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ABSTRACT 

Clinical outcome models estimate the probability of developing a future adverse outcome 

for patients. In practice, the clinical outcome models help assess the severity of illness, evaluate 

the value of new treatments, provide expected outcomes, and promote clinical resource 

allocation. Meanwhile, the rich information in the EHR data provides great opportunities to build 

more accurate and reliable models for various clinical outcome tasks. However, there are still 

many challenges when developing clinical outcome models on EHRs, including the hierarchical 

structure of high-dimensional medical concepts, the pattern extraction of vital signs, and the data 

insufficiency of some lab tests. To address these challenges, we present three research designs in 

this dissertation, including a new framework of low-dimensional representations for medical 

concepts, a new feature extraction scheme for vital sign data, and a new transfer learning for lab 

outcome prediction with limited samples. By tackling the abovementioned issues in EHR data, 

our work has great potential to enlarge the social impact of clinical outcome models. 
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CHAPTER 1.    GENERAL INTRODUCTION 

Clinical outcome models estimate the probability of developing a future adverse outcome 

for patients (Whittemore, 2010). The outcome estimation is usually made by summarizing the 

available patient information, such as the demographics and the vital signs. Existing research has 

predicted various clinical outcomes, such as readmission, mortality, and the disease onsite (Fang 

et al., 2021; Whittemore, 2010). Such models are becoming more and more popular and 

important in clinical practice, as the volumes of clinical data keep growing and inference models 

become increasingly accurate (Mahmoudi et al., 2020).  

The clinical outcome models have various applications in clinical practice. First, 

healthcare practitioners can assess the severity of illness based on the estimated clinical 

outcomes (Pirracchio, 2016). If the estimated risk of adverse outcomes keeps going up, then the 

patient illness probability is deteriorating. Second, the change of the clinical outcomes describes 

the value of new treatments, interventions and healthcare policies (Xu et al., 2017). If the risk of 

adverse outcomes drops after the patient receive a new treatment, this could be evidence that the 

new treatment is taking effect. Third, the clinical outcome models potentially inform rationing 

decisions on patients’ medical needs, and help doctors communicate the expected outcomes to 

patients (Truog et al., 2008). Fourth, the outcome model can help promote effective resource 

allocation and alleviate healthcare burdens (Knaus et al., 1991). It is reasonable to allocate more 

clinical resources to patients with higher risk. The need for clinical outcome predictions has been 

magnified during public health threats like the COVID-19 pandemic because hospitals have been 

overwhelmed by the influx of patients and the clinical resource need to be optimized.  

In the past, researchers constructed outcome models using data from epidemiologic 

cohorts or clinical trials (Goldstein et al., 2016). However, the external generalizability of 
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constructed models was questioned due to the narrow and unrepresentative data source. First, the 

cohorts in the clinical trials are usually strictly defined, which do not represent patients in 

practice well. Second, the cohort studies and real-life clinical settings may have different data 

collection processes.  

Then electronic health records (EHRs) provide opportunities to build more accurate and 

more generalizable clinical outcome models. An EHR is a digital version of a patient’s medical 

history (Goldstein et al., 2016). Specifically, EHRs contain patients’ demographics, diagnoses, 

treatments, vital signs, radiology images, laboratory test results, etc. EHRs include a large 

number of clinical cases from daily hospital admissions that represents the real world (Goldstein 

et al., 2016). Many clinical outcome models have been proposed based on the EHR data. For 

example, some researchers use historical visits in EHRs to build readmission prediction models 

(Allam et al., 2019; Ashfaq et al., 2019; Min et al., 2019). Many scientists prognosticate the 

patients’ mortality risk at intensive care units based on the available features in EHRs, such as 

vital signs and demographics (Davoodi & Moradi, 2018; Hsieh et al., 2018; Kong et al., 2020; 

Zhai et al., 2020).  

However, there are still a lot of challenges when developing clinical outcome models on 

EHRs, including the hierarchical structure of high-dimensional medical concepts, the pattern 

extraction of vital signs, and the data insufficiency of some lab tests. 1) Specifically, EHR data 

usually contain high-dimensional medical concepts, such as 17,000 World Health Organization’s 

(WHO) International Classification of Diseases (ICD). These medical concepts are usually of 

hierarchical structure according to their clinical relationships. The high-dimensionality and the 

hierarchical structure make the medical concepts difficult to be represented in the clinical 

outcome models. 2) Additionally, patients’ vital sign data have opened new possibilities to 



3 

propose more reliable clinical outcome models. The vital signs are real-time time series of body 

measurements, such as heart rates and respirations. Researchers have recently demonstrated that 

the vital signs contain rich dynamic patterns that can be helpful in informing prognosis, provide 

early forecasts of life-threatening conditions, and predict clinical outcomes (Hong et al., 2013; 

Lehman et al., 2015). However, it is challenging to extract the helpful patterns effectively from 

the time series of vital signs. 3) The laboratory test is a key resource in ICU to inspect the 

patients’ health condition. However, the laboratory resources are not always sufficient, and some 

laboratory tests are unnecessary without providing helpful information. Therefore, researchers 

propose to predict the risk of abnormal outcome for lab tests, which quantifies the expected 

information and helps allocate the lab resources. During the development of the lab anomaly 

prediction models, a new challenge comes out. Some lab tests are not popular in hospitals, which 

strictly limits the available samples for the model training. The insufficient training samples 

could strongly harm the model’s accuracy and reliability. It is challenging to construct lab 

anomaly models for the lab types that do not have a large quantity of training data.  

These limitations or characteristics of the current EHRs hinder the outcome models from 

broader implementations. To address these challenges, we conducted three studies in Chapters 2-

4.  

In Chapter 2, we propose a new framework to generate low-dimensional representations 

with Manifold Learning for sets of hierarchical medical concepts in EHR data. The framework is 

essential for healthcare-related classifications because it solves the high-dimensional problem of 

the complicated medical concepts in the EHR. To demonstrate the efficacy of our proposed 

framework, we generate low-dimensional representations for hospital visits of heart failure 

patients, which are further used for a 30-day readmission prediction. The proposed framework 
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can not only boost the performance of readmission prediction as shown in this work but can also 

be easily generalized to various healthcare-related prediction tasks, such as mortality prediction, 

length-of-stay prediction, etc. 

In Chapter 3, we propose a new ICU mortality prediction model capable of effectively 

extracting valid and interpretable patterns from the readily-available vital sign data with 

improved accuracy, by combining stochastic signal analysis and machine learning techniques. To 

illustrate the efficacy of our model, we evaluate it on a large real-world multi-center ICU dataset. 

The proposed model outperforms baseline methods, including APACHE IV (the “golden 

standard” in ICU outcome predictions), deep learning-based models (i.e., LSTM, GRU, CNN), 

statistical feature classification, and time series forecasting methods (i.e., ARMA, ARIMA) by a 

large margin. The innovative artifacts obtained from this study are salient to both the data 

science and healthcare communities. 

In Chapter 4, we propose a new transfer learning method for lab anomaly prediction with 

limited training data. Specifically, we develop a novel distance to select the optimal source 

domain from multiple high-frequency lab tests. We design a recurrent neural network to estimate 

the probability of obtaining an abnormal lab outcome. We transfer knowledge from the selected 

source domain to improve the model performance on the target domains (low-frequency lab 

tests). We evaluate the proposed method on five low-frequency lab types that are related to heart 

failure and five high-frequency lab types that are most common in the hospital. The experiments 

show that the designed neural network outperforms all traditional machine learning models by a 

large margin. In the experiments, the transfer learning and the proposed domain distance further 

improve the model performance for all selected low-frequency lab types (e.g., AUC scores 

increase from 0.729 to 0.795 for Brain natriuretic peptide tests). The new transfer learning 
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method address the data insufficiency problem for lab outcome prediction, which provides a 

more reliable way to optimize clinical resource allocation. 

The contribution of this dissertation is to fill the research gap and address the three 

challenges in EHR data, including the hierarchical structure of high-dimensional medical 

concepts, the pattern extraction of vital signs, and the data insufficiency of some lab tests. 

Specifically, we invent a new method to generate low-dimensional representations for clinical 

records with hierarchically structured and high-dimensional medical concepts. We create a novel 

framework that effectively extracts powerful and meaningful patterns from the time series of 

vital signs. We design a lab anomaly model that does not require many training samples. Overall, 

we facilitate the clinical outcome modeling on EHR data by addressing these challenges. The 

proposed works increase the predictive performance and reliability of clinical outcome models. 

Besides, this dissertation also provides great opportunities for other researchers to build more 

powerful clinical outcome models. For example, the generated representations in Chapter 2 and 

the extracted vital sign features in Chapter 3 can be used as inputs for other clinical models. And 

the methodology in Chapter 4 can also be used on other clinical tasks that do not have sufficient 

training samples.  

This dissertation also has great potential to enlarge the social impact of clinical outcome 

models. We facilitate the model adoption and implementation in clinical practice by improving 

the model’s accuracy and reliability. For patients, our work helps to decrease healthcare costs 

and adverse impacts. For healthcare providers, we provide a more accurate and reliable way to 

assess the severity of illness, the value of new treatments, and expected outcomes, which enables 

more scientific clinical decisions. For society, we enable the clinical outcome models to alleviate 

more healthcare expenditure burden and optimize better resource allocation.  
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Modified from a manuscript submitted to Information Systems Research 

 

Abstract 

Investigating electronic healthcare records (EHR) using machine learning techniques has 

brought significant opportunities for healthcare predictive analytics. EHR data include 

meaningful, well-structured, yet extremely complicated medical concepts (e.g., diagnosis codes). 

Representing these categorical concepts for machine learning models often leads to high-

dimensional, thereby, computationally-intensive problems. Therefore, dimension reduction is 

considered necessary in EHR preprocessing. However, current approaches have two major 

shortcomings. First, few methods are available to generate sensible low-dimensional 

representations for sets of medical concepts (i.e., the medical concepts in a medical record that 

contains a patient’s clinical information in one medical practice), which most prediction models 

require. Second, few studies have leveraged the medical domain knowledge contained in medical 

concepts’ properties (i.e., hierarchical structure and co-occurrences) while generating the 

representations for an improved prediction performance. This study proposes a new method to 

generate low-dimensional representations for sets of medical concepts. We first propose a new 

medical-concept level distance metric to incorporate medical domain knowledge into patient-

patient networks. Then, using patient-patient networks as input, we generate low-dimensional 
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representations for medical records using manifold learning techniques. Next, we fuse the 

generated representations with other data modalities for better performance. To demonstrate the 

efficacy of our method, we evaluate it in two prediction tasks, readmission and in-hospital 

mortality predictions, over different patient cohorts using two large real-world medical 

databases, and compare it with 14 state-of-the-art baselines. The experimental results show that 

our method is very effective; it exceeds all baselines in 70% of the cases. (top-1 AUC scores) 

and reaches 80% of state-of-the-art performance (top-3 AUC scores). The low-dimensional 

representations generated by our method can be pre-trained and task-agnostic, therefore 

providing a computationally efficient solution for various healthcare prediction tasks. The 

innovative artifacts obtained from this study are salient to both the information system and the 

healthcare communities. 

Introduction  

Electronic healthcare records (EHRs) contain a wealth of information gleaned through 

diagnoses, treatment plans, laboratory and test results, etc (Jamie L. Habib, 2010). They are 

created by healthcare providers for specific encounters in hospitals and ambulatory 

environments. Normally, one record contains a patient’s medical and treatment information in a 

single medical practice1. EHRs serve as the data source for electronic health records (EHRs), 

giving patients, physicians, and insurers access to a patient’s medical records across time and 

facilities (Jamie L. Habib, 2010). Since the mid-2000s, the rapid increase in the use of health IT 

has made a vast amount of EHRs available to healthcare practitioners and researchers. EHR data 

have been leveraged to improve healthcare outcomes by providing new ways to approach 

evidence-based medicine.  

 
1
 https://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference 

https://www.zotero.org/google-docs/?VolIqP
https://www.zotero.org/google-docs/?5EIiSc
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In the past few years, the rush to unlock the power of EHR data with the help of machine 

learning techniques has led to significant opportunities in various ways. However, (1) how to 

effectively represent medical concepts in EHR remains a challenge, and (2) high dimensionality 

is a curse when using EHR data for healthcare predictive analysis. These challenges are posed by 

a large number of medical concepts, such as medical codes/terms, drug names, and billing codes, 

in the medical language systems. These medical concepts are widely used in patient care, health 

services billing, public health statistics, and health services research. They are the primary cause 

of EHR data’s high dimensionality in prediction models’ feature spaces. For example, the World 

Health Organization’s (WHO) International Classification of Diseases (ICD) is a comprehensive 

disease classification system that is widely used among healthcare organizations2. There are 

more than 17,000 ICD-9 (ICD Ninth Revision) codes (i.e., medical concepts) and often multiple 

ICD-9 codes in each medical record that stand for a patient’s medical condition. In healthcare 

predictive tasks (e.g., predicting the readmission rate for a patient based on his/her current 

hospital visit), representing ICD-9 codes in each medical record as categorical data is 

challenging. Dimension reduction, which transforms data from a high-dimensional space into a 

low-dimensional space and still retains the original data’s meaningful properties, is considered a 

necessary technique in EHR data processing. 

Currently, there are three methods for generating low-dimensional representations for 

medical concepts in EHR data. (1) The first choice is to derive summary measures (e.g. Charlson 

Comorbidity Index (CCI)). However, the generalizability of such methods is constrained by their 

designed uses and applications (Charlson et al., 1987; Elixhauser, A. et al., 1998). (2) The second 

option is to map medical concepts to standard medical terminologies with acceptable dimensions 

 
2
 https://www.who.int/standards/classifications/classification-of-diseases 

https://www.zotero.org/google-docs/?GvMQ9W
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(e.g. map the 5-digit ICD-9 codes to 3-digit ICD-9 categories or Clinical Classifications 

Software (CCS) codes). Although widely adopted, this option suffers from information loss and 

inferior performance in healthcare prediction tasks (Jung et al., 2019; Rasmy et al., 2020; Xiang 

et al., 2019). (3) The third strategy is to develop embeddings for individual medical concepts 

(i.e., low-dimensional representations of the individual medical concepts in the form of real-

valued vectors). Such methods dramatically decrease the required dimensionality to represent a 

medical concept. However, limitation still exists due to the way we can use such embeddings for 

healthcare predictive analysis. Current embedding methods focus on representing individual 

medical concepts. Nonetheless, in the EHR data, a medical record contains multiple medical 

concepts. Researchers are further required to concatenate or aggregate these medical concept 

embeddings to obtain fixed-size inputs for prediction models. The crude aggregation and 

concatenation are likely to cause information loss and deteriorate machine learning models’ 

predictive performance.  

Therefore, there is a research gap in medical concept representation. To cope with the 

shortcomings of previous approaches, we propose to generate a low-dimensional representation 

of a set of medical concepts. In other words, we suggest generating a low-dimensional 

representation for all the medical concepts in a medical record. The generated representations are 

ready to be used by various machine learning algorithms as the input for different healthcare 

prediction tasks. Hence, our first research question is how we can generate sensible low-

dimensional representations for sets of medical concepts. 

Besides, medical concepts in EHR data have other non-negligible characteristics. (1) The 

first important property of medical concepts is the well-organized hierarchical structure that is 

determined by healthcare domain knowledge. For example, the ICD-9 system is designed to map 

https://www.zotero.org/google-docs/?UpOuhm
https://www.zotero.org/google-docs/?UpOuhm
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diseases to corresponding generic categories. Thus, major categories of ICD-9 codes include a 

set of similar medical conditions. For a more specific example, heart disease is one of the 

circulatory system diseases. Therefore, the ICD-9 code of heart disease (“420-429”) belongs to 

the circulatory system disease (“390-459”) in the ICD-9 hierarchy. Medical records with sets of 

similar medical concepts are likely to reflect patients’ similar health conditions. When generating 

low-dimensional representations for sets of medical concepts, it is important to take medical 

concepts’ hierarchical structure as domain knowledge, so that the generated low-dimensional 

representations align well with medical knowledge and help machine learning models reach 

better performance. (2) The second critical attribute of medical concepts lies in the co-occurrence 

of two medical concepts in the same medical record. Such co-occurrences indicate the propensity 

of the simultaneous presence of two diseases in a patient. The disease co-occurrences also form 

patient-patient networks, which are commonly used to connect and evaluate diseases that 

frequently co-occur. The medical concepts’ co-occurring properties and the associated patient-

patient network are important features for healthcare predictive models. However, few studies 

have investigated the co-occurrence properties of medical concepts during generating 

representations for sets of medical concepts. Therefore, our second research question is how we 

can incorporate the well-organized hierarchical structure and co-occurring properties of medical 

concepts when generating low-dimensional representations for sets of medical concepts. 

To answer these two research questions, we propose a new framework, Medical-

Distance-manifold (MD-manifold), which leverages the knowledge of both the hierarchical 

structures and co-occurrence properties of medical concepts to generate low-dimensional 

representations for sets of medical concepts in medical records. Various healthcare predictive 

tasks, such as readmission, mortality, and length-of-stay predictions, are expected to benefit from 



13 

the low-dimensional representations generated by our method. The proposed method consists of 

three steps. We first develop a new medical concept-distance metric for medical concept-

distance calculation in the high-dimensional manifold feature space formed by medical concepts 

in EHRs. The new metric is knowledge-driven as well as data-driven, which preserves the 

medical domain knowledge in both medical concepts’ hierarchical structure and co-occurrence 

properties. Second, we generate the patient-patient network using the proposed distance metric 

so that the generated network also has medical domain knowledge embedded in it. Then we 

introduce the patient-patient network to manifold learning algorithms and produce low-

dimensional representations for sets of medical concepts. Last, we fuse multimodal data (i.e., the 

generated representations of medical concepts and patients’ demographic information) for healthcare 

predictive analyses. To evaluate the effectiveness of the proposed method, we follow the design 

science paradigm (Hevner et al., 2004) and perform two healthcare prediction tasks (i.e., 

readmission and in-hospital mortality prediction) on two large real-world EHR databases.  

The contributions of this study are twofold. (1) From the perspective of design science, 

we propose a novel method to generate low-dimensional representations for medical concepts 

that takes advantage of medical domain knowledge in the medical-concept hierarchy and disease 

interconnections embedded in the patient-patient network. Using our low-dimensional 

representations, the prediction models outperform multiple state-of-the-art methods in predicting 

hospital readmission and in-hospital mortality rates. The proposed method’s generalization 

ability is strong in that other healthcare prediction tasks, whose prediction granularities are 

medical records-level (i.e., using a set of medical concepts, e.g., one hospital visit with a medical 

record or several hospital visits during a period with multiple medical records), can benefit from 

our work. (2) From the perspective of healthcare analytics, the proposed method can help 

https://www.zotero.org/google-docs/?oAxARK
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healthcare practitioners decide whether a patient should be considered for any intervention 

program to avoid readmission or reduce in-hospital mortality by providing an accurate forecast 

of the mortality rate. Because of the strong generalizability, our method has the potential to 

foster the actual use of healthcare prediction models in clinical practice, hence eventually 

improving healthcare outcomes and curbing healthcare costs.   

In the remainder of this paper, we review the related literature in Section 2. We introduce 

the proposed framework in Section 3. Experiment results and discussions are presented in 

Section 4. We discuss the limitations and future direction of this work in Section 5. 

Related work  

This section provides a critical review of the literature on (1) medical concepts 

representation and dimension reduction, (2) manifold learning, (3) patient-patient network and 

medical concept-distance measuring, and (4) healthcare predictive analytics. 

Medical concepts representation and dimension reduction  

The rich information in EHR data is important for healthcare predictive analysis. In 

medical records, there are millions3 of medical concepts, such as 17,000 ICD-9 codes (Song et 

al., 2020), 140,000 ICD-10 codes (Quan et al., 2005), 7,000 International Classification of 

Health Intervention4, and 360,000 National Drug Codes5. Meanwhile, medical concepts are 

usually organized in a hierarchical structure based on their relationships, determined by 

healthcare domain knowledge. Besides, the simultaneous existence of two or more diseases in a 

patient is indicated by the co-occurrence of two or more medical concepts in the same medical 

record. In healthcare predictive analytics, it is crucial to represent and use these medical concepts 

 
3
 UMLS contains over five million medical concepts: 

https://www.nlm.nih.gov/research/umls/new_users/online_learning/OVR_002.html 
4
 https://www.who.int/standards/classifications/international-classification-of-health-interventions 

5
 https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory 

https://www.zotero.org/google-docs/?djcQ7B
https://www.zotero.org/google-docs/?djcQ7B
https://www.zotero.org/google-docs/?2snaxt
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and their relationships to improve prediction performance. This, however, is challenging for two 

reasons. (1) High dimensionality: many unique medical concepts form a high-dimensional 

manifold feature space, which is a primary cause of the deficiencies of many healthcare 

predictive models. As a result, dimension reduction is essential in processing EHR data. (2) The 

difficulty to leverage medical domain knowledge: during medical concepts representation, it is 

difficult to incorporate in medical concepts’ hierarchical structure and co-occurrences. It is 

critical to represent such medical domain knowledge and aid predictive models in improving 

their effectiveness. To overcome these two challenges, researchers have done considerable work 

to develop representations for medical concepts.  

Table 2.1. Existing methods in representing medical concepts. 

Type Algorithm Literature  Limitations 

Deriving summary 

measures 

CCI (Charlson et al., 1987)  

Limited generalizability, inferior 

predictions results 

ECI 

(Elixhauser, A. et al., 

1998; van Walraven et al., 

2009)  

RSI 
(Sacco Casamassima et al., 

2014; Sessler et al., 2010)  

Mapping to higher 

level code hierarchy or 

standard 

terminologies 

3-digit ICD-9 
(H.-H. Wang et al., 2019; 

X. Wang et al., 2014)  
Information loss, limited 

generalizability, ambiguity of 

optimal level of granularity and 

mapping sources 
CCS, CUI, SNOMED, 

Read 2, OPCS 4 

(Deschepper et al., 2019; 

Melton et al., 2006; Min et 

al., 2019; Rasmy et al., 

2020; Williams et al., 

2017)  

Generating 

embedding for 

individual medical 

concept6  

FastText 
(Si et al., 2021; Tang et al., 

2018; Youngduck Choi et 

al., 2016)  
Inferior performance, variable-

sized input data for machine 

learning prediction models, large 

training data size 

GloVe 

Word2Vec 

Supervised deep learning 

model 

(Choi, Bahadori, Searles, 

et al., 2016; Choi et al., 

2017, 2018)  

Typically, researchers have three strategies for resolving the high dimensionality 

problem, as summarized in Table 2.1. (1) The first choice is to derive summary measures. 

 
6
 To clarify, these models can generate medical record level representations, which can be the aggregation of the 

embeddings for individual medical concepts. 

https://www.zotero.org/google-docs/?iLES20
https://www.zotero.org/google-docs/?vnprNn
https://www.zotero.org/google-docs/?vnprNn
https://www.zotero.org/google-docs/?vnprNn
https://www.zotero.org/google-docs/?pK435z
https://www.zotero.org/google-docs/?pK435z
https://www.zotero.org/google-docs/?Whf1GI
https://www.zotero.org/google-docs/?Whf1GI
https://www.zotero.org/google-docs/?uqjJfe
https://www.zotero.org/google-docs/?uqjJfe
https://www.zotero.org/google-docs/?uqjJfe
https://www.zotero.org/google-docs/?uqjJfe
https://www.zotero.org/google-docs/?uqjJfe
https://www.zotero.org/google-docs/?X67MJD
https://www.zotero.org/google-docs/?X67MJD
https://www.zotero.org/google-docs/?X67MJD
https://www.zotero.org/google-docs/?fCJ7h0
https://www.zotero.org/google-docs/?fCJ7h0
https://www.zotero.org/google-docs/?fCJ7h0
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Charlson et al. (1987) and Elixhauser et al. (1998) first propose Charlson Comorbidity Index 

(CCI) and Elixhauser Comorbidity Index (ECI) to categorize comorbidities of patients based on 

ICD-9 diagnosis codes (Schneeweiss et al., 2003). Such comorbidity indexes give each patient a 

single comorbidity score by summing the weighted values of predefined comorbidity categories. 

Although both CCI and ECI can predict in-hospital mortality, the weights and the predefined 

comorbidity categories need to be adjusted based on comorbidities’ mortality risk or resource 

use. Risk Stratification Indices (RSI) are then proposed to overcome such limitations and provide 

more reproducible summary indices (Sacco Casamassima et al., 2014). However, the intended 

applications of these summary indexes limit their use in other healthcare predictive analyses. For 

example, CCI and ECI are used for mortality prediction while RSI is designed to predict length-

of-stay and mortality for surgical patients. It is difficult to adjust them for other predictive tasks, 

thus, the generalizability is weak. Other limitations of summary measures include producing 

inferior predictions resulting from coding errors (particularly when relying on ICD-9 codes) and 

difficulties in determining if a diagnosis should be included to calculate these measures (Taneja, 

2010).  (2) Another common practice is to map the medical concepts to their higher-level code 

hierarchy or standard terminologies with acceptable dimensions, such as 3-digit ICD-9 

categories, concept unique identifier (CUI) codes, and clinical classifications software (CCS) 

codes, to facilitate data aggregation and dimension reduction. For example, the ICD-9 code is 

designed to use the first three letters to capture the group-level disease information. Wang et al. 

(2019) reduce the feature dimension of their prediction tasks from 13,000 to 942 using 3-digit 

ICD-9 codes. Moreover, the UMLS’ CUI codes provide mappings to almost all clinical 

terminologies at different hierarchical levels. Rasmy et al. (2020) selected it as one of their 

mapping terminologies. Furthermore, Min et al. (2019) investigated three different grouping 

https://www.zotero.org/google-docs/?WBqxeH
https://www.zotero.org/google-docs/?tCdgWR
https://www.zotero.org/google-docs/?ZLGUWg
https://www.zotero.org/google-docs/?HpprJo
https://www.zotero.org/google-docs/?HpprJo
https://www.zotero.org/google-docs/?YH01hv
https://www.zotero.org/google-docs/?YH01hv
https://www.zotero.org/google-docs/?TzB3ca
https://www.zotero.org/google-docs/?jFGDGL
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strategies: 3-digit ICD-9 codes, CCS codes, and Hierarchical Condition Category codes. These 

methods have several practical limitations as well. First, the terminology mappings are normally 

in many-to-many styles, which use inexact approximations and partial data discarding to 

represent the original medical concepts. Information loss is inevitable during the mapping 

process, which may hinder the accuracy and interpretability of the predictive models (Jung et al., 

2019; Rasmy et al., 2020; Xiang et al., 2019). Second, terminology standards evolve constantly, 

and newer versions introduce additional levels of data redundancy. This method may restrict the 

generalizability of predictive models to vendor-specific solutions or even to a single hospital if 

the mappings are different between sites (Rasmy et al., 2020). (3) The third option is to construct 

low-dimensional representations (a.k.a., embeddings) for individual medical concepts with 

techniques borrowed from natural language processing (NLP) (Kowsari et al., 2019; Mikolov et 

al., 2013; Pennington et al., 2014). These techniques treat medical concepts in each patient’s 

medical record as tokens in a natural language document (Table 2.2.). The embedding methods 

significantly reduce the number of dimensions necessary to represent a single medical concept 

(Choi, Bahadori, Searles, et al., 2016; Choi et al., 2017, 2018; De Vine et al., 2014; Si et al., 

2021; Tang et al., 2018). (De Freitas et al., 2020) and Tang et al. (2018), for example, use 

unsupervised embedding models Word2Vec, GloVe, and FastText to build individual medical 

concept embeddings. Choi et al. (2016), Choi et al. (2017), and Choi et al. (2018) employ one-

hot encodings as inputs and learn individual medical concept embeddings using supervised deep 

learning models such as a fully connected network, attention model, and multilevel network. The 

learned low-dimensional representations can be used in the clustering and classification of 

medical concepts. However, they are not suitable for healthcare prediction tasks due to the fact 

that these methods focus on representing individual medical concepts. A medical record, on the 

https://www.zotero.org/google-docs/?NvjyLI
https://www.zotero.org/google-docs/?NvjyLI
https://www.zotero.org/google-docs/?pbCOS5
https://www.zotero.org/google-docs/?EiOREr
https://www.zotero.org/google-docs/?EiOREr
https://www.zotero.org/google-docs/?PBAoMY
https://www.zotero.org/google-docs/?PBAoMY
https://www.zotero.org/google-docs/?YanSvB
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other hand, usually contains many medical concepts. While most machine learning models 

require input vectors of the same dimensionality, concatenating embeddings of various medical 

concepts results in variable-sized input data. To use these embeddings for healthcare prediction 

tasks, researchers are required to further combine multiple medical concept embeddings in 

medical records. The usual practices include: averaging (or weighted averaging) multiple 

embeddings, summing over multiple embedding vectors, or concatenating a fixed number of  

embeddings (Figure 2.1. shows examples of these practices). For example, De Freitas et al. 

(2020) (Phe2Vec) use the weighted (i.e., weights are the frequencies of the medical concepts) 

summation of medical concepts’ embeddings to build phenotype definitions for patient cohorts 

identification. Cui et al. (2018) concatenate the embeddings of the two most important medical 

codes in each hospital admission for the prediction of cost and length of stay. These approaches, 

which perform crude aggregations of embeddings, have a number of drawbacks as well. By 

averaging/summing embedding vectors, the information in the individual embeddings is partially 

lost during the aggregation process. The aggregated embeddings deteriorate predictive 

performance because of, for instance, being sensitive to extreme elements in the original 

embeddings or losing the encoded order of medical concepts (Stiebellehner et al., 2018). By 

concatenating the embedding vectors, the generated representations (with variable-sized) are 

inappropriate to use as input for predictive models (such as Linear Regression, Random Forest, 

AdaBoost, etc). To address it, researchers have to pick a fixed number of medical concepts, 

which lead to information loss as well. Besides, these methods suffer from the training data 

insufficiency problem. Most of these embedding methods are adapted from NLP-related deep 

learning techniques, which typically require training data volume that exceeds the capacity of 

most medical records systems (Choi et al., 2018; Mikolov et al., 2013).  

https://www.zotero.org/google-docs/?0imVd9
https://www.zotero.org/google-docs/?0imVd9
https://www.zotero.org/google-docs/?PCLefy
https://www.zotero.org/google-docs/?IFiK9m
https://www.zotero.org/google-docs/?Kejj39
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Therefore, a research gap emerges. The representation of a set of medical concepts (i.e., 

all medical concepts in one or multiple medical records), instead of each individual medical 

concept, is required by most machine learning tasks. So far, representing sets of medical 

concepts in low-dimensional space is an important, yet largely untouched, research area. 

Table 2.2. Examples of regarding medical records as documents and ICD-9 codes as tokens. 

 
Token 1: 

the 

Token 2: 

train 

Token 3: 

was 

Token 4: 

late 

Token 5: 

Mary 

Token 6: 

waited 

Token 7: 

for 
… 

Document 1: 

The train was late. 
1 1 1 1     

Document 2: 

Mary waited for the train. 
1 1   1 1 1  

… … … … … … … … … 

(a) Documents and word tokens in NLP 

 
ICD-9 code 1: 

42820 
ICD-9 code 2: 

42833 
ICD-9 code 3: 

V066 
ICD-9 code 4: 

4019 
ICD-9 code 5: 

311 
ICD-9 code 6: 

490 
… 

Medical record 1: 1 1 1 1    

Medical record 2: 1 1   1 1  

… … … … … … … … 

(b) Medical records and ICD-9 codes in EHR 

 

Figure 2.1. Example of medical concept embedding aggregation. 
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Furthermore, the medical concepts in the EHR data have two significant features that 

indicate important medical domain knowledge. First, medical concepts are usually organized in a 

hierarchical structure based on their relationships, which are determined by healthcare domain 

knowledge. For example (Figure 2.3. (a)), ICD-9 codes, which are widely used among healthcare 

organizations, present a hierarchical structure that the lower-level (child) code is a subtype of its 

upper-level (parent) code, e.g., 42823 (acute on chronic systolic heart failure) is a subtype of 

4282 (systolic heart failure). Naturally, sibling codes that have the same parent code have similar 

clinical implications. As a result, it’s logical to infer that medical concepts with short distances in 

the hierarchical structure have higher possibilities to reflect patients’ similar health conditions. 

Thus, it is important to take the hierarchical structure of medical concepts as domain knowledge 

during the concept representation process. Then, the generated representations can help machine 

learning models reach better performance because medical domain knowledge is meaningfully 

incorporated. Second, the co-occurring of two or more medical concepts in the same medical 

record shows the propensity of the simultaneous presence of two or more medical conditions in a 

patient. Thus, the medical concepts’ co-occurring frequencies are important features for 

healthcare prediction models.  

The three above-mentioned known techniques, however, have limitations in preserving 

the medical domain knowledge contained in medical concepts’ properties. The first option (i.e., 

the summary measures) does not consider the medical concepts’ hierarchy or co-occurrences as 

domain knowledge. The second option (i.e., code mappings) makes use of knowledge about the 

hierarchical structure of medical concepts but ignores the co-occurring frequencies or subtle 

differences between sibling medical concepts in the hierarchy. The third option (i.e., embeddings 

for individual medical concepts) can incorporate medical domain knowledge into the individual 
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medical concept’s embedding (Choi et al., 2017) but there is information loss during the 

aggregation of multiple embeddings for prediction models. Therefore, our second research 

question is how can we incorporate the well-organized hierarchical structure and co-occurring 

frequencies of medical concepts as domain knowledge when generating low-dimensional 

representations for sets of medical concepts in EHR. 

Manifold learning for dimension reduction 

We believe that manifold learning (Talwalkar et al., 2008) is an excellent method for 

addressing the first research question - generating representations for sets of medical concepts. In 

healthcare prediction tasks, medical concepts in the EHR create a high-dimensional manifold 

space. Each data point in the manifold space represents a medical record with various medical 

concepts (Figure 2.5. (f)) (a data point can alternatively be all medical records in a period). 

Manifold learning is an approach for non-linear dimensionality reduction which learns the high-

dimensional inherent structure of the data and is capable of capturing non-linear structures in the 

data (Silva & Tenenbaum, 2003). 

The way manifold learning algorithms depict the manifold space varies, but they all 

follow a similar pattern. First, manifold learning algorithms construct the nearest neighbor 

network to create a representation of all the data points. Second, by keeping the topology of the 

nearest neighbor network (i.e., the geometry of the original data points), manifold learning 

algorithms provide a low-dimensional representation for each data point. Formally, given 𝑛 data 

points (e.g., 𝑛 medical records, each contains multiple medial concepts), 𝑋 = {𝑥𝑖}𝑖=1
𝑛  and 𝑥𝑖 ∈

𝑅𝑑, the goal of manifold learning is to find corresponding outputs, 𝑌 = {𝑦𝑖}𝑖=1
𝑛  where 𝑦𝑖 ∈ 𝑅

𝑘, 

and 𝑘 ≪ 𝑑. Manifold learning algorithms generate low-dimensional space 𝑌 to represent high-

dimensional space 𝑋 while keeping data points’ internal structure in 𝑋.  

https://www.zotero.org/google-docs/?CpQDtd
https://www.zotero.org/google-docs/?nbRl1o
https://www.zotero.org/google-docs/?IhpCVV
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There are two types of manifold learning algorithms: local and global approaches (Silva 

& Tenenbaum, 2003). Local approaches, for example, Local Linear Embedding (LLE) (Roweis 

& Saul, 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2003), Hessian Eigenmaps (Donoho & 

Grimes, 2003), and Semidefinite Embedding (Weinberger et al., 2005), attempt to map adjacent 

points in the original high-dimensional space to nearby locations in low-dimensional space. The 

global approaches, such as Isomap (Tenenbaum et al., 2000) and Structural Preserving 

Embedding (Shaw & Jebara, 2009), like the local approaches, aim to keep the distance among 

adjacent points in the original high-dimensional space. In the meantime, they map distant points 

in the original high-dimensional space to distant locations in low-dimensional space. Because the 

local approaches focus on the relationship between nearby points, they are more computationally 

efficient than the global approaches (Silva & Tenenbaum, 2003). However, they may not retain 

the global topography of the original feature space (Shaw & Jebara, 2009). The global 

approaches tend to provide more reliable representations by preserving the global structure of the 

original manifold space (Silva & Tenenbaum, 2003). 

In this study, we adapt two of the most widely used manifold learning algorithms, 

Laplacian Eigenmap (i.e., a local method) and Isomap (i.e., a global approach), to generate 

representations for sets of medical concepts. We then compare their performance in a variety of 

healthcare prediction tasks. (1) Laplacian Eigenmap first computes nearest neighbors for each 

data point and creates the weighted nearest neighbor network (i.e., node: each data point, edge: 

nearest neighbor relationship, edge weight: proportional to the reverse distance between nearest 

neighbors). The larger the edge weight, the more similar the nodes, and the closer they are in the 

manifold space. Laplacian Eigenmap computes a low-dimensional representation of the data 

point and optimally preserves the local neighborhood information. (2) Isomap also calculates the 

https://www.zotero.org/google-docs/?ARHJZQ
https://www.zotero.org/google-docs/?ARHJZQ
https://www.zotero.org/google-docs/?Rqpn4r
https://www.zotero.org/google-docs/?Rqpn4r
https://www.zotero.org/google-docs/?Ae9DPR
https://www.zotero.org/google-docs/?WOmAoj
https://www.zotero.org/google-docs/?WOmAoj
https://www.zotero.org/google-docs/?WGxaua
https://www.zotero.org/google-docs/?zi1dlJ
https://www.zotero.org/google-docs/?aSc5JN
https://www.zotero.org/google-docs/?DL1UpB
https://www.zotero.org/google-docs/?LZ19mo
https://www.zotero.org/google-docs/?E3645Y
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nearest neighbors for each data point and develops the nearest neighbor network (i.e., node: each 

data point, edge: nearest neighbor relationship, edge length: distance between nearest neighbors). 

It then computes the shortest path distances between all pairs of points in the network. Isomap 

preserves the global structure of the original manifold space and finds the optimum low-

dimensional representation for data points by retaining the geodesic distance between each pair 

of nodes on the constructed nearest neighbor network.   

Manifold learning can be an excellent way to generate low-dimensional representations 

for sets of medical concepts in a medical record. Since the first and essential step in manifold 

learning (i.e., both the local approach LE and the global approach Isomap) is to build the nearest 

neighbor network, it is crucial that we find the proper network to represent the medical records 

data and compute the distance between medical records for developing the nearest neighbor 

network. Such a network should also have medical domain knowledge embedded, including the 

hierarchical structure and co-occurrences of medical concepts, so that the generated 

representations from manifold learning naturally inherit the medical domain knowledge. 

Patient-patient network  

To address the second research question, i.e., incorporating medical domain knowledge 

when generating low-dimensional representation for a set of medical concepts, we introduce the 

patient-patient network as manifold learning’s nearest neighbor network. 

In our research, each data point in a manifold space (i.e., formed with numerous medical 

concepts) represents a medical record with various medical concepts. We attempt to generate 

low-dimensional representations for medical records and preserve the similarities (i.e., distances) 

among medical records based on two assumptions. Assumption 1: if two patients’ medical 

records contain similar medical concepts, their health conditions are similar. Assumption 2: 

patients with similar health conditions may have similar healthcare outcomes. 
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We find that the patient-patient network is an ideal data structure for constructing 

medical records’ nearest neighbor network while preserving medical domain knowledge in 

medical concepts’ properties. Patient-patient network is a sub-research area of the human disease 

network, which aims to understand human diseases through network theory. Instead of viewing 

disease as an independent entity, the human disease network provides a powerful way for 

uncovering hidden links between diseases and other biomedical entities like genes and disease 

pathologies (García del Valle et al., 2019). The human disease network is an important and fast 

growing research area. Since its inception, various human disease networks have been developed 

based on the similarities and relationships between diseases at biological level (e.g., genes, 

proteins, or compounds) or phenotypic level (e.g., comorbidity or side-effects). For example, 

Goh et al. (2007) and Barrenas et al. (2009) first propose the disease-gene networks, which are 

used to understand disease-gene associations. Then, Campillos et al. (2008) and  Yıldırım et al. 

(2007) create disease-drug networks and use them to identify the new use of old drugs. Later, a 

disease-metabolic network and a molecular interaction network are proposed to investigate the 

disease phenotypes and genetic defects (D.-S. Lee et al., 2008). Besides, Zhou et al. (2014) 

develop disease-symptom networks, which quantify the symptom similarity of diseases.  

Recently, patient-patient networks, which are constructed based on patients’ similarities 

(e.g., similarities in their medical records), have become an important research direction. The 

patient-patient network provides a way of describing disease interconnections from an 

epidemiological perspective. For example, Li et al. (2015) cluster similar patients through the 

patient-patient network to identify type 2 diabetes. (Pai et al., 2019) propose a patient-patient 

network to classify patients for precision medicine (Pai & Bader, 2018). To analyze cardiac risk 

https://www.zotero.org/google-docs/?651KCf
https://www.zotero.org/google-docs/?zkjv4Y
https://www.zotero.org/google-docs/?lhTACb
https://www.zotero.org/google-docs/?Cdsi4p
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https://www.zotero.org/google-docs/?URLti8
https://www.zotero.org/google-docs/?zn0cvs
https://www.zotero.org/google-docs/?KtpBDj
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factors, Hou et al. (2021) construct a patient-patient network in which patients with similar 

health conditions are connected.  

The nodes in patient-patient networks are usually patients (e.g., patients’ medical records 

and demographic information), while the edges represent the similarities between patients (e.g., 

co-occurrence of disease). The existing patient-patient networks do not take into account the 

well-organized hierarchy of medical concepts as medical domain knowledge. Therefore, we 

propose to define a new patient-patient network (i.e., nodes, edges, and edge weights) with both 

medical concepts’ hierarchy and co-occurrences embedded. To build such a patient-patient 

network, we need a new distance metric for medical concepts and medical records. Using such a 

metric, the patient-patient network’s edge weights represent the medical domain knowledge and 

the similarities between medical records. As long as we have the proper metric to calculate the 

distance between medical records, we can create the nearest neighbor network for manifold 

learning algorithms and generate low-dimensional representations for sets of medical concepts, 

and further use the generated low-dimensional representations for healthcare predictive analysis.  

In the below subsection, we review the existing literature on medical concepts’ distance 

metrics.  

Distance metrics of medical concepts  

There are two steps to construct the distance between two medical records that contain 

multiple medical concepts: concept-level distance and record-level distance calculations (Jia et 

al., 2019). The concept-level distance measures the distance between medical concepts, whereas 

the record-level distance measures the distance between medical records based on concept-level 

distance.  

As summarized by Jia et al. (2019), two existing metrics have incorporated the medical-

concept hierarchy for concept-level distance calculation. Wu and Palmer (1994) propose a metric 

https://www.zotero.org/google-docs/?6AI6NT
https://www.zotero.org/google-docs/?ZcGGXj
https://www.zotero.org/google-docs/?ZcGGXj
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that considers the two concepts as close in the concept hierarchy if their least common ancestor 

is close. Yuhua Li et al. (2003) introduce two parameters in their metric to assign weights to the 

compared concepts and their least common ancestor. We adopt Wu and Palmer (1994)’s metric 

𝐶𝐷𝑊𝑃 as the baseline (please see Appendix A for more details) on account of its simple design 

and powerful performance (Jia et al., 2019).  

Though powerful, 𝐶𝐷𝑊𝑃 has its limitations – the distance is fully pre-determined by the 

medical concepts’ hierarchical structure regardless of the concepts co-occurring frequencies in 

the EHR. To make it more concrete, two medical concepts that are distant in the hierarchic 

structure can frequently co-occur in the real-world EHR data, which means they tend to relate 

closely to each other. However, such co-occurrence relationships cannot be reflected in the 

medical concepts’ hierarchy. Moreover, it is likely that one particular medical concept occurs 

more frequently than its siblings (see the example in Section 3.2.2). Thus, it is reasonable to 

believe that this medical concept may have a closer relationship with its parent than its siblings. 

Nevertheless, using 𝐶𝐷𝑊𝑃, the distances between a parent node and its child nodes are equal. For 

example, in Figure 2.3. (a), 𝐶𝐷𝑊𝑃(42820,4282) = 𝐶𝐷𝑊𝑃(42823,4282), regardless of the 

frequencies of 42820 and 42823 in the real-world dataset. To address this limitation, we propose 

a concept-level distance metric that is both knowledge-driven and data-driven (see more details 

in Section 3.2.2).  

Meanwhile, there are four popular medical record-level distance metrics that measure 

distances among medical records. Yuhua Li et al., (2003) calculate the distance between two 

medical records based on the most similar concept pairs’ average distance. Girardi et al. (2016) 

measure the distance between medical records based upon the average distance of all concept 

pairs that are not in the intersection of the two medical records, focusing on the difference 

https://www.zotero.org/google-docs/?SC6AEO
https://www.zotero.org/google-docs/?zEvVMX
https://www.zotero.org/google-docs/?0mmu9G
https://www.zotero.org/google-docs/?4eiy2z
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between two medical records. Jia et al. (2019) propose two medical record-level distance 

metrics. The first one calculates the average of the distances of all concept pairs, and the second 

one computes the average distance of the minimum weighted bipartite matching. Each distance 

metric has its own significance, and the results vary according to applications.  

We can use suitable medical concept distance metrics to solve our second research 

question, i.e., retaining medical domain knowledge in medical concepts’ attributes. Therefore, 

we propose a new medical concept distance metric in this work, and we develop a new patient-

patient network to represent the relationships of sets of medical concepts in medical records 

using the new metric. The new patient-patient network is then embedded in manifold learning 

algorithms to represent sets of medical concepts. The obtained low-dimensional representations 

are ready to be used for further analysis, such as readmission and mortality predictions. 

Healthcare predictive analytics  

Predictive analytics, including empirical methods for generating and evaluating 

predictions, is an important research area in information systems (Shmueli & Koppius, 2011). 

The primary goal of predictive analytics is to create models with practical applications, i.e., 

generating accurate and robust prediction results for new observations. While researchers may 

use predictive analytics for explanatory modeling (i.e., explain whether a factor contributes to an 

outcome), explanatory power does not imply predictive power. This critical difference drives 

distinctive principles for predictive model development and evaluation - predictive analytics 

focuses on building empirical models that predict well (Shmueli & Koppius, 2011).   

In healthcare, predictive analytics examine historical and real-time medical data and 

make diagnostic or prognostic risk predictions (Shmueli & Koppius, 2011; Van Calster et al., 

2019). The research results of healthcare predictive analytics have a wide range of implications. 

(1) Identify patients at risk and support clinical decision making on individual patient level. For 

https://www.zotero.org/google-docs/?WlIRFK
https://www.zotero.org/google-docs/?qh9GbH
https://www.zotero.org/google-docs/?c2yfJM
https://www.zotero.org/google-docs/?c2yfJM
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example, Bardhan et al. (2015) propose a model to predict the propensity, frequency, and timing 

of readmissions of patients diagnosed with congestive heart failure. Ben-Assuli & Padman 

(2020) investigate the impact of time-stable and time-varying covariates in predicting recurrent, 

unplanned readmissions for patients with chronic diseases. Lin et al. (2017) propose a Bayesian 

multitask learning approach that allows healthcare providers to achieve multifaceted risk 

profiling and model an arbitrary number of patient’s risk of future adverse health events. (2) 

Track the health of populations and inform interventions on a population level. For example, 

Zhang & Ram (2020) develop a machine learning-based framework to predict asthma risk 

factors that can provide guidance for developing interventions for specific subpopulations. (3) 

Monitor healthcare practitioners’ performance and provide insight into hospitals’ administrative 

challenges. For example, Meyer et al. (2014) develop and illustrate a machine learning approach 

to improve dynamic decision making for the treatment of patients with type 2 diabetes mellitus. 

In this study, we use two healthcare prediction tasks as research cases to evaluate the 

effectiveness of our proposed method: readmission prediction and in-hospital mortality 

prediction. (1) Readmission prediction is critical in curbing the cost of healthcare and improving 

patient outcomes. First, LACE index is developed to evaluate the likelihood of patient 

readmission (van Walraven et al., 2010) based on the length of stay (L), acuity of the admission 

(A), comorbidity of the patient (C), and emergency department use in the duration of 6 months 

before admission (E). Later, van Walraven et al. (2012) improve the performance of LACE by 

adjusting its parameters. Later, machine learning models are widely implemented for accurate 

readmission prediction (Baillie et al., 2013; Cotter et al., 2012; Yu et al., 2015). With the recent 

development of deep learning, various sequential models are used in readmission prediction 

(Allam et al., 2019; Ashfaq et al., 2019; Min et al., 2019). (2) In-hospital mortality prediction is 

https://www.zotero.org/google-docs/?01eSwF
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of paramount importance for assessing the severity of disease (Becker & Zimmerman, 1996), 

adjudicating new treatments (Pirracchio, 2016), comparing patients’ cohorts treated across 

different hospitals (Becker & Zimmerman, 1996), allocating resources and determining levels of 

care (J. Lee et al., 2016), and discussing expected outcomes with the hospitalized patients (J. Lee 

et al., 2016). Healthcare practitioners develop severity scoring systems for in-hospital mortality 

prediction, such as Acute Physiology and Chronic Health Evaluation (APACHE) IV 

(Zimmerman et al., 2006) and Simplified Acute Physiology Score (SAPS) III (Moreno et al., 

2005). To improve the performance of mortality prediction models, researchers explore the value 

of EHR data using various machine learning and deep learning models (Altibi et al., 2021; Kong 

et al., 2020). Though promising, the existing models fail to make full use of the information 

contained in EHR data because of the limitations of current medical concepts representation 

techniques.   

Using different healthcare prediction tasks as research cases, we aim to show that the 

low-dimensional representations generated by our method have many uses because they can be 

(1) pre-generated and task-agnostic, (2) concatenated with other patients’ information, and (3) 

incorporated into other healthcare prediction models.    

Summary 

The deficiencies of existing medical concept representations, coupled with the challenges 

in incorporating medical domain knowledge while generating low-dimensional representation for 

sets of medical concepts, motivate us to develop a new method for medical concepts 

representation and dimension reduction. The design science paradigm provides a good 

foundation for our work. Design science is an outcome-based research methodology (Nunamaker 

et al. 1990). According to its definition, a design is both a product and a process (Hevner et al. 

2004). The product is an artifact that can be broadly defined as construct, method, model, or 

https://www.zotero.org/google-docs/?9ksF3K
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instantiation (Simon 1996). The process is a sequence of expert activities composed of 

developing and evaluating the artifact (March and Smith 1995). In this study, the artifact we 

intend to deliver is a framework consisting of methods and instantiations that is capable of (1) 

incorporating the medical domain knowledge in the well-organized hierarchical structure and co-

occurrences of medical concepts, and (2) generating low-dimensional representations for sets of 

medical concepts.   

Research design: Medical Distance-Manifold (MD-Manifold) 

 

Figure 2.2. The proposed MD-Manifold framework. 

We introduce our research design of MD-Manifold in this section. As shown in Figure 

2.2., the proposed method consists of three steps. Step 1: Medical concept distance calculation. 

We first create a new medical concept-distance metric that is both knowledge-driven and data-

driven to preserve medical domain knowledge in medical concepts’ properties. Step 2: Patient-

patient network construction and sets of medical concepts’ representation generation. We 

construct patient-patient networks as the nearest neighbor networks for manifold learning 

algorithms. Then, we adapt manifold learning algorithms to represent sets of medical concepts in 
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a low-dimensional space. Step 3: Multi-mode data fusion. Furthermore, we fuse multimodal 

embeddings (i.e., medical record embeddings and patients’ demographic embeddings) as the 

input of diverse healthcare predictive analytical tasks.      

Terminology 

We denote an EHR dataset as 𝐷 with 𝑛 medical records 𝑉𝑖 (𝑖 =  1, 2, … , 𝑛), where a 

medical record  𝑉𝑖contains a set of medical concepts 𝑀𝑗’s to describe a patient’s health condition 

in a single medical practice, 𝑉𝑖 = (𝑀1, 𝑀2, . . . , 𝑀ℎ𝑖 ). 𝑀𝑗 (𝑗 =  1, 2, … , ℎ𝑖) is a medical concept 

with the number of concepts to be ℎ𝑖 ∈ [1,𝑚], where 𝑚 is the maximum number of medical 

concepts for a medical record. Each medical record contains different number of medical 

concepts, therefore 𝑚 = 𝑚𝑎𝑥𝑖(ℎ𝑖 ). We then define the medical-concept hierarchy structure as a 

prefix tree 𝑇 (Fredkin, 1960) derived from the medical domain knowledge. A tree 𝑇 has a root 

node 𝑁𝑟𝑜𝑜𝑡, the internal nodes 𝑁𝑏𝑟𝑎𝑛𝑐ℎ’s (i.e., branch nodes), and the terminal nodes 𝑁𝑙𝑒𝑎𝑓’s (i.e., 

leaf nodes, 𝑁𝑙𝑒𝑎𝑓’s are equivalent to  𝑀𝑗’s in 𝐷). The relations between the root, branch, and 

terminal nodes  are represented as a set of linked nodes. In this study we explore the performance of 

three prefix trees, i.e.,  𝑇𝐼𝐶𝐷9, 𝑇𝐶𝑈𝐼, and 𝑇𝐶𝐶𝑆. Specifically, (1) 𝑇𝐼𝐶𝐷9 represents the relationship 

between a medical concept and its higher-level ICD-9 disease diagnosis categories, as shown in 

Figure 2.3. (a). ICD-9 diagnosis codes are composed of codes with 3, 4, or 5 digits7, which are 

medical concepts in our research setting. Three-digit ICD-9 codes stand for the categorical 

information of diseases. Three-digit ICD-9 codes are further divided by the use of fourth and/or 

fifth digits, which provides greater details of diseases. Hence, the medical domain knowledge is 

contained in the ICD-9 diagnosis codes’ hierarchical structure. (2) 𝑇𝐶𝑈𝐼 exhibits the relationship 

between the medical concepts and the corresponding Concept Unique Identifiers (CUI) from the 

 
7
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UMLS. As shown in Figure 2.3. (b), two medical concepts may indicate similar diagnoses, and 

CUI links these medical concepts in 𝐷 that mean exactly or nearly the same. Therefore, UMLS 

Metathesaurus structure, which represents the properties of diseases and their relations to other 

diseases, serves as the source of medical domain knowledge (Bodenreider & Stevens, 2006). (3) 

𝑇𝐶𝐶𝑆 reflects the projection of medical concepts 𝑀𝑗’s onto the CCS categorization scheme. As the 

example in Figure 2.3. (c) shows,  a group of medical concepts at the bottom can be collapsed 

into a smaller number of clinically meaningful categories (CCS codes8) that are sometimes more 

useful for presenting descriptive statistics than the individual medical concept. 

 

Figure 2.3. Examples of medical-concept hierarchy structures. 

Step 1: Medical concept-distance calculation: a new medical concept-distance metric that is 

both knowledge-driven and data-driven. 

Deriving suitable distances among medical concepts is crucial for incorporating medical 

domain knowledge contained in medical concepts’ hierarchy and co-occurrences. Nevertheless, 

the most state-of-the-art medical concept distance metric, like 𝐶𝐷𝑊𝑃, has limitations. As 

discussed in Section 2.3.1, high co-occurrence frequencies of medical concepts in the real-world 

 
8
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EHR data indicate their close relationships. However, using 𝐶𝐷𝑊𝑃, the distance of two medical 

concepts is solely determined by their relative positions in the concept hierarchy 𝑇, which does 

not reflect their co-occurring frequencies in the real-world observational data. To overcome this 

limitation, we define a new type of medical-concept distance metric 𝐶𝐷𝑛𝑒𝑤 that considers both 

the medical concepts’ hierarchical structure and co-occurrences in the dataset 𝐷. The proposed 

new metric is both knowledge-driven and data-driven.   

Knowledge-driven occurrence matrix construction   

We first construct an occurrence matrix 𝑂𝑛×𝑁 for all medical records in 𝐷, where 𝑛 is the 

number of medical records, and 𝑁 is the total number of medical concepts in the data. Denote 

each element of 𝑂 as 𝑂𝑖𝑗, where 𝑖 is the index of the medical record, and 𝑗 is the index of the 

medical concept. First, for each medical record 𝑉𝑖, we augment it by adding all the ancestors 

(𝑁𝑏𝑟𝑎𝑛𝑐ℎ’s) of its medical concepts. Then, we set 𝑂𝑖𝑗 = 1 if the 𝑗𝑡ℎ  concept occurs in the 

augmented 𝑉𝑖, otherwise, 𝑂𝑖𝑗 = 0. 

Figure 2.4. presents an example of the augmented 𝑉𝑖. If 𝑉𝑖 contains an ICD-9 code 42823, 

the augmented 𝑉𝑖 contains ICD-9 codes 4282 and 428, which are the ancestors of the ICD-9 code 

42823. The red line shows the path in the prefix tree 𝑇𝐼𝐶𝐷9 from 42823 to 4282 and 428. Figure 

2.5. (a) and (b) presents an example of the occurrence matrix, 𝑂. Suppose we have a dataset, the 

second column in Figure 2.5. (a) shows the medical concepts (e.g., ICD-9 codes) that belong to 

each medical record, and the third column shows the corresponding frequencies. The first row 

indicates that there are ten medical records in the dataset that contain both medical concepts 

4289 and 42823. We insert their ancestors into 𝑉𝑖 to obtain the augmented 𝑉𝑖 (Figure 2.5. (b)). 

Then we obtain the occurrence matrix 𝑂 in Figure 2.5. (c).  
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The purpose and advantage of constructing the occurrence matrix, 𝑂, are to keep the 

medical domain knowledge in the tree 𝑇 for later use when generating low-dimensional 

representations. The construction of the occurrence matrix 𝑂 is a knowledge-driven process 

because (1) it keeps the path information in the prefix tree 𝑇, and (2) by adding all the ancestors 

that one medical concept belongs to into the corresponding medical record 𝑉𝑖, we add the disease 

categorical information (e.g., if use 𝑇𝐼𝐶𝐷9 as the knowledge source) or higher-level medical 

concept ontologies (e.g., if use 𝑇𝐶𝑈𝐼 as knowledge source) into the augmented 𝑉𝑖, depending on 

how the medical domain knowledge tree 𝑇 was constructed.  

 

Figure 2.4. An example of an augmented 𝑉𝑖. 

Data-driven co-occurrence matrix construction 

In the next step, we construct a co-occurrence matrix 𝐶𝑁×𝑁 by computing the co-

occurrences of medical concepts in 𝐷, where 𝑁 is the total number of medical concepts. We 

calculate the co-occurrence matrix using the occurrence matrix 𝑂 and 𝐶 = 𝑂𝑇𝑂. 𝐶 is symmetric, 

and the non-diagonal elements in 𝐶 are the co-occurrences of medical concepts. The co-

occurrence matrix 𝐶 is used to calculate the distance among medical concepts in the next step. 

The construction of the co-occurrence matrix 𝐶 is a data-driven process because the 

elements (i.e., co-occurring frequencies) in 𝐶 is derived from the medical record dataset 𝐷. The 

 
Note: (1) The augmented 𝑉𝑖  that keeps the path in the prefix tree 𝑇𝐼𝐶𝐷9 from 42823 to 4282 and 428.  

(2) xxx in 𝑉𝑖  represents the other ICD-9 codes in the same medical record. The ICD-9 code 428 is not at the highest 

level in the hierarchy. We do not show the parents of 428 for simplicity.  
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co-occurrence matrix 𝐶 has important implications in healthcare prediction tasks: first, the co-

occurrence of diseases in a medical record is often referred to as the comorbidity or 

multimorbidity in clinical practice, which is highly related to many negative health conditions, 

such as anxiety or depressive symptoms, functional impairment, and mortality (John et al., 

2003); second, comorbidity usually associates with the linked diseases at the molecular level 

(Barabási et al., 2011; Hidalgo et al., 2009), which provides implicit information for healthcare 

predictive analysis (Emmert-Streib et al., 2013).  

Using the augmented 𝑉𝑖 in matrix 𝑂 is beneficial to the construction of matrix 𝐶 due to 

two reasons. (1) The augmented 𝑉𝑖 contains disease categorical information or higher level 

medical concept ontologies. The co-occurrence matrix 𝐶, therefore, contains both the co-

occurring relationships between diseases and the co-occurring relationships between disease 

categories. (2) Assume two medical concepts: 𝑀𝑗 and 𝑀𝑗′ (i.e., both are leaf nodes in 𝑇) are rare 

in 𝐷 and frequently co-occur. Such a relationship is difficult to capture due to the rarity of 𝑀𝑗 

and 𝑀𝑗′, as well as the fact that they may have varied co-occurrences with other medical 

concepts in 𝐷. On the other hand, their parent nodes 𝑁𝑏𝑟𝑎𝑛𝑐ℎ_𝑗 and 𝑁𝑏𝑟𝑎𝑛𝑐ℎ_𝑗′ in the augmented 

𝑉𝑖 have a significantly higher possibility of co-occurring, because 𝑀𝑗’s and 𝑀𝑗′’s sibling 

concepts (sibling concepts indicate the nuanced difference in the medical knowledge) have the 

same parent nodes. The co-occurring relationship between 𝑁𝑏𝑟𝑎𝑛𝑐ℎ_𝑗 and 𝑁𝑏𝑟𝑎𝑛𝑐ℎ_𝑗′ is 

considerably easier to capture and be represented for 𝑀𝑗 and 𝑀𝑗′ in the co-occurrence matrix 𝐶. 

Such a relationship is important for medical-concept distance calculation since the vector 

representations of 𝑀𝑗 and 𝑀𝑗′ should have a relatively short distance in the manifold feature 

space because they tend to co-occur. The co-occurring relationships are important medical 
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domain knowledge that we strive to preserve when obtaining the representation for sets of 

medical concepts.   

Calculating the medical-concept distance 

In the last step of the medical concepts’ distance calculation, we consider each row of the 

co-occurrence matrix as a vector that represents a medical concept. All the medical concepts 

form a manifold space. We define a new type of medical-concept distance metric (note the 

metric induces the node topology in the manifold space): 𝐶𝐷𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑎, 𝐶𝑏), where 𝑎 

and 𝑏 are two medical concepts, and 𝐶𝑎 and 𝐶𝑏 are row 𝑎 and row 𝑏 of the co-occurrence matrix 

𝐶, respectively. The 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(⋅) functions can be defined in different ways (Table 2.3.). In this 

work, we compare four distance formulas: 𝐶𝑜𝑠𝑖𝑛𝑒(𝐶𝑎 , 𝐶𝑏), 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝐶𝑎, 𝐶𝑏), 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (𝐶𝑎, 𝐶𝑏), and 𝑒𝐻𝐷𝑁(𝐶𝑎, 𝐶𝑏). In the evaluations, we compare and identify which ones 

are better for different healthcare prediction tasks.  

Table 2.3. 𝐶𝐷𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑎, 𝐶𝑏). 
𝐶𝐷𝑛𝑒𝑤 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(⋅) 𝐶𝐷𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑎 , 𝐶𝑏) Notes 

𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 𝐶𝑜𝑠𝑖𝑛𝑒(𝐶𝑎 , 𝐶𝑏) 1 −
𝐶𝑎 ⋅ 𝐶𝑏

√𝐶𝑎 ⋅ 𝐶𝑎√𝐶𝑏 ⋅ 𝐶𝑏
 

Measures inner product of two 

normalized vectors, which is also 

the same as the angle between 

vectors. 

𝐶𝐷𝑛𝑒𝑤−𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝐶𝑎 , 𝐶𝑏) ||𝐶𝑎 − 𝐶𝑏||1 

Measures the sum of the absolute 

differences between 𝐶𝑎 and 𝐶𝑏, 

which is also known as the l1 

norm. 

𝐶𝐷𝑛𝑒𝑤−𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (𝐶𝑎 , 𝐶𝑏) ||𝐶𝑎 − 𝐶𝑏||2 

Measures the sum of the squared 

differences between 𝐶𝑎 and 𝐶𝑏, 

which is also known as the l2 

norm. 

𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁 𝑒𝐻𝐷𝑁(𝐶𝑎 , 𝐶𝑏) 1 −
𝐶𝑎,𝑏𝑁 −∑𝐶𝑎∑𝐶𝑏

√∑𝐶𝑎∑𝐶𝑏(𝑁 − ∑𝐶𝑎)(𝑁 − ∑𝐶𝑏)
 

Measures similarity between 

diseases using the observed 

probability co-occurrence of these 

diseases (Jiang et al., 2018). 

Note: 𝐶𝑎,𝑏 : the number of co-occurrence between concepts 𝑎 and 𝑏.  

∑𝐶𝑗, 𝑗 ∈ (𝑎, 𝑏): the summation of all elements in row 𝑗 of 𝐶. 

𝑁: the total number of medical records in the data set.  

https://www.zotero.org/google-docs/?ScEz7j
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Figure 2.5. A run-through example of the medical concept distance calculation and the patient-

patient network construction for manifold learning. 

Figure 2.5. (e) shows an example of 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 given the co-occurrence in Figure 2.5. 

(d). Notice that the concept 42823 occurs more frequently than 42820 in Figure 2.5. (a). It is 

reasonable to believe that patients with an upper-level concept 4282 are more likely to have 

42823 than 42820 as a specified disease, which indicates that the concept 4282 is more related to 

42823 than 42820. By using our method 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒, as we expected, (42823,4282) has a 
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smaller distance than (42820,4282) with 𝐶𝐷𝐶𝑜𝑠𝑖𝑛𝑒(42823,4282) = 0.0125 and 

𝐶𝐷𝐶𝑜𝑠𝑖𝑛𝑒(42820,4282) = 0.2463.  

 

Figure 2.5.Continued. 

Moreover, due to the higher co-occurrence frequency of (4289,42823) than 

(4289,42820), 𝐶𝐷𝐶𝑜𝑠𝑖𝑛𝑒(4289,42823) = 0.0458 is smaller than 𝐶𝐷𝐶𝑜𝑠𝑖𝑛𝑒(4289,42820) =

0.425, in spite of the equal-distance relationship in the medical concept hierarchy 𝑇𝐼𝐶𝐷9 , which 

overcomes the limitation of the baseline distance metric 𝐶𝐷𝑊𝑃 (i.e., without taking into account 
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their co-occurring frequencies, the distance between two medical concepts is exclusively 

determined by their positions in 𝑇). 

Step 2: Patient-patient network construction and the representation for sets of medical 

concepts generation 

In the second step, we generate medical record-level representations by constructing a 

patient-patient network and introducing it to manifold learning algorithms. To construct a 

patient-patient network, we first measure distances among medical records using the medical 

concept-level distance. Then we construct the patient-patient network by connecting similar 

medical records based on the medical record distance. Last, using manifold learning, we map the 

constructed patient-patient network into a low-dimensional latent space, where a vertex (a row of 

𝐷, i.e., a medical record) in the patient-patient network is represented as a low-dimensional 

vector.  

Table 2.4. 𝑆𝐷 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖, 𝑉𝑗). 

𝑆𝐷 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖 , 𝑉𝑗) Notes 

𝑆𝐷1 
1

|𝑉𝑖| + |𝑉𝑗|
(∑ 𝑚𝑖𝑛

𝑏∈𝑉𝑗
𝐶𝐷(𝑎, 𝑏)

𝑎∈𝑉𝑖

+ ∑ 𝑚𝑖𝑛
𝑎∈𝑉𝑖
𝐶𝐷(𝑏, 𝑎)

𝑏∈𝑉𝑗

 
Uses the average distance of the most 

similar concept pairs to calculate the 

medical-record distance. 

𝑆𝐷2 
1

|𝑉𝑖 ∪ 𝑉𝑗|
( ∑

1

|𝑉𝑗|
𝑎∈𝑉𝑖\𝑉𝑗

∑ 𝐶𝐷(𝑎, 𝑏)

𝑏∈𝑉𝑗

+ ∑
1

|𝑉𝑖|
𝑏∈𝑉𝑗\𝑉𝑖

∑ 𝐶𝐷(𝑏, 𝑎)

𝑎∈𝑉𝑖

) 
Defines the medical-record distance as 

the average distance of all concept pairs 

that are not in the union of two sets. 

 

Based on the medical concept distance in Step 1, we are able to calculate the distance 

between medical records 𝑆𝐷 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖 , 𝑉𝑗), where each record contains a set of medical 

concepts. We adopt and compare four widely used metrics (Table 2.4.) for sets of medical 

concepts distance calculation (Jia et al., 2019). 𝑆𝐷1 and 𝑆𝐷4 are designed to capture the 

similarities of the most similar medical-concept pairs from two medical records. 𝑆𝐷2 does not 

include the overlapping medical concept but focuses on the difference between two medical 

https://www.zotero.org/google-docs/?xQpkyM
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records. 𝑆𝐷3 is widely used in clustering analysis in measuring the distance between each cluster 

(also known as “Average Linkage”). Because each metric has its merit in finding the distance 

between medical records, we compare them in our experimental evaluations.  

Table 2.4. Continued. 
𝑆𝐷 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖 , 𝑉𝑗) Notes 

𝑆𝐷3 
1

|𝑉𝑖| ⋅ |𝑉𝑗|
∑ 𝐶𝐷(𝑎, 𝑏)

𝑎∈𝑉𝑖,𝑏∈𝑉𝑗

 
Defines the medical-record distance as 

the average distance of all concept pairs. 

𝑆𝐷4 
1

|𝑀𝑊𝐵𝑀|
∑ 𝐶𝐷(𝑎, 𝑏)

(𝑎,𝑏)∈𝑀𝑊𝐵𝑀

 
The average of all weights (i.e., code 

distances) in the MWBM . 

Note: (1) The cardinality of the two sets of concepts, 𝑉𝑖 and 𝑉𝑗 , is denoted as |𝑉𝑖| and |𝑉𝑗|, respectively. 

(2) MWBM: minimum weighted bipartite matching. We view the two sets of concepts 𝑉𝑖 and 𝑉𝑗 as a bipartite 

undirected graph 𝐺 = (𝑉𝑖 , 𝑉𝑗). Then, we use the Kuhn-Munkres algorithm (Kuhn 1955) to find the minimum 

weighted bipartite matching (MWBM). The MWBM is a subset of edges with a minimum sum of weights and at 

most one edge is incident to a vertex in 𝑉𝑖 or 𝑉𝑗 . Specifically, in our research, given a bipartite undirected graph 𝐺 =

(𝑉𝑖 , 𝑉𝑗) and a weight function 𝑤 = 𝐶𝐷(𝑎, 𝑏), where 𝑎, 𝑏 are medical concepts, the MWBM is a group of edges 

representing the most similar medical-concept pairs from medical record 𝑉𝑖  to medical record 𝑉𝑗 .  

 

Then, given the distance, 𝑆𝐷, between the medical records, we are able to construct the 

patient-patient network 𝐺𝑆𝐷. Specifically, after we compute the distance for each pair of medical 

records in the dataset, we find 𝑘 neighbors with the shortest distance for each medical record. 

We construct the network by regarding each medical record as a node and connecting each pair 

of neighbors as an edge. Next, the manifold learning algorithms take the constructed network, 

𝐺𝑆𝐷, as the input to generate the low-dimensional representations that preserve the topology of 

the original patient-patient network. Mathematically, 𝑌 = 𝑀𝐿(𝐺𝑆𝐷), where 𝑀𝐿 is the manifold 

learning algorithm, and 𝑌 = {𝑌𝑖}𝑖=1
𝑛  is the low-dimensional representation. Formally, we denote 

a medical record as 𝑉𝑖, and the corresponding low dimensional representations as 𝑌𝑖. We connect 

two vertices 𝑉𝑖 and 𝑉𝑗 with an edge 𝐸𝑖𝑗 if 𝑉𝑖 is the k-nearest neighbor of 𝑉𝑗 or vice versa. The k-

nearest neighbor is determined by the distance 𝑆𝐷. The vertices and connected edges make up 

the network 𝐺𝑆𝐷(𝑉, 𝐸). Please note that different combinations of 𝐶𝐷 and 𝑆𝐷 can lead to 

different patient-patient networks. We compare the performance of different 𝐺𝑆𝐷’s in our 
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experimental evaluation. Then manifold learning algorithms, 𝑌 = 𝑀𝐿(𝐺𝑆𝐷), are applied to find 

the low-dimensional representations of 𝑉𝑖’s. Laplacian Eigenmap minimizes the objective 

function, 𝛷(𝑌) = ∑ ||𝑌𝑖 − 𝑌𝑗||𝑖,𝑗 , the total distance between connected vertices (i.e. k-nearest 

neighbors of each other) in the low-dimensional space. Isomap solves the objective function 

𝛷(𝑌) = ∑ (𝑑𝑖𝑗 − ||𝑌𝑖 − 𝑌𝑗||)
2

𝑖≠𝑗 , where 𝑑𝑖𝑗 is the shortest distance between two records 

𝑉𝑖 and 𝑉𝑗 in the network 𝐺𝑆𝐷(𝑉, 𝐸). Laplacian Eigenmap and Isomap have different strategies to 

optimize the representations. The Laplacian Eigenmap preserves the relationships of close 

neighboring nodes, while the Isomap keeps the shortest distance between each pair of nodes. 

This explains why Laplacian Eigenmap is a local approach and Isomap is a global approach. 

Both Laplacian Eigenmap and Isomap have advantages and disadvantages, as discussed in 

Section 2.2. In the experiments, we examine and compare their efficiency for healthcare 

prediction tasks.  

Step 3: Multimodal data fusion  

Step 3 is multimodal data fusion. Besides medical concepts, there is an abundance of 

multimodal data in medical systems, such as demographic data, pre-ICU conditions, etc. (Lopez 

et al., 2020). Such data provide different perspectives to describe patients and their health 

conditions. Combining such information with the generated low-dimensional representations of 

medical concepts in Step 2 is expected to create more comprehensive vector representations of 

patients, which are more informative and effective for healthcare predictive modeling (Lahat et 

al., 2015). The data fusion step can be expressed as 𝑍 = 𝐶𝑂𝑁𝐶𝐴𝑇(𝑌, 𝑈), where 𝑍 is the 

concatenated representation, 𝑌 is the representation of a set of medical concepts from Step 2, and 

𝑈 represents other available features. Note that both 𝑍 and 𝑌 can be used as the input of 

healthcare prediction tasks.  

https://www.zotero.org/google-docs/?17cD8f
https://www.zotero.org/google-docs/?17cD8f
https://www.zotero.org/google-docs/?Vo7OX2
https://www.zotero.org/google-docs/?Vo7OX2
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The benefits of this step are twofold. First, there are interactions between medical 

concepts (e.g., diagnosis or treatments) and other features (e.g., demographics). Multimodal data 

fusion helps prediction models describe the clinical risk more accurately than considering 

individual features separately (Oh, 2019). For example, the readmission and mortality risks of 

senior (represented in demographic features) and diabetic (represented in medical concepts’ low-

dimensional representation) patients are higher than senior patients without diabetes or junior 

patients with diabetes (Sejong Oh, 2021). Second, the healthcare prediction models can obtain 

higher reliability by using data from multiple sources with different modalities (Castanedo, 2013; 

Y. Li et al., 2020; Xu et al., 2018).  

Evaluations, Results, and Discussions 

In the design science paradigm, the evaluation of an artifact provides feedback 

information and a better understanding of the problem in order to improve both the quality of the 

design product and the design process (Hevner et al., 2004). Our evaluation plan and procedures 

are summarized in Figure 2.6. In this study, to show the effectiveness of the proposed method, 

we presented two research cases, readmission prediction and in-hospital mortality prediction, on 

two large real-world medical databases, NRD 20149 and MIMIC III (Johnson et al., 2016). Both 

databases contained de-identified hospital visit records (i.e., EHR). Please note, in the 

experiments, a hospital visit record was defined as a medical record that contains the medical 

information of the patient in one medical practice10. In each medical record, the diseases (i.e., 

medical concepts) were encoded by the ICD-9-CM system11. For each prediction task on each 

dataset, we first generated low-dimensional representations for patients’ medical records using 

 
9
 https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp 

10
 https://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference 

11
 https://www.cdc.gov/nchs/icd/icd9cm.htm 

https://www.zotero.org/google-docs/?QiHEpQ
https://www.zotero.org/google-docs/?YkSfrM
https://www.zotero.org/google-docs/?Jd1yJY
https://www.zotero.org/google-docs/?Jd1yJY
https://www.zotero.org/google-docs/?CJHMij
https://www.zotero.org/google-docs/?GLt6gp
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the proposed MD-manifold method and state-of-the-art benchmark methods. Then the generated 

low-dimensional representations were used in the two prediction tasks.  

 

Figure 2.6. Evaluation plan. 

 

Datasets description  

Our experiments were conducted on five datasets extracted from two large real-world 

databases (i.e., NRD2014 and MIMIC III). Four diseases (i.e., primary diagnosis ICD-9 code: 

428, 41401, 0389, 41071) were chosen as the focus of this research. We chose heart failure 

(ICD-9 code 428) because it was one of the leading causes of medical institution admission in 

the US (Gheorghiade et al., 2013). Predicting readmission and in-hospital mortality in heart 

failure patients was challenging with substantial implications (O’Connor, 2017). Therefore, we 

extracted heart failure patients from both databases. ICD-9 codes 41401, 0389, and 41071 were 

the most common diagnosis codes in the MIMIC III database, which account for 7.1%, 4.2%, 

Evaluation goal

Select classifiers, manifold 

learning algorithms, and 

distance metrics

Compare with benchmarks (w o 

data fusion)

Compare with benchmarks (w  

data fusion) 

Compare the generated 

representation w o data fusion 

and w  data fusion

Datasets MIMIC III  03 9, MIMIC III  42 , MIMIC III 41401, MIMIC III  41071, NRD  42 
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30 day readmission, 

In hospital mortality
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AdaBoost
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distance

    ,             , 

               ,
               ,           

            ,

          

Medical record 
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  1,   2,   3,   4   1,   2,   3

Manifold learning 

algorithms

Isomap,

Laplacian Eigenmap
Isomap Isomap
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Experiment part 1 Experiment part 2 Experiment part 3

https://www.zotero.org/google-docs/?JtgCCA
https://www.zotero.org/google-docs/?RaIx4H
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and 3.6% of all hospital admissions (Johnson et al., 2016). The diseases chosen were all common 

and important, but their distributions in readmissions and in-hospital mortalities were widely 

different. Using these diseases as research cases allowed us to evaluate our findings in a more 

general and realistic setting. The basic statistics of each dataset were shown in Table 2.5. 

Table 2.5. Datasets description. 

Database NRD2014 MIMIC III 

Primary diagnosis code (ICD-9) 428 428 41401 0389 41071 

Number of medical records 

i.e., hospital visits 
27661 1488 3498 2069 1751 

Age  
Range 18 - 90 18 - 89 18 - 89 18 - 89 18 - 89 

Mean 68 72 67 69 71 

Gender 
Male 14975 808 2654 1086 1092 

Female 12686 680 844 983 659 

Ethnicity 

White 

-- 

1044 2386 1515 1219 

African American 208 99 209 61 

Hispanic 35 60 44 24 

Asian 12 49 41 13 

Insurance 

Medicare 19127 1150 1914 1467 1200 

Private 3188 218 1359 405 436 

Self-pay 1221 5 7 8 16 

Marital status 

Married 

-- 

685 2329 887 959 

Single 295 439 527 232 

Widowed 368 376 384 348 

Readmission 
6710 

(24.97%) 

165 

(12.63%) 

111 

(3.20%) 

136 

(9.61 %) 

77 

(4.78%) 

Mortality 
793 

(2.87%) 

182 

(12.23%) 

31 

(8.86%) 

654 

(31.61%) 

140 

(8.00%) 

Note: Primary diagnosis code (ICD-9): 428: heart failure; 41401: coronary atherosclerosis of native coronary artery; 

0389: unspecified septicemia; 41071: subendocardial infarction, initial episode of care 

 

NRD2014 We extracted the first dataset from the Healthcare Cost and Utilization 

Project (HCUP), the Nationwide Readmission Database (NRD). The NRD was a database 

specifically for national readmission analysis12. The NRD collected patients’ admission and 

discharge dates for various kinds of diseases in a year. We identified patients whose primary 

 
12

 https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp 

https://www.zotero.org/google-docs/?O0ITgc
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diagnoses were heart failure (i.e., ICD-9 code 428) in 2014. Each patient could have multiple 

hospital visits in the dataset. For consistency, we extracted data records from the large, private, 

non-profit, and teaching hospitals in one large metropolitan area (NRD STRATUM = 109).  

We labeled a hospital visit as a readmission visit if the patient was readmitted within 30 

days of the discharge from his/her last hospitalization. The in-hospital death labels were used as 

provided in the original database. The data records in December 2014 were removed due to the 

lack of data in the next 30 days for readmission predictions. The extracted dataset included 

27,661 hospital visits of adult patients (age >= 18) with heart failure as their primary diagnosis. 

The incidence of in-hospital death was 2.87% (793 records). After excluding in-hospital death 

cases, there were 6710 (24.97%) readmission cases. 

MIMIC III We evaluated our proposed method on the MIMIC-III database as well. 

MIMIC-III was a freely-accessible clinical database of over 40,000 patients in the Beth Israel 

Deaconess Medical Center’s critical care units (Johnson et al., 2016). We extracted four datasets 

from the MIMIC-III database by setting the primary diagnosis ICD-9 codes to be 428 (heart 

failure), 41401 (coronary atherosclerosis of native coronary artery), 0389 (unspecified 

septicemia), and 41071 (subendocardial infarction, initial episode of care).  

We labeled 30-day readmissions as described above. The in-hospital death labels were 

used as provided in the database. The four datasets included 1,488, 3,498, 2,069, and 1,751 

medical records, among which there were 182 (12.23%), 31 (8.86%), 654 (31.61%), and 140 

(8.00%) in-hospital death cases, respectively. Excluding in-hospital death cases, there were 165 

(12.63%), 111 (3.20%), 136 (9.61%),  and 77 (4.78%) readmission cases.  

Healthcare prediction tasks  

In the evaluation, two healthcare prediction tasks were used to test the proposed method: 

30-day readmission and in-hospital mortality predictions. In NRD2014, we implemented 

https://www.zotero.org/google-docs/?37zLVp
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readmission and in-hospital mortality prediction tasks for patients with heart failure (ICD-9 code 

428) as their primary diagnosis. In MIMIC III, we performed the two prediction tasks in patient 

cohorts with four different diseases: (1) heart failure (ICD-9 code 428), (2) coronary 

atherosclerosis of native coronary artery (ICD-9 code 41401), (3) unspecified septicemia (ICD-9 

code 0389), and (4) subendocardial infarction, initial episode of care (ICD-9 code 41071). 

Thirty-day readmissions were defined as any hospital admission within 30 days of 

discharge from the last hospitalization (Bardhan et al., 2015). We included the 30-day 

readmission prediction task in the evaluation for three reasons. (1) Hospital readmissions cost 

around $27 billion every year in the US (Kauffman 2016). It was a major economic burden on 

medical systems (Allam et al. 2019). (2) According to Leppin et al. (2014), proper post-discharge 

interventions could reduce hospital readmissions by improving “patient capacity to enact 

burdensome self-care.” The effective post-discharge interventions included discharge planning, 

telephone follow-up, patient education, etc (Leppin et al., 2014). (3) Readmission predictions 

could identify subgroups of patients with a high risk of readmissions, which helped doctors 

provide more accurate and effective interventions (Teo et al., 2021). NRD and MIMIC III were 

two widely-used databases for readmission prediction studies (Allam et al., 2019; Y.-W. Lin et 

al., 2019; Mumtaz et al., 2019).  

In-hospital mortality was defined as a death occurring within the primary admission and 

before discharge (Altibi et al., 2021). We incorporated in-hospital mortality prediction in the 

evaluation because in-hospital mortalities could be reduced using various techniques, including 

multidisciplinary rounds, rapid response teams, and ventilator bundles (Whittington et al., 2005). 

There were 23.4% of in-hospital mortalities that have opportunities for improvement (Kobewka 

et al., 2017). A mortality prediction model could help healthcare providers identify patients with 

https://www.zotero.org/google-docs/?dTNvD3
https://www.zotero.org/google-docs/?TVs2z5
https://www.zotero.org/google-docs/?SlQfKa
https://www.zotero.org/google-docs/?0PMvSY
https://www.zotero.org/google-docs/?DGOJTx
https://www.zotero.org/google-docs/?DGOJTx
https://www.zotero.org/google-docs/?fXYSXU
https://www.zotero.org/google-docs/?aKZk5n
https://www.zotero.org/google-docs/?8qYyX5
https://www.zotero.org/google-docs/?8qYyX5
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a high risk of mortality in the early stages, allowing them to deploy more effective measures. 

Many mortality prediction models were tested on NRD and MIMIC III databases (Altibi et al., 

2021; Kong et al., 2020). 

Benchmark methods  

We considered 14 baseline methods (Table 2.6.) in two prediction tasks to evaluate our 

proposed method. These baseline methods could be categorized into three types. (1) Summary 

measures: we included three medical summary measures as benchmarks, including Charlson 

Comorbidity Index (CCI) (Sundararajan et al., 2004), Elixhauser Comorbidity Index (ECI) 

(Mehta et al., 2018), and Risk Stratification Index (RSI) (Verdecchia, 2003). CCI and ECI were 

two of the well-known comorbidity severity measures, commonly used to predict the mortality 

risk in patients with comorbidities (Mehta et al., 2018; Sundararajan et al., 2004). RSI was 

frequently used to predict the length of stay and mortality (Sigakis et al., 2013). (2) Code 

mappings: we mapped the 4 or 5-digit ICD-9 codes (i.e., medical concepts with high dimensions) 

in the datasets to four standard medical terminologies (with lower dimensions) as benchmarks 

(Deschepper et al., 2019; Rasmy et al., 2020), including 3-digit ICD-9 codes, CCS codes, CUI 

codes, and SNOMED. We further represented the mapped codes in each medical record (i.e., 

hospital visit) with one-hot encoding. This strategy reduced the dimension of medical concepts in 

a prediction model’s feature space. We used official resources for code mappings. Specifically, 

the 4 or 5-digit ICD-9 codes were mapped to 3-digit ICD-9 codes according to the latest ICD-9 

hierarchy. We used the latest version of ICD-9 to CCS single-level mapping provided by HCUP. 

The mappings from ICD-9 codes to SNOMED13 and CUI14 were available in the UMLS. (3) 

Embeddings of individual medical concepts: we adopted three state-of-the-art healthcare 

 
13

 https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_005.html 
14

 https://www.nlm.nih.gov/research/umls/mapping_projects/icd9cm_to_snomedct.html 

https://www.zotero.org/google-docs/?ej8Nlx
https://www.zotero.org/google-docs/?ej8Nlx
https://www.zotero.org/google-docs/?8oKZvR
https://www.zotero.org/google-docs/?eATmsP
https://www.zotero.org/google-docs/?pmvRoG
https://www.zotero.org/google-docs/?leN758
https://www.zotero.org/google-docs/?wxqHLL
https://www.zotero.org/google-docs/?wHxUah
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prediction studies as benchmarks. The first method represented medical records using the 

element-wise sum of individual medical concepts’ embeddings generated from Word2Vec, 

GloVe, and FastText (Tang et al., 2018; Youngduck Choi et al., 2016). The second method was 

Phe2Vec, a state-of-the-art unsupervised embedding framework for disease phenotyping. 

Phe2Vec was based on pre-computing embeddings of medical concepts generated using 

Word2Vec, GloVe, and FastText (De Freitas et al., 2020). In Phe2Vec, medical records were 

represented as a weighted sum of embeddings of individual medical concepts, with the weights 

determined by the frequency of the medical concepts in the dataset. The last was Med2Vec, a 

supervised deep-learning method that used a two-layer neural network to generate 

representations for medical concepts and records (Choi, Bahadori, Searles, et al., 2016).  

Table 2.6. Benchmarks in the evaluation.  
  Benchmarks Description 

Summary measures 

CCI Charlson Comorbidity Index 

ECI Elixhauser Comorbidity Index  

RSI Risk Stratification Index  

Code mappings 

ICD-9 3-digit code Map ICD-9 4 or 5-digit codes to ICD-9 3-digit codes 

CCS Map ICD-9 4 or 5-digit codes to CCS codes 

CUI Map ICD-9 4 or 5-digit codes to CUI codes 

SNOMED Map ICD-9 4 or 5-digit codes to SNOMED codes 

Embeddings of 

individual medical 

concepts 

Sum 

Word2Vec 
Element-wise sum of individual medical concepts’ embeddings 

generated from Word2Vec 

GloVe 
Element-wise sum of individual medical concepts’ embeddings 

generated from GloVe  

FastText 
Element-wise sum of individual medical concepts’ embeddings 

generated from FastText 

Phe2vec 

Word2Vec 
Representations of Phe2vec with Word2Vec as the individual 

medical concept’ embedding 

GloVe 
Representations of Phe2vec with GloVe as the individual medical 

concept’ embedding 

FastText 
Representations of Phe2vec with FastText as the individual medical 

concept’ embedding 

Med2Vec Supervised two-layer neural network 

Experimental settings 

In the experiments, we generated representations with the dimensions of 16, 32, 64, 128, 

256, and 512 for each medical record. The generated representations were used as the input of 

https://www.zotero.org/google-docs/?uvgZL9
https://www.zotero.org/google-docs/?k6ulqi
https://www.zotero.org/google-docs/?fe0lQN
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three classifiers, including logistic regression (LR), random forest (RF), and AdaBoost, to predict 

the 30-day hospital readmissions and in-hospital mortalities. The parameters of the classifiers 

were listed in Table 2.7. We used grid-search to find the best parameters for the classifiers using 

the MIMIC III - 428 dataset. These classifiers were implemented for all representations 

generated using the proposed method and baseline methods except the three summary measures 

(i.e., CCI, ECI, and RSI, which already indicated prediction probabilities) and Med2Vec (which 

already contained a classifier in their research design). We evaluated two manifold learning 

algorithms, Laplacian Eigenmap (i.e., a local approach) and Isomap (i.e., a global approach), 

both of which were widely used in various applications (Huang et al., 2019; Park, 2012; Tu et al., 

2012). We grid-searched n_neighbors, a parameter in the patient-patient network for the 

manifold learning algorithms.  

We evaluated all classifiers’ performance through five-fold cross-validation, where the 

original dataset was randomly split into five equal-sized sub-samples without replacement. The 

process was repeated in five rounds (i.e., folds). In each round, one single sub-sample was 

retained as the testing set, and the other four sub-samples were used for classifier training. The 

classifiers were trained from only the training data of the current round, and the testing data were 

not seen by the model during the training stage. Please note that the cross-validation was not 

employed for selecting optimal parameters. All classifiers for different datasets used the same 

parameters selected using the MIMIC III - 428 dataset. The main reasons for adopting this 

validation technique were that it achieved a lower bias towards estimating the generalization 

performance by averaging the individual classifier’s estimates (Hastie et al., 2009) and it 

estimated how the model’s performance can be generalized to an independent dataset.  

https://www.zotero.org/google-docs/?etBpy4
https://www.zotero.org/google-docs/?etBpy4
https://www.zotero.org/google-docs/?TiVo8t


50 

Table 2.7. Algorithms and parameters. 

Algorithm Parameters 

Classifier 

Logistic Regression (LR) L1 penalty: [0.1, 1, 10] 

Random Forest (RF) 

Max_depth: [1, 3, 5, 7] 

n_estimators: [50, 100, 200] 

criterion: [gini] 

AdaBoost 
Max_depth: [1, 3, 5, 7] 

n_estimators: [50, 100, 200] 

Manifold 

learning  

Laplacian Eigenmap 

n_neighbors: [8, 16, 32, 64, 128, 256, 512] 
IsoMap 

Note: Optimal parameters were bold. The optimal parameters for the classifiers were determined through grid search 

on the dataset of MIMIC III - 428  

Experimental results 

In the following section, we reported the performance of the proposed method and the 

benchmarks in readmission and in-hospital mortality predictions. We first showed that the 

proposed medical distance metrics 𝐶𝐷𝑛𝑒𝑤 led to more accurate predictions than the 𝐶𝐷𝑊𝑃. Then 

we showed that the proposed method was more effective than three types of medical concepts’ 

dimension reduction methods, including summary measures, code mapping, and individual 

medical concepts’ embeddings. Finally, we concatenated the low-dimensional representations of 

sets of medical concepts and other patients’ data, demonstrating the applicability and 

compatibility of our method.   

Part 1: The selection of classifiers, manifold learning algorithms, and distance 

metrics 

We first selected the classifiers used in the two healthcare prediction tasks. According to 

our evaluations, LR outperformed both RF and AdaBoost in all the experiments. Please see 

Table 2.12. in Appendix B for experimental results on all five datasets. For example, Figure 2.7. 

(left) showed the performance of LR, RF, and AdaBoost in predicting mortality for patients with 

subendocardial infarction (ICD-9: 0389) in the MIMIC III database. The x-axis was the 

dimension of the representations generated using our method, while the y-axis was the mean of 
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the AUC scores in 5-fold cross-validation. The solid line (LR) was always above the other two 

lines at different dimensions, which showed using the same representations, LR made more 

accurate predictions with higher AUC scores. For conciseness, we only presented the prediction 

performance of LR in the following discussion.  

We also compared the global and local manifold learning algorithms (i.e., Isomap and 

Laplacian Eigenmap) in our experiments. Generally, the Isomap had a better performance. For 

example, in the MIMIC III - 0389 dataset (Figure 2.7.), the AUC scores of the representations 

from Isomap were always higher than that of Laplacian Eigenmap. In other experiments (see 

Table 2.13. in Appendix B), the highest AUC scores of Isomap at different dimensions were 

usually higher than that of Laplacian Eigenmap. The possible reason was that Isomap was more 

robust to noise than Laplacian Eigenmap; similar findings were also reported by Mysling et al. 

(2011) and Talwalkar et al. (2008). We only report Isomap’s prediction results in the following 

sections for brevity. 

 
Note: Prediction task: in-hospital mortality; Dataset: MIMIC III - 0389 dataset; Distance metrics: 𝐶𝐷𝑒𝐻𝐷𝑁 and 𝑆𝐷3; 
Patient-patient network: n_neighbors=256; Medical domain knowledge: TICD-9 

Figure 2.7. Prediction results using Isomap with three classifiers (left), and prediction results 

using two manifold algorithms with the LR classifier (right). 

https://www.zotero.org/google-docs/?qzOMTJ
https://www.zotero.org/google-docs/?qzOMTJ
https://www.zotero.org/google-docs/?LOnGPh
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Next, we evaluated the performance of different patient-patient networks, 𝐺, generated 

using different combinations of medical concept-distance metrics (i.e., benchmark metric 𝐶𝐷𝑊𝑃  

and our proposed metrics 𝐶𝐷𝑛𝑒𝑤, including 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒, 𝐶𝐷𝑛𝑒𝑤−𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛, 𝐶𝐷𝑛𝑒𝑤−𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛, 

and 𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁) and medical record-distance metrics (i.e., four widely used metrics 𝑆𝐷1, 𝑆𝐷2, 

𝑆𝐷3, and 𝑆𝐷4). n_neighbors was a hyperparameter of 𝐺, determined through grid search. All the 

results were reported in Figure 2.8.  

The experimental results revealed several interesting findings.  

(1) The red dotted lines in Figure 2.8. represented the best performance on each dataset. 

On all five datasets, the performance of 𝐶𝐷𝑊𝑃 (gray lines) never achieved the top AUC scores in 

both prediction tasks. Therefore, our metrics 𝐶𝐷𝑛𝑒𝑤 were more effective at measuring the 

distances between medical concepts, resulting in higher AUC scores in healthcare prediction 

tasks.  

(2) Figure 2.8. showed that most representations (80% of the results) reached their 

highest AUC scores at low dimensions (dimensions = 16 - 64). The possible reason was that 

manifold learning algorithms were good at representing high-dimensional data in extremely low 

dimensions (J. Zhang et al., 2010). In many scenarios, manifold learning algorithms were used 

for visualizations that required two or three dimensions (Patwari et al., 2005; Shier et al., 2021). 

Higher dimensions may introduce more noise in the prediction model’s feature space. Since 

prediction models were known to converge fast on a low-dimensional feature space, this was an 

advantage of the proposed method.  

 

https://www.zotero.org/google-docs/?dBHWwj
https://www.zotero.org/google-docs/?rnUeCl
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(a) Readmission prediction 

Figure 2.8. Performance of different patient-patient networks. 

(3) We proposed a new medical-concept distance metric 𝐶𝐷𝑛𝑒𝑤 with four distance 

formulas: 𝐶𝑜𝑠𝑖𝑛𝑒, 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛, 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛, and 𝑒𝐻𝐷𝑁. In our evaluation, 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 and 

𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁 outperformed the  𝐶𝐷𝑛𝑒𝑤−𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 and 𝐶𝐷𝑛𝑒𝑤−𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛. 𝐶𝐷𝑛𝑒𝑤−𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 and 

𝐶𝐷𝑛𝑒𝑤−𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 never achieved the highest AUC scores on all five datasets and two prediction 

tasks. Especially, combined with 𝑆𝐷1, 𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁 achieved the highest AUC score (0.666) in 
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the readmission prediction on the MIMIC III - 41071 dataset (Figure 2.9. (a)). In addition, when 

paired with 𝑆𝐷2, 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 was the best 𝐶𝐷 metric (AUC = 0.783) for the in-hospital 

mortality prediction on the MIMIC III - 428 dataset (Figure 2.9. (b)).  

 

 

 
(b) Mortality prediction 

Figure 2.8. Continued.  
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This was an interesting finding because it indicated that it was important to normalize the 

co-occurrences of medical concepts for medical-concept distance calculation when considering 

disease co-occurrences as medical domain knowledge. Both 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 and 𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁 

included normalization terms in the distance formulas (i.e., √𝐶𝑎 ⋅ 𝐶𝑎√𝐶𝑏 ⋅ 𝐶𝑏  and 

√∑𝐶𝑎∑𝐶𝑏(𝑁 − ∑𝐶𝑎)(𝑁 − ∑𝐶𝑏)). The significance of the normalization terms was that they 

eliminated the impact of very popular diseases across all patient cohorts.  

For example, a very popular medical concept 𝑀𝑗 co-occurred with most other medical 

concepts. Therefore, most of the elements in row 𝑗 in the co-occurrence matrix 𝐶 were large 

values. By contrast, there were two rare medical concepts 𝑀𝑎 and 𝑀𝑏. The elements in both rows 

𝑎 and 𝑏 were small numbers in the co-occurrence matrix 𝐶. If 𝑀𝑎 and 𝑀𝑏 co-occurred 

frequently, we expected the medical-concept distance to reflect such a co-occurring relationship. 

However, 𝐶𝐷𝑛𝑒𝑤−𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 and 𝐶𝐷𝑛𝑒𝑤−𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 might fail to capture such a pattern, leading to 

an undesired performance in healthcare prediction tasks. This finding echoed other studies which 

showed the significance of co-occurrence normalization (Heidary Moghadam et al., 2019; 

Kumar et al., 2015).  

(4) We also looked at the performance of four distance metrics, 𝑆𝐷 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖, 𝑉𝑗), 

for measuring the distances between medical records. 𝑆𝐷1 showed better performance compared 

to other medical record distance metrics; in the ten combinations of two prediction tasks and five 

datasets, 𝑆𝐷1 achieved the best AUC scores 50% of the time. The possible explanation could be 

that 𝑆𝐷1 was designed to capture the similarities of the most similar medical-concept pairs from 

two medical records, which were essential features for the two healthcare prediction tasks.  

https://www.zotero.org/google-docs/?nMRbVX
https://www.zotero.org/google-docs/?nMRbVX
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Figure 2.9. Prediction performance using different combinations of distance metrics

  
(a) Readmission prediction (MIMIC III - 41071) (b) In-hospital mortality prediction (MIMIC III - 428) 
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An interesting finding was that 𝑆𝐷4 was also developed to compare the most similar 

medical-concept pairs from two medical records. However, 𝑆𝐷4 performed poorly in the 

prediction tasks on all five datasets. As shown in Figure 2.8., 𝑆𝐷4 never achieved the best AUC 

scores. This result differed from the finding of Jia et al. (2019). The difference between 𝑆𝐷1 and 

𝑆𝐷4 lay in how they defined the most similar medical-concept pairs (see Figure 2.10.). In 𝑆𝐷1, 

every medical concept could be paired with another medical concept. Such a pair formed a set of 

“most similar pairs” for medical-record distance calculation. However, in 𝑆𝐷4, it was possible 

that a medical concept could not be paired with other medical concepts. Hence, 𝑆𝐷4 excluded 

such a medical concept from medical-record distance calculation, which compromised the 

accuracy of prediction models. The experimental results suggested that every medical concept 

contained important information like disease diagnosis and was important for healthcare 

prediction tasks.  

To summarize, we developed a new medical concept-distance metric 𝐶𝐷𝑛𝑒𝑤 that was 

both knowledge-driven and data-driven to preserve medical domain knowledge in medical 

concepts’ properties, i.e., the hierarchical structure and co-occurrences. Extant metric 𝐶𝐷𝑊𝑃 did 

not consider the co-occurrences of medical concepts, hence was outperformed by our metric 

𝐶𝐷𝑛𝑒𝑤. Since 𝐶𝐷𝑛𝑒𝑤 took medical concepts’ co-occurrences into consideration, it was important 

to use distance formulas with normalization terms that normalize the co-occurrences of medical 

concepts.  

Part 2: Compare the prediction performance with benchmarks  

We compared the proposed method with the state-of-the-art baseline methods (three 

types, 14 in total, Table 2.6.) and reported the major findings below.  
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(1) In the two prediction tasks, our method exceeded all baselines in 70% of cases (top-1 

AUC scores) on five datasets; and reached 100% of state-of-the-art performance (top-3 AUC 

scores). As shown in Tables 2.8. - 2.9., we highlighted the top three AUC scores in bold in each 

prediction task and on each dataset, with the highest AUC score bolded and underlined. The 

superior performance in the experimental results demonstrated the effectiveness of our method. 

 

Figure 2.10. Example of most similar medical-concept pairs in 𝑆𝐷1 and 𝑆𝐷4.  

(2) We conducted two healthcare prediction tasks: readmission and in-hospital mortality 

predictions. According to our findings, the overall performance of all models (i.e., the proposed 

and baseline methods) was better in mortality prediction (average AUC = 0.753) than in 

readmission prediction (average AUC = 0.552). The experimental results suggested that 

readmission prediction was a more challenging task on the five datasets we adopted.  

We noticed that Med2Vec, as a representative state-of-the-art for individual medical 

concept embedding techniques, performed well in mortality prediction (average AUC=0.765, 

1.2% better than the overall average). Especially on the datasets MIMIC III - 0389 and MIMIC 

III - 42 , Med2Vec’s AUC scores for mortality prediction were 0.818 and 0.809 respectively, the 

highest among all methods. However, Med2Vec performed poorly in readmission prediction 

(average AUC=0.487, 6.5% below the overall average) and never achieved the best AUC on any 

 
Most similar pairs in 𝑆𝐷1 (solid and dash lines): < 𝑀1,𝑀3 >, < 𝑀2,𝑀4 >, < 𝑀1,𝑀5 >.  

Most similar pairs in 𝑆𝐷4 (solid lines): < 𝑀1,𝑀3 >, < 𝑀2,𝑀4 >. 
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of the five datasets. The explanation for this could be that readmission prediction was a more 

difficult task, and the Med2Vec model (i.e., a deep learning model) was under training. This 

finding echoed the observation by E. Choi et al. (2018) that many healthcare prediction tasks 

benefited from deep learning models, however, these models often required a large amount of 

training data, which was beyond the capacity of most healthcare systems. 

By contrast, our method exhibited stable and superior performance in both prediction 

tasks. In the readmission prediction task, our method had an average AUC of 0.593, which was 

4.1% higher than the overall average (average AUC_𝑇𝐼𝐶𝐷9 = 0.588, 3.6% better than the overall 

average; average AUC_𝑇𝐶𝑈𝐼 = 0.589, 3.7% better than the overall average; average AUC_𝑇𝐶𝐶𝑆 = 

0.601, 4.9% better than the overall average). In the in-hospital mortality prediction task, our 

method had an average AUC of 0.823, which was 7.0% higher than the overall average (average 

AUC_𝑇𝐼𝐶𝐷9 = 0.826, 7.3% better than the overall average; average AUC_𝑇𝐶𝑈𝐼 = 0.819, 6.6% 

better than the overall average; average AUC_𝑇𝐶𝐶𝑆 = 0.825, 7.2% better than the overall 

average).  

The possible reason was that most of these embedding methods are adapted from NLP-

related deep learning techniques. The embedding for the individual medical concept was trained 

discriminatively, i.e., the model learned a conditional distribution of outputs given inputs. For 

example, in word2vec, the model predicted a medical concept given other medical concepts in 

the same medical record (i.e., CBOW) or predicted other medical concepts in the same medical 

record given a medical concept (i.e., skip-gram). In contrast, manifold learning algorithms acted 

as generative models which strived to depict the actual distribution of the data. We would expect 

algorithms that acted like generative models to do better with less training data, but for methods 

https://www.zotero.org/google-docs/?yUtEvJ
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that acted like discriminative models to catch up with sufficient training data15 (Ng & Jordan, 

2001). Since a large amount of training data was not always available for healthcare prediction 

tasks, using manifold learning algorithms was an advantage of the proposed method.  

(3) We included three types of benchmarks, i.e., summary measures, code mapping, and 

embeddings of individual medical concepts, among which embeddings of individual medical 

concepts performed the best.    

Summary measures were one of the traditional strategies used to address medical 

concepts’ high dimensionality issues. Some of the summary measures worked extremely well on 

the in-hospital prediction task. For example, RSI’s AUC score on the MIMIC III - 41401 dataset 

was 0.882, 12.9% higher than the overall average. However, its performance on readmission 

prediction was not impressive. This was because RSI was designed to predict in-hospital 

mortality rather than readmission (Mehta et al., 2018; Sundararajan et al., 2004; Verdecchia, 

2003). The findings corroborated previous research in that one of the disadvantages of summary 

measures was that they were difficult to adapt for prediction tasks other than the designed 

purpose.  

Code mapping strategies were frequently employed by healthcare predictive analytics 

researchers. The performance, on the other hand, was not particularly outstanding. In our tests, 

such methods never received the highest AUC score. The findings contradicted some previous 

research that found code mapping to be beneficial (Choi, Bahadori, Kulas, et al., 2016; Min et 

al., 2019). Our findings, however, backed up Xiang et al., (2019), Jung et al. (2019), and Rasmy 

 
15  To clarify, generative and discriminative models are two types of statistical classification models. Both our 

proposed method and baseline methods were not developed for classifications. We borrow the concepts of 

“generative” and “discriminative” to describe the different learning processes of deep-learning-based and manifold-

learning-based algorithms.  

https://www.zotero.org/google-docs/?dQzAMs
https://www.zotero.org/google-docs/?dQzAMs
https://www.zotero.org/google-docs/?2k28Cn
https://www.zotero.org/google-docs/?2k28Cn
https://www.zotero.org/google-docs/?zKWNmM
https://www.zotero.org/google-docs/?zKWNmM
https://www.zotero.org/google-docs/?TAShQe
https://www.zotero.org/google-docs/?Op2RIo
https://www.zotero.org/google-docs/?vdJ5DE
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et al. (2020)’s conclusions that code translations were not always useful in healthcare prediction 

tasks. 

(4) Our evaluation included three types of medical concept hierarchies, 𝑇𝐼𝐶𝐷9, 𝑇𝐶𝐶𝑆, and 

𝑇𝐶𝑈𝐼. We found that the medical concept hierarchy that could help the MD-Manifold achieve the 

best performance in different cases was not the same. For example, in the readmission task on 

MIMIC III - 41071, 𝑇𝐼𝐶𝐷9 helped the proposed method achieve the highest AUC score (0.666). 

Similarly, using 𝑇𝐶𝐶𝑆 as domain knowledge, our method’s AUC score (0.67 ) is higher than all 

other methods in the readmission prediction for septicemia patients (MIMIC III - 0389). Also, 

𝑇𝐶𝑈𝐼 helped the proposed method reach the highest AUC score (0.887) to predict in-hospital 

mortality for the subendocardial infarction patients (MIMIC III - 41071). Our results suggested 

that using proper medical domain knowledge could provide useful information for medical 

concept distance calculation, which was consistent with Melton et al. (2006)’s finding.  

Part 3: Experiments of multimodal data fusion 

In this subsection, we reported the experimental results of multimodal data fusion. For 

multimodal data, we concatenated the demographic features with medical records’ low-

dimensional representations generated from the proposed method. Then, we evaluated the 

concatenated representations using the two prediction tasks on the five datasets. For the MIMIC 

III datasets, the demographics included age, gender, insurance, religion, marital status, and 

ethnicity. For the NRD2014 dataset, the features included age, gender, and insurance (no marital 

status and ethnicity information). 

 

 

https://www.zotero.org/google-docs/?vdJ5DE
https://www.zotero.org/google-docs/?vUQ5Nd
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Table 2.8. Performance of MD-Manifold and baselines in the readmission prediction task. 

Database MIMIC III MIMIC III MIMIC III MIMIC III NRD 

Disease (ICD-9 code) 0389 428 41071 41401 428 

Dimensions 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 

Summary 

measures 

CCI 53.0 57.8 63.1 62.5 55.7 

ECI 56.3 56.3 64.7 62.0 54.4 

RSI 54.0 49.6 63.1 61.9 54.1 

Code 

mapping 

methods 

ICD9-3digit 49.1 53.3 55.7 50.8 58.6 

CCS 49.6 57.8 56.2 50.9 57.8 

CUI 56.4 54.5 57.6 47.3 58.4 

SNOMED 55.3 54.8 52.1 47.0 58.0 

Individual 

embeddings 

Sum GloVe 52.7 54.2 57.9 61.0 58.3 56.8 52.8 57.6 50.1 52.9 51.7 52.0 57.9 59.9 58.1 61.2 58.3 62.1 57.2 59.1 57.4 58.9 60.9 60.1 57.6 58.8 59.8 60.1 60.2 60.0 

Word2Vec 60.6 60.4 59.5 55.6 56.7 55.9 54.8 55.1 53.4 56.9 53.7 51.2 56.2 57.3 55.1 53.8 51.7 50.2 42.5 51.0 48.5 45.7 41.0 38.4 53.8 54.9 56.1 57.8 57.1 55.2 

FastText 59.3 59.7 59.2 57.8 57.0 53.8 55.9 55.3 55.6 54.2 54.9 56.8 62.3 63.6 63.3 58.7 61.0 58.6 64.7 63.9 65.6 66.7 65.3 62.3 57.3 58.4 58.8 59.2 59.0 58.8 

Phe2Vec GloVe 47.4 52.4 47.1 52.5 52.7 48.4 54.7 55.9 49.5 51.1 47.4 49.2 55.4 42.4 49.9 45.1 47.6 51.5 58.3 53.2 54.7 50.1 56.5 51.5 53.0 52.5 52.6 50.6 50.9 50.6 

Word2Vec 52.2 56.1 55.3 55.1 55.5 50.9 55.6 54.3 53.1 52.1 48.5 50.5 50.0 49.4 49.0 51.5 49.2 46.0 53.5 44.4 48.4 45.3 47.1 48.8 50.0 50.0 50.0 50.0 50.0 50.0 

FastText 49.4 53.0 45.6 47.9 51.0 50.6 54.1 56.1 51.8 54.0 50.7 53.6 48.5 47.6 52.0 49.7 43.1 41.9 65.0 58.7 60.4 61.0 60.0 60.9 54.5 54.4 54.4 54.4 54.4 54.3 

Med2Vec 45.3 45.1 44.5 50.7 50.8 45.3 45.3 44.7 49.9 47.6 45.9 53.3 39.3 41.7 41.6 48.2 47.0 49.2 45.5 51.5 50.3 45.4 49.1 49.5 55.6 56.0 55.5 55.0 55.9 55.8 

MD- 

Manifold 

𝑇𝐼𝐶𝐷9 as domain 

knowledge 

66.8 62.3 57.6 57.1 51.5 48.2 52.8 53.9 55.4 60.7 57.8 52.2 59.7 63.6 66.6 65.7 58.2 58.6 60.9 65.5 63.7 58.2 57.6 55.0 58.2 59.2 60.1 59.9 59.4 58.9 

𝑇𝐶𝐶𝑆 as domain 

knowledge 

61.7 63.5 67.8 62.2 55.3 55.0 53.8 58.0 58.1 62.0 58.5 54.1 60.4 60.1 66.5 64.7 61.0 54.5 64.5 65.3 63.9 62.1 55.7 56.7 58.2 58.7 59.8 60.2 59.9 59.6 

𝑇𝐶𝑈𝐼 as domain 

knowledge 

66.6 64.2 54.8 56.1 47.4 46.1 52.7 56.9 60.5 62.5 55.6 49.0 60.5 60.3 66.5 64.8 61.4 55.5 62.0 65.0 65.1 62.8 59.2 54.5 58.3 58.5 60.0 60.3 60.0 59.5 

Note: (1) Performance: AUC (%) 

(2) The top-3 AUC scores in each dataset were marked in bold, among which the highest AUC scores were underlined.  

(3) The dimensions of summary measures were all 1. The dimensions of code mappings varied across different methods and datasets. The dimensions of ICD9-3 digit (1018 in total) in MIMIC III - 

0389, 428, 41071, 41401, and NRD - 428 were 632, 503, 485, 499, and 953, respectively. The dimensions of CCS (367 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 340, 311, 

305, 325, and 256, respectively. The dimensions of CUI (16150 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 2035, 1448, 1363, 1467, and 3768, respectively. The dimensions 

of SNOMED (7561 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 1277, 908, 838, 916, and 2314, respectively. 
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Table 2.9. Performance of MD-Manifold and baselines in the mortality prediction task. 

Database MIMIC III MIMIC III MIMIC III MIMIC III NRD 

Disease (ICD-9 code) 0389 428 41071 41401 428 

Dimensions 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 

Summary 

measures 

CCI 58.6 53.8 62.2 77.6 57.5 

ECI 54.0 50.1 62.0 72.2 62.8 

RSI 67.5 72.8 82.9 88.2 88.8 

Code 

mapping 

methods 

ICD9-3digit 78.7 78.4 81.5 83.4 86.4 

CCS 79.0 76.2 86.4 66.0 85.2 

CUI 81.4 79.9 84.0 82.8 86.6 

SNOMED 78.3 77.6 83.8 75.8 82.7 

Individual 

embeddings 

Sum GloVe 69.2 71.9 75.2 75.1 76.4 75.4 69.5 72.4 73.8 73.6 74.0 74.3 85.6 83.1 84.5 85.2 84.9 86.4 83.0 90.2 92.6 91.3 88.8 83.0 92.5 93.5 92.0 93.6 81.6 93.9 

Word2Ve

c 

66.8 70.5 72.0 74.1 74.2 74.9 52.9 67.5 74.2 71.8 73.9 73.3 70.1 74.5 79.1 77.5 76.6 75.5 69.7 77.5 79.8 77.2 80.9 83.2 62.4 69.4 78.8 76.2 91.1 71.8 

FastText 66.6 71.6 69.1 70.3 71.7 71.9 70.4 70.7 71.0 71.0 69.0 71.9 81.2 81.0 82.8 82.2 84.5 83.4 90.3 83.8 89.6 90.3 90.3 89.3 88.8 91.5 93.1 93.0 90.6 93.4 

Phe2Vec GloVe 57.9 58.6 60.2 63.3 64.3 63.4 62.0 57.0 64.0 61.6 63.3 60.4 71.5 72.8 72.2 72.6 70.6 74.7 71.5 75.9 60.1 66.2 60.9 70.3 72.4 73.5 78.4 63.5 77.3 75.7 

Word2Ve

c 

51.3 52.9 50.9 50.4 51.4 54.1 54.4 51.6 56.1 59.8 57.9 59.5 56.1 58.3 60.2 59.0 59.3 62.1 58.0 67.7 53.8 57.7 61.8 68.9 50.3 50.2 50.2 50.0 50.1 50.1 

FastText 60.2 62.4 60.4 60.9 61.6 62.0 59.8 60.7 59.4 59.6 58.6 60.3 66.9 68.6 70.3 70.0 68.7 72.6 81.2 81.1 75.4 74.0 75.3 69.6 79.3 79.7 80.2 79.9 80.0 79.7 

Med2Vec 81.8 81.7 79.7 79.8 78.6 78.8 63.3 72.1 71.6 80.9 74.6 79.7 65.3 73.6 82.0 79.8 76.6 77.5 61.5 55.4 72.6 73.9 74.6 81.2 82.7 81.1 87.0 83.7 81.8 82.7 

MD- 

Manifold 

𝑇𝐼𝐶𝐷9 as domain 

knowledge 

74.3 78.9 81.6 81.4 78.8 73.2 75.4 78.1 78.2 78.3 73.7 65.7 88.0 86.8 84.7 83.6 78.1 75.2 85.3 92.1 91.0 84.6 80.9 79.7 92.3 93.4 93.2 91.2 92.5 89.2 

𝑇𝐶𝐶𝑆 as domain 

knowledge 

74.4 78.8 81.8 81.5 78.4 73.7 76.5 76.5 78.0 79.1 74.3 71.3 87.9 86.6 85.9 82.7 78.8 74.9 82.0 90.3 91.0 86.6 79.3 78.0 92.1 92.1 91.5 92.2 90.3 88.2 

𝑇𝐶𝑈𝐼 as domain 

knowledge 

74.4 78.8 81.8 81.4 78.5 73.7 77.1 77.0 78.4 79.1 75.9 69.8 88.7 86.9 84.7 81.5 74.1 70.6 73.9 90.3 91.0 86.6 79.3 78.0 91.3 92.1 92.1 90.9 90.4 89.3 

Note: (1) Performance: AUC (%) 

(2) The top-3 AUC scores in each dataset were marked in bold, among which the highest AUC scores were underlined.  

(3) The dimensions of summary measures were all 1. The dimensions of code mappings varied across different methods and datasets. The dimensions of ICD9-3 digit (1018 in total) in MIMIC III - 

0389, 428, 41071, 41401, and NRD - 428 were 632, 503, 485, 499, and 953, respectively. The dimensions of CCS (367 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 340, 311, 

305, 325, and 256, respectively. The dimensions of CUI (16150 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 2035, 1448, 1363, 1467, and 3768, respectively. The dimensions 

of SNOMED (7561 in total) in MIMIC III - 0389, 428, 41071, 41401, and NRD - 428 were 1277, 908, 838, 916, and 2314, respectively. 
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Table 2.10. Performance of MD-Manifold and baselines with multimodal data fusion in the readmission prediction task. 

Database MIMIC III MIMIC III MIMIC III MIMIC III NRD 

Disease (ICD-9 code) 0389 428 41071 41401 428 

Dimensions 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 

Summary 

measures 

CCI 55.6 64.4 55.8 58.0 58.2 

ECI 57.1 63.6 55.9 57.1 57.5 

RSI 57.4 63.1 56.0 55.3 57.8 

Code 

mapping 

methods 

ICD9-3digit 52.1 59.7 52.7 53.5 59.8 

CCS 54.2 62.6 51.1 52.7 59.3 

CUI 57.8 60.2 56.4 51.6 59.4 

SNOMED 57.1 61.1 54.0 49.9 59.3 

Individual 

embeddings 

Sum GloVe 57.9 58.3 59.6 62.1 60.7 60.5 61.2 61.5 59.8 60.1 59.3 59.2 58.7 58.5 59.1 58.7 58.0 59.9 58.6 60.5 59.1 60.3 60.2 60.2 57.5 57.5 57.4 57.4 57.4 57.4 

Word2Ve

c 

61.6 62.7 61.8 59.7 58.9 58.8 62.9 61.1 59.1 60.0 56.1 55.2 54.7 57.7 56.7 50.2 54.6 54.5 55.0 56.1 54.3 47.5 44.5 42.4 57.4 57.4 57.4 57.4 57.4 57.4 

FastText 58.5 59.5 58.7 57.8 59.1 57.1 61.9 61.7 61.3 61.3 61.7 62.0 57.4 60.5 60.1 56.8 59.6 57.0 62.8 62.0 63.1 64.8 63.4 60.8 57.6 57.7 57.6 57.6 57.7 57.6 

Phe2Vec GloVe 55.7 56.6 53.3 54.9 54.7 54.5 63.2 62.3 58.9 59.5 54.0 55.4 56.0 48.0 50.9 46.6 51.3 53.3 61.1 56.8 56.3 54.9 57.2 55.3 59.5 60.1 60.8 61.0 61.0 61.0 

Word2Ve

c 

53.7 56.0 55.7 57.0 56.9 53.7 61.9 60.5 59.8 57.6 52.9 54.0 50.1 48.7 50.5 49.3 47.3 49.9 55.5 50.3 54.6 50.1 50.7 48.8 58.0 58.5 58.7 58.7 57.9 57.4 

FastText 55.1 55.4 54.9 54.7 55.1 55.1 62.1 61.8 61.3 61.0 61.7 61.4 52.6 52.6 53.7 53.6 51.6 50.1 62.1 61.4 60.1 60.4 61.3 61.6 59.2 59.9 60.1 60.4 60.2 60.2 

Med2Vec 52.2 43.5 44.2 55.1 50.9 47.9 56.5 56.0 52.6 50.4 52.6 50.7 54.8 45.4 49.8 54.3 46.3 43.7 51.4 50.9 51.9 45.1 43.8 43.9 56.6 56.4 56.3 56.1 56.1 55.7 

MD- 

Manifold 

𝑇𝐼𝐶𝐷9 as domain 

knowledge 

63.6 62.1 58.2 57.9 53.4 48.0 60.8 60.8 60.8 62.5 59.1 53.7 62.5 63.8 66.8 64.4 61.0 58.5 60.6 63.8 63.8 59.2 58.8 53.9 60.0 60.6 61.3 61.1 60.7 60.0 

𝑇𝐶𝐶𝑆 as domain 

knowledge 

62.1 62.6 65.0 61.0 55.4 55.3 59.9 61.2 61.7 63.2 58.9 56.6 62.3 63.3 66.8 65.0 62.0 55.7 63.1 63.7 60.9 60.3 56.1 58.1 59.5 60.6 61.2 61.1 60.7 59.8 

𝑇𝐶𝑈𝐼 as domain 

knowledge 

62.4 64.0 63.1 57.8 50.6 46.6 59.3 61.0 62.6 64.1 56.8 52.0 62.5 63.3 66.9 64.4 61.0 55.7 61.3 64.3 66.1 64.0 60.9 55.4 59.7 60.6 61.0 61.2 60.6 59.7 

 

Note: (1) Performance: AUC (%) 

(2) The top-3 AUC scores in each dataset were marked in bold, among which the highest AUC scores were underlined. 
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Table 2.11. Performance of MD-Manifold and baselines with multimodal data fusion in the mortality prediction task. 

Database MIMIC III MIMIC III MIMIC III MIMIC III NRD 

Disease (ICD-9 code) 0389 428 41071 41401 428 

Dimensions 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512 

Summary 

measures 

CCI 64.0 68.6 68.7 64.1 82.3 

ECI 61.9 68.2 69.2 64.4 78.7 

RSI 70.7 75.5 83.8 72.8 82.6 

Code 

mapping 

methods 

ICD9-3digit 81.3 80.5 85.1 84.7 81.8 

CCS 81.3 80.4 88.9 70.4 77.0 

CUI 84.0 83.6 87.9 85.0 90.0 

SNOMED 81.2 79.8 88.0 81.8 88.0 

Individual 

embeddings 

Sum GloVe 69.9 72.4 75.6 75.4 76.3 76.1 73.2 72.9 74.4 73.9 74.0 74.0 82.9 82.4 83.3 84.3 84.1 83.9 78.2 83.9 82.5 83.1 83.4 80.0 90.1 88.6 82.3 93.2 86.2 93.9 

Word2Ve

c 

68.2 71.4 72.3 74.5 75.7 76.4 64.6 70.3 75.0 74.6 76.8 76.7 71.7 75.2 80.1 81.7 79.6 80.0 72.6 79.9 83.8 81.4 82.5 85.3 81.7 87.1 89.0 77.9 82.4 84.7 

FastText 68.0 71.0 69.8 70.8 72.5 72.7 72.6 72.9 73.9 73.0 72.5 73.0 76.2 79.1 79.8 79.8 81.1 81.5 74.1 77.7 76.3 79.0 75.8 80.0 88.7 91.2 87.6 90.6 90.4 82.4 

Phe2Vec GloVe 60.8 62.1 63.1 64.5 65.9 65.0 66.7 64.2 69.4 64.5 66.7 64.9 72.5 75.7 73.2 75.1 73.6 77.2 64.6 74.8 64.7 70.3 67.9 78.9 75.1 75.9 73.5 79.2 74.1 72.6 

Word2Ve

c 

60.5 60.0 58.8 56.7 55.6 57.2 65.6 64.5 65.7 66.3 63.3 64.9 62.6 65.1 63.3 65.3 65.7 68.2 59.0 67.1 66.2 62.9 65.2 66.9 67.4 81.0 74.8 71.3 74.1 75.0 

FastText 61.4 63.0 61.5 61.9 62.9 63.5 66.6 66.0 67.1 67.5 66.1 67.3 65.7 69.1 71.0 69.6 69.6 71.0 67.5 74.7 69.2 67.8 69.6 68.5 75.5 78.7 80.3 77.0 77.4 83.4 

Med2Vec 82.4 80.4 80.9 81.6 76.6 76.4 78.5 76.2 74.9 73.7 78.6 75.2 78.8 85.8 79.2 83.0 78.0 73.6 69.5 78.6 80.2 76.0 81.0 73.1 79.4 78.0 76.0 74.3 74.2 75.7 

MD- 

Manifold 

𝑇𝐼𝐶𝐷9 as domain 

knowledge 

75.4 78.9 81.2 81.4 80.0 74.0 74.0 75.7 76.9 77.3 73.9 70.7 84.2 85.3 84.9 83.3 81.8 78.9 81.3 86.4 90.3 83.1 83.3 82.5 92.9 93.7 93.2 92.9 91.5 89.3 

𝑇𝐶𝐶𝑆 as domain 

knowledge 

75.4 78.5 81.2 81.7 79.3 75.2 75.9 75.7 77.5 77.5 73.7 74.4 84.8 84.5 84.8 83.0 79.7 77.3 81.1 87.0 89.7 82.3 81.3 82.3 92.1 92.7 92.6 91.6 90.8 89.5 

𝑇𝐶𝑈𝐼 as domain 

knowledge 

75.4 78.5 81.2 81.7 79.3 75.2 76.6 75.9 77.4 77.1 76.4 72.3 86.0 85.0 83.5 81.2 77.0 76.1 81.1 87.0 89.7 82.3 81.2 82.2 92.1 93.2 92.2 91.4 91.1 89.6 

Note: (1) Performance: AUC (%) 

(2) The top-3 AUC scores in each dataset were marked in bold, among which the highest AUC scores were underlined. 
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We compared the prediction power of the original representations to the concatenated 

representations in Figure 2.11. (all using 𝑇𝐼𝐶𝐷9 as domain knowledge for brevity). The 

multimodal data fusion yielded varying degrees of performance improvement. (1) For certain 

diseases, such as septicemia (ICD-9: 0389), subendocardial infarction (ICD-9: 41071), and 

coronary atherosclerosis of native coronary artery (ICD-9: 41401), adding demographics did not 

improve the AUC scores significantly for either readmission prediction or in-hospital mortality 

prediction. This result was in line with previous medical research in that age and gender were not 

significant in factor analyses for patient cohorts with these diseases (Lam et al., 2019; Singh et 

al., 2019). (2) The demographics information improved the prediction accuracy significantly for 

heart failure patients (MIMIC III - 428 and NRD - 428) in the readmission tasks. After data 

fusion, the AUC scores increased from 0.528 to 0.608 (at the dimension of 16) in MIMIC III - 

428, and increased from 0.582 to 0.600 (at the dimension of 16) in NRD - 428. The findings 

were consistent with medical observations that heart failure readmissions were strongly linked to 

demographic characteristics such as age, gender, and race (Mirkin et al., 2017). Another 

interesting finding was the decrease in AUC as the dimension of the representations for heart 

failure patients grew larger. The noise in the representations became stronger as the dimension 

increased, negatively impacting the prediction model’s performance. 

Additionally, we concatenated the demographic vectors to the representations generated 

from baseline methods and compared them with our concatenated representations. For Med2Vec 

(a deep learning method), we inserted demographics into its hidden layer as Choi et al. (2016) 

suggested. Tables 2.10. – 2.11. showed the AUC scores of the concatenated representations from 

both proposed and baseline methods. We highlighted the top-3 AUC scores in bold in each 

dataset and prediction task, with the highest AUC score bolded and underlined. We found that 

https://www.zotero.org/google-docs/?YPBFX7
https://www.zotero.org/google-docs/?YPBFX7
https://www.zotero.org/google-docs/?wGnVCA
https://www.zotero.org/google-docs/?jCaIOF
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the proposed representations were still the most effective. On all the five datasets and two 

prediction tasks, our method exceeded all the baselines in 70% of the cases (top-1 AUC scores), 

and reached 80% of state-of-the-art performance (top-3 AUC scores).  

 

Figure 2.11. Performance comparison: with or without multimodal data fusion. . 

To summarize, we proposed a new medical concept distance metric 𝐶𝐷𝑛𝑒𝑤 to incorporate 

medical domain knowledge into the patient-patient network. Then, we generated low-

 

 
Note: domain knowledge: 𝑇𝐼𝐶𝐷9  
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dimensional representations for medical records using manifold learning algorithms with the 

patient-patient network as the input. The generated medical records’ representations were used 

for two healthcare prediction tasks on various patient cohorts. (1) The proposed metrics 

𝐶𝐷𝑛𝑒𝑤−𝑒𝐻𝐷𝑁 and 𝐶𝐷𝑛𝑒𝑤−𝐶𝑜𝑠𝑖𝑛𝑒 showed superior performance over the other metrics, including 

the existing metric 𝐶𝐷𝑊𝑃. (2) Our proposed method, MD-Manifold, generated more effective 

low-dimensional representations for medical records (i.e., sets of medical concepts) than various 

state-of-the-art baseline methods. (3) Multimodal data fusion could create substantial added 

value for healthcare prediction analyses.  

Conclusion and future work 

To sum up, this study proposes a new method, Medical-Distance-manifold (MD-

manifold), to generate low-dimensional representations for medical records (i.e., each record 

contains a set of medical concepts) in EHR.  

The technical contributions of this study are significant. (1) In the proposed method, we 

develop a new medical-concept distance metric that considers both the medical concepts’ 

hierarchy (i.e., knowledge-driven) and their co-occurrences (i.e., data-driven) as medical domain 

knowledge. The experimental results show the proposed metric is better than the existing metric, 

𝐶𝐷𝑊𝑃, for measuring the distances between medical concepts in EHR. (2) Using the proposed 

medical-concept distance metric, we create a new patient-patient network with medical domain 

knowledge embedded. Using the patient-patient network as the input of manifold learning 

algorithms, we generate the low-dimensional representations of medical records. Using our 

representations, prediction models outperform the state-of-the-art methods on two large real-

world databases and two prediction tasks. (3) Patients and their health conditions can be 

described by multimodal data derived from various sources. The medical record’s low-
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dimensional representation generated by our method can be combined with other data modalities 

and enhance the performance of healthcare prediction models.   

The advantages of our method are as follows. (1) Computation efficiency. The proposed 

method is based on manifold learning algorithms, which are known for representing high-

dimensional data in low dimensions. Our method provides a computationally efficient solution 

for medical record-level healthcare prediction tasks (e.g., readmission and in-hospital mortality 

predictions) since it dramatically decreases the dimensions needed to represent a medical record 

(i.e., sets of medical concepts). (2) Less demanding on the training data size. Most existing 

medical-concept embedding approaches are based on NLP-related deep learning techniques, 

which likely necessitate large training datasets. For example, Pennington et al. (2014) train their 

representations on 42 billion word tokens which are more than most medical record systems can 

handle (Johnson et al., 2016). On the contrary, the proposed method is based on manifold 

learning algorithms (e.g., Laplacian Eigenmaps and Isomap), which generally optimize 

representations using matrix factorization techniques such as singular value decomposition 

(SVD) (Klema & Laub, 1980) and do not need huge training datasets. Our low-dimensional 

representations are generated using thousands of data records, and their performance is 

consistent in different prediction tasks and patient cohorts. (3) Pre-trained and task-agnostic 

medical-record-level representations. The basic idea of this work is to preprocess the high-

dimensional EHR data and derive the low-dimensional representations offline. Most 

preprocessing computations can be completed offline during machine idle time. In addition to 

readmission and death prediction, the derived representations can be used for other medical-

record-level prediction tasks, such as length-of-stay prediction, healthcare cost prediction, and 

equipment maintenance needs identification. (4) Strong generalizability. First, we evaluate our 

https://www.zotero.org/google-docs/?Ah4oKX
https://www.zotero.org/google-docs/?Och0nF
https://www.zotero.org/google-docs/?4OGVaY
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method on five datasets and two healthcare prediction tasks, and compare the results with 14 

baselines. The experimental results indicate that our method leads to improved performance in 

different healthcare prediction tasks on different patient cohorts. Second, the generated low-

dimensional representations are ready to be used as input to any machine learning models for 

supervised or unsupervised tasks. Although we use simple classification models in the 

experiments to evaluate our framework’s efficacy, more advanced deep learning models (e.g., 

sequence-to-sequence models and attention-based models) can benefit from using our low-

dimensional representations. Third, we propose an open framework, and its performance can be 

further boosted by incorporating more advanced medical knowledge trees, medical distance 

metrics, or manifold learning algorithms. 

The managerial implications of this study are twofold.  

(1) Our method has great potential to alleviate the inaccurate prediction problem caused 

by medical coding errors. In medical systems, accurate coding of medical concepts (e.g., 

diagnosis and services codes) has become increasingly important. Normally, coding is a manual 

process that involves the human evaluation of clinical documentation to identify applicable 

codes. The code assignment may be carried out by physicians, but it is often performed by other 

personnel, such as coding professionals. They need to extract key information from medical 

records and assign correct codes based on category, anatomic site, laterality, severity, and 

etiology (Quan et al. 2005). The coding process is labor-intensive and error-prone (Stanfill et al., 

2010). According to Horsky et al. (2017), only a half (56%) of the issued diagnostic codes are 

rated as appropriate in the US, and about one-quarter are omitted.     

Our method is more robust to low-quality EHR data because it is based on the medical-

concept hierarchical structure. Substituting a medical concept (e.g., ICD-9 code) with another 

https://www.zotero.org/google-docs/?JBK1i3
https://www.zotero.org/google-docs/?JBK1i3
https://www.zotero.org/google-docs/?oQsr6m
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similar medical concept (i.e., inaccurate coding) in a medical record does not significantly affect 

the concept-level distance calculation. Thus, the generated low-dimensional representations still 

preserve valuable information from the EHR, resulting in better performance in healthcare 

prediction tasks. By contrast, other widely used embedding methods do not consider the medical-

concept hierarchy, leading to less favorable results. For example, even two sibling ICD-9 codes 

are represented by entirely different vectors using Word2Vec embeddings, if they do not have a 

close frequency in the EHR. Therefore, such methods are sensitive to coding errors and the 

quality of the EHR data.   

(2) The proposed method is likely to increase the use of healthcare prediction models in 

actual clinical practice. There is no doubt that healthcare predictive analytics can support clinical 

decisions. However, the use of healthcare prediction models in real-world clinical practice is still 

limited (Moons et al., 2009). One of the barriers is that most extant healthcare prediction models 

focused on one specific prediction task over specific patient cohorts (Y.-K. Lin et al., 2017). It is 

difficult for healthcare practitioners to adapt the models from the intended purpose to other 

predictions or the study population to the local population (Moons et al., 2009).  

On the other hand, the low-dimensional representations for medical records generated by 

our method can be pre-generated and task-agnostic. Different healthcare prediction models can 

use the generated low-dimensional representations for multiple purposes, lowering the barriers to 

the wide use of prediction models in healthcare practice.  

Although promising, the proposed method is not without limitations, and our method can 

be extended in the following ways in the future. (1) The proposed framework does not 

distinguish between the sequential medical records of same patients from other medical records. 

As in previous research (Choi, Bahadori, Searles, et al., 2016), all medical records are treated 

https://www.zotero.org/google-docs/?vcuKaK
https://www.zotero.org/google-docs/?BHaUxr
https://www.zotero.org/google-docs/?INBV96
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equally and independently. However, the proposed method can be further improved by 

considering the connection among the successive medical records of same patients (De Freitas et 

al., 2020). It is reasonable to assume that the sequential records are related because patients’ 

health conditions change continuously. To some extent, the representations of these medical 

records should show similarities. It would be potentially beneficial if we capture the sequentiality 

in the future. (2) Manifold learning is an increasing research area with many new algorithms and 

applications. In this study, we adapt Laplacian Eigenmap and Isomap as examples of the local 

and global approaches of the manifold learning algorithms, which are not thorough. We intend to 

explore more manifold learning algorithms in the future. (3) Moreover, we can evaluate the 

generalization ability of our method by inspecting other medical record-level prediction tasks, 

such as length-of-stay prediction, healthcare cost prediction, and equipment maintenance needs 

identification. (4) The databases we used for our empirical evaluation (i.e., NRD and MIMIC III) 

do not have the timestamps of the ICD-9 codes. We cannot build healthcare prediction models a 

few days before patients’ discharges deaths, limiting the prediction models’ practical 

significance when early interventions are needed. The proposed method can be evaluated using 

early prediction models when databases with medical concepts’ timestamps are available. (5) We 

only include the ICD-9 diagnosis codes in our evaluation due to data limitations. The proposed 

method can be extended when other medical concepts (e.g., procedure codes or drug codes) are 

available. (6) We evaluate the proposed method empirically. In the future, our method can be 

evaluated by medical experts (Choi et al., 2016).  
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Appendix A: The baseline medical concept distance metric 𝑪𝑫𝑾𝑷 

We introduce a widely used medical concept distance metric 𝐶𝐷𝑊𝑃 (Wu and Palmer 

1994), as our baseline. It is also the foundation upon which we develop our new distance metric 

𝐶𝐷𝑛𝑒𝑤. 

Given the concept structure shown in Figure 2.4., if two medical concepts are connected 

by an edge, then the medical concept in the upper level is called a parent, and the one in the 

lower level is called a child. For example, in Figure 2.4., 428 is the parent of 4282; and 4282 is 

the child of 428. 

Intuitively, 𝐶𝐷𝑊𝑃 considers concept 𝑎 and 𝑏 as distant if their least common ancestor 

(LCA) is much closer to the root of the concept tree compared with 𝑎 and 𝑏. Specifically, 

𝐶𝐷𝑊𝑃(𝑎, 𝑏) = 1 −
2𝐼𝐶(𝑐)

𝐼𝐶(𝑎)+𝐼𝐶(𝑏)
, where 𝑐 is the LCA, and Information Content (𝐼𝐶) is defined as 

the number of the level in the concept tree. A concept has more 𝐼𝐶 if it is far from the root 

because it is more specific. Particularly, the 𝐼𝐶 of the root is 1, the 𝐼𝐶 of the concept that is 

connected with the root is defined as 2, and so on. If 𝐼𝐶(𝑐) is much smaller than 𝐼𝐶(𝑎) and 

𝐼𝐶(𝑏), this indicates that 𝑐 is far from 𝑎 and 𝑏; consequently, 𝑎 and 𝑏 are also distant with a 

large 𝐶𝐷𝑊𝑃(𝑎, 𝑏), and vice versa. For example, as shown in Figure 2.4., the distance between 

4289 and 42820 is 1 − (2 × 3)/(4 × 5) = 1/3, if 428 is connected to the root. 

As we mentioned in Sections 2 and 3, though straight forward and powerful, 𝐶𝐷𝑊𝑃 has 

its limitations. First, the distances among medical concepts are fully determined by the concept 

hierarchy without considering the concept co-occurrences or frequencies in practice. For 

example, two distant medical concepts co-occurring frequently tend to relate closely with each 

other, which is not reflected in the medical concepts’ hierarchical structure. Moreover, it is likely 

that a medical concept occurs more frequently than its siblings, thus, it is possible that such a 
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medical concept may have a closer relationship with its parent than its siblings. Nevertheless, the 

distance between a parent and each child is equal in 𝐶𝐷𝑊𝑃 . For example, in Figure 2.4., 

𝐶𝐷𝑊𝑃(4282, 42820) = 𝐶𝐷𝑊𝑃(4282, 42823), regardless of the frequency of 42820 and 42823 

in practice. 

To address the above-mentioned limitations, we propose a new data-driven concept-level 

distance metric, 𝐶𝐷𝑛𝑒𝑤, that considers both the structure of the medical concept hierarchy and 

the medical concepts’ cooccurrences and frequencies in the EHR dataset. 

Appendix B: Supplementary experimental results 

Table 2.12. Prediction performance using different classifiers. 

Dataset Classifier 
Dimension 

16 32 64 128 256 512 

MIMIC - 

0389 

LR 0.668 0.623 0.576 0.571 0.515 0.482 

AdaBoost 0.556 0.571 0.555 0.557 0.520 0.513 

RF 0.569 0.571 0.582 0.542 0.546 0.529 

MIMIC - 

428 

LR 0.528 0.539 0.554 0.607 0.578 0.522 

AdaBoost 0.457 0.484 0.510 0.502 0.520 0.523 

RF 0.506 0.516 0.529 0.534 0.491 0.553 

MIMIC - 

41071 

LR 0.597 0.636 0.666 0.657 0.582 0.586 

AdaBoost 0.577 0.501 0.567 0.552 0.529 0.523 

RF 0.485 0.596 0.597 0.556 0.511 0.519 

MIMIC - 

41401 

LR 0.609 0.655 0.637 0.582 0.576 0.550 

AdaBoost 0.609 0.607 0.581 0.559 0.522 0.574 

RF 0.646 0.619 0.603 0.602 0.561 0.607 

NRD -  

428 

LR 0.582 0.592 0.601 0.599 0.594 0.589 

AdaBoost 0.566 0.573 0.571 0.569 0.563 0.563 

RF 0.577 0.583 0.585 0.583 0.582 0.576 

(a) Readmission prediction  

Note: (1) The best performance on each dataset is bold. (2) Medical knowledge: 𝑇𝐼𝐶𝐷9. (3) RF: random forest. LR: 

logistic regression. 
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Table 2.12. Continued. 

Dataset Classifier 
Dimension 

16 32 64 128 256 512 

MIMIC - 

0389 

LR 0.743 0.789 0.816 0.814 0.788 0.732 

AdaBoost 0.698 0.732 0.757 0.748 0.728 0.719 

RF 0.725 0.748 0.755 0.760 0.752 0.739 

MIMIC - 

428 

LR 0.754 0.781 0.782 0.783 0.737 0.657 

AdaBoost 0.674 0.680 0.705 0.766 0.699 0.689 

RF 0.753 0.762 0.766 0.715 0.730 0.706 

MIMIC - 

41071 

LR 0.880 0.868 0.847 0.836 0.781 0.752 

AdaBoost 0.765 0.753 0.737 0.742 0.754 0.753 

RF 0.840 0.843 0.837 0.841 0.830 0.822 

MIMIC - 

41401 

LR 0.853 0.921 0.910 0.846 0.809 0.797 

AdaBoost 0.709 0.661 0.771 0.759 0.682 0.648 

RF 0.887 0.896 0.894 0.919 0.874 0.899 

NRD -  

428 

LR 0.923 0.934 0.932 0.912 0.925 0.892 

AdaBoost 0.908 0.905 0.911 0.900 0.895 0.889 

RF 0.906 0.908 0.907 0.907 0.904 0.900 

(b) In-hospital mortality prediction 

Note: (1) The best performance on each dataset is bold. (2) Medical knowledge: 𝑇𝐼𝐶𝐷9. (3) RF: random forest. LR: 

logistic regression. 

 

Table 2.13. Prediction performance using different manifold learning algorithms 

Dataset Classifier 
Dimension 

16 32 64 128 256 512 

MIMIC - 

0389 

Isomap 0.668 0.623 0.576 0.571 0.515 0.482 

Eigenmap 0.660 0.616 0.575 0.556 0.554 0.468 

MIMIC - 

428 

Isomap 0.528 0.539 0.554 0.607 0.578 0.522 

Eigenmap 0.526 0.512 0.543 0.580 0.528 0.534 

MIMIC - 

41071 

Isomap 0.597 0.636 0.666 0.657 0.582 0.586 

Eigenmap 0.617 0.561 0.618 0.622 0.670 0.541 

MIMIC - 

41401 

Isomap 0.609 0.655 0.637 0.582 0.576 0.550 

Eigenmap 0.588 0.583 0.567 0.589 0.600 0.576 

NRD -  

428 

Isomap 0.582 0.592 0.601 0.599 0.594 0.589 

Eigenmap 0.573 0.588 0.601 0.601 0.600 0.594 

(a) Readmission prediction  
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Table 2.13. Continued. 

Dataset Classifier 
Dimension 

16 32 64 128 256 512 

MIMIC - 

0389 

Isomap 0.743 0.789 0.816 0.814 0.788 0.732 

Eigenmap 0.739 0.773 0.798 0.802 0.778 0.728 

MIMIC - 

428 

Isomap 0.754 0.781 0.782 0.783 0.737 0.657 

Eigenmap 0.752 0.763 0.765 0.778 0.731 0.668 

MIMIC - 

41071 

Isomap 0.880 0.868 0.847 0.836 0.781 0.752 

Eigenmap 0.877 0.872 0.839 0.827 0.783 0.769 

MIMIC - 

41401 

Isomap 0.853 0.921 0.910 0.846 0.809 0.797 

Eigenmap 0.803 0.859 0.865 0.835 0.855 0.802 

NRD -  

428 

Isomap 0.923 0.934 0.932 0.912 0.925 0.892 

Eigenmap 0.908 0.927 0.926 0.920 0.900 0.895 

(b) In-hospital mortality prediction 
Note: (1) The best performance on each dataset is bold. (2) Medical knowledge: 𝑇𝐼𝐶𝐷9.  
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Abstract 

Intensive care units (ICU) provide critical care to patients with life-threatening illnesses 

and injuries. Worldwide, the high demand for intensive care imposes severe challenges on 

patient management and resource allocation. ICU mortality prediction can potentially inform 

rationing decisions on patients’ medical needs and promote effective resource allocation. Thus, it 

can play an essential role in reducing the social burden of intensive care needs. Researchers have 

developed severity score systems, machine learning, and deep learning-based models for ICU 

mortality prediction. However, current methods have two major shortcomings: (1) The severity 

score systems depend upon laboratory tests and intensivists’ assessments as the predicting 

variables and are questioned by their unsatisfactory performance, and (2) the machine learning 

and deep learning models suffer from feature extraction or interpretability issues that prevent 

them from having superior performance or wide application. In this work, by combining 

stochastic signal analysis and machine learning techniques, we propose a new ICU mortality 

prediction model capable of effectively extracting valid and interpretable patterns from the 

readily-available ICU bedside monitoring data with improved accuracy. To illustrate the efficacy 

of our model, we evaluate it on a large real-world multi-center ICU dataset. The proposed model 

outperforms baseline methods, including APACHE IV (the “golden standard” in ICU outcome 
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predictions), deep learning-based models (i.e., LSTM, GRU, CNN), statistical feature 

classification, and time series forecasting methods (i.e., ARMA, ARIMA) by a large margin. The 

innovative artifacts obtained from this study are salient to both the data science and healthcare 

communities. 

Introduction 

The intensive care unit (ICU) is a special department of a hospital that provides critical 

care medicine to patients who are at risk of, have, or are recovering from life-threatening 

illnesses or injuries. The ICU can provide patients with intensive monitoring, life support (e.g., 

airway, breathing, or circulation), resuscitation services, and end-of-life care (Medicine, 2021; 

Nates et al., 2016).  

The burden of ICU-requiring care is massive. In the United States (US), there are 4 

million ICU admissions every year, which accounts for 13.7% of hospital costs, 4.1% of national 

health expenditures, and 0.66% of the gross domestic product (Halpern & Pastores, 2010). ICU 

patients are extremely vulnerable to adverse outcomes due to their severe medical conditions 

(Pronovost et al., 2002). ICUs are the highest mortality units ( % to 19%, depending on patients’ 

age, the number of comorbidities, and the severity of illness) in almost all healthcare institutions 

(Halpern & Pastores, 2010).  

Researchers have long recognized the importance of ICU mortality predictions in 

alleviating the economic and healthcare burdens imposed by critical care needs (Knaus et al., 

1991). It is crucial for assessing severity of illness and adjudicating the value of new treatments, 

interventions and health care policies (Pirracchio et al., 2015). The need for ICU mortality 

predictions has been magnified during public health threats like the COVID-19 pandemic 

because hospitals have been overwhelmed by an influx of patients, many requiring critical care. 

https://www.zotero.org/google-docs/?MkFrA8
https://www.zotero.org/google-docs/?MkFrA8
https://www.zotero.org/google-docs/?em9jOL
https://www.zotero.org/google-docs/?em9jOL
https://www.zotero.org/google-docs/?Tng15f
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To date16, more than 308 million people have been tested positive worldwide. Five percent to 

twelve percent of diagnosed patients and up to thirty-three percent of hospitalized patients 

require intensive care (CDC, 2020; Myers et al., 2020; Richardson et al., 2020). Such public 

health threats pose serious challenges in ICU resource allocation, distribution, and optimization.    

Due to the importance of ICU mortality predictions, considerable efforts have been 

invested in this research area over the past two decades. Generally, the extant methods can be 

categorized into three major types (see Table 3.4.): severity scoring systems (e.g., Acute 

Physiology and Chronic Health Evaluation Model (APACHE) (Knaus et al., 1985), Simplified 

Acute Physiology Score (SAPS) (Le Gall et al., 1993)), machine learning models, and deep 

learning models. However, current ICU outcome prediction models are not without limitations. 

For the traditional severity score systems, researchers question the score systems’ accuracy and 

reliability (Becker & Zimmerman, 1996), healthcare practitioners complain about the overlong 

waiting on laboratory results as the predicting variables (Goswami et al., 2010; Winkelman et al., 

1997), and critical care clinicians are dissatisfied with the fact that it relies on expert assessments 

as input (Reith et al., 2017). Hence, our first research question is how we can develop a new ICU 

mortality prediction model leveraging readily-available data with minimized requirements on the 

intensivists’ expertise and having improved accuracy.       

Over the past ten years, the implementation of electronic ICU technology has allowed 

large amounts of ICU patients’ vital sign data17 to be collected and streamed for real-time 

monitoring (Pollard et al., 2018), which has opened up new possibilities to propose more 

sophisticated ICU outcome prediction models. Rich dynamical patterns have been demonstrated 

 
16

 WHO Coronavirus (COVID-19) Dashboard: https://covid19.who.int/ Accessed  January 2022.  
17

 Vital signs are a group of important medical signs (e.g.,body temperature, blood pressure, heart rate, and 

respiratory rate)  that indicate the status of the body’s life-sustaining functions. These measurements are taken to 

help assess the general physical health of a person, give clues to possible diseases, and show progress toward 

recovery. https://www.emergencyphysicians.org/ (Accessed April 2021)  

https://www.zotero.org/google-docs/?eCd66W
https://www.zotero.org/google-docs/?eCd66W
https://www.zotero.org/google-docs/?eCd66W
https://www.zotero.org/google-docs/?qO0O8c
https://www.zotero.org/google-docs/?4ogalA
https://www.zotero.org/google-docs/?5GIM70
https://www.zotero.org/google-docs/?m31MtW
https://www.zotero.org/google-docs/?m31MtW
https://www.zotero.org/google-docs/?AUpQiq
https://covid19.who.int/
https://www.emergencyphysicians.org/
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in the time series of the monitoring data (Lehman et al., 2015). These dynamical patterns can be 

used to inform prognosis, provide early forecasts of life-threatening conditions, and predict 

patients’ ICU outcomes (Lehman et al., 2015). However, these dynamic patterns are difficult to 

trace because of their large quantity and diversity of distribution. An increasing number of data 

scientists turn to machine learning and deep learning models. Although promising, both the 

machine learning- and deep learning-based models suffer from either feature extraction issues 

that hinder them from having superior performance, or low interpretability issues that prevent 

them from wide applications. Researchers and practitioners urge the next generation of ICU 

outcome prediction models to be more accurate, timely, and interpretable (Zimmerman & 

Kramer, 2014). Therefore, our second research question is how we can effectively extract valid 

and interpretable features from the readily-available ICU bedside monitoring data.   

We find stochastic signal processing (Gray & Davisson, 2004) (e.g., Fourier transform 

and wavelet transform), a field of science concerned with processing and analyzing time-series 

data, a great tool to fill the gap. Stochastic signal processing techniques have been found to be 

particularly useful for extracting patterns from time-series signals which are normally described 

as aperiodic, noisy, intermittent, and transient (Addison, 2017). Signal processing techniques 

differ from other feature extraction methods in that (1) they examine the signal simultaneously in 

both time and frequency domains, so they have a strong feature extraction ability, (2) they have 

computational algorithms that reduce the computing time and complexity of large 

transformations, so the time-series data can be processed almost instantaneously and in real-time, 

and (3) the extracted patterns can be transformed back to and located on the original time-serial 

vital sign data, so the extracted features are far more interpretable than those extracted from 

black-box models.  

https://www.zotero.org/google-docs/?mbue2F
https://www.zotero.org/google-docs/?UzRkJ7
https://www.zotero.org/google-docs/?lRNhUN
https://www.zotero.org/google-docs/?lRNhUN
https://www.zotero.org/google-docs/?fiuXXW
https://www.zotero.org/google-docs/?2ZlG7L
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In this study, following the design science paradigm (Hevner et al. 2004) and the recent 

information systems research on healthcare analytics (Aaron Baird et al., 2018), we propose a 

novel model which combines stochastic signal processing and machine learning techniques for 

ICU mortality predictions. The proposed method has three steps: (1) calculating frequency 

spectrums (a frequency spectrum of a signal is the range of frequencies contained by a signal) 

through various stochastic signal processing techniques, (2) extracting features from both 

frequency spectrums and time-series of vital signs, and (3) making ICU mortality predictions 

using machine learning classifiers. To demonstrate the effectiveness of our model,  we evaluate it 

on a large multi-center ICU database - eICU (Pollard et al., 2018). The proposed model 

outperforms baseline methods, including APACHE IV, deep learning-based models (i.e., CNN, 

LSTM, GRU), statistical feature classification, and time series forecasting methods (i.e., ARMA, 

ARIMA) by a large margin. Meanwhile, as early as 3 hours after patients’ admission to ICUs, 

the proposed method is capable of making more accurate predictions (AUC = 0.815) than 

APACHE IV (AUC = 0.750), while AHACHE IV makes predictions 24 hours after patients’ 

admission. In addition, unlike traditional severity score systems, the proposed framework can 

make real-time predictions. The proposed model makes increasingly accurate predictions with 

patients’ increasing length of stay. Moreover, the features extracted by the proposed model can 

be used to increase prediction accuracy in existing ICU outcome prediction models (e.g., 

APACHE IV).  

The contributions of this work are two-fold. First, from the perspective of design science, 

we propose a new ICU mortality prediction model by combining stochastic signal processing and 

machine learning techniques, which provide a new perspective for temporal medical data 

analysis. Our method can add value to the literature for three reasons. (1) To our knowledge, this 

https://www.zotero.org/google-docs/?Brc22G
https://www.zotero.org/google-docs/?Z8fRSj
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is the first study to convert ICU patients’ time-series of vital signs to frequency domains for 

mortality prediction. (2) We are among the first to explore how we can effectively extract 

features from the frequency domains for patient outcome prediction. (3) Our method is one of the 

first to use features from both frequency domain and time series as inputs to machine learning 

algorithms. The advantages of the proposed method include, (1) it requires only time series of 

vital sign data from ICU bedside monitors (rather than laboratory results and intensivists’ 

assessments), allowing real-time predictions; (2) it significantly improves the performance of 

ICU mortality predictions; and (3) the extracted features are highly interpretable, which 

facilitates model adoption by critical care practitioners. Our model’s superior performance and 

interpretability are difficult to achieve by traditional severity score systems and extant machine 

learning- or deep learning-based models. Second, from the perspective of data science for social 

good, the proposed model is expected to enlarge the social impact of ICU outcome prediction 

studies. As specified by previous studies (Barnato & Angus, 2004; Zimmerman & Kramer, 

2014), the social impact and the value of an ICU mortality prediction model can be weighted by 

its reliability, availability, relevance, and resistance received from intensive care practitioners. 

(1) Reliability. An ICU outcome prediction model’s reliability depends on its accuracy, 

generalizability, interpretability, and other factors. The proposed model improves the prediction 

accuracy substantially compared to the existing state-of-the-art baselines. It can be generalized to 

various ICU admission diagnoses and broader patient groups. Its prediction results are highly 

interpretable. Accordingly, the reliability of the model has been improved. (2) Availability. We 

use readily-available ICU bedside monitoring data for real-time mortality predictions. Thus, the 

prediction results are available in a timely fashion both to initiate and to continue intensive care. 

(3) Relevance. The predicted mortality probabilities are of the interests of ICU patients and are 

https://www.zotero.org/google-docs/?WpWKEV
https://www.zotero.org/google-docs/?WpWKEV
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expected to have an influence on clinician behaviors. Therefore, the prediction results are 

relevant. (4) Resistance. The predicting features of the proposed model are interpretable in 

human terms. As a result, the predictive model is expected to receive less resistance from 

practitioners. Overall, we believe the value of the proposed model is significant and measurable.   

We follow the design science paradigm (Hevner et al. 2004) to structure the remainder of 

the paper. We first review the related literature and the shortcomings of existing studies on ICU 

mortality prediction. Second, we create and describe a new stochastic signal analysis and 

machine learning-based ICU mortality prediction model. Next, we implement and evaluate the 

proposed model and demonstrate its feasibility and implications. Finally, we conclude our work 

with a summary and directions for future research. 

Related Work 

The significance of ICU mortality prediction 

The intensive care resources are limited and expensive. In the US, there are 4 million 

ICU admissions every year, whereas the number of ICU beds per 100,000 population is only 

20.0 - 31.7 (Table 3.1). This number is much lower in other countries, especially in developing 

countries like China, Sri Lanka, and Zambia, ranging from 1.6 to 4.6 (Table 3.2.) (Prin & 

Wunsch, 2012). The care provided in the ICU is expensive. It is one of the largest cost drivers in 

the healthcare system in the US. Although the number of ICU beds only accounts for less than 

10% of the hospital beds, the cost of the ICU explains nearly one-third of the total inpatient costs 

(Dasta et al., 2005; Kalb & Miller, 1989; Shorr, 2002; Sirio et al., 1994). Critical care treatments 

taking place in the ICU remain the most expensive healthcare interventions, with an estimated 

$80 billion spending every year, which consumes approximately 3% of all health care spending 

and nearly 1% of the gross domestic product (Halpern & Pastores, 2010).  
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Table 3.1. ICU Bed Availability in the US (Halpern & Pastores, 2010; Population Clock, 2021; 

Prin & Wunsch, 2012) 

Year ICU bed number  Population  ICU beds per 

100,000 people 

2000 88,252 281,421,906 31.4 

2005 93,955 295,516,599 31.8 

2012 62,564-99,164 312,818,676 20.0-31.7 

 

Table 3.2. Selected ICU Bed Availability by Country with Per Capita Healthcare and Life 

Expectancy at Birth (Adapted from Prin & Wunsch, 2012) 

Country ICU beds per 

100,000 people 

Per capita 

healthcare cost 

Life expectancy at 

birth 

United States 20.0-31.7 $7,164 79 

Canada 13.5 $3,867 81 

Denmark 6.7-8.9 $3,814 79 

Australia 8.0-8.9 $3,365 82 

South Africa 8.9 $843 54 

Sweden 5.8-8.7 $3,622 81 

Spain 8.2-9.7 $2,941 82 

Japan 7.9 $2,817 83 

United Kingdom 3.5-7.4 $3,222 80 

New Zealand 4.8-5.5 $2,655 81 

China 2.8-4.6 $265 74 

Trinidad & Tobago 2.1 $1,237 70 

Sri Lanka 1.6 $187 71 

Zambia -- $80 48 

Note: Estimates are pooled from multiple sources and involve different definitions of ICU beds, and different years of 

data. The per capita healthcare cost includes all public and private expenditures, not limited to critical care. 
 
 

Due to the scarcity of intensive care resources, it is crucial to conduct ICU outcome 

evaluation and promote efficient use of such resources (Halpern & Pastores, 2010). The benefits 

of ICU mortality prediction include, first, ICU mortality prediction lays the scientific foundation 

for assessing the severity of illness (Becker & Zimmerman, 1996); second, it gives a standard for 
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adjudicating new treatments and policies (Pirracchio, 2016); third, it provides a way for 

comparing cohorts of ICU patients treated across different hospitals and countries (Becker & 

Zimmerman, 1996); next, it is an effective measure in allocating resources and determining 

levels of care (Lee et al., 2016); and last, it is helpful when discussing expected outcomes with 

ICU patients and families (Lee et al., 2016).    

ICU mortality predictions and limitations of current studies 

Critical care researchers have developed several severity scoring systems for ICU 

mortality prediction. The most reputable ones are the acute physiology and chronic health 

evaluation model (APACHE), simplified acute physiology score (SAPS), and mortality 

probability model (MPM) (Keegan et al., 2011). Major revisions of these models, APACHE IV 

(Zimmerman et al., 2006), SAPS III (Moreno et al., 2005), and MPM III (Higgins et al., 2007), 

have been published in 2006, 2005, and 2007, respectively.  

Table 3.3. Apache IV Variables 

Type Factors Advantages and disadvantages 

Vital signs 

temperature (𝐶), mean arterial 

pressure (mmHg), heart rate (/min), 

respiratory rate 

The vital signs can be obtained directly from 

the monitors, providing real-time information. 

GCS results motor, eyes, verbal 
The GCS results strongly rely on manual 

examination from intensivists. 

Lab test results 

pO2 (mmHg), fiO 2(%), arterial pH, 

pCO2 (mmHg), Na+ (mEq/L), Ht (%), 

Bilirubin (mg/dL), creatinine (mg/dL), 

Urea (mEq/L), BSL (mg/dL), 

Albumin (g/L), WBC (x1000/mm3), 

sodium (mEq/L), hematocrit (Hct lab 

value), albumin (g/dL), glucose 

(mg/dL)  

The sample analysis for these tests usually take 

hours to complete. It can take longer due to lab 

capacity and demand. 

Chronic health 

condition 

(indicator) 

CRF / HD, Lymphoma, Cirrhosis, 

Leukemia / Myeloma,  Hepatic 

Failure, Immunosuppression, 

Metastatic Carcinoma, AIDS 

 

The indicator function checks the conditions of 

chronic health issues. Chronic diseases such as 

heart disease, cancer, and diabetes are the 

leading causes of death and disability in the 

US. Thus the chronic health condition provides 

essential information in mortality prediction. 

 



97 

Table 3.3. Continued 

Type Factors Advantages and disadvantages 

Patients’ information  age 
The patients’ information is usually available 

from multiple resources. 

Admission information 

and diagnosis 

pre-ICU length of stay (days), origin, 

readmission, emergency surgery, non-

operative/post-operative 

The admission information and diagnosis 

classifies patients to a more specific category, 

which helps the doctors adopt further 

instructions. 

Others 
mechanical ventilation, urine output 

(mL/24h) 
 

 

Among the extant severity scoring systems, APACHE IV is considered the “golden 

standard” in ICU outcome predictions (Keegan et al., 2012). It gives a patient a 0 - 286 score. 

Higher scores correspond to more severe diseases and higher risks of death. Recently, the 

reliability of these severity scoring systems, including APACHE IV, has been questioned by 

researchers and critical care practitioners (Zimmerman & Kramer, 2014). Meanwhile, 

independent investigators highlight the concerns about the prolonged waiting time of data 

collection and the assessments needed from subject-matter experts for calculating the severity 

scores (Knaus et al., 1991). Take APACHE IV as an example. The predicting variables include 

laboratory results and Glasgow Coma Scale (GCS) measures (see Table 3.3.). The lab results can 

take hours to days to obtain depending on the complexity of the tests (Goswami et al., 2010; 

Winkelman et al., 1997). The GCS scores require professional medical judgment, and their 

reproducibility has been questioned by researchers (Jain & Iverson, 2021; Teasdale et al., 2014). 

It takes APACHE IV 24 hours to collect all needed information for predicting (Sasaki et al., 

2020). The limitation of the extant severity score systems motivates our first research question: 

can we propose a new ICU mortality prediction model leveraging readily-available data, with 

minimized requirements on intensivists’ expertise and having improved accuracy?  

Recently, the emergence of electronic ICU (eICU or tele-ICU) (Celi et al., 2001; Pollard 

et al., 2018) has opened up new possibilities for better ICU outcome prediction. The advantages 
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are twofold. (1) First, large quantities of time-series data that indicate the status of the body’s 

vital signs (i.e., vital functions, such as heart rate, respiration rate, O2 saturation, intracranial 

pressure, etc.) are continuously recorded via bedside monitors for ICU patients (Pollard et al., 

2018). The vital sign data are real-time and commonly available, which neither require 

laboratory testing nor assessment from medical professionals. (2) Meanwhile, vital signs show 

patients’ pathological states (e.g., the onset of sepsis) as well as their response to treatments. A 

growing body of literature has shown that many shared dynamical patterns can be identified 

across heterogeneous patients’ cohorts (Lehman et al., 2015). These dynamical patterns can be 

used to inform prognosis, provide early forecasts of life-threatening conditions, and predict 

patients’ ICU outcomes.  

Many data scientists who work on ICU mortality predictions have explored the value of 

the eICU data by incorporating the real-time vital sign data as the input features of machine 

learning and deep learning models. S. Kim et al. (2011) are among the first to implement 

machine learning classifiers, such as support vector machines (SVM) and logistic regression, to 

predict the ICU mortality rate. Such models use patients’ demographic data, lab results, and vital 

measurements in the first 24 hours of ICU admission. These models force the prediction to be a 

linear combination of features which leads to high interpretability. Then, to achieve higher 

accuracy, Davoodi & Moradi, (2018); Hsieh et al., (2018); Kong et al., (2020); Zhai et al., (2020)   

introduce ensemble models to the research area of mortality prognostication, including random 

forest, gradient boosting, and extreme gradient boosting. Although researchers keep introducing 

various classification models, the features extracted from the time series of vital signs are 

elementary. Only simple statistics of vital signs are included in these classification models, such 

as the minimum and maximum respiration rate or blood pressure. However, there is increasing 
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evidence that superior accuracy in ICU outcome prediction requires complex modeling with 

effective feature extraction methods (Zimmerman & Kramer, 2014). The properties of the vital 

sign data pose challenges to capturing meaningful dynamical patterns and revealing the 

relationships among these patterns. Later on, Caicedo-Torres & Gutierrez, (2019); S. Y. Kim et 

al., (2019) take the entire time series of vital signs as the input of a convolutional neural network 

(CNN, deep learning). CNN models can summarize useful patterns from the vital sign data. 

Recently, Thorsen-Meyer et al., (2020) take the vital sign data into long short term memory 

(LSTM, deep learning) to infer ICU outcome, which takes advantage of the temporal information 

of vital signs. However, the deep learning models work as a non-interpretable black-box because 

their behavior cannot be comprehended, even if we know their structures and weights. Although 

existing deep learning-based research improves the performance of ICU mortality prediction to a 

certain extent, such models are not favorable for medical professionals. Extant machine learning 

and deep learning models’ imperfections motivate us to answer the second research question: 

how to effectively extract useful and interpretable features from the time series of vital signs?  

Table 3.4. Literature Summary of Mortality Prediction at ICU 

Literature 

Types of ICU 

mortality 

prediction 

models 

Models 

Pre- 

admission 

character- 

istics 

 

Lab 

results 

 

Glasgow 

Coma Scale 

(GCS) 

Vital signs  

Hours of 

data needed Statistics 

features 
Time series  

Features 

extracted 

by 

stochastic 

signal 

processing 

Moreno et al., 

(2005) 
Traditional 

severity 

scoring 
system 

SAPS III  Y Y Y   24 H 

Higgins et al., 

(2007) 
MPM III Y  Y Y   1 H 

Zimmerman et 

al., (2006) 

APACHE 

IV 
 Y Y Y   24 H 
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Table 3.4. Continued. 

Literature 

Types of ICU 

mortality 

prediction 

models 

Models 

Pre- 

admission 

character- 

istics 

 

Lab 

results 

 

Glasgow 

Coma Scale 

(GCS) 

Vital signs  

Hours of 

data needed Statistics 

features Time series 

Features 

extracted 

by 

stochastic 

signal 

processing 

Kong et al., 

(2020) 

Machine 

learning 

model 

RF, GBM, 

LR 
 Y Y Y   24 H 

S. Kim et al., 

(2011) 

DT, SVM, 

NN, LR 
 Y Y Y   24 H 

Zhai et al., 

(2020) 

SVM, 

GBDT, 

XGBoost, 

LR 

 Y Y Y   6 H 

Hsieh et al., 

(2018) 

RF, LR, 

NN, SVM 
 Y Y Y   24 H 

Davoodi & 

Moradi, (2018) 

NB, DT, 

GB, DBN, 
D-TSK-FC 

 Y  Y   48 H 

Thorsen-

Meyer et al., 

(2020) 

Deep learning 
model 

LSTM Y  Y  Y  Real-time 

S. Y. Kim et 
al., (2019) 

CNN     Y  24 H 

Caicedo-

Torres & 

Gutierrez, 
(2019) 

CNN  Y Y  Y  48 H 

Proposed model 
SVM, NN, 

LR, RF  
   Y Y Y 

Real-

time* 

Note:  

Lab results: laboratory tests to measure vital body functions after ICU admission, e.g., arterial blood gas test (ABG) to 

measure oxygen and carbon dioxide levels in the blood (Frassica, 2005).  

*: The proposed model can make more accurate predictions than APACHE IV with only 3 hours of ICU bedside monitoring 

data, whereas APACHE IV makes predictions after 24 hours of admission.  

 

There are multiple statistical forecasting models to analyze the time-series data, such as 

moving average (AR), autoregressive moving average (ARMA), and autoregressive integrated 

moving average (ARIMA) (Wei, 2006). However, these time series models are not created for 

classification tasks or probability estimations. In order to make ICU outcome predictions using 

time series data, researchers regard the coefficients of the time series models as input features 

and train machine learning classifiers (Carden & Brownjohn, 2008; Zhang, Ji, et al., 2017). 

Nevertheless, these methods are not ideal for the time series of vital sign data from ICUs. The 
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order of a time series model has to be determined by the statistical characteristics for a specific 

time series (e.g., one time series of vital signs for one patient) (Wei, 2006). In healthcare-related 

studies, researchers usually treat model orders as hyperparameters and determine them through 

experiments and Akaike information criterion (Anderson et al., 1998; Zhang, Ji, et al., 2017; 

Zhang, Liu, et al., 2017). But a fixed order of time series model is required for all patients to 

ensure input features have the same dimension for the classification task, which limits the 

predictive power of the time series forecasting models (Z. Liu & Hauskrecht, 2017).  

Stochastic signal analysis techniques for feature extraction  

We find the combination of stochastic signal processing techniques (Little, 2019) and 

interpretable machine learning models a great strategy to overcome the above-mentioned 

shortcomings. Stochastic signal analysis, which treats time-series signals as a stochastic process, 

is used to process and analyze the time-series data using their statistical properties. In signal 

processing, a signal is a function that conveys information about a phenomenon (Little, 2019). 

Patients’ vital signs can be mathematically defined as signals (i.e., functions) that indicate the 

status of the body’s vital functions. Stochastic signal processing provides extremely efficient 

ways to extract meaningful features for vital signs by transforming time-series data into 

frequency spectrums. The frequency spectrum is the frequency-domain representation of the 

signal, which shows “how much of the signal is present among each given frequency band” 

(DeepAI, 2019). Specifically, vital signs that are continuously collected by the eICU systems are 

in the time domain, while their strengths of the periodicity (also known as frequency spectrum) 

are in the frequency domain. In the frequency domain, the amplitude (i.e., the maximum extent 

of an oscillation) for a specific frequency is a number, which reflects the magnitude of the 

change in the signal (Zhou, 2013). As shown in Figure 3.1., the left-side plots show Signals (a), 

(b), and (c) with three different frequencies, and the right-side plots show the signals’ frequency 
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spectrums, which reflect the strength of oscillations of the signals in the left-side plots. In the 

time domain, it is difficult to find Signal (c) is a mixer of Signals (a) and (b), but their 

relationship can be revealed in frequency spectrums obviously. Additionally, it is intuitive that 

stochastic signal processing can disclose a patient’s health conditions. For example, if a patient’s 

heart rate undergoes a rapid change (e.g., rapid heart rate increase after a treatment (Bergfeldt et 

al., 2017)), it may indicate adverse cardiac events (Kannel et al., 1987). This kind of pattern can 

be easily detected by signal processing in frequency spectrums, whereas it is not easy to detect 

by simple statistics and classical machine learning algorithms. Deep learning models may have 

the ability to identify such patterns. However, the identified features cannot be traced back to the 

original signals, which significantly decreases the interpretability of the deep learning models.  

   

Figure 3.1. An Example of Frequency Spectrum. 

 

In healthcare-related research, stochastic signal analysis techniques have been applied for 

different purposes and in different settings. Medical diagnosis signals, such as 
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electrocardiograms (ECG), electroencephalograms (EEG), and photoplethysmogram (PPG), can 

be processed and analyzed by signal processing techniques. For example, Prasad & Parthasarathy 

(2018) propose an algorithm to detect cardiovascular abnormalities from ECG data with signal 

analysis technique. Wang et al., (2014) extract frequency power features from ECG for the 

classification of obstructive sleep apnoea. Signal analysis technique has also been used to 

analyze EEG on human movements and compare the results with EEG recording during a resting 

state condition (Wairagkar et al., 2019). Besides, Kumar et al., (2017) have classified normal and 

epileptic patients by extracting signal processing features from EEG and training machine 

learning models. Additionally, some researchers developed signal processing-based methods to 

determine oxygen saturation with PPG (Addison, 2017). These studies show the potential of 

adapting stochastic signal processing techniques in healthcare analytics research. However, to 

our best knowledge, we are the first to combine machine learning and stochastic signal 

processing techniques for ICU mortality prediction. Meanwhile, the ICU bedside monitoring 

data have never been systematically analyzed by signal processing techniques. The proposed 

method provides a new way to extract predictive variables for ICU outcome prediction for 

improved prediction results.  

To summarize, the deficiencies of existing ICU mortality prediction methods, coupled 

with the challenges associated with developing more accurate, timely, and interpretable ICU 

outcome prediction models, motivate us to propose a new signal processing- and machine 

learning-based model. The design science paradigm provides a good foundation for our study. 

Design science is an outcome-based research methodology (Nunamaker et al., 1990). According 

to its definition, a design is both a product and a process (Hevner et al., 2004). The product is an 

artifact that can be broadly defined as design logic, models, methods, constructs, instantiations, 

https://www.zotero.org/google-docs/?QgwMxS
https://www.zotero.org/google-docs/?d9uNFD
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new design and developments models, and implementation processes or methods (Gregor, 2002; 

Gregor & Hevner, 2013; J. Ellis & Levy, 2010; March & Smith, 1995; March & Storey, 2008). 

The process is a sequence of expert activities composed of the procedures taken to develop and 

evaluate the artifact (March & Smith, 1995). In this study, the artifact we intend to deliver is a 

model consisting of methods and instantiations that can be used to (1) effectively extract valid 

and interpretable features from readily available ICU bedside monitoring data, and (2) predict 

ICU mortality with improved accuracy. Nomenclature (Optional Section, if Included Abide by 

the Following) 

Research Design 

We propose a novel model to effectively extract interpretable features with strong 

predictive power from the time series of vital signs for ICU mortality prediction. As shown in 

Figure 3.2., the proposed model includes three steps: (1) frequency spectrum extraction, (2) 

feature extraction, and (3) mortality prediction. For each vital sign collected from ICU bedside 

monitors, 𝑣𝑡, 𝑡 =  1, 2, . . . , 𝑁, we first extract the frequency spectrums with various signal 

processing techniques. Then we extract signal processing features from the frequency spectrums. 

Meanwhile, we take statistical features from the time series of vital sign data. Finally, both signal 

processing features and statistical features are used to predict ICU mortality using machine 

learning algorithms.  

Frequency spectrum extraction 

In the first step, we calculate the frequency spectrums for patients’ vital sign 𝑣𝑡, using 

fast Fourier transformation (FFT), power spectrum density (PSD), auto-correlation (AC), and 

wavelet transformation (WT).  

 

https://www.zotero.org/google-docs/?qST8B8
https://www.zotero.org/google-docs/?qST8B8
https://www.zotero.org/google-docs/?MbUE2P
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Figure 3.2. Flow Chart of the Proposed Method 
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Using FFT (Bloomfield, 2004), any time series can be decomposed into a series of simple 

sinusoids of different frequencies. The FFT estimates the coefficients of each sinusoid for a 

given time series. The PSD describes the distribution of the power of a time series over 

frequency (Woyczyński, 2019). We include PSD because researchers believe that FFT is great at 

analyzing vibration when there are a finite number of dominant frequency components, but PSDs 

can be used to characterize random vibration signals (Little, 2019). AC is the correlation of a 

time series with the lagged version of itself over successive time intervals (Broersen, 2006). As a 

signal processing tool, AC is usually used to detect repeating patterns, such as periodic signals 

hidden in noisy data (Broersen, 2006). The outputs of the above three signal processing 

techniques (FFT, PSD, AC) provide abundant information about the frequencies (frequency 

domain) in time series data. Still, the information of frequencies’ time location (time domain) is 

absent. To overcome this problem, we include WT as well. The WT decomposes a time series 

into a series of wavelets with different scales at different time points (Addison, 2017). Thus, the 

outputs of WT present both the strength and location of frequencies (i.e., patterns from both the 

frequency and the time domains) in the time series.  

A frequency spectrum is denoted as 𝐹(𝜔), where 𝜔 is the parameter of the signal 

processing. Specifically, 𝜔 indicates frequency in FFT and PSD, scale and shift parameters in 

WT, and time difference in AC. For FFT, PSD, and AC, the frequency spectrum of a vital sign 

𝑣𝑡 is a vector, [𝐹(𝜔1), 𝐹(𝜔2), . . . , 𝐹(𝜔𝑡)]. For WT, the frequency spectrum is a matrix, 

[[𝐹(𝜔1,1), 𝐹(𝜔1,2), . . . , 𝐹(𝜔1,𝑡)], [𝐹(𝜔2,1), 𝐹(𝜔2,2), . . . , 𝐹(𝜔2,𝑡)], . . . , [𝐹(𝜔𝑠,1), 𝐹(𝜔𝑠,2), . . . , 𝐹(𝜔𝑠,𝑡)]].

The frequency spectrum depicts the periodicity strength of the vital sign, which offers important 

information about the patient’s health condition. All frequency spectrums converted from 

patients’ time series of vital signs form a space 𝑋𝑛×𝑤 (𝑛: number of patients, 𝑤: the number of 
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frequency spectrums). The following subsections introduce the signal processing transfer 

functions in our research setting.  

Fast Fourier Transform (FFT) 

The FFT is an algorithm that computes the Fourier transformation of a signal. It uses 

sinusoids of different frequencies to represent signals in the time domain, which reveals 

periodicity in time-series data and indicates the frequencies of these periodical components. The 

resulting signals after the FFT are frequency spectrums  𝐹𝐹𝐹𝑇(𝜔) = ∑ 𝑣𝑡 ⋅ 𝑒
−𝑖2𝜋𝑡𝜔𝑁

𝑡=1 , where 𝑣𝑡 

is the vital sign, and 𝜔 is the frequency at which a complex sinusoid is computed. A major 

advantage of FFT to other frequency domain transform methods is its computational efficiency. 

Power Spectral Density (PSD)  

The PSD characterizes the average power18 at a frequency 𝜔 in the signal, providing 

useful information in a signal’s frequency domain (Stoica & Moses, 2005). The PSD 𝐹𝑃𝑆𝐷(𝜔) is 

calculated by 𝐹𝑃𝑆𝐷(𝜔) = ∑ 𝑟(𝑘)𝑒−𝑖𝜔𝑘∞
𝑘=−∞ , where 𝑟(𝑘) is the autocovariance sequence of 𝑣𝑡 

and 𝑟(𝑘) = 𝐸{𝑣(𝑡)𝑣∗(𝑡 − 𝑘)} = ∑ 𝑣𝑡 𝑣𝑡−𝑘
𝑁
𝑡=𝑘+1 . Here 𝑣∗(𝑡 − 𝑘) denotes the complex-conjugate 

transpose of 𝑣(𝑡 − 𝑘). The PSD of a signal analyzes the distribution of the power over the 

frequencies composing the signal. Specifically, for time series data, the PSD uses the signal’s 

ACs to measure the power. Compared to FT, which obtains the amplitudes of a signal’s 

frequency components, the PSD of the signal describes the power present in the signal as a 

function of frequency, per unit frequency (Grami, 2016). 

Auto-Correlation (AC) 

An AC coefficient 𝐴𝑘 measures the correlation between a signal and its delayed version 

with lag 𝑘, which can be calculated by 𝐹𝐴𝐶(𝜔) = 𝐴𝑘 = ∑ 𝑣𝑡𝑣𝑡+𝑘
𝑁−𝑘
𝑡=1 . It reveals the influence of 

 
18

 The power of a signal is the sum of the absolute squares of its time-domain samples divided by the signal length 

(Grami, 2016). It is a measure of signal strength. 

https://www.zotero.org/google-docs/?QIvKRf
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the previous signal on the following signal in the sequence. When the signal does not repeat the 

sequence of values regularly after a fixed length of time, the AC coefficients tend to be small, 

which indicates the fluctuation of a vital sign. Otherwise, the AC coefficients tend to be large, 

which represents the stable health status of the patient.  

Wavelet Transform (WT) 

The WT analyzes signals with a dynamic frequency spectrum, providing a high 

resolution in both the frequency domain and the time domain. The WT of the vital sign signal 𝑣𝑡 

is expressed by 𝐹𝑊𝑇(𝜔) =  𝐹(𝑎, 𝑏) =
1

|𝑎|1/2
∫ 𝑣(𝑡)𝜓(

𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
, where 𝜓(⋅) is the mother wavelet 

(Addison, 2017). A wavelet is a wave-like oscillation. Parameters 𝑎, 𝑏 define the scale and the 

time location of the wavelet, correspondingly. The scale defines how stretched a wavelet is, and 

the location defines where the wavelet is positioned in time. One widely used wavelet is the real 

Morlet wavelet, which is defined as 𝜓(
𝑡−𝑏

𝑎
) = 

1

𝜋1/4
𝑒𝑖2𝜋𝑓0[(𝑡−𝑏)/𝑎]

2
. Figure 3.3. shows examples of 

the Morlet wavelet function with the scales of 𝑎=4 and 𝑎=8, respectively. In this research, we 

use different types of wavelets to generate various frequency spectrums, including the Morlet 

wavelets, the complex Morlet wavelets, and the Mexican wavelets. We adopt the Morlet 

wavelets and the complex Morlet wavelets because they are closely related to human perception 

of hearing and vision (Daugman, 1985). We use the Mexican hat wavelets because they are 

frequently employed as broad-spectrum source terms in WT analysis (Addison, 2017). 

Feature extraction 

Although the frequency spectrums, 𝑋𝑛×𝑤, extracted from time-series data represent 

useful periodicity information of patients’ vital signs, they are not ideal to use as input features 

of machine learning classifiers. This is because the frequency spectrums are of high 

dimensionality,  which increases the complexity of machine learning models and decreases 
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classifiers’ predictive power (R. Liu & Gillies, 2016). Therefore, we extract the most 

representative periodicity information as classifiers’ input features by taking the (1) relative 

extrema (i.e., local maxima and minima), and (2) power in band from the frequency spectrums. 

Besides, we take various statistical features from the time series of vital signs. The extracted 

features form a new feature space, 𝑋𝑛×𝑙 (𝑛: number of patients, 𝑙: the number of features), where 

𝑙 ≪ 𝑤. We systematically evaluate the relative importance of extracted features and select the 

most important features for ICU mortality predictions. The selected features, 𝑋𝑛×  (𝑛: number 

of patients, 𝑚: the number of selected features), are the input of the proposed ICU mortality 

prediction model.   

  

(a) Morlet wavelet with the scale of 4             (b) Morlet wavelet with the scale of 8 

Figure 3.3. Morlet Wavelets with Different Scales 

Relative extrema 

Based on the extracted frequency spectrums from the previous step, we extract the 

frequency spectrums’ positions and values of the local maxima and local minima as the ICU 

mortality predicting features. More formally, we extract the (1) value of the frequencies where 

the oscillations, 𝜔𝑖
∗, occur and (2) their corresponding amplitudes, 𝐹(𝜔𝑖

∗), as predictive features 

(see examples in Figure 3.4.). Specifically, the relative extrema, (𝜔𝑖
∗, 𝐹(𝜔𝑖

∗), is the local 

maximum (or local minimum). Namely,  𝐹(𝜔𝑖
∗) ≥ 𝐹(𝜔) (or 𝐹(𝜔𝑖

∗)  ≤  𝐹(𝜔)), for all 𝜔 within a 

threshold distance 𝜀 on the frequency spectrum, where 𝜀 is a small positive value. We extract one 

https://www.zotero.org/google-docs/?2BNhzu


110 

relative extrema point 𝜔∗ within each distance range (−𝜀, 𝜀). Note there are multiple 𝜔∗on the 

entire frequency spectrum, [𝜔1
∗ , 𝜔2

∗ , . . . , 𝜔𝑖
∗, . . . , 𝜔𝑡

∗], where 𝑡 is the number of extrema. After we 

find all relative extrema 𝐹(𝜔∗) satisfying the requirement, we obtain a vector 𝑢 =

[𝐹(𝜔1
∗), 𝐹(𝜔2

∗), . . . . . . , 𝐹(𝜔 
∗ )]. The top 𝑛 maximums are defined as the largest 𝑛 values on 𝑢 

(accordingly, the top 𝑛 minimums are defined as the smallest 𝑛 values on 𝑢). When there are less 

than 𝑛 elements in 𝑢, we adopt all available relative extrema (i.e., 𝑚 in total) as features and 

include 𝑛 − 𝑚 missing values. The maxima reflects the periodicities that the time series has, 

while the minima reflect the periodicities that the time series lacks. The relative extrema, both 

local maxima and local minima, on the frequency spectrums are critical characteristics of 

patients’ vital signs and reflect ICU patients’ health conditions.  

 

Figure 3.4. An Example of Relative Maxima of the Frequency Spectrum 
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Power-in-band 

The power-in-band feature is the sum of the total power (please see Appendix A for the 

definition of power) within a frequency band (i.e., frequency range). With a specified center 

frequency 𝜔𝑐 and bandwidth 𝜔𝑏𝑤,  we can derive the low and high bounds, 𝜔𝑐 −𝜔𝑏𝑤 and 𝜔𝑐 +

𝜔𝑏𝑤, respectively, of the frequency band. The power-in-band feature, denoted by PIB, is 

∑ 𝐹(𝜔)
𝜔𝑐+𝜔𝑏𝑤
𝜔=𝜔𝑐−𝜔𝑏𝑤

 (see Figure 3.5.).  

 

Figure 3.5. An Example of the Power-in-Band Feature of the Frequency Spectrum 

The power-in-band summarizes the strength of the signal in the frequency band by 

computing a single number. The benefits of using power in band features are two-fold. First, the 

power-in-band feature summarizes the contribution of the given frequency band to the overall 

strength of the signal, which contains important patterns of patients’ vital signs (please see the 

example in Appendix A). Second, power-in-band is a simple yet powerful feature extraction 
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method for ICU mortality prediction. Power-in-band features are easy to extract and use. In 

practice, we compute the summation over the different segments of a vector 

[𝐹(𝜔1), 𝐹(𝜔2), . . . , 𝐹(𝜔𝑡)] (i.e., the vector represents the frequency spectrums transformed from 

a vital sign). Power-in-band features are effective in machine learning prediction as well. The 

frequency/time representation converted from time-series of vital signs are usually of high 

dimensionality, making them unsuitable for use as classifiers’ inputs. Power-in-band extract the 

key characteristics from the frequency spectrums, resulting in a single number that describes a 

specific aspect of the frequency spectrums.  

Statistical features 

In signal processing, summary statistics are used to outline and provide information on 

signals. For example, the mean of a signal is an estimate of the center of the whole signal. The 

standard deviation and variance measure the spread extent of the signal from its average value. 

Take a patient’s heart rate as a simple example. A normal resting heart rate of an adult is 

between 60 and 100 beats per minute (Kannel et al., 1987). Hence the mean of the normal heart 

rate should also be in this range, and the standard deviation should be less than 7. Abnormal 

heart rates can be an indicator of a deteriorating health condition. In this research, we calculate 

the standard deviation, variance, mean, median, quantiles, the first and the last of ICU patients’ 

vital signs as features for ICU mortality prediction.  

Meanwhile, the extreme values of the time series of vital signs usually indicate 

unfavorable health conditions as well. To detect the extreme values on the time series data, we 

create a series of moving windows. Each window has 𝑘 observations. With the 𝑘 observations, 

we calculate the mean and standard deviation (see Figure 3.6.). The observations that are not 

within three standard deviations of the mean are treated as extreme values (M. X. Cohen, 2008). 

Intuitively, the observations above and below the three standard deviations can be considered as 

https://www.zotero.org/google-docs/?96v0NX
https://www.zotero.org/google-docs/?2y17p2
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sudden rise and sudden drop of the vital signs, respectively. Then we take the “top n” extrema 

from the moving windows of vital signs, denoted as (𝑥1
∗, 𝑦1

∗), . . . , (𝑥𝑛
∗ , 𝑦𝑛

∗), where the 𝑥∗ is the 

event time and the 𝑦∗ is the value of the extrema. When the vital sign in the moving window has 

less than 𝑛 relative extrema (i.e., less than 𝑛 data points are above and below the three standard 

deviations of the data in a given moving window), we set all available extreme points (i.e., 𝑚 

data points) as features and include 𝑛 − 𝑚 missing values. Parameter selection for the parameter 

𝑛 has been discussed in Appendix A.  

 

 

Figure 3.6. Moving Window on the Time Series of Vital Sign 
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ICU mortality prediction 

 
Note: Fast Fourier Transform (FFT), Power Spectral Density (PSD), Auto-Correlation (AC), Wavelet Transform (WT), Logistic Regression 

(LR), Linear SVM (LSVM), Random Forest (RF), and Neural Networks (NN) 

Figure 3.7. ICU Mortality Prediction Framework 

 

We define the mortality prediction as a probabilistic classification problem 𝑌 = 𝑃𝑟(𝑌|𝑋). 

X denotes the input space, where 

. 

The input space X includes signal processing features and statistical features obtained from the 

previous steps. The output space is defined as 𝑌 = {1: 𝑒𝑥𝑝𝑖𝑟𝑒𝑑, 0: 𝑎𝑙𝑖𝑣𝑒}. The machine learning 

models provide a mapping function, 𝑓(𝑥), which maps the input data 𝑋 to the out space 𝑌 and 

produces the ICU mortality prediction results 𝑃𝑟(𝑌|𝑋). Figure 3.7. shows the model training and 

prediction process.  

In machine learning, there are different classifiers. Usually, no single classifier always 

outperforms the others in different research settings. In this study, we selected four classifiers 

that are widely used in healthcare analytics, including linear support vector machine 

(LinearSVM), logistic regression (LR), random forest (RF), and fully connected neural networks 
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(NN). The training process of these machine learning models aims to minimize the loss function 

defined as 𝑅(𝑓) = 𝐸[𝐿(𝑌, 𝑓(𝑋))] + 𝜆𝐽(𝑓) by finding an appropriate 𝑓 ∈ 𝐹, where 𝐹 = {𝑓|𝑌 =

𝑓(𝑋)}is  the mapping function space, 𝐸[𝐿(𝑌, 𝑓(𝑋))] is the expected loss obtained from the data, 

and 𝐽(𝑓) represents the complexity of the model. 𝜆𝐽(𝑓) adds a penalty to complex models to 

avoid overfitting. The solution of 𝑚𝑖𝑛𝑓∈𝐹 𝐸[𝐿(𝑌, 𝑓(𝑋))] + 𝜆𝐽(𝑓) offers an optimal 

parameterization of the chosen model. We discuss the specifics of how the classifiers are 

implemented in Appendix A. 

To obtain the best prediction results, we also conduct feature selection techniques before 

feeding the entire input feature space 𝑋𝑛×𝑙 to machine learning classifiers. Since there are more 

than one methods for feature importance assessment, and there is no consensus on which method 

works best in a given situation, we compare the feature selection results using various feature 

selection methods, including logistic regression (LR, 𝑙1 penalty), linear support vector machine 

(LinearSVM, 𝑙1 penalty), random forest (RF, average feature impurity as feature importance 

measures), and ANOVA test. LR and LinearSVM select features automatically with the 𝑙1 

penalty (J. Cohen et al., 2013; Guyon et al., 2002). Classifiers with 𝑙1 penalties are useful for 

feature selection because many of the estimated coefficients are zero, and the important features 

are those with non-zero coefficients. RF provides an importance score (i.e., average feature 

impurity, e.g., entropy or Gini index) for each feature, based on which we select the top features 

with the highest scores. ANOVA is a statistical test that selects features based on the F-value 

(Bejani et al., 2014). The selected features aim to help the machine learning classifiers to achieve 

improved accuracy. Formally, for a set of features 𝑆, the feature selection method finds the 

optimal subset 𝑠 of 𝑆 by minimizing the loss function: 𝑚𝑖𝑛 𝑠⊆𝑆||𝑌 − 𝑃𝑟(𝑌|𝑋, 𝑋 ∈ 𝑠)||, where || ∙

|| is the error estimation function. The classification mapping function 𝑃𝑟 is decided by the 

https://www.zotero.org/google-docs/?t4ozK2
https://www.zotero.org/google-docs/?DYOEQb
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feature selection methods. The selected features 𝑋𝑛×  are the input of the ICU mortality 

prediction model, where 𝑚 < 𝑙.   

Implementation and evaluation  

In the design science paradigm, the evaluation of an artifact provides feedback 

information and a better understanding of the problem in order to improve both the quality of the 

design product and the design process. Our evaluation plan and procedures are summarized in 

Figure 3.8. 

 

Figure 3.8. Evaluation Plan 

In this study, two main parts need to be evaluated: (1) ICU mortality predicting features, 

and (2) ICU mortality prediction results. For feature assessment, we identify important features 

that have a significant contribution to the ICU mortality prediction. The features generated and 

selected by the proposed method are the informative representations of patients’ health 

conditions in the ICU, which can be utilized in the machine learning classifiers for ICU mortality 
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prediction. In the predicting performance assessment, we evaluate the machine learning models. 

We select the classifier that performs the best and compare the results to state-of-the-art 

baselines. As stated earlier (see Section 3.3), the machine learning classifiers we adopted for this 

study are Linear Support Vector Machine (LinearSVM), Logistic Regression (LR), Random 

Forest (RF), and Neural Network (NN). 

To show the effectiveness of the proposed method, we take the ICU-admitted congestive 

heart failure patients (refer to them as heart failure patients in the rest of the paper) as a research 

case. We choose heart failure as a research case because heart failure patients make up a 

significant portion of patients at risk in the ICU every year (Poppas & Rounds, 2002), and it is 

the 4th prevalent disease in the eICU database (Pollard et al., 2018). To test the model’s 

generalizability, we also evaluate our method on two other diseases, sepsis pulmonary (SP) and 

sepsis renal/UTI (including bladder) (SI), which are the most prevalent admission diagnoses in 

the eICU database. The results are reported in Appendix B.  

Analysis, Results, and Discussion  

In this section, we discuss the implementation process, the evaluation results of our 

methods, and the interpretation of the results.   

We conducted three experiments. (1) In the first experiment, we assessed the features 

generated by our method. (2) The second experiment used patients’ first 24 hours (H) of vital 

sign data after their ICU admission to evaluate the proposed method’s performance. We 

compared our methods with eight baselines. Twenty-four hours was a critical time point because 

APACHE IV, the “golden standard” in ICU outcome prediction, made forecasts based on 

patients’ first 24 hours of data. (3) In the third experiment, to examine our method’s real-time 

prediction ability, we used data from different time periods, including 3H, 6H, 12H, 24H, 48H, 

https://www.zotero.org/google-docs/?rx3fSJ
https://www.zotero.org/google-docs/?TN1Y5Y
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and 72H. Our method was capable of making real-time predictions without laboratory results or 

intensivist assessment because it only required ICU bedside monitoring data. 

Data description 

The experiment data was from the eICU database (Pollard et al., 2018). It was a multi-

center ICU database with minute granularity data for more than 200,000 ICU admissions. These 

patients were monitored by the eICU program19  from a large number of hospitals in the US. The 

eICU database made it possible to evaluate ICU outcome prediction models from a multi-center 

perspective (Pollard et al., 2018). We extracted records with both APACHE IV scores and 

congestive heart failure as the ICU admission diagnosis. The extracted dataset contained 4,801 

patients and 5,282 admissions (including re-admissions),  among which 5.66% of the patients 

expired in the ICU, and 94.34 % survived. Patients’ demographic information was shown in 

Table 3.5. 

The proposed method was established on the time series of vital signs. The vital signs in 

the eICU database were consistently interfaced from bedside monitors, which were readily-

available and updated in real-time. The vital signs were generally interfaced as one-minute 

averages, and archived as five-minute median values (Pollard et al., 2018). The vital signs we 

adopted were periodic time-series data with a time interval of five minutes. To reduce the impact 

of missing values, we mainly considered the following vital signs that were measured for more 

than 50% of patients in our dataset: sao2 (oxygen saturation), heart rate, respiration, temperature, 

st1, st2, and st3 (estimated ST-segment level x of the ECG 𝑥 ∈ {1,2,3}), as shown in Table 3.5. 

Sao2 was useful in understanding the oxygen-carrying capacity of hemoglobin. It is particularly 

important in patients’ care and management because low oxygen saturation can lead to many 

acute adverse effects on individual organ systems. Heart rate and respiration were commonly 

 
19

 Philip eICU program: https://www.usa.philips.com/healthcare/resources/landing/teleicu (accessed April 2021). 

https://www.zotero.org/google-docs/?EPc2dP
https://www.zotero.org/google-docs/?AbvtAs
https://www.zotero.org/google-docs/?C27zDM
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used vital signs, which were indicators of the body’s basic functions. St1, st2, and st3 were 

estimated ST segment levels of the ECG (Pollard et al., 2018). We included body temperature, 

despite the fact that it had a high missing rate. The reasons are twofold. (1) First, because body 

temperature did not need to be collected frequently (it was usually stable and normally monitored 

routinely), a high missing rate was considered normal. Replacing the missing body temperature 

by the mean (i.e., the mean of the previous and next available records) was a common practice 

(Chacko & Peter, 2018). (2) Second, body temperature is extremely important for ICU mortality 

prediction (Achaiah & Ak, 2022). ICU patient’s abnormal body temperature (e.g., fever) is 

linked to life-threatening medical emergencies (e.g., sepsis) (Kushimoto et al., 2014) and higher 

mortality. It forms part of ICU mortality prediction scores, such as SAPS III and APACHE IV. 

Note the adopted vital signs were all readily-available real-time time-series data, so our model 

did not require laboratory results and intensivists’ assessment.  

Table 3.5. Descriptive Statistics of the Patients’ Demographics and Vital Signs 

 Overall  Expired patients Alive patients 

ICU stay (hours) 75.15 (4.03-1232.98) 
113.75 (4.26-

1009.48) 
72.87 (4.03-1232.98) 

Age 
70.16 (19-90), missing 

rate 0.019%*(1) 

72.90 (20-90), 

missing rate 0 

69.97 (19-90), 

missing rate 0.020% 

 

Gender 

51.01 % male, 48.97% 
female, the rest are 

unknown 

53.51 % male, 
46.49 % female, the 

rest are unknown 

50.86 % male, 49.12 
% female, the rest are 

unknown 

Ethnicity 

71.54% Caucasian, 

15.71% African American, 

5.26% Hispanic, 1.78% 

Asian, 0.30% Native 
American, the rest are 

unknown or other races 

80.27% Caucasian, 

11.71% African 

American, 3.68% 

Hispanic, 1.00% 

Asian, 0.33% 

Native American, 
the rest are 

unknown or other 

races 

71.02% Caucasian, 
15.95% African 

American, 5.35% 

Hispanic, 1.83% 

Asian, 0.30% Native 
American, the rest 

are unknown or other 

races 

Height 168.03 (63.50-210.80)*(2) 
168.07 (91.90-
193.00) 

168.03 (63.50-
210.80) 

Weight 89.09 (28.70-771.00) 
89.16 (31.80-

275.00) 
89.09 (28.70-771.00) 

 

 

https://www.zotero.org/google-docs/?azKVKZ
https://www.zotero.org/google-docs/?iE26Mx
https://www.zotero.org/google-docs/?LnR0vn
https://www.zotero.org/google-docs/?j4DZup
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Table 3.5. Continued. 

 Overall  Expired patients Alive patients 

Periodic 

vital signs 

Sao2  

(0.95 % missing) 

oxygen saturation, 
the percentage of 

available binding 

sites on hemoglobin 

that are bound with 
oxygen in arterial 

blood 

96.17 (0-100) 95.27 (0-100) 96.25 (0-100) 

Heart rate 

(0.02% missing) 

the number of times 

the heart beats per 
minute 

84.47 (0-300) 88.65 (0-271) 84.07 (0-300) 

Temperature 

(92.39% missing) 

the body temperature 

of a person 
38.33 ((-132.35)-102.40) 

36.89 ((-132.35)-

42.90) 
38.53 (0.20-102.40) 

Respiration  
(9.08% missing) 

the number of 
breaths a person 

takes per minute 

21.09 (0-185) 21.77 (0-171) 21.03 (0-185) 

St1 

(46.44 % missing) 

estimated ST 

segment level 1 of 
the ECG 

1.05 ((-17.30)-570) 1.12 ((-10.16)-220) 1.04 ((-17.30)-570) 

St2 

(45.02% missing) 

estimated ST 

segment level 2 of 

the EC 

1.78 ((-14.20)-830) 1.40 ((-14.15)-500) 1.81 ((-14.20)-830) 

St3 
(47.67% missing) 

estimated ST 
segment level 3 of 

the ECG 

1.91 ((-24.75)-1040) 1.55 ((-24.75)-330) 1.94 ((-16.90)-1040) 

Note: The total admissions are 5282. The total number of patients is 4801. (1) The variable age in the eICU 

dataset is set to “> 9” if the patients are older than  9. To calculate the mean, we simply set the ages of the 

patients older than 89 to be 90. (2) When calculating the demographic statistics, we removed 11 records with 

irregular height (e.g., height: 772) and/or irregular weight (e.g., weight: 974).  

Data preprocessing and experiment setting   

After implementing Step 1 and Step 2 of the proposed method (see Sections 3.1 - 3.2), 

some missing values were detected in the extracted feature set. The missing values were 

introduced for two reasons. First, not all vital signs were constantly measured for all patients. 

Second, the missing values were generated during the feature extraction process. For example, 

for the relative extrema features, if the output of the frequency spectrum extraction was smooth 

without any local minima and maxima, then the corresponding extrema feature was a missing 

value. Before feeding the extracted feature set to the machine learning classifiers, we imputed 

missing values with the mean over all patients in the dataset. For more discussions about missing 

value imputation, please see Appendix A. 
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Due to the imbalance of the dataset (94.34% expired, 5.66% alive), we implemented a 

stratified 5-fold cross-validation in the evaluation process (Refaeilzadeh et al., 2009). The 

stratified k-fold cross-validation was a variation of k-fold cross-validation, which ensured each 

fold was representative of the class proportions in the training dataset. In our research setting, it 

yielded better bias and variance estimates in cases of unequal class proportions. Different 

machine learning classifiers were adopted and compared in our experiments. We grid-searched 

hyper-parameters for each machine learning algorithm, as shown in Appendix A (Table 3.12.). 

Meanwhile, to alleviate the influence of the data imbalance issue during classifier training, we 

assigned different weights to both the majority and minority classes according to the skewed 

distribution of the classes. The purpose was to penalize minority class misclassification by 

assigning a greater class weight while decreasing weight for the majority class (Pedregosa et al., 

2018). During model training, the larger weight of the minority class in the algorithm’s cost 

function delivered a stronger penalty to the minority class misclassification, thus the algorithm 

can focus on reducing errors for the minority class. In this research, 𝑌 = {1: 𝑒𝑥𝑝𝑖𝑟𝑒𝑑} was the 

minority class and 𝑌 = { 0: 𝑎𝑙𝑖𝑣𝑒} was the majority. The assigned weights of two classes were 

inversely proportional to their relative frequencies, namely, the weight 𝑤𝑦=1 =
#𝑠𝑎 𝑝𝑙𝑒𝑠

2×#𝑠𝑎 𝑝𝑙𝑒𝑠𝑦=1
 

and 𝑤𝑦=0 =
#𝑠𝑎 𝑝𝑙𝑒𝑠

2×#𝑠𝑎 𝑝𝑙𝑒𝑠𝑦=0
. Such weights’ ratio was first introduced by King & Zeng (2001) and 

had since been adopted as the built-in parameter of class weights by most popular machine 

learning toolkits, such as Python’s scikit-learn20, LightGBM21, and CatBoost22, to help users 

optimize the prediction for the minority class.  

 
20

 https://scikit-learn.org/stable/ 
21

 https://lightgbm.readthedocs.io/en/latest/ 
22

 https://catboost.ai/ 

https://www.zotero.org/google-docs/?P71DjB
https://www.zotero.org/google-docs/?ckurWq
https://www.zotero.org/google-docs/?ckurWq
https://www.zotero.org/google-docs/?08O9CA
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In the second experiment, we compared our method with state-of-the-art baselines. The 

ARIMA- and ARMA-based methods were evaluated through 5-fold cross-validation. CNN (S. 

Y. Kim et al., 2019), CNN (Caicedo-Torres & Gutierrez, 2019), LSTM (Thorsen-Meyer et al., 

2020), and GRU (Che et al., 2016) were evaluated using holdout evaluation (70% training, 30% 

testing). For CNNs, we followed the network architectures and parameters of  S. Y. Kim et al. 

(2019) and Caicedo-Torres & Gutierrez (2019). For LSTM (Thorsen-Meyer et al., 2020) and 

GRU (Che et al., 2016), we tested different parameters as shown in Table 3.12. since the authors 

did not provide their parameters. 

ICU mortality predictive feature assessment   

We first assessed the relative feature importance and selected the most important features 

for ICU mortality prediction. As we stated earlier, there were a number of methods for feature 

importance assessment, and there was no consensus on which model works best in a given 

situation. We provided comparison results with various feature importance assessment 

algorithms, including logistic regression (LR, 𝑙1 penalty), linear support vector machine 

(LinearSVM, 𝑙1 penalty), random forest (RF), and ANOVA test. The selected features were then 

evaluated with four classifiers via cross-validation. The test set’s AUC scores were utilized to 

see if the selected features improved prediction performance. As shown in Table 3.6., 

LinearSVM with 𝑙1 penalty selected the 397 most powerful features (using the first 24H vital 

sign data after ICU admission), which led to the best prediction results (AUC = 0.849). In the 

following mortality predicting experiments, we adopted these features for further evaluation.  

Moreover, to gain insights into the contributions of different feature groups, we reported 

the most important 30 features that were selected by LinearSVM with the 𝑙1 penalty (the feature 

importance was measured by LinearSVM coefficients), as shown in Table 3.7. Both statistical 

https://www.zotero.org/google-docs/?9k83tT
https://www.zotero.org/google-docs/?9k83tT
https://www.zotero.org/google-docs/?JG4lii
https://www.zotero.org/google-docs/?IRZOFj
https://www.zotero.org/google-docs/?IRZOFj
https://www.zotero.org/google-docs/?KymVdt
https://www.zotero.org/google-docs/?ezD1Ok
https://www.zotero.org/google-docs/?ezD1Ok
https://www.zotero.org/google-docs/?FUuAH7
https://www.zotero.org/google-docs/?Zt0u5w
https://www.zotero.org/google-docs/?LvYVRo
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features and signal processing features contribute a lot to mortality prediction. (1) The top 3 most 

important features were statistical features. The first one was the rapid, sudden drop of sao2 

(extracted by using a moving window on the time series (see Section 3.2 Statistical features). 

The sao2 was the oxygen saturation in blood, and the drop of sao2 was usually related to the 

most dangerous situation of patients (Vold et al., 2015). The second feature was the last value of 

sao2 in the first 24 hours (represented by statistical feature “last” indicating the last data point in 

the time series (see Section 3.2 Statistical features), which reflected the latest health condition 

(Vold et al., 2015). The third feature was the median value of heart rate. Usually, a healthy heart 

rate ranged from 60 to 100 (Kannel et al., 1987); hence a median value of heart rate outside of 

this range indicated high risk. (2) The extracted signal processing features had great predicting 

power as well. For instance, the location of the local minima of the WT with the mother wavelet 

= “cmor” of sao2 (the 4th most important feature) reflected the time points that lack the time-

frequency relationship characterized by “cmor” wavelets. In other words, this feature indicated 

the time when the fluctuation of sao2 slowed down. Existing research (Bhogal & Mani, 2017) 

showed that the fluctuation of sao2 carried critical information about patients’ health conditions. 

The local maxima of FFT of respiration (the 7th most important feature) revealed the specific 

frequency ranges of the vital sign. The frequency of respiration was an important characteristic 

of patients (Fadel et al., 2004); thus, it was useful for mortality prediction. 

To investigate the contribution of each vital sign and each signal processing type, we 

summed the feature importance for each group. As shown in Table 3.8., the heart rate, 

respiration, and sao2 contributed more compared to other vital signs in the mortality prediction 

task. These three vital signs were not difficult or expensive to measure in ICUs. In the eICU 

database, the heart rate, respiration, and sao2 were constantly measured for more than 90% of 

https://www.zotero.org/google-docs/?VeYZoz
https://www.zotero.org/google-docs/?qqcdFb
https://www.zotero.org/google-docs/?s6Ko1Q
https://www.zotero.org/google-docs/?KaxTrt
https://www.zotero.org/google-docs/?TmVCW0
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patients. Moreover, WT provides the most informative features among all signal processing 

techniques, while AC has the least impact. As a signal processing technique, AC is conceptually 

close to the time series forecasting algorithms like ARMA and ARIMA. The unsatisfactory 

performance of AC revealed the fact that time series forecasting algorithms can hardly capture 

sufficient information for ICU mortality prediction. This observation was also supported by our 

experiment using coefficients of ARMA and ARIMA for prediction (see Table 3.10.).  

To demonstrate the feasibility and implications of our model, we selected and compared 

two patients from our dataset as an illustrating example, as shown in Table 3.9. (1) According to 

the oxygen saturation (sao2) signal (Figure 3.9. (a)), Patient 1 was at risk at the beginning, but 

went out of risk later. The sao2 of Patient 1 dropped to 58%, but after 24 hours (1440 minutes), 

the sao2 stayed at 100%. The oxygen saturation of Patient 1 fluctuated first, but stabilized around 

840 minutes. APACHE IV only considered the worst measurements of the first 24 hours. It 

ignored the important healthy signal that the second half part of the sao2 conveyed, which caused 

APACHE IV to make a wrong inference (86.4% death probability). Our model captured the 

stable and healthy sao2 signal after 840 minutes, thus offering a lower risk score (31.8% death 

probability). (2) The sao2 of Patient 2 (Figure 3.9. (b)) dropped to 82% at first, and stayed at 

85% later. Her oxygen saturation kept fluctuating during the first 24 hours. Compared to that at 

other times, sao2 was more stable at 610 minutes, which was detected by the WT technique. 

Although the lowest sao2 of Patient 2 was higher than Patient 1, her healthy status had not been 

stabilized after 24 hours of stay in ICU, which was not considered by APACHE IV. Therefore, 

our method gave a higher mortality probability (59.8%) than APACHE IV (8.3%) for Patient 2, 

who would expire later. This example showed that our model can capture the hidden patterns in 

the time series of vital signs which were difficult to detect by other methods, such as APACHE 
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IV. These captured patterns provided valid and interpretable feature sets for the ICU outcome 

prediction. 

 

(a) sao2 of an alive patient                               (b) sao2 of an expired patient 

Figure 3.9. Sao2 Comparison Between an Alive Patient and an Expired Patient (First 24 Hours of 

ICU Admission) 

 

Table 3.6: Prediction Performance of Selected Features, 24H 

Feature selection 

method 

Feature selection 

parameter 
Classifier 

Number of 

selected features 
AUC 

ANOVA - 

LinearSVM 818 0.777 

LogisticRegression 818 0.776 

NeuralNetwork 818 0.716 

RandomForest 818 0.790 

Logistic regression 

with   
𝑙1 penalty 

C = 0.005 

LinearSVM 50 0.778 

LogisticRegression 50 0.780 

NeuralNetwork 50 0.688 

RandomForest 50 0.792 

C = 0.008 

LinearSVM 131 0.817 

LogisticRegression 131 0.820 

NeuralNetwork 131 0.736 

RandomForest 131 0.809 

C = 0.010 

LinearSVM 193 0.820 

LogisticRegression 193 0.825 

NeuralNetwork 193 0.792 

RandomForest 193 0.811 
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Table 3.6. Continued.  

Feature selection 

method 

Feature selection 

parameter 
Classifier 

Number of 

selected features 
AUC 

Logistic regression 
with   
𝑙1 penalty 

C = 0.020 

LinearSVM 516 0.832 

LogisticRegression 516 0.828 

NeuralNetwork 516 0.824 

RandomForest 516 0.809 

C = 0.030 

LinearSVM 756 0.823 

LogisticRegression 756 0.800 

NeuralNetwork 756 0.831 

RandomForest 756 0.801 

 

Random Forest 

criterion = entropy 

LinearSVM 50 0.709 

LogisticRegression 50 0.708 

NeuralNetwork 50 0.721 

RandomForest 50 0.726 

criterion = gini 

LinearSVM 50 0.715 

LogisticRegression 50 0.714 

NeuralNetwork 50 0.700 

RandomForest 50 0.719 

criterion = entropy 

LinearSVM 100 0.745 

LogisticRegression 100 0.750 

NeuralNetwork 100 0.684 

RandomForest 100 0.747 

criterion = gini 

LinearSVM 100 0.740 

LogisticRegression 100 0.741 

NeuralNetwork 100 0.671 

RandomForest 100 0.750 

criterion = entropy 

LinearSVM 200 0.747 

LogisticRegression 200 0.748 

NeuralNetwork 200 0.640 

RandomForest 200 0.770 

criterion = gini 

LinearSVM 200 0.745 

LogisticRegression 200 0.744 

NeuralNetwork 200 0.682 

RandomForest 200 0.782 
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Table 3.6. Continued. 

Feature selection 

method 

Feature selection 

parameter 
Classifier 

Number of 

selected features 
AUC 

 

criterion = entropy 

LinearSVM 400 0.760 

LogisticRegression 400 0.758 

NeuralNetwork 400 0.703 

RandomForest 400 0.805 

criterion = gini 

LinearSVM 400 0.753 

LogisticRegression 400 0.747 

NeuralNetwork 400 0.691 

RandomForest 400 0.800 

 

 
Linear Support Vector 

Machine with 𝑙1 

penalty 

C = 0.001 

LinearSVM 20 0.762 

LogisticRegression 20 0.763 

NeuralNetwork 20 0.721 

RandomForest 20 0.777 

C = 0.005 

LinearSVM 397 0.849 

LogisticRegression 397 0.843 

NeuralNetwork 397 0.827 

RandomForest 397 0.806 

C = 0.010 

LinearSVM 678 0.846 

LogisticRegression 678 0.810 

NeuralNetwork 678 0.841 

RandomForest 678 0.794 

 

We listed the groups of features adopted in APACHE IV in Table 3.3. (see the Related 

Work section) to emphasize the intuition of adopting features extracted from the vital signs for 

ICU mortality prediction. We noticed that among all the features used by APACHE IV, the vital 

signs were the only real-time updated information, which can be acquired directly and 

automatically from the ICU bedside monitors without any input from the experts. Tracking 

laboratory results can be time-consuming. On average, it took 35 minutes - 5.5 hours for routine 

inpatient or clinical biochemistry tests (Goswami et al., 2010; Winkelman et al., 1997). In 

practice, if we considered the labs’ availability, the waiting time for obtaining laboratory test 

results was even longer. This was why researchers believed the next generation of ICU mortality 

https://www.zotero.org/google-docs/?0mnmPM
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predictive models should use an automated electronic system for data gathering and prediction 

generating (Zimmerman & Kramer, 2014).  

Table 3.7: Feature Importance and Selected Features from LinearSVM with 𝑙1 Penalty (Top 30) 

Feature name Importance Vital sign Feature type 

sao2_sudden-drop_value_1 1.57E-01 sao2 statistics 

stat_sao2_last 1.18E-01 sao2 statistics 

stat_heartrate_median 8.43E-02 heart rate statistics 

sao2_wt_cmor2-8_dist2_local-minima_shift_4 7.61E-02 sao2 wt 

respiration_wt_morl_dist4_local-minima_shift_5 7.12E-02 respiration wt 

stat_respiration_median 6.61E-02 respiration statistics 

respiration_fft_dist8_local-maxima_x_4 5.89E-02 respiration fft 

stat_heartrate_last 5.88E-02 heart rate statistics 

heartrate_wt_mexh_length5_power-in-band_2 5.65E-02 heart rate wt 

heartrate_psd_dist16_local-minima_x_4 5.43E-02 heart rate psd 

st3_psd_dist2_local-minima_x_2 4.95E-02 st3 psd 

st1_fft_dist2_local-minima_x_1 4.47E-02 st1 fft 

heartrate_wt_cmor1-4_dist4_local-minima_shift_2 4.43E-02 heart rate wt 

temperature_psd_dist16_local-minima_x_4 4.40E-02 temperature psd 

stat_respiration_last 4.39E-02 respiration statistics 

respiration_sudden-drop_value_5 4.38E-02 respiration statistics 

sao2_ac_length5_power-in-band_1 4.33E-02 sao2 ac 

heartrate_sudden-drop_x_2 4.29E-02 heart rate statistics 

st2_psd_dist4_local-minima_x_5 4.21E-02 st2 psd 

respiration_wt_mexh_dist2_local-minima_freq_3 4.10E-02 respiration wt 

sao2_psd_dist32_local-minima_x_1 4.07E-02 sao2 psd 

stat_respiration_min 4.04E-02 respiration statistics 

st1_fft_dist32_local-maxima_x_5 3.98E-02 st1 fft 

st2_fft_dist8_local-minima_x_5 3.88E-02 st2 fft 

st2_fft_dist32_local-maxima_x_4 3.82E-02 st2 fft 

st1_sudden-drop_x_1 3.80E-02 st1 statistics 

sao2_wt_cmor2-4_dist2_local-minima_shift_1 3.78E-02 sao2 wt 

st1_psd_dist32_local-minima_x_1 3.77E-02 st1 psd 

heartrate_psd_length5_power-in-band_4 3.74E-02 heart rate psd 

heartrate_wt_mexh_dist4_local-minima_shift_4 3.72E-02 heart rate wt 
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Table 3.8: Summary of the Importance of Different Feature Types 

  AC WT FFT PSD Statistics  SUM 

heart rate 0.034 0.742 0.150 0.303 0.290 1.520 

respiration 0.125 0.666 0.165 0.247 0.246 1.449 

sao2 0.043 0.486 0.118 0.125 0.358 1.131 

st1 0.061 0.119 0.153 0.111 0.114 0.559 

st2 0.057 0.228 0.139 0.100 0.018 0.542 

st3 0.071 0.134 0.073 0.09 0.011 0.379 

temperature 0 0.091 0.038 0.104 0 0.233 

SUM 0.393 2.467 0.836 1.079 1.036   

 

Table 3.9: Examples of two different patients 

 Feature name Patient 1 (alive) Patient 2 (expired) 

Proposed 

features 

sao2_sudden-drop_value_1 58 82 

stat_sao2_last 100 85 

stat_heartrate_median 83 88 

sao2_wt_cmor2-8_dist2_local-minima_shift_4 840 610 

respiration_wt_morl_dist4_local-minima_shift_5 1,050  965 

stat_respiration_median 15 24 

respiration_fft_dist8_local-maxima_x_4 0.021 0.012 

stat_heartrate_last 93 86 

heartrate_wt_mexh_length5_power-in-band_2 688,626.9 716,518.4 

heartrate_psd_dist16_local-minima_x_4 0.032 0.084 

... 

APACHE 

IV features 
(not used by 

the proposed 

framework) 

age 79 83 

gender Female Female 

If the patient has active treatment yes yes 

If the patient has diabetes yes no 

If the patient was intubated at 24 hours yes no 

... 

Probability 

of death at 

24 H 

Our proposed model 31.8 % 59.8 % 

APACHE IV 86.4 % 8.3 % 

 

ICU mortality prediction results 

In the following experiments, we evaluated the proposed model using the first 24 hours 

(H) ICU time series of vital signs, and compared our method with eight baselines. (1) APACHE 

IV (Zimmerman et al., 2006), a widely accepted ICU scoring system. APACHE IV had already 

https://www.zotero.org/google-docs/?Lk9wzB
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been applied and stored in the eICU database. (2) CNN-(S. Y. Kim et al., 2019) and (3) CNN-

(Caicedo-Torres & Gutierrez, 2019), two CNN models previously used for ICU mortality 

prediction and achieved high performance. (4) LSTM (Hochreiter & Schmidhuber, 1997; 

Thorsen-Meyer et al., 2020) and (5) GRU (Che et al., 2016), two RNN models that took vital 

signs in time sequence to estimate mortality rate. (6) ARMA and (7) ARIMA classification 

(Carden & Brownjohn, 2008), the classical statistical time-series forecasting methods: fitted the 

ARMA/ARIMA models on vital signs, and took the estimated coefficients as the inputs of 

machine learning classifiers to predict mortality probabilities. (8) Statistical feature classification 

(S. Kim et al., 2011; Davoodi & Moradi, 2018; Hsieh et al., 2018; Kong et al., 2020; Zhai et al., 

2020): simple statistics of vital signs including mean, median and standard deviation were 

calculated as features for ICU mortality prediction. 

The results were reported in Table 3.10. and Table 3.11. Our model (signal processing 

features and statistical features + LinearSVM 𝑙1feature selection (top 397 features) + 

LinearSVM) achieved higher AUC (0.849) and F1 (0.316) than all the 8 baseline models: 

APACHE IV, LSTM, GRU, CNN-S. Y. Kim, CNN-Caicedo-Torres & Gutierrez, ARMA, 

ARIMA, and statistical feature classification. Although deep learning models dominate the world 

of data science, both CNN and RNN were far outperformed by our signal processing and 

machine learning-based model. This was because we explicitly extracted valid information from 

the vital sign data, which made it easier for classifiers to find the relationship between the input 

space (vital signs) and the prediction out space (mortality).  

Unlike our model, the APACHE IV required laboratory results (which can be time-

consuming to obtain) and intensivists’ assessment (which may not always be available) as input 

variables. For example, APACHE IV required fiO2 value from the worst ABG data and GCS 

https://www.zotero.org/google-docs/?IzeXFZ
https://www.zotero.org/google-docs/?VucmuY
https://www.zotero.org/google-docs/?yOB7iv
https://www.zotero.org/google-docs/?yOB7iv
https://www.zotero.org/google-docs/?GkrC10
https://www.zotero.org/google-docs/?lLlPCA
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verbal score (Pollard et al., 2018) (see Table 3.3. for more information). APACHE IV used more 

resource-demanding variables to make predictions. Nevertheless, it only achieved an AUC of 

0.750 and an F1 of 0.124, both of which were much lower than our proposed method. Therefore, 

the proposed method can achieve better performance even using fewer resources than APACHE 

IV.  

To examine if the proposed method can add value to existing systems like APACHE IV, 

we merged the features generated by our model (based on 24H vital signs) with APACHE IV 

variables. The APACHE variables include patients’ demographics and other attributes available 

at ICU admission, which can have great value for ICU mortality prediction. All APACHE IV 

variables were available in the eICU database23 (Pollard et al., 2018). We excluded APACHE 

variables that require lab resources (e.g., ABG) or intensivists’ assessment (e.g., GCS) because 

we want to keep our prediction model resource efficient. The new feature set reaches an AUC of 

0.869 (see Table 3.11., Feature type “Proposed feature set and APACHE IV variables”), which 

means the features generated by our model can be integrated into other ICU mortality prediction 

models. The resulting model can have improved prediction power and should reduce the need for 

time-consuming or resource-demanding human intervention.  

The feature set we proposed included the signal processing features and the statistical 

features. We examined their effectiveness respectively. We excluded statistical features and 

signal processing features, respectively, and re-conducted the evaluation. As shown in Table 

3.11. (Feature type “Signal processing features only” and Feature type “Statistical features 

only”), using only signal processing features versus only statistical features, the predictive model 

reaches AUC of 0.782 and 0.765, respectively. The results indicated both signal processing and 

 
23

 APACHE IV variables are available in https://eicu-crd.mit.edu/eicutables/apachepredvar/. 

https://www.zotero.org/google-docs/?JF12AR
https://www.zotero.org/google-docs/?SqIsjv
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statistical techniques extracted informative features, and the extracted features were more 

predictive than APACHE IV (AUC = 0.750) variables for  ICU mortality prediction. Moreover, 

the obtained AUC scores of signal processing features (Table 3.11., Feature type “Signal 

processing features only”) were greater than that of statistical features (Table 3.11., Feature type 

“Statistical features only”), which validated the necessity of the signal processing techniques for 

feature extraction.  

Table 3.10: Baseline Methods Using 24H Vital Signs 

 Feature type Classifier AUC Precision  Recall  F1  

Baselines 

APACHE IV  - 0.750 0.404 0.074 0.124 

Original vital signs  CNN-1 0.732 1.00 0.123 0.218 

Original vital signs  CNN-2 0.712 0.857 0.057 0.106 

Original vital signs GRU 0.722 1.00 0.132 0.233 

Original vital signs  LSTM 0.698 0.818 0.085 0.154 

ARMA coefficients  

LinearSVM 0.660 0.090 0.545 0.155 

LogisticRegression 0.663 0.097 0.509 0.163 

NeuralNetwork 0.598 0.214 0.109 0.144 

RandomForest 0.709 0.142 0.500 0.222 

ARIMA coefficients 

LinearSVM 0.611 0.069 0.555 0.123 

LogisticRegression 0.633 0.059 0.494 0.105 

NeuralNetwork 0.594 0.170 0.121 0.141 

RandomForest 0.695 0.117 0.464 0.187 

Statistical features 

LinearSVM 0.745 0.134 0.562 0.216 

LogisticRegression 0.742 0.133 0.565 0.215 

NeuralNetwork 0.652 0.383 0.234 0.289 

RandomForest 0.765 0.971 0.138 0.241 

Note: AUC: based on the probability of ICU mortality  

Precision, recall, and F1: based on two-way classification results (𝑌 = {1: 𝑒𝑥𝑝𝑖𝑟𝑒𝑑, 0: 𝑎𝑙𝑖𝑣𝑒}) 
CNN-1: CNN-S. Y. Kim 
CNN-2: CNN-Caicedo-Torres & Gutierrez 
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Table 3.11: Proposed Method Using First 24H Data after ICU Admission 

 Feature type Classifier AUC Precision  Recall  F1  

Proposed method 

(Feature set 
comparison) 

Statistical features only 

LinearSVM 0.745 0.134 0.562 0.216 

LogisticRegression 0.742 0.133 0.565 0.215 

NeuralNetwork 0.652 0.383 0.234 0.289 

RandomForest 0.765 0.971 0.138 0.241 

Signal processing features 
only 

LinearSVM 0.782 0.168 0.580 0.260 

LogisticRegression 0.777 0.163 0.555 0.252 

NeuralNetwork 0.758 0.303 0.111 0.161 

RandomForest 0.781 0.400 0.006 0.012 

Statistical features + Signal 

processing features  
(Proposed feature set) 

LinearSVM 0.849 0.216 0.586 0.316 

LogisticRegression 0.843 0.217 0.571 0.315 

NeuralNetwork 0.827 0.561 0.241 0.335 

RandomForest 0.806 0.960 0.087 0.160 

Proposed feature set +  
APACHE IV variables* 

LinearSVM 0.869 0.247 0.619 0.353 

LogisticRegression 0.865 0.244 0.616 0.349 

NeuralNetwork 0.852 0.551 0.246 0.338 

RandomForest 0.817 0.960 0.081 0.149 

Note: AUC: based on the probability of ICU mortality  

Precision, recall, and F1: based on two-way classification results (𝑌 = {1: 𝑒𝑥𝑝𝑖𝑟𝑒𝑑, 0: 𝑎𝑙𝑖𝑣𝑒}) 
* APACHE IV variables: contain patients’ demographics and other information that are available before ICU admission, we 

have excluded APACHE variables that require lab resources (e.g., ABG) or intensivists’ assessment (e.g., GCS) because we 

want to keep our prediction model resource efficient.   

 
 

To evaluate the real-time predictive power of the proposed method, we conducted the 

experiments with data from different time spans: 3H, 6H, 12H, 24H, 32H, 72H, and the whole 

ICU stay. Patients may expire or leave the ICU after hours to days of stays. Figure 3.10. showed 

the percentage of patients that stayed in the ICUs over time. For patients whose length of stay 

was less than 𝑥 hours, 𝑥 ∈ (3, 6, 12, 24, 32, 72), we included all these patients and the whole 

time series of their vital signs in the 𝑥-hour experiments. For patients whose length of stay was 

more than 𝑥 hours, we only used their vital signs within the first 𝑥 hours. The reasons for such a 

setup are twofold. (1) The proposed feature set did not represent patients’ length of stay. The 
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properties of patients’ vital signs were summarized and abstractly represented by our proposed 

feature set (i.e., the relative extrema and power-in-band from the time/frequency domain, the 

statistical features from the time series of vital signs). The extracted features had the same 

dimensionalities for patients with different lengths of stay. There was no way for machine 

learning classifiers to correspond to patients’ length of stay and infer patients’ mortalities. 

Hence, there was little overfitting and information leakage during the classifier’s training 

process. The learned classifiers can effectively fit additional data and predict future observations 

reliably.  (2) This setup was common for ICU outcome predictions. Well-acknowledged ICU 

outcome prediction scoring systems, such as APACHE IV, MPM III, and SAPS II, also included 

patients whose length of stays were less than 24 hours for their 24 hours predictions (Vasilevskis 

et al., 2009; Zimmerman et al., 2006).   

Figure 3.11. presented the performance of the proposed model over time using different 

classifiers. Note that only the APACHE IV score at the time point of 24 hours after ICU 

admission was readily available and compared with our method. We cannot compare the 

performance of our method with APACHE IV at other time points, since the APACHE IV was 

not an open-source system and we did not have the resources to compute the APACHE IV scores 

at other time points. (1) As shown in Figure 3.11., the AUC of the proposed method went up 

over time using cumulative data from patients with prolonged ICU stays. (2) More importantly, 

except random forest, as early as 3H, all the other classifiers using the proposed features (AUC > 

0.786) achieved better performance than APACHE IV. (3) The blue and red lines were above the 

others, which indicated the better prediction performance of LinearSVM and LR.  

https://www.zotero.org/google-docs/?qo21r2
https://www.zotero.org/google-docs/?qo21r2
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Figure 3.10: Percentage of Patients Still Staying in ICUs 

 

 
Note: In the eICU dataset, only the APACHE IV score at the time point of 24 hours after 

the ICU admission is available. 

Figure 3.11: ICU Mortality Prediction Performance over Time 

According to our findings, the proposed method can provide real-time forecasts and make 

earlier predictions than APACHE IV without sacrificing accuracy. Practically, we suggest 

adopting LinearSVM or LR in Step 3, both of which are interpretable linear models. Note 
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APACHE IV has also adopted Logistic Regression as its predictive model. For application, the 

proposed framework is capable of supporting physicians at the bedside for patient management 

and resource allocation since our method continually calculated a risk score for the patient 

beyond the first 24 hours of ICU admission. 

The interpretability of the proposed method 

A model’s interpretability was defined as the degree to which a medical practitioner can 

understand the reason behind a prediction made by the model (Dam et al., 2018). The goal of 

interpretability was to describe the internals of the prediction model (Gilpin et al., 2019).  

The interpretability of our method existed in two parts, the machine learning algorithm 

and the proposed feature set. On one hand, we recommended linear models in practice because 

the learning function of such models can provide a weighting over the input features which was 

useful for the model explanation. On the other hand, the features obtained from the signal 

processing techniques were interpretable because they had practical meaning on the 

frequency/time domain and can be traced back to the original time series data. 

 

Figure 3.12 The Interpretability of the Proposed Method 

Note that all proposed features, which revealed the properties of patients’ vital signs, 

were explainable (just like simple statistics, e.g., mean and max), even though the input features 

https://www.zotero.org/google-docs/?faMQIw
https://www.zotero.org/google-docs/?5Q81ZZ
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involved the frequency domain. As shown in Figure 3.12., the time/frequency domain we 

obtained in the proposed method were from stochastic signal processing techniques. All the 

stochastic signal processing techniques we adopted were mathematical transforms that 

decomposed the time series of patients’ vital signs into functions depending on spatial or 

temporal frequency. We can apply inverse transforms that mathematically synthesize the original 

time-series data. Due to this, all the features were explainable or can be traced back to the 

original time-series data.  

Conclusion and Future Work  

In this study, we seek to answer two research questions. First, how can we develop a new 

ICU mortality prediction model leveraging readily-available data with minimized requirements 

on the intensivists’ expertise and having improved accuracy? Second, how can we effectively 

extract valid and interpretable features from the time series of vital sign data? We propose a 

novel ICU mortality prediction method combining stochastic signal processing and machine 

learning techniques. We systematically evaluate the proposed method using a real-world multi-

center ICU dataset. The proposed method outperforms state-of-the-art baselines by a large 

margin. In addition, the proposed method makes increasingly accurate predictions with patients’ 

increasing length of stay. Our method makes accurate predictions with 3 hours’ worth of data, 

whereas widely accepted methods like APACHE IV need 24 hours’ worth of data for 

predictions. More importantly, we use stochastic signal processing, a novel technique in ICU 

outcome prediction, for feature extraction. The extracted features are both valid and 

interpretable. They can be incorporated into other extant ICU outcome prediction models for 

better prediction results.  

Our proposed model is very promising for many reasons. Our work is the first study to 

(1) convert the time series of vital signs to the frequency domain, (2) effectively extract the 
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frequency domain’s features, and (3) use features from both time series and frequency domain to 

predict ICU mortality. Our major contributions for ICU mortality predictions are: first, we offer a 

new model for real-time predictions that requires only ICU bedside monitoring data; second, the 

proposed method greatly advance the performance of ICU mortality prediction; third, the 

extracted features are highly interpretable compared to those extracted from black-box models, 

which facilitates model adoption and implementation. From the perspective of data science for 

social good, the proposed model enlarges the social impact of ICU outcome prediction studies. 

Our prediction result has improved accuracy and is more reliable. The prediction results are 

relevant to both ICU patients and critical care practitioners. The proposed methods can have 

wide applications because the extracted features are interpretable to healthcare professionals. 

Future work 

While the results are encouraging, the proposed method is not without limitations.  

First, more vital-sign data and baselines can be examined. This study adopts the readily-

available times series of vital signs, including heart rate, sao2, body temperature, respiration, st1, 

st2, and st3. Other vital sign data (e.g., the central venous pressure and pulmonary artery 

pressure) are not included due to the high missing rate. The predicting power of these vital sign 

data can be evaluated in the future. This study considers two RNNs (i.e., GRU, LSTM), and two 

CNNs, as deep learning-based baselines. However, recent studies show that the attention-based 

deep learning models are better at extracting patterns from time-series data (Tang et al., 2018; 

Vaswani et al., 2017). We can include and compare the attention-based models as baselines in 

the future as well.  

Moreover, reliability is very important to consider in ICU outcome predictions. This 

work attempts to improve the reliability of our method by increasing its accuracy and 

interpretability. However, in order to apply our findings to a real-world ICU setting, the model’s 

https://www.zotero.org/google-docs/?0RP8TQ
https://www.zotero.org/google-docs/?0RP8TQ
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trustworthiness and consistency must be verified in real-world intensive care units. A more 

overall understanding of the model’s reliability can be achieved by a longer time series analysis 

in the future. 

Furthermore, in ICU outcome predictions, generalizability is critical to investigate. This 

study uses heart failure as a research case. To evaluate its generalizability, we test our method on 

two other common ICU complications as well (please see the results in Appendix B). In our 

future work, we can expand our method to a more general model. We intend to make the disease 

type a predictive variable in the model. Specifically, the generalized model is 𝑀𝑜𝑑𝑒𝑙𝑛𝑒𝑤 =

𝑀𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛼 ∗ 𝐷𝑖𝑠𝑒𝑎𝑠𝑒, where 𝛼 is the coefficient vector for different diseases. By taking 

different types of diseases into account, our method can be a general mortality predicting model 

like APACHE IV. Additionally, the new model will still keep its interpretability because the 

added variable does not break the linearity of the current model. The new model can be 

evaluated on multiple diseases as well. Meanwhile, more experiments can be conducted to 

examine the performance of other ICU outcome prediction tasks, such as length of stay and ICU 

cost. 

Last, a model’s interpretability is crucial to a healthcare-related predictive model. This 

work proposes a combination of linear machine learning models and interpretable features to 

increase the interpretability of our method. However, the frequency domain and the features 

extracted from them may not be straightforward to medical professionals, and may require more 

background knowledge. In future work, we can focus on the interpretability issue and create an 

interactive interpreting system to facilitate the process. 
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Appendix A: Research Setup and Parameter Selection 

Implementation of machine learning models 

In this research, the probabilistic classification problem 𝑃𝑟(𝑌|𝑋) described in Section 3 

and the four classifiers, including linear support vector machine (LinearSVM), logistic 

regression (LR), random forest (RF), and fully connected neural networks (NN) can be 

implemented as follows.  

Linear SVM: Linear SVM defines a hyperplane function, 𝑓, to make predictions, 𝑓(𝑥𝑖) =

1, if 𝑤𝑇 ⋅ 𝑥 + 𝑏 ≥ 0;  𝑓(𝑥𝑖) = 0 otherwise. The LinearSVM does not explicitly predict a 

probability. The probability of each class is estimated by cross-validation (Platt, 2000). The 

parameter 𝜃 = {𝑤, 𝑏} can be obtained by optimizing 𝑚𝑖𝑛
𝑤,𝑏

1

2
𝛺(𝑤) + 𝐶 ∑ 𝑚𝑎𝑥[0, 𝑦𝑖(𝑤

𝑇 ⋅ 𝑥𝑖 +𝑖

𝑏)], where 𝐶 is a regularization parameter, and 𝛺 is a penalty function of parameter 𝑤. 𝛺 can be 

𝛺(𝑤) = |𝑤|, which is called the 𝑙1 penalty. 

LR: LR is a linear classifier, whose mapping function 𝑓 is defined as 𝑓𝜃(𝑥) = 𝑃𝑟(𝑌 =

1| 𝑋 = 𝑥) =
1

1+𝑒−(𝑤
𝑇⋅𝑥+𝑏)

, where 𝜃 = {𝑤, 𝑏} is the parameter, and can be obtained by maximizing 

the likelihood function 𝐿(𝜃|𝑌, 𝑋) = ∏ 𝑓𝜃(𝑥𝑖)
𝑦𝑖(1 − 𝑓𝜃(𝑥𝑖))

(1−𝑦𝑖)
𝑖 . 

RF:  A decision tree classifier ℎ(𝒙|𝜽) partitions the feature space on nodes to group the 

samples with the same labels, where 𝜃 determines the subset 𝑋𝜃 of the full set of the features 𝑋. 

The splitting on the node depends on the average feature impurity that can be measured by 

entropy or the Gini index. Entropy is the amount of information present in certain variables, 

defined as 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖)
𝑛
𝑖=1 , where 𝑝𝑖 is the probability of class 𝑖 in the samples 

on the node. The Gini index measures sample inequality, is defined as 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −

∑ 𝑝𝑖
2𝑛

𝑖=1 . A random forest classifier with size 𝑘 is based on 𝑘 decision tree classifiers ℎ𝑖(𝒙|𝜽𝒊), 

𝑖 = 1, . . . , 𝑘, where 𝜃𝒊  is determined by bootstrap sampling. Each tree estimates 𝑃𝑟(𝑌 = 1| 𝑋𝜃𝑖)  

https://www.zotero.org/google-docs/?CO2WXl
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and 𝑃𝑟(𝑌 = 0| 𝑋𝜃𝑖)  by taking the observed proportions of each class where the tree stops 

splitting. The random forest classifier is defined as 𝑓(𝑥|𝜃) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦
1

𝑘
∑𝑃𝑟(𝑌|𝑋𝜃𝑖), 𝑌 ∈

{0, 1}. 

NN: NN is a non-linear classifier that includes at least a single hidden layer, an input 

layer and an output layer. Here we give the example of NN with one layer. Mathematically, 

𝑓𝜃(𝑥) = 𝑔𝑜𝑢𝑡(𝑤𝑜𝑢𝑡
𝑇 ⋅ 𝑔ℎ𝑖𝑑𝑑𝑒𝑛(𝑤ℎ𝑖𝑑𝑑𝑒𝑛

𝑇 ⋅ 𝑥 + 𝑏ℎ𝑖𝑑𝑑𝑒𝑛) + 𝑏𝑜𝑢𝑡), where 𝑔ℎ𝑖𝑑𝑑𝑒𝑛, 𝑔𝑜𝑢𝑡 are activation 

functions, and 𝜃 = {𝑤ℎ𝑖𝑑𝑑𝑒𝑛, 𝑏ℎ𝑖𝑑𝑑𝑒𝑛, 𝑤𝑜𝑢𝑡 , 𝑏𝑜𝑢𝑡} are parameters for hidden and output layers. 

The activation functions are defined as 𝑔ℎ𝑖𝑑𝑑𝑒𝑛(𝑧) = 𝑚𝑎𝑥(0, 𝑧) and 𝑔𝑜𝑢𝑡(𝑧) =
1

1+𝑒−𝑧
. The 

parameter 𝜃 can be optimized by minimizing the cross-entropy 𝐻𝜃 = ∑ −𝑦𝑖𝑙𝑜𝑔(𝑓𝜃(𝑥𝑖)) + (1 −𝑖

𝑦𝑖)𝑙𝑜𝑔(1 − 𝑓𝜃(𝑥𝑖)). 

The parameters of these machine learning classifiers are grid-searched in the 

experiments. The parameters are shown in Table 3.12.- 

Table 3.12. Classifiers’ Parameters. 

Classifiers Parameters  

Logistic regression 
Penalty: 𝑙1 

C: 0.005, 0.01, 0.05, 0.1  

Linear support vector machine 
Penalty: 𝑙1 

C: 0.005, 0.01, 0.05, 0.1  

Neural network 
hidden_layer_sizes: (100, 50, 30), (30, 20, 10), (100, 

30), (50, 30), (30, 10), (30, 10), (50, ), (30, ) 

Random forest 

n_estimators: 400, 800, 1600 

max_depth: 2, 4, 8, 16, 32 

criterion: gini, entropy  

LSTM (Thorsen-Meyer et al., 

2020)  

num_hidden_layers: 1, 2, 3 

hidden_layer_size: 5, 10, 15 

Optimizer: Adam (learning rate lr = 0.001) 

 

 

 

https://www.zotero.org/google-docs/?broken=J5n4lO
https://www.zotero.org/google-docs/?broken=J5n4lO
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Table 3.12. Continued 

Classifiers Parameters  

GRU (Che et al., 2016) 

num_hidden_layers: 1, 2, 3 

hidden_layer_size: 5, 10, 15 

Optimizer: Adam (learning rate lr = 0.001) 

CNN (S. Y. Kim et al., 2019) 

num_conv_layers: 2 

conv_filter_size: 1×5 

num_conv_channel: 256, 512 

num_pooling_layers: 2 

pooling_filter_size: 1×5 

 

CNN (Caicedo-Torres & 

Gutierrez, 2019) 

num_conv_layers: 1 

conv_filter_size: 1×3, 1×6, 1×12 

num_conv_channel: 16 

num_pooling_layers: 1 

pooling_filter_size: 1×3 

 

Parameters for feature extraction  

Relative extrema of frequency spectrums. We conduct a prior experiment to select the 

parameters (i.e., n and ε) for relative extrema (Section 3.2) for the frequency spectrums. The 

experiments predict the mortality for heart failure patients using 24 hours data. We perform a 

grid search of parameter pairs for the random forest algorithm with entropy as impurity 

measurements. The AUC scores are shown in Table 3.13. When n = 5, the classifier achieves the 

best AUC most of the time. Thus, n is set to 5. With different ε, we can extract different features. 

Our proposed feature set includes different relative extrema features extracted using various ε 

(i.e., 𝜀 ∈ {2,4,8}).  

 

 

https://www.zotero.org/google-docs/?HeopN5
https://www.zotero.org/google-docs/?broken=H031kw
https://www.zotero.org/google-docs/?broken=UklkEC
https://www.zotero.org/google-docs/?broken=UklkEC
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Table 3.13. Parameter Selection for n and ε. 

 AUC ε = 2 ε = 4 ε = 8 

n = 3 0.745 0.752 0.750 

n = 5 0.758 0.763 0.764 

n = 7 0.757 0.759 0.774 

Extreme values on vital signs. As statistical features, we take the extreme values on the 

vital signs through the moving window method (Section 3.2). The window size is set to 10, 

which covers vital signs for 50 minutes. According to the medical professional’s 

recommendations, the selected window size is large enough to estimate the local mean and 

variance of the vital signs. The parameter 𝑛 is set to be 5 empirically because 43.43% of the vital 

signs have at least 5 extreme values in the moving windows. Such settings can include as many 

useful features as possible, while producing as few missing values as possible.  

Power-in-band. Before we present the parameter setting of the power-in-band features, 

we first highlight the importance of power-in-band features from two aspects. First, power-in-

band is the summary measure of the “strength” of a signal (i.e., vital signs are defined as signals 

in our research). (1) In signal processing, a signal is viewed as a function of time. “Power of a 

signal” is used to represent “strength of the signal”. (2) In signal detection techniques, the 

strength of a signal (also known as energy) is often considered as the computation of the area 

under the square of the signal 𝐸𝑠𝑖𝑔𝑛𝑎𝑙 = ∑
∞
𝑛=−∞ |𝑠𝑖𝑔𝑛𝑎𝑙(𝑛)|2 (Viswanathan, 2017). Please see 

Figure 3.13. 

According to Parseval’s theorem (Figure 3.14.), the energy of the time domain signal is 

equal to the energy of the frequency domain transform (Kay & Marple, 1981). “Power” is also 

the measure of signal strength, which is defined as the amount of “energy” consumed per unit 

time 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑙𝑖𝑚
𝑁→∞

1

2𝑁+1
∑ |𝑠𝑖𝑔𝑛𝑎𝑙(𝑛)|2𝑛=𝑁
𝑛=−𝑁 . Similarly, according to Parseval’s theorem, the 

power in a signal when expressed in the time domain is equal to the power of that same signal 

https://www.zotero.org/google-docs/?0v4eu0
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when expressed in the frequency domain. The power-in-band feature summarizes the 

contribution of the given frequency band (i.e., frequency range) to the overall power of the 

signal, which may contain important patterns of patients’ vital signs.  

 

Figure 3.13. Strength (Energy) of the Signal. 

 

Figure 3.14. Parseval’ Theorem. 

Second, power-in-band is a simple yet powerful feature extraction method for ICU 

mortality prediction. (1) Power-in-band features are easy to extract and use. There are a variety 

of methods that can be used on the frequency spectrums once we convert patients’ time series of 

vital signs to the frequency domain. Power-in-band is one of the easiest to analyze (Vallat, 

2018). In practice, we compute the summation over different segments of a vector (i.e., the 

vector represents the frequency spectrums transformed from a vital sign). (2) Power-in-band 

features are useful for machine learning predictive analysis. The time/frequency representations 

(i.e. frequency spectrums generated by converting time series of vital signs to frequency 

domains) are of high dimensionality, making them unsuitable for use as classifier inputs. Power-
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in-band extracts the key characteristics from the time/frequency representations, resulting in a 

single number that describes a specific aspect of the time/frequency representations. 

 

Figure 3.15. An Example of Power-in-band Features for Different Heart Rates. 

Let us use a commonly used vital sign, heart rate, as an example. Figure 3.15. depicts 

three patients with different heart rates. Abnormal heart rates can have causes that are due to 

underlying diseases. Different ranges of heart rates result in different powers in the frequency 
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domain. If a patient experiences tachycardia (i.e., fast heart rate, a heart rate over 100 beats per 

minute), the value of power-in-band feature in higher frequency bands is larger compared to the 

patients with normal heart rate. If a patient experiences bradycardia (i.e., slow heart rate, slower-

than-expected heart rate, generally beating fewer than 60 beats per minute), the value of power-

in-band feature in lower frequency bands is smaller compared to the patients with normal heart 

rate. To sum up, the power-in-band features are used to summarize the frequency spectrum on 

the frequency domain, in order to communicate a large amount of information in a simple way.  

In order to select the proper center frequencies 𝜔𝑐 and bandwidth 𝜔𝑏𝑤 for the power-in-

band features, we conduct experiments on 24 hours ICU vital sign data of heart failure patients. 

The classifier is the random forest, and the impurity measurement is entropy. We obtain fixed-

length vectors of frequency spectrums after we transform the time-series of vital signs to the 

frequency domain. We explore our model’s performance by splitting the vectors into 𝑛 bands of 

equal length (𝑛 ∈ {4，5，6}).  

The center frequencies 𝜔𝑐 and bandwidth 𝜔𝒃𝒘 are determined by the number of bands 𝑛. 

When the number of bands 𝑛 is set to 4, there are four center frequencies (i.e., the center 

frequency is the middle point of each band). The width of each band 𝜔𝒃𝒘 can be obtained 

accordingly. Similarly, when the number of bands 𝑛 is set to 5 or 6, we calculate the center 

frequencies and bandwidth correspondingly. The values of the parameters and the prediction 

results are summarized in Table 3.14. The experimental results show that when the number of 

bands 𝑛 is set to 5, the proposed method achieves the best empirical results. As a result, in this 

study, the center frequency 𝜔𝑐 is (1.67, 5.00, 8.33, 11.67, 15.00 (∗ 10−4)) and the bandwidth 𝜔𝒃𝒘 

is 1.67 ∗ 10−4.  
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Table 3.14. Power-in-band Parameter Selection. 

Number of bands Bandwidth 𝜔𝒃𝒘 Center frequencies 𝜔𝒄(∗ 𝟏𝟎−𝟒) AUC 

n = 4 2.08 ∗ 10−4 (2.08, 6.25, 10.41, 14.58) 0.706 

n = 5 1.67 ∗ 10−4 (1.67, 5.00, 8.33, 11.67, 15.00) 0.756 

n = 6 1.38 ∗ 10−4 (1.39, 4.17, 6.94, 9.72, 12.50, 15.26) 0.707 

ARMA and ARIMA. For the baselines ARMA and ARIMA, we set the parameters 𝑝 =

4, 𝑑 = 0, 𝑞 = 0, where 𝑝 is the number of lag observations in the model, 𝑑 is the number of 

times the raw observations are differentiated, and 𝑞 is the size of the moving average window. 

The parameters are first generated for each patient’s vital sign with the lowest Akaike 

information criterion (AIC). For the classification task (i.e., mortality prediction), a fixed order 

for the time series model is required for all patients to ensure the input features have the same 

dimensionality. We choose the most frequent 𝑝, 𝑑, and 𝑞. The ARIMA parameter selection 

process follows previous work (Carden & Brownjohn, 2008; Y. Zhang et al., 2017).    

 

Missing values in the feature set 

In the experiments, we impute missing values in the feature set, including the relative 

extrema on the frequency spectrums, with the population means. An alternative way of the 

imputation is filling zero, e.g., using 0 to fill in the relative extrema that are missing. Zero 

indicates no relative extrema, which is more close to the meaning of “no local minima and 

maxima”. However, filling the missing value with 0 can be misleading and introduce noise to the 

model.  

According to its definition, the frequency spectrum must be non-negative. Therefore, zero 

local extrema of the frequency spectrums can be interpreted as no oscillation in the original time 

series at a certain time point (i.e., local minima or maxima are zero) or a range of time (i.e., local 

maxima are zero), which is untrue for most vital sign data.   
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Addressing missing values without losing important information or adding noise is 

difficult for this dataset. We add additional experiments to empirically test which imputation 

method is better. The results are summarized in Table 3.15. When we fill missing relative 

extrema with the population mean, the AUC scores are much higher than filling the missing 

relative extrema with zero, regardless of the classifiers and features’ combinations. It shows 

filling the population mean is more effective in dealing with missing values in this research. 

Table 3.15. Experiments to Test Different Imputation Methods. 

Feature types Classifier 

AUC 

(Filling missing values with 

mean) 

AUC 

(Filling missing values with 

0) 

Statistical features + 
Signal processing 

features 

(Proposed feature 

set) 

LinearSVM 0.849 0.761 

LogisticRegression 0.843 0.757 

NeuralNetwork 0.827 0.687 

RandomForest 0.806 0.792 

Proposed feature set 
+  apache variables 

(no GCS) 

LinearSVM 0.869 0.788 

LogisticRegression 0.865 0.784 

NeuralNetwork 0.852 0.703 

RandomForest 0.817 0.798 

 

Appendix B: A Supplementary Experiment to Test the Generalizability of the Proposed 

Method 

To further evaluate the reliability and generalizability of the proposed method, we apply 

our method on two other common ICU admission diagnoses, which are also of top frequent in 

eICU database - Sepsis pulmonary (SP) and Sepsis renal/UTI (including bladder) (SR). The 

results are shown in Figure 3.16. In both cases, the AUC for the proposed method increases over 

time. When applied on SP, the AUC of all machine learning classifiers using 24H data is 

significantly larger than APACHE IV. For SR, SVM and logistic regression show better 
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prediction performance than APACHE IV with only 3H data. Overall, the results show our 

method can be generalized to other diseases for ICU mortality prediction. 

 
(a) Using Sepsis Pulmonary (SP) as a Research Case 

 
(b) Using Sepsis Renal/UTI (Including Bladder) (SR) as a Research Case 

Figure 3.16. ICU Mortality Prediction Performance. 

 



159 

 

CHAPTER 4.    A NEW TRANSFER LEARNING METHOD FOR LAB OUTCOME 

PREDICTION WITH LIMITED TRAINING DATA    

Shaodong Wang1, Yiqun Jiang1, Chao He2, Qing Li1, and Wenli Zhang3 

1 Department of Industrial and Manufacturing Systems Engineering, Iowa State University 

2  Department of Medicine, University of Alabama at Birmingham 

3 Department of Information Systems & Business Analytics, Iowa State University 

 

Abstract 

The laboratory test is a key resource in ICU to inspect the patient's health. Due to the 

limited lab resources and inappropriate lab utilization, researchers start to predict the lab 

outcomes. However, some lab tests do not have sufficient training data (low-frequency lab tests), 

which negatively impact the prediction models' accuracy. In this study, we propose a new 

transfer learning method for lab anomaly prediction with limited training data. Specifically, we 

develop a novel distance to select the optimal source domain from multiple high-frequency lab 

tests. We design a recurrent neural network to estimate the probability of obtaining an abnormal 

lab outcome. We transfer knowledge from the selected source domain to improve the model 

performance on the target domains (low-frequency lab tests). We evaluate the proposed method 

on five low-frequency lab types that are related to heart failure and five high-frequency lab types 

that are most common in the hospital. The experiments show that the designed neural network 

outperforms all traditional machine learning models by a large margin. In the experiments, the 

transfer learning and the proposed domain distance further improve the model performance for 

all selected low-frequency lab types (e.g., AUC scores increase from 0.729 to 0.795 for Brain 

natriuretic peptide tests). The new transfer learning method address the data insufficiency 
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problem for lab outcome prediction, which provide a more reliable way to optimize the clinical 

resource allocation. 

 

Introduction 

The laboratory test is a key resource in ICU to inspect the patient's health. 1) Doctors can 

select proper treatment according to the lab results. For example, calcium is usually given into 

veins (IV) to treat the muscle and heart effects of high potassium levels24. 2) The lab results are 

also important factors for clinical risk predictions, such as mortality prediction and length of 

stay. Many well-known ICU scoring systems include lab results as predictive attributes, 

including APACHE, and SAPS (Keegan et al., 2012).  

However, there are some issues about limited lab resources and inappropriate lab 

utilization. 1) Laboratory resources are not always sufficient, especially in developing regions. 

Many countries and districts suffer from insufficient laboratory tests due to the lack of laboratory 

supplies, essential equipment, skilled personnel, educators and training programs, etc (Olmsted 

et al., 2010; Petti et al., 2006). During the recent Covid pandemic, lab resources are even more 

limited because hospitals receive more patients than usual (Moghadas et al., 2020). 2) Some lab 

tests are unnecessary, which wastes clinical resources. There are no standard definitions (Jha et 

al., 2009), but unnecessary lab tests are usually referred to as repeating tests without assessing 

the clinical necessity or the repeating tests in short time intervals that are unlikely to provide 

useful information (e.g., clinically significant change) (Baron & Dighe, 2014; Konger et al., 

2016). According to the Institute of Medicine, unnecessary tests and procedures waste over $200 

billion each year in the US (Smith et al., 2013; Xu et al., 2019). Up to 42% of lab tests are 

unnecessary or redundant (Konger et al., 2016), which could take 2.7% of the total inpatient 

 
24

 https://www.heart.org/en/health-topics/heart-failure/treatment-options-for-heart-failure/hyperkalemia-high-potassium 
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costs (Jha et al., 2009). 3) Besides the financial consequences, unnecessary lab tests can also 

cause adverse impacts on patients, including lower patient satisfaction and higher mortality (Xu 

et al., 2019). For example, a high frequency of blood draws can negatively impact the patients’ 

sleep (Konger et al., 2016), or even cause hospital-acquired anemia in some extreme cases (Huck 

& Lewandrowski, 2014). 4) Occasionally, inexperienced doctors may neglect some helpful lab 

tests when the tests are not listed in the protocol. This could impede the doctors from getting 

enough information for the diagnosis and treatments.  

Due to the issues mentioned above, researchers propose to predict the lab results before 

the tests are ordered. The proposed work can be used in two ways to prioritize the lab resources, 

including financial cost, practitioners' workload, medical facilities, and lab materials. First, the 

lab anomaly prediction models can quantify the expected information (Xu et al., 2019). 

According to the probability of getting abnormal lab results, doctors can avoid unnecessary tests 

or increase the priority of important tests. Second, the lab anomaly prediction models can remind 

doctors to order necessary lab tests. If the models can continuously process the collected 

information and provide the real-time estimation of lab results, the model will be able to alarm 

the doctors when the predicted results change significantly.  

Researchers have implemented various machine learning models for the lab anomaly 

prediction. Some propose to predict the results of a single test, such as ferritin tests and 

hemoglobin (Hgb) tests (Lobo et al., 2020; Luo et al., 2016). Others propose more general 

models to predict multiple lab results, including 12 common blood tests (Yu et al., 2020). 

However, researchers fail to notice that some tests' training data are insufficient, affecting the 

prediction models' accuracy. For example, in the study of Xu et al., (2019), among 1,000 

patients, there are only one anti-hiv test, 26 glucose tests, and 40 iron tests, while the volume of 
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Magnesium tests and prothrombin time tests are 4,246 and 2,244, respectively. Consequently, the 

AUC scores of the tests with limited training samples in the prediction are significantly lower 

than that of the large-sample tests, as shown in Figure 4.1. 

 

 

Figure 4.1: Prediction performance (AUC scores) of top-10 high-frequency & low-frequency lab 

tests in Xu et al., (2019). 

Although some lab types do not have many cases in the hospital, they still need anomaly 

prediction models for resource optimization. In the rest of the article, we call the lab types that 

only have limited cases in the hospital low-frequency lab tests. For patients who need those low-

frequency lab tests, avoiding a single unnecessary lab test can help. First, some lab tests are 

repeatedly taken for a small patient cohort. According to the eICU database, there are only 

0.06% patients receiving Lidocaine tests. However, patients can receive 33 Lidocaine tests at 

most in a single stay. Second, low-frequency lab tests can also be expensive. For example, each 

iSTAT Cg4 costs $572.5 in the Chargemaster (Xu et al., 2019), which is more costly than most 

high-frequency tests. Third, some low-frequency lab tests are time-consuming. For example, the 

turnaround time of stool culture is 1 or 2 days. Last, some low-frequency tests can also make 

patients uncomfortable. For instance, patients are required to fast for at least 8 hours before 

taking the Folic acid blood test.  
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It is important to address the data insufficiency for low-frequency lab tests on the lab 

anomaly prediction model. In this study, we propose to fill the research gap by adopting transfer 

learning, which is the popular tool for small-size datasets in the machine learning fields. Transfer 

learning can increase the training efficiency and model accuracy for a target domain by 

transferring knowledge from a related source domain. In this study, the target domain is a low-

frequency lab type, while the source domain is a high-frequency lab type with many samples. 

Transfer learning is promising because there are usually a lot of high-frequency lab types in 

hospitals and many lab tests are clinically related to each other (Bartsch et al., 2015). However, a 

not well-related source domain (a high-frequency lab type) can negatively impact the model 

performance on the target domain (Weiss et al., 2016). How to select the proper lab test as a 

source domain remains a challenge in this study.  

In this study, we propose a new transfer learning method for low-frequency lab anomaly 

prediction. As the first step of the transfer learning, we develop a novel distance to select the 

optimal source domains, which measures the closeness between two domains. Then we design a 

neural network as a base model for lab anomaly prediction. The designed neural network is pre-

trained and finetuned on the source domain (high-frequency lab tests) and the target domain 

(low-frequency lab tests), respectively. We evaluate the proposed method on five low-frequency 

lab types that are related to heart failure and five high-frequency lab types that are most common 

in the hospital. The experiments show that the designed neural network outperforms all 

traditional machine learning models by a large margin. In the experiments, the transfer learning 

and the proposed domain distance further improve the model performance for all selected low-

frequency lab types (e.g., AUC scores increase from 0.729 to 0.795 for Brain natriuretic peptide 

tests).  
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Our important contributions are summarized as follows. 1) We are the first to develop the 

anomaly prediction model for low-frequency lab tests. We address the data insufficiency 

problem and improve the model accuracy for low-frequency lab tests. 2) The proposed transfer 

learning method provides a specific guideline to select the proper source domains from multiple 

high-frequency lab types. The selected source domain boosts the model performance efficiently. 

3) Practically, the proposed work can optimize the clinical resource allocation by providing the 

expected lab outcome, especially the low-frequency lab tests.  

In the remainder of this article, we review the related literature in Section 2. We 

introduced the proposed method in Section 3. We evaluate the proposed model in Section 4. We 

summarize the proposed work, limitations, and future work in Section 5.  

Related Work 

Lab Results Prediction 

In order to optimize the strategy of clinical resources, many researchers proposed to 

predict the lab results using available features before the lab order, such as demographics, vital 

signs, and past lab results.  

Most researchers built machine learning models for common or high-frequency lab tests 

with large sample sizes. For example, Xu et al., (2019) trained a recurrent neural network to 

identify hemoglobin (Hgb) levels using over 40K Hgb records. Yu et al. (2020) even fitted a 

Long Short Term Memory model on 598K laboratory observations.  

However, only a few studies predict outcomes of low-frequency lab tests that have 

limited training samples. Voglis et al. (2020) identified the probability of hyponatremia for 

patients who underwent pituitary surgery. Due to the specialty of the cohort, only 207 samples 

were included in this study. Moreover, in the existing work, the small sample size limited the 

model performance (Xu et al., 2019). In the study of Xu et al., (2019) (Figure 4.1.), the model 
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performance (AUC scores) of top-10 high-frequency lab tests (>18K samples) was significantly 

higher than that of top-10 low-frequency lab tests (<1.5K samples). This observation motivated 

us to improve the lab prediction for low-frequency lab tests with limited samples.  

Transfer Learning 

Transfer learning is a promising technique to improve a machine learning model on one 

domain (target domain) by transferring knowledge from a different but related domain (source 

domain) (Weiss et al., 2016). As an intuitive example, people skilled at guitar (source domain) 

usually learn piano (target domain) more efficiently than those without any music background.  

Transfer learning aims to solve the problem of data insufficiency (Zhuang et al., 2021). In 

many real-world scenarios, training data of the target domain are difficult and expensive to 

collect, which greatly limits the performance of the resultant machine learning models (Zhuang 

et al., 2021). By transferring information from the source domain, transfer learning decreases the 

required sample size in the target domain and improves learning performance (Weiss et al., 2016; 

Zhuang et al., 2021).  

Transfer learning methods can be divided into four categories, including instance-based, 

mapping-based, network-based, and adversarial-based (Weiss et al., 2016). The instance-based 

method reweights the instances in the source domain to minimize the distribution difference 

between two domains. The feature-based method maps data in the source domain to the target 

domain or maps data in both domains into the same space. The parameter-based method reuses 

the shared parameters of source and target domains by reweighting multiple source learners. The 

relational-based method transfer knowledge from source domain to target domain through their 

defined relations.  

In this study, we adopt feature-based transfer learning because it is widely used for deep 

learning models. In deep learning, the feature-based transfer learning is also called network-
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based transfer learning (Tan et al., 2018). Specifically, we pre-train the network on the source 

domain, and then finetune the model on the target domain with the pre-trained model as a 

starting point. For example, Huang et al. (2020) utilized Google Inception-V3 convolutional 

neural network as a pre-trained model and identified the location of the anterior ethmoidal artery 

on sinus computed tomography scans. Shi et al. (2018) pre-trained a convolutional neural 

network on a huge image dataset and finetuned their model to predict occult invasive disease in 

ductal carcinoma.  

Transfer learning is promising in our study because it fits our research goal for two 

reasons. First, the sample size of low-frequency lab tests is too small to support the training, 

while there are sufficient samples of high-frequency lab tests. Second, many lab tests are 

clinically related, especially when they examine the same body system or the same health 

condition (Hosten, 1990). The relatedness is important because a not well-related source domain 

can negatively impact on the target learner (Weiss et al., 2016). Therefore, transfer learning 

could be a promising way to address the data insufficiency problem and improve the model 

performance for low-frequency lab tests. 

Domain Distance 

Usually, there are many types of high-frequency lab tests in hospitals, which can be 

clinically related or non-related to the target low-frequency lab. On one hand, some lab tests 

examine the function of the same body system. For example, serum creatinine and blood urea 

nitrogen are both the common tests to measure the kidney function or damage (Hosten, 1990). 

These clinically related lab tests are more likely to improve the predictive power for the target 

lab type. On the other hand, some lab tests diagnose extremely different health conditions, such 

as HIV tests and diabetic tests. The data of unrelated lab tests are more likely to add noise to the 

target domain and negatively impact the target learner (Weiss et al., 2016). 
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Therefore, how to select the right lab samples remains a problem. Besides basic transfer 

learning, we propose selecting the right source domains (high-frequency lab tests) according to 

the closeness between high-frequency and low-frequency lab types. We assume the source 

domains similar to the target domains can most help the training on the target domain. 

In the field of transfer learning, many distance metrics were used to measure the distance 

between two domains, such as Maximum Mean Discrepancy, KL-divergence, and H-divergence 

(Ben-David et al., 2010; Li et al., 2021). Most researchers calculated the distance on features in 

different domains or on the fully connected layers of neural networks (Li et al., 2021; Long et al., 

2016; Zhuang et al., 2021).  

Among the current methods, CORrelation ALignment (CORAL) distance is a widely 

used distance metric that measures the discrepancy between correlations of two feature sets (Sun 

& Saenko, 2016). Denote the feature sets of two domains as 𝑋1and 𝑋2. The CORAL distance is 

defined as  𝐶𝑂𝑅𝐴𝐿 = ‖𝐶1 − 𝐶2‖2
2, where 𝐶𝑖 = 𝐶𝑜𝑟(𝑋𝑖, 𝑋𝑖), 𝑖 = 1, 2. 𝐶𝑖 is a matrix, and each 

element of 𝐶𝑖 is the Pearson Correlation Coefficient (Benesty et al., 2009) between two 

features in 𝑋𝑖 . 

CORAL is a general distance that can be implemented on datasets without labels. It 

didn’t make use of the relationship between features and labels. However, this is important for 

classification problems, such as lab result predictions. Therefore, we propose a new distance 

metric by modifying the CORAL distance. Our distance measures the discrepancy between 

correlations of features and labels.  
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Neural Network 

In this study, we designed a neural network as our model, including fully connected 

layers and long short-term memory (LSTM) layers. We select the neural network due to its 

superior performance on the classification tasks (Esteva et al., 2019).  

Fully connected layers are a common form of neural network that takes a vector (tabular 

features) as input. The inputs are connected with each unit of the next layer in the network. Fully 

connected layers have been successfully implemented in many clinical tasks, such as predicting 

community-acquired pneumonia (Feng et al., 2021) and identifying substance use risk 

(Hassanpour et al., 2019). 

Long Short-Term Memory networks (LSTM) are a special kind of neural network 

designed for long-term time series data (Hochreiter & Schmidhuber, 1997). Unlike fully 

connected networks, LSTM takes a sequence of data iteratively and stores the information in its 

hidden and cell states. LSTM controls the flow of a long data sequence with a series of gates, 

which enables it to remember long-term information. LSTM is promising in our work because 

long data sequences are available in many real-world cases. For example, hospitals commonly 

collect vital-sign sequences, especially in Intensive Care Units (ICU). Many researchers have 

adopted LSTMs on vital signs to address clinical problems, including identifying clinical 

deterioration (Naemi et al., 2020) and detecting influenza, dengue, and common cold (Nadda et 

al., 2022). 

Research Design 

In this section, we propose a new transfer learning method for low-frequency lab 

anomaly prediction. We first develop a domain distance to measure the closeness between two 

lab types, which can be used to select the proper source domain in transfer learning. Then we 

design a recurrent neural network as a base model of transfer learning. Lastly, we pre-train the 
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designed base model on the selected source domain and finetune the model on the target domain. 

Note the source domain and the target domain are the high-frequency lab tests and low-

frequency lab tests, respectively. 

Generally, we design the inputs and outputs of the anomaly prediction model as follows. 

The inputs are the features that can be collected before the lab tests. In this study, our input 

features include patient demographics, the existing lab tests, and the vital signs during the last 24 

hours before the target lab tests. Given the input features, the model is supposed to detect or 

predict if the patients will have abnormal lab results.  

Formally, we denote the input features as 𝑋𝑖 = {𝑥0, 𝑥𝑡}, 𝑡 = 1, 2,… , 𝑇, 𝑖 = 1,2,… , 𝑛, 

where 𝑛 is the number of samples in the dataset, 𝑥0 is tabular features, and 𝑥𝑡 is time series 

features. 𝑡 is the time stamp of every hour, and 𝑇 is the length of the time series, which is 24 in 

this study. Both 𝑥0 and 𝑥𝑡 are vectors. 𝑥0 includes patient demographics and existing lab tests, 

and 𝑥𝑡 is the vital signs at 𝑡𝑡ℎ hour. We denote the lab prediction model as 𝑓, and the output, 𝑦̂ =

𝑓(𝑋) indicates the probability of obtaining an abnormal lab result.  

Domain Distance 

Usually, there are more than one types of high-frequency lab tests in hospitals that can be 

our source domains. A similar source domain can improve the model performance on the target 

domain, while an extremely different source domain can impede the model performance (Weiss 

et al., 2016). Therefore, a scientific domain selection method is needed to select a proper source 

domain from multiple lab types.  

Inspired by Sun & Saenko (2016), we propose a correlation-based distance metric to 

select the right lab type as our source domain in the transfer learning. Note that each domain here 

represents the dataset of a lab type. The distance measures the closeness between the source 
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domain and target domains, which are the high-frequency lab test and low-frequency lab test, 

respectively. The source domain (high-frequency lab tests) that are close to the target domain 

(low-frequency lab test) can improve the model.  

Generally, we first calculate the correlation between features and the outcomes in each 

domain (i.e., a dataset of a lab type). Then we compare the distance between correlations from 

two domains as the domain distance. The distance measures the correlation difference between 

two domains. For example, if the outcomes of two lab types simultaneously positively (or 

negatively) correlate to the features, then their correlations between features and outcomes are 

similar and thus our distance metric gives them a small distance value.  

Specifically, the distance between two types of labs is defined as  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑎𝑏1, 𝑙𝑎𝑏2) = ‖𝐶𝑙𝑎𝑏1 − 𝐶𝑙𝑎𝑏2‖2
2, 

where  𝐶𝑙𝑎𝑏𝑖 = 𝐶𝑜𝑟(𝑋𝑙𝑎𝑏𝑖, 𝑦𝑙𝑎𝑏𝑖), 𝑖 = 1, 2, and the 𝐶𝑜𝑟 is the Pearson Correlation (Benesty et 

al., 2009). The 𝑋𝑙𝑎𝑏𝑖 and 𝑦𝑙𝑎𝑏𝑖 are the features and outcomes of each lab. The 𝐶𝑙𝑎𝑏1 and 𝐶𝑙𝑎𝑏2 are 

vectors whose elements are the Pearson Correlation Coefficients between features and the target 

labels.  

Using the domain distance, we select the high-frequency lab type that is closest to the 

target domain as our source domain. The proposed distance metric helps us find the optimal 

source domains for two reasons. On one hand, the machine learning models try to find the 

relationship between input features and outcomes. On the other hand, our distance metric is 

based on the correlation between input features and outcomes as well. The selected high-

frequency lab type and the target low-frequency lab type have the similar relationship between 

features and outcomes. Hence the models for the selected source domain and the target domain 
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should also be similar as well. Therefore, the knowledge in the selected source domain (a high-

frequency lab type) can help the model training on the target domain (a low-frequency lab type).  

Base Model 

We design the following recurrent neural network as the base model of transfer learning 

(Figure 4.2.). We will train the model through the techniques of transfer learning in the next step. 

Generally, the model includes three parts, long short-term memory (LSTM) layers, fully 

connected layers (FCN), and a classification output layer.  

 

 

Figure 4.2: The proposed lab prediction model (recurrent neural network). The 𝑥0 is tabular 

features, such as demographics. The 𝑥𝑡 (𝑡 = 1,2,… , 𝑇) is time series features, such as vital signs. 

𝑦̂ indicates the probability of obtaining an abnormal lab result. 

 

We adopted both fully connected neural networks and LSTM because we have both 

tabular features and time series data as inputs. The model works as follows.  

Firstly, the LSTM layers take the time series features 𝑥𝑡 as inputs, iteratively. As the 

hidden features from 𝑥𝑡, the outputs of LSTM, ℎ𝑇, will be used in the classification layer. 

Specifically, the LSTM is defined as follows.  

𝑖𝑡 = 𝜎(𝑊𝑖𝑖 𝑥𝑡 + 𝑏𝑖𝑖 +𝑊ℎ𝑖 ℎ𝑡−1 + 𝑏ℎ𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑖𝑓 𝑥𝑡 + 𝑏𝑖𝑓 +𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏ℎ𝑓) 
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𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔 𝑥𝑡 + 𝑏𝑖𝑔 +𝑊ℎ𝑔 ℎ𝑡−1 + 𝑏ℎ𝑔) 

𝑜𝑡 = 𝜎(𝑊𝑖𝑜 𝑥𝑡 + 𝑏𝑖𝑜 +𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏ℎ𝑜) 

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑔𝑡  

ℎ𝑡 = 𝑜𝑡⊙  𝑡𝑎𝑛ℎ (𝑐𝑡) 

where ℎ𝑡 and 𝑐𝑡 are the hidden state and cell state at time 𝑡. The 𝑖𝑡, 𝑓𝑡, 𝑔𝑡, 𝑜𝑡 are the input, forget, 

cell, and output gates, respectively. 𝑊 and 𝑏 are the weights and bias to learn. 𝜎 is the sigmoid 

function, ⊙ is the Hadamard product.  

Secondly, the fully connected layer takes the tabular features 𝑥0 as inputs and generate 

the hidden features for the classification layer. Specifically, the fully connected layer is 

formulated as ℎ0 = 𝑊0𝑥0 + 𝑏0, where ℎ0 is the generated hidden features. 𝑊0 and 𝑏0 are the 

learnable weights and bias, respectively. 

Lastly, the generated hidden features ℎ0 and ℎ𝑇 are concatenated and fed into the 

classification output layer to estimate the predictive lab outcome. The classification layer is 

formulated as  𝑦̂ = 𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟[ℎ0, ℎ𝑇] + 𝑏𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, where the 𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 and 𝑏𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 are the 

learnable weights and bias, respectively. 

Transfer Learning 

Low-frequency lab tests usually do not have sufficient samples to train complex models, 

especially deep neural networks. In this case, we need transfer learning to take advantage of the 

large samples of high-frequency lab tests. Generally, we first pre-train the model on the high-

frequency lab samples. Then we start from the pre-trained model and finetune the classification 

layer. During the finetuning, the fully connected layers and LSTM layers can be regarded as a 

feature extractor. 

 



173 

 

Denote 𝜃 as all learnable parameters (i.e., all weights 𝑊 and bias 𝑏 in the network), and 

𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 as the learnable parameter in the classification layer (i.e., 𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 and 𝑏𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟). 

The loss function is defined as 𝐿(𝑦̂, 𝑦) = −(1 − 𝑦) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑦̂)  − 𝑦𝑙𝑜𝑔(𝑦̂). During the pre-

training, we update all parameters in 𝜃 by 𝜃 ← 𝜃 − 𝛼 ▽𝜃 𝐿(𝑓(𝑋ℎ𝑖𝑔ℎ), 𝑦ℎ𝑖𝑔ℎ), where 𝜂 is the 

learning rate and {𝑋ℎ𝑖𝑔ℎ, 𝑦ℎ𝑖𝑔ℎ} are the training samples of high-frequency lab tests. During the 

finetuning, we update the classification parameter 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 by 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ← 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 −

𝛼 ▽𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝐿(𝑓(𝑋𝑙𝑜𝑤), 𝑦𝑙𝑜𝑤), where 𝜂 is the learning rate and {𝑋𝑙𝑜𝑤 , 𝑦𝑙𝑜𝑤} are the training 

samples of low-frequency lab tests.  

Evaluation 

Data Description 

We evaluated the proposed model on the eICU database, which contains clinical records 

in ICU, such as patients’ demographics, diagnosis, laboratory tests, and vital signs (Pollard et al., 

2018). We took heart failure patients as an example. Table 4.1. described the patient cohort.  

We selected five low-frequency lab tests that are related to heart failure as our target low-

frequency lab tests, including Brain Natriuretic Peptide (BNP), Iron (Fe), Low-Density 

Lipoprotein (LDL), Thyroid-Stimulating Hormone (TSH), and Troponin - T. Additionally, we 

selected top-5 high-frequency lab tests as the source domains for transfer learning, including 

Potassium, Sodium, Creatinine, Blood Urea Nitrogen (BUN), and Calcium. As shown in Table 

4.2., the high-frequency lab tests had at least ten times more samples than the low-frequency lab 

tests in the eICU database. We defined a laboratory result as abnormal if it is out of the normal 

range. The normal ranges of lab tests are from clinical guides.  
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Table 4.1: Patient cohort and vital sign description 

Length of stay at ICU (hours) 75.15 (4.03-1232.98) 

Age 70.16 on average (19-90) 

Gender 
51.01 % male,  

48.97% female 

Ethnicity 

71.54% Caucasian, 

15.71% African American, 

5.26% Hispanic, 

1.78% Asian 

Height 168.03 cm on average 

Weight 89.09 kg on average 

Vital signs 

Sao2  

oxygen saturation, the 

percentage of available binding 

sites on hemoglobin that are 

bound with oxygen in arterial 

blood 

96.17 % on average 

Heart rate 
the number of times the heart 

beats per minute 
84.47 on average 

Respiration  
the number of breaths a person 

takes per minute 
21.09 on average 

St1 
estimated ST segment level 1 of 

the ECG 
1.05 on average 

St2 
estimated ST segment level 2 of 

the ECG 
1.78 on average 

St3 
estimated ST segment level 3 of 

the ECG 
1.91 on average 

 

Table 4.2: Description of laboratory tests. 

Laboratory Test Normal Range 
# Abnormal 

Outcomes 

# Normal 

Outcomes 

# Total 

Samples 

Brain Natriuretic 

Peptide (BNP) 

[0 pg/mL, 125 pg/mL] for 

patients aged 0-74 years. 

[0 pg/mL, 450 pg/mL] for 

age above 75 

1255 172 1427 

Iron (Fe) [60 mcg/dL, 170 mcg/dL] 389 62 451 
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Table 4.2. Continued. 

Laboratory Test Normal Range 
# Abnormal 

Outcomes 

# Normal 

Outcomes 

# Total 

Samples 

Low-Density 

Lipoprotein (LDL) 
[65 mg/dl, 180 mg/dl] 232 329 561 

Thyroid-Stimulating 

Hormone (TSH) 
[0.3 mIU/L, 3.04 mIU/L] 309 645 954 

Troponin - T [0 ng/mL, 0.01 ng/mL] 910 195 1105 

Potassium [3.5 mEq/L, 5.2 mEq/L] 4228 16266 20494 

Sodium [135 mEq/L, 145 mEq/L] 5532 12418 17950 

Creatinine [0.5 mg/dL, 1.4 mg/dL] 9324 7664 16988 

BUN [7 mg/dL, 20 mg/dL] 13597 3331 16928 

Calcium [8.8 mg/dL, 10.3 mg/dL] 10378 6137 16515 

 

The objective of the model is to identify abnormal results of lab tests in the early stage. 

Therefore, we extracted input features that are available 24 hours before the target lab tests. The 

features included time series of vital signs (i.e., heart rate, respiration, sao2, st1, st2, st3), the 

most recent lab results, demographics (e.g., age and gender), and pre-admission chronic diseases 

(e.g., AIDS, cirrhosis, leukemia). Please see Table 4.2. for the detailed descriptions of the vital 

signs.  

Experiment setting 

We evaluated the model performance on group 5-fold cross-validation. Note that patients 

might take multiple lab tests during single ICU admission. In order to avoid possible information 

leakage, we grouped the lab samples in the same ICU admission of a patient on the cross-

validation. The lab samples in the same ICU admission would be together either in the training 

set or testing set.  



176 

 

 

As baselines, we implemented Random Forest (RF), Logistic Regression (LR), Support 

Vector Machine (SVM), AdaBoost, and Feedforward Neural Network (FNN) on each low-

frequency lab type separately. Consistent with the proposed model, the baselines were evaluated 

on the group 5-fold cross-validation as well.  

Note that these machine learning models were not able to take time series data as input 

features. Therefore, we extracted statistical features from vital signs (min, max, mean, 25&75-

quantile), and concatenated them with the tabular features before the baseline evaluation.  

Table 4.3. showed the model parameters we searched. The best parameters were selected 

according to the Area Under the Curve (AUC) on the cross-validation.  

Table 4.3: Parameters in the baseline models and the proposed model. 

Model Parameters 

Random Forest (RF) 
Max_depth: [1, 2, 4, 8, 16] 

N_estimators: [400, 800, 1600] 

Logistic Regression (LR) 
C: [10, 1, 0.1] 

Penalty: [l1, l2] 

Support Vector Machine 

(SVM) 

C: [10, 1, 0.1] 

Kernel: [rbf, poly] 

AdaBoost 
N_estimators: [50, 200, 400, 800] 

Learning_rate: [0.5, 1.0, 2.0] 

Feedforward Neural Network 

(FNN) 
Hidden_dim: [32, 64, 128] 

Proposed neural network 
LSTM_hidden_dim: [64, 128], 

Classification_hidden_dim: [32, 64, 128] 
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Prediction Performance 

We first calculated the domain distance between high-frequency and low-frequency lab 

tests. As shown in Table 4.4., for BNP, Fe, LDL, and TSH, the closest source domain (high-

frequency lab test) is potassium. The closest source domain of troponin -T is BUN.  

For each low-frequency lab (i.e., target domain), we first pre-trained the model on its 

closest source domain and then finetuned the classification layer of the model on the target 

domain. Table 4.5. presents the AUC scores on cross-validation. 

From Table 4.5., we had two observations. 1) The proposed network outperformed 

traditional machine learning models by a large margin. For example, without transfer learning, 

the proposed neural network achieved an AUC score of 0.667, while the AUC scores of all 

traditional machine learning models were below 0.629. 2) Transfer learning boosted the network 

greatly. Using the closest high-frequency lab samples as source domains for pre-training, the 

model increased AUC scores on all target domains. For example, the transfer learning increased 

the AUC score of the proposed network from 0.857 to 0.901. Generally, we could conclude that 

the model performance for the low-frequency lab tests could be improved by inducing the 

knowledge in similar domains. Therefore, the data insufficiency problem of the low-frequency 

lab tests could be addressed by transfer learning to some extent.  

Table 4.4: domain distance between high-frequency lab tests (columns) and low-frequency lab 

tests (rows). 

 BUN calcium creatinine potassium sodium 

BNP 0.004834 0.006530 0.005934 0.002710 0.004796 

Fe 0.008867 0.008923 0.013142 0.004017 0.008236 

LDL 0.004773 0.006118 0.007612 0.003230 0.004609 

TSH 0.004923 0.005260 0.007149 0.001822 0.004309 

troponin - T 0.003813 0.005509 0.005682 0.004974 0.006754 
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Table 4.5: Prediction performance (AUC scores) of baselines and the proposed neural network 

with/without transfer learning. 

 Baselines Base model 

without 

transfer 

learning 

Base model 

with transfer 

learning  AdaBoost LR RF SVM FNN 

BNP 0.654 0.714 0.694 0.685 0.724 0.729 0.795 

Fe 0.528 0.611 0.567 0.552 0.639 0.639 0.681 

LDL 0.596 0.629 0.589 0.596 0.633 0.667 0.699 

TSH 0.559 0.591 0.568 0.586 0.580 0.606 0.634 

troponin - 

T 
0.770 0.870 0.819 0.834 0.855 0.857 0.901 

 

Domain Distance Evaluation 

To comprehensively evaluate the proposed domain distance, we implemented the transfer 

learning with each high-frequency lab type as the source domain. Table 4.6. presented the model 

performance (AUC scores) of the proposed method with each high-frequency lab type as the 

source domain. For each target domain, we calculated Spearman's rank correlation coefficient 

(last column in Table 4.6.) between the AUC scores and its domain distances to the source 

domain. Spearman's rank correlation coefficient measures the strength and direction of 

association between the model performance and the proposed domain distance. 

Table 6 and Table 4 showed that the closest source domain tended to obtain better 

predicting performance. For example, potassium was the source domain with the shortest 

distance to LDL and TSH. Using samples of potassium for pre-training, the model achieved the 

optimal AUC scores for LDL (0.699) and TSH (0.634). Also, BUN, as the closest source 

domain, helped the model make the second most accurate predictions for troponin – T (AUC 

score: 0.901).  

 



179 

 

Table 4.6: Prediction performance (AUC scores) of the proposed method with different high-

frequency lab types as source domains. The last column presents Spearman's rank correlation 

coefficient between the AUC scores and the domain distances for each low-frequency lab type. 

  High-frequency lab types (source domains) Correlation 

between 

AUC and 

distance 
  BUN calcium creatinine potassium sodium 

Low-

frequency 

lab types 

(target 

domains) 

BNP 0.802 0.777 0.804 0.795 0.788 -0.1 

Fe 0.607 0.658 0.651 0.681 0.686 -0.6 

LDL 0.630 0.688 0.675 0.699 0.682 -0.5 

TSH 0.583 0.618 0.611 0.634 0.631 -0.7 

troponin - T 0.901 0.886 0.885 0.900 0.911 0.0 

 

Additionally, Spearman’s rank correlation coefficients in the last column (Table 4.6.) 

were lower than or equal to 0. This meant that the closer source domain tended to improve the 

model performance more on the target domain. Such relationship could be very strong on some 

target domains. For example, the correlation coefficients on Fe and TSH were as high as 0.6 and 

0.7.  

To summarize, we could make three conclusions from the experiments. First, the 

designed neural network outperformed the traditional machine learning models by a large 

margin. Second, the transfer learning could address the data insufficiency problem and improve 

the model performance for the low-frequency lab tests. Third, the proposed domain distance 

could help to select the optimal source domains for the transfer learning in the lab result 

predictions.  

Conclusions and Discussion 

To conclude, we designed a neural network compatible with both time series and tabular 

features for the lab result prediction. Through transfer learning, we addressed the data 

insufficiency problem for low-frequency lab tests that did not have enough samples to support 

the model training. We proposed a domain distance that measures the closeness between two lab 
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tests' datasets. The proposed distance could help to select the optimal source domains (i.e., high-

frequency lab tests) that would improve the model performance on the target domain (i.e., low-

frequency lab tests).  

We evaluated the proposed method on a real-world clinical dataset, eICU. In the 

experiments, the designed neural network outperformed all traditional machine learning models 

by a large margin. Using transfer learning and the domain selected by the proposed domain 

distance, the proposed neural network achieved higher AUC scores significantly.  

Not limited to the lab result prediction, the proposed work also has great potential for 

other clinical models that do not have sufficient training samples. For example, some rare 

diseases may not have enough data to support the development of onsite prediction models. 

Potentially, our work could address the data insufficiency of rare diseases by selecting proper 

domains and transferring knowledge from other disease samples.  

While the results are encouraging, the current study has certain drawbacks. First, 

although the experiments show that the model accuracy on the target domain is negatively 

correlated to its distance to the source domain, the model accuracy does not strictly increase as 

the distance decreases in all cases. This means other hidden factors affect the model efficiency, 

for example, the ratio of positive and negative samples in each domain. Therefore, in future 

work, we plan to investigate more factors to develop a more comprehensive domain selection 

process. Second, the current experiments only cover heart failure patients and heart failure-

related lab tests. In the future, we plan to conduct experiments on other patient cohorts and lab 

types to evaluate the generalizability of the proposed model. 
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CHAPTER 5.    GENERAL CONCLUSION 

This dissertation is devoted to making clinical outcome predictions using statistical and 

machine learning. Lots of endeavors have been made in the field of clinical outcome modeling to 

improve the quality of healthcare. In practice, the clinical outcome models help assess the 

severity of illness, evaluate the value of new treatments, provide expected outcomes, and 

promote clinical resource allocation. Meanwhile, the rich information in the EHR data provides 

great opportunities to build more accurate and reliable models for various clinical outcome tasks.  

However, there are still many challenges when developing clinical outcome models on 

EHRs, including the hierarchical structure of high-dimensional medical concepts, the pattern 

extraction of vital signs, and the data insufficiency of some lab tests. To address these 

challenges, we present three research designs in this dissertation.  

Specifically, in Chapter 2, we propose a new framework to generate low-dimensional 

representations with Manifold Learning for sets of hierarchical medical concepts in EHR data. 

This work solves the high-dimensional problem of complicated medical concepts. In Chapter 3, 

we propose a new ICU mortality prediction model capable of effectively extracting valid and 

interpretable patterns from the readily-available vital sign data with improved accuracy, by 

combining stochastic signal analysis and machine learning techniques. This work solves the 

second challenge by providing an effective way to extract meaningful features from vital signs. 

In Chapter 4, we propose a new transfer learning method for lab anomaly prediction with limited 

training data. This work addresses the data insufficiency problem and enables the outcome 

modeling for laboratory tests with limited training data.  

By tackling the abovementioned issues in EHR data, our work has great potential to 

enlarge the social impact of clinical outcome models. For patients, our work helps to decrease 
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healthcare costs and adverse impacts. For healthcare providers, we provide a more accurate and 

reliable way to assess the severity of illness, the value of new treatments, and expected outcomes, 

which enables more scientific clinical decisions. For society, we enable the clinical outcome 

models to alleviate more healthcare expenditure burden and optimize better resource allocation.  

 


