20with%20Deterioration.pdf 

Portland Cement Association (PCA). (2012, February). The New Paving Realities: The Impact of 

Asphalt Cost Escalator Clauses on State Finances. Portland Cement Association (PCA) 

Market Intelligence. http://www2.cement.org/econ/pdf/escalator_report_2-27-12.pdf 

Pressler, M. (2022, February 18). Average US Electricity Costs & The Effect of Energy 

Deregulation. Retrieved from https://quickelectricity.com/average-electricity-prices-and-

deregulation/  

https://www.hhs.gov/about/news/2019/07/25/hhs-awards-nearly-42-million-to-expand-health-information-technology.html
https://www.hhs.gov/about/news/2019/07/25/hhs-awards-nearly-42-million-to-expand-health-information-technology.html
https://unisonenergy.com/insight/electric-and-gas-price-correlation-means-your-cogeneration-savings-will-stay-stable/
https://unisonenergy.com/insight/electric-and-gas-price-correlation-means-your-cogeneration-savings-will-stay-stable/
https://www.unisonenergy.com/wp-content/uploads/2021/06/UNI-Why-Electric-and-Gas-Prices-Are-Correlated-for-Cogeneration-Systems-1.pdf
https://www.unisonenergy.com/wp-content/uploads/2021/06/UNI-Why-Electric-and-Gas-Prices-Are-Correlated-for-Cogeneration-Systems-1.pdf
https://www.unisonenergy.com/wp-content/uploads/2021/06/UNI-Why-Electric-and-Gas-Prices-Are-Correlated-for-Cogeneration-Systems-1.pdf
http://www2.cement.org/econ/pdf/escalator_report_2-27-12.pdf


20 

 

Solatifar, N. (2021). Analysis of Uncertainties in Deterioration Process of Asphalt Pavements 

based on Roughness Index Using LTPP Data. Amirkabir Journal of Civil 

Engineering, 53(4), 1-1. https://doi.org/10.22060/CEEJ.2019.16072.6116 

State of Alaska - Department of Commerce, Community, and Economic Development. (2019, 

October). Newtok Planning Group - Newtok Relocation News. Retrieved from 

https://www.commerce.alaska.gov/web/dcra/PlanningLandManagement/NewtokPlanning

Group/RelocationNews.aspx 

Thames Street Works. (n.d.). What is Road Resurfacing? Retrieved November 21, 2021, from 

https://www.thbuk.co.uk/what-is-road-resurfacing/ 

Tornquist, D. (2007, September). Growth in Highway Construction and Maintenance Costs (CR-

2007-079). Federal Highway Administration. 

https://www.oig.dot.gov/sites/default/files/Growth_in_Highway_Construction_and_Main

tenance_Costs_Final.pdf  

U.S. Energy Information Administration (EIA). (2021a, April 12). Electricity explained - Factors 

affecting electricity prices. Retrieved from 

https://www.eia.gov/energyexplained/electricity/prices-and-factors-affecting-prices.php 

U.S. Energy Information Administration (EIA). (2021c, September 15). Electricity Detailed 

State Data - Average Price by State by Provider (EIA-861). Retrieved from 

https://www.eia.gov/electricity/data/state/ 

U.S. Energy Information Administration (EIA). (2021d, September). 2018 Commercial 

Buildings Energy Consumption Survey. Retrieved from 

https://www.eia.gov/consumption/commercial/ 

U.S. Energy Information Administration (EIA). (2022b, January 31). Illinois Price of Natural 

Gas Sold to Commercial Consumers. Retrieved from 

https://www.eia.gov/dnav/ng/hist/n3020il3a.htm  

Walmart Food Safety & Health. (2018). Fresh Leafy Greens New Walmart Food Traceability 

Initiative Questions and Answers. Retrieved from https://corporate.walmart.com/media-

library/document/leafy-greens-food-safety-traceability-requirements-

faq/_proxyDocument?id=00000166-0c8e-dc77-a7ff-4dff95cb0001 

Wisconsin Department of Transportation. (n.d.). Highway Improvement Type Definitions. 

Retrieved November 21, 2021, from https://wisconsindot.gov/Documents/doing-

bus/local-gov/astnce-pgms/highway/tools/definitions.pdf 

Yiannas, F. (2018). A New Era of Food Transparency Powered by Blockchain. Innovations: 

Technology, Governance, Globalization, 12(1-2), 46-56. 

https://dx.doi.org/10.22060/ceej.2019.16072.6116
https://www.oig.dot.gov/sites/default/files/Growth_in_Highway_Construction_and_Maintenance_Costs_Final.pdf
https://www.oig.dot.gov/sites/default/files/Growth_in_Highway_Construction_and_Maintenance_Costs_Final.pdf
https://www.eia.gov/energyexplained/electricity/prices-and-factors-affecting-prices.php
https://www.eia.gov/dnav/ng/hist/n3020il3a.htm


21 

 

CHAPTER 2.    BLOCKCHAIN TRACEABILITY VALUATION FOR PERISHABLE 

AGRICULTURAL PRODUCTS UNDER DEMAND UNCERTAINTY 

Zhuoyi Zhao, Kyung Jo Min 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University 

Modified from a manuscript published in the International Journal of Operations Research and 

Information Systems (IJORIS) 

Abstract 

Nowadays, various perishable agricultural products are recalled due to harmful health 

risks. Blockchain has been used to reduce the amount of such products wasted and disposed. 

Specifically, a supply chain with a wholesaler, a retailer, and customers is considered where the 

retailer decides when to switch from a conventional supply chain information management 

system (SCIMS) to a blockchain-based SCIMS. This article models the uncertain customers’ 

demand as a geometric Brownian motion process and shows how to obtain the optimal demand 

threshold above which the switch occurs and the corresponding expected time. Next, the model 

is extended by incorporating two types of government subsidies (i.e., a fixed subsidy on the 

switching cost and a variable subsidy per unit demand). Through sensitivity analysis and 

numerical studies, the impacts of key parameters on the optimal demand threshold and expected 

switching time are presented. Finally, managerial insights and policy implications are derived.  

Keywords: Real Options, Demand Uncertainty, Blockchain, Government Subsidy, 

Traceability Valuation, Supply Chains, Perishable Agricultural Products, Geometric Brownian 

Motion (GBM)  
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Introduction 

It has been frequently reported that various perishable agricultural products, such as 

romaine lettuce, are recalled and disposed due to harmful health risks. In such a case, in a 

conventional supply chain information management system (SCIMS), the traceability of the 

source of the harmful health risks is low and time-consuming (Blissett & Harreld, 2008). The 

reason is that data is simply recorded on paper for traceability purposes by numerous 

stakeholders in the supply chain of perishable agricultural products, while the rest use digital 

methods (Yiannas, 2018). This leads to the inconsistency in the use of SCIMS, and stakeholders 

cannot communicate with each other or effectively trace the origins of products on short notice. 

As a result, many perishable agricultural products that are potentially not contaminated are 

wasted and disposed of as a precaution during perishable agricultural product recalls. This 

situation calls for a solution for enhanced traceability in the supply chain of perishable 

agricultural products.  

To address this problem, the perishable food industry has been implementing blockchain, 

“… a shared, immutable ledger that facilitates the process of recording transactions and tracking 

assets in a business network” (Gupta, 2018). In a blockchain network, timestamped transaction 

data is stored in blocks linked in a chain by hashes. This mechanism prevents the alternation or 

insertion of any block. In a blockchain-based SCIMS, all the information throughout every step, 

such as product identification, batch codes, purchase orders, and time codes of harvesting, 

processing, shipping, and receiving, is collected and shared by all stakeholders (e.g., farms, 

distribution centers, stores; Walmart Food Safety & Health, 2018). With Hyperledger Fabric (a 

blockchain framework), blockchain offers a more efficient way to pinpoint where the 

contamination originated and reduce the unnecessarily broad recalls (Guo, Liu, & Zhang, 2018). 
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For example, in a pilot study of mango products, blockchain substantially reduced the time to 

identify the originating farm from nearly seven days to 2.2 seconds (Yiannas, 2018).  

Also, typically, large retailers (e.g., Walmart, Sam’s Club) perform like pioneers in 

adopting new technology. In 2018, Walmart and Sam’s Club required all the leafy green 

vegetable suppliers to utilize blockchain for traceability purposes by September 2019 to reduce 

the loss of retailers and suppliers during recalls (Walmart, 2018).  

Meanwhile, the government grants subsidies for the public's welfare, especially when it is 

related to information technology. For instance, the government subsidizes supermarkets in high-

need areas to improve the food environment in underserved neighborhoods (Elbel, Moran, 

Dixon, Kiszko, Cantor, Abrams & Mijanovich, 2015). In 2019, through the Health Resources 

and Services Administration (HRSA), the U.S. Department of Health and Human Services 

(HHS) subsidized 49 Health Center Controlled Networks (HCCNs) with almost $42 million to 

expand the use of health information technology (HHS, 2019). Considering that the blockchain 

enhances the traceability in the supply chain and reduces the harmful health risks, it is reasonable 

to assume that government provides the retailers in a perishable product supply chain with 

subsidies to facilitate their switching to a blockchain-based SCIMS. 

Considering the lump sum switching cost and a series of transition actions that occur at 

the time of switching, the retailer’s decision on switching from the conventional SCIMS to the 

blockchain-based SCIMS is large and highly irreversible. Moreover, such a switch is often made 

under uncertainties such as the demand uncertainty of retail customers. Specifically, when the 

retail customers’ demand is low, for the retailer, the profit saved by the blockchain-based SCIMS 

may not offset the costs associated with the switching. Method-wise, the real options approach is 

used in this paper as it captures the uncertainty in the decision-making process instead of the 
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traditional Net Present Value (NPV) approach. A real option refers to the right but not the 

obligation to take ownership of a real asset or project at a specific time in the future (Tallon, 

Kauffman, Lucas, Whinston, & Zhu, 2002; Wu, Wu, & Wen, 2010). The real options approach 

originated from the finance area and has been extended to the decision-making in the engineering 

discipline.  

Under these circumstances, it is highly desirable to understand how a retailer can make 

economically rational decisions on switching from a conventional SCIMS to a blockchain-based 

SCIMS and how the government subsidies influence the retailer’s decision on such a switch. 

Towards these goals, in this paper, under the assumption that the retail customers’ demand for a 

single perishable agricultural product follows a Geometric Brownian Motion (GBM) process, the 

authors (1) valuate the traceability in the supply chain to determine the optimal time for a retailer 

to switch from a real options perspective in the basic model, (2) extend the basic model by 

incorporating two types of government subsidies, namely, a fixed subsidy on the switching cost 

and a variable subsidy per unit demand, and determine the new optimal time for the retailer to 

switch, (3) derive managerial insights and economic implications for the retailer’s switch 

decision from analytical/numerical sensitivity analyses, and (4) provide policy implications from 

the government’s perspective.  

The critical contributions of this research include (1) closed-form solutions for the 

optimal threshold of retail customers’ demand above which the SCIMS switch occurs and the 

corresponding expected time without/with the presentence of government subsidies, (2) an 

insight that, as the retail customers’ demand becomes more volatile, the retailer should defer the 

switch of SCIMS, (3) from a government’s perspective, a small amount of variable subsidy is 

more efficient for a rapid switch among retailers, while a fixed subsidy anticipates for a more 
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even pace of switch. Also, the fixed subsidy is more efficient at a higher level than the variable 

subsidy, which is more efficient at a lower level. 

The remainder of this article is organized as follows. A review of the literature on the 

blockchain and real options is presented in the next section. Then the authors present the model 

formulation and analysis for a basic model and an extended model with two government 

subsidies. After that, a numerical example of romaine lettuce is conducted to demonstrate how 

the key parameters change impacts the optimal demand threshold and the expected switching 

time. Finally, conclusions, limitations, and future research are presented, respectively. 

Literature Review 

Blockchain  

The development of blockchain has boosted a series of discussions and attempts at its 

application in perishable agricultural supply chains. For instance, Tian (2016) developed a 

conceptual framework for an agricultural product supply chain traceability system combining 

blockchain with RFID technology. Moreover, it is estimated that every year, around 1/3 of food 

is lost or wasted in the world (FAO, 2020). Among such loss and waste, 8% is caused by 

improper packaging and storage, especially for perishable products such as fresh produce, meat, 

and dairy products, since they require strict temperature and packaging conditions (Blockchain 

Guru, 2019). One promising solution is to use RFID tags and sensors to track the transportation 

and storage conditions along the shipping journey and use Smart Contracts (a special feature of 

blockchain) to notify all stakeholders in the network whenever abnormal conditions occur. Also, 

according to IBM Research (2020), 45% of fruits and vegetables are spoiled and wasted because 

of a chaotic distribution system. This is because the imprecise nature of supply chains based on 

such systems forces farmers to make planting and harvesting decisions based on guesswork and 

sellers to predict customer demand and behavior based on incomplete information. The solution 
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to this problem is implementing a blockchain-enabled food supply chain enhanced by Internet of 

Things (IoT) devices and Artificial Intelligence (AI) computing. IoT sensors track fruits, 

vegetables, or any other food items along the journey from field to grocery store, and AI-

enhanced, real-time data enables retailers to better understand consumers' eating patterns. In this 

way, farmers and suppliers know the amount of perishable produce they should grow or order to 

meet the demand, and thus the perishable produce is fresher, and less amount is thrown away.  

Regarding the reduction of wastage and disposal in the perishable agricultural supply 

chain in this paper, the advantages and disadvantages of using the blockchain-based SCIMS are 

summarized in Table 2.1. 

Table 2.1. Advantages and Disadvantages of Using the Blockchain-Based SCIMS to Reduce the 

Wastage and Disposal in the Supply Chain of Perishable Agricultural Products 

Advantage Disadvantages 

- Blockchain provides end-to-end traceability, which allows the 

stakeholders in the supply chain to access the remaining shelf life of 

perishable food by tracking its journey and freshness (IBM, 2018).  

- Blockchain invites stakeholders to trade in a trusting relationship 

(Zhang, Lee, & van de Ligt, 2016).  

- Blockchain efficiently improves food traceability regarding its safety 

and transparency in agriculture and food supply chains (Kamilaris, 

Fonts, & Prenafeta-Boldύ, 2019). 

- When the demand is 

low, the profit saved 

from the reduction of 

wastage and disposal 

may not offset the 

costs associated with 

the retailer’s switch 

to the blockchain-

based SCIMS. 

 

Real Options  

Derived from financial options, the real options approach has been broadly applied in 

solving decision-making problems as it incorporates the flexibility the decision-makers confront 

in operating decisions (Trigeorgis & Tsekrekos, 2017). In the existing literature, there are mainly 

three option valuation approaches, i.e., partial differential equations (Black and Scholes, 1973), 
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trees and lattices (Cox, Ross, & Rubinstein, 1979), and simulations (Boyle, 1977). Examples of 

using the real options approach in investments under uncertainties are as follows. Schwartz and 

Zozaya-Gorostiza (2003) evaluated IT investment projects by simultaneously modeling the 

uncertainties in project costs and cash flows. Tauer (2006) established entry and exit decision 

models for dairy farmers under the milk price uncertainty. Takashima and Yagi (2009) modeled 

a single investment and a sequential investment using the real options approach and showed the 

influence of a catastrophic event on the flexibility of the sequential one by comparing the option 

values of both investments under the cash flow uncertainty. They also determined the optimal 

investment timing and location of the power plant, given construction costs and the catastrophic 

event depend on the location. Wu and Liou (2011) evaluated enterprise resource planning (ERP) 

investment incorporating revenue and cost uncertainties and determined the optimal threshold of 

the ratio of revenue to cost.  

In most cases, deterministic models are used in technology transition problems. However, 

they are not able to incorporate uncertainties. For instance, in 2010, Cook and Ali used the NPV 

approach to evaluate quality improvement projects. Woo, Kim, Sung, Lee, Shin, and Lee (2019) 

evaluated biopharmaceutical technology regarding new drug development using an improved 

risk-adjusted NPV valuation model.  

To the authors’ knowledge, no stochastic models can be found that emphasize demand 

volatility where the blockchain-based SCIMS reduces wastage and disposal, and the retailer in 

the perishable agricultural product supply chain faces the SCIMS switch decision. Although the 

real options approach has many advantages, such that it captures the uncertainties as opposed to 

deterministic models, there are circumstances where it is not worth it (see Table 2.2).  
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Table 2.2 Advantages and Disadvantages of Using Real Options Approach to Solve the 

Switching Problem 

Advantage Disadvantages 

- Real options approach captures uncertainties and provides 

straightforward closed-form solutions (Miller & Park, 2002).  

- Real options approach is not critically dependent on an accurate 

prediction of the retail customers’ demand. Instead, economic 

thresholds are provided that are typically not regrettable. 

 - When the demand has 

little volatility, using the 

real options approach to 

solving the problem is not 

well worth it. 

 

Model Formulation and Analysis  

Basic Model 

In a single perishable agricultural product supply chain consisting of a wholesaler, a 

retailer, and retail customers (see Figure 2.1), the authors consider a switching problem of the 

retailer’s perspective from a conventional SCIMS to a blockchain-based SCIMS. The reason for 

this switch is that the blockchain-based SCIMS facilitates the traceability of the perishable 

product, which will reduce wastage and disposal because, for example, in the case of a virus or 

bacteria outbreak, the contaminated products can be pinpointed rapidly.  

 

Figure 2.1 Supply Chain of a Single Perishable Agricultural Products 

To facilitate the modeling and analysis, the following assumptions are proposed.  

Assumption 2.1: The retail customers’ demand for a single perishable agricultural 

product at time point 𝑡, 𝐷𝑡 (lb at a day), follows a GBM process where the time granularity is a 

day. 

𝑑𝐷𝑡 = 𝛼𝐷𝑡𝑑𝑡 + 𝜎𝐷𝑡𝑑𝑧𝑡                                                          (2.1) 
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where 𝛼 (% per day; > 0) and 𝜎 (% per square root of day; >0) are the instantaneous growth rate 

and volatility of the demand, respectively. 𝑑𝑧𝑡 is the increment of a Wiener process, and 𝑑𝑧𝑡 =

𝜖√𝑑𝑡 , 𝜖 ~ 𝑁(0, 1).  

Proposition 2.1: Suppose the retail customers’ demand at time point 0 is 𝐷0, the 

expected value of 𝐷𝑡 is 𝐸(𝐷𝑡) = 𝐷0𝑒𝛼𝑡 (Dixit & Pindyck, 1994, p. 71-72). See Appendix 2A for 

proof.  

Assumption 2.1 is based on the observation that the retail customers’ demand for a 

perishable agricultural product increases on average and fluctuates over time. Empirical data 

support can be found in Table 2.3, where the authors estimate the consumption of fresh lettuce 

(romaine and leaf) at a day in Houston, TX from 2000 to 2017. As is shown in Figure 2.2, the 

consumption of fresh lettuce at a day has a positive growth rate with fluctuations over time.  

Table 2.3 Estimated Consumption of Fresh Lettuce at a Day in Houston, TX, from 2000 to 2017 

Year 

 

 

Annual per capita (lb) 

(Shahbandeh, 2019) 

Population (million) 

(U.S. Census Bureau, 2019) 

Daily consumption (lb) 

(Estimated) 

2000 8.4 1.9774 45,507 

2001 8.0 1.9943 43,711 

2002 9.6 2.0156 53,013 

2003 10.8 2.0197 59,761 

2004 12.0 2.0174 66,325 

2005 9.7 2.0219 53,733 

2006 12.0 2.0587 67,683 

2007 11.5 2.0651 65,065 

2008 10.4 2.0844 59,391 
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Table 2.3 continued 

Year 

 

 

Annual per capita (lb) 

(Shahbandeh, 2019) 

Population (million) 

(U.S. Census Bureau, 2019) 

Daily consumption (lb) 

(Estimated) 

2009 10.0 2.1186 58,044 

2010 12.0 2.0993 69,018 

2011 11.7 2.1255 68,132 

2012 11.9 2.1598 70,415 

2013 11.4 2.1982 68,656 

2014 10.8 2.2388 66,244 

2015 11.9 2.2822 74,406 

2016 14.5 2.3045 91,549 

2017 15.0 2.3127 95,042 

 

 

Figure 2.2 Estimated Consumption of Fresh Lettuce over Time (Houston, TX, from 2000 to 

2017) 

For ease of reference, the rest notations used in this paper are summarized in Table 2.4.  
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Table 2.4 Notations and Descriptions 

Notation Description 

𝑃  Unit selling price that retail customers pay to the retailer ($/lb) 

𝐶  Unit purchase price that the retailer pays to the wholesaler ($/lb)  

𝑤  The ratio of the amount of the wastage and disposal as a precaution during 

recalls over the demand at time point 𝑡  

𝐼  Switching cost incurred to the retailer at the time of switching ($)  

𝑟  The ratio of the amount of wastage and disposal as a precaution during 

recalls using the blockchain-based SCIMS over that amount using the 

conventional SCIMS  

𝐶𝑏  Payment for using the blockchain-based SCIMS that the retailer pays to 

IBM ($/day) 

𝜌  Discount rate for money (% per day) 

𝑉1  Project value function in phase 1 ($) 

𝑉2  Project value function in phase 2 ($) 

𝐷∗  Optimal demand threshold above which the SCIMS switch occurs ($/lb) 

𝑇∗  Expected switching time (day) 

 

The unit selling price 𝑃 and the unit purchase price 𝐶 are assumed to remain unchanged 

over time. Meanwhile, the costs associated with processing activities (e.g., shipping, storage, 

disposal) and the corresponding labor costs are not considered. 

For the conventional SCIMS, the authors make the following assumptions.   

Assumption 2.2: At time point 𝑡, 𝑤 fraction of the demand 𝐷𝑡 is wasted and disposed as 

a precaution during recalls. Hence, the total amount of the perishable product that the retailer 

purchases from the wholesaler is (1 + 𝑤)𝐷𝑡 (lb at a day).  
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𝑤 is a constant that can be estimated from historical data by dividing the total amount of 

the perishable product wasted and disposed as a precaution during recalls over the retail 

customers’ demand within the last year. This assumption yields the following proposition.  

Proposition 2.2: The total amount of the perishable product that the retailer purchases 

from the wholesaler at time point 𝑡 before switching, (1 + 𝑤)𝐷𝑡  (lb at a day) also follows a 

GBM process with the same growth rate and volatility as 𝐷𝑡. See Appendix 2B for proof.  

Assumption 2.3: The payment for using the conventional SCIMS (i.e., costs associated 

with phone calls, emails, and paper copies) are ignored. 

Assumption 2.4: At a certain time point, the retailer switches from the conventional 

SCIMS to the blockchain-based SCIMS at a switching cost of 𝐼($).  

Referring to the definition of adoption costs of information technology upgrades in 

Mukherji, Rajagopalan, & Tanniru’s work (2006), in this paper, the switching cost 𝐼 is defined as 

the cost associated with purchasing or upgrading necessary equipment, as well as training and 

transitioning employees completely to the blockchain-based SCIMS.   

For the blockchain-based SCIMS, the authors make the following assumptions.  

Assumption 2.5: At time point 𝑡, the amount of wastage and disposal as a precaution 

during recalls is reduced to 𝑟 (0 < 𝑟 < 1) fraction of that amount before switching. That is, the 

total amount of product the retailer purchases from the wholesaler is (1 + 𝑟𝑤)𝐷𝑡  (lb at a day).  

By collecting the product information and storing it on the network, blockchain creates a 

more transparent supply chain where the source of contamination can be rapidly identified, and 

thus, unnecessarily broad recalls are reduced (Guo et al., 2018). For instance, in the case of dairy 

products contamination, Marin, Marin, and Vidu (2019) claimed that blockchain could trace the 

originating farm within seconds, and only a batch of dairy products needs to be removed from 
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distribution. With the above qualitative data support, the authors assume that the blockchain-

based SCIMS reduces the amount of wastage and disposal of perishable agricultural products as 

a precaution during recalls and use a coefficient 𝑟 to denote the reduction efficiency. Notably, a 

smaller 𝑟 indicates more amount of perishable product is saved from being wasted and disposed. 

This assumption yields the following proposition.  

Proposition 2.3: The total amount of the perishable product that the retailer purchases 

from the wholesaler at time point 𝑡 after switching, (1 + 𝑟𝑤)𝐷𝑡 (lb at a day) also follows a GBM 

process with the same growth rate and volatility as 𝐷𝑡. See Appendix 2C for proof.  

Assumption 2.6: Once the retailer switches to the blockchain-based SCIMS, the retailer 

will use it forever.  

The timeline with respect to the switching of SCIMS is divided into two phases by 𝑇∗, 

namely, phase 1 and phase 2 (see Figure 2.3).  

 

Figure 2.3 The Timeline with Respect to the Switching of SCIMS 

The problem can be described as maximizing the total expected discounted value by 

choosing 𝑇∗ as follows:  

𝑚𝑎𝑥𝐸 [∫ 𝑒−𝜌𝑡[𝑃𝐷𝑡 − 𝐶(1 + 𝑤)𝐷𝑡]𝑑𝑡
𝑇∗

0
− 𝐼𝑒−𝜌𝑇∗

+ ∫ 𝑒−𝜌𝑡[𝑃𝐷𝑡 − 𝐶(1 + 𝑟𝑤)𝐷𝑡 − 𝐶𝑏]
∞

𝑇∗ 𝑑𝑡] 

(2.2) 

where 𝑇∗ =  𝑖𝑛𝑓 {𝑡 ≥  0 | 𝐷𝑡 ≥ 𝐷∗}. 
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Phase 2: After Switching 

At time point 𝑡 in phase 2, when operating, the retailer has a cash flow of max [𝑃𝐷𝑡 −

𝐶(1 + 𝑟𝑤)𝐷𝑡 − 𝐶𝑏, 0]. This implies that when 𝑃 > (1 + 𝑟𝑤)𝐶 and 𝐷𝑡 > 𝐷𝑚𝑖𝑛 =
𝐶𝑏

𝑃−𝐶(1+𝑟𝑤)
, the 

retailer profits from the selling of the perishable agricultural product. Under a technical condition 

of 𝜌 − 𝛼 > 0, the project value at time point 𝑡, 𝑉2(𝐷𝑡), is equal to the expected value of 

discounted future cash flows as follows (Murto, 2007). The proof is given in Appendix 2D.  

𝑉2(𝐷𝑡) = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)[𝑃𝐷𝑥 − 𝐶(1 + 𝑟𝑤)𝐷𝑥 − 𝐶𝑏]
∞

𝑡
𝑑𝑥} =

[𝑃−𝐶(1+𝑟𝑤)]𝐷𝑡

𝜌−𝛼
−

𝐶𝑏

𝜌
        (2.3) 

Phase 1: Before Switching  

In phase 1, when operating, the cash flow function at time point 𝑡 is given 

by max[𝑃𝐷𝑡 − 𝐶(1 + 𝑤)𝐷𝑡 , 0]. Similarly, for the retailer to make a profit, 𝑃 is supposed to be 

greater than (1 + 𝑤)𝐶, and there is no requirement for 𝐷𝑡. The project value at time point 𝑡, 

𝑉1(𝐷𝑡), must satisfy the following Bellman optimality principle equation:  

𝜌𝑉1(𝐷𝑡)𝑑𝑡 = [𝑃𝐷𝑡 − 𝐶(1 + 𝑤)𝐷𝑡]𝑑𝑡 + 𝐸[𝑑𝑉1(𝐷𝑡)|𝐷𝑡]                        (2.4) 

Equation (2.4) means that at time point 𝑡, the return for holding the switching option 

should equal the immediate profit when holding the switching option plus the expected 

appreciation of the project value conditioning on the demand level.  

By applying Ito’s Lemma on 𝑑𝑉1, the following differential equation can be derived:   

1

2
𝜎2𝐷𝑡

2 𝜕2𝑉1

𝜕𝐷𝑡
2 + 𝛼𝐷𝑡

𝜕𝑉1

𝜕𝐷𝑡
−  𝜌𝑉1 + (𝑃 − 𝐶)𝐷𝑡 − 𝐶𝑤𝐷𝑡 = 0                     (2.5) 

Equation (2.5) is subject to the following two boundary conditions (Siddiqui & 

Takashima, 2012).  

𝑉1(𝐷∗) = 𝑉2(𝐷∗) − 𝐼                                                           (2.6) 

𝑉1′(𝐷∗) = 𝑉2′(𝐷∗)                                                             (2.7) 
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Equation (2.6) and Equation (2.7) are the value matching and smooth pasting conditions, 

respectively. The value matching condition ensures that at the time of exercising the switching 

option, the project value before switching is equal to the project value after switching minus the 

switching cost. The smooth pasting condition guarantees that the slopes of the left-hand side and 

the right-hand side of the value matching condition are equal at the optimal demand threshold.  

Under technical conditions of 𝜌 − 𝛼 > 0 and 𝛼 −
𝜎2

2
> 0 (Dixit & Pindyck, 1994), the 

general solution to Equation (2.5) is given by (see Appendix 2E for proof):  

𝑉1(𝐷𝑡) = 𝐴1𝐷𝑡
𝛽1 +

[𝑃−𝐶(1+𝑤)]𝐷𝑡

𝜌−𝛼
                                                (2.8) 

where 𝛽1 =
1

𝜎2 [
𝜎2

2
− 𝛼 + √(

𝜎2

2
− 𝛼)

2

+ 2𝜌𝜎2], 𝛽1 > 1.  

Using the two boundary conditions, the coefficient 𝐴1 and the optimal demand threshold 

𝐷∗ can be solved. That is, 𝐴1 =
𝐶𝑤(1−𝑟)

(𝜌−𝛼)𝛽1𝐷∗𝛽1−1, and 𝐷∗ is given by:  

𝐷∗ =
(

𝐶𝑏
𝜌

+𝐼)(𝜌−𝛼)𝛽1

𝐶𝑤(1−𝑟)(𝛽1−1)
                                                           (2.9) 

It can be verified that the expected time for the retailer to optimally switch is (Appendix 

2F for proof):  

𝑇∗ =
ln

(
𝐶𝑏
𝜌 +𝐼)(𝜌−𝛼)𝛽1

𝐶𝑤(1−𝑟)(𝛽1−1)
−ln 𝐷0

𝛼−
1

2
𝜎2

                                                  (2.10) 

Extended Model with Subsidies  

Next, the basic model is extended by incorporating two types of government subsidies. 

That is, the government provides the retailer with a one-time fixed subsidy of 𝑈($) on the 

switching cost to initiate the switch of SCIMS and a variable subsidy 𝑆 ($/lb) per unit demand 

for using the blockchain-based SCIMS in the supply chain of the perishable agricultural product.  
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Phase 2: After Switching  

In phase 2, when operating, the retailer’s cash flow at time point 𝑡 is max [𝑃𝐷𝑡 − 𝐶(1 +

𝑟𝑤)𝐷𝑡 − 𝐶𝑏 + 𝑆𝐷𝑡 , 0], and it is required that 𝑃 > (1 + 𝑟𝑤)𝐶 and 𝐷𝑡 > 𝐷𝑚𝑖𝑛 =
𝐶𝑏

𝑃−𝐶(1+𝑟𝑤)+𝑆
 . 

Given 𝜌 − 𝛼 > 0, the project value, 𝑉2(𝐷𝑡), is equal to the expected value of discounted cash 

flows as follows (Murto, 2007). The proof is given in Appendix 2G. 

𝑉2(𝐷𝑡) = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)[𝑃𝐷𝑥 − 𝐶(1 + 𝑟𝑤)𝐷𝑥 + 𝑆𝐷𝑥 − 𝐶𝑏]
∞

𝑡
𝑑𝑥} =

[𝑃−𝐶(1+𝑟𝑤)+𝑆]𝐷𝑡

𝜌−𝛼
−

𝐶𝑏

𝜌
    (2.11) 

Phase 1: Before Switching  

When operating, the project value at time point 𝑡, 𝑉1(𝐷𝑡), remains the same as Equation 

(2.8) in the basic model, i.e., 𝑉1(𝐷𝑡) = 𝐴1𝐷𝑡
𝛽1 +

[𝑃−𝐶(1+𝑤)]𝐷𝑡

𝜌−𝛼
, but now 𝑉1(𝐷𝑡) is subjective to 

the following two boundary conditions:  

𝑉1(𝐷∗) = 𝑉2(𝐷∗) − (𝐼 − 𝑈)                                                    (2.12) 

𝑉1′(𝐷∗) = 𝑉2′(𝐷∗)                                                                    (2.13) 

Equation (2.12) is the value matching condition, which suggests that at the time of 

exercising the switching option, the project value before switching should be equal to the project 

value after switching minus the switching cost net of the fixed subsidy. Equation (2.13) is the 

smooth pasting condition, and it ensures the slopes of both sides of Equation (2.12) are equal at 

the switching time.  

Sequentially, it can be verified that 𝐴1 =
𝐶𝑤(1−𝑟)+𝑆

(𝜌−𝛼)𝛽1𝐷1
∗𝛽1−1, and the optimal demand 

threshold 𝐷∗ is:  

𝐷∗ =
(

𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
                                                        (2.14) 
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Similarly, with the two types of government subsidies, the expected switching time 

becomes:   

𝑇∗ =
ln

(
𝐶𝑏
𝜌 +𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
−ln 𝐷0

𝛼−
1

2
𝜎2

                                                   (2.15) 

Analytical Sensitivity Analysis  

Among the ten parameters that determine the optimal demand threshold 𝐷∗, the authors 

conduct analytical sensitivity analysis on seven of them (𝐶, 𝑤, 𝑟, 𝐼, 𝐶𝑏, 𝑈, 𝑆), and numerically 

examine the impact of the rest three (𝜎, 𝛼 and 𝜌) on 𝐷∗ as the partial derivatives with respect to 

them cannot be explicitly obtained. Also, in the stochastic optimal control theory, the optimal 

project value corresponds to timing, so sensitivity analysis on 𝑇∗ is included as well.  

Corollary 2.1: Given 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0, 

𝜕𝐷∗

𝜕𝐶
< 0, 

𝜕𝑇∗

𝜕𝐶
< 0, 

𝜕𝐷∗

𝜕𝑤
< 0 , and 

𝜕𝑇∗

𝜕𝑤
< 0. 

The proof is given in Appendix 2H. This corollary indicates that when the unit purchase 

price of the perishable product increases or a larger proportion of the perishable product is 

wasted and disposed as a precaution during recalls, the optimal demand threshold and the 

expected switching time decrease. In such cases, the retailer loses more money due to wastage 

and disposal. Consequently, the retailer will switch to the blockchain-based SCIMS earlier from 

an economic perspective.  

Corollary 2.2: Given 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0, 

𝜕𝐷∗

𝜕𝑟
> 0, 

𝜕𝑇∗

𝜕𝑟
> 0. 

The proof is given in Appendix 2I. The positive partial derivatives suggest that a larger 

coefficient of reduction efficiency leads to a higher optimal demand threshold and the expected 

switching time. This is because a larger 𝑟 implies that less perishable agricultural product is 

saved from being wasted and disposed of by the blockchain-based SCIMS. As a result, it is 

economically rational for the retailer to defer the switching option.  
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Corollary 2.3: Given 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0, 

𝜕𝐷∗

𝜕𝐼
> 0, 

𝜕𝑇∗

𝜕𝐼
> 0, 

𝜕𝐷∗

𝜕𝐶𝑏
> 0, and 

𝜕𝑇∗

𝜕𝐶𝑏
> 0. 

The proof is given in Appendix 2J. Corollary 2.3 suggests that as the switching cost or 

the payment for using the blockchain-based SCIMS increases, the optimal demand threshold and 

the expected switching time increase. This makes economic sense because, under such 

circumstances, the retailer benefits less from the SCIMS switch, so there is less incentive for the 

retailer to switch. Therefore, the retailer will wait longer before exercising the switching option.  

Corollary 2.4: Given 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0, 

𝜕𝐷∗

𝜕𝑈
< 0, 

𝜕𝑇∗

𝜕𝑈
< 0, 

𝜕𝐷∗

𝜕𝑆
< 0, and 

𝜕𝑇∗

𝜕𝑆
< 0. 

The proof is given in Appendix 2K. The interpretation of Corollary 2.4 is as follows. 

When the government provides the retailer with a higher fixed subsidy on the switching cost or a 

higher variable subsidy per unit demand, the retailer has a lower switching cost or a higher cash 

flow after switching. Either way, the retailer will be more eager to switch from an economic 

perspective, so the optimal demand threshold and expected switching time will decrease.  

Numerical Study  

In this section, the authors conduct a numerical study on romaine lettuce to further 

demonstrate the findings in the previous section. The parameter values and references are 

summarized in Table 2.5, where some parameter values are hypothetical due to the lack of 

numerical data.  

Table 2.5 Parameters and Values 

Parameter Value References 

𝛼  0.0505 Shahbandeh (2019); U.S. Census Bureau (2019); 

Method 3 in Croghan, Jackman, and Min’s paper 

(2017) 𝜎  0.1202 

𝐷0  78,552 (lb at a day) Population USA (2019); Shahbandeh, 2019) 
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Table 2.5 continued 

Parameter Value References 

𝑃  0.94 ($/lb) USDA (2019) 

𝐶  0.36 ($/lb) USDA (2019) 

𝑤  0.137 ExerciseBike (2019)  

𝐶𝑏  133.33 ($/day) IBM Cloud (2019)  

𝜌  0.0543 Damodaran (2019)  

𝑟  0.4 Hypothetical  

𝐼  1,000,000 ($) Hypothetical 

𝑈  200,000 ($) Hypothetical 

𝑆  0.05 ($/lb) Hypothetical 

 

The key numerical results in Table 2.6 show that, in the basic model where no subsidies 

are provided, the optimal demand threshold is 2,100,161 (lb at a day), and the corresponding 

expected switching time is 76 (day). With the presentence of two types of government subsidies, 

in the extended model, the optimal demand threshold is reduced to 625,047 (lb at a day), and 

correspondingly, the expected switching time is reduced to 48 (day). Also, the minimum demand 

level for the retailer to make a profit from the selling of the perishable product is reduced from 

238 (lb at a day) to 218 (lb at a day) when the two government subsidies are provided.  

Table 2.6 Numerical Results 

Notation Value (basic model - no subsidies) Value (extended model - with subsidies) 

𝛽1  1.0653 1.0653 

𝐴1   2.8255 8.2255 

𝐷𝑚𝑖𝑛  238 (lb at a day) 218 (lb at a day) 
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Table 2.6 continued 

Notation Value (basic model - no subsidies) Value (extended model - with subsidies) 

𝐷∗  2,100,161 (lb at a day) 625,047 (lb at a day) 

𝑇∗  76 (day) 48 (day) 

 

Next, numerical sensitivity analysis is conducted on 𝜎, 𝛼, and 𝜌, since their impact on 𝐷∗ 

and 𝑇∗ has not been analytically examined.  

Figure 2.4 illustrates that as the demand becomes more volatile, the optimal demand 

threshold and the expected switching time increase, meaning that the exercise of the retailer’s 

switching option should be deferred. This is because, with higher demand uncertainty, the 

flexibility to exercise the switching option at any time point becomes more valuable. Hence, it is 

economically rational for the retailer to hold the switching option longer and wait for more 

information.  

 

Figure 2.4 Variation of 𝐷∗ and 𝑇∗ with Respect to 𝜎 

In terms of the growth rate of demand, when it increases, the optimal demand threshold 

and the expected switching time decrease (see Figure 2.5). This is because when the retail 

customers’ demand for the perishable product is rapidly growing, the retailer’s benefit from 

using the blockchain-based SCIMS is amplified. Therefore, the retailer prefers to exercise the 

switching option earlier.   
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Figure 2.5 Variation of 𝐷∗ and 𝑇∗ with Respect to 𝛼 

As shown in Figure 2.6, when the discount rate for money increases, the optimal demand 

threshold and the expected switching time increase. The reason is that, when money is heavily 

discounted, the retailer’s loss due to wastage and disposal during recalls is trivial. Consequently, 

the retailer has less incentive to switch from the conventional SCIMS to the blockchain-based 

SCIMS. 

 

Figure 2.6 Variation of 𝐷∗ and 𝑇∗ with Respect to 𝜌 

Although the magnitude of the partial derivative of 𝐷∗ and 𝑇∗ with respect to 𝑈 and 𝑆 

have been given in the sensitivity analysis section, the authors include Figure 2.7 and Figure 2.8 

to discuss the convexness and concaveness of these curves. Intuitively, the optimal demand 

threshold linearly decreases as the fixed subsidy on switching cost increases, and convex 

decreases as the variable subsidy per unit demand increases. Specifically, when the variable 
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subsidy 𝑆 increases from 0 to 0.1 ($/lb), the optimal demand threshold 𝐷∗ substantially decreased 

from 1.68 × 106(lb at a day) to 0.38 × 106 (lb at a day). However, when 𝑆 increases from 0.3 

($/lb) to 0.4 ($/lb), 𝐷∗ decreased from 0.15 × 106 (lb at a day) to 0.11 × 106 (lb at a day). This 

implies that, from a perspective of the optimal demand threshold reduction, a small amount of 

variable subsidy is more economically efficient than the fixed subsidy if the government expects 

retailers to rapidly switch to the blockchain-based SCIMS. On the other hand, the fixed subsidy 

is more viable than the variable subsidy when government anticipates an even switch among 

retailers.  

As for the expected switching time, it is concave decreasing when the fixed subsidy 

increases and convex decreasing when the variable subsidy increases. This means that, regarding 

the expected switching time reduction, the fixed subsidy is more efficient at a higher level, while 

the variable subsidy is more efficient at a lower level.  

 

Figure 2.7 Variation of 𝐷∗ and 𝑇∗ with respect to 𝑈 
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Figure 2.8 Variation of 𝐷∗ and 𝑇∗ with respect to 𝑆 

Conclusions  

This paper considers a retailer in a supply chain of a perishable agricultural product who 

faces a volatile retail customers’ demand and decides when to switch to a blockchain-based 

SCIMS from a conventional SCIMS. The authors investigated how economically rational 

decisions can be made on such a switch from a real options perspective under the assumption 

that the retail customers’ demand for a single perishable agricultural product follows a GBM 

process. Specifically, without/with the presentence of a fixed subsidy and a variable subsidy 

from the government, the authors constructed mathematical models and obtained the closed-form 

solutions of the demand thresholds for the retailer to optimally switch and the corresponding 

expected switching time. A series of managerial insights and policy implications are derived by 

analytically and numerically examining the impact of key parameters on the optimal demand 

threshold and the expected switching time. For instance, the retailer is recommended to defer the 

switching option when the customers’ demand is volatile. Furthermore, from the government’s 

perspective, a small amount of variable subsidy should be promoted if the government 

anticipates the retailers to rapidly switch to the blockchain-based SCIMS in a short time, while a 

fixed subsidy is recommended if an even pace of switch among retailers is expected. Also, the 
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fixed subsidy is more efficient at a higher level than the variable subsidy, which is more efficient 

at a lower level.  

The novelty of this paper is to show under what conditions a retailer can switch from a 

conventional SCIMS to a blockchain-based SCIMS and the expected time for the switch when 

the uncertain demand is characterized by a GBM process. 

Limitations and Future Research 

There are a few limitations in this paper which can be addressed in future research. First, 

the assumption that the blockchain-based SCIMS reduces the amount of wastage and disposal to 

𝑟 fraction of that using the conventional SCIMS (assumption 2.5) is based on qualitative 

inference and lacks quantitative data support. The authors anticipate quantitative data support to 

justify this assumption as the development of blockchain. Secondly, the demand is modeled as a 

GBM process, which indicates that the demand increases on average and fluctuates over time. 

Research can be expanded by modeling the demand as a jump-diffusion process considering that 

there can be a substantial reduction in the demand when recalls happen. Thirdly, besides the 

demand uncertainty, other uncertainties such as the uncertainties in the unit selling price and the 

technology innovations (e.g., blockchain may require updates or be replaced by a more advanced 

SCIMS in the future) can be incorporated into future research. Moreover, one can model the 

blockchain-based SCIMS switch decision from a perspective of other stakeholders, such as the 

wholesaler or the farm cooperative. Discussions can be expanded to the valuation of the 

blockchain-based system regarding other properties such as transparency, immutability, and 

irrefutability in various industries (e.g., financial, insurance, manufacturing industry).   
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Appendices 

Appendix 2A. Proof of Proposition 2.1   

Define 𝐹𝑡 = ln(𝐷𝑡). By Ito’s Lemma, the total differential of function 𝐹𝑡 is as follows 

(Dixit & Pindyck, 1994, p. 80):  

𝑑𝐹𝑡 =
𝜕𝐹𝑡

𝜕𝑡
𝑑𝑡 +

𝜕𝐹𝑡

𝜕𝐷𝑡
𝑑𝐷𝑡 +

1

2

𝜕2𝐹𝑡

𝜕𝐷𝑡
2

(𝑑𝐷𝑡)2 

=
1

𝐷𝑡
(𝛼𝐷𝑡𝑑𝑡 + 𝜎𝐷𝑡𝑑𝑧𝑡) +

1

2
(−

1

𝐷𝑡
2) (𝛼𝐷𝑡𝑑𝑡 + 𝜎𝐷𝑡𝑑𝑧𝑡)2  

= (𝛼𝑑𝑡 + 𝜎𝑑𝑧𝑡) −
1

2
(𝛼2𝑑𝑡2 + 𝜎2𝑑𝑧𝑡

2 + 2𝛼𝑑𝑡𝜎𝑑𝑧𝑡)                        (2A.1) 

where 
𝜕𝐹𝑡

𝜕𝑡
= 0 (because the function 𝐹𝑡 = ln(𝐷𝑡) has a steady state regardless of the value 

of 𝑡), 
𝜕𝐹𝑡

𝜕𝐷𝑡
=

1

𝐷𝑡
, and 

𝜕2𝐹𝑡

𝜕𝐷𝑡
2 = −

1

𝐷𝑡
2. Since 𝑑𝑧𝑡 = 𝜖√𝑑𝑡 , 𝑑𝑧𝑡

2 = 𝜖2𝑑𝑡 and 𝑑𝑡𝑑𝑧𝑡 = 𝜖𝑑𝑡
3

2. Terms in 
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𝑑𝑡2 and 𝑑𝑡
3

2 go to zero faster than 𝑑𝑡 as it becomes infinitesimally small, so they can be ignored 

(Dixit & Pindyck, 1994, p. 80). Also, 𝑑𝑧𝑡
2 = 𝜖2𝑑𝑡 ≅ 𝐸(𝜖2)𝑑𝑡 = {𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜖) + [𝐸(𝜖)]2}𝑑𝑡 =

(1 + 02)𝑑𝑡 = 𝑑𝑡. Hence,  

𝑑𝐹𝑡 = (𝛼𝑑𝑡 + 𝜎𝑑𝑧𝑡) −
1

2
(𝜎2𝑑𝑡) = (𝛼 −

1

2
𝜎2)𝑑𝑡 + 𝜎𝑑𝑧𝑡                         (2A.2) 

Therefore, ln(𝐷𝑡) = ln(𝐷0) + (𝛼 −
1

2
𝜎2)𝑡 + 𝜎𝑧𝑡, where 𝐷0 is the value of 𝐷𝑡 at time 

point 0. Stated otherwise, 𝐷𝑡 is a lognormal process and can be written as 𝐷0𝑒(𝛼−
1

2
𝜎2)𝑡+𝜎𝑧𝑡  

(Luenberger, 1998, p. 308-309).  

For a random variable 𝑋 ~ 𝑁(𝜇, 𝜎2), the moment generating function (MGF) is as 

follows (Miller, Miller & Freund, 2014, p. 187):  

𝑀𝑋(𝑠) = 𝐸(𝑒𝑠𝑋) = 𝑒𝜇𝑠+
1

2
𝜎2𝑠2

, −∞ < 𝑠 < ∞                                    (2A.3) 

For a random variable 𝐹𝑡 ~ 𝑁 ((𝛼 −
1

2
𝜎2)𝑡, 𝜎2𝑡), the MGF is given by (Sigman, 2006, p. 

3): 

𝑀𝐹𝑡
(𝑠) = 𝐸(𝑒𝑠𝐹𝑡 ) = 𝑒(𝛼−

1

2
𝜎2)𝑡𝑠+

1

2
𝜎2𝑡𝑠2

, −∞ < 𝑠 < ∞                             (2A.4) 

Therefore, the expected value of 𝐷𝑡 can be calculated by setting 𝑠 = 1:  

𝐸(𝐷𝑡) = 𝐸(𝐷0𝑒𝐹𝑡) = 𝐷0𝑀𝐹𝑡
(1) = 𝐷0𝑒(𝛼−

1

2
𝜎2)𝑡+

1

2
𝜎2𝑡 = 𝐷0𝑒𝛼𝑡                  (2A.5) 

Appendix 2B. Proof of Proposition 2.2  

Define 𝐺𝑡 = (1 + 𝑤)𝐷𝑡 . By Ito’s Lemma, the total differential of function 𝐺𝑡 is given by  

                 𝑑𝐺𝑡 =
𝜕𝐺𝑡

𝜕𝑡
𝑑𝑡 +

𝜕𝐺𝑡

𝜕𝐷𝑡
𝑑𝐷𝑡 +

1

2

𝜕2𝐺𝑡

𝜕𝐷𝑡
2 (𝑑𝐷𝑡)2 = (1 + 𝑤)(𝛼𝐷𝑡𝑑𝑡 + 𝜎𝐷𝑡𝑑𝑧𝑡)                   

= 𝛼[(1 + 𝑤)𝐷𝑡]𝑑𝑡 + 𝜎[(1 + 𝑤)𝐷𝑡]𝑑𝑧𝑡 = 𝛼𝐺𝑡𝑑𝑡 + 𝜎𝐺𝑡𝑑𝑧𝑡                            (2B.1) 

where 
𝜕𝐺𝑡

𝜕𝑡
= 0 (because the function 𝐺𝑡 = (1 + 𝑤)𝐷𝑡  has a steady state regardless of the value of 

𝑡), 
𝜕𝐺𝑡

𝜕𝐷𝑡
= 1 + 𝑤, and 

𝜕2𝐺𝑡

𝜕𝐷𝑡
2 = 0.  
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Hence, 𝐺𝑡, i.e., (1 + 𝑤)𝐷𝑡 , follows a GBM process with the same growth rate 𝛼 and volatility 𝜎 

as 𝐷𝑡 .  

Appendix 2C. Proof of Proposition 2.3  

Similarly, define 𝐻𝑡 = (1 + 𝑟𝑤)𝐷𝑡. By Ito’s Lemma, the total differential of function 𝐻𝑡 

is given by  

       𝑑𝐻𝑡 =
𝜕𝐻𝑡

𝜕𝑡
𝑑𝑡 +

𝜕𝐻𝑡

𝜕𝐷𝑡
𝑑𝐷𝑡 +

1

2

𝜕2𝐻𝑡

𝜕𝐷𝑡
2 (𝑑𝐷𝑡)2 = (1 + 𝑟𝑤)(𝛼𝐷𝑡𝑑𝑡 + 𝜎𝐷𝑡𝑑𝑧𝑡)  

= 𝛼[(1 + 𝑟𝑤)𝐷𝑡]𝑑𝑡 + 𝜎[(1 + 𝑟𝑤)𝐷𝑡]𝑑𝑧𝑡 = 𝛼𝐻𝑡𝑑𝑡 + 𝜎𝐻𝑡𝑑𝑧𝑡                    (2C.1) 

where 
𝜕𝐻𝑡

𝜕𝑡
= 0 (because the function 𝐻𝑡 = (1 + 𝑟𝑤)𝐷𝑡 has a steady state regardless of 

the value of 𝑡), 
𝜕𝐻𝑡

𝜕𝐷𝑡
= 1 + 𝑟𝑤, and 

𝜕2𝐻𝑡

𝜕𝐷𝑡
2 = 0.  

Hence, 𝐻𝑡, i.e., (1 + 𝑟𝑤)𝐷𝑡, follows a GBM process with the same growth rate 𝛼 and 

volatility 𝜎 as 𝐷𝑡. 

Appendix 2D. Proof of Equation (2.3) 

       𝑉2(𝐷𝑡) = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)[𝑃𝐷𝑥 − 𝐶(1 + 𝑟𝑤)𝐷𝑥 − 𝐶𝑏]
∞

𝑡
𝑑𝑥}  

                  = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)[𝑃 − 𝐶(1 + 𝑟𝑤)]𝐷𝑥
∞

𝑡
𝑑𝑥} − ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝐶𝑏𝑑𝑥  

                  = [𝑃 − 𝐶(1 + 𝑟𝑤)] ∫ 𝑒−𝜌(𝑥−𝑡)𝐸(𝐷𝑥)
∞

𝑡
𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥  

                  = [𝑃 − 𝐶(1 + 𝑟𝑤)] ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝐷𝑡𝑒𝛼(𝑥−𝑡)𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥  

                  = [𝑃 − 𝐶(1 + 𝑟𝑤)]𝐷𝑡 ∫ 𝑒−(𝜌−𝛼)(𝑥−𝑡)∞

𝑡
𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥  

= (−
[𝑃−𝐶(1+𝑟𝑤)]𝐷𝑡

𝜌−𝛼
) 𝑒−(𝜌−𝛼)(𝑥−𝑡)|𝑡

∞ − (−
𝐶𝑏

𝜌
) 𝑒−𝜌(𝑥−𝑡)|𝑡

∞ =
[𝑃−𝐶(1+𝑟𝑤)]𝐷𝑡

𝜌−𝛼
−

𝐶𝑏

𝜌
      (2D.1) 

Appendix 2E. Proof of Equation (2.8) 

A particular solution to Equation (2.5) can be verified to be 𝑉1(𝐷𝑡) =
[𝑃−𝐶(1+𝑤)]𝐷𝑡

𝜌−𝛼
 under 

a technical condition of 𝜌 − 𝛼 > 0. Also, a homogeneous solution to Equation (2.5) can be 



51 

 

written as 𝑉1(𝐷𝑡) = 𝐴1𝐷𝑡
𝛽1 + 𝐴2𝐷𝑡

𝛽2  under a technical condition of 𝛼 −
𝜎2

2
> 0, where 𝛽1,2 =

[
𝜎2

2
− 𝛼 ± √(

𝜎2

2
− 𝛼)

2

+ 2𝜌𝜎2] /𝜎2 are the two roots of the fundamental quadratic equation 

ℚ =
1

2
𝜎2𝛽(𝛽 − 1) + 𝛼𝛽 − 𝜌 = 0. It can be verified that 𝛽1 > 1 and 𝛽2 < 0 (Dixit and 

Pindyck’s, 1994, p. 143). So, the general solution to Equation (2.5) is 𝑉1(𝐷𝑡) = 𝐴1𝐷𝑡
𝛽1 +

𝐴2𝐷𝑡
𝛽2 +

[𝑃−𝐶(1+𝑤)]𝐷𝑡

𝜌−𝛼
, and 𝐴1 and 𝐴2 are constants to be determined.  

The signs of constants 𝐴1 and 𝐴2 can be discussed as follows. Assuming 𝐴1 is negative, 

since 𝛽1 is greater than 1, when 𝐷𝑡 goes to positive infinity, the term 𝐴1𝐷𝑡
𝛽1  goes to negative 

infinity. This is against economic implications as larger demand is supposed to bring the retailer 

with more profit and thus, contributes to a higher project value. Therefore, 𝐴1 cannot be 

negative. Similarly, if 𝐴2 is positive, when 𝐷𝑡 is small and approaches to zero, the term 𝐴2𝐷𝑡
𝛽2  

goes to positive infinity since 𝛽2 is negative. This also violates the economic signification 

because smaller demand should contribute to lower profit as well as lower project value. Hence, 

𝐴2 cannot be positive. Conversely, if 𝐴2 is negative, 
𝜕(𝐴2𝐷𝑡

𝛽2)

𝜕𝐷𝑡
= 𝐴2𝛽2𝐷𝑡

𝛽2−1 < 0, meaning that 

the project value decreases as the demand increases. This does not make economic sense since 

the project value should increase with an increase in the demand, so 𝐴2 cannot be negative 

either. Since 𝐴2 cannot be either positive or negative, it is required to be 0. Therefore, the general 

solution becomes 𝑉1(𝐷𝑡) = 𝐴1𝐷𝑡
𝛽1 +

[𝑃−𝐶(1+𝑤)]𝐷𝑡

𝜌−𝛼
. 

Appendix 2F. Proof of Expected Switching Time  

In Appendix 2A, the authors show that the change in 𝐹𝑡 (the natural logarithm of 𝐷𝑡) is 

normally distributed with mean (𝛼 −
1

2
𝜎2) 𝑡 and variance of 𝜎2𝑡. Since the natural logarithm is 
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a monotonically increasing function, the expected time for the retailer to optimally switch can be 

interpreted as the expected passage time from 𝐷0 to 𝐷∗:  

𝑇∗ =
ln 𝐷∗−ln 𝐷0

𝛼−
1

2
𝜎2

=
ln

(
𝐶𝑏
𝜌 +𝐼)(𝜌−𝛼)𝛽1

𝐶𝑤(1−𝑟)(𝛽1−1)
−ln 𝐷0

𝛼−
1

2
𝜎2

                                         (2F.1) 

Appendix 2G. Proof of Equation (2.11)  

       𝑉2(𝐷𝑡) = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)[𝑃𝐷𝑥 − 𝐶(1 + 𝑟𝑤)𝐷𝑥 + 𝑆𝐷𝑥 − 𝐶𝑏]
∞

𝑡
𝑑𝑥}  

                  = 𝐸{∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
[𝑃 − 𝐶(1 + 𝑟𝑤) + 𝑆]𝐷𝑥𝑑𝑥} − ∫ 𝑒−𝜌(𝑥−𝑡)𝐶𝑏

∞

𝑡
𝑑𝑥  

                  = [𝑃 − 𝐶(1 + 𝑟𝑤) + 𝑆] ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝐸(𝐷𝑥)𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥  

                  = [𝑃 − 𝐶(1 + 𝑟𝑤) + 𝑆] ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝐷𝑡𝑒𝛼(𝑥−𝑡)𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥 

                  = [𝑃 − 𝐶(1 + 𝑟𝑤) + 𝑆]𝐷𝑡 ∫ 𝑒−(𝜌−𝛼)(𝑥−𝑡)∞

𝑡
𝑑𝑥 − 𝐶𝑏 ∫ 𝑒−𝜌(𝑥−𝑡)∞

𝑡
𝑑𝑥    

   = (−
[𝑃−𝐶(1+𝑟𝑤)+𝑆]𝐷𝑡

𝜌−𝛼
) 𝑒−(𝜌−𝛼)(𝑥−𝑡)|𝑡

∞ − (−
𝐶𝑏

𝜌
) 𝑒−𝜌(𝑥−𝑡)|𝑡

∞ =
[𝑃−𝐶(1+𝑟𝑤)+𝑆]𝐷𝑡

𝜌−𝛼
−

𝐶𝑏

𝜌
  (2G.1) 

Appendix 2H. Proof of Corollary 2.1 

By Equation (2.14), Equation (2.15) and technical conditions of 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0,  

𝜕𝐷∗

𝜕𝐶
= −

𝑤(1−𝑟)(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
< 0                                         (2H.1) 

𝜕𝑇∗

𝜕𝐶
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝐶
= −

1

(𝛼−
1

2
𝜎2)𝐷∗

𝑤(1−𝑟)(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
= −

1

(𝛼−
1

2
𝜎2)

𝑤(1−𝑟)

[𝐶𝑤(1−𝑟)+𝑆]
< 0    (2H.2) 

𝜕𝐷∗

𝜕𝑤
= −

𝐶(1−𝑟)(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
< 0                                        (2H.3) 

𝜕𝑇∗

𝜕𝑤
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝑤
= −

1

(𝛼−
1

2
𝜎2)𝐷∗

𝐶(1−𝑟)(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
= −

1

(𝛼−
1

2
𝜎2)

𝐶(1−𝑟)

[𝐶𝑤(1−𝑟)+𝑆]
< 0     (2H.4) 

Appendix 2I. Proof of Corollary 2.2  

By Equation (2.14), Equation (2.15) and technical conditions of 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0,  
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𝜕𝐷∗

𝜕𝑟
=

𝐶𝑤(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
> 0                                                     (2I.1) 

𝜕𝑇∗

𝜕𝑟
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝑟
=

1

(𝛼−
1

2
𝜎2)𝐷∗

𝐶𝑤(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
=

1

(𝛼−
1

2
𝜎2)

𝐶𝑤

[𝐶𝑤(1−𝑟)+𝑆]
> 0          (2I.2) 

Appendix 2J. Proof of Corollary 2.3  

By Equation (2.14), Equation (2.15) and technical conditions of 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0,  

𝜕𝐷∗

𝜕𝐼
=

(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
> 0                                               (2J.1) 

𝜕𝑇∗

𝜕𝐼
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝐼
=

1

(𝛼−
1

2
𝜎2)𝐷∗

(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
=

1

(𝛼−
1

2
𝜎2)

1

(
𝐶𝑏
𝜌

+𝐼−𝑈)
> 0                (2J.2) 

𝜕𝐷∗

𝜕𝐶𝑏
=

(𝜌−𝛼)𝛽1

𝜌[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
> 0                                            (2J.3) 

𝜕𝑇∗

𝜕𝐶𝑏
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝐶𝑏
=

1

(𝛼−
1

2
𝜎2)𝐷∗

(𝜌−𝛼)𝛽1

𝜌[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
=

1

(𝛼−
1

2
𝜎2)

1

(
𝐶𝑏
𝜌

+𝐼−𝑈)𝜌
> 0             (2J.4) 

Appendix 2K. Proof of Corollary 2.4  

By Equation (2.14), Equation (2.15) and technical conditions of 𝜌 > 𝛼 and 𝛼 −
𝜎2

2
> 0,  

𝜕𝐷∗

𝜕𝑈
= −

(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
< 0                                                  (2K.1) 

𝜕𝑇∗

𝜕𝑈
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝑈
= −

1

(𝛼−
1

2
𝜎2)𝐷∗

(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆](𝛽1−1)
= −

1

(𝛼−
1

2
𝜎2)

1

(
𝐶𝑏
𝜌

+𝐼−𝑈)
< 0           (2K.2) 

𝜕𝐷∗

𝜕𝑆
= −

(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
< 0                                                  (2K.3) 

𝜕𝑇∗

𝜕𝑆
=

𝜕𝑇∗

𝜕𝐷∗

𝜕𝐷∗

𝜕𝑆
= −

1

(𝛼−
1

2
𝜎2)𝐷∗

(
𝐶𝑏
𝜌

+𝐼−𝑈)(𝜌−𝛼)𝛽1

[𝐶𝑤(1−𝑟)+𝑆]2(𝛽1−1)
= −

1

(𝛼−
1

2
𝜎2)

1

[𝐶𝑤(1−𝑟)+𝑆]
< 0         (2K.4) 
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Abstract 

Resurfacing an asphalt road is a costly and irreversible but often necessary endeavor 

across many communities and regions. In this paper, under the assumption that the maintenance 

cost of a road follows a geometric Brownian motion (GBM) process, we construct and analyze a 

stochastic optimal control (a real options approach) model for a profit-maximizing decision-

maker where the threshold in the maintenance cost to resurface the road is the decision variable. 

Furthermore, by a profit maximizer, we mean, for example, a private-sector company under a 

Public-Private Partnership over a road where its objective is to maximize profit. Given this 

framework of the model, we also mathematically derive the expected resurfacing interval, that is, 

how much time, on average, is between two consecutive resurfacing activities. In addition, we 

analytically and numerically illustrate key features of our model via analytical derivation and an 

extensive numerical example for managerial insights and economic implications. 

Keywords: Geometric Brownian Motion (GBM), Real Options, Maintenance Cost 

Uncertainty, Decision Support, Road Resurfacing. 

Introduction  

The maintenance cost of asphalt roads has been substantially increasing (Tornquist, 2007, 

p. 1; PCA, 2012, pp. 7-8), where fluctuations are often observed. The escalation of the 

maintenance can be attributed to multiple factors, for instance, pavement aging (Ohio Auditor of 
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State, 2012, p. 7, slide 3), material prices such as asphalt (Tornquist, 2007, p. 4; PCA, 2012, p. 

9), procurement policies of states' Department of Transportation (DOT) (PCA, 2012, p. 1), etc. 

In this article, we focus on the impact of pavement aging on the maintenance cost. Pavement 

aging leads to deterioration and is a complicated and uncertain process (Solatifar, 2021), which 

can explain the fluctuations in the maintenance cost evolution. Moreover, in literature such as 

Alqadhi et al. (2018), the road maintenance cost is modeled as a function of the serviceability 

index (Al-Mansour and Sinha, 1994), which can be further modeled as a function of the 

pavement condition index, International Roughness Index (IRI), (Gulen et al., 1994).   

For a profit-maximizing decision-maker (e.g., a private-sector company under a Public-

Private Partnership over a road where its objective is to maximize profit), resurfacing an asphalt 

road is a critical decision. Resurfacing a road implies placing a new layer over the existing 

pavement instead of replacing the entire roadway to extend the pavement life (Wisconsin 

Department of Transportation, n.d.; Thames Street Works, n.d.), upon which the pavement 

condition will be like new (Alqadhi et al., 2018). Considering the road maintenance cost reflects 

the pavement condition, the road maintenance cost is reduced to the new pavement level after 

resurfacing. The resurfacing decision is impacted by the maintenance cost uncertainty, which has 

not been addressed in the road resurfacing decision in the literature.  

The resurfacing decision requires a careful study a priori as such a decision is costly and 

irreversible but often necessary endeavor across many communities and regions. Under such a 

framework, this article aims to provide economically rational decision support on when to 

resurface an asphalt road under maintenance cost uncertainty. Toward this goal, we  

(1) Construct and analyze a stochastic optimal control (i.e., a real options approach) model 

where the threshold in the maintenance cost to resurface the road is the decision variable 
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assuming that the maintenance cost follows a geometric Brownian motion (GBM) 

process.  

(2) Mathematically derive how much time, on average, is between two resurfacing activities. 

(3) Analytically and numerically illustrate key features of our model via analytical derivation 

and an extensive numerical example for managerial insights and economic implications.  

The remainder of this article is organized as follows. We first present a literature review 

on the pavement resurfacing and maintenance policy and the application of the real options 

approach to roads in Section 2. Next, in Section 3, we present the assumptions, followed by the 

formulation of the mathematical model for the resurfacing decision of an asphalt road and 

analytical sensitivity analysis of the optimal threshold of the maintenance cost and the expected 

resurfacing interval with respect to some parameter values. To further demonstrate our findings, 

we also conduct an extensive numerical example and perform numerical sensitivity analysis for 

managerial insights and economic implications in Section 4. Finally, conclusions and future 

research are discussed in Section 5. 

Literature Review  

Pavement Resurfacing and Maintenance Policy 

One relevant literature stream is the optimal pavement resurfacing and maintenance 

policy. For instance, Lamptey et al. (2008) focused on preventive maintenance schedule 

optimization using an optimization-based decision support systems approach. The total agency 

and user costs were minimized by selecting the combination of treatment types and timings 

during the interval between resurfacing events. Gu et al. (2012) developed an analytical method 

to optimize pavement maintenance and resurfacing planning. Under the objective of minimizing 

the pavement lifecycle costs (including the user, maintenance, and resurfacing costs) over an 

infinite time horizon, the authors formulated the problem as a nonlinear mathematical program 
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with continuous pavement state and continuous time and derived the optimality conditions. 

Reger et al. (2014) presented a framework under which greenhouse gas (GHG) emissions 

minimization was incorporated into the pavement resurfacing policy. In Alqadhi et al. (2018), the 

authors presented a case study of Interstate 465 in Indiana, USA, and evaluated the costs and 

benefits of the highway pavement resurfacing project from the perspective of agency, user, and 

community, respectively. 

Moreover, some literature developed the optimal resurfacing policy based on a threshold 

structure. For instance, Li and Madanat (2002) solved the optimal frequency and intensity of 

pavement resurfacing under steady-state conditions over an infinite horizon. The optimal 

resurfacing strategy was based on a minimum serviceability level (or maximum roughness level), 

upon which the pavement should be resurfaced to its best state achievable. Ogwang et al. (2019) 

proposed a framework to estimate the relationship between GHG emissions due to pavement 

resurfacing activities and pavement cracking threshold policies. By cracking threshold, the 

authors meant the maximum percentage cracking level the pavement can reach, above which an 

asphalt overlay will be applied. The result of Monte Carlo simulation on variable population 

distributions (i.e., cracking level, underlying and surface layer thickness, environmental 

variables, and traffic loading), the authors found that within a planning horizon of 10 years, the 

optimal cracking threshold that minimizes the costs and the GHG emissions, respectively, are 

close to each other. 

Application of the Real Options Approach to Roads 

Derived from the financial engineering area, the real options approach has been applied 

to the infrastructure discipline since the early 2000s (Fawcett et al., 2015). Compared to the 

conventional deterministic valuation approaches, the real options approach incorporates the 
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underlying uncertainties in the decision-making process. There are three methods in real options, 

analytical, lattice, and simulation, and each method has its advantages and disadvantages.  

First, the analytical method gives precise optimal threshold and option value results. 

However, it has strict assumptions and requirements on input data, which are difficult to satisfy 

in the infrastructure problems (Fawcett et al., 2015). Hence, literature using the analytical 

method of the real options is not as common as using the other two methods in infrastructure 

decisions. One example of such literature is Galera and Soliño (2010), where the authors 

evaluated the highway concessions with a minimum traffic guarantee under traffic uncertainty 

and obtained the analytical solution for the value of the minimum traffic guarantee modeled as a 

European put option.  

Secondly, the lattice method is more intuitive than the other two methods. However, the 

complexity rapidly increases when many periods are taken into consideration. For instance, 

Ashuri et al. (2011) evaluated the investments in toll road projects under a two-phase 

development plan within a real options-based framework. The authors used a binomial lattice 

method to model traffic uncertainty and determine optimal expansion time. Still, under the traffic 

uncertainty, Iyer and Sagheer (2011) modeled the traffic floor guarantee as a put option held by 

the concessionaire and the traffic ceiling guarantee as a call option held by the government. The 

authors constructed a binomial lattice for traffic and evaluated the value of the two options.  

Lastly, the simulation method is commonly used when more than one uncertainty is 

considered despite its disadvantage in computational expensiveness. For instance, Zhao et 

al. (2004) considered the uncertainties of interdependent traffic demand, land price, and service 

quality. The authors developed a multistage stochastic model for decision-making in acquisition, 

expansion, and rehabilitation under these uncertainties and proposed a solution algorithm based 
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on Monte Carlo simulation and least-squares regression. Brandao and Saraiva (2008) developed 

a minimum traffic guarantee real options model to assess the value of government guarantees 

where the traffic follows a GBM process, and so does the revenue. Assuming the option is 

exercised whenever the revenue is lower than the discounted minimum revenue guaranteed by 

the government, the value of the option can be determined through a Monte Carlo simulation of 

the traffic.  

To our knowledge, the uncertainty of road maintenance cost has not been addressed in 

the resurfacing decision. Besides, the analytical method of the real options approach is rarely 

used in the literature related to decision-making on infrastructures. Under such circumstances, 

this article can fill in the gap in the literature by considering the road maintenance cost 

uncertainty in the resurfacing decision and proposing a threshold-based resurfacing policy using 

an analytical method of the real options approach.  

Model Formulation and Analysis  

We consider a profit-maximizing decision-maker such as a private-sector company that 

operates and maintains an asphalt-paved toll road under a Public-Private Partnership. Given that 

the maintenance cost increases on average and fluctuates over time, at any time point, the 

decision-maker has an option to resurface the road. The exercise of the resurfacing option 

implies a large sum of resurfacing cost and renewed road condition after resurfacing.  

Assumptions 

Before modeling the resurfacing decision, we propose the following critical assumptions 

to facilitate the formulation and analysis.  

Assumption 3.1: The road maintenance cost at year 𝑡 ($/lane-mile) 𝐶𝑡 follows a GBM 

process.  

𝑑𝐶𝑡 = 𝛼𝐶𝑡𝑑𝑡 + 𝜎𝐶𝑡𝑑𝑧                                                           (3.1) 
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where 𝛼 (% per year; > 0) and 𝜎 (% per year; >0) are the instantaneous growth rate and the 

instantaneous volatility of the maintenance cost of the road, respectively. 𝑑𝑡 is the increment of 

time, and 𝑑𝑧 is the increment of a Wiener process, i.e., 𝑑𝑧 = 𝜀√𝑑𝑡  where 𝜀 ~ 𝑁(0, 1). In this 

article, we use % per unit time (year) to be consistent with the unit of instantaneous variance or 

volatility in the literature from the financial engineering area such as Carlos Dias & Pedro Vidal 

Nunes (2011, p. 234), Tse & Yang (2012, p. 533) and McDonald (2013, pp. 607-608).  

Although there are numerous sources of empirical data on the maintenance cost of public 

roads, references that demonstrate what activities were included or excluded and maintenance 

cost data over consecutive periods are rare. In this article, we present our best finding, the 

maintenance cost data of an asphalt-paved county road, Co Rd 16 in Waseca County, MN, to 

demonstrate the evolution of maintenance cost despite it is not a toll road operated and 

maintained by a private company, and its length (2.6-mile) and average traffic (225 per day) are 

smaller than the scope of the road in our model (Rukashaza-Mukome et al., 2003; Jahren et al., 

2005).  

After extracting the values of cumulative maintenance cost ($/mile) from a line plot in the 

report using WebPlotDigitizer (Rohatgi, 2021), we obtain the annual maintenance cost by 

subtracting the cumulative maintenance cost of a year from that of the previous year. In the 

report (Rukashaza-Mukome et al., 2003), the maintenance activities that substantially contribute 

to the maintenance cost are snow and ice removal (21%), minor surface repair (17%), resurfacing 

(15%), bituminous treatment (12 %), and other maintenance activities (33%, activities not 

specified). Since resurfacing is the only type of treatment considered in our model, resurfacing 

and bituminous treatment should not be considered as part of the annual maintenance activities. 

Therefore, we keep snow and ice removal, minor surface repair, and other maintenance 
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activities, which add up to 71% of the maintenance cost. We note the cost associated with 

smoothing surface (<1%), reshaping (<1%), dust treatment (~0%), surface treatment (~0%), and 

frost boils/patching (~0%) is excluded due to their low percentages in the maintenance cost.  

With the above adjustment, the maintenance cost ($/lane-mile) is calculated by 

multiplying the annual maintenance cost by 71% and dividing by two since Co Rd 16 has two 

lanes. Figure 3.1 shows the evolution of maintenance cost, which increases on average and 

fluctuates over time and is characterized as a GBM process.  

 

Figure 3.1 Maintenance cost of Co Rd 16 

The GBM process assumption has been commonly applied in the literature while 

modeling decisions under uncertainties using a real options approach as it characters the trend 

where variables increase on average and fluctuate over time and facilitates the model formulation 

and analysis process. Even though some empirical data on the road maintenance cost may not 

support this assumption, alternative stochastic processes (e.g., Wiener process, Brownian motion 

with drift) can be applied.  
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Assumption 3.2: Upon each resurfacing, the value of maintenance cost is reset to the 

initial value. 

IRI is a commonly used pavement condition index that typically ranges from 52 to 66 

inches/mile for new asphalt highway pavements (FHWA, 2016) and increases as the pavement 

deteriorates. In a case study of interstate 465, IRI decreased from 142.5 inches/mile to 59.63 

inches/mile after resurfacing (Alqadhi et al., 2018), which falls in IRI range of new pavement, 

implying that the road condition is as new after resurfacing. As previously mentioned, the road 

maintenance cost can be modeled as a function of IRI (Gulen et al., 1994; Al-Mansour and 

Sinha, 1994; Alqadhi et al., 2018) as it reflects the pavement condition, so it is reasonable to 

assume that the maintenance cost will be reset to the initial value upon each resurfacing.  

Assumption 3.3: Only one type of vehicle accesses the road (e.g., 2-axle).  

Assumption 3.4: The decision-maker estimates the road maintenance cost at a year 

before implementing the maintenance and resurfaces the road if the estimated maintenance cost 

exceeds a certain level.  

Assumption 3.5: The time it takes to resurface the road is ignored.  

Suppose the road has a length of 𝐾 (mile), and the number of lanes is 𝑁 (lane). The 

number of vehicles accessing the road in a year is denoted as 𝐷 (vehicle), and the toll price is 

denoted as 𝑃 ($/vehicle, >0). At year 𝑡, the decision-maker collects revenue of 𝑃𝐷 ($) from tolls 

and is responsible for a maintenance expenditure of 𝑁𝐾𝐶𝑡 ($), which gives a profit of 𝑃𝐷 −

𝑁𝐾𝐶𝑡.  

Model Formulation 

Before exercising the resurfacing option (i.e., when it is not optimal to resurface the 

road), the value of the project 𝑉 obeys the Bellman optimality equation in Equation (3.2). The 
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value of the project 𝑉 (i.e., the value of the road) is equal to the summation of the discounted 

cash flow generated by the road and the value of the resurfacing option.  

𝜌𝑉𝑑𝑡 = (𝑃𝐷 − 𝑁𝐾𝐶𝑡)𝑑𝑡 + 𝐸[𝑑𝑉]                                             (3.2) 

where 𝜌 (% per year) denotes the discount rate for money. Equation (3.2) states that the total 

return of this project while holding the resurfacing option consists of the profit generated from 

the project plus the expected future appreciation in the value of the project.  

After applying Ito’s Lemma on 𝑑𝑉, it can be verified that the Bellman optimality 

equation yields the following second-order differential equation. 

1

2
𝜎2𝐶𝑡

2 𝜕2𝑉

𝜕𝐶𝑡
2 + 𝛼𝐶𝑡

𝜕𝑉

𝜕𝐶𝑡
− 𝜌𝑉 + (𝑃𝐷 − 𝑁𝐾𝐶𝑡) = 0                                (3.3) 

To solve the differential equation, we first note that, under a technical condition of 𝜌 −

𝛼 > 0 (Dixit & Pindyck, 1994), a particular solution can be verified to be: 

𝑉(𝐶𝑡) =
𝑃𝐷

𝜌
−

𝑁𝐾𝐶𝑡

𝜌−𝛼
                                                               (3.4) 

Secondly, under a technical condition of 𝛼 −
𝜎2

2
> 0 (Dixit & Pindyck, 1994), a 

homogeneous solution can be verified to be:  

𝑉(𝐶𝑡) = 𝐴1𝐶𝑡
𝛽1 + 𝐴2𝐶𝑡

𝛽2                                                       (3.5) 

where 𝐴1 and 𝐴2 are constants to determine, and 𝛽1,2 =
1

2
−

𝛼

𝜎2 ± √(
𝛼

𝜎2 −
1

2
)

2
+

2𝜌

𝜎2. It can be 

verified that 𝛽1 > 1 and 𝛽2 < 0 (see Dixit & Pindyck, 1994, pp. 142–143 for details).  

With the particular and homogenous solutions, the general solution to Equation (3.3) is 

given by 𝑉(𝐶𝑡) = 𝐴1𝐶𝑡
𝛽1 + 𝐴2𝐶𝑡

𝛽2 +
𝑃𝐷

𝜌
−

𝑁𝐾𝐶𝑡

𝜌−𝛼
. When 𝐶𝑡 becomes very small, the value of the 

resurfacing option should be worthless. However, with a negative 𝛽2, 𝐶𝑡
𝛽2 goes to ∞ as 𝐶𝑡 goes 

to 0. Hence, the constant multiplying this term, 𝐴2, should be zero. Because of this, we should 

exclude the negative power term of 𝐶𝑡 by setting 𝐴2 = 0, which gives the following:  
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𝑉(𝐶𝑡) = 𝐴1𝐶𝑡
𝛽1 +

𝑃𝐷

𝜌
−

𝑁𝐾𝐶𝑡

𝜌−𝛼
                                                      (3.6) 

The function of the project value is subject to the following boundary conditions: 

𝑉(𝐶∗) = 𝑉(𝐶0) − 𝑁𝐾𝐼                                                             (3.7) 

𝑉′(𝐶∗) = 0                                                                                (3.8) 

where 𝐶∗ is the optimal threshold of maintenance cost at which point the road is resurfaced, 𝐶0 is 

the initial value of maintenance cost, and 𝐼 ($/lane-mile) is the resurfacing cost (material and 

labor costs). Equation (3.7), the value matching condition, states that the value of the project just 

before resurfacing is equal to the value of the project just after resurfacing minus the resurfacing 

cost. Equation (3.8), the smooth pasting condition, ensures the slope of the left-hand side and the 

right-hand side of the value matching condition, Equation (3.7), are equal at the optimal 

threshold 𝐶∗.  

From the smooth pasting condition, Equation (3.8), 𝐴1 can be analytically solved as 

follows:  

𝐴1 =
𝑁𝐾

(𝜌−𝛼)𝛽1𝐶∗𝛽1−1                                                                   (3.9) 

Substituting the expression of 𝐴1 into the value matching condition, Equation (3.7), it can 

be verified that the value of 𝐶∗ satisfies the following equation.  

(𝛽1 − 1)𝐶∗𝛽1 − 𝛽1[𝐶0 + (𝜌 − 𝛼)𝐼]𝐶∗𝛽1−1 + 𝐶0
𝛽1 = 0                               (3.10) 

Equation (3.10) can be further simplified by dividing 𝐶0
𝛽1 from both sides:  

(𝛽1 − 1)𝜆𝛽1 − 𝛽1 [1 +
(𝜌−𝛼)𝐼

𝐶0
] 𝜆𝛽1−1 + 1 = 0                                       (3.11) 

where 𝜆 =
𝐶∗

𝐶0
, 𝜆 > 1. 𝜆 is defined as the ratio of the optimal threshold to resurface the road over 

the initial value of the maintenance cost. Although the value of 𝜆 cannot be analytically solved, it 

can be computationally solved by software such as Excel and MATLAB. The value of 𝐶∗ can be 
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obtained using 𝐶∗ = 𝜆𝐶0, and correspondingly, the value of 𝐴1 can be obtained using Equation 

(3.9) and the value of the project can be obtained using Equation (3.6). 

The reason we solve the ratio 𝜆 as well as the optimal threshold 𝐶∗ is that both ratio and 

threshold are used while evaluating the conditions of infrastructures. For instance, Bridge Health 

Index (BHI) is a bridge performance measure based on the condition of the bridge element and 

assessed from an element level inspection and calculated as the ratio of current value over the 

initial value of all bridge elements (Adams & Kang, 2009, pp. i, iii, and 3-5). It varies from 0% 

(worst possible condition) to 100% (best possible condition), providing an intuitive measure for 

bridge engineers, legislators, and the public as it is expressed as a percentage value. Meanwhile, 

thresholds are also used to indicate a condition upon which corrective or preventive treatment is 

needed on the pavement (Elkins et al., 2013a, pp. 14-17). One example of such thresholds is the 

pavement present serviceability rating (PSR), where resurfacing is triggered when the pavement 

PSR falls below a minimum tolerable condition based on highway functional classification 

(Elkins et al., 2013b, pp. 53-54). With the pavement condition evaluated and literature that 

investigates the relationship between the maintenance cost and the pavement condition (e.g., 

Gulen et al., 1994; Al-Mansour and Sinha, 1994; Alqadhi et al., 2018, and Adams et al. 2007), 

the threshold of pavement condition triggering the resurfacing can be converted to the threshold 

of maintenance cost. 

Consequently, the expected resurfacing interval, i.e., how much time, on average, is 

between two consecutive resurfacing activities, 𝐸[𝑇∗] can be calculated as follows (Dixit & 

Pindyck, 1994, p. 71, p. 81).  

𝐸[𝑇∗] =
ln 𝐶∗−ln 𝐶0

𝛼−
1

2
𝜎2

=
ln(

𝐶∗

𝐶0
)

𝛼−
1

2
𝜎2

=
ln(𝜆)

𝛼−
1

2
𝜎2

                                               (3.12) 
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Analytical Sensitivity Analysis  

The model involves nine parameters, where four of them (the toll price 𝑃, the number of 

vehicles accessing the road in a year 𝐷, the number of lanes 𝑁, the length of the road 𝐾) have no 

impact on the resurfacing decision. In other words, the optimal threshold of the maintenance cost 

to resurface the road 𝐶∗ and the expected resurfacing interval 𝐸[𝑇∗] are insensitive to these four 

parameters.  

On the other hand, the rest five parameters impact the resurfacing decision. Under 

technical conditions 𝜌 − 𝛼 > 0 and 𝛼 −
1

2
𝜎2 > 0 (Dixit & Pindyck, 1994), we conduct 

analytical sensitivity analysis with respect to the resurfacing cost 𝐼, the initial value of the 

maintenance cost 𝐶0, and the volatility of the maintenance cost 𝜎, respectively. The sensitivity 

analysis with respect to the growth rate of the maintenance cost 𝛼 and the discount rate for 

money 𝜌 are numerically examined because the signs of derivatives cannot be straightforwardly 

determined.  

Proposition 3.1: 
𝜕𝐶∗

𝜕𝐼
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝐼
> 0 (see Appendix 3A for proof).  

An increase in the resurfacing cost leads to a higher optimal threshold of maintenance 

cost to resurface the road and a longer expected resurfacing interval. The economic sense behind 

it is when resurfacing is costly, the decision-maker has less incentive to exercise the resurfacing 

option. As a result, the exercise of the resurfacing option will be deferred, and the expected 

resurfacing interval will be prolonged. 

Proposition 3.2: 
𝜕𝐶∗

𝜕𝐶0
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝐶0
< 0 (see Appendix 3B for proof). 

A higher initial maintenance cost results in a higher optimal threshold of maintenance 

cost to resurface the road but a shorter expected resurfacing interval. This is because, with a 

higher initial maintenance cost, the benefit of exercising the resurfacing option is undermined, 
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which makes it economically rational for the decision-maker to hold the resurfacing option 

longer and defer its exercise. Meanwhile, starting from a higher initial maintenance cost, the 

decision-maker is less likely to maintain a long expected resurfacing interval.  

Proposition 3.3: 
𝜕𝐶∗

𝜕𝜎
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝜎
> 0 (see Appendix 3C for proof). 

As the volatility of the maintenance cost increases, the optimal threshold of maintenance 

cost to resurface the road increases, and so as the expected resurfacing interval. The reason is 

that when the maintenance cost becomes more volatile, as time progresses, it may favor the 

decision-maker, which motivates the decision-maker to postpone the exercise of the resurfacing 

option to wait for more information on the evolution of the volatile maintenance cost. 

Consequently, the expected resurfacing interval will be prolonged.  

Numerical Example  

Parameter Values and Numerical Results  

In this section, we use Chicago Skyway as a benchmark and conduct a numerical 

example. The parameter values are a mix of real, estimated, and hypothetical values depending 

on the availability of the values, as summarized in Table 3.1 with the explanation and 

justification presented in Appendix 3D.  

Table 3.1 Parameter values 

Parameter Value Source 

Growth rate of the maintenance cost 𝛼 0.04 per year Hypothetical 

Volatility of the maintenance cost 𝜎 0.02 per year  Hypothetical 

Initial value of maintenance cost 𝐶0 30,000 $/lane-mile  Hypothetical 

Discount rate for money 𝜌 0.05 per year  Hypothetical 
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Table 3.1 continued 

Parameter Value Source 

Number of lanes of the road 𝑁 6 lanes  Wikipedia (2021) 

Length of the road 𝐾 7.8 miles FHWA (n.d.) 

Toll price 𝑃 4.50 $/vehicle Bipartisan Policy Center (2005) 

Number of vehicles accessing the road 

in a year 𝐷 

15,055,885 

vehicles  

Resurfacing cost 𝐼 102,267 $/lane-

mile  

FHWA (2014); Asphalt Paving 

Nashville (2018); Eosso Brothers 

Paving (n.d.); Georgiev (n.d.), 

HomeGuide (2020), Beiler 

Brothers Asphalt (n.d.),  

 

Substituting the parameter values in Table 3.1 into the analytical model in the previous 

section, we obtain the numerical results in Table 3.2. Specifically, we first obtain the value of 𝛽1, 

with which and Equation (3.11), we can obtain the value of the ratio of the optimal threshold 

over the initial value of the maintenance cost 𝜆, 1.633. Correspondingly, the optimal threshold of 

maintenance cost to resurface the road is 48,991 ($/lane-mile), and the expected resurfacing 

interval is 12.323 years. The value of 𝐴1 can also be calculated, which leads to the value of the 

project as follows:  

𝑉(𝐶𝑡) = 256.224 𝐶𝑡
1.248 + 1,355,029,650 − 4,680 𝐶𝑡                          (3.13) 
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Table 3.2. Numerical results 

Notation  Value 

𝛽1  1.248 

𝜆  1.633 

𝐶∗  48,990.994 $/lane-mile 

𝐸[𝑇∗]  12.323 years 

𝐴1  256.224 

 

Numerical Sensitivity Analysis  

First, the relationship of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝛼 are shown in Figure 3.2, from 

which we observe that as the growth rate of the maintenance cost increases, the optimal threshold 

increases while the expected resurfacing interval decreases. This makes economic sense because 

as the maintenance cost grows faster, the decision-maker has less incentive to resurface the road, 

considering that the maintenance cost will continue to grow rapidly after resurfacing. 

Meanwhile, the decision-maker is unlikely to maintain a long expected resurfacing interval 

because the maintenance cost will rise to a high level soon.  
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Figure 3.2 Relationship of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝛼 

Secondly, the relationship of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝜌 are shown in Figure 3.3, 

from which we observe that when the discount rate for money increases, both the optimal 

threshold and the expected resurfacing interval increase. The economic implication is that when 

maintenance cost is heavily discounted as time progresses, the decision-maker prefers to 

postpone the road resurfacing because the maintenance cost becomes a lighter burden. 

Consequently, the expected resurfacing interval will be prolonged.  

 

Figure 3.3 Relationship of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝜌 
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Simulation  

Next, we conduct a Monte Carlo simulation 100,000 times to simulate the maintenance 

cost with a lease term of 100 years (referring to the fact that Chicago Skyway was leased for 99 

years), where the core uncertainty is a standard normal distribution. The sample paths of the 

simulated maintenance cost are shown in Figure 3.4, which visualizes the evolution of the 

maintenance cost under the threshold-based resurfacing policy. That is, the maintenance cost 

starts increasing on average and fluctuating over time from an initial value of 30,000 ($/lane-

mile). Every time it reaches the optimal threshold, 48,991 ($/lane-mile), the road is resurfaced, 

upon which the maintenance cost is reset to its initial value. Furthermore, for each simulation 

path, we calculate the total discounted profits by summing the discounted profit in each year 

within a lease term of 100 years using continuous compounding. The total discounted profits 

have a mean of 1,339.657 (million $) and a standard deviation of 0.695 (million $). 

 

Figure 3.4 Sample paths of simulated maintenance cost  
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Alternatively, suppose the decision-maker resurfaces the road under an interval-based 

policy, by which we mean the road is resurfaced every 𝑘 years (where 𝑘 is an integer value 

between 0 and the lease term, in this case, 100), regardless of the road maintenance cost level at 

the time of resurfacing. We calculate the total discounted profits within a lease term of 100 years 

using the same approach for each 𝑘 as the threshold-based resurfacing policy. The relationship 

between the average total discounted profits and the resurfacing interval is shown in Figure 3.5 

where the light blue area depicts a 90% confidence interval. The results imply that the average 

total discounted profits are maximized (1,339.081 million $) when the road is resurfaced every 

12 years, which is close to the expected resurfacing interval under the threshold-based policy, 

12.323 years.  

 
 

Figure 3.5 Relationship between total discounted profits and resurfacing interval 

Despite the closeness in the (expected) resurfacing intervals under the two resurfacing 

policies, the average discounted profits under the threshold-based policy is 0.576 (million $) 

higher than that under the interval-based policy. We also note that for the threshold-based policy, 
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analytically deriving and numerically solving the optimal threshold of maintenance cost of 

resurfacing give a precise result of optimal threshold and the expected resurfacing interval. On 

the other hand, for the interval-based policy, solving the optimal resurfacing interval using 

simulation is computationally expensive, and the computational expensiveness depends on the 

granularity of the resurfacing intervals.  

Conclusions  

In this article, under the assumption that the maintenance cost of an asphalt road follows 

a GBM process, we constructed and analyzed the resurfacing decision using a real options 

approach for a profit-maximizing decision-maker. We computationally solved the optimal 

threshold in the maintenance cost to resurface the road and obtained the expected resurfacing 

interval. We also derived managerial insights and economic implications by examining the 

impact of parameters on the resurfacing decision through analytical and numerical sensitivity 

analyses.  

Specifically, we analytically showed that (1) when it costs more money to resurface the 

road, the decision-maker should defer the road resurfacing, which implies a longer expected 

resurfacing interval; (2) with a higher initial road maintenance cost, the decision-maker should 

defer the road resurfacing and maintain a shorter expected resurfacing interval; (3) as the road 

maintenance cost becomes more volatile, the road resurfacing should be deferred, and the 

expected resurfacing interval should be extended.   

Moreover, from the numerical sensitivity analyses, we observe that (1) when the 

maintenance cost grows faster, it is beneficial to defer the road resurfacing and shorten the 

expected resurfacing interval; (2) when money becomes heavily discounted as time progresses, it 

is suggested to postpone the road resurfacing and prolong the expected resurfacing interval. 

Furthermore, through the simulation of the maintenance cost, we obtained the total discounted 
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profits within the lease term. The results indicate that the average total discounted profits under 

the interval-based policy are maximized at an interval close to the expected resurfacing interval 

under the threshold-based policy. However, the average total discounted profits under the 

threshold-based policy slightly surpass that under the interval-based policy.  

Our article is original in the following three aspects. First, applying the analytical method 

of the real options approach is rare in decision-making on infrastructures. Although the analytical 

method requires strict assumptions compared to the binomial lattice and the simulation methods, 

it leads to precise results guiding the resurfacing decision under uncertainties. Secondly, this 

article is the first attempt to address the maintenance cost uncertainty in the resurfacing decision, 

although the operation and maintenance cost uncertainty has been commonly considered in other 

decisions, e.g., the exit and entry decisions for a renewable power site (Min et al., 2012) and 

replacement decision for heavy mobile equipment (Richardson et al., 2013). Thirdly, besides the 

optimal threshold of the maintenance cost to resurface the road, we also derive the ratio of the 

optimal threshold to resurface the road over the initial value of the maintenance cost to indicate 

the condition to optimally resurface the road, which is also unique in the literature.  

Our research can stimulate a series of threads of future research. For instance, one can 

extend the decision support from a profit-maximizing decision maker to a non-profit decision 

maker with objectives such as minimizing the cost. Moreover, other uncertainties in the 

resurfacing decision can be taken into consideration, such as traffic demand, which has been 

modeled as a GBM process in the literature such as Zhao et al. (2004), Galera and Soliño (2010). 

Furthermore, one can relax our assumption that only one type of vehicle accesses the road by 

incorporating the impact of heavy vehicles on the maintenance cost. There has been discussion 

on heavy trucks causing more road deterioration than passenger cars (Gibby et al., 1990), which 
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may further raise the maintenance cost. On a larger scale, one can model multiple decisions 

under uncertainties, e.g., the decisions to resurface, reconstruct the road, and apply preventive 

surface treatment to the road (e.g., Zhao & Min, 2021).  
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Appendices 

Appendix 3A. Proof of Proposition 1  

Let 𝑓 = (𝛽1 − 1)𝐶∗𝛽1 − 𝛽1[𝐶0 + (𝜌 − 𝛼)𝐼]𝐶∗𝛽1−1 + 𝐶0
𝛽1 , it can be verified that  

𝜕𝑓

𝜕𝐶∗ =
(𝛽1−1)(𝐶∗𝛽1−𝐶0

𝛽1)

𝐶∗ > 0                                                 (3A.1) 

𝜕𝑓

𝜕𝐼
= −𝛽1(𝜌 − 𝛼)𝐶∗𝛽1−1 < 0                                             (3A.2) 

By implicit function theorem,  

𝜕𝐶∗

𝜕𝐼
= −

𝜕𝑓 𝜕𝐼⁄

𝜕𝑓 𝜕𝐶∗⁄
= −

−𝛽1(𝜌−𝛼)𝐶∗𝛽1−1

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1)

𝐶∗  

=
𝛽1(𝜌−𝛼)𝐶∗𝛽1

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1) 

> 0                  (3A.3) 

By Equation (3.12), we have 
𝜕𝐸[𝑇∗]

𝜕𝐶∗ =
1

(𝛼−
1

2
𝜎2)𝐶∗

> 0. By chain rule, 
𝜕𝐸[𝑇∗]

𝜕𝐼
=

𝜕𝐸[𝑇∗]

𝜕𝐶∗

𝜕𝐶∗

𝜕𝐼
>

0.  

Appendix 3B. Proof of Proposition 2 

With the expression of 𝑓, it can be verified that  

𝜕𝑓

𝜕𝐶0
= −𝛽1(𝐶∗𝛽1−1 − 𝐶0

𝛽1−1) < 0                                     (3B.1) 

By implicit function theorem,   

𝜕𝐶∗

𝜕𝐶0
= −

𝜕𝑓 𝜕𝐶0⁄

𝜕𝑓 𝜕𝐶∗⁄
= −

−𝛽1(𝐶∗𝛽1−1
−𝐶0

𝛽1−1)

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1)

𝐶∗

=
𝛽1(𝐶∗𝛽1−1

−𝐶0
𝛽1−1)𝐶∗

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1)

> 0         (3B.2) 

From Equation (3.12), we have 
𝜕𝐸[𝑇∗]

𝜕𝐶0
= −

1

(𝛼−
1

2
𝜎2)𝐶0

< 0. Meanwhile, 𝐶∗ is also a 

function of 𝐶0. By chain rule, we have  

𝜕𝐸[𝑇∗]

𝜕𝐶0
=

𝜕𝐸[𝑇∗]

𝜕𝐶0
+

𝜕𝐸[𝑇∗]

𝜕𝐶∗

𝜕𝐶∗

𝜕𝐶0
= −

1

(𝛼−
1

2
𝜎2)𝐶0

+
1

(𝛼−
1

2
𝜎2)𝐶∗

𝛽1(𝐶∗𝛽1−1
−𝐶0

𝛽1−1)𝐶∗

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1)
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= −
1

(𝛼−
1

2
𝜎2)

𝛽1𝐶∗𝛽1−1(𝜌−𝛼)𝐼

(𝛽1−1)(𝐶∗𝛽1−𝐶0
𝛽1)𝐶0

< 0                                     (3B.3) 

Appendix 3C. Proof of Proposition 3  

With the expression of 𝑓, it can be verified that  

𝜕𝑓

𝜕𝛽1
=

𝐶∗𝛽1−𝐶0
𝛽1−𝛽1𝐶0

𝛽1(ln 𝐶∗−ln 𝐶0)

𝛽1
                                         (3C.1) 

Let 𝑔(𝐶) = 𝐶𝛽1 − 𝛽1𝐶0
𝛽1 ln 𝐶. We have   

𝑑𝑔(𝐶)

𝑑𝐶
= 𝛽1𝐶𝛽1−1 − 𝛽1𝐶0

𝛽1 1

𝐶
=

𝛽1(𝐶𝛽1−𝐶0
𝛽1)

𝐶
> 0                        (3C.2) 

Since 𝐶∗ > 𝐶0, 𝑔(𝐶∗) > 𝑔(𝐶0), i.e., 𝐶∗𝛽1 − 𝛽1𝐶0
𝛽1 ln 𝐶∗ > 𝐶0

𝛽1 − 𝛽1𝐶0
𝛽1 ln 𝐶0, which 

is equivalent to 𝐶∗𝛽1 − 𝐶0
𝛽1 + 𝛽1𝐶0

𝛽1(ln 𝐶0 − ln 𝐶∗) > 0. Hence, 
𝜕𝑓

𝜕𝛽1
> 0.  

Next, it can be verified that  

𝜕𝛽1

𝜕𝜎
= (

2𝛼

𝜎3) {1 −
(

𝛼

𝜎2−
1

2
)+

𝜌

𝛼

√(
𝛼

𝜎2−
1

2
)

2
+

2𝜌

𝜎2

}                                             (3C.3) 

Under technical conditions 𝜌 − 𝛼 > 0 and 𝛼 −
1

2
𝜎2 > 0, 
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𝜎2−
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2
)+

𝜌

𝛼

√(
𝛼

𝜎2−
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2
)
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+
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𝛼

𝜎2−
1
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𝛼

√(
𝛼
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2
)

2
+

2𝜌

𝜎2

)
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=
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𝛼
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𝛼
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𝛼

(
𝛼

𝜎2−
1

2
)

2
+

2𝜌

𝜎2

= 1 +
𝜌

𝛼2(𝜌−𝛼)

(
𝛼

𝜎2−
1

2
)

2
+

2𝜌

𝜎2

> 1. Therefore, 
(

𝛼

𝜎2−
1

2
)+

𝜌

𝛼

√(
𝛼

𝜎2−
1

2
)

2
+

2𝜌

𝜎2

> 1. 

Consequently, 
𝜕𝛽1

𝜕𝜎
< 0.  

By chain rule, 
𝜕𝑓

𝜕𝜎
=

𝜕𝑓

𝜕𝛽1

𝜕𝛽1

𝜕𝜎
< 0. Then by implicit function theorem, 

𝜕𝐶∗

𝜕𝜎
= −

𝜕𝑓 𝜕𝜎⁄

𝜕𝑓 𝜕𝐶∗⁄
> 0. 

Furthermore, by chain rule, 
𝜕𝐸[𝑇∗]

𝜕𝜎
=

𝜕𝐸[𝑇∗]

𝜕𝜎
+

𝜕𝐸[𝑇∗]

𝜕𝐶∗

𝜕𝐶∗

𝜕𝜎
> 0 because 

𝜕𝐸[𝑇∗]

𝜕𝜎
=

𝜎(ln 𝐶∗−ln 𝐶0)

(𝛼−
1

2
𝜎2)

2 > 0, 

𝜕𝐸[𝑇∗]

𝜕𝐶 ∗
=

1

(𝛼−
1

2
𝜎2)𝐶∗

> 0 and 
𝜕𝐶∗

𝜕𝜎
> 0.  
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Appendix 3D. Justification of Parameter Values 

In the numerical example, Chicago Skyway is used as a benchmark of the road in our 

model. It was leased by the City of Chicago to the Skyway Concession Company (SCC) in 2005 

for 99 years, and Calumet Concession Partners LLC assumed the remaining lease until 2104 in 

2015 (FHWA, n.d.).  

Chicago Skyway is 7.8 miles long (FHWA, n.d.) and has three lanes in each direction 

(Wikipedia, 2021), so we have the length of the road 𝐾 = 7.8 miles and the number of lanes 𝑁 = 

2 * 3 = 6. Besides, given that the toll price of Chicago Skyway for 2-axle vehicles in 2015 was 

$4.50 (Bipartisan Policy Center, 2005, 1st Figure), we have the toll price 𝑃 = 4.50 $ per vehicle. 

In addition, with the average daily traffic of 41,249 vehicles in 2013 (Bipartisan Policy Center, 

2005, p.2), we have the number of vehicles accessing the road in a year 𝐷 = 41,249 * 365 = 

15,055,885 vehicles.  

The resurfacing cost 𝐼 of an asphalt road is estimated based on a scale of one mile (5,280 

ft) in length by one lane (typically 12 ft, FHWA, 2014, 3rd Table) in width. Suppose the 

resurfacing requires an asphalt layer of 2 inches (0.167 ft) thick (Asphalt Paving Nashville, 2018; 

Eosso Brothers Paving, n.d.). The total volume of asphalt is 5280 ft * 12 ft * 0.167 ft = 10,581 

ft3. With a standard density of asphalt of 145 lb/ft3 (Georgiev, n.d.), the weight of asphalt is 

given by 145 lb/ft3 * 10,581 ft3 = 1,534,245 lb = 767 ton. Considering the asphalt price varies 

from 40 to 80 $/ton (HomeGuide, 2020), the asphalt price is estimated to be the mean of the 

price range, (40+80) / 2 = 60 $/ton. Hence, the cost of asphalt needed for resurfacing is 60 

$/ton * 767 ton = 46,020 $. In addition, material cost only accounts for a portion of the overall 

resurfacing cost. Due to a lack of relevant data, we use the percentage of the material cost in the 

driveway installation prices as an approximation. As the material cost typically takes 30% - 60% 
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of the total cost (material, labor, and equipment) in the driveway installation prices (Beiler 

Brothers Asphalt, n.d.), we estimate the percentage of material cost in resurfacing cost to be the 

mean of the percentage range, (30% + 60%) / 2 = 45%. Therefore, the resurfacing cost 𝐼 is 

estimated to be 46,020 $ / 45% = 102,267 ($/lane-mile).  
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Abstract 

For a commercial building that consumes electricity for cooling and natural gas for 

heating, converting the current conventional roof to a cool roof has been observed in numerous 

warmer regions domestically and globally. Such efforts will lead to not only lower electricity 

consumption but also higher natural gas consumption. In this paper, under the assumption that 

the building’s electricity consumption sufficiently exceeds its natural gas consumption, we aim 

to provide decision support for the roof conversion for profit-maximizing decision-makers (e.g., 

commercial building owners). Specifically, in the basic model, we assume that the electricity 

price follows a geometric Brownian motion (GBM) process, and the natural gas price is 

characterized as a constant multiple of the electricity price, and analytically solve for the optimal 

electricity price threshold to implement roof conversion and the corresponding expected time. In 

the extended model, we value the roof conversion option using the Least Squares Monte Carlo 

simulation (i.e., using Least Squares to estimate the expected payoff from continuation with 

current energy prices and obtain the option value via Monte Carlo simulation). We then construct 

and analyze numerical examples to investigate how parameter values impact the roof conversion 

decisions, and derive managerial insights and economic implications. 
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Keywords: Real Options, Energy Price Uncertainty, Geometric Brownian Motion, 

Correlation, Least Squares Monte Carlo Simulation.  

Introduction   

A cool roof is a roof with high solar reflection (ability to reflect sunlight) and high 

thermal emittance (ability to emit thermal radiation), which improves building energy efficiency 

(Gao et al., 2014). Cool materials on the surface of cool roofs reflect solar radiation and reject 

solar heat gains at the building surfaces, which results in reduced heat transferred to the internal 

space by conduction (Kolokotroni et al., 2013). As a result, cool roofs reduce the need for 

cooling in summer but increase the need for heating in winter (Heat Island Group, 2022). 

As demonstrated by numerous experimental and computational studies, cool roofs reduce 

the energy demand of buildings in cooling-dominated climates (Kolokotroni et al., 2013). There 

were concerns that cool roofs increase heating energy consumption due to lower solar radiation 

absorption, and the heating penalties may exceed the cooling savings. However, research has 

shown that cool roofs in cold climates can also save energy expenditure, especially under the 

effect of snow (e.g., Hosseini & Akbari, 2016).  

In this paper, we consider a commercial building that consumes electricity for cooling 

and natural gas for heating (U.S. EIA, 2021d, p. 28), where its electricity consumption 

sufficiently exceeds its natural gas consumption. The commercial building is currently equipped 

with a conventional roof, but the profit-maximizing decision-maker has an option to convert the 

conventional roof to a cool roof so as to improve energy efficiency and reduce utility bills. The 

roof conversion will reduce electricity consumption but increase natural gas consumption 

(Akbari et al., 1999).  

This endeavor is costly yet irreversible and made under the uncertainties of electricity 

and natural gas prices. The electricity and natural gas prices increase on average and fluctuate 
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over time (U.S. EIA, 2021c; U.S. EIA, 2022b), and a correlation relationship between them is 

also observed (Lukes, 2021; U.S. EIA, 2021a; Pressler, 2022) because natural gas is used for 

power generation (Maribu et al., 2007). 

Under such a framework, we aim to provide decision support for the conversion from a 

conventional roof to a cool roof under the uncertainties of electricity and natural gas prices. 

Specifically, in a basic model, we characterize the electricity price as a geometric Brownian 

motion (GBM) process and the natural gas price as a constant multiplied by the electricity price. 

We mathematically construct and analyze the roof conversion model using a real options 

approach and analytically derive the optimal electricity price threshold to implement the roof 

conversion and the expected time. To demonstrate how our model can be applied and how 

locations impact the roof conversion decision, we conduct a numerical example for retail stores 

in the Northeast and the South of the United States using publicly available data (or estimated 

and hypothetical data when not available) with justifications. We obtain the optimal electricity 

price threshold and the corresponding expected time and numerically examine the impact of 

parameter values on the optimal threshold and the expected time.  

In an extended model, a more general and complicated case, we model the electricity the 

natural gas prices as correlated GBM processes. Under a real options framework, we apply the 

Least Squares Monte Carlo simulation to obtain the value of the roof conversion option by way 

of a numerical example. Following that, the numerical example for retail stores in the Northeast 

and the South of the United States is extended to obtain the value of the roof conversion option. 

Through numerical sensitivity analysis, we show how the value of the roof conversion option is 

impacted when the parameter values change.  
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The rest of this paper is organized as follows. In Section 2, we review the literature on 

cool roofs and the application of the real options approach involving correlated uncertainties. 

Next, in Section 3 (basic model), we construct and analyze the roof conversion model and 

analytically solve for the optimal electricity price threshold to implement the roof conversion, 

followed by a numerical example and sensitivity analysis. Next, in Section 4 (extended model), 

we obtain the value of the roof conversion option using the Least Squares Monte Carlo 

simulation via a numerical example and perform sensitivity analysis. In Section 5, the discussion 

section, we first demonstrate the connection between the basic model and the extended model via 

a numerical example and discuss the choice of distributions in simulation. Finally, we summarize 

our findings and discuss the limitations and future research in Section 6.  

Literature Review 

Cool Roofs 

Much experimental and computational literature has quantitatively investigated the 

energy saving of cool roofs in different countries and regions (e.g., Akbari et al., 1999; 

Kolokotroni et al., 2013; Paolini et al., 2014; Feng et al., 2022). Moreover, Guo et al. (2020) 

integrated the cool roof and night ventilation and evaluated the thermal performance, energy 

savings, and thermal comfort improvement. A multi-objective optimization approach was 

applied to optimize the annual cooling energy use and thermal comfort performance. 

However, to the authors’ knowledge, the decision support from an economic perspective 

for converting a conventional roof to a cool roof under energy price uncertainties has not been 

addressed in the existing literature.  

Application of Real Options under Correlated Uncertainties  

Derived from financial engineering, the real options approach has been applied in 

decision-making under uncertainties in various industries. In this section, we present a review of 
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the literature on the applications of real options where the underlying uncertainties follow 

correlated uncertainties (e.g., correlated GBM processes) and group the literature by methods, 

i.e., analytical, lattice, and simulation.  

First, literature using the analytical method of the real options approach can be further 

divided into two streams. The first stream of literature derives the optimal thresholds of the 

random variables as the decision variables. For instance, Dockendorf & Paxson (2013) 

developed real options models to value an operating asset with the flexibility to choose between 

two commodity outputs (e.g., ammonia and urea). The two commodity prices were assumed to 

follow correlated GBM processes. The authors derived quasi-analytical solutions to the optimal 

thresholds of the commodity prices to switch from producing one commodity output to the other. 

The second stream of literature uses the ratio between two random variables as the decision 

variable. For instance, in an investment entry problem in Dixit and Pindyck (1994, pp. 207-211), 

the revenue and the investment cost were assumed to follow correlated GBM processes. The 

authors used the ratio of revenue over the investment cost as the decision variable and derived 

the closed-form solution to the optimal ratio as the free boundary between waiting and 

investment. Similarly, in the entry and exit problem of ethanol firms in Schmit et al. (2011), the 

revenue and cost were assumed to follow correlated GBM processes. The authors also used the 

ratio of revenue over cost as the decision variable and proposed the boundary conditions with 

which the optimal ratio to entry and exit can be numerically solved.  

The second method in the real options approach is the lattice. For instance, Wang and 

Min (2006) developed and analyzed a real options model for general interrelated projects. The 

authors derived lattices to approximate the interrelated continuous processes for the evolution of 

project values and options and provided a backward dynamic programming model for optimal 
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sequential decision-making upon options and illustrated via a numerical example of electric 

power generation planning. Moreover, Elias et al. (2018) assessed the value of retrofitting carbon 

capture and storage technology (post-combustion and oxy-fuel combustion) to an existing natural 

gas-fired base-load power plant in a deregulated electricity market. The price uncertainties of 

electricity and natural gas were characterized as correlated Mean Reverting (MR) processes, and 

their movements were modeled through lattices.  

The third method using a real options approach is the Least Squares Monte Carlo 

simulation, a simple yet powerful approach developed by Longstaff and Schwartz (2001) to 

approximate the value of American options by simulation. Cortazar et al. (2008) valuated a 

copper mine using Least Squares Monte Carlo simulation under the correlated uncertainties of 

the commodity spot price, the demeaned convenience yield, and the expected long-term spot 

price return. Moreover, Abadie and Chamorro (2017) addressed the valuation of the options to 

delay investment and the option to abandon a producing field in crude oil production using Least 

Squares Monte Carlo simulation where the spot price, long-term price, and spot price volatility 

are uncertain and correlated with each other. In addition, Maeda and Watts (2019) assessed the 

economic valuation of wind farms and analyzed the effect of incorporating the uncertainty of the 

levelized cost of energy in the valuation on top of the electricity price uncertainty.  

Basic Model  

To facilitate the formulation and analysis, we propose the following assumptions. 

Assumption 4.1: The time granularity is a year, and the seasonal pattern of the energy 

consumption for cooling and heating is not considered.  

Assumption 4.2: The commercial building consumes electricity for cooling and natural 

gas for heating, and the consumption is constant. Moreover, the electricity consumption 

sufficiently exceeds its natural gas consumption.  
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Assumption 4.3: The conversion from a conventional roof to a cool roof reduces the 

annual electricity consumption from 𝐷𝐶  (kWh) to (1 − 𝜃𝐶)𝐷𝐶  (kWh), where 0 ≤ 𝜃𝐶 ≤ 1.  

Assumption 4.4: The conversion from a conventional roof to a cool roof increases the 

annual natural gas consumption from 𝐷𝐻 (kWh) to (1 + 𝜃𝐻)𝐷𝐻 (kWh), where 0 ≤ 𝜃𝐻 <
𝜃𝐶𝐷𝐶

𝐷𝐻
.  

Assumptions 4.3 and 4.4 are backed up by references investigating the energy 

consumption change due to roof conversion (e.g., Akbari et al., 1999). The requirement of 𝜃𝐻 <

𝜃𝐶𝐷𝐶

𝐷𝐻
 is equivalent to 𝜃𝐶𝐷𝐶 > 𝜃𝐻𝐷𝐻. This implies that the electricity consumption reduction 

exceeds the natural gas consumption increase after the roof conversion, so the decision-maker is 

incentivized to convert a conventional roof to a cool roof. 

We also note that despite the typical unit for natural gas consumption being British 

Thermal Unit (BTU) or therm, we unify the unit of electricity and natural gas consumption to be 

kWh for ease of formulation and analysis.  

Assumption 4.5: The time to convert a conventional roof to a cool roof is negligible and 

assumed to be 0.  

Assumption 4.6: After converting a conventional roof to a cool roof, the cool roof will 

be used forever. 

Energy Price Modeling 

Multiple factors impact energy prices, e.g., fuel costs, power plant availability and costs, 

generation sources availability, transmission and distribution system, variations in electricity 

demand, weather conditions, regulations, etc. (U.S. EIA, 2021a). Especially, the market-driven 

energy prices in deregulated markets, where consumers can switch among different providers 

(Electric Choice, 2022), are more volatile as the deregulation exposes the inherent volatility of 

energy prices (Klitgaard & Reddy, 2000). In the literature, electricity and natural gas prices have 
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been commonly modeled as GBM processes (e.g., Zambujal-Oliveir, 2013, Santos et al., 2014, 

Hach & Spinler, 2016).  

Assumption 4.7: The electricity price 𝐶𝑡 ($/kWh) can be characterized as a geometric 

Brownian motion (GBM) process:  

𝑑𝐶𝑡 = 𝛼𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑧𝐶                                                        (4.1) 

where 𝛼𝐶 (% per year; > 0) and 𝜎𝐶 (% per year; >0) are the instantaneous growth rate and 

the instantaneous volatility of electricity price, respectively. 𝑑𝑡 is the increment of time, and 𝑑𝑧𝐶 

is the increment of a Wiener process. That is, 𝑑𝑧𝐶 = 𝜀𝐶√𝑑𝑡 where 𝜀𝐶~ 𝑁(0, 1). The time 

granularity is a year.  

Figure 4.1 shows that from 2001 to 2016, the average commercial electricity price in 

Illinois (a deregulated electricity market) increased in general and fluctuated over time (U.S. 

EIA, 2021c). Variables with such a trend are commonly modeled as a GBM process in the 

decision-making under uncertainties using a real options approach as it can characterize the trend 

and facilitate the model formulation and analysis. To verify the plausibility of assuming that the 

electricity price follows a GBM process, we test the electricity price data against the normality, 

stationary, and independence tests. The results indicate no evidence to reject such an assumption. 

 

Figure 4.1 Average commercial electricity price in Illinois from 2001 to 2016 (U.S. EIA, 2021c) 
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Assumption 4.8: The relationship between the natural gas price 𝐻𝑡 ($/kWh) and the 

electricity price is characterized by Equation (4.2) where 𝜆 is a constant which denotes the ratio 

of natural gas price over electricity price.  

𝐻𝑡 = 𝜆𝐶𝑡                                                                  (4.2) 

The approximation in the relationship between electricity and natural gas prices is backed 

up by the rule of thumb in the literature. For instance, CenterPoint Energy (n.d.) states that 

natural gas prices are consistently two to three times lower than electricity prices even when a 

range of electricity prices is considered. Besides, a dimensionless value representing the ratio of 

the electricity cost rate to the natural gas cost rate is used in the problem of an optimal energy 

management of cogeneration system for combined cooling, heating, and power production 

(Kong et al., 2005).  

With Equations (4.1) and (4.2), it can be verified that  

𝑑𝐻𝑡 = 𝛼𝐶𝐻𝑡𝑑𝑡 + 𝜎𝐶𝐻𝑡𝑑𝑧𝐶                                                    (4.3) 

which implies that 𝐻𝑡 also follows a GBM process with the same growth rate 𝛼𝐶 and 

volatility 𝜎𝐶 as 𝐶𝑡 (see Appendix 4A for proof). The assumption that the natural gas price 

follows a GBM process aligns with the price evolution. As can be observed from Figure 4.2, the 

average commercial natural gas price in Illinois (a deregulated natural gas market) increases in 

general and fluctuates over time between 1990 and 2020 (U.S. EIA, 2022b). We also verify the 

plausibility of assuming the natural gas price follows a GBM process through statistical tests, 

and the results indicate no evidence to reject such an assumption.  
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Figure 4.2 Average commercial natural gas price in Illinois from 1990 to 2020 (U.S. EIA, 

2022b)  

We also note that in the basic model, the natural gas price is a function of the electricity 

price, which simplifies the model to only one GBM process, the electricity price. Since the 

electricity increases on average and fluctuates over time, the decision-maker is incentivized to 

exercise the roof conversion option.  

Model Formulation  

The decision-maker collects revenue of 𝑅 ($) generated from the operation of the 

commercial building and is responsible for an operating expense excluding energy costs 𝑀 ($) 

(e.g., janitorial/maintenance, real estate, and other taxes, administrative/benefits, and 

insurance/services) and the electricity and natural gas expenditures. Correspondingly, the profit 

flows of while using a conventional roof 𝜋𝑐𝑜𝑛𝑣𝑙  and while using a cool roof 𝜋𝑐𝑜𝑜𝑙  are given by:  

𝜋𝑐𝑜𝑛𝑣𝑙 = 𝑅 − 𝑀 − (𝐷𝐶 + 𝐷𝐻𝜆)𝐶𝑡                                              (4.4) 

𝜋𝑐𝑜𝑜𝑙 = 𝑅 − 𝑀 − [(1 − 𝜃𝐶)𝐷𝐶 + (1 + 𝜃𝐻)𝐷𝐻𝜆]𝐶𝑡                               (4.5) 
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To ensure that the total energy cost decreases after the roof conversion, we require that 

𝐷𝐶𝐶𝑡 + 𝐷𝐻𝐻𝑡 > (1 − 𝜃𝐶)𝐷𝐶𝐶𝑡 + (1 + 𝜃𝐻)𝐷𝐻𝐻𝑡, which is equivalent to 𝜆 <
𝜃𝐶𝐷𝐶

𝜃𝐻𝐷𝐻
 in the basic 

model.  

While using a conventional roof, the value of the project 𝑉𝑐𝑜𝑛𝑣𝑙 is the value of the 

commercial building given that a conventional roof is currently used, and there is a future 

potential to switch to a cool roof. It is equal to the summation of the discounted cash flow 

generated from the operation while using a conventional roof plus the value of the option to 

switch to a cool roof (Dixit & Pindyck, 1994, pp. 187-188). During the operation while using a 

conventional roof, 𝑉𝑐𝑜𝑛𝑣𝑙 follows the Bellman optimality equation:  

𝜌𝑉𝑐𝑜𝑛𝑣𝑙𝑑𝑡 = 𝜋𝑐𝑜𝑛𝑣𝑙 𝑑𝑡 + 𝐸[𝑑𝑉𝑐𝑜𝑛𝑣𝑙]                                          (4.6) 

where 𝜌 (% per year; >0) is the discount rate for money. Equation (4.6) implies that the total 

return of the project consists of the profit generated from the operation plus the expected future 

appreciation in the value of the project. 

After applying Ito’s Lemma on 𝑑𝑉𝑐𝑜𝑛𝑣𝑙 , the following second-order differential equation 

is yielded:   

1

2
𝜎𝐶

2𝐶𝑡
2 𝜕2𝑉𝑐𝑜𝑛𝑣𝑙

𝜕𝐶𝑡
2 + 𝛼𝐶𝐶𝑡

𝜕𝑉𝑐𝑜𝑛𝑣𝑙

𝜕𝐶𝑡
− 𝜌𝑉𝑐𝑜𝑛𝑣𝑙 + 𝜋𝑐𝑜𝑛𝑣𝑙 = 0                            (4.7) 

It can be verified that under technical conditions of 𝜌 − 𝛼𝐶 > 0 and 𝛼𝐶 −
𝜎𝐶

2

2
> 0 (Dixit 

& Pindyck, 1994), the general solution to Equation (4.7) is given by:   

𝑉𝑐𝑜𝑛𝑣𝑙(𝐶𝑡) = 𝐴1𝐶𝑡
𝛽1 +

𝑅−𝑀

𝜌
−

(𝐷𝐶+𝐷𝐻𝜆)𝐶𝑡

𝜌−𝛼𝐶
                                        (4.8) 

where 𝛽1 =
1

2
−

𝛼𝐶

𝜎𝐶
2 + √(

𝛼𝐶

𝜎𝐶
2 −

1

2
)

2
+

2𝜌

𝜎𝐶
2 > 1, and 𝐴1 is the constant coefficient for the 

homogenous terms to be determined.  
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Considering that numerous literature calls for a conversion from a conventional roof to a 

cool roof, but a reverse conversion has been rarely mentioned in the existing literature, the 

decision-maker has no option to switch from a cool roof to a conventional roof. While using a 

cool roof, the value of the project 𝑉𝑐𝑜𝑜𝑙 is the value of the commercial building, given that a cool 

roof is currently used, which is equal to the discounted cash flow generated from the operation of 

the commercial building, as given in Equation (4.9).  

𝑉𝑐𝑜𝑜𝑙(𝐶𝑡) =
𝑅−𝑀

𝜌
−

[(1−𝜃𝐶)𝐷𝐶+(1+𝜃𝐻)𝐷𝐻𝜆]𝐶𝑡

𝜌−𝛼𝐶
                                      (4.9) 

Equation (4.7) is subject to the following two boundary conditions:  

𝑉𝑐𝑜𝑛𝑣𝑙(𝐶∗) = 𝑉𝑐𝑜𝑜𝑙(𝐶∗) − 𝐼 ⇒ 

𝐴1𝐶∗𝛽1 +
𝑅−𝑀

𝜌
−

(𝐷𝐶+𝐷𝐻𝜆)𝐶∗

𝜌−𝛼𝐶
=

𝑅−𝑀

𝜌
−

[(1−𝜃𝐶)𝐷𝐶+(1+𝜃𝐻)𝐷𝐻𝜆]𝐶∗

𝜌−𝛼𝐶
− 𝐼                   (4.10) 

𝑉𝑐𝑜𝑛𝑣𝑙′(𝐶∗) = 𝑉𝑐𝑜𝑜𝑙′(𝐶∗) ⇒ 𝐴1𝛽1𝐶∗𝛽1−1 −
(𝐷𝐶+𝐷𝐻𝜆)

𝜌−𝛼𝐶
= −

[(1−𝜃𝐶)𝐷𝐶+(1+𝜃𝐻)𝐷𝐻𝜆]

𝜌−𝛼𝐶
        (4.11) 

where 𝐶∗ is the optimal threshold of electricity price at which point a conversion from a 

conventional roof to a cool roof should be implemented, and 𝐼 ($) is the cost to transit from a 

conventional roof to a cool roof.  

Equation (4.10) is the value-matching condition, which states that at the optimal 

threshold of electricity price, the value of the project under a conventional roof is equal to the 

value of the project under a cool roof minus the cost to transit a conventional roof to a cool roof. 

Equation (4.11) is the smooth-pasting condition, which requires that the slope of the left-hand 

side and the right-hand side of Equation (4.10) equal at 𝐶∗.  

First, from the smooth-pasting condition of Equation (4.11), we can analytically solve for 

𝐴1, which can be verified to be: 

𝐴1 =
𝜃𝐶𝐷𝐶−𝜃𝐻𝐷𝐻𝜆

(𝜌−𝛼𝐶)𝛽1𝐶∗𝛽1−1                                                       (4.12) 
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Next, we substitute the expression of 𝐴1 into the value-matching condition of Equation 

(4.10). The closed-form solution to 𝐶∗ can be verified to be:  

𝐶∗ =
𝐼(𝜌−𝛼𝐶)𝛽1

(𝜃𝐶𝐷𝐶−𝜃𝐻𝐷𝐻𝜆)(𝛽1−1)
                                                  (4.13) 

Correspondingly, the expected time of roof conversion is given by (Dixit & Pindyck, 

1994): 

𝐸[𝑇∗] =
ln 𝐶∗−ln 𝐶0

𝛼𝐶−
𝜎𝐶

2

2

=
ln

𝐼(𝜌−𝛼𝐶)𝛽1
(𝜃𝐶𝐷𝐶−𝜃𝐻𝐷𝐻𝜆)(𝛽1−1)

−ln 𝐶0

𝛼𝐶−
𝜎𝐶

2

2

                                (4.14)  

Analytical Sensitivity Analysis  

Among the nine parameters that appear in the expressions of 𝐶∗ and 𝐸[𝑇∗]. By deriving 

the derivatives of 𝐶∗ and 𝐸[𝑇∗] with respect to seven of them (𝜎𝐶, 𝜆, 𝐷𝐶 , 𝜃𝐶, 𝐷𝐻, 𝜃𝐻, and 𝐼), we 

analytically examined how they impact the roof conversion decision under technical conditions 

𝜌 − 𝛼 > 0 and 𝛼 −
1

2
𝜎2 > 0 (Dixit & Pindyck, 1994). For the rest two (𝛼𝐶 and 𝜌), we will 

numerically examine their impact on the roof conversion decision since the signs of the 

derivatives of 𝐶∗ and 𝐸[𝑇∗] with respect to them cannot be determined.  

Proposition 4.1: 
𝜕𝐶∗

𝜕𝜎𝐶
> 0,  

𝜕𝐸[𝑇∗]

𝜕𝜎𝐶
> 0.   

Proposition 4.1 implies that as the volatility of electricity price increases, the optimal 

threshold and the expected time for roof conversion increase. The reason is that when the 

electricity price becomes more uncertain, the electricity price might become in favor of the 

decision-maker as time progresses, so the decision-maker prefers to postpone the exercise of the 

roof conversion option.  

Proposition 4.2: 
𝜕𝐶∗

𝜕𝜆
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝜆
> 0.  
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Proposition 4.2 indicates that when the ratio of natural gas price to electricity price 

increases, the optimal threshold and the expected time for roof conversion increase. This makes 

sense because a higher ratio means a higher natural gas price given a particular electricity price 

level, which discourages the decision-maker from exercising the roof conversion option because 

the roof conversion will increase the natural gas consumption.  

Proposition 4.3: 
𝜕𝐶∗

𝜕𝐷𝐶
< 0, 

𝜕𝐸[𝑇∗]

𝜕𝐷𝐶
< 0; 

𝜕𝐶∗

𝜕𝐷𝐻
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝐷𝐻
> 0.  

Proposition 4.3 states that the optimal threshold and the expected time for roof 

conversion decrease as the electricity consumption increases and increase as the natural gas 

consumption increases. Given that the roof conversion will decrease the electricity consumption 

and increase the natural gas consumption, the decision-maker is encouraged to exercise the roof 

conversion option when the electricity consumption is higher and discouraged from exercising it 

when the natural gas consumption is higher.  

Proposition 4.4: 
𝜕𝐶∗

𝜕𝜃𝐶
< 0, 

𝜕𝐸[𝑇∗]

𝜕𝜃𝐶
< 0; 

𝜕𝐶∗

𝜕𝜃𝐻
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝜃𝐻
> 0. 

Proposition 4.4 implies that the optimal threshold and the expected time for roof 

conversion decrease as the percentage reduction in electricity consumption after the roof 

conversion increases and increase as the percentage increase in natural gas consumption after the 

roof conversion increases. This makes economic sense because the roof conversion is more 

economically rational when the cool roof results in more electricity consumption saving and less 

natural gas consumption penalty.  

Proposition 4.5: 
𝜕𝐶∗

𝜕𝐼
> 0, 

𝜕𝐸[𝑇∗]

𝜕𝐼
> 0.  

Proposition 4.5 is straightforward, which suggests that when the conversion from a 

conventional roof to a cool roof becomes more costly, the decision-maker prefers to wait longer 
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before exercising the roof conversion option, so the optimal threshold and the expected time for 

roof conversion both increase.  

Numerical Example and Sensitivity Analysis  

In this section, we conduct a numerical example of one-story retail stores in the Northeast 

and the South of the United States. The conversion from a conventional roof to a cool roof can 

be implemented by applying cool roof coating on the existing built-up roof. By built-up roof, we 

mean the roof with asphalt-coated glass fiber (a material consisting of numerous extremely fine 

fibers of glass) mat cap sheet surfaced with mineral granules (small compact particles) 

(GAFGLAS, 2016). As for the cool roof coating, they are white or special reflective pigments 

that reflect sunlight (U.S. Department of Energy, 2010). The reason that applying cool roof 

coating to the built-up roof reflects more sunlight is not because of the white color but because 

the prime pigment, such as Titanium Dioxide (𝑇𝑖𝑂2), increases sunlight's reflection. Explanation 

on why 𝑇𝑖𝑂2 reflects more sunlight is provided in Appendix 4B.  

The common parameter values are presented in Table 4.1, and the parameter values that 

vary on location are presented in Table 4.2. Most parameter values are from publicly available 

data, and some are estimated or from hypothetical data when the public data is unavailable. 

Justifications for parameter values are provided in Appendix 4C.  

Table 4.1 Common parameter values 

Parameter (Unit)  Value  Source  

Growth rate of electricity price 𝛼𝐶 (per year) 0.0145  U.S. EIA (2021c); Croghan et al. 

(2017) Volatility of electricity price 𝜎𝐶 (per year) 0.0520  

Initial value of electricity price 𝐶0 ($/kWh)  0.0740 U.S. EIA (2021c) 
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Table 4.1 continued 

 

Parameter (Unit)  Value  Source  

Discount rate for money 𝜌 (per year) 0.02995  CNBC (2022) 

Ratio of natural gas price over electricity 

price 𝜆  0.3657 

U.S. EIA (2021c); U.S. EIA 

(2022b); CenterPoint Energy (n.d.)  

Cost to convert a conventional roof to a cool 

roof 𝐼 ($) 40,000 

Hypothetical  

Table 4.2 Parameter values upon locations  

Parameter (Unit) Northeast South Source 

Annual electricity consumption 𝐷𝐶  (kWh) 448,000 570,500 U.S. EIA (2016a) 

Annual natural gas consumption 𝐷𝐻 (kWh) 266,924 160,580 U.S. EIA (2016b) 

Percentage reduction in electricity consumption 

after roof conversion 𝜃𝐶  0.04 0.03 

Akbari et al. 

(1999) 

Percentage increase in natural gas consumption 

after roof conversion 𝜃𝐻  0.06 0.01 

 
With the above parameter values, we obtain the numerical results in Table 3. For the 

retail store in the Northeast, the optimal electricity price threshold to convert from a conventional 

roof to a cool roof is 10.79 cents/kWh, which on average, occurs in 28.65 years. The value of the 

roof conversion option at time 0 is $ 21,572. Meanwhile, for the retail store in the South, the 

optimal electricity price threshold for roof conversion is 7.87 cents/kWh, which is expected to 

occur in 4.70 years. The value of the roof conversion option at time 0 is $ 39,301.  
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The numerical results suggest that the conversion from a conventional roof to a cool roof 

is expected to occur sooner in the South than in the Northeast and that the roof conversion option 

is more valuable in the South than in the Northeast. This makes sense considering the electricity 

consumption is relatively higher than the natural gas consumption in the South than that in the 

Northeast, and explains why cool roofs are observed more often in the South than in the 

Northeast.  

Table 4.3 Numerical results  

Description   Northeast South 

𝛽1  1.9048 1.9048 

𝐴1  3,074,664 5,601,284 

Optimal electricity price threshold for roof conversion 𝐶∗ ($/kWh) 0.1079 0.0787 

Expected roof conversion time 𝐸[𝑇∗] (year) 28.65 4.70 

Value of the roof conversion option at time 0 𝐴1𝐶0
𝛽1 ($)  21,572 39,301 

 

Figures 4.3 and 4.4 show the variation of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝛼𝐶 and 𝜌 

respectively. In both figures, we observe that the optimal electricity price threshold to convert the 

conventional roof to a cool roof for the retail store in the Northeast is higher than that for the 

retail store in the South, similarly for the corresponding expected time. 

From Figure 4.3, we observe that as the growth rate of the electricity price increases, the 

optimal electricity price threshold and the corresponding expected time decrease. This makes 

sense because when the electricity price grows faster, the decision-maker is incentivized to 

convert the conventional roof to a cool roof sooner, as the latter one is more energy efficient.  
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Figure 4.3 Variation of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝛼𝐶 

As shown in Figure 4.4, when the discount rate for money increases, the optimal 

electricity price threshold and the expected conversion time increase. This also makes sense 

because the decision-maker is inclined to postpone the conversion to a cool roof as the future 

cost becomes more heavily discounted.  

 

Figure 4.4 Variation of 𝐶∗ and 𝐸[𝑇∗] with respect to 𝜌 
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Extended Model  

In this section, we extend the basic model to a more general and complicated case where 

the electricity and the natural gas prices follow correlated GBM processes. Assumptions 4.1 to 

4.5 in the basic model still hold in the extended model.  

Energy Price Modeling  

Assumption 4.9: The electricity price 𝐶𝑡 ($/kWh) can be characterized as a geometric 

Brownian motion (GBM) process:  

𝑑𝐶𝑡 = 𝛼𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑧𝐶                                                        (4.15) 

where 𝛼𝐶 (% per year; > 0) and 𝜎𝐶 (% per year; >0) are the instantaneous growth rate and 

the instantaneous volatility of electricity price, respectively. 𝑑𝑡 is the increment of time, and 𝑑𝑧𝐶 

is the increment of a Wiener process. That is, 𝑑𝑧𝐶 = 𝜀𝐶√𝑑𝑡 where 𝜀𝐶~ 𝑁(0, 1). The time 

granularity is a year.   

Assumption 4.10: The natural gas price at year 𝑡, 𝐻𝑡 ($/kWh), follows a GBM process:  

𝑑𝐻𝑡 = 𝛼𝐻𝐻𝑡𝑑𝑡 + 𝜎𝐻𝐻𝑡𝑑𝑧𝐻                                                     (4.16) 

where 𝛼𝐻 (% per year; > 0) and 𝜎𝐻 (% per year; >0) are the instantaneous growth rate 

and the instantaneous volatility of natural gas price, respectively. 𝑑𝑡 is the increment of time, and 

𝑑𝑧𝐻 is the increment of a Wiener process. That is, 𝑑𝑧𝐻 = 𝜀𝐻√𝑑𝑡, where 𝜀𝐻 = 𝑟𝐶𝐻𝜀𝐶 +

√1 − 𝑟𝐶𝐻
2𝜀0. 𝑟𝐶𝐻 is the constant correlation coefficient between the uncertainty incorporated in 

the change of 𝐶𝑡 and 𝐻𝑡, 𝜀0~𝑁(0, 1), and 𝜀𝐶 and 𝜀0 are uncorrelated (Sigman, 2007; Liatard, 

2022). It can be verified that 𝐸[𝜀𝐶𝜀𝐻] = 𝑟𝐶𝐻. See Appendix 4D for proof.  

The correlation relationship between electricity and natural gas prices has been well 

documented in the literature (e.g., U.S. EIA, 2021a; Pressler, 2022) because natural gas is used 

for power generation (Maribu et al., 2007). Lukes (2021) found a correlation between the 
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electricity and natural gas prices in more than 33 different markets in the United States over 15 

years. The correlation varied from 0.81 to 0.96 and remained stable over time, where 0 indicates 

no correlation and 1 indicates a perfect correlation.  

The basic model is a special case of the extended model from a perspective of energy 

price modeling. First, the electricity price modeling remains the same in both models, i.e., a 

GBM process. As for the natural gas price modeling, in the basic model, Equation (4.3) can be 

verified, where 𝑑𝐻𝑡 = 𝛼𝐶𝐻𝑡𝑑𝑡 + 𝜎𝐶𝐻𝑡𝑑𝑧𝐶. In the extended model, with 𝛼𝐻 = 𝛼𝐶, 𝜎𝐻 = 𝜎𝐶 , and 

𝑟𝐶𝐻 = 1, Equation (4.16) becomes Equation (4.17) as follows, which is the same as Equation 

(4.3). In other words, when the natural gas price shares the same growth rate and volatility of the 

electricity price, and the electricity and natural gas prices are perfectly correlated, the extended 

model in the extended model becomes that in the basic model.  

𝑑𝐻𝑡 = 𝛼𝐻𝐻𝑡𝑑𝑡 + 𝜎𝐻𝐻𝑡 (𝑟𝐶𝐻𝜀𝐶 + √1 − 𝑟𝐶𝐻
2𝜀0) √𝑑𝑡 

= 𝛼𝐶𝐻𝑡𝑑𝑡 + 𝜎𝐶𝐻𝑡(1𝜀𝐶 + √1 − 12𝜀0)√𝑑𝑡 = 𝛼𝐶𝐻𝑡𝑑𝑡 + 𝜎𝐶𝐻𝑡𝜀𝐶√𝑑𝑡                 (4.17) 

Model Formulation 

The profit flows while using a conventional roof and a cool roof are as follows.  

𝜋𝑐𝑜𝑛𝑣𝑙 = 𝑅 − 𝑀 − 𝐷𝐶𝐶𝑡 − 𝐷𝐻𝐻𝑡                                            (4.18) 

𝜋𝑐𝑜𝑜𝑙 = 𝑅 − 𝑀 − (1 − 𝜃𝐶)𝐷𝐶𝐶𝑡 − (1 + 𝜃𝐻)𝐷𝐻𝐻𝑡                            (4.19) 

The net energy cost saving due to the conversion from a conventional roof to a cool roof 

at time 𝑡 is hence given by 𝜋𝑐𝑜𝑜𝑙 − 𝜋𝑐𝑜𝑛𝑣𝑙 , i.e., 𝜃𝐶𝐷𝐶𝐶𝑡 − 𝜃𝐻𝐷𝐻𝐻𝑡.  

The objective function can be formulated as follows:  

max
𝑇∗

𝐸 {∫ 𝑒−𝜌𝑡𝑇∗

0
(𝑅 − 𝑀 − 𝐷𝐶𝐶𝑡 − 𝐷𝐻𝐻𝑡)𝑑𝑡 − 𝐼𝑒−𝜌𝑇∗

+ ∫ 𝑒−𝜌𝑡[𝑅 − 𝑀 −
∞

𝑇∗

(1 − 𝜃𝐶)𝐷𝐶 𝐶𝑡 − (1 + 𝜃𝐻)𝐷𝐻𝐻𝑡]𝑑𝑡}                                         (4.20) 
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𝑇∗ is the optimal time of roof conversion that maximizes the expected value of 

discounted profit.  

In the extended model, the electricity and natural gas prices both increase on average 

with a correlation relationship, so the electricity cost saving may not always exceed the natural 

gas cost penalty. This suggests that converting a conventional roof to a cool roof may or may not 

result in a positive net energy cost saving, meaning that the roof conversion option is not 

guaranteed to exist in the analytical model. In addition, a reverse conversion (converting a cool 

roof to a conventional roof) has rarely been addressed in the literature, so it is impractical to 

assume the existence of the option for such a reverse conversion. These two reasons differentiate 

our roof conversion problem from Dockendorf and Paxson (2013), where continuous switching 

is allowed from producing one commodity output to the other, and quasi-analytical solutions to 

the commodity prices for alternate switching are derived.  

We also consider using the ratio of correlated GBM processes as the decision variable 

(e.g., Dixit and Pindyck, 1994, pp. 207-211; Schmit et al., 2011). Using this approach, the 

project value has to be written as a function of the ratio, where the ratio is the only decision 

variable, and the optimal decision only depends on the ratio. However, in our roof conversion 

problem, we are modeling from a profit maximization perspective, besides the energy costs, the 

revenue and the operation expense should also be included in the project value. As a result, the 

project value cannot be converted to a function where the ratio is the only decision variable, so 

the ratio approach does not apply to our problem either.  

As for the lattice method, the computation complexity substantially increases when more 

than one GBM process is considered, especially when the GBM processes are correlated.  
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Finally, we use the Least Squares Monte Carlo simulation to valuate the roof conversion 

option as the decision support, which was originally proposed by Longstaff and Schwartz (2001) 

and has been used in option evaluation when analytical and lattice methods are not applicable. 

They used Least Squares to estimate the expected payoff to the option holder from continuation 

with the current stock price and approximate the value of American options by Monte Carlo 

simulation. We extend its application to the valuation of the roof conversion option and achieve 

it by way of a numerical example. That is, we use Least Squares to estimate the expected payoff 

from continuation with the current electricity and natural gas prices and obtain the value of the 

roof conversion option by Monte Carlo simulation.  

GBM Discretization 

Let us denote the modeling horizon as 𝐿 (year), and the discrete time index as 𝑘 (𝑘 =

0, 1, 2, … , 𝐿 − 1). With ∆𝑡 (e.g., ∆𝑡 = 1), the continuous GBM processes of energy prices in the 

extended model, Equations (4.15) and (4.16), can be discretized as follows (Luenberger, 1997, p. 

311): 

𝐶𝑘+1 − 𝐶𝑘 = 𝛼𝐶𝐶𝑘∆𝑡 + 𝜎𝐶𝐶𝑘𝜀𝐶𝑘√∆𝑡                                           (4.21) 

𝐻𝑘+1 − 𝐻𝑘 = 𝛼𝐻𝐻𝑘∆𝑡 + 𝜎𝐻𝐻𝑘(𝑟𝐶𝐻𝜀𝐶𝑘 + √1 − 𝑟𝐶𝐻
2𝜀0𝑘)√∆𝑡                       (4.22) 

where 𝜀𝐶𝑘’s are independent and identically distributed random variables that follow a standard 

normal distribution, and the same for 𝜀0𝑘’s. For each 𝑘, 𝜀𝐶𝑘 and 𝜀0𝑘 are uncorrelated.  

Net Energy Cost Saving  

The net energy cost saving from year 𝑘 to year 𝐿 when the roof conversion option is 

exercised in year 𝑘 is denoted as 𝑁𝑘.  

When 𝑘 = 𝐿, 𝑁𝑘 (or 𝑁𝐿) is given by:  

𝑁𝐿 = 𝜃𝐶 𝐷𝐶𝐶𝐿 − 𝜃𝐻𝐷𝐻𝐻𝐿                                                     (4.23) 
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At year 𝑘 (𝑘 < 𝐿), only the energy prices from year 0 to year 𝑘 are known, but energy 

prices from year 𝑘 + 1 to time 𝐿 are unknown. However, the expectation of energy prices in year 

𝑘 + 1, …, 𝐿 can be estimated by taking the average of the simulated energy prices in year 𝑘 + 1, 

…, 𝐿, respectively. That is, for any year 𝑖 (𝑖 = 𝑘 + 1, … , 𝐿), the expected value of electricity 

price at year 𝑖 is given by 𝐸[𝐶𝑖] =
1

𝑛
∑ 𝐶𝑖

𝑗𝑛
𝑗=1  where 𝑗 is the path index (𝑗 = 1, 2, 3, … , 𝑛, 𝑛 is the 

number of paths simulated). Similarly for the expected natural gas price in year 𝑖, 𝐸[𝐻𝑖] =

1

𝑛
∑ 𝐻𝑖

𝑗𝑛
𝑗=1 .  

Correspondingly, if the roof conversion option is exercised in year 𝑘, the expected net 

energy cost saving from year 𝑘 to year 𝐿 is calculated as the net energy cost saving in year 𝑘 plus 

the expected net energy cost saving from year 𝑘 + 1 to year 𝐿 discounted to year 𝑘 as follows.  

𝐸[𝑁𝑘] = 𝜃𝐶𝐷𝐶𝐶𝑘 − 𝜃𝐻𝐷𝐻𝐻𝑘 + ∑ (𝜃𝐶𝐷𝐶𝐸[𝐶𝑖] − 𝜃𝐻𝐷𝐻𝐸[𝐻𝑖])𝑒−𝜌(𝑖−𝑘)𝐿
𝑖=𝑘+1        (4.24) 

Exercise Value and Continuation Value  

As discussed in literature such as Longstaff and Schwartz (2001) and Abadie and 

Chamorro (2017), the decision on whether to exercise the option depends on the exercise value 

and the continuation value evaluated at the time of making the decision.  

In year 𝐿, the exercise value is the net energy cost if the option is exercised in year 𝐿 

minus the cost to covert a conventional roof to a cool roof, i.e., 𝑁𝐿 − 𝐼. The continuation value 

(the value of holding the option) is zero because the option is not obligated to be exercised and 

expires after the end of the modeling horizon. The roof conversion option should be exercised if 

𝑁𝐿 − 𝐼 > 0. The payoff in 𝐿 is the maximum of the exercise value and the continuation value:  

𝑉𝐿 = max {𝑁𝐿 − 𝐼, 0}                                                         (4.25) 

In year 𝑘 (𝑘 < 𝐿), the exercise value is the expected net energy cost if the option is 

exercised in year 𝑘 minus the cost to covert a conventional roof to a cool roof, i.e., 𝐸[𝑁𝑘] − 𝐼. 
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The decision-maker must decide whether to exercise the roof conversion option immediately or 

continue holding it until year 𝑘 + 1. The option should be exercised if exercising immediately is 

more valuable than the expected value from holding (Abadie & Chamorro, 2017), which calls for 

estimating the continuation value. For this purpose, we regress the payoff in year 𝑘 + 1 if the 

option is not exercised in year 𝑘 discounted to year 𝑘 on the degree 2 polynomial in the energy 

prices at time 𝑘 (𝐶𝑘 and 𝐻𝑘). That is,  

𝐸[𝑒−𝜌∆𝑡𝑉𝑘+1(𝐶𝑘, 𝐻𝑘)] = 𝑎0 + 𝑎1𝐶𝑘 + 𝑎2𝐻𝑘 + 𝑎3𝐶𝑘
2 + 𝑎4𝐶𝑘𝐻𝑘 + 𝑎5𝐻𝑘

2          (4.26) 

With the in-the-money paths (i.e., 𝐸[𝑁𝑘] − 𝐼 > 0), we apply least squares Monte Carlo 

simulation to obtain the numerical estimate of the coefficients 𝑎0, 𝑎1, …, 𝑎5 to estimate the 

continuation value in year 𝑘. The payoff in year 𝑘 is hence given by:  

𝑉𝑘 = max {𝐸[𝑁𝑘] − 𝐼, 𝐸𝑘[𝑒−𝜌𝑉𝑘+1(𝐶𝑘 , 𝐻𝑘)|𝐶𝑘 , 𝐻𝑘]}                            (4.27) 

Only in-the-money paths are included in the Least Squares regression because it “allows 

us to better estimate the conditional expectation function in the region where exercise is relevant 

and significantly improves the efficiency of the algorithm” (Longstaff & Schwartz, 2001). 

Using backward induction, we can obtain the optimal strategy for exercising the roof 

conversion option by maximizing the option value at each time along each path. 

Correspondingly, the option value in year 0 for the path is given by: 

𝑉0 = max{𝐸[𝑁0] − 𝐼, 𝐸0[𝑒−𝜌∆𝑡𝑉1(𝐶0, 𝐻0)|𝐶0, 𝐻0]}                               (4.28) 

In the end, we calculate the average option value across all paths as the value of the roof 

conversion option.  

Numerical Example and Sensitivity Analysis  

In this section, we conduct the numerical example to obtain the value of the roof 

conversion option for the retail stores in the Northeast and the South using the Least Squares 
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Monte Carlo simulation described above. Specifically, we simulate the electricity and natural gas 

prices with the additional parameter values in Table 4.4, besides the parameter values used in the 

numerical example of the basic model. The core uncertainty is a standard normal distribution, 

and the number of paths simulated is 1,000. A smaller value is used for the cost to convert a 

conventional roof to a cool roof, $25,000, to generate a positive option value with a modeling 

horizon of 55 years. The modeling horizon is set to be 55 years is used considering that the 

lifespan of a commercial building ranges from 50 to 60 years on average without the need for 

major repairs or renovations and can last longer depending on the preservation techniques and 

the way the building is utilized (BCI Construction, 2021; Shingobee, 2021). This value is close 

to the average age of commercial buildings in the United States at the end of 2021, 53.03 years 

(Feldstein, 2022). 

Table 4.4 Additional parameter values used in the numerical example of the extended model   

Parameter  Value Source  

Growth rate of natural gas price 𝛼𝐻 (per year) 0.0207  U.S. EIA (2022b), 

Croghan, et al. (2017) Volatility of natural gas price 𝜎𝐻 (per year) 0.1248  

Initial value of natural gas price 𝐻0 ($/kWh) 0.0292  U.S. EIA (2022b)  

Correlation coefficient 𝑟𝐶𝐻  0.91 Lukes (2021)  

 
One trial of simulated electricity and natural gas prices is shown in Figure 4.5, where 

both energy prices increase on average and fluctuate over time, and positively correlation can be 

observed. The triangles connected by a solid blue line depict the electricity prices, and the 

squares connected by a dashed orange line depict the natural gas prices.  
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Figure 4.5 One trial of simulated electricity and natural gas prices 

The option values for the retail stores in the Northeast are in the South are $4,398 

(standard deviation of $27) and $20,289 (standard deviation of $58), respectively, which 

indicates that the value of the option for the retail store in the South is much higher than that in 

the Northeast. This makes economic sense given the difference in the electricity and natural gas 

consumption and the percentage change in the energy consumption after converting from a 

conventional roof to a cool roof between the Northeast and the South under the impact of 

location.  

To examine how the value of the roof conversion option changes with respect to the 

parameter values, we perform numerical sensitivity analysis for the numerical example and 

summarize our observations as follows.  

To begin with, it is straightforward that a higher cost to convert a conventional roof to a 

cool roof 𝐼 results in a lower option value. Meanwhile, the value of the roof conversion option 

decreases as the discount rate for money 𝜌 increases (see Figure 4.6). This makes economic 

sense because when money is heavily discounted as time progresses, the present value of the 
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future energy cost is lower, under which circumstance the roof conversion option is less 

valuable.  

 

Figure 4.6 Variation of the option value with respect to 𝜌  

Moreover, energy consumption also impacts the roof conversion option's value. 

Specifically, the option value increases as the annual electricity consumption 𝐷𝐶  increases and 

decreases as the annual natural gas consumption 𝐷𝐻 increases. Regarding the energy 

consumption saving or penalty, the option value increases with the percentage reduction in 

electricity consumption 𝜃𝐶 and decreases with the percentage increase in natural gas 

consumption 𝜃𝐻.  

We also observe that the option value increases with the initial value 𝐶0 or the growth 

rate 𝛼𝐶 of the electricity price and decreases with the initial value 𝐻0 or the growth rate 𝛼𝐻 of the 

natural gas price. This makes economic sense because the roof conversion option is more 

valuable when the electricity price is higher and is less valuable when the natural gas price is 

higher.  
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Figure 4.7 shows the variation of the option value with respect to the volatility of energy 

prices. We observe that the option value increases with the electricity price volatility 𝜎𝐶 and 

decreases with the volatility of the natural gas price 𝜎𝐻. Considering that the roof conversion 

reduces electricity consumption but increases natural gas consumption, it makes sense that the 

roof conversion option is more valuable when the electricity price becomes more volatile and is 

less valuable when the natural gas price becomes more volatile.  

 

Figure 4.7 Variation of the option value with respect to 𝜎𝐶 and 𝜎𝐻 

The variation of option value with respect to the correlation coefficient 𝑟𝐶𝐻 between 0 

and 1 is shown Figure 4.8. We note that despite the correlation coefficient between two random 

variables can vary between -1 and 1, we did not find references indicating a negative correlation 
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coefficient between the electricity and natural gas prices, e.g., between 0.81 and 0.96 (Lukes, 

2021). We observe that as the correlation coefficient increases, the option value first decreases 

and then increases, and the option value is the lowest when 𝑟𝐶𝐻 is around 0.5. The economic 

implication is as follows. As the correlation coefficient increases from 0 (uncorrelated) to around 

0.5 (moderately correlated), with an increasing electricity price, an increasing natural gas price 

undermines the net energy cost saving after the roof conversion, so the roof conversion option 

becomes less valuable. However, when the correlation coefficient continues to increase from 0.5 

(moderately correlated) to 1 (perfectly correlated), the positive correlation relationship between 

the electricity and natural gas prices is so strong that the natural gas price can be approximated as 

a constant multiplied by the electricity price (e.g., the basic model). In such a case, the 

conversion to a cool roof is more likely to result in a net energy cost saving, so the roof 

conversion option becomes more valuable. 

 

Figure 4.8 Variation of the option value with respect to 𝑟𝐶𝐻  
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Discussion  

Connection between Basic Model and Extended Model via Numerical Example  

In this subsection, we present the connection between the basic model and the extended 

model via a numerical example. As previously demonstrated in the energy price modeling in the 

extended model, the natural gas price in the extended model becomes that in the basic model 

when 𝛼𝐻 = 𝛼𝐶, 𝜎𝐻 = 𝜎𝐶 , and 𝑟𝐶𝐻 = 1. We also note that in the basic model, after converting a 

conventional roof to a cool roof, the cool roof is assumed to be used forever, while in the 

extended model, a finite modeling horizon is required to apply the simulation approach. Hence, 

the value of the roof conversion option in the extended model should converge to that in the 

basic model when the modeling horizon increases and approaches positive infinity, as shown in 

Figure 4.9. That is, as the modeling horizon in the extended model increases, the option value 

first rapidly increases, and then the increasing speed slows down and converges to the option 

value in the basic model when the modeling horizon is longer than 300 years ($21,572 in the 

Northeast and $39,299 in the South respectively).  

 

Figure 4.9 Variation of the option value with respect to modeling horizon  
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Choice of Distributions in Simulation  

Simulation has been widely used to quantify uncertainties in various problems. The 

advantage of simulation is that it provides insights when complex stochastic behavior is present 

(Chick, 2001). However, its disadvantage is that the simulation output is sensitive to the input 

distributions (Lipton et al., 1995). This calls for selecting appropriate input distribution to 

characterize the underlying uncertainties, as failing to do so can contribute to misleading 

simulation output and irrational decisions (Chick, 2001). The simulated data sets should 

resemble reality so that the results can be generalized to real situations with credibility (Burton et 

al., 2006).  

In the context of energy prices, there has been a dispute between the GBM process and 

MR process in modeling the uncertainty of energy prices. Some references model the uncertain 

energy prices as GBM processes (e.g., Zambujal-Oliveir, 2013, Santos et al., 2014, and Hach & 

Spinler, 2016), while others model the uncertain energy prices as MR processes (e.g., Mayer et 

al., 2015; Borovkova & Schmeck, 2017; Elias et al., 2018).  

The definition of the GBM process has been extensively discussed in the previous 

sections. For a random variable 𝑋𝑡 that follows a GBM process such that 𝑑𝑋𝑡 = 𝛼𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑧, 

where 𝑑𝑧 = 𝜀√𝑑𝑡, 𝜀~𝑁(0,  1). It can be verified that 𝐸[𝑋𝑡] = 𝑋0𝑒𝛼𝑡 and 𝑉𝑎𝑟[𝑋𝑡] = 

𝑋0
2𝑒2𝛼𝑡(𝑒𝜎2𝑡 − 1) (Wu & Buyya, 2015). When 𝑡 → ∞, 𝐸[𝑋𝑡] → ∞, 𝑉𝑎𝑟[𝑋𝑡] → ∞.  

As for the MR process, it characterizes the mean-reverting behavior observed in the 

evolution of random variables over time (Barlow, 2002). The simplest form of the MR process is 

the Ornstein-Uhlenbeck process, such that 𝑌𝑡 = 𝑙𝑜𝑔(𝑋𝑡), 𝑑𝑌𝑡 = 𝜂(�̅� − 𝑌𝑡)𝑑𝑡 + 𝜎𝑑𝑧, where 𝑌𝑡 is 

the log of the value 𝑋𝑡, 𝜂 the mean reversion coefficient, �̅� the log of the long-term mean value, 
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𝑑𝑧 = 𝜀√𝑑𝑡, 𝜀~𝑁(0,  1). It can be verified that 𝐸[𝑌𝑡] = �̅� + (𝑌0 − �̅�)𝑒−𝜂𝑡 and 𝑉𝑎𝑟[𝑌𝑡] =

𝜎2

2𝜂
(1 − 𝑒−2𝜂𝑡) (Pinto et al., 2007). When 𝑡 → ∞, 𝐸[𝑌𝑡] → �̅�, 𝑉𝑎𝑟[𝑌𝑡] →

𝜎2

2𝜂
. 

Mathematically, the main difference in the definition between the GBM and MR 

processes is the drift. Specifically, the drift in GBM process is a constant, while the drift in MR 

process is a function of the current value. That is, the drift in MR process is positive when the 

current value is lower than the long-term mean value and is negative when the current value is 

higher than the long-term mean value. Furthermore, when 𝑡 → ∞, the expected value and the 

variance of the GBM process both approach positive infinity, while the expected value and 

variance of the MR process are bounded (Pinto et al., 2007).  

In addition, the prices of commodities (e.g., oil, copper, and others that are related to their 

long-term marginal production costs) fluctuate randomly in the short run in the short 

term (Boonpramote, n.d.), and it may be possible and appropriate to use GBM models in the 

short run (Pinto et al., 2007). However, in the long run, commodity prices tend to revert to the 

long-term mean (Nomikos & Andriosopoulos, 2012; Boonpramote, n.d.).  

Despite this, in an investigation on the behavior of the oil, coal, and natural gas prices in 

the United States, Pindyck (1999) found that the prices are mean reverting, but the rate of mean 

reversion is slow over the long run, so the oil price can be treated as a GBM for the purposes of 

making investment decisions. It is also noted that in the investment decisions where energy 

prices are the key stochastic variables, a GBM formulation is unlikely to lead to large errors in 

the long-term investment valuation (Pindyck, 2001).  

As explained in Metcalf and Hassett (1995), the expected cumulative investment after 

some time is the same under GBM and MR formulation due to two effects that work in opposite 

directions and offset each other, the variance effect and the realized price effect. The variance 
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effect means that a higher reversion speed in the MR process reduces the long-run variance, 

resulting in increasing investment. The realized price effect means that the increasing volatility 

of the GBM process means higher trigger price levels may be achieved, which induces a greater 

investment. Hence, the additional tractability and intuitive nature of results under GBM 

formulation can be acquired at a very low cost in terms of realism. 

Based on the above findings and that the statistics test results indicate no evidence to 

reject the assumptions that the average commercial electricity and natural gas prices in Illinois 

(U.S. EIA, 2021c; U.S. EIA, 2022b) follow GBM processes, we continue modeling the 

electricity and natural gas prices as GBM processes in the extended model. As an extension to 

this discussion and future research, we will apply the Least Squares Monte Carlo simulation to 

valuate the roof conversion option when the energy prices are modeled as correlated MR 

processes with realistic estimate of parameter values and compare it with the option value under 

GBM formulation.  

Conclusions  

In this paper, we considered a commercial building that consumes electricity for cooling 

and natural gas for heating, where its electricity consumption sufficiently exceeds its natural gas 

consumption. Using a real options approach, we provided decision support for the conversion 

from a conventional roof to a cool roof under the uncertainties of electricity and natural gas 

prices. Managerial insights and economic implications were derived through sensitivity analyses 

and numerical examples.  

Specifically, in the basic model where we characterize the electricity price as a GBM 

process and the natural gas price as a constant multiplied by the electricity price, we constructed 

and analyzed a real options model and analytically solved for the optimal electricity price 

threshold for roof conversion and the expected time. From analytical sensitivity analysis, we 
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found that (1) when the electricity price becomes more uncertain, the decision-maker should 

postpone the roof conversion; and (2) with a higher ratio of the natural gas price over the 

electricity price, the decision-maker should delay the roof conversion. In a numerical example of 

the retail stores in the Northeast and the South of the United States, the numerical results 

indicated that the roof conversion should be implemented in the South earlier than in the 

Northeast, which explains why cool roofs are more commonly applied in the South than in the 

Northeast. We also numerically observed that the roof conversion should be expedited when the 

electricity price grows faster and postponed when money becomes heavily discounted as time 

progresses.  

In the extended model, where the electricity and natural gas prices followed correlated 

GBM processes, we obtained the value of the roof conversion option using the Least Squares 

Monte Carlo simulation via a numerical example. The numerical results indicated that the roof 

conversion option is more valuable in the South than in the Northeast. We also observed that (1) 

the roof conversion option becomes less valuable when the discount rate for money is higher, (2) 

the roof conversion option is more valuable when the electricity price becomes more volatile, 

and is less valuable when the natural gas price becomes more volatile, and (3) given a positive 

correlation between the electricity and natural gas prices, the value of the roof conversion option 

first decreases and then increases as the correlation coefficient increases.  

There are numerous directions for future research. For instance, it is worthwhile to 

investigate the value of the roof conversion option when the energy prices are modeled as MR 

processes (e.g., Mayer et al., 2015; Borovkova & Schmeck, 2017; Elias et al., 2018) and the 

difference between the option values under the GBM and MR assumptions. In addition, one can 

relax the assumption on the fixed energy consumption and incorporate the energy consumption 



117 

 

uncertainties into the roof conversion problem, as addressed in literature (e.g., Marathe & Ryan, 

2005; Djauhari et al., 2020). In terms of the method used to estimate the expected payoff from 

continuation with the current electricity and natural gas prices, one can also incorporate the 

variance into the regression using the Weighted Least Squares method. Moreover, our models 

can be extended to other economic conversion decisions under energy price uncertainties toward 

sustainability, such as heating pump selection and conversion.  
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Appendices  

Appendix 4A. 𝑯𝒕 in Basic Model Follows a GBM Process  

Following Dixit & Pindyck (1994, pp. 79-80), with Ito’s Lemma, it can be verified that:  

𝑑𝐻𝑡 =
𝜕𝐻𝑡

𝜕𝑡
𝑑𝑡 +

𝜕𝐻𝑡

𝜕𝐶𝑡
𝑑𝐶𝑡 +

1

2

𝜕2𝐻𝑡

𝜕𝐶𝑡
2 (𝑑𝐶𝑡)2                                      (4A.1) 

Since 𝐻𝑡 = 𝜆𝐶𝑡, we have 
𝜕𝐻𝑡

𝜕𝐶𝑡
= 𝜆, and 

𝜕2𝐻𝑡

𝜕𝐶𝑡
2 = 0. With 

𝜕𝐻𝑡

𝜕𝑡
= 0 (Dixit & Pindyck, 1994, p. 

80) and 𝑑𝐶𝑡 = 𝛼𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑧𝐶, 𝑑𝐻𝑡 becomes  

𝑑𝐻𝑡 = 𝜆(𝛼𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑧𝐶) = 𝛼𝐶(𝜆𝐶𝑡)𝑑𝑡 + 𝜎𝐶(𝜆𝐶𝑡)𝑑𝑧𝐶 = 𝛼𝐶𝐻𝑡𝑑𝑡 + 𝜎𝐶𝐻𝑡𝑑𝑧𝐶 (4A.2) 

which implies that 𝐻𝑡 also follows a GBM process with the same growth rate 𝛼𝐶 and 

volatility 𝜎𝐶 as 𝐶𝑡.  

Appendix 4B. Explanation on Why 𝑻𝒊𝑶𝟐 Reflects More Sunlight 

Before demonstrating why 𝑇𝑖𝑂2 reflects more sunlight, we first introduce the concept of 

the refractive index. The refractive index of a medium, 𝑛𝑚𝑒𝑑𝑖𝑢𝑚, is defined as the ratio of the 

speed of light in vacuum 𝑐𝑣𝑎𝑐𝑢𝑢𝑚 to the speed of light in that medium 𝑐𝑚𝑒𝑑𝑖𝑢𝑚 as follows (Isaac 

Physics, n.d.):  

𝑛𝑚𝑒𝑑𝑖𝑢𝑚 =
𝑐𝑣𝑎𝑐𝑢𝑢𝑚

𝑐𝑚𝑒𝑑𝑖𝑢𝑚
                                                           (4B.1) 
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The refractive index of different medium can be verified such as 𝑛𝑎𝑖𝑟 ≈ 𝑛𝑣𝑎𝑐𝑢𝑢𝑚 = 1.00, 

𝑛𝑎𝑠𝑝ℎ𝑎𝑙𝑡 = 1.63, and 𝑛𝑇𝑖𝑂2
≈ 2.70 (Wang & Zhang, 2014).   

Next, we discuss the relationship between refractive indices and reflectance. In the case 

of normal incidence, the ray path is perpendicular (normal) to the surface, meaning the angle of 

incidence is 0. In such a case, the reflectance is defined as  

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = (
𝑛1−𝑛2

𝑛1+𝑛2
)

2
                                                     (4B.2) 

where 𝑛1 and 𝑛2 are the refractive indices of two media (Neal, 2010).  

When the sunlight perpendicularly hits the surface of asphalt from the air, the reflectance 

is:  

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑎𝑖𝑟−𝑎𝑠𝑝ℎ𝑎𝑙𝑡 = (
1.63−1.00

1.63+1.00
)

2
= 0.057 = 5.7%                             (4B.3) 

Similarly, when the sunlight perpendicularly hits the surface of 𝑇𝑖𝑂2 from the air, the 

reflectance is: 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑎𝑖𝑟−𝑇𝑖𝑂2
= (

2.70−1.00

2.70+1.00
)

2
= 0.21 = 21%                                   (4B.4) 

Hence, the percentage of sunlight reflected when it perpendicularly hits the surface of 

𝑇𝑖𝑂2 is much higher than that when it perpendicularly hits the surface of the asphalt.  

We assume the conversion from a conventional roof to a cool roof is implemented by 

applying cool roof coating on the existing built-up roof. We approximate the refractive index of 

asphalt as the refractive index of the conventional roof because the built-up roof contains an 

asphalt-coated glass fiber mat cap sheet. We also approximate the refractive index of 𝑇𝑖𝑂2 as the 

refractive index of cool roof coating. The above explanation and calculation explain why the 

sunlight is reflected more when cool roof coating is applied on the built-up roof.  
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Appendix 4C. Justification on Parameter Values 

The value of the discount rate for money 𝜌 is estimated from the 30-year treasury yield as 

of July 25, 2022, 2.9950% (CNBC, 2022).  

With the average commercial electricity prices in U.S. EIA (2021c) and natural gas prices 

in U.S. EIA (2022b) between 2001 and 2016, we calculate the ratio of natural gas price over 

electricity price, as shown in Table 4C.1. The ratios have a mean of 0.3657 and a standard 

deviation of 0.0652. The mean of the ratios is around 5.6 times of the standard deviation, which 

is consistent with the stability of the ratio between the electricity and natural gas prices despite 

the price evolution over time (see Figure 4C.1). The value of 0.3657 also aligns with the rule of 

thumb for the relationship between the electricity and natural gas prices in CenterPoint Energy 

(n.d.), i.e., the natural gas price is consistently two to three times lower than the electricity price.   

Table 4C.1 Average commercial electricity and natural gas prices in Illinois (U.S. EIA, 2021c; 

U.S. EIA, 2022b)  

Year Electricity price 

($/kWh) 

Natural gas price 

($/kWh) 

Ratio (natural gas price / 

electricity price) 

2001 0.0740 0.0292 0.3943 

2002 0.0752 0.0255 0.3390 

2003 0.0730 0.0282 0.3866 

2004 0.0754 0.0311 0.4119 

2005 0.0775 0.0382 0.4932 

2006 0.0795 0.0372 0.4684 

2007 0.0857 0.0355 0.4142 

2008 0.0925 0.0399 0.4317 
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2009 0.0905 0.0296 0.3266 

2010 0.0888 0.0299 0.3367 

2011 0.0864 0.0282 0.3267 

2012 0.0799 0.0266 0.3323 

2013 0.0814 0.0258 0.3174 

2014 0.0926 0.0302 0.3266 

2015 0.0902 0.0249 0.2758 

2016 0.0902 0.0244 0.2702 

 

 

Figure 4C.1 Average commercial electricity and natural gas prices in Illinois  

The retail stores are assumed to be single-story buildings with a size of 35,000 square-

foot, referring to the size of Kohl’s store (Kohl’s, 2019).  

The electricity and natural gas consumption are estimated from the energy intensity of the 

mercantile building for retail in U.S. EIA (2016a) and U.S. EIA (2016b) respectively (see Table 

4C.2).  
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Table 4C.2 Energy intensity of mercantile building for retail (U.S. EIA, 2016a; U.S. EIA, 2016b)  

Energy intensity  Northeast South Source 

Electricity (kWh/square foot) 12.8 16.3 U.S. EIA (2016a) 

Natural gas (cubic feet/square foot) 25.1 15.1 U.S. EIA (2016b) 

 
Taking the electricity energy intensity in the Northeast as an example, the electricity 

consumption is given by 12.8 (kWh/square foot) * 35,000 (square foot) = 448,000 (kWh). 

Similarly for the natural gas consumption in the Northeast, which is estimated to be 25.1 (cubic 

feet/square foot) * 35,000 (square foot) * 0.01037 (therm/cubic foot) * 29.3 (kWh/therm) = 

266,924 kWh, given the unit conversion where 1 cubic foot = 0.01037 therm (U.S. EIA, 2021b), 

and 1 therm = 29.3 kWh (Metric Conversions, 2018).  

The percentage reduction (increase) in the electricity (natural gas) consumption after roof 

conversion is estimated from the percentage change in the annual electricity (natural gas) 

demand from high-albedo roofing (cool roof) for retail stores built after 1980 (see Akbari et al., 

1999 for details). New York, NY is the benchmark of the Northeast of the United States, and 

Dallas/Fort Worth, TX, is the benchmark for the South of the United States.  

To ensure the net energy saving is positive after the roof conversion, we would like the 

electricity cost saving exceeds the natural gas cost penalty at any time 𝑡, i.e., 𝜃𝐶𝐷𝐶𝐶𝑡 > 𝜃𝐻𝐷𝐻𝐻𝑡. 

However, it is challenging to ensure this condition holds for any 𝑡 in each simulation path. 

Instead, we require the expected values of the energy prices to satisfy the condition of 

𝜃𝐶𝐷𝐶𝐸[𝐶𝑡] > 𝜃𝐻𝐷𝐻𝐸[𝐻𝑡]. With 𝐸[𝐶𝑡] = 𝐶0𝑒𝛼𝐶𝑡 and 𝐸[𝐻𝑡] = 𝐻0𝑒𝛼𝐻𝑡, the condition is 

equivalent to 𝑒(𝛼𝐶−𝛼𝐻)𝑡 >
𝜃𝐻𝐷𝐻𝐻0

𝜃𝐶𝐷𝐶𝐶0
. As shown in Figure 4C.2, the value of 𝑒(𝛼𝐶−𝛼𝐻)𝑡 always 

exceeds the value of 
𝜃𝐻𝐷𝐻𝐻0

𝜃𝐶𝐷𝐶𝐶0
 when 𝑡 varies from 1 to 55, which indicates that the expected annual 
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electricity cost saving exceeds the expected annual natural gas cost penalty during the modeling 

horizon of 55 years.  

 

Figure 4C.2 Variation of 𝑒(𝛼𝐶−𝛼𝐻)𝑡 and 
𝜃𝐻𝐷𝐻𝐻0

𝜃𝐶𝐷𝐶𝐶0
 with respect to time  

Appendix 4D. Proof of Correlated GBM Processes  

According to Sigman (2007),  

“Let 𝑊1(𝑡) and 𝑊2(𝑡) denote standard Brownian motions (i.e., Wiener processes). 

Consider two Brownian motions 𝑋1(𝑡) = 𝜎1𝑊1(𝑡) + 𝜇1𝑡 and 𝑋2(𝑡) = 𝜎2𝑊2(𝑡) + 𝜇2𝑡. 𝑿(𝑡) =

(𝑋1(𝑡), 𝑋2(𝑡))
𝑇
 is a two-dimensional Brownian motion (BM), where we shall assume the 

coordinates have a correlation coefficient 𝑟 . For a given −1 < 𝑟 < 1,  

𝐶𝑜𝑣(𝑋1(𝑡),𝑋2(𝑡))

𝜎1√𝑡×𝜎2√𝑡
= 𝑟, 𝑡 > 0                                                      (4D.1) 

To construct this BM, we start with two independent standard BM’s, 𝐵1(𝑡) and 𝐵2(𝑡), 

define 𝑩(𝑡) = (𝐵1(𝑡), 𝐵2(𝑡))
𝑇
, define the 2 × 2 matrix  

𝑨 = [
𝜎1 0

𝜎2𝑟 𝜎2√1 − 𝑟2
]                                                    (4D.2) 
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and construct  

𝑿(𝑡) = 𝑨𝑩(𝑡) + 𝝁𝑡, 𝑡 ≥ 0                                                (4D.3) 

where 𝝁 = (𝜇1, 𝜇2)𝑇. 

We can then define correlated geometric BM’s (GBM).” 

𝑆1(𝑡) = 𝑆1(0)𝑒𝑋1(𝑡)                                                         (4D.4)  

𝑆2(𝑡) = 𝑆2(0)𝑒𝑋2(𝑡)                                                         (4D.5) 

From the above statements, we can derive the following:  

For the correlated BM’s, 𝑋1(𝑡) and 𝑋2(𝑡), we have  

[
𝑋1(𝑡)

𝑋2(𝑡)
] = [

𝜎1 0

𝜎2𝑟 𝜎2√1 − 𝑟2
] [

𝐵1(𝑡)

𝐵2(𝑡)
] + [

𝜇1

𝜇2
] 𝑡                              (4D.6) 

That is,  

𝑋1(𝑡) = 𝜇1𝑡 + 𝜎1𝐵1(𝑡)                                                            (4D.7) 

𝑋2(𝑡) = 𝜇2𝑡 + 𝜎2[𝑟𝐵1(𝑡) + √1 − 𝑟2𝐵2(𝑡)]                           (4D.8) 

For the correlated GBM’s, 𝑆1(𝑡) and 𝑆2(𝑡), we have  

𝑆1(𝑡) = 𝑆1(0)𝑒𝑋1(𝑡) = 𝑆1(0)𝑒𝜇1𝑡+𝜎1𝐵1(𝑡)                                          (4D.9)  

𝑆2(𝑡) = 𝑆2(0)𝑒𝑋2(𝑡) = 𝑆2(0)𝑒𝜇2𝑡+𝜎2[𝑟𝐵1(𝑡)+√1−𝑟2𝐵2(𝑡)]                 (4D.10) 

In this paper, we assume that 𝑑𝐶𝑡 = 𝛼𝐶𝐶𝑡𝑑𝑡 + 𝜎𝐶𝐶𝑡𝑑𝑧𝐶, where 𝑑𝑧𝐶 is the increment of a 

Wiener process, i.e., 𝑑𝑧𝐶 = 𝜀𝐶√𝑑𝑡, 𝜀𝐶~ 𝑁(0, 1), and 𝑑𝐻𝑡 = 𝛼𝐻𝐻𝑡𝑑𝑡 + 𝜎𝐻𝐻𝑡𝑑𝑧𝐻, where 𝑑𝑧𝐻 is 

the increment of a Wiener process, i.e., 𝑑𝑧𝐻 = 𝜀𝐻√𝑑𝑡, 𝜀𝐻 = 𝑟𝐶𝐻𝜀𝐶 + √1 − 𝑟𝐶𝐻
2𝜀0. 𝑟𝐶𝐻 is the 

constant correlation coefficient between the uncertainty incorporated in the change of 𝐶𝑡 and 𝐻𝑡, 

𝜀0~𝑁(0, 1), and 𝜀𝐶 and 𝜀0 are independent of each other (Liatard, 2022). It can be verified that   

𝐶𝑡 = 𝐶0𝑒(𝛼𝐶−
1

2
𝜎𝐶

2)𝑡+𝜎𝐶𝑧𝐶                                                 (4D.11) 

With 𝜀𝐻 = 𝑟𝐶𝐻𝜀𝐶 + √1 − 𝑟𝐶𝐻
2𝜀0, we have 
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𝜀𝐻𝑑𝑡 = 𝑟𝐶𝐻𝜀𝐶𝑑𝑡 + √1 − 𝑟𝐶𝐻
2𝜀0𝑑𝑡                                       (4D.12) 

𝑑𝑧𝐻 = 𝑟𝐶𝐻𝑑𝑧𝐶 + √1 − 𝑟𝐶𝐻
2𝑑𝑧0                                           (4D.13) 

where 𝑑𝑧0 is the increment of a Wiener process, i.e.,  𝑑𝑧0 = 𝜀0𝑑𝑡. Furthermore,  

𝑧𝐻 = 𝑟𝐶𝐻𝑧𝐶 + √1 − 𝑟𝐶𝐻
2𝑧0                                           (4D.14) 

Similarly, it can be verified that 

𝐻𝑡 = 𝐻0𝑒(𝛼𝐻−
1

2
𝜎𝐻

2)𝑡+𝜎𝐻𝑧𝐻 = 𝐻0𝑒(𝛼𝐻−
1

2
𝜎𝐻

2)𝑡+𝜎𝐻(𝑟𝐶𝐻𝑧𝐶+√1−𝑟𝐶𝐻
2𝑧0)

       (4D.15) 

Since Equations (4D.11) and (4D.15) have the same structure as Equations (4D.9) and 

(4D.10), the way that we define that 𝐶𝑡 and 𝐻𝑡 follow correlated GBM processes, essentially is 

the same as Sigman (2007).  

Next, we first show that 𝜀𝐻~𝑁(0, 1), and 𝐶𝑜𝑟𝑟(𝜀𝐶 , 𝜀𝐻) = 𝑟𝐶𝐻. 

𝐸[𝜀𝐻] = 𝑟𝐶𝐻𝐸[𝜀𝐶] + √1 − 𝑟𝐶𝐻
2𝐸[𝜀0] = 𝑟𝐶𝐻(0) + √1 − 𝑟𝐶𝐻

2(0) = 0              (4D.16) 

𝑉𝑎𝑟[𝜀𝐻] = 𝑟𝐶𝐻
2𝑉𝑎𝑟[𝜀𝐶] + (1 − 𝑟𝐶𝐻

2)𝑉𝑎𝑟[𝜀0] = 𝑟𝐶𝐻
2(1) + (1 − 𝑟𝐶𝐻

2)(1) = 1      

(D.17) 

By definition,  

𝐶𝑜𝑣(𝜀𝐶 , 𝜀𝐻) = 𝐸[(𝜀𝐶 − 𝐸[𝜀𝐶])(𝜀𝐻 − 𝐸[𝜀𝐻])] = 𝐸[𝜀𝐶𝜀𝐻 − 𝜀𝐶𝐸[𝜀𝐻] − 𝜀𝐻𝐸[𝜀𝐶] + 𝐸[𝜀𝐶]𝐸[𝜀𝐻]] 

= 𝐸[𝜀𝐶𝜀𝐻] − 𝐸[𝜀𝐶]𝐸[𝜀𝐻] − 𝐸[𝜀𝐻]𝐸[𝜀𝐶] + 𝐸[𝜀𝐶]𝐸[𝜀𝐻] = 𝐸[𝜀𝐶𝜀𝐻]                (4D.18) 

In terms of the correlation between 𝜀𝐶 and 𝜀𝐻, by definition, we have 

𝐶𝑜𝑟𝑟(𝜀𝐶 , 𝜀𝐻) =
𝐶𝑜𝑣(𝜀𝐶,𝜀𝐻)

√𝑉𝑎𝑟[𝜀𝐶]√𝑉𝑎𝑟[𝜀𝐻]
=

𝐸[𝜀𝐶𝜀𝐻]

√𝑉𝑎𝑟[𝜀𝐶]√𝑉𝑎𝑟[𝜀𝐻]
=

𝐸[𝜀𝐶𝜀𝐻]

√1√1
= 𝐸[𝜀𝐶𝜀𝐻]        (4D.19) 

To obtain 𝐸[𝜀𝐶𝜀𝐻], we first note that  

𝑉𝑎𝑟[𝜀𝐶] = 𝐸[(𝜀𝐶 − 𝐸[𝜀𝐶])2] = 𝐸[𝜀𝐶
2 − 2𝜀𝐶𝐸[𝜀𝐶] + 𝐸[𝜀𝐶]2] 

= 𝐸[𝜀𝐶
2] − 2𝐸[𝜀𝐶]𝐸[𝜀𝐶] + 𝐸[𝜀𝐶]2 = 𝐸[𝜀𝐶

2] − 2(0)(0) + 02 = 𝐸[𝜀𝐶
2] = 1        (4D.20) 

Also, since 𝜀𝐶 and 𝜀0 are independent, the covariance between 𝜀𝐶 and 𝜀0 is 0. That is,  
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𝐶𝑜𝑣(𝜀𝐶 , 𝜀0) = 𝐸[𝜀𝐶𝜀0] − 𝐸[𝜀𝐶]𝐸[𝜀0] = 𝐸[𝜀𝐶𝜀0] − 0(0) = 𝐸[𝜀𝐶𝜀0] = 0           (4D.21) 

Hence, we have  

𝐸[𝜀𝐶𝜀𝐻] = 𝐸[𝑟𝐶𝐻𝜀𝐶
2 + √1 − 𝑟𝐶𝐻

2𝜀𝐶𝜀0] = 𝑟𝐶𝐻𝐸[𝜀𝐶
2] + √1 − 𝑟𝐶𝐻

2𝐸[𝜀𝐶𝜀0]  

= 𝑟𝐶𝐻(1) + √1 − 𝑟𝐶𝐻
2(0) = 𝑟𝐶𝐻                                    (4D.22) 

Therefore, 𝐶𝑜𝑟𝑟(𝜀𝐶 , 𝜀𝐻) = 𝐸[𝜀𝐶𝜀𝐻] = 𝑟𝐶𝐻. Furthermore,  

𝐸[𝑑𝑧𝐶𝑑𝑧𝐻] = 𝐸[𝜀𝐶√𝑑𝑡𝜀𝐻√𝑑𝑡] = 𝐸[𝜀𝐶𝜀𝐻]𝑑𝑡 = 𝑟𝐶𝐻𝑑𝑡                     (4D.23) 
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CHAPTER 5.    GENERAL CONCLUSIONS  

In this dissertation, we studied various economic transition endeavors, which are costly, 

irreversible, and made under uncertainties. For each case, under the assumption that the 

underlying uncertainty (i.e., the demand for a perishable agricultural product, the maintenance 

cost of an asphalt road, and the electricity and natural gas prices of a commercial building) 

follows a GBM process, we viewed the transition endeavor as a stochastic optimal control (real 

options) problem, investigated the optimal decisions and analyzed the economic consequences. 

That is, for the cases of conversion from conventional to blockchain-based SCIMS, asphalt roads 

resurfacing, and conversion from conventional to cool roofs, we derived the optimal thresholds 

of demand for a perishable agricultural product, the maintenance cost of an asphalt road, and the 

electricity price of a commercial building as well as the expected time of these transitions. 

Subsequently, managerial insights and economic implications were derived through analytical 

and numerical analyses and numerical examples.  

In Chapter 2, for the retailer in a supply chain of a perishable agricultural product, we 

mathematically formulated the transition from a conventional SCIMS to a blockchain-based 

SCIMS without/with the presentence of a fixed subsidy and a variable subsidy from the 

government using a real options approach when the demand follows a GBM process. For both 

scenarios, we obtained the closed-form solutions of the optimal demand thresholds for transition 

and the corresponding expected time. By analytically and numerically examining the impact of 

parameter values on the transition decision, we derived the following critical managerial insights 

and policy implications. First, the retailer should defer the transition from a conventional SCIMS 

to a blockchain-based SCIMS when the customers’ demand is volatile. Moreover, from the 

government’s perspective, a small amount of variable subsidy is a more effective incentive if the 
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government anticipates the retailers to rapidly transit to a blockchain-based SCIMS in a short 

time, while a fixed subsidy should be advocated if an even pace of switch among retailers is 

preferred. Meanwhile, in terms of motivating the retailer to transit to a blockchain-based SCIMS, 

the fixed subsidy is more efficient at its higher level, while the variable subsidy is more efficient 

at its lower level.  

In Chapter 3, under the assumption that the maintenance cost of an asphalt road follows a 

GBM process, we constructed and analyzed a real options model for a profit-maximizing 

decision-maker where the threshold in the maintenance cost to resurface the road is the decision 

variable. After numerically solving the optimal threshold of the maintenance cost and deriving 

the expected resurfacing interval, we conducted sensitivity analyses on the optimal threshold and 

the expected resurfacing interval with respect to the parameter values. The resulting managerial 

insights and economic implications include: (1) when the road maintenance cost becomes more 

volatile, the resurfacing of the road should be deferred, and the expected resurfacing interval will 

be extended; (2) a higher initial road maintenance cost results in a deferral of the road 

resurfacing and a shorter expected resurfacing interval. From the numerical example, we observe 

that (1) when the maintenance cost grows faster, the road resurfacing should be deferred, and the 

expected resurfacing interval will be shortened; (2) when money becomes heavily discounted as 

time progresses, the decision-maker should postpone the road resurfacing and prolong the 

expected resurfacing interval; (3) the average total discounted profits under the interval-based 

policy are maximized at an interval close to the expected resurfacing interval under the 

threshold-based policy. However, the average total discounted profits under the threshold-based 

policy slightly surpass that under the interval-based policy.  
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In Chapter 4, for a commercial building that consumes electricity for cooling and natural 

gas for heating, where its electricity consumption sufficiently exceeds its natural gas 

consumption, we provided decision support for the conversion from a conventional roof to a cool 

roof using a real options approach. In the basic model, we constructed and analyzed the decision 

models to transit from a conventional roof to a cool roof when the electricity price follows a 

GBM process, and the natural gas price is equal to a constant multiplied by the electricity price. 

We analytically derived the closed-form solutions to the optimal electricity price threshold and 

the expected time. From analytical sensitivity analysis, we found that (1) when the electricity 

price becomes more uncertain, the decision-maker prefers to postpone the roof conversion; and 

(2) with a higher ratio of the natural gas price over the electricity price, the decision-maker 

should delay the roof conversion. In a numerical example for retail stores in the Northeast and 

the South of the United States, the numerical results indicated that the roof conversion should be 

implemented in the South earlier than in the Northeast. Numerical sensitivity analysis indicated 

that the roof conversion should be expedited when the electricity price grows faster and 

postponed when money becomes heavily discounted as time progresses. 

In the extended model of Chapter 4, where the electricity and natural gas prices were 

assumed to follow correlated GBM processes, we valuated the roof conversion option using the 

Least Squares Monte Carlo simulation. The numerical results indicated that the roof conversion 

option is more valuable in the South than in the Northeast. We also observed that (1) the roof 

conversion option becomes less valuable when the discount rate for money is higher, (2) the roof 

conversion option is more valuable when the electricity price becomes more volatile, and is less 

valuable when the natural gas price becomes more volatile, and (3) the value of the roof 
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conversion option first decreases and then increases as the correlation coefficient increases given 

that the electricity and natural gas prices are positively correlated.  

In summary, in this dissertation, we proposed real options-based models and analyses for 

economic transitions toward sustainability in the cases of conversion from conventional to 

blockchain-based SCIMS, asphalt roads resurfacing, and conversion from conventional to cool 

roofs. The decision support provided in this dissertation is critical for such economic decisions as 

they are costly, irreversible, and made under uncertainties.  

This dissertation serves as the basis for the research in relevant areas and can lead to 

several extensions. As an extension to Chapter 2 regarding the conversion from conventional to 

blockchain-based SCIMS under the demand uncertainty, first of all, research can be expanded by 

modeling the demand as a jump-diffusion process considering that there can be a substantial 

reduction in the demand when recalls happen. Secondly, besides the demand uncertainty, other 

uncertainties such as the uncertainties in the unit selling price and the technology innovations 

(e.g., blockchain may require updates or be replaced by a more advanced SCIMS in the future) 

can be incorporated into future research. Thirdly, one can formulate the decision model from the 

perspective of other stakeholders in the supply chain, such as the wholesaler or the farm 

cooperative. Discussions can also be expanded to the valuation of the blockchain-based system 

regarding other properties such as transparency, immutability, and irrefutability in various 

industries (e.g., financial, insurance, and manufacturing).   

For Chapter 3, the resurfacing problem for asphalt roads, one can extend the decision 

support to a cost-minimization decision-maker to a non-profit decision maker with objectives 

such as minimizing the cost. Moreover, other uncertainties in the resurfacing decision can be 

taken into consideration, such as traffic demand, which has been modeled as a GBM process in 
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the literature, such as Zhao et al. (2004), and Galera and Soliño (2010). Furthermore, one can 

relax our assumption that only one type of vehicle accesses the road by incorporating the impact 

of heavy vehicles on the maintenance cost. There has been discussion on heavy trucks causing 

more road deterioration than passenger cars (Gibby et al., 1990), which may further raise the 

maintenance cost. On a larger scale, one can model multiple decisions under uncertainties, e.g., 

resurfacing, reconstructing the road, and applying preventive surface treatment to the road (e.g., 

Zhao & Min, 2021).  

As for Chapter 4, the conversion from a conventional roof to a cool roof, it is worthwhile 

to investigate the value of the roof conversion option when the energy prices are modeled as MR 

processes (e.g., Mayer et al., 2015; Borovkova & Schmeck, 2017; Elias et al., 2018) and the 

difference between the option value under the GBM formulation. In addition, one can relax the 

assumption of fixed energy consumption and incorporate the energy consumption uncertainties 

into the roof conversion problem, as addressed in the literature (e.g., Marathe & Ryan, 2005; 

Djauhari et al., 2020). In terms of the method used to estimate the expected payoff from 

continuation with the current electricity and natural gas prices, one can also incorporate the 

variance into the regression using the Weighted Least Squares method. Moreover, our models 

can be extended to other economic conversion decisions toward sustainability under energy price 

uncertainties, such as heating pump selection and conversion.  

Concisely, for the economic decisions toward sustainability, the decision support can be 

enriched by modeling the uncertainties with stochastic processes other than GBM (e.g., MR). 

This can lead to further discussion on the tradeoff between the more accurate modeling of the 

random variables and more intuitive and traceable results. In addition, besides modeling the 

uncertainties as diffusion processes, one can consider the potentially substantial changes in the 



136 

 

uncertain variables when economic decisions occur and model the uncertainties as jump-

diffusion processes. Finally, more uncertainties can be considered for the decision support to 

better formulate the problems in various industries. For cases involving more than one 

uncertainty, simulation is more applicable than the analytical and lattice methods. 
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Appendix 

Validation of GBM Process  

Let us denote the data to be tested as 𝐶𝑡, in this case, the average commercial natural gas 

price in the state of Illinois.  

According to Ross (2014, p. 612), we say that {𝑋𝑡 , 𝑡 ≥ 0} is a Brownian motion process 

with drift 𝜇 and variance 𝜎2 if 

(1) 𝑋0 = 0;  

(2) {𝑋𝑡 , 𝑡 ≥ 0} has stationary and independent increments;  

(3) 𝑋𝑡 is normally distributed with mean 𝜇𝑡 and variance 𝜎2𝑡.  

Furthermore, the process {𝐶𝑡 , 𝑡 ≥ 0} that is defined by 𝐶𝑡 = 𝐶0𝑒𝑋𝑡 is called a geometric 

Brownian motion (GBM) process (Ross, 2011, p. 39).  

Let us re-write 𝑋𝑡 as 𝑋𝑡 = ln (
𝐶𝑡

𝐶0
) and define the increment of 𝑋𝑡 as 𝑊𝑡 where 𝑊𝑡 =

𝑋𝑡+1 − 𝑋𝑡 (Marathe & Ryan, 2005). The above statements imply that 𝐶𝑡 is a GBM process if the 

following assumptions are satisfied:   

(1) 𝑋0 = 0;  

(2) The increment of 𝑋𝑡 is stationary (i.e., 𝑊𝑡 is stationary); 

(3) The increment of 𝑋𝑡 is independent from past values (i.e., 𝑊𝑡 is independent from 

past values);  

(4) 𝑋𝑡 is normally distributed;  

(5) Given that 𝑋𝑡 is normally distributed, the mean and variance are 𝜇𝑡 and 𝜎2𝑡, 

respectively.  

We first calculate the value of 𝑋𝑡 and 𝑊𝑡 in the following table. The explanation on the 

column of 𝑊𝑡 state will be provided later.  
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𝒕  𝑪𝒕   𝑿𝒕  𝑾𝒕  𝑾𝒕 state 𝒕  𝑪𝒕   𝑿𝒕  𝑾𝒕  𝑾𝒕 state 

0 4.56 0.0000 0.0195 2 15 10.91 0.8724 -0.0479 1 

1 4.65 0.0195 0.0924 2 16 10.40 0.8245 0.1178 2 

2 5.10 0.1119 0.0039 2 17 11.70 0.9423 -0.3009 1 

3 5.12 0.1158 -0.1470 1 18 8.66 0.6414 0.0115 2 

4 4.42 -0.0312 0.1072 2 19 8.76 0.6529 -0.0576 1 

5 4.92 0.0760 0.0986 2 20 8.27 0.5953 -0.0611 1 

6 5.43 0.1746 -0.0686 1 21 7.78 0.5342 -0.0274 1 

7 5.07 0.1060 0.0253 2 22 7.57 0.5069 0.1574 2 

8 5.20 0.1313 0.2829 2 23 8.86 0.6642 -0.1950 1 

9 6.90 0.4142 0.2144 2 24 7.29 0.4692 -0.0208 1 

10 8.55 0.6286 -0.1350 1 25 7.14 0.4484 0.0858 2 

11 7.47 0.4936 0.1017 2 26 7.78 0.5342 -0.0719 1 

12 8.27 0.5953 0.0956 2 27 7.24 0.4623 -0.0309 1 

13 9.10 0.6910 0.2076 2 28 7.02 0.4314 -0.0260 1 

14 11.20 0.8986 -0.0262 1 29 6.84 0.4055 / / 

 

(1) 𝑿𝟎 = 𝟎;  

The first assumption can be verified through 𝑋0 = ln (
𝐶0

𝐶0
) = ln(1) = 0 and from value of 

𝑋0 in the table above.  

(2) The increment of 𝑿𝒕 is stationary (i.e., 𝑾𝒕 is stationary); 

The stationary of 𝑤𝑡  can be tested using Dickey-Fuller test, an autoregressive (AR) unit 

root test for a time series (Zivot & Wang, 2007). In an AR (1) model that is defined as 𝑤𝑡 =



139 

 

𝜙𝑤𝑡−1 + 𝜀𝑡, where 𝜀𝑡~𝑊𝑁(0, 𝜎𝜀
2), essentially, the existence of a unit root implies the process is 

non-stationary.  

𝐻0: 𝜙 = 1 (A unit root is present in the time series of 𝑊𝑡).  

𝐻𝐴: |𝜙| < 1 (A unit root is not present in the time series of 𝑊𝑡). 

The test statistic 𝐷𝐹𝛾 is -5.6077, and the p-value is 0.0000. The p-value is lower than a 

critical value of 𝛼 = 0.05, meaning that we have evidence to reject the null hypothesis. 

Therefore, it is reasonable to assume that the increment of 𝑋𝑡, 𝑊𝑡, is stationary.  

(3) The increment of 𝑿𝒕 is independent from past values (i.e., 𝑾𝒕 is independent 

from past values);  

The independence of 𝑊𝑡 from past values can be tested with a contingency table (Ross, 

2011). First, we calculate the median of 𝑊𝑡, which can be verified to be 0.0039. Next, we assign 

state 1 to year 𝑡 if 𝑊𝑡 < 0.0039 and state 2 to year 𝑡 if 𝑊𝑡 > 0.0039. After that, for 𝑖, 𝑗 = 1, 2, 

we count how many times that a state 𝑖 year was followed by a state 𝑗 year and summarize the 

number of occurrences in a contingency table.  

Contingency table  

𝑖  𝑗  Row Total 

1 2 

1 6 7 13 

2 8 7 15 

Column total 14 14 28 

 

Then we use Fisher exact test to check for the independence of the contingency table 

since it is the appropriate test when the sample size is small (McDonald, 2014, p. 77-85). 

𝐻0: The probability of getting state 𝑗 is the same whether the year before is state 1 or 2;  
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𝐻𝐴: The state of a year is not independent of the state of the year before. 

The Fisher exact test gives a statistic 0.7500, and the p-value is 1.0000. The p-value is 

higher than a significance level 𝛼 = 0.05, which means that we fail to reject the null hypothesis. 

Stated otherwise, it is reasonable to assume that the state of a year is independent of the state of 

the year before.  

Besides, in the scatter plot of 𝑊𝑡, points are randomly distributed around the line 𝑦 = 0, 

and no apparent pattern can be observed. So, we can tentatively say 𝑊𝑡 is independent (Marathe 

& Ryan, 2005).  

 
(4) 𝑿𝒕 is normally distributed;  

The normality of 𝑋𝑡 can be tested through Shapiro-Wilk test as it tests whether data is 

from a normal distribution especially when the sample size is less than 2000 (Cool & Ockendon, 

2015).  

𝐻0: 𝑋𝑡 is from a normal distribution. 

𝐻𝐴: 𝑋𝑡 is not from a normal distribution. 



141 

 

Since the Shapiro-Wilk test W statistic is 0.9414, and the p-value is 0.0990 (higher than a 

significance level 𝛼 = 0.05), we fail to reject the null hypothesis that 𝑋𝑡 is from a normal 

distribution (DAWG, 2014).  

Moreover, in the Q-Q plot, points fall along the straight line, which is an indicator of 𝑋𝑡 

coming from a normal distribution.  

 
(5) Given that 𝑿𝒕 is normally distributed, the mean and variance are 𝝁𝒕 and 𝝈𝟐𝒕, 

respectively.  

According to Ross (2011, p. 34), for all positive 𝑘 and 𝑡, 𝑋𝑘+𝑡 − 𝑋𝑘 has a normal 

distribution with mean 𝜇𝑡 and variance 𝜎2𝑡. Suppose 𝑘 = 0, 𝑋𝑡 is normally distributed with 𝜇𝑡 

and variance 𝜎2𝑡 since 𝑋0 = 0. As 𝑡 varies, the mean and variance of 𝑋𝑡 vary and can approach 

to enormous values. However, for a specific value of 𝑡, the mean and variance both approach to 

constants. In the case of 𝑡 = 1, the mean and variance become 𝜇 and 𝜎2 respectively.  

Graphical evidence, the histogram of 𝑋𝑡 and the Q-Q plot above, shows that 𝑋𝑡 have 

fitted mean and variance (Marathe & Ryan, 2005).  
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With the satisfaction of the above assumptions, we can conclude that it is reasonable to 

assume that 𝐶𝑡 follows a GBM process.  
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