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ABSTRACT 

 This dissertation will cover the evaluation of measurement error in wet magnetic particle 

inspection (MPI) for metal castings. Wet MPI is one of the most commonly used nondestructive 

test (NDT) method in the steel casting industry for detecting surface defects. However, this 

method is highly subjective because it relies on a human operator to locate the defect. Chapter 2 

presents an objective method to quantify the effectiveness of wet MPI when detecting defects. 

This method is called the noise area percentage (NAP) which uses the green intensity of the 

crack and the surrounding area to determine relative contrast. Additionally, the NAP method was 

validated through the evaluation of surface roughness on the effectiveness of wet MPI. It was 

found that the rougher the surface, the harder it was to locate the defect. 

 In Chapter 3, the percent match repeatability and reproducibility (R&R) of wet MPI was 

investigated across four foundries and was found to be 27% and 29%, respectively. In one 

foundry, the defects that were identified in the first trial were found to be missing in the second 

trial. This led to the investigations in Chapter 4, where different process parameters were studied 

to identify the cause behind “disappearing” defects between trials. In Chapter 4, the orientation 

of the defect and the magnetic field lines, the current type, the magnetic field strength, and the 

surface roughness were investigated on surface breaking and subsurface defects. A modified 

version of the NAP metric was used to evaluate the impact of each factor on the effectiveness of 

wet MPI. The orientation of the defect with respect to the magnetic field lines and the surface 

roughness was found to play a role in the ability to find defects. For surface-breaking defects, it 

was found that all defects can be found by magnetizing the part in two directions. For subsurface 

defects, it was found that only at a 90-degree orientation to the magnetic field lines could the 

defect be identified.  
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 Lastly, the human operator introduces variability due to different levels of qualifications, 

vision acuity, and fatigue. Chapter 2’s findings show that the current visual inspection method in 

wet MPI equates to around a 70% escape rate. Hence, in Chapter 5, an artificially intelligent 

solution was developed to aid the human operator when identifying defects. The goal here is to 

reduce the risk of a defect going undetected which could lead to catastrophic failure in the field. 

This study leverages the findings from past research by using a deep learning model that has 

been successful in similar applications. Faster regional convolutional neural network (R-CNN) 

was the architecture used in this study. A novel labeling and bounding box post-processing 

approach was used to improve the accuracy of the model. The deep learning model achieved an 

escape rate of 13% which is a significant improvement from the current human visual inspection 

at an escape rate of 70%. 

Overall, this dissertation will present findings to reduce measurement error in wet MPI 

through process optimization and artificially intelligent solutions.
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CHAPTER 1.    GENERAL INTRODUCTION 

Introduction 

Metal casting is a manufacturing process of forming parts from molten metal using a 

mold to create a near-net shape resultant piece. There are several advantages to the metal casting 

process. Since the molten metal will be formed based on the shape of the mold, complex external 

and internal geometries can be created through the casting process. Additionally, a part can be 

made from a variety of materials and in different sizes through this process. However, there are 

also several limitations to the metal casting process. The metal casting process is a near-net-

shape process which means that generally, the part needs to undergo further processing to be 

ready for final use. It is also a labor-intensive process that requires skilled human operators to 

produce the casting. The amount of post-processing work will is likely dependent on the type of 

metal casting method used.  

Metal casting methods can be broken down into 1) reusable mold and 2) expandable 

mold. Examples of reusable molds methods are permanent molds and die casting, while 

examples of expandable molds methods are sand casting, shell molding, and investment casting. 

Sand casting is the most commonly used metal casting method because sand is inexpensive, 

abundant, malleable, and can handle high temperatures [1]. The general steps of sand casting 

involve creating a pattern, creating the mold from the pattern, pouring the molten metal into the 

mold, and once the metal is solidified, the casting can be removed from the mold. Lastly, the 

casting will undergo finishing processes to improve the dimensional accuracy and aesthetic value 

of the part [2]. Figure 1-1 shows the sand-casting process in a simplified way. 
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Figure 1-1. Simplified illustration of the sand-casting process [3]. 

Prior to delivering the final part, an inspection should be done to ensure it meets the 

requirements specified by the customer. [4]. The inspection of a casting can be broken down into 

five different groups: 1) casting finish, 2) dimensional accuracy, 3) mechanical testing, 4) 

chemical composition, and 5) casting soundness. The casting soundness or quality inspection is 

important to identify any casting defects that could result in the failure of the part. 

Nondestructive test (NDT) methods are used to locate defects present in the castings to provide 

insight into casting quality. Common NDT methods used in the steel casting industry include 

visual inspection, magnetic particle inspection (MPI), liquid penetrant testing, ultrasonic testing, 

and radiographic testing. Compared to other NDT methods, MPI is inexpensive, fast, and easy to 

use, which is why it is widely used in various industries. In the steel casting industry, it is the 

most commonly used method to locate surface cracks. However, there is a lack of research into 

how reliable this method is on steel castings and how to further improve its reliability [5]. This is 

important because defects that escape MPI testing might result in catastrophic failures in the 

field.  

MPI is capable of detecting surface and sub-surface defects in ferromagnetic parts 

through the use of magnetization. This NDT method works by first magnetizing the part by 

applying a current, and if a discontinuity is present, it will disrupt the magnetic field lines and 

result in magnetic flux leakage. Magnetic particles are applied to the part and will be attracted to 

the area of flux leakage resulting in a collection of magnetic particles on the surface of the part. 
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Human operators can identify the defect through visual inspection. Limitations of this NDT 

method include that it can only be used on ferromagnetic materials and sub-surface defects have 

to be very close to the surface to be detected [6]. 

MPI can be performed using either wet or dry methods, and the steel casting industry 

typically uses both methods to identify discontinuities. There are several advantages of wet MPI 

over dry MPI, including 1) good for fine surface cracks, 2) able to test large parts quickly, 3) can 

be automated, 4) good particle mobility on smooth surfaces, and 5) various geometries can be 

tested [7]. In the steel casting industry, wet MPI is typically used first since the entire part can be 

quickly tested. Once defects are found, they are marked and sent to get reworked to fix all the 

defects. Once the defects are fixed, dry MPI can be used to run localized testing in the areas that 

were reworked to ensure the defects are no longer there.  

Dry MPI utilizes an electromagnetic yoke to induce a magnetic field in the part. The dry 

particles would then move to the area where flux leakage is present. Dry particles are available in 

many colors, shapes, and sizes. The various colors include red, black, gray, and yellow. The 

optimal color to select is the one that will provide the most contrast between the part and the 

particles. The size of the particles is another important consideration. Larger particles will be less 

sensitive to fine cracks but will be more effective on rougher surfaces since the particles are less 

likely to be caught in the surface valleys. Particle sizes typically range from 50μm to 150μm and 

are used with a mixture of sizes because different particle sizes help locate various defect sizes. 

Additionally, larger particles are included to lessen the dusty nature of the particles. Dry MPI is 

typically done on smaller parts or after wet MPI is performed to test localized areas where the 

defects are found. Dry MPI is also more effective on rougher surfaces due to larger particle size, 
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which is less likely to get caught in the surface textures [8]. Overall, dry MPI is still used for 

small parts or localized testing, but the wet method is the primary inspection method for MPI. 

 

Figure 1-2. Dry MPI inspection [9]. 

While wet MPI is not as effective on rougher surfaces, it is more widely used in the steel 

casting industry because it is more sensitive to fine cracks and is able to test large casting 

efficiently. Wet MPI utilizes a stationary horizontal bench that can magnetize the part using two 

different methods, direct and indirect. Direct magnetization or head shot is performed by 

clamping the part between two copper pads and subsequently applying current to generate a 

magnetic field. Indirect magnetization or coil shot is performed by placing the part on the coil, 

and current is applied to generate a magnetic field in the coil. The part is indirectly magnetized 

since it is in close proximity to the coil. While the part is being magnetized, fluid containing 

magnetic particles is then applied to the part. Fluorescent particles are used in wet MPI because 

they can provide good contrast. Particle size is another important consideration. Particle size for 

wet MPI is smaller than dry MPI because particles in wet MPI have more mobility because of 

the use of fluid making it less likely for the particles to be caught in the surface valleys compared 

to dry particles. The average particle size in wet MPI is around 10μm and is used with a mixture 

of sizes because different particle sizes help locate various defect sizes [10]. Wet MPI is 
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typically the test that dictates which defects get reworked in the steel casting industry, which 

makes this a crucial process to investigate. 

Many aspects of the quality of the steel casting can be evaluated using wet MPI. 

Undetected defects could cause catastrophic failure of the casting in the field. To mitigate this 

risk, the goal of this research is to reduce the escape rate of defects caused by process variability. 

To do this, the effectiveness of wet MPI would need to be quantifiable. Chapter 2 covers the 

work that was done to develop a metric that quantifies the level of difficulty in identifying a 

defect. Additionally, this method was validated by evaluating the effect of surface roughness on 

the effectiveness of wet MPI.          

 Variability in wet MPI can come from several factors such as human error, procedure, 

equipment, and part. Human error can impact the process in several ways. Human operators 

working with MPI inspection typically require certification through the American Society of 

Nondestructive Testing (ASNT), where three levels are available. Operators with Level 1 or 

Level 2 certifications can run MPI inspections with basic knowledge of the process and 

principles. The responsibilities of a Level 3 operator include training Level 1 and Level 2 

operators and writing the procedure for a new part. Human error in wet MPI can stem from Level 

1 and 2 operators missing defects during visual inspection of the part or improper procedure 

setup by a Level 3 operator. The variability caused by human error can be captured through an 

attribute gauge R&R study which will be covered in Chapter 3. 

Procedure variation is another main factor contributing to measurement error in wet MPI. 

Procedure variations such as bench preparation, orientation, magnetic field strength, current type, 

and magnetization type can reduce the effectiveness of wet MPI. A clear understanding of the 

optimal parameters to set up and test a part is needed to increase the chances of finding 
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discontinuities. The characteristics of the part being tested are known to have an impact on the 

measurement error. Hence, it is important to understand the impact of the part characteristics 

such as surface roughness, geometry, and alloy on the effectiveness of wet MPI to increase the 

chances of locating all the defects on the part. Chapter 4 will cover the investigation of 

measurement error caused by the procedure and part characteristics in wet MPI. The equipment 

and consumables could also contribute to variability in MPI. The bench, particles, carrier fluid, 

and lighting need to be checked for functionality and compatibility with the application. In this 

investigation, the equipment and consumables adhered to the American Society for Testing and 

Materials (ASTM) 1444/3024. 

Wet magnetic particle inspection (MPI) relies on a human operator to do a visual 

inspection after the wet MPI process to identify defects. The human operator introduces 

variability due to different levels of qualifications, vision acuity, and fatigue. Smaller or faint 

defects are harder to locate compared to larger defects. In the steel casting industry, the defects 

that are identified will be ground and welded to meet the quality specifications of the customer. 

Defects that go undetected during MPI could result in returns from the buyer or failure in the 

field. In Chapter 3, there were several instances in the percent match R&R study where defects 

were visible in testing but not identified by the human operator, equating to approximately 70% 

escape rate of defects. Hence, Chapter 5 aims to reduce the escape rate of defects by providing a 

system to prompt the operator to the location of the defects.  

Dissertation Organization 

The following chapters will cover four topics revolving around reducing measurement 

error in wet MPI. Chapter 2 will cover the development and validation of a metric to quantify the 

effectiveness of wet MPI. Additionally, the effect of surface roughness on wet MPI was 

evaluated using the proposed metric. Chapter 3 will cover the evaluation of measurement error 
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due to the human operator through percent match gauge R&R testing. Chapter 4 will cover the 

investigation of measurement error due to process and part characteristics in wet MPI. Chapter 5 

will cover a proposed solution to help the human operator locate defects. Lastly, Chapter 6 will 

summarize the findings, provide insight on how the findings can impact the steel foundries to 

improve the effectiveness of wet MPI and discuss the potential for future work. 
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Abstract 

This study presents a novel method to quantify the effectiveness of wet magnetic particle 

inspection (MPI) when detecting possible defects. Wet MPI is an established method utilizing 

magnetic fields to locate possible areas of defects in ferromagnetic parts. The capability of this 

method has been evaluated in the past, most notably using the probability of detection (POD) 

graphs. However, MPI requires a large amount of data and is subjective because it is based on 

human operators’ evaluations. The method proposed in this paper is an objective method to 

determine the effectiveness of the MPI test based on how well discontinuities can be delineated 

in the image. This approach utilizes the intensity of the particle illumination in the defect area 

and compares it to its surroundings. This analysis generates a value to represent how well a 

discontinuity can be identified objectively. This method was then used to validate the effect of 

surface roughness on the effectiveness of wet MPI using two experiments. The first experiment 

was conducted to test for the collection of particles on varying surface roughness levels, and the 

second experiment was used to evaluate the effect of surface roughness when detecting a 

subsurface discontinuity. Results indicate that there is a significant increase in particle collection 
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as roughness increases, and as the surface roughness increases, the harder it is to locate 

discontinuities. This method provides a quantitative measure that could be used to aid parameter 

selection. 

Introduction 

Many aspects of the quality of steel castings can be evaluated through the use of 

nondestructive testing (NDT) techniques. Magnetic particle inspection (MPI) is one of these 

NDT methods commonly used for ferromagnetic materials because of its simplicity, speed of 

testing, and ability to identify the presence at or near the casting surface for indications such as 

cracks, oxides, and other variations within the material [1]. MPI is a combination of two 

methods: 1) magnetic flux leakage (MFL) and 2) visual inspection. MFL will occur if the 

discontinuity is on the surface or close enough to the surface. The magnetic particles will be 

attracted to the MFL area on the surface above the discontinuity [2]. A human inspector will then 

visually inspect the part to look for any collection of particles. A false positive in this paper 

refers to the identification of a defect that is not present in the part, while true discontinuity refers 

to defects that are present in the part. Many factors could lead to the human inspector not being 

able to discern a discontinuity, such as particles collecting in the surface texture that hinder the 

inspector from locating true discontinuities. Additionally, particle collection in the valley of the 

surface may result in bright areas that create noise that makes it difficult for the human operator 

to see discontinuities. This study focuses on wet MPI because the particle sizes used in wet MPI 

are smaller than dry MPI [3]; smaller particles will tend to adhere to the surface textures more 

readily than larger particles.  

The magnetic particles are suspended in the carrier (either oil or water) to allow for 

mobility of the particles when applied to the part. A horizontal stationary magnetic particle 
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machine is used to test various sized parts with two different types of magnetization methods. 

Direct magnetization, which creates a circular magnetic field around the part, is used in this 

study because it has a more consistent magnetic field strength since the current is directly 

induced into the part [4]. The advantages of wet MPI versus dry MPI include 1) a more uniform 

layer of particles, 2) higher particle mobility, 3) higher sensitivity to fine surface discontinuities, 

and 4) the use of fluorescent particles [5]. However, wet MPI is potentially less effective 

compared to dry MPI when testing rougher surfaces because the smaller particles tend to adhere 

to the valleys of the surface. This phenomenon is known to reduce the visual contrast between 

the discontinuity and its surrounding area, which may deter the inspector from finding true 

discontinuities on the part. This has led to the need for this study. Per ASTM E3024, “The 

surface of the part to be examined shall be essentially smooth, clean, dry, and free of oil, scale, 

machining marks, or other contaminants or conditions that might interfere with the efficiency of 

the examination,” suggesting that the surface texture of a part may affect the reliability of the 

test. Reliability in this paper refers to the effectiveness of the test in finding true discontinuities. 

There has not been any quantifiable research published looking at surface roughness as a factor.  

Currently, probability of detection (POD) is a method used to determine the capability of 

an NDT process. POD is a mathematical model that predicts the likelihood that the inspector will 

detect a discontinuity of a certain size. In most cases, a 90% POD value is required, which is a 

mathematical estimate of the defect size that a highly skilled inspector can detect 9 out of 10 

times. There is also a 95% confidence bound associated with the POD value, which provides 

information about the variability of the POD experiment. The POD model values allow for 

inspection strategies to be optimized and the quantification of inspection systems and abilities of 

inspectors [6]. However, this process is time-consuming due to the amount of testing required. 
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Hence, POD trials are typically not conducted for individual NDT procedures; rather, it is done 

to assess the limitation of the technique [7].  

 With the new method proposed in this paper, values are objective and determined by the 

illumination of the particles on the part. This method can provide an objective value for the level 

of difficulty in identifying a discontinuity which will be helpful for quick identification of the 

best parameters for a specific part procedure. In this paper, the methods are explained, and 

experiments were conducted to validate each method. There are two metrics introduced in this 

study: 1) average G value (𝐺̅ ) and 2) the noise area percentage. 𝐺̅ is a metric used to measure the 

average green intensity of an area in the image. The noise area percentage quantifies the level of 

difficulty in finding a discontinuity. Noise area percentage can be used to determine wet MPI 

capability for specific surface textures. In this study, the noise area percentage was determined 

by the percentage of pixels surrounding the discontinuity, which have higher green intensity 

compared to the average green intensity of the discontinuity itself. 

Standardizing Test Parameters  

To reliably determine the impact of specific variables on the MPI process, a detailed test 

procedure was developed. For example, when using the 𝐺̅ metric, if images of an MPI test were 

taken with a camera at different proximities, then the intensity of the image would be affected by 

the difference in distance from the light source rather than factors that are being investigated 

(e.g., depth, diameter, surface roughness, MPI parameters). This section outlines the 

experimental setup for repeatable results and the calculation of the metrics employed in the 

proposed method. 
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Sample preparation  

The samples used for Experiments 1 and 2 are as shown in Figure 2-1 and Figure 2-2, 

respectively. For Experiment 1, the low alloy steel castings were produced using normal 

commercial methods including chemically bonded sand molds. For Experiment 2, the samples 

were cast using commercial chemically bonded sand process and were made of WCB cast alloy 

(cast equivalent to 1020).  The surface roughness of the samples for Experiment 2 was developed 

by scratching the sand mold before it was fully cured.   The American Society for Testing and 

Materials (ASTM) A802 standard was used to classify the surface roughness. For the 𝐺̅, the area 

of interest was marked in the shape of a rectangle with dimensions of 20 mm (0.8 in) by 50 mm 

(2.0 in) using a permanent marker. The ASTM A802 surface roughness classification is then 

written above the marked area of the as-cast surface as shown in Figure 2-3.  

For Experiment 2, discontinuities need to be present in the part with a known location to 

validate the noise area percentage metric. Holes were drilled, parallel to the surface being 

assessed, as manufactured discontinuities for this study. The dimensions of the manufactured 

defect were at a depth of 0.254 mm (0.01 in) and a diameter of 1.78 mm (0.07 in). The diameter 

of the manufactured discontinuity followed the Aerospace Standard (AS) 5282 tool steel ring 

specimen which is a system performance measuring device containing drilled holes at a diameter 

of 1.78 mm (0.07 in) and varying depths. The depth of the manufactured discontinuity was 

drilled as close to the surface as possible without breaking the surface hence a distance of 0.254 

mm (0.01 in) from the surface to be inspected was used, Figure 2-4. 
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Figure 2-1. The two types of castings which were used in Experiment 1 

 

Figure 2-2. The sectioned casting used in Experiment 2 

  

Figure 2-3. An example of classified regions with A1, A2, and A3 roughness for Experiment 1 
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Figure 2-4. An example of the manufactured discontinuity with a depth of 0.254 mm (0.01 in) 

and a diameter of 1.78 mm (0.07 in) 

MPI parameters 

After the horizontal stationary magnetic particle machine (MD3-2060, Magnaflux®) was 

switched on, the sides of the reservoir were scrubbed, and then was left to run at least 30 minutes 

to ensure the particles (CAS# 1309-37-1, Magnaflux®) were evenly circulating through the 

system [8]. A 100 ml graduated centrifuge tube (14-A, Magnaflux, Illinois) was used to monitor 

the particle concentration, particle condition, and suspension contamination. The mean particle 

size was 6 μm with an estimated level of indication detection of 8 to 9 on an AS 5282 tool steel 

ring specimen as defined in the ASTM 1444 and a recommended settling volume of 0.1 to 0.4 

mL in a 100 ml graduated centrifuge tube. Since particle collection on the surface texture is 

being investigated in this study, the particle concentration was kept at a level between 0.3% to 

0.4%, and the percentage of suspension contamination was kept below 50% per the ASTM 

E3024 standard. These levels were adjusted by adding particles or oil when the particle 

concentration or the suspension contamination moved out of the desired range. 

An angle meter (700, Johnson, Wisconsin) was used to ensure the part was at a minimum of 

45 degrees when mounted on the bench as specified by the ASTM E3024 standard, as shown in 

Figure 2-5. It is important that the part was handled carefully because excessive handling of the 

part may cause residual particles from the gloved hand to be imparted to the part. If the same part 

was retested, a stainless-steel brush (54022SP, Osborn, Indiana) was used to remove particles 
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from previous testing or handling. After the part was mounted and scrubbed, a Gaussmeter 

(5180, FW Bell, Oregon) was used to ensure the magnetic field strength was within 30 (± 1) 

gauss as per ASTM 3024. For the experiments containing no discontinuities, alternating current 

(AC) magnetization was used because of its ability to detect surface-breaking discontinuities. For 

the experiments containing manufactured sub-surface defects, direct current (DC) magnetization 

was used because of its ability to detect sub-surface discontinuities [9]. 

 

Figure 2-5. Part setup using angle meter 

 

The current was induced into the part three times with fluid running over the surface of the 

part and copper pads. Images were then captured under ultraviolet light (UV) with a camera (PX-

45, Crack Check, China) at a distance of 508 mm (20 in) from the surface of the part to the end 

of the camera for the experiments with no discontinuities, and at a distance of 305 mm (12 in) for 

the experiments with discontinuities. The distance was changed for the experiment with 

discontinuities because of the resolution of the discontinuity was not sufficient at the farther 
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distance. The two experiments were not compared to one another rather two distinct experiments 

to test each metric. The three UV lights integrated with the camera created a visible bright spot 

which made it difficult to detect discontinuities due to its high intensity. Hence, diffusing filter 

(see Figure 2-6) was used to disperse the bright spot and create even illumination of the surface. 

The camera was set to ISO 200 to standardize the camera’s sensitivity to light.  

 

Figure 2-6. Camera with modified surrounding UV Lights 

Image Procedure 

After all the samples were tested, image processing was utilized. The image with the best 

quality which was determined subjectively by the author was selected for each setting since 

multiple images were taken. The selected images were then cropped, leaving only the region 

within the 20 mm (0.8 in) by 50 mm (2.0 in) area for the 𝐺̅ to be computed. Then, the image was 

loaded to the software created by the author. This process is illustrated in Figure 2-7. 
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Figure 2-7. Step by step procedure to obtain G̅. A) represents the marked region, B) represents 

the cropped image and C) represents the software tool created to analyze the cropped image. The 

parts represented in this image are the same parts defined in section 2.1 

The noise area percentage metric was utilized for experiments containing known 

discontinuities. Two regions of the image would need to be cropped: the smallest rectangle 

encompassing the discontinuity (see Figure 2-8 A and Figure 2-9), and a representative surface 

patch near the discontinuity (see Figure 2-8 B). The area near the discontinuity should have the 

same surface roughness classification as the area of the discontinuity and should be selected as 

close to the discontinuity as possible. If the discontinuity is visible, then the smallest rectangle 

encompassing the discontinuity is manually drawn by selecting two points in the image to denote 

the minimum and maximum of the rectangle. If the discontinuity is not visible, then the software 

will automatically draw the smallest rectangle encompassing the discontinuity based on where 

the discontinuity is located in the part. The two cropped images will then be processed by the 
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software created by the author to obtain the noise area percentage. The software is designed to 

first analyze the smallest rectangle encompassing the discontinuity to obtain the 𝐺̅ associated 

with the image. Next, the software compares the 𝐺̅ of the smallest rectangle encompassing the 

discontinuity to the representative surface patch near the discontinuity. The noise area percentage 

is computed based on comparing the threshold set by the average green intensity of the 

discontinuity to its surrounding area. 

 

Figure 2-8. The region containing discontinuity, A, and the representative surface patch near the 

discontinuity, B.  

 

Figure 2-9. The smallest rectangle containing the known discontinuity. 
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Calculation of Metrics  

𝑮̅ Calculation 

The average G value or 𝐺̅ is a metric developed to quantify the collection of particles on the 

surface of a part. The higher the 𝐺̅, the higher accumulation of fluorescent particles on the 

surface of the part which may lead to false positives or create noise which may prevent the 

human inspector from finding the true discontinuities. The 𝐺̅ is calculated by summing the green 

values of all the pixels in the image and dividing it with the total number of pixels in the image. 

The formula is: 

𝐺̅ =
∑ 𝐺𝑖  𝑛

𝑖=1

𝑛
 

where represents the green value of the 𝑖th pixel from the RGB scale, and 𝑛 represents the total 

number of pixels in the image. The 𝐺𝑖 value can could range from 0 to 255.  

Noise Area Percentage Calculation 

The noise area percentage is a metric developed to quantify the noise surrounding 

discontinuities which could result in false positives. The higher the noise area percentage, the 

more difficult it would be for a human operator to identify the true discontinuities. To measure 

the noise area percentage, the 𝐺̅ of the discontinuity was first calculated and this value is set as 

the threshold, 𝑡. Each pixel in the representative surface patch near the discontinuity is then 

compared to the threshold value. The noise area percentage is the percentage of pixels in the 

representative surface patch near the discontinuity that is higher than the threshold.  

𝑃𝑖 =   {
0, 𝐺𝑖 ≤ 𝑡
1, 𝐺𝑖 > 𝑡

 

𝑁𝑜𝑖𝑠𝑒 𝐴𝑟𝑒𝑎 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒,  % =  
∑ 𝑃𝑖 𝑛

𝑖=1

𝑛
∗ 100 
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where 𝐺𝑖 represents the green value of the 𝑖th pixel from the RGB scale, 𝑡 represents the 

threshold, and 𝑛 represents the total number of pixels in the image.  

Preliminary Evaluation of Method 

Experiment 1 – Quantifying the collection of particles on the surface 

There were 10 samples of each part type shown in Figure 2-1 used for Experiment 1. The 

surface roughness on the part was classified by two different subjects using the ASTM A802 

standard; the surfaces were determined to be A1, A2, and A3. If there were disagreements in 

classification between the two operators, the surface would need to be reevaluated until an 

agreement is reached. Experiment 1 was conducted to quantify the collection of particles in the 

surface textures through the intensity of the green color in the image after MPI testing. The 

higher the 𝐺̅, the more particles got caught in the valleys of the surface which could result in 

higher rates of false positives or increased difficulty in identifying true discontinuities. The 

values from the image analysis software were processed and analyzed using R (Boston, MA, 

USA). The model’s assumptions of normality, constant variance, and independence were 

checked using diagnostic plots. The analysis using the scale location diagnostics plot identified 

that there was increasing variance in the data as the response variable, 𝐺̅ increased, hence a 

logarithmic scale was used to transform the data to meet the model’s assumption of constant 

variance.  The results are as shown in Figure 2-10 where the logarithm of the 𝐺̅ was plotted for 

surface roughness levels A1, A2, and A3. A one-way ANOVA was conducted to compare the 

effect of the different surface classifications on the 𝐺̅. There was a significant difference found 

between the 𝐺̅ for all three surface roughness levels when evaluated at a significance level of 

0.05; F = 106.9; p = 1.48 x 10^(-13). The estimated marginal means of the 𝐺̅ for A1, A2, and A3 
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are 26 (95% CI [22, 31]), 88 (95% CI [74, 105]), and 148 (95% CI [124, 176]), respectively. The 

estimated marginal means is the mean of the 𝐺̅ that is adjusted based on the model. However, 

since the surface roughness classification is a categorical variable, the estimated marginal mean 

is the same as the mean from the data. Additionally, a Tukey multiple comparisons test was 

performed between the surface classification levels. There was a significant difference in the 

multiplicative effect on the mean from A1 to A2 and from A1 to A3 when analyzed at a 

significance level of 0.05. The multiplicative effect on the median from A1 to A2 is 3 (95% CI 

[2, 5]) for the 𝐺̅. On the other hand, the multiplicative effect on the median from A1 to A3 is 6 

(95% CI [4, 8]) for the 𝐺̅. The multiplicative effect is used to explain the comparison between 

the levels A1 to A2 and A1 to A3 because the data for the response variable was in logarithm 

form. An example of how the multiplicative effect is interpreted is considering the median of the 

𝐺̅ for A1 is 25, the multiplicative effect of A1 to A2 is 3, hence the median of the 𝐺̅ for A2 is 25 

x 3 = 75. Likewise, the multiplicative effect of A1 to A3 is 6, hence the median of the 𝐺̅ for A3 

is 25 x 6 = 150. 

The results in Experiment 1 support the findings in past research that the wet MPI method is 

not as effective when performed on parts with rougher surfaces [10]. In this experiment, the 

results show that rougher surfaces led to a higher collection of particles in the valleys of the 

surface which leads to higher UV intensity emitted from the part surface to the camera. Although 

the 𝐺̅ can quantify the collection of particles on the surface texture, it is not indicative of the 

difficulty in finding a discontinuity.  

 

 

 



22 

 

This is because when a discontinuity is present, MFL occurs which may attract the particles 

from the area surrounding the discontinuity. Hence, to appropriately quantify the difficulty of 

visually identifying a discontinuity, the noise area percentage is used. In Experiment 2, parts 

with manufactured discontinuities were used to evaluate the noise area percentage metric. 

 

Figure 2-10. The G̅ results for A1, A2, and A3 surface classifications 

Experiment 2 - Quantifying the difficulty in identifying discontinuities 

In Experiment 2, holes were drilled into the part to create discontinuities to be identified 

through the inspection process. A rectangular cast steel plate with dimensions of 356 by 175 mm 

(14.00 by 6.875 in) was cut into eight pieces as shown in Figure 2-2. The surface roughness was 

generated by adding purposefully scratching the mold. The surface roughness was then 

classified, and surface roughness levels A1, A2, A3, and A4 were found on the samples per 

ASTM A802. The surface classifications for each region are shown in Figure 2-11. Only three of 

the eight parts contained all four surface classifications, A1 to A4. Hence, these three pieces 
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were utilized in this experiment to test the influence of surface roughness on noise area 

percentage when detecting a sub-surface discontinuity. The manufactured discontinuity was 

drilled at a diameter of 1.78 mm (0.07 in) and a depth from the surface of 0.254 mm (0.01 in). 

Figure 2-4shows an example of a manufactured discontinuity. 

 

Figure 2-11. The surface classifications on the samples 

The results from Experiment 1 show that as the surface roughness increases particle 

collection on the surface increases. Experiment 2 investigates the effect of surface roughness on 

the reliability of wet MPI when detecting discontinuities. The drilled holes are expected to create 

MFL; if there is an adequate amount of MFL, particles will be pulled from the area surrounding 

the discontinuity which will alter the noise area percentage [11]. Hence, Experiment 2 was 

planned to investigate the influence of surface roughness on the noise area percentage when a 

discontinuity is present in the part.  

The results are as shown in Figure 2-12. A one-way ANOVA was utilized to compare the 

effect of the different surface classification levels on the noise area percentage. The model’s 

assumptions of normality, constant variance, and independence were checked using diagnostic 

plots. The analysis using the scale location diagnostics plot identified that there was increasing 
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variance in the data as the response variable, noise area percentage increased, hence a 

logarithmic scale was used to transform the data to meet the model’s assumption of constant 

variance. No significant differences were found between the noise area percentage for all four 

surface roughness levels when evaluated at a significance level of 0.05; F= 3.261; p = 0.0805. 

The estimated marginal means for the noise area percentage are 16% (95% CI [7%, 36%]), 50% 

(95% CI [23%, 100%]), 29% (95% CI [13%, 64%]), and 65% (95% CI [30%, 100%]) for A1 to 

A4, respectively. The estimated marginal means is the mean of the noise area percentage that is 

adjusted based on the model. However, since the surface roughness classification is a categorical 

variable, the estimated marginal mean is the same as the mean from the data. Additionally, a 

Tukey multiple comparisons test was performed between the surface classification levels. The 

multiple comparisons test was utilized regardless of the result of the F-test to provide further 

insights to aid the development of future research. The multiplicative effect on the median of 

noise area percentage from A1 to A2, A1 to A3, and A1 to A4 is 3.07 (95% CI [0.66, 14.40]), 

1.81 (95% CI [0.39, 8.47], and 4.03 (95% CI [0.86, 18.86]), respectively. The multiplicative 

effect is used to explain the comparison between the levels A1 to A2, A1 to A3, and A1 to A4 

because the data for the response variable was in logarithm form. The results of this experiment 

show a general increase in the noise area percentage as surface roughness increases.  
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Figure 2-12. The noise area percentage results for A1, A2, A3, and A4 surface classifications 

The findings in Experiment 2 support the research from past studies indicating that rougher 

surfaces reduce the reliability of wet MPI [10]. As shown in Figure 2-12, the noise area 

percentage for the A2 sample was higher than the A3 sample; this inconsistency may likely be 

due to the subjectivity of determining the surface roughness. The two human operators agree that 

the A2 and A3 comparator plates were tough to differentiate. Furthermore, research by Schimpf 

on digital surface characterization confirms that the differences between A2 and A3 are difficult 

to discern [12]. Overall, there is a general increase in noise area percentage as surface roughness 

increases. This means that as surface roughness increases, the difficulty in identifying the 

discontinuity increases.  

Conclusion 

The proposed method can quantify the level of difficulty to identify a true discontinuity. This 

can help with the development of optimal parameters for a specific part procedure. For example, 
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in setting up a new part to be tested in wet MPI, a procedure can optimize the parameter settings 

based on which combination of settings results in the lowest noise area percentage. Experiment 1 

utilized the 𝐺̅ metric to show that surface roughness has significant influence (p-value = 1.48 x 

10 ^ (-13)) on the particle collection on the surface (see Figure 2-10). This shows that a rougher 

surface will have more particles adhering to the surface texture which may lead to higher rates of 

false-positive or reduce the likelihood of detecting true discontinuity. Experiment 2 utilized the 

noise area percentage that showed a general increase (p-value = 0.0805) in the level of difficulty 

in detecting discontinuities as surface roughness increase (see Figure 2-12). Experiments 1 and 2 

show how the metrics developed in this paper could be used to quantify factors that influence the 

reliability of wet MPI. Several limitations in this paper should be considered in future research. 

First, the surface roughness classification method used in this research was subjective. This 

created uncertainty in the results due to the variability in the surface roughness classifications. 

Second, this study only investigated the effect of surface roughness on the effectiveness of wet 

MPI. Future work could utilize the noise area percentage metric to quantify the effect of other 

factors in wet MPI. Despite the limitations, this paper established a new method for quantifying 

the level of difficulty in identifying discontinuities using image analysis.  
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Abstract 

In wet magnetic particle inspection (MPI), the human operator introduces variability due 

to different levels of qualifications, vision acuity, and fatigue. This can result in high escape or 

overkill rates of defects leading to failure of the part in the field or unnecessary rework being 

done on a part. Additionally, a substandard process could cause a defect to not be visible. 

Because of this, it is important to understand the capability of wet MPI to produce reliable steel 

castings. Hence, the goal of this research is to determine the repeatability and reproducibility of 

the wet MPI process in the steel casting industry to create a baseline for the current state. The 

method used to determine the percent match repeatability and reproducibility (R&R) is based on 

past research on visual surface inspection of steel castings. This work builds on that research 

with several modifications to allow for the repeatability and reproducibility to be measured in 

wet MPI. For example, the work by Daricilar et. al. used circular-shaped stickers to mark the 

defects that the operator identified via visual inspection [1]. In this paper, magnets were used 

instead of stickers since stickers will not be able to adhere to the part due to the wet nature of the 

testing. The suspension of magnetic particles in the carrier fluid will cause the collection of 

particles in the area of the magnets which can influence subsequent inspections. Hence, shot-
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blasting was done between inspections to ensure this does not impact the results. The R&R 

results were reported as the ‘percent of matches’ instead of the percent variation. The 

repeatability and reproducibility were validated at four different steel foundries and the averages 

were 27% and 29% match, respectively. The results from this study indicate that further work is 

needed in optimizing the process parameters in wet MPI and creating an inspector aid to help 

guide human operators to find defects. 

Introduction 

In the metal casting industry, the evaluation of an acceptable part is often subjective and 

defined by the buyer. Nondestructive testing (NDT) methods are used as a way of gauging some 

aspects of the quality of the castings. Visual inspection, radiograph, magnetic particle inspection, 

dye penetrant, and ultrasonic testing are commonly used NDT methods in the metal casting 

industry. In this chapter, a method to determine the measurement error due to human factors in 

wet magnetic particle inspection (MPI) was developed. Advantages of wet MPI include its cost, 

speed of testing, and ability to be used on a variety of different sized parts. A ferromagnetic 

material is required for testing using wet MPI because the part needs to be magnetized and 

remained magnetized. Once the part is magnetized, magnetic flux leakage forms around the area 

of the defect. A suspension of fluorescent magnetic particles is then applied to the part and the 

magnetic particles are attracted to the area of magnetic flux leakage. A human inspector then 

shines an ultraviolet (UV) light on the part to visually locate the defect by identifying the 

collection of particles. A simple breakdown of the wet MPI process is shown in Figure 3-1. 

 

Figure 3-1. Wet MPI process 
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The measurement error of a process can be determined through gauge R&R testing which 

has been widely used across various industries. It is used to determine the variability due to the 

measurement system. More specifically, it evaluates the precision of the measurement system 

where less variation equates to better precision (see Figure 3-2). There exist three sources of 

variation: the actual variation within the part, the measurement system, and the operator. The 

variation due to the measurement device is called repeatability and the variation due to the 

operator is called reproducibility. The variability due to the operator can stem from the different 

types of certifications such as the American Society for Nondestructive Testing (ASNT) or in-

house certification provided by the specific foundry. Both types have 3 levels of certification 

available to the operators. A level 3 MPI operator is responsible for creating documents that 

outline standard procedures that operators should follow for specific parts and for the training of 

the level 1 and 2 operators. The level 1 and 2 operators are responsible for the day-to-day testing 

of the parts which can introduce measurement errors due to the different levels of expertise. 

Additionally, since wet MPI is performed in a dark room, the visual ability to discern shape and 

color is an important factor. Hence, human visual acuity is another factor contributing to 

measurement error in wet MPI. Fatigue is also known to affect work performance so a human 

operator running MPI at the beginning of the shift might perform differently compared to the 

same operator at the end of the shift [2]. 

 A majority of the past work in gauge R&R was developed for continuous data such as 

length, depth, etc. where the total gauge R&R is the sum of the repeatability and reproducibility. 

A total gauge R&R of more than 30% is typically deemed unacceptable for most applications. 
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Figure 3-2. Types of variation in a system 

Unlike continuous data, visual inspection data are often categorical or count data. For 

visual inspection, attribute gauge R&R is typically used to evaluate the precision of the 

measurement system. An example of attribute gauge R&R is when a part is tested under a pass or 

fail criteria. A human operator must compare the combination of attributes of the part to a 

standard to determine whether the part passes or fails. If operator A inspects 10 parts twice and 

has the same accept or reject outcome for 8 out of the 10 parts inspected, the percent agreement 

for repeatability is 80%. In attribute gauge R&R, a higher value equates to a higher precision. 

Similarly, for reproducibility, if operator A and operator B inspects the same 10 parts and have 
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the same accept or reject outcome for 7 out of the 10 parts inspected, the percent agreement for 

reproducibility is 70%.  This example uses the simple percent agreement as the metric for 

measuring the agreement between the operators.  

Cohen’s kappa was a metric that was developed by Jacob Cohen to create a more robust 

measurement of agreement between two operators by including the probability that the 

agreement occurred by chance [3]. A variation of this metric coined Fleiss’ kappa was developed 

to measure the agreement between more than two operators [4]. However, Cohen’s and Fleiss’ 

kappa could not be applied to this study because the identification of defects is not a simple yes 

or no but also includes the location. Since there are many possibilities of where the defect could 

be found on a part, adding probability due to chance is not suitable. Hence, this paper used the 

simple percent agreement method as the metric for measuring the agreement within and between 

the operators. 

However, there is a need for more research to evaluate the precision of visual inspections 

because visual inspection of metal castings is not a typical go or no-go operation. Multiple 

defects are typically identified for each part and the part undergoes a combination of grinding 

and welding operations to remove the identified defects. Hence, the metric of acceptable or 

unacceptable is not used, rather the precision needs to be determined based on the defects 

identified. Daricilar et. al. created a method for visual surface inspection of metal casting by 

using circular stickers to determine clusters based on a search zone coefficient. The search zone 

size was larger than the circular markers to accommodate minor errors in the placement of the 

marker and differences in the quality and angle between images. By calculating the percentage of 

sticker overlap, the percent match repeatability and reproducibility can be obtained (see Figure 
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3-3 and Figure 3-4). Since percent match is the metric used, the higher values represent better 

repeatability and reproducibility [1]. 

 

Figure 3-3. Results were obtained from the same casting inspected twice by each of the two 

operators at Foundry 2 [1]. 

 

Figure 3-4. Search zone coefficient example with default values of 2.5 for the master cluster [1]. 

The use of circular stickers as markers to determine the percent matching R&R was not 

feasible in wet MPI. The use of carrier fluid containing magnetic particles in wet MPI would 

mean that the stickers would not adhere to the part. Additionally, the process of using stickers to 
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mark the defects identified by the operators is slow and accurate results would rely heavily on 

the placement of each sticker as well as the consistency in image quality and angle. Due to these 

reasons, the method used for visual inspection will not work for wet MPI. 

For wet MPI, the proposed solution uses magnets to mark the identified defects which 

address the limitation of using stickers since it is a wet environment. Another limitation of the 

sticker method is the speed of marking since a sticker is placed over each part of the defect. In 

the proposed approach, only two magnets are used to mark the beginning and end of each defect 

which significantly speeds up the marking time. Additionally, since the magnets are only placed 

at the beginning and end of the defect, the location and the defect can be captured in the image 

whereas in the sticker method only location information is available because the defect is 

covered. In the proposed solution, the identified defect is mapped onto the part using software 

which allows for efficient calculation of the R&R values. Overall, the proposed method provides 

an effective solution for the precision of wet MPI to be evaluated which will allow for the 

variability in the system to be determined and improved upon. 

Methods 

R&R Calculations 

Repeatability is the measurement of variability under the same conditions with multiple 

trials. In this study, two trials for the same part, operator, and setup were compared. The 

repeatability was calculated by identifying the number of defects in the same part that matched 

between the two trials, divided by the total number of unique defects found by the operator in 

both trials. Figure 3-5 shows an example where the operator found three defects during the first 

inspection and four defects the second time. However, only two of the defects were identified in 

both inspections. Since there was a total of five unique defects found, the percent match 

repeatability is 40%. 



35 

 

 

Figure 3-5. The blue “x” represents Operator 1 Part 1 Trial 1 and the red circles represent 

Operator 1 Part 1 Trial 2. 

Reproducibility is the measurement of variability under the same conditions with 

different operators. Since each operator ran two trials, Trial 1 and Trial 2 were combined for 

each operator and part. The reproducibility was determined by the number of defects on the same 

part that matched between inspectors, divided by the total number of unique defects present 

across both inspectors. In Figure 3-6, four defects match between operator 1 and operator 2. 

Lastly, the number of defects that were matched between operator 1 and operator 2 would be 

divided by the total number of unique defects, which is six, resulting in a percent match for 

reproducibility of approximately 67%. 

 

Figure 3-6. The brown triangles represent the union of Operator 1 Part 1 all Trials and the green 

squares represent the union of Operator 2 Part 1 all Trials. 
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For more than two operators, a pairwise agreement was used and an average of the 

reproducibility values for each pair was taken to represent the final reproducibility value in this 

study. This approach is different from the typical attribute gauge R&R approach where an 

overall agreement is used. All operators must agree for a defect to be considered a match using 

the overall agreement method. Using the overall agreement method for the example in Figure 

3-7A would result in a 1 out of 6 match which is a percent match reproducibility of 16.67%. This 

paper proposes using a pairwise agreement where Figure 3-7B is comparing the agreement 

between operator 1 and operator 2, Figure 3-7C is comparing the agreement between operator 2 

and operator 3, and Figure 3-7D is comparing the agreement between operator 1 and operator 3.  

This would result in three pairwise reproducibility results of 66.67%, 16.67%, and 40%, 

respectively. The pairwise results are useful in considering which operators in the foundry have 

higher agreement percentages. This data could be used to evaluate other factors that may cause 

higher agreement percentages between certain operators. For example, if it were found that the 

operators with more than 10 years’ experience in wet MPI had higher percent agreement 

reproducibility, this might indicate more training could be provided to the less experienced 

operators to increase reproducibility. If a single value is needed to represent the reproducibility 

of the foundry, the average of all the pairwise reproducibility result could be used. For the 

example used in Figure 3-7, the average pairwise agreement reproducibility is 41.11%. 
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Figure 3-7. A) The brown triangles represent the union of Operator 1 Part 1 all Trials, green 

squares represent the union of Operator 2 Part 1 all Trials, and the black stars represent the union 

of Operator 3 Part 1 all Trials. B), C), and D) represent the resulting pairwise comparison based 

on A) 

Testing Procedure 

The measurement error with the MPI process includes the differences in how an operator 

would process the part (e.g. setup, current, orientation) and the visual interpretation of the 

resultant part. For all the experiments, the operator communicated the presence of a defect by 

placing magnets on the casting (see Figure 3-8). The location of the magnet was then captured 

via a camera. Prior to the placement of the magnets, the casting surface was imaged under UV 

light to capture what the operator saw. After the inspection, the number of defects found for that 

test was noted. A complete flowchart of the process is shown in Figure 3-9. 

 

Figure 3-8. Magnets are used to mark the beginning and end of the crack. 
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Figure 3-9. A flowchart of the process. 
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After the MPI testing was completed, the defects that were identified were mapped onto a 

three-dimensional (3D) computer-aided design (CAD) model. The CAD model was created 

based on basic measurements to represent the relevant geometry of the part. Casting mapper 

software which was developed at Iowa State University was used to mark the defects. Using this 

software, a CAD model can be imported and two-dimensional (2D) views of the part will be 

generated which can be marked for defects. An example of the mapping of the defects on the part 

is shown in Figure 3-10. The mapping of defects from the casting mapper software was then 

exported as a PDF to be analyzed for repeatability and reproducibility measurements. 

 

Figure 3-10. A) Operator 1 Part 1 Trial 1 Front view; B) Operator 1 Part 1 Trial 2 Front view 

Data Collection and Analysis 

Each defect in a part is captured independently, hence each image only contains one 

identified defect. Because of this, it is hard to visualize all the defects identified on one part and 

to match the defects across two trials. Hence, casting mapper software was used to allow for a 

quick way to visualize all the defects that were identified on a specific part. The process for 

analyzing the images gathered from the gauge R&R study is as follows: 

1. A CAD drawing of the part is created. 

2. The CAD drawing is imported into casting mapper software. 

3. The location of defects is mapped from the images to the casting mapper 

software. 

4. PDF reports containing the mapping of all defects for a specific part, operator, 

and trial are saved. 



40 

 

5. Once all the PDF outputs are created, repeatability and reproducibility can be 

evaluated. 

6. By analyzing the PDF report, the defects in the same region between the two trials 

will be further validated through the images of the defect under UV light to 

compare the characteristics of the defect for similarities. 

7. The repeatability and reproducibility values are then calculated based on the 

methods outlined in the R&R Calculation section. 

 

This method was then validated across four steel foundries and the results are shown below. 

Table 3-1. Experimental layout and R&R results for all foundries. 

Foundry Parts Total 

Number of 

Operator(s) 

Trials % Match 

Repeatability 

% Match 

Reproducibility 

*1 6 3 2 73% 48% 

2 6 2 2 33% 25% 

3 4 1 2 15% N/A 

4 6 2 2 33% 33% 

 

Note: *Parts were not blasted in between sets hence the data were not included as a part of the averages of R&R 

 

Foundry 1's result was not taken into account because parts in between trials were not 

shot-blasted, and the magnets that were used to identify the location of the defects were found to 

leave marks on the part, which affected the results of the study. In Foundry 3, there was evidence 

of the defects not appearing on the photographs, so the repeatability was not due to problems 

with the visual perception of the operator (see Figure 3-11). Prior to examining the results from 

Foundry 4, the reasoning behind this phenomenon was unclear, with speculations of possible 

changes in parameters of testing between trials (e.g., orientation, magnetic field strength, etc.) or 

shot blasting causing the defects to be covered up. In Foundry 4, it was found that the defects do 

not get covered up by shot blasting, as shown in Figure 3-12. All the defects identified by one 
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operator but not by the other were still visible in the images captured in both trials. In other 

words, the defects were all present and visible even after multiple iterations of shot-blasting. The 

defects in Foundry 4 were surface-breaking discontinuities. Since the defects in Foundry 3 show 

up faintly and were not visible upon close inspection under ambient light, they were likely 

subsurface defects. The ‘disappearing’ defects between trials that occurred for Foundry 3 could 

be explained by slight orientation changes since the part was tested using indirect magnetization 

(on the coil rather than clamped) which allowed for more variability in the placement of the part 

(see Figure 3-13 and Figure 3-14).  

 

 

Figure 3-11. A) Operator 1 Part 1 Region A Trial 1; B) Operator 1 Part 1 Region A Trial 2 

Note: The black oval is the defect the operator identified, the red oval is the same spot they located a defect in 

another trial however defect is not visible and not identified in the current trial. 
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Figure 3-12. A) Operator 1 Part 1 Region A Trial 1 defect is visible and identified; 

B) Operator 2 Part 1 Region A Trial 1 is visible and not identified 

 

 

Figure 3-13. Indirect magnetization was performed at Foundry 3 
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Figure 3-14. Placement variability when using indirect magnetization 

Conclusions 

Understanding the amount of variation present in a measurement system is important to 

drive process improvements. While there are many studies on how to evaluate the measurement 

error in a system, the majority of the existing work is on continuous data and not visual 

identification tasks. Therefore, there has been no readily available method to evaluate 

measurement error in wet MPI. Past research developed a method to measure process variation 

for visual inspections in metal castings using a percentage match method for clusters defined by 

small circular stickers. This study proposed a revised method to adapt this approach to wet MPI 

by 1) changing the marking system to magnets instead of stickers, 2) using a software tool to 

speed up the calculation of R&R, and 3) proposing a solution that enables the consideration of 

more than 2 operators for reproducibility. Overall, the findings across four steel foundries 

resulted in an average percent match repeatability and reproducibility of 27% and 29%, 

respectively.  

Additionally, the type of defect can be determined by examining the part under ambient 

light. The parts inspected in Foundry 2 and Foundry 4 contained surface cracks whereas parts in 
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Foundry 3 likely contained sub-surface defects. It was discovered that sub-surface defects that 

were visible in one trial but not in the second trial could be attributed to minor changes in 

orientation (see Figure 3-14). To mitigate variation in the orientation of the part, direct 

magnetization where the part can be clamped into a fixed location and orientation is preferred 

when possible. Additionally, it was found that surface cracks are not as sensitive to minor 

changes in orientation. All surface cracks were visible in both trial 1 and trial 2, which indicates 

that the defects that were not identified were due to human error in the visual inspection step. 

Chapter 4 will investigate the impact of different process parameters on the effectiveness of wet 

MPI since it was discovered that orientation may have played a role in disappearing sub-surface 

defects between trials. Chapter 5 will discuss the development of an inspector aid to mitigate 

defects missed due to human error. Additionally, the inspector aid solution’s performance will be 

benchmarked against current visual inspection performance in wet MPI. 
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Abstract 

The characteristics of the part and the process parameters play a role in the effectiveness 

of wet magnetic particle inspection (MPI). One factor that affects the ability to locate a defect is 

having sufficient magnetic field strength to create adequate flux leakage to attract magnetic 

particles to the area of the defect which creates higher contrast between the defect and its 

surroundings. This study investigated the impact of various geometries on magnetic field 

strength. Concave geometry was found to have lower magnetic field strength compared to flat 

and convex geometries. Additionally, this investigation introduced a new metric to evaluate the 

visibility of defects in wet magnetic particle inspection (MPI). Wet MPI is a commonly used 

nondestructive test (NDT) method to identify flaws in ferromagnetic parts. Probability of 

detection (POD) graphs have been used historically to determine the capability of this process. 

However, creating POD graphs requires a substantial amount of data and is a subjective method. 

A new method, noise area percentage (NAP), has recently been proposed (see Chapter 2) to 

replace POD graphs to provide a quick snapshot of the effectiveness of a wet MPI test using an 

image-based approach to evaluate the level of difficulty in identifying a defect [1]. The NAP 

method effectively determined the level of difficulty in finding a defect; however, the method 
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did not consider how a human would identify defects. Hence, this study implemented some 

modifications to the NAP method which will provide an objective value for how well defects can 

be identified and is more representative of what the human operator would see. Additionally, this 

chapter displays a user-friendly open-source graphical user interface (GUI) that was developed 

for obtaining the NAP metric, which will aid data analysis and encourage the use of the 

technique. This approach was then used to validate the effect of surface roughness, orientation, 

current type, and magnetic field strength on surface-breaking and sub-surface discontinuities. 

The results indicate that for surface-breaking defects, the part should be set up in at least two 

orthogonal orientations to detect discontinuities. In contrast, sub-surface defects would require 

the magnetic field lines and the discontinuity to be perpendicular to be detected, which may 

require more than two setups to locate the defect. Surface roughness was also found to influence 

the ability to detect defects. Since geometry is known to impact magnetic field direction, various 

geometries on the orientation of the magnetic field lines were investigated. 

Introduction 

Several aspects of the integrity of metal castings can be gauged through the use of 

nondestructive testing (NDT) methods. Magnetic particle inspection (MPI) is an NDT technique 

that is commonly used for several reasons; 1) speed of testing, 2) relatively low expense 

compared to the other NDT methods, 3) ability to identify surface and sub-surface defects, and 

4) ability to be used on small or large parts [2]. MPI is used on ferromagnetic parts, which are 

materials that can be magnetized. With MPI, first the part is magnetized, then if there is a defect 

present, magnetic flux leakage (MFL) will occur. Magnetic particles are then introduced to the 

part; if the MFL is adequate, the particles will collect on the surface where MFL is present. The 

human operator can then identify the defect through the collection of particles [3].  
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There are two types of MPI testing, wet and dry. Dry MPI tends to perform better on 

rougher surfaces due to larger particle size, which reduces the possibility of particles getting 

caught in the valleys of the surface texture [4]. An electromagnetic yoke is used to generate the 

pulsating magnetic field in a small area while dry magnetic particles are applied to the part. Wet 

MPI is performed on a horizontal stationary magnetic particle machine where the magnetic 

particles are suspended in oil or water to aid the movement of the particles on the part [5]. Wet 

MPI is the method investigated in this study because it is the most commonly used MPI method 

in steel foundries. 

 When inspecting rougher surfaces, wet MPI is not as effective as dry MPI because the 

smaller particle sizes used in wet MPI tend to get caught in the surface of the part. However, for 

larger castings, wet MPI is more efficient than dry MPI because the entire part can be tested 

using the suspension containing carrier fluid and magnetic particles. Using dry MPI, only small 

areas can be tested at one time, which can be time-consuming for larger castings [6]. 

Additionally, the use of carrier fluid in wet MPI leads to higher particle mobility when compared 

to dry MPI. This allows for the particles to easily move to the area of flux leakage, increasing the 

effectiveness of illuminating the area containing the defects. Fluorescent coated particles used 

mainly in wet MPI also provide more contrast between the particles and the background. 

Although the smaller-sized particles in wet MPI tend to create noise, it allows for the detection 

of finer defects [7].  

Particle collection on the surface of the part does not only occur in the area of the defect. 

Surface roughness, geometry, or residual particles left on the part through handling could result 

in a collection of particles that could lead to false positives or create noise that would hinder the 

human operator from finding true defects. In this paper, a false positive refers to finding a 
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discontinuity that does not exist in the part while true defects refer to discontinuities that exist in 

the part. There exist multiple reasons that contribute to a human operator missing true defects 

such as variability due to the process, the part, the equipment, and the human operator [8]. This 

chapter investigates two of those main factors in MPI testing which are the process and the part 

using a novel metric to quantify the capability of the MPI.  

 

Figure 4-1. This chapter investigates the MPI testing step of the wet MPI process 

In this chapter, the impact of geometry on magnetic field strength and magnetic field 

direction were investigated. Flat, convex, and concave geometries were tested. Additionally, the 

impact of surface roughness, orientation, magnetic field strength, current, and magnetization type 

on the effectiveness of wet MPI were investigated. Results from Chapter 3 on the gauge 

repeatability and reproducibility (R&R) of MPI showed low R&R and evidence of defects 

disappearing from one trial to the next, which indicates variability in the process. This led to the 

development of a metric to provide an objective value for defect visibility in MPI which allowed 

for the investigation of the variability due to process and part.  

Probability of detection (POD) is an approach used to evaluate the capability of various 

NDT methods. The likelihood that a defect of a certain size will be identified by an inspector can 

be predicted through this method. In a majority of cases, a 90% POD value is needed, which 

equates to a skilled inspector being able to detect a given defect 9 out of 10 times based on a 

mathematical estimate. The variability of the POD experiment is captured through the 95% 

confidence interval accompanied with the POD value. The purpose of the POD approach is to 

provide a metric for inspection parameters to be optimized through the quantification of the 

inspection system and abilities of the human operator [9]. The downside to this methodology is 
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that it is time intensive to acquire sufficient data due to the number of tests required. Because of 

this, the POD method is not used to evaluate individual parameters for each NDT technique, 

rather it is used to evaluate the overall limitation of the technique [10].  

In this paper, the impact of geometry on the magnetic field strength was investigated. In 

our previous work, an objective method to quantify the level of difficulty in identifying defects 

in wet MPI was developed based on comparing the illumination of the particles in the 

background against the illumination of particles in the location of the discontinuity using image 

analysis. This metric is called noise area percentage (NAP) and can be used as a way to quantify 

the effects of the different parameters on the effectiveness of wet MPI [1]. In this paper, the NAP 

metric is further refined to better represent how a human operator identifies a defect. 

Subsequently, the improved NAP metric is then validated through a series of experiments to gain 

an understanding of the variability associated with the key parameters in wet MPI. Better 

understanding of the capabilities of wet MPI can lead to better defect detection standards 

between the foundries and the buyers which will save time and improve the quality of inspection.  

Impact of geometry on magnetic field strength 

The capability of MPI is impacted by the characteristics of the tested part. In this study, 

the geometry of the part was investigated. Geometry is known to affect the magnetic field 

strength since it defines the arrangement of magnetic domains [11]. This study is important to 

determine which geometries contain lower magnetic field strength which may lead a defect in 

that region to go undetected. Part containing three different geometries, concave, flat, and 

convex geometries were tested at two orientations. The magnetic field strength was measured 

using a gauss meter where a baseline of 30 gauss (per the ASTM 1444 standard) was set by 

tuning the current levels on a flat region in each part.  



51 

 

For concave geometry, the results for orientation 1 as shown in Figure 4-2 indicate that 

the magnetic field strength decreases as the radius of the concave region increases. The plot in 

Figure 4-2 (b) shows the magnetic field strength decreasing from position D1 to D5. Position D4 

and D5 had magnetic field strength values of less than 30 gauss. For orientation 2, the results in 

Figure 4-3 show a similar trend with the magnetic field strength decreasing from position D1 to 

D5. This means the region with concave geometry may be at a lower than the recommended 

magnetic field strength compared to the flat regions where the baseline of 30 gauss was set. This 

may lead to defects in those regions having lower magnetic flux leakage leading to more 

difficulties in identifying the discontinuities due to lack of contrast. Additionally, defects tend to 

occur in concave regions post heat treatment if excessive warping that occurs. In creating the 

procedure for the amount of current to use on a part, concave regions should be evaluated to 

ensure these regions have sufficient magnetic field strength to meet the ASTM guidelines. 

 

(a)                                                      (b) 

Figure 4-2. (a) Labeled concave geometry part at orientation 1 and (b) Results for concave 

geometry 
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Figure 4-3. (a) Labeled concave geometry part at orientation 2 and (b) Results for concave 

geometry 

 

For flat and convex geometry, the results are shown in Figure 4-4 and Figure 4-5. The 

sample containing flat regions also contained sharp corners, however, flat regions or corners did 

not show any significant trends. This results for flat regions were as expected since the flat 

regions were used to determine the baseline magnetic field strength on each part. On the other 

hand, the part containing a convex geometries did not show any meaningful trends. Different 

radiuses for convex geometry should be evaluated to validate that convex geometries have no 

significant impact on the magnetic field strength.  

(a) (b) 
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Figure 4-4. (a) Labeled flat geometry part and (b) Results for flat geometry 

         

Figure 4-5. (a) Labeled convex geometry part and (b) Results for convex geometry 

 

Overall, the results in this section show that for concave geometry, there was a decrease 

in magnetic field strength as the radius increases. This is important because defects usually occur 

in concave regions and may be missed because of the lower magnetic field strength in those 

regions. Hence, prior to testing the part, the current that produces sufficient magnetic field 

strength across all geometries of the part would need to be determined to increase the probability 

(a) (b) 

(a) (b) 
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of locating defects in concave regions. This can be done using Quantitative Quality Indicators 

(QQIs) across the relevant areas on the part or using a gauss meter. 

Impact of surface roughness, orientation, current type and magnetic field strength on the 

effectiveness of wet MPI 

The results from Chapter 3, suggests that process parameter play a role in the 

repeatability and reproducibility of wet MPI. Hence, this study is conducted to further 

understand which parameter influences the effectiveness of wet MPI. Rectangular plates with the 

dimensions of 355.6 by 174.6 mm by 12.70 mm (14.00 in by 6.875 in by 0.5 in) were acquired 

from an industrial foundry which were cast using commercial chemically bonded sand process 

and were made of WCB cast alloy (cast equivalent to 1020). The rougher than normal surface 

texture of the plates was created by intentionally scraping the sand mold before it was fully 

cured. The surface roughness of the samples was classified using The American Society for 

Testing and Materials (ASTM) A802 standard. The rectangular plate was cut into 8 square 

samples as shown in Figure 4-6. 

 

Figure 4-6. Rectangular plate cut into 8 square samples. 

However, the square samples could not actually be used to evaluate the surface 

roughness, orientation, current type, and magnetic field strength. This is because the orientation 



55 

 

between the magnetic field lines and the crack would be difficult to be determined due to the 

changing contact points between the copper pads and the part as the part is rotated due to the 

shape of the part. This phenomenon can be illustrated in Figure 4-7A, when the square part is 

placed flat, the orientation between the magnetic field line direction and the crack is 0-degrees. 

However, when the part is rotated 15 degrees counterclockwise as shown in Figure 4-7B, the 

contact point between the copper pads and the part changes causing a shift in current direction, 

magnetic field direction and crack orientation. This makes it difficult to determine the orientation 

between the magnetic field lines and the crack when rotating a square part. 

 

Figure 4-7. A) 0-degree orientation between the magnetic field line direction and the crack; B) 

The part is rotated 15 degrees counterclockwise from the part in A), however the contact point 

between the copper pads and the part is shifted hence it is hard to determine the orientation 

between the magnetic field lines and the crack when rotating a square part. 

To ensure the orientation between the magnetic field lines and the defect can be 

controlled in the experiments, the square samples were machined into round puck-shaped parts 

as shown in Figure 4-8. This will allow for the contact points between the copper pads and the 

part to remain in the same location when rotating the part which will keep the current direction 

and magnetic field direction constant. The only changing parameter as the part is rotated is the 

defect orientation which simplifies the process of testing different orientations between the 
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magnetic field direction and defect significantly. This can be visualized in Figure 4-9A, when the 

puck-shaped part is placed with the crack in line with the magnetic field direction, the orientation 

between the magnetic field line direction and the crack is 0-degrees and when the part is rotated 

15 degrees counterclockwise as shown in Figure 4-9B, the orientation between the magnetic field 

lines and the crack is 15 degrees. Hence, surface and subsurface defects were manufactured on a 

2-inch diameter puck-shaped samples to ensure the orientation parameter can be controlled 

during experiments. 

 

Figure 4-8. A puck-shaped sample machined from casting plate. 

 

Figure 4-9. A) 0-degree orientation between the magnetic field line direction and the crack; B) 

The part is rotated 15 degrees counterclockwise from the part in A, since the contact points 

between the copper pads and the part is the same as in A, the magnetic field direction remains 

the same as in A.  
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Creating Manufactured Defects 

Sub-surface indications were manufactured in the form of drilled holes with a diameter of 

1.78mm (0.07 in) and a depth of 1.78mm (0.07 in) from the inspected surface of the part as 

shown in Figure 4-10. Generating surface defects required a more extensive procedure compared 

to manufacturing sub-surface defects. Figure 4-12 outlines the step-by-step procedure used to 

manufacture close-lipped surface cracks. First, a 1-inch slot was cut using a band saw and 

pressure was applied on the opposite end of the part using a hydraulic press to initiate the crack. 

The desired length of the crack can be determined in this step by slowly applying pressure and 

stopping when the desired length of crack is reached. In step 2, the part is rotated 180 degrees 

and pressure was applied directly on the 1-inch slot using a hydraulic press to close the crack. 

Step 3 illustrates how the part should look after steps 1 and 2. In step 4, material was removed 

from the rectangular plate to create a 2-inch in diameter puck-shaped part containing the close-

lipped crack. Step 5 shows the puck-shaped part containing the crack where one side has as-cast 

surface and the other side is machined. In this paper, 4 puck-shaped samples were made with 2 

containing subsurface indications and 2 containing surface cracks (see Figure 4-12). 

 

Figure 4-10. The dimensions of the drilled hole which was utilized as sub-surface defects. 
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Figure 4-11. The step by step procedure to create puck shaped samples containing surface 

defects. 

 

Figure 4-12. The puck-shaped samples containing sub-surface and surface defects. 

Experimental Procedure and Design 

A horizontal stationary magnetic particle machine (MD3-2060, Magnaflux®) was used in 

this study. To ensure the particles (CAS# 1309-37-1, Magnaflux®) were circulating evenly, the 

sides of the reservoir were scrubbed, and the machine was left running for a minimum of 30 

minutes. The MPI test procedure in this study adhered to the ASTM 1444 standard. The 
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magnetic particles used in this study were fluorescent coated particles with a mean particle size 

of 6μm which corresponds to an estimated level of indication detection of 8 to 9 on an AS 5282 

tool steel ring specimen. An angle meter (700, Johnson, Wisconsin) was used to ensure the part 

was at a minimum of 45 degrees when mounted on the bench as specified by the ASTM 1444 

standard. The ASTM A802 was used to classify the surface roughness of the samples. 

Excessive handling of the sample was avoided because residual particles from the glove 

can be imparted to the part which will introduce unwanted noise during image analysis. Hence, 

the samples were brushed with a stainless-steel brush (54022SP, Osborn, Indiana) once mounted 

in between the cooper pads to remove particles due to handling. A gauss meter (5180, FW Bell, 

Oregon) was used to measure the magnetic field strength. After each MPI tests, photographs 

were taken under ultraviolet light (UV) using a camera (PX-45, Crack Check, China) at a fixed 

distance of 305 mm (12 in) from the surface of the part to the camera. The camera was set to ISO 

400 instead of automatic to standardize the camera’s sensitivity to light. The explanatory 

variables in this study were surface roughness, orientation, current type, and magnetic field 

strength. Table 4-1 outlines all the explanatory variables along with the levels tested. 

Table 4-1. The explanatory variables and the levels tested in this experiment 

Explanatory variables Levels 

Surface roughness A1, A2, A3 

Orientation (degrees) 0, 15, 30, 45, 60, 75, 90 

Current type Alternating, Direct 

Magnetic field strength (gauss) 15, 30, 45 

 

The response variable used in this study was a refined version of the noise area 

percentage (NAP) metric developed by the author in a past study. The NAP metric quantifies the 
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level of difficulty in identifying a defect by comparing the average green intensity of the smallest 

rectangle encompassing the discontinuity to the representative surface patch near the 

discontinuity (see Figure 4-13A) [10]. A revised version of the NAP metric was developed for 

this study to better emulate how a human operator would identify defects. Humans typically 

identify discontinuities by identifying a pattern of bright areas that resemble common defects. 

For example, if a crack was present, the human operator would notice bright areas in the pattern 

of a line rather than the smallest rectangle surrounding the crack. Hence, this paper used a 

modified version of NAP which compares the average green intensity of five linear points along 

the discontinuity to the representative surface patch near the discontinuity (see Figure 4-13B). 

 

Figure 4-13. A) The smallest rectangle containing discontinuity and the representative surface 

patch near the discontinuity; B) Five linear points along the defect and the representative surface 

patch near the discontinuity. 

Software Tool 

The programming language used to make the software tool to obtain NAP was C#. The 

primary reasons behind using this programming language were familiarity with the language and 

ease of software implementation with Windows systems. Figure 4-14 shows a standard session 

of the NAP software tool with the key elements of the graphical user interface highlighted. 

Element 1 is the “Instructions” button where a complete documentation outlining how to use the 

software will appear as a new window. Element 2 is the segment of the user interface containing 

four buttons to trigger events such as 1) to upload the image, 2) select the surrounding area , 3) 

select the area containing the defect, and 4) calculate the noise area percentage metric. Element 3 
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displays the coordinates and green intensity value for the selected points along the defect. This 

allows for the user to check if the correct areas of the image were selected, and the intensity of 

the point selected as a sanity check. For example, if there is a sudden drop in green intensity 

value might indicate that the user did not select an area containing the defect. Element 4 provides 

the user with the average green value of the selected points along the defect. Element 5 shows 

the percentage of pixels in the rectangle that have higher green intensity values than the average 

of the defect, which is also known as the NAP value. Element 6 allows the user to add or delete 

the data for each image. Lastly, the user can export the data as an Excel file by using the button 

in Element 7. 

 

Figure 4-14. A standard NAP software tool session is shown, with the most important elements 

of the user interface labeled. 



62 

 

Results and Discussion 

 The ANOVA analysis found orientation, surface roughness, and the interaction between 

orientation and surface roughness to have a significant impact on the level of difficulty in 

identifying surface-breaking and sub-surface defects. Any defects with a NAP of 20% or higher 

were not able to be identified visually in the image. Hence, a red line is placed at this threshold. 

Orientation in this section refers to the orientation between the magnetic field lines and the 

defect. Current type and magnetic field strength were not found to be significant factors. The 

results for surface-breaking and subsurface defects will be discussed next. 

Surface-breaking defects 

Figure 4-15 shows the effect of orientation between the defect and magnetic field 

direction on the level of difficulty in identifying surface-breaking defects on two different 

surface roughness levels. For the smoother surface (A1), the result shows that the surface-

breaking discontinuity cannot be identified when orientation between the defect and magnetic 

field lines is 0 degrees and for a portion of the instances when the orientation between the defect 

and magnetic field lines is at 15 degrees. For the rougher surface (A3), the result shows that the 

surface-breaking discontinuity cannot be identified when orientation between the defect and 

magnetic field lines is 0 degrees and a portion of the instances when orientation between the 

defect and magnetic field lines is at 15 and 30 degrees. This means that a surface-breaking defect 

at 30 degrees orientation to the magnetic field line on an A1 surface will be detected whereas this 

defect might be missed on rougher surfaces. 
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Figure 4-15. Left: The results for surface-breaking defect for orientation for A1 roughness; 

Right: The results for surface-breaking defect for orientation for A3 roughness. 

Overall, the results for surface breaking defects corroborates the guidelines for section 

6.2.5 in ASTM 1444 which states “To ensure the detection of discontinuities in any direction, 

each part must be magnetized in a minimum of two directions at approximately right angles to 

each other”. Based on the results in this study, if a part is magnetized in two directions, the 

surface-breaking defect should be able to be detected (see Figure 4-16). Surface roughness was 

also found to be significant where a higher surface roughness was found to increase level of 

difficulty in identifying discontinuities. 

 

Figure 4-16. Based on the results in Figure 4-15, a surface defect might be missed at 15-degree 

orientation, however, if tested at right angles from the initial setup, it will be detected 
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Sub-surface defects 

Figure 4-17 shows the effect of orientation on the level of difficulty in identifying sub-

surface defects on two different surface roughness levels. For the smoother surface (A1), the 

result shows that the sub-surface discontinuity can be identified when the defect is at 90 degrees 

to the magnetic field lines and a portion of the instances when the defect is at a 75 degrees 

orientation to the magnetic field lines. For the rougher surface (A3), the result shows that the 

sub-surface discontinuity can only be identified when the defect is at 90 degrees to the magnetic 

field lines. This means that a sub-surface defect at 75 degrees orientation to the magnetic field 

line on an A1 surface have a chance to be detected whereas this defect would be missed on 

rougher surfaces. 

 

Figure 4-17. Left: The results for sub-surface defect for orientation for A1 roughness; Right: The 

results for sub-surface defect for orientation for A3 roughness. 

The results for sub-surface defects show that the magnetic field lines and the defect have 

to be at 90 degrees to be detected. This makes identifying sub-surface defects in wet MPI 

difficult. It is important for steel foundries to be aware of this to be able to set reasonable 

standards. Based on the results, sub-surface defects of the size used in this experiment should not 
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be part of the requirement of defects to be identified by the operator since the process is not 

capable of doing this effectively. 

Impact of geometry on the direction of the magnetic field lines 

 The orientation between the magnetic field lines and the defect is shown to have a 

significant impact on the ability to find the defect. For sub-surface defects, the results show that 

the defect is only visible at a 90-degree orientation between the magnetic field line and the 

defect. Since orientation is an important factor, there is a need to understand effect of geometry 

on the orientation of the magnetic field lines since castings have complex geometries. To 

investigate the impact of geometry on the magnetic field direction, four parts were used (see 

Figure 4-18).  

 

Figure 4-18. 1) Flat geometry with flush contact points, 2) Curved geometry with flush contact 

points 3) Flat geometry with irregular contact points, 4) Curved surface with irregular contact 

points 

A gauss meter with a transverse probe is used in this experiment to provide the magnetic 

field strength which can be used to estimate the magnetic field direction. The transverse probe 

which has a flat tip was placed orthogonal to the part’s surface and rotated in four different 

orientations as shown in Figure 4-19. Theoretically, the orientation where the magnetic field 

direction is perpendicular to the probe will produced the highest magnetic field strength (an 

example shown in Figure 4-20). The magnetic field direction can then be mapped onto the tested 

part as shown in Figure 4-21. Several locations of the part will be tested for magnetic field 

direction in the experiment which will be illustrated by a blue dot. The statistically analysis to 

1 2 3 4 
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determine the highest magnetic field strength for each point on the part can be found in the 

Appendix. 

 

Figure 4-19. Transverse probe rotated along 4 axes 

 

Figure 4-20. Illustration of how the magnetic field line is determined 
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Figure 4-21. The mapping of the magnetic field direction on the part based on magnetic field 

strength 

The first two samples that were tested were rectangular blocks with flat or curved 

surfaces. The rectangular sample allows for the contact points of the part on the copper pad to be 

flush and even across the whole part. The rectangular block with flat surfaces was setup 

horizontally on the bench (see Figure 4-22 Left). The results of the magnetic field lines were as 

expected based on how the part was setup (see Figure 4-22 Right). Next, the rectangular block 

with curved surfaces was tested with horizontal and vertical setup on the bench. For the 

horizontal setup, the results of the magnetic field lines were as expected based on how the part 

was setup (see Figure 4-23 Left). For the vertical setup, the result of the magnetic field lines for 

Point A was as expected based on how the part was setup, however, the magnetic field direction 

for Point B was not in line with the direction that would be expected based on the setup (see 

Figure 4-23 Right). This was a concern because a subsurface defect in the tight corner would be 

missed since the true orientation of the magnetic field line is not the same as the expected 

magnetic field line.  



68 

 

 

Figure 4-22. Left: Rectangular block setup on bench; Right: Orientation of magnetic field 

direction on the tested points of the rectangular block 

 

Figure 4-23. Left: Horizontal setup with the orientation of magnetic field direction on the tested 

points of rectangular block with curved surfaces; Right: Vertical setup with the orientation of 

magnetic field direction on the tested points of rectangular block with curved surfaces 

Castings often have complex geometries which tends to create irregular contact points 

when setting up the part to be tested for wet MPI. Therefore, irregular contact points with flat 

and curved surfaces were tested. For the flat surface with irregular contact points, the result of 

the magnetic field lines for Point A was as expected based on how the part was setup, however, 

the magnetic field direction for Point B and Point C was not in line with the direction that would 

be expected based on the setup (see Figure 4-24). The magnetic field direction for Point B and 

Point C were found to be caused by the irregular contact between the copper pads and the part as 

shown in Figure 4-25. For curved surfaces with irregular contact points in horizontal and vertical 

setup, the result of the magnetic field lines for Point A was as expected with based on how the 

part was setup however the magnetic field direction for Point B and Point C was not in line with 
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the direction that would be expected based on the setup (see Figure 4-26). This could be caused 

by the curved surfaces and/or the irregular contact points. This shows that subsurface defects for 

casting will be difficult to locate because the magnetic field line direction varies based on the 

geometry of the surface and the contact points with the copper pads. 

 

 

Figure 4-24. The orientation of magnetic field direction on the tested points of flat surface with 

irregular contact points 

 

Figure 4-25. Irregular contact point illustrated in a computer aided design (CAD) drawing to 

show current flow 

 

Figure 4-26. Left: Horizontal setup with the orientation of magnetic field direction on the tested 

points of curved surface with irregular contact points; Right: Vertical setup with the orientation 

of magnetic field direction on the tested points of curved surface with irregular contact points 
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Overall, the only setup where the magnetic field direction matches the expected magnetic 

field direction is with the part containing a flat geometry and flush contact with the copper pads. 

The other setups had areas on the part where the magnetic field direction did not match the 

expected magnetic field direction. The overview of the magnetic field direction mapped for each 

sample is as shown in Figure 4-27. For sub-surface indications where the magnetic field 

direction and the defect would need to be perpendicular to be detected, this experiment shows 

that it would be difficult to locate sub-surface defects even if the sub-surface defect’s location 

and orientation were known prior to testing because the geometry of the part causes variability in 

the magnetic field direction. 

 

Figure 4-27. Summary of findings with the green arrows indicating that the actual magnetic field 

line matches the expected whereas the red arrows indicating that the actual magnetic field line 

does not match the expected 

Conclusions 

Understanding impact of process parameters and part characteristic on the effectiveness 

of wet MPI is important to drive process improvement. For the effect of geometry on the 

magnetic field strength, the results show that magnetic field strength decreases as the radius of 

the concave region increases. This finding is important to note because defects usually occur in 

concave or corner regions in casting. For the experiment on the impact of surface roughness, 

orientation, current type, and magnetic field strength, the results indicate that for surface-
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breaking and sub-surface defects, surface roughness and orientation were found to impact the 

level of difficulty in identifying the discontinuity. It was found that for surface-breaking defects, 

a crack in any orientation can be detected by magnetizing a part in two orientations. A surface-

breaking defect at 30 degrees orientation to the magnetic field line on a smoother surface (A1) 

can be detected whereas this defect might be missed on rougher surfaces. On the other hand, for 

sub-surface defects, only at a 90-degree orientation between the defect and the magnetic field 

lines can a majority of the discontinuities be identified. A sub-surface defect at 75 degrees 

orientation to the magnetic field lines on an A1 surface have a chance to be detected whereas this 

defect would be missed on rougher surfaces. For both surface-breaking and sub-surface defects, 

rougher surfaces make it harder to identify discontinuities.  

A major advantage of metal casting is its’ ability to produce complex geometry. 

However, geometry impacts the magnetic field direction. Because orientation between the defect 

and the magnetic field lines is shown to be a significant factor in defect identification, the effect 

of geometry on the magnetic field direction was investigated. The results show that sub-surface 

defects can most likely only be identified on parts containing flat geometry and flush contact 

points. Additionally, the location and orientation of the sub-surface defect need to be known 

prior to testing to be able to detect the indication. This is important for sub-surface defects 

because the orientation between the defect and the magnetic field lines need to be exactly 

perpendicular to be detected. Overall, this means that subsurface defects cannot be effectively 

identified in castings because of their complex geometry. 
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Flat geometry with irregular contact points 
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Flat geometry with flush contact points 
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Curved geometry with irregular contact points 

Horizontal setup 

 

Vertical setup 
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Curved geometry with regular contact points 

Horizontal setup 
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Vertical setup 
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Abstract 

In the steel casting industry, magnetic particle inspection (MPI) is a common 

nondestructive testing method used to detect cracks that are normally invisible to the naked eye. 

This is achieved by creating a cluster of magnetic particles at the crack openings which allows 

the cracks to be detected via visual inspection. However, the reliability of visual inspection has 

been shown in past studies to be poor with a high escape rate of around 70%. To reduce the 

escape rate, an automated crack detection method was proposed in this paper. The proposed 

method uses an entropy-driven grid labeling approach to optimize the tradeoff between time and 

accuracy of the annotations. The deep learning model used was Faster R-CNN with a ResNet-

101 backbone for training and feature extraction. Faster R-CNN was a viable baseline model that 

could handle the various environmental conditions present in wet MPI images with an escape 

rate of 13% and an overkill rate of 38%. The deep learning model reduced the escape rate of 

defects by 57% when compared to the current human inspection method. Additionally, the 

implementation strategy for this model is not to fully replace human visual inspection in MPI, 

but to serve as an aid to the human operator. Using this hybrid approach, the advantages of each 



79 

 

agent can be leveraged. The automated vision system can provide stable predictions of defects 

whereas the human operator might perform better when it comes to discerning if a crack is 

acceptable or unacceptable. Overall, this study demonstrates the potential improvement in crack 

detection through the use of artificially intelligent vision systems for MPI in steel castings. 

Introduction 

Nondestructive testing (NDT) is necessary to ensure the reliable performance of the steel 

casting [1]. Wet MPI is an NDT method that is commonly used in the steel casting industry to 

detect discontinuities during the manufacturing process and to prevent failure in the field [2]. 

Prior to running any tests, bench preparation is required for getting good test results. With wet 

MPI, a suspension of magnetic particles in carrier fluid will be attracted to the area of the defect 

and will make the discontinuity light up. This suspension sits in the reservoir of the bench and is 

sent through a tube to spray liquid on the part during the test. The level of particles in the liquid 

is important to keep consistent so the results are accurate, reliable, and repeatable between 

different tests. Once bench preparation is completed, wet MPI can be performed. The optimal 

process parameters need to be used to increase the chances of locating defects. Visual inspection 

is then performed to locate the defects that become visible after wet MPI is performed. Lastly, 

the part is demagnetized and if there are any defects found, a combination of welding and 

grinding operations are then performed [3].  

Inspection errors can stem from a variety of factors but generally come from task, 

environmental, individual, organizational, and social factors [4]. More specifically, the 

variability in visual inspection in wet MPI can be traced to the human operator’s level of 

qualifications, vision acuity, and fatigue level [5]. Based on past research, most inspection tasks 

have around a 20% to 30% error rate [6]. However, visual inspection in wet MPI has a higher 

complexity level compared to regular visual inspection. For one, it is not a typical accept or 
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reject inspection task rather each defect needs to be identified and repaired [7]. Additionally, the 

visual inspection takes place in a dark room where the part is illuminated under ultraviolet (UV) 

light. The amount of visible light or UV light present can impact the inspector's ability to locate 

defects. Another factor contributing to inspector variability as a result of the lighting setup in wet 

MPI is the inspector’s visual acuity and dark adaptation. Because the inspection takes place in a 

dark room, the eyes typically take 20 to 30 minutes to adapt to the darkness; however, this 

process will vary depending on one’s eye health [8], [9]. Since many factors contribute to the 

variability in the visual inspection process in wet MPI [10], past researchers have conducted an 

empirical study to evaluate the measurement error in wet MPI and found that it equates to an 

escape rate of around 70% as mentioned in Chapter 3.  

The current escape rate of 70% is alarming because defects that are not identified could 

result in the part failing in the field. Although the quality of inspection can typically be improved 

through training, inspection procedure, and equipment [11], it is time-consuming, expensive, and 

difficult to scale across all foundries. To overcome this problem, automated inspection 

techniques are a more appropriate solution. The goal however is not to fully replace the human 

operator but to assist the human operator with defect detection.  

Computer vision systems for defect detection have become a vital need in many 

manufacturing applications. Object detection in images can be done through various traditional 

techniques such as 1) blob analysis, 2) contour processing, 3) matching, 4) color processing, 5) 

texture analysis, and 6) classification. Classification is used for object detections through 

methods such as gaussian models, neural networks, or support vector machines. In classification, 

objects are assigned to a specific set of classes defined by special attributes such as color or 

shape. These features have to be learned by training the model based on a set of known objects. 
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Once the model is trained, the classifier is able to compare the features of objects in a new image 

to the features of the trained classes and returns the class with the highest score. This method is 

commonly used in situations where objects have resemblances but there are multiple variations 

such as lighting, shape, orientation, or color. For an object with a defined shape, shape-based 

matching is typically used, however, with objects where shapes are similar, but the similarities 

are not distinct, classification would be a better fit. Classification could be applied to several 

applications such as 1) image segmentation, 2) object recognition, 3) quality control, 4) novelty 

detection or 5) optical character recognition. Although traditional classification approaches have 

been widely used to solve various applications, the use of deep learning is known to have better 

accuracy and flexibility [12]. 

The advantages of deep learning are its adaptability and robustness to variations in the 

images for similar objects. Convolutional Neural Networks (CNNs) represent a class of deep 

learning neural networks and have been the gold standard for image classification since 2012. 

CNNs are the commonly used artificial neural network when predicting on image data because it 

performs well on feature extraction and preserves the spatial information of the image. There are 

several challenges with this approach, for example, if the image was taken at different depths, 

angles, or with different aspect ratios, this would lead to the need for a larger number of images 

to train a model to account for all the different spatial locations and distortions of the object in 

the images. This would result in the need for high computational power. Hence, other variants of 

CNNs have been developed to reduce the computational power needed to successfully train these 

models.  

Recent work in object detection in manufacturing applications show the potential for 

deep learning approaches to be adopted more widely. However, research to combine artificially 
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intelligent solutions and MPI in steel castings is relatively untouched. Tout et. al. developed a 

model called ClassNet which uses CNN with a modified ResNet-34 architecture catered to 

maximize performance based on the characteristics of the MPI dataset. Precision and recall were 

used to evaluate the performance of the model. Precision is the number of true positives divided 

by the total number of predictions while recall is the number of true positives divided by the total 

number of ground truths. ClassNet was able to achieve a precision of 82.11% and a recall of 

80.7%. However, ClassNet was only trained for MPI inspection of crankshafts where 130 images 

were gathered across 4 crankshafts [13]. This model will likely not perform well for the steel 

casting industry since most foundries produce a wide variety of parts with a large array of 

different geometries. Additionally, there is no publicly available dataset for MPI images mainly 

due to privacy restrictions.  

Given the need for a system that can be applied to a larger variety of parts in the steel 

casting industry, this paper proposed a novel approach to reduce the escape rates of defects. Due 

to the lack of publicly available MPI images, the authors of this paper visited nine different steel 

foundries and gathered 300 images. An additional 10 images came from publicly available 

images on the internet. The challenges faced in developing a publicly available dataset will be 

highlighted in the Conclusions section. This paper proposes an entropy-driven grid labeling 

approach using the Faster R-CNN framework with a ResNet-101-FPN backbone. The goal of 

this method is to reduce escape and overkill rates of defects in wet MPI of steel casting and to 

demonstrate the benefits of a computer-assisted inspection approach in wet MPI. 

Methods 

In this section, the novel annotation approach of the object will be highlighted and 

discussed. The proposed method uses entropy-driven grid-style bounding box annotations. 

Compared to the standard box-level annotations, annotating with smaller grids reduces the 
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amount of background labeled as a crack and is less labor-intensive and time-consuming than 

pixel-level annotations. The specific grid size for each image is determined by maximizing 

Shannon’s entropy. This allows for optimal grid sizes to be used based on the defect size in each 

image. This is important because grid sizes that are too small will have a negative impact on the 

model’s performance since the characteristics of the crack are lost while grid sizes that are too 

large will incorrectly label large areas of the background as defect. Grid-style labeling is an 

effective method for cracks specifically because the crack can be segmented without losing the 

context of the object. 

Grid-style labeling 

Grids have been used extensively in past research to classify pavement cracks. The 

typical process involves processing images into grids of different scales i.e. 10 by 10 pixels, 20 

by 20 pixels, etc. and cropping each grid out to be fed into the neural network as either 

containing the crack or background [14], [15], [16], [17]. For pavement cracks, this approach 

makes sense since cracks are occurring on a flat surface which reduces the need for spatial 

context. However, castings are known for their complex geometry and the geometry impacts 

where cracks tend to show up in a part. For example, sharp corners are more prone to developing 

cracks when undergoing heat treatment. To preserve the spatial context of the image, this study 

chose not to crop the images into small patches using grids but rather use the grids to do patch-

level segmentation. This means that a high-resolution image (1024 by 1024 pixels) is fed into the 

model but instead of using a single bounding box to represent each crack, the box-level 

annotation is split up into multiple smaller bounding boxes. Figure 5-1 illustrates the difference 

in the areas of the images labeled as ground truth in the traditional method using a single 

bounding box per crack method versus the proposed grid-style labeling approach. 
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Figure 5-1. Left: One bounding box per crack; Right: Grid style labeling (25 by 25 pixels) 

The advantages of using this approach specifically for identifying cracks in wet MPI, are 

that the spatial information is preserved, and it reduces the amount of background regions 

labeled as crack. Using the grid style labeling approach, one important factor that needs to be 

considered is the grid size. If the grid size is too large, the accuracy will suffer because of the 

increase in the background region being labeled as crack. If the grid size is too small, the features 

of what makes a crack identifiable will be lost. Additionally, the grid size selection impacts 

labeling time. Smaller grid sizes will result in longer annotation times. Therefore, it is critical to 

select an appropriate grid size for each image. This study experimented with 3 different grid 

sizes 10 by 10 pixels, 25 by 25 pixels, and 50 by 50 pixels. To further improve the accuracy of 

the labeling aspect, a dynamic approach to determining grid size was also tested. The idea here is 

that each crack may have different characteristics, i.e., size, shape, etc. which means that there 

exists a different optimal grid size based on the crack characteristics. To account for the various 

characteristics of cracks, this study used Shannon’s entropy as an objective approach to 

determine the grid size for each image dynamically which will be discussed in more detail in the 

next sub-section. 

Shannon’s entropy 

Entropy is used to measure the level of uncertainty of an information source [18]. On a 

high level, an image that contains all black pixels will have a low entropy compared to an image 

with varying levels of intensities. The formula for Shannon’s entropy is as defined in Equation 1, 
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Equation 1. Shannon’s entropy [19] 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ P(x𝑖) ∗ log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

where P(x𝑖) is the fraction of objects in the i-th case and n being the total number of elements. 

More specifically, Shannon’s entropy measures the variability of elements within the set. To 

provide an intuitive example, Figure 5-2 illustrates the graphs of two different images. Based on 

the shape of the distributions, the graph on the right which has a more compact distribution with 

a peak intensity of 127 on the grayscale will have lower entropy compared to the graph on the 

left.  

   

Figure 5-2. Two graphs represent the grayscale intensities of two different images. The graph on 

the right is more compact which means it will have a lower Shannon's entropy compared to the 

image on the left.     

This measure to represent information in an image was leveraged for our application. To 

provide a visual interpretation of Shannon’s entropy in wet MPI images, the authors mapped an 

example of the distribution of Shannon’s entropy by overlaying a color-coded grid based on the 

percentile range of the entropy’s value as shown in Figure 5-3. Red represents the 0 to 50th 

percentile range, orange represents the 50th to 75th percentile range, blue represents the 75th to 

90th percentile range, and white represents the 90th to 100th percentile range. Overall, it can be 

observed that the regions with black pixels in the four corners of the image generally have the 
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lowest entropy. Additionally, the corner regions or cracks where intensities tend to vary have a 

higher entropy value. 

 

Figure 5-3. MPI image color-coded to represent various percentile ranges for Shannon's entropy 

for a grid size of 25 pixels 

Although it is possible to compute Shannon’s entropy for multiple grid sizes for the 

whole image, it is computationally expensive and would require additional processing steps to 

filter out the regions containing the crack. Therefore, this study proposes a simpler and faster 

approach to incorporate Shannon’s entropy as a method for dynamic grid size selection. Figure 

5-4 shows the proposed process:  

1. The deep learning model is leveraged to provide the proposed region containing 

the crack 

2. The entropy of multiple grid sizes is applied to this region (grid size 10 to 50 in 

steps of 5) 

3. The entropy is plotted against grid size  

4. The optimal grid size is selected based on maximizing entropy 

5. The grid containing the crack is automatically labeled based on the trained model 

6. The user can refine the grid selection if any mistakes were made by the model 

7. Repeat steps 1 to 6 until all images are labeled 
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Figure 5-4. Process flow for dynamic selection of grid size using Shannon's entropy 

The quantifiable benefits on the model’s performance will be highlighted in the 

Experiments and Results section. 

Experiments and Results 

 This section presents the dataset used in the experiments, the evaluation metrics, the 

hyper-parameters, and the model’s performance. All experiments were conducted using 

Tensorflow [20] on an NVIDIA RTX 5000 GPU under a Windows 10 64-bit system. This study 

used Faster R-CNN with a ResNet-101 backbone which was fined tuned from a pre-trained 

model on Microsoft COCO data set [21]. The Faster R-CNN is made up of two different 

modules which are a region proposal network (RPN) and a Fast R-CNN detector [22]. The RPN 

network provides localization of the cracks to the Fast R-CNN detector which then extracts the 

features and classifies the objects [23]. Additionally, YouOnlyLookOnce (YOLO) v3 with a 

Darknet-53 backbone was also tested to provide a comparison in performance between a two-

stage method and a one-stage method. The Faster R-CNN model performed better than YOLO 

and was further optimized using entropy-driven grid-style labeling and data augmentation to 

improve the performance of the model. 



88 

 

Dataset 

A dataset of 310 images that were used in this study were mainly gathered by visiting 

nine different steel foundries. Each foundry ran wet MPI on a variety of parts, which resulted in 

a diverse set of images. Additionally, each foundry had a different workspace leading to 

variation in lighting and background in the images acquired. For example, some foundries 

performed wet MPI in a dark room while others used blackout curtains to reduce ambient light in 

the test area. The differences in the lighting condition resulted in varying intensities of green in 

the image. The variation present in the images captured across the different foundries is 

illustrated in Figure 5-5. 

     
 

     

Figure 5-5. These images show the high variability in part geometry, illumination, crack 

characteristics, and image quality 

Evaluation metric 

Mean Average Precision (mAP) is one of the metrics most commonly used by CNN-

based classifiers to evaluate a model’s performance [24]. However, for manufacturing 

applications, the measurement error is typically quantified by calculating escape and overkill 
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rates. Hence, this paper used escape and overkill rates to evaluate the model. Overkill or type I 

error is when an area that does not have a defect is marked as having a defect. Escape or type II 

error is when an area containing a defect is not identified. Overkill and escape errors lead to 

increased costs and lower quality of parts. 

Training details 

Before evaluating grid-style labeling, this study compared the state-of-the-art one-stage 

approach, YOLO, against a two-stage approach, Faster R-CNN. One-stage approach models 

such as YOLO are known for their speed, which makes this the go-to method for applications 

that require real-time object detection [25]. However, one drawback of this method is the model 

tends to be less precise and has poorer performance on smaller objects due to the lower 

resolution output feature map [26], [27]. Two-stage methods such as Faster R-CNN tend to 

require more computational load but output more accurate predictions [23], [28]. This study 

evaluated the two models and found that the Faster R-CNN model performed better than the 

YOLO v3 model with 14% less escape and 8% less overkill. Hence, the authors used the Faster 

R-CNN model to be evaluated further in this study. The proposed method used Faster R-CNN 

model that was trained on the MS COCO dataset [29] as a starting point and fine-tuned the 

output layer of the model based on images of cracks from wet MPI. The dataset was split with 80 

percent of the images used for training the model, 10 percent as validation to tune the model’s 

hyper parameters, and the remaining 10 percent was used as the test set. Stochastic gradient 

descent (SGD) optimizer with a learning rate of 0.001 and momentum of 0.5 was used. The 

learning rate was set to gradually decay to 0.0001 during training. A mini batch size of 16 was 

used in this model and the number of epochs used to train the model was 15. 
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Design of experiments 

As a baseline, the model was trained using ground truths that were annotated by the 

traditional method of using one bounding box per crack as shown in the left image of Figure 5-6. 

Subsequently, smaller bounding boxes were used which reduced the amount of background in 

the image labeled as crack as shown in the middle image of Figure 5-6. However, two clicks 

were required to create each bounding box, which was time-consuming. Additionally, the 

bounding boxes that were created using the traditional methods were irregular, making it hard to 

compare the impact of bounding box size on the model’s performance. Hence, grid-style labeling 

was introduced to reduce the labeling time and as an easy way to control the size of bounding 

boxes (see right image of Figure 5-6). 

     

Figure 5-6. Left: One bounding box per crack; Middle: Smaller bounding boxes; Right: Grid 

style labeling (25 by 25 pixels) 

With the grid style labeling method, three different sizes were tested, 10 by 10 pixel, 25 

by 25 pixel, and 50 by 50 pixel. The size used was denoted by GSL (10), GSL (25), and GSL 

(50) where GSL stands for grid-style labeling and the number in the parenthesis represented the 

grid size used. The results showed that a grid size of 25 by 25 pixels performed the best when 

compared to using a single bounding box per crack, smaller bounding boxes, GSL (10), and GSL 

(50). Data augmentation was used to increase the sample size in the training and test datasets.  

Using GSL (25), the training dataset was doubled by randomly applying two of the seven 

types of augmenters to each image in the training set (see Figure 5-7). With this approach, the 

overkill rate saw an incremental improvement of around 8% whereas no significant improvement 
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in the escape rate was observed. Tripling the training dataset with a similar approach resulted in 

poorer performance in both the overkill and escape rates which means that model is overfitting to 

the training data. Hence, the approach of doubling the training dataset by randomly applying two 

of the seven types of augmenters to each image in the training set was used (see Figure 5-8).  

 

Figure 5-7. Type of augmenters applied 

 

Figure 5-8. Data augmentation on the training set 

Data augmentation was also applied to the test set to increase the probability of detecting 

the cracks in the image. After testing various combinations of augmenters, the approach that 
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produced the best results was creating 8 augmented images of each image in the test set and 

running the prediction on the original and augmented images. The final prediction is a 

combination of the predictions from the 9 images, which are then overlaid on the original image 

(see Figure 5-9). The 8 augmented images were a result of using the following augmenters 1) flip 

horizontal, 2) flip vertical, 3) rotate, 4) scale down, 5) scale up, 6) reduce the intensity, 7) 

increase intensity, and 8) gaussian blur. By adding augmentation in the training set and test set, 

the escape rate was reduced to 15%, however, the overkill increased to 28%. The results make 

intuitive sense because augmenting the test set provides more opportunity for the model to find 

the cracks but also increases the chances of the model predicting a false positive. Since the 

proposed implementation strategy is a hybrid approach with the predictions of the model being 

validated by a human, the more important metric was the escape rate since a missed defect could 

result in the part failing in the field and any overkill predictions can be later dismissed by the 

human operator. 

 

Figure 5-9. Data augmentation on the test set 

The data augmentation strategy for the training and test dataset was then paired with an 

entropy-driven grid labeling approach (see Chapter 5 under Methods). By combining the 
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augmentation and entropy-driven labeling approach, the escape rate was reduced to 13%, 

however, the overkill increased to 32%. As previously mentioned, since the escape rate was 

considered the more important metric based on the implementation strategy, the entropy-driven 

labeling approach paired with the augmentation of the training and test set was found to perform 

the best. The optimized deep learning model has an escape rate of 13% which is better than the 

current human inspection method at 70% (See Figure 5-11). 

 

Figure 5-10. Bar graph of grid-style labeling experiments and data augmentation 

 

Figure 5-11. Deep learning model's performance versus human inspection 
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Proposed Implementation 

Software 

One major challenge observed in the process of gathering MPI images to train the model is 

the confidentiality agreement between the foundries and the buyers, which prevented the 

foundries from sharing images. This made it difficult to obtain the large quantities of images that 

are necessary to develop a good model. Although the current model can achieve an escape rate of 

13%, further improvements are possible with the availability of more training images. Taking the 

confidentiality issue into consideration, the proposed implementation strategy would be to 

provide the current model trained with images from the nine different foundries and to allow 

foundries to build on this dataset by adding their images to the training set and train the model 

locally. This would allow them to not only leverage the dataset that was collected through this 

research but also to further build upon and improve the model by including examples from their 

specific foundry. Using this approach, the escape and overkill rates can be improved while 

minimizing privacy concerns. 

The programming language used to make the software tool to label the image, train the 

model, and run predictions on images was Python. Familiarity with the language and ease of 

software implementation with Windows systems were the primary reasons for using this 

programming language. Additionally, Python has an extensive library for machine learning 

specific applications, which simplifies the development process and saves development time. 

Figure 5-12 shows the starting session of the Inspector Aid software tool with four buttons: label, 

train, evaluate model, and run live prediction. Element 1 in Figure 5-12 is the “Label” button 

where a graphical user interface (GUI) (see Figure 5-13) will appear as a new window that will 

allow the user to select a folder of images to label. Once a folder is selected, the images can be 

labeled in the GUI as shown in Figure 5-14, where each image will show up in the picture box 
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section. Elements 1 to 3 in Figure 5-14 allow the user to optimize the labeling accuracy, and 

Element 4 in Figure 5-14 allows the user to label the next image in the folder. The labeled 

images are then plotted in a new window in sets of four. Element 2 in Figure 5-12 is the “Train” 

button, where the labeled images will be used to train the model. Element 3 in Figure 5-12 is the 

“Evaluate Model” button where the trained model will be evaluated on the test set and the escape 

and overkill rate will be calculated. Lastly, Element 4 in Figure 5-12 is the “Run Live 

Prediction” button, which will allow the user to perform live prediction with a camera system 

based on the latest trained model. 

 

Figure 5-12. A standard Inspector Aid software tool session is shown, with each element of the 

user interface labeled 

 

Figure 5-13. The new session is shown, where the user can select the folder of images that they 

want to label using the grid-style method 
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Figure 5-14. Once the folder is selected, each image is loaded to the picture box to be labeled 

 

Figure 5-15. The plot of the labeled images in sets of four 

Hardware 

The specific equipment used in this research are as follows: 1) horizontal stationary 

magnetic particle machine (MD3-2060, Magnaflux®, Illinois), 2) Bench to ultraviolet (UV) light 
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mount (623365, Magnaflux®, Illinois), 3) UV light (C4 Magnum-GO, Rel®, Michigan), 4) 

Industrial Camera (Ace2 a2A1920-160uc, Basler®, Germany), and 5) 6mm f/1.8 Lens (C125-

0618-5M, Basler®, Germany). The labeled setup is shown in Figure 5-16. The necessary fixtures 

to integrate the lighting and camera that were not available off the shelf were designed and 3D 

printed by the author to complete the hardware setup.  

 

Figure 5-16. Live prediction hardware setup 

Conclusions 

The visual inspection step in the wet MPI process is crucial to ensure defects are 

identified and fixed prior to parts being used in the field. The findings in Chapter 3 have shown 

that the variability in the visual inspection process of wet MPI resulted in about a 70% defect 

escape rate. Because of the poor performance of human visual inspection, an alternative method 

to aid the visual inspection process was developed. The proposed method used deep learning to 

predict cracks in wet MPI based on images trained from a wide variety of parts across nine 
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different foundries. This resulted in an escape rate of 13% and an overkill rate of 32%. The 

results show a major improvement from the 70% escape rate of the current human visual 

inspection. Additionally, the hardware needed to enable real-time prediction at foundries is 

relatively inexpensive and simple to set up. Using the proposed software implementation in this 

paper, foundries have the option to further improve the model by providing additional training 

images for specific parts tested at their foundry to improve the model on their local system, 

eliminating confidentiality concerns.  

Future research could involve testing different hardware integration technologies, e.g. 

augmented reality (AR) glasses, projectors, mobile phones, or robotics to improve the 

effectiveness of the inspector aid. This is important in wet MPI specifically because the 

darkroom environment means that the human eye will need some time to fully adapt to the 

changing light conditions. Creating a system that takes this into account will improve the 

effectiveness of the inspection. Additionally, further improvements to the accuracy of the model 

could be explored and benchmarked against the baseline model created in this study to further 

improve the performance of the artificially intelligent solution for wet MPI testing. Overall, this 

paper shows significant gains in reducing the escape rate of defects which supports the need for 

more research in the creation and implementation of a vision system in wet MPI. 
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CHAPTER 6.    GENERAL CONCLUSION 

Summary 

The goal of this research was to improve the quality of steel castings through identifying 

measurement error in the wet magnetic particle inspection (MPI) process and developing 

solutions to improve the precision of the test method. Since there were no recent data evaluating 

the variability in wet MPI for steel foundries, the first step taken in this research was to conduct a 

percent match gauge repeatability and reproducibility (R&R) study. The gauge R&R study was 

conducted across four steel foundries where the average percent match repeatability and 

reproducibility were found to be 27% and 29%, respectively. The poor precision of the gauge 

R&R study further solidified the need for this research.  

Several factors were identified that could lead to poor gauge R&R results. In Chapter 4, the 

effect of geometry on the magnetic field strength was first investigated. One advantage of metal 

castings is the ability to produce complex geometries. However, geometry is known to influence 

the magnetic field strength. Having adequate magnetic field strength in each region of the part is 

important to be able to attract sufficient magnetic particles to the area of the defect to illuminate 

the defect. To understand the impact of geometry on the magnetic field strength, flat and curved 

geometries were evaluated using a gauss meter. This study showed that concave regions tend to 

have lower magnetic field strength compared to flat and convex geometries. This is a concern 

because defects typically show up in concave regions. To increase the probability of locating 

defects in concave regions, a gauss meter should be used to ensure sufficient magnetic field 

strength is present in the concave regions and not just rely on the quantitative quality indicators 

(QQIs) that are placed on flat regions.  
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Additionally, Chapter 4 investigated the impact of surface roughness, orientation, current 

type, and magnetic field strength on the visibility of the defect. The noise area percentage (NAP) 

method was used to quantify level of difficulty in visually identifying a defect. The NAP method 

compares the green intensity of the defect with its surrounding area. Higher NAP values equate 

to higher difficulty in identifying a defect because the NAP values represent the percentage of 

pixels in the surrounding area that are brighter than the defect. Overall, the surface roughness 

and the orientation between the defect and magnetic field lines were the two factors that had a 

significant impact on the visibility of the defect for both surface-breaking and sub-surface 

defects. 

Geometry is known to impact the direction of the magnetic field lines. Since the 

orientation between the defect and the magnetic field lines was found to be an important factor, 

further investigation into the effect of various geometries on the magnetic field direction was 

conducted. Four setups were tested: 1) flat geometry with flush contact points, 2) curved 

geometry with flush contact points 3) flat geometry with irregular contact points, and 4) curved 

geometry with irregular contact points. The results show that only for the flat geometry with 

flush contact points was the actual magnetic field direction the same as the expected magnetic 

field direction. This is important because if an operator is looking for a specific defect in an area, 

the magnetic field direction induced may not be the same as what the operator expects, which 

may lead to missed defects. 

The current human visual inspection has an escape rate of around 70%. The poor 

performance of manual visual inspection indicates a need for an artificially intelligent vision 

system to aid the human inspector to find defects more reliably. Hence, in Chapter 5 an inspector 

aid was developed using deep learning to help the human inspector by providing predictions of 
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possible defects. A method for labeling using an entropy-driven grid-style labeling approach was 

used to optimize the accuracy and speed of the annotations. Additionally, data augmentation was 

used to increase the size of training and test images, further improving the model. Overall, the 

deep learning model was able to achieve an escape rate of 13% which is 57% better than the 

current manual visual inspection. An industrial camera, ultraviolet (UV) light, and mounts were 

integrated to complete the inspector aid system. The optics were optimized to work for the 

majority of casting sizes used on the wet horizontal benches in steel foundries. 

Recommendation and Future Research 

The criteria for defect detection for a specific part is typically agreed upon by the buyer and 

foundry. For example, any cracks larger 0.25 inch could be deemed unacceptable. However, the 

buyer and foundry should consider the minimum detectable defect size for the wet magnetic 

particle inspection (MPI) process when determining the criteria. Generally, the criteria for defect 

detection in metal castings is set by the criticality of the parts for safety and past experience with 

the part. There is less emphasis on identifying the smallest defect size that can be reliably located 

when the setting defect detection criteria in steel castings. In aerospace applications, the 

capability of the wet MPI method undergoes more scrutiny. A review article on the topic found 

twenty relevant articles summarizing the capability studies from 1960 to 2011 [1]. The review 

found that the smallest crack that the wet MPI process could reliably find for most 

implementations is 2.6 mm.  

However, most of the studies conducted were based on a machined rectangular sample. 

Based on the work in chapter 4, surface roughness and geometry are known to impact the 

visibility of the defects. Since the past work in determining the minimum crack size that can be 

reliably detected did not include surface roughness and geometry as a factor, more research 

should be done to determine a more appropriate value for steel castings. However, conducting 
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probability of detection (POD) studies is not a feasible solution as can be inferred by the quantity 

of review articles covering this topic with only twenty relevant articles over the span of 51 years. 

POD studies are time consuming and expensive. As an alternative, the approach used in chapter 

4 of this dissertation under the section “Impact of surface roughness, orientation, current type 

and magnetic field strength on the effectiveness of wet MPI” could be used to evaluate the 

capability of the wet MPI process given specific parameters. Research in this area will lead to 

increased awareness to set reasonable criteria for defect detection in wet MPI leading to a 

reduction in inspection time and improvements in quality control by identifying defects that the 

wet MPI process is capable of finding. 

Additional factors that could impact defect visibility should be considered. Factors such as 

the defect characteristics by varying the depth, width, length, and type of the defects (e.g., linear, 

non-linear, subsurface, etc.) will show up differently in the wet MPI process. Along with 

investigating new types of defects, the orientation between the defect and the magnetic field 

direction, surface roughness, magnetic field strength, current type, and magnetization type 

should be considered. The experimental design should be carefully considered to optimize the 

tradeoff between time and number of combinations tested. 

To further improve the capability of wet MPI, chapter 5 introduced an inspector aid which is 

an artificially intelligent solution to help the inspector identify defects. In chapter 5, the inspector 

aid developed was able to reduce the escape rate from 70% to 13%. However, the escape rate of 

13% is assuming the inspector aid was used without the intervention of the human operator. The 

proposed implementation of the inspector aid in the steel foundries would be verified by the 

human inspector. It can be expected that the escape rate would be less than 13% since the human 

inspector will have a chance to catch any defects missed by the deep learning model. To verify 
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the true escape rate with the collaboration between the model and human inspector, a stress test 

needs to be done by setting up the inspector aid at a steel foundry for a couple of weeks.  

To improve the performance of the inspector aid, the hardware setup can be further 

optimized. The setup proposed in Chapter 5 was optimized based on a fixed working distance 

because an existing off the shelf bench mount was used to fixture the lighting and optics. A 

custom fixture can be made to allow for more flexibility in the working distance which will 

allow for different sizes and positioning of parts to be captured. Additionally, one downside to 

the down-selected model, Faster R-CNN, is its slow prediction time. Because of this, the 

minimum requirement for the computational hardware would need to be set to ensure the 

solution is able to run in real-time. Further work into creating a lighter weight architecture with 

the same accuracy is also necessary to reduce the cost to setup this solution. Once, the inspector 

aid solution can be successfully deployed and scaled up to multiple foundries, the learnings from 

the implementation of the inspector aid in wet MPI can be transferred to dry MPI and florescent 

penetrant inspection (FPI).  


