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ABSTRACT

This dissertation is devoted to helping solve real-world plant breeding problems using

innovative data science. There have been lots of efforts in the area of plant breeding to improve

the quality of decisions made in such programs. While the use of new techniques has increased in

this area, there exist lots of limitations in these programs that tie to unavoidable uncertainties

that need to be taken into account for proper analysis. This work addresses a plant breeding

decision-making challenge that stems from having a very limited number of environments

observed for each plant breeding trial. We propose new methods that plant breeders can utilize

when analyzing the genotypes’ performance. Specifically, to capture the inherent uncertainty due

to the specific set of environments observed, we propose a bootstrapping approach to estimating

the distribution of rank and constructing confidence intervals around it. We also a new approach

to compare genotypes probabilistically and offer a new ranking method based on pairwise

probabilistic comparisons of genotypes. The methods are provided in an R package for analysis of

plant breeding experiments for all users. We believe plant breeding would benefit from the body

of this work as it tries to fill the gap in the analysis of multi-environment trails’ data.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Overview

The world’s population is dramatically increasing, and it will increase the food demand

substantially. Based to the Food and Agriculture Organization of the United Nations (FAO),

agriculture needs to produce almost 50 percent more than it did in 2012 as the population will

reach almost 10 billion in 2050 (FAO, 2017). Considering the limited natural resources, we need

to employ the growing technology in all aspects, from mechanical to AI, to address this challenge

and meet the food demand for such a population. We believe that using the new-born techniques

will lead to a higher quality food supply, both with respect to health and amount while keeping

the human footprint as small as possible on the environment.

Plant breeding programs are designed to select the experimental genotypes with the best

genetic properties which perform relatively consistently across potential environments (Happ

et al., 2021). Due to the inherent complexity of the decision-making in plant breeding programs,

each program might take multiple years from the initial stages to commercialization.

Commercialized genotypes are the ones that have been planted and outperformed the other

experimental genotypes with respect to some phenotypic traits, e.g., yield, in different stages over

multiple years.

Phenotypic traits such as the yield of genotypes depend heavily on the environmental

conditions they face. They are affected differently by environmental conditions, which is

commonly referred to as genotype by environment (G×E) interactions (Comstock and Moll,

1963). These genotype-by-environment interactions cause unavoidable uncertainties because each

genotype is only planted in a limited set of locations and it is hard to detect them with such

limited data. However, it is substantially important to account for these uncertainties as the G×E

effects’ contribution to different traits such as yield dramatically varies (Saltz et al., 2018) and
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affects the genotypes’ relative performance, i.e., their ranks. This makes the decision-making very

challenging for breeders as G×E may be the primary contributor to rank uncertainty. This

dissertation accounts for the uncertainty due to the limited set of planting locations to help

breeders have reliable advancement decisions.

A great deal of research has been into advancement decision-making from different

perspectives. In this regard, ranking is an essential component where selecting the best is of

interest. Some researches predict the experimental genotypes’ performance in unseen

environments and do the ranking based on their predicted phenotypic traits (e.g., yield). Some

rank them based on the information gained from their observed performance because they

consider the fact that prediction might not be reliable while it is not easy to predict the weather

and production conditions in advance. There are also studies that consider mixed models that

take into account stability measures. In this dissertation, we develop a new methodology to

capture and quantify the ranking uncertainty due to the G×E effect variability which is hard to

be detected with a limited number of locations in each plant breeding experiment. We propose

new tools to help breeders improve their decision-making.

1.2 Problem Statement

In a typical scenario, a commercial plant breeder may have thousands of experimental

genotypes (e.g., soybean varieties or corn hybrids) to consider each year; and must decide as to

which genotypes should be advanced and planted for at least one more year and stay in

contention for becoming commercial genotypes. Such decisions are made based on many

phenotypic properties and may, to a large extent, come down to ranking these genotypes based on

one or more phenotypic traits.

Experimental genotypes are frequently ranked according to mean phenotypic response, and

such a rank is then used as the basis of further decision-making, for example, to determine which

experimental genotypes (e.g., soybean varieties or corn hybrids) should be advanced within a

breeding program. However, this rank is problematic because while there often exists a large
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amount of data available, early in a breeding program, relatively few observations may be

available for each experimental variety to help breeders in decision making when determining if a

crop will be advanced to the next stage of testing (grown for another year).

Breeding programs have practical limitations and capacity deficiencies to plant several

thousands of genotypes in all potential locations. Therefore, it is not possible to make sure that

sufficient information is earned about each experimental genotype’s performance. This issue may

greatly impact the relative performance of an experimental genotype to other competing

genotypes, which impacts the ranking. The observed environments may result in one

experimental genotype appearing better than its true genetic potential, whereas another appears

worse, and it reverses their true relative performance. That is why rankings based on mean

phenotypic response (e.g., yield) do not account for the effect of uncertainty that stems from only

observing limited multi-environment trials (METs) for testing. Sometimes, it even becomes more

challenging as such decisions are usually made under tight time constraints as the turnaround

between harvesting and decision-making is very short.

There have been lots of methodologies in the literature that tries to address this issue by

estimating the performance of the genotypes in unseen locations and ranking them based on their

estimated values. We will show while they consider genetic-by-environment (G×E) interaction

effects, they fail to capture the uncertainty of rank due to the limited number of locations in trials.

This research is dedicated to ranking, which is an essential step in advancement

decision-making in real world where we face ranking under uncertainty. We develop a new

methodology to capture the overall ranking uncertainty and provide rank confidence intervals to

quantify the variability of rank. We also define a new ranking structure for experimental plant

genotypes that differs significantly from what is assumed in the existing literature.

1.3 Dissertation Structure

The studies in this dissertation account for the uncertainty due to the set of planting locations,

which are usually very limited, with the goal of providing valuable insights for plant breeders to
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make better advancement decisions. The dissertation thus aims to apply data science techniques

to fill the gap in capturing (G×E) interaction and improve the decision-making in plant breeding

by investigating new models and methods that can be applied as decision support tools.

In the first research topic presented in chapter 2, we address the uncertainty inherent in

making decisions based on a severely limited number of environments. In such trials, the relative

rank of each genotype in each environment can be estimated and used to make advancement

decisions. However, the uncertainty of the rank due to the the limited number of observed

environments is generally unknown and this uncertainty is typically large due to the magnitude of

the interactions (G×E effects) relative to the main effects that we are trying to discriminate. To

address this shortcoming, in this chapter we propose using bootstrap resampling to estimate the

probabilities of each rank and propose a procedure for converting those probabilities into a

confidence interval of ranks. We evaluate the empirical coverage of those confidence intervals

using simulated data, and present a case study that demonstrates its application and compares

the new method to one of the widely-used existing approaches. Ultimately, this research aims to

describe a new method for quantifying rank uncertainty that will assist plant breeders with

advancement decisions.

In chapter 3, we investigate a new method for comparing genotypes. Namely, we propose to

replace mean-based comparison with a probabilistic comparison that defines the best genotype as

the one that is more likely to be the best across its target planting environments, versus the

existing approach of defining the best genotype as the one that has the best mean. To estimate

these probabilities, we again use resampling of environments or a bootstrap approach. Another

similarity to chapter 2 is that the G×E effects are the key here, and we show that due to different

G×E effects the probabilistic comparison is sometimes different than a simple mean comparison.

We further evaluate the underlying reasons for these differences and show that the probabilistic

comparison accounts for the uncertainty caused by observing limited environments.

Chapter 4 describes how the methods from chapter 2 and 3 can be applied for decision

support in plant breeding. Specifically, we propose a ranking method based on the probabilistic
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comparison of chapter 3 and describe an R package that we have developed to implement the

ranking as well as the rank confidence intervals of chapter 2. As noted above, the probabilistic

comparison that is the basis of the new ranking method, accounts for G×E interactions in

addition to the mean performance. It needs to be mentioned that these interactions has been

widely recognized before, and we thus compare the new probabilistic ranking with two popular

ranking approaches that have been used with the same aim in plant breeding practice for decades.

Finally, the last section, chapter 5, briefly explains the conclusions that the research has

derived along with future work suggestions.

1.4 Summary of Contributions

The contribution of this dissertation centers on accounting for the uncertainty that stems

from the large and complex interactions between genotypes and environments, that is G×E

effects, which are difficult to quantify due to limited environments in each breeding experiment.

Even though in the context of agriculture, there is a great deal of statistical methods available to

aid decision making, such methods usually provide a point estimate of the phenotypic response,

such as yield, typically in combination with some other summary statistics aimed to capture

stability. These summary measures are then combined and used as the basis for ranking

experimental genotypes.

The main contributions of this thesis are three-fold and all revolve around the same central

theme:

1. A method for using resampling to quantify the uncertainty of rank in plant breeding

experiments is proposed and evaluated; and specifically a novel procedure that uses

resampling estimates of rank probability to construct approximate confidence intervals of

rank is developed.

2. In order to capture the full complexity of G×E interactions, a new approach is suggested for

comparisons of genotypes, namely to prefer the genotype that is more likely to perform

better across a set of environments. The relevant probabilities are again estimated using a
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resampling procedure, and the differences between the proposed probabilistic and the

standard means-based approaches are investigated and explained.

3. The methods proposed are implemented in an R package that can be used for decision

support by providing probabilistic rank and rank confidence intervals. The new ranking is

compared to existing approaches that have similar aims.

This dissertation thus provides novel insights into how plant breeding decisions should be

made and results in methods that can be applied to assist plant breeders with advancement

decisions.

1.5 References

Comstock, R. E. and Moll, R. H. (1963). Genotype x environment interactions. Symposium on
Statistical Genetics and Plant Breeding, pages 164–196.

FAO (2017). The future of food and agriculture – Trends and challenges. Rome.

Happ, M. M., Graef, G. L., Wang, H., Howard, R., Posadas, L., and Hyten, D. L. (2021).
Comparing a Mixed Model Approach to Traditional Stability Estimators for Mapping
Genotype by Environment Interactions and Yield Stability in Soybean [Glycine max (L.)
Merr.]. Frontiers in Plant Science, 12.

Saltz, J. B., Bell, A. M., Flint, J., Gomulkiewicz, R., Hughes, K. A., and Keagy, J. (2018). Why
does the magnitude of genotype-by-environment interaction vary? Ecol. Evol., 8(12):6342–6353.
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CHAPTER 2. QUANTIFYING UNCERTAINTY OF RANK IN PLANT

BREEDING EXPERIMENTS

Authors: Reyhaneh Bijari 1, Hanisha Vemireddy 1, and Sigurdur Olafsson 1

1 Department of Industrial and Manufacturing Systems Engineering, Iowa State University

2.1 Abstract

Plant breeders aim to select the experimental genotypes with the best genetic properties. In a

typical scenario, a commercial plant breeder may have thousands of experimental corn hybrids or

soybean varieties to consider each year; and must make a decision as to which hybrids or varieties

should be advanced and planted for at least one more year. This decision, may to a large extent,

come down to ranking these genotypes based on one or more phenotypic traits such as yield.

However, in most cases, the uncertainty of the ranking makes this decision challenging because it

is only possible to observe each experimental genotype in a relatively small number of

environments. This may greatly impact the performance relative to other competing genotypes,

which may significantly impact the ranking. The fundamental reason why this is true is that each

experimental genotype has significant genetics-by-environment interaction (G×E) that will vary

across the set of observed environments. Thus, the observed environments may result in one

experimental genotype appearing better than its true genetic potential, whereas another appears

worse, reversing the true relative performance. This paper proposes a new tool that plant

breeders can utilize when analyzing the genotypes’ performance. Specifically, to capture the

inherent uncertainty due to the specific set of environments observed, we propose a bootstrapping

approach to estimating the distribution of rank and constructing confidence intervals around it.

We show through synthetic data experiments, constructed to mimic real observations of soybean

yields, that the proposed approach is effective in the sense that the empirical coverage of the



8

confidence interval closely matches the theoretical coverage. These experiments demonstrate that

this approach can be reliably used when evaluating plant breeding data. We also present a case

study based on commercial soybean breeding data, demonstrating how these rank confidence

intervals may be useful in practice.

2.2 Introduction

Plant breeders are routinely faced with the issue of experimental genotypes evaluation. After

each growing season, experimental plant varieties (e.g., new soybean varieties or corn hybrids) are

compared based on their observed yields and other phenotypic traits. Those that perform the

best are advanced to the next year’s field experiments, with the ultimate goal is to select those

that have the potential to become commercial products. These decisions are usually made under

tight time constraints as the turnaround between harvesting and decision-making is very short.

Breeders are typically interested in understanding both genetic effects (e.g., select the

genotype with the highest yield) and genotype-by-environment (G×E) interactions to evaluate

the stability and adaptability of experimental genotypes (Happ et al., 2021). There is a great deal

of statistical methods available to aid in this analysis (Olivoto et al., 2019; Yang, 2007), with

additive main effects and multiplicative interaction (AMMI) and best linear unbiased prediction

(BLUP) being the most frequently used modeling approaches (Piepho, 1994; Piepho et al., 2008;

Gauch, 2013; van Eeuwijk et al., 2016). Such methods provide a point estimate of the phenotypic

response, such as yield, and while such can be used as the basis of ranking experimental

genotypes, there appears to be much less attention within the plant breeding literature on direct

estimates of rank and in particular, the uncertainty of rank. This paper aims to describe a new

method for quantifying rank uncertainty that will assist plant breeders with advancement

decisions. Specifically, we propose the use of bootstrapping to construct confidence intervals of

ranks.

Ranking is an essential component of numerous decision-making processes where selecting the

best is of interest, and there is, therefore a great deal of related literature in other application
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domains. Gol (1996) defined a model-based uncertainty measure to make comparisons with the

ranking concept in the education context. They suggested that rank intervals can be considered

as a better estimator of schools’ performances. There have been other methods that tried to

provide uncertainty measures for individual ranks but continue failing to provide any measures of

uncertainty of the overall ranking of populations (Aitkin and Longford, 1986; Laird and Louis,

1989).

Bootstrap sampling for confidence intervals has also been investigated before (DiCiccio and

Efron, 1996; Efron, 1987). Seol (2016) used bootstrapped CIs to detect Rasch model fit statistics’

misfitting under various simulation scenarios. It has received extensive attention in ranking as

well. Hall and Miller (2010) studied both the theoretical and the numerical properties of

bootstrap estimators of the data features’ distributions on rankings. Wright et al. (2011, 2014)

presented different uncertainty measures and proposed new uncertainty criteria to define

estimates of ranks, both parametric and nonparametric, based on bootstrapping data. They

introduced the concept of the most probable ranking and concluded that bootstrapping gives little

better results of all presented methods. Wright et al. (2019) suggested alternate visualizations to

overlapping/non-overlapping confidence intervals to improve the way of analyzing the rankings.

In the context of agriculture, there have been studies on ranking of phenotypic data. Simko

and Linacre (2010) addressed the issue of partial rankings in plant breeding using the Rasch

model and estimated final ranks. Simko et al. (2012) compared two methods of ranking, the rank

aggregation approach and the projected values approach. They found these rankings and the

integrated rating significantly correlated. A recent study introduced a mixed model for yield and

compared the ranking results with the results of traditional yield stability measurements used for

ranking (Happ et al., 2021). Literature has investigated bootstrapping for rank confidence

intervals. In fact, previous studies primarily analyzed bootstrap CIs for rank given independent

observations (DiCiccio and Efron, 1996; Efron, 1987). Such studies are therefore not directly

applicable to the case of plant breeding, where the underlying structure involves subsets of

observations with significant correlation among the observations within each subset. This is



10

important in practice because the success of bootstrapping methods depends heavily on the

underlying structure. In this paper, we show how the proposed approach works well for both real

and simulated plant breeding data and thus provides a useful method for plant breeders. While

literature has tried to estimate point estimates of quantitative phenotypes (e.g. yield) and rank

the genotypes based on their relative performance, in this paper, we try to fill the gap in the

literature and capture the uncertainty of ranking due to limited multi-environment trials (METs)

for testing.

2.3 Bootstrap Rank Confidence Interval Construction Methodology

2.3.1 Structure of Plant Breeding Experiments

When comparing different genotypes, breeders are interested in genotypes with the most

favorable genetic gain which their high performances are stable facing different environmental

conditions. Even though breeders tend to rank according to the main G effects, the

genetic-by-environment interaction (G×E) effects contribute to the uncertainty of rank. In fact,

they may be the primary contributor to the rank uncertainty. G×E effects are of interest with

respect to stability and adaptability. If all the observations were directly representative of this

genetic effect in the same manner, that is, they were simply observations of the genetic effect,

comparing genotypes would be relatively straightforward. However, each genotype is planted in a

fixed number of m environments, and for each of those environments, the genotype main effect is

constant, whereas the G×E interaction effect varies. The observations of each genotype are thus

highly correlated due to the main G effect, but yet drawn from different distributions, due to the

varying G×E effects. It is thus the G×E effects that complicate the comparison and ranking of

genotypes; as for the fixed planted locations, the average G×E effects may be very different for

any two genotypes. Furthermore, this suggests that to capture the uncertainty of the ranking, our

goal should be to capture the uncertainty due to only observing a limited number of

environments. The following section suggests a procedure that aims to achieve this goal.
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2.3.2 Bootstrapping to Capture Environment Sampling Variation

Let A denote a random subset of m0 environments out of a total of m environments

(m0 ⩽ m). We assume that each environment j has an equal chance of being selected (observed)

or P (j ∈ A) = m0
m , j = 1, 2, . . . ,m. For a fixed set A = a, we assume that the rank ri(a) of each

genotype can be calculated deterministically based on observations; that is, there is no uncertainty

associated with the observations in each environment, only the set of environments that are

observed. Neither of those assumptions is true in real plant breeding experiments, but we will

demonstrate numerically that under confidence intervals constructed still provide useful coverage.

Reflecting on the validity of the assumptions, we note that in real plant breeding experiments,

planting locations and years are not selected at random, as most observations will be from a small

number of years and locations may be planned, for example to evaluate each genotype in a variety

of environments. Similarly, there is always uncertainty associated with observations in each

environment, but we argue that due to the size of G×E effects relative to the main G effects, this

is relatively small relative to the uncertainty due to the set of selected environments. The effect of

deviations from both assumptions will be evaluated using simulated data in Section 2.4.

Let Ri denote the rank of genotype i in a random set A of m0 environments. This is a

random variable since the set of observed environments is random, but for a fixed A = a, its value

is given by ri(a). We are interested in estimating the parameter µi = E[Ri], namely the expected

rank of genotype i, i = 1, 2, . . . , n. By conditioning on the observed subset of m0 environments

and letting S denote the space of all possible subsets, we observe that

µi = E[Ri] =
∑

a∈S E[Ri|A = a] · P (A = a) = 1
|S|

∑
a∈S ri(a), where we have simply used the

assumption that each subset is equally likely. We can estimate the parameter of interest as

µ̂i = ri(A). We observe that this is an unbiased estimator:

E[µ̂i] = E[ri(A)] =
∑
a∈S

E[ri(A)|A = a] · P (A = a) =
1

|S|
·
∑
a∈S

ri(a) = µi. (2.1)

We have an estimate of the expected rank µi for each genotype i = 1, 2, . . . , n; but this

depends on the random set A of environments. Our main purpose in this paper is to capture the
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uncertainty the selection of observed environments has on the estimate of this parameter, namely

we are interested in making a statement regarding the distribution of µi. Specifically, we want to

construct an interval Ii such that P (µi ∈ Ii) ⩾ 1− α, which we can think of as an approximate

confidence interval.

Our approach uses bootstrap sampling to capture the variability in the set A of environments.

Given B bootstrap samples A1, A2, . . . , AB, instead of a single rank, we now have B ranks ri(Ab)

for each genotype and B estimates µ̂ib = ri(Ab) of the parameter of interest. These estimates

provide the basis for constructing a confidence interval for µi in addition to the point estimate.

The specific procedure we propose is described below.

Procedure Rank CI

Step 0: Generate B bootstrap samples A1, A2, . . . , AB of the set A of environments and

select a confidence level, α.

Step 1: Estimate an empirical probability distribution pi(r) = P (µi = r), i = 1, 2, . . . , n for

the expected rank of genotype i (the parameter of interest), based on the bootstrap samples as

the number of occurrences of that rank in the B bootstrap samples of locations. Specifically, first

calculate the rank ri(Ab) for each genotype i = 1, 2, . . . , n; and each bootstrap sample

b = 1, 2, . . . , B. Then define an indicator variable

χirb =

 1, if ri(Ab) = r

0, otherwise
(2.2)

i = 1, 2, . . . , n;r = 1, 2, . . . , n;b = 1, 2, . . . , B. Here χirb indicates if the rank of genotype i in

the bth bootstrap sample equals r or not. The estimate of the probability of having each rank is

the proportion of bootstrap samples where this rank is observed, namely

p̂i(r) =
1

B

B∑
b=1

χirb. (2.3)

Step 2: As the starting point of the confidence interval for the parameter µi, calculate the

most likely rank of this genotype i = 1, 2, . . . , n; namely the rank with the highest estimated

probability:
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rmax
i = argmaxr∈1, 2, ..., n p̂i(r) (2.4)

Set the initial upper and lower bounds of the confidence interval as this starting point

li = rmax
i (2.5)

ui = rmax
i . (2.6)

If p̂i(r
max
i ) ⩾ 1− α, then a confidence interval of the desired level has been constructed, stop

and return Ii = [li, ui] as the final confidence interval for the rank of genotype i. Otherwise,

continue to Step 3.

Step 3: Since
∑ui

r=li
p̂i(r) < 1− α, the confidence interval must be enlarged. Thus, extend

the interval by one rank position in each direction; that is, update the current upper and lower

bounds of the rank interval as follows:

li = min(li − 1, 1) (2.7)

ui = max(ui + 1, n) (2.8)

If
∑ui

r=li
p̂i(r) ⩾ 1− α, continue to Step 4. Otherwise repeat Step 3.

Step 4: Since the confidence intervals are extended both up and down simultaneously, the

interval may have been constructed unnecessarily large, so consider removing one position. If

p̂i(li) ⩾ p̂i(ui) and
∑ui−1

r=li
p̂i(r) ⩾ 1− α; that is, the confidence interval still has the desired

coverage after removing the upper bound position ui from the interval, then make this change

permanent:

ui = ui − 1.

If p̂i(li) < p̂i(ui) and
∑ui

r=li+1 p̂i(r) ⩾ 1− α that is, that is, the confidence interval still has the

desired coverage after removing the lower bound position li from the interval, then make this

change permanent:

li = li + 1. (2.9)
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Stop and return [li, ui] as the final confidence interval for the rank of genotype i.

Using this algorithm, first, we estimate the distribution of ranks for each genotype. We then

calculate the confidence interval of ranks from this distribution.

NOTES

1. Given the assumptions made, the approximate confidence interval constructed is

conservative, and sometimes we will systematically observe P (ri ∈ Ii) ≥ 1− α. In the

extreme case, if m0 = m, then the rank of each genotype can be inferred exactly from the

observed environments, p̂i(r
max
i ) = 1 and the procedure will construct intervals Ii = rmax

i ,

that is, terminate in Step 2 with P (ri ∈ Ii) = 1. Since all the probability will be assigned to

a single rank, the excess coverage will be α. Observing all, or even a large percentage of all

environments is unrealistic in practice; but in general, we expect this excess coverage to

increase as a function of the proportions of environments observed. Thus, under certain

conditions this excess coverage may be large. This will be demonstrated via simulated data

in Section 2.4 below.

2. On the other hand, if the assumptions do not hold true, the empirical coverage of the

interval may not be the predicted coverage; and it could be lower than predicted even if the

confidence interval is conservative. In particular, the following assumptions are made.

(a) First, the construction assumes no noise given a specific set of environments, namely

that ri(a) can be calculated given A = a. If the observations are noisy, the empirical

coverage may be smaller than predicted. The effect of noise on the coverage of the

confidence intervals will be evaluated via simulated data.

(b) Second, the construction assumes that each environment is equally likely to be

observed. This will never be true in practice, but the effect on the confidence interval

coverage is unclear and will also be evaluated via simulated data.
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2.4 Data

We argued above that the ability to obtain meaningful rankings of experimental genotypes is

essential to informed advancement decisions in plant breeding. Furthermore, we argued that a

meaningful ranking is not just limited to a single point estimate of ranks but also an evaluation of

rank uncertainty and confidence intervals for the ranks. In this section, we analyze data from a

commercial soybean breeding program and show how the proposed methods can provide valuable

insights into advancement decisions. Capturing rank uncertainty can assist the breeders in

individual advancement decisions as when they consider each genotype, they will have a

confidence interval of rank that provides insights into the possible ranks of the genotype relative

to others.

As noted above, our data comes from a commercial soybean breeding program. It contains a

combination of phenotypic information of soybean varieties, namely yield, and managerial data

such as planting date and harvesting date, with some field data such as location, latitude, and

longitude. The whole dataset contains information of approximately 313 thousand genotypes in

more than 700 locations and more than ten thousand experiments over ten years. The

experimental locations are scattered throughout the United States and Canada. To illustrate the

new methods proposed here, we focus on a small part of this data, namely a set of 38 experiments

that are relatively uniform and planted in 2017. This results in the analysis of 730 genotypes

(soybean varieties) over 166 test locations. A visualization of planting locations for all

experiments is given in Figure 2.1.



16

Figure 2.1: Planting locations for the experimental data.

2.5 Results

2.5.1 Correctness of Rank CIs

As noted in the introduction, bootstrapping procedures for rank confidence intervals are not

new, but the success of such procedures will depend on the underlying data and its application, as

well as the specifics of how the confidence intervals are constructed. The question is thus, how

well this procedure work for phenotype data obtained from multi-environment trials (METs) of

commercial crops? In other words, if we construct a 1− α% confidence interval according to our

procedure, will the empirical coverage be close to this predicted confidence level? To answer,

ideally, we would like to experiment on real data derived from actual METs, and we will do that

in the case study reported in the next section, but the drawback to using real data is that the

ground truth is unknown. That is, there is no way for us to know the true rank of the genotypes.
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To systematically evaluate the empirical rank of our confidence intervals, we simulate data

that mimics real data but has a known ground truth; that is, the correct rank is known. To

generate this data, we assume that the phenotype of interest is plant yield and assume the

following linear model involving genetic (gi), environmental (hj), and genetic-by-environment

interaction effects (bihj) (Becker and Léon, 1988; van Eeuwijk et al., 2016).

ỹij = µ+ gi + hj + bihj + ϵij . (2.10)

To simplify the presentation, we assume that the response of interest is yield minus the

environmental mean, eliminating the environmental effect from the above equation. The response

thus only has two components: the genetic effect (G) and the genetic-by-environment (G×E)

effects.

yij = ỹij − (µ+ hj) (2.11)

= gi + bihj + ϵij .

We take Eq.2.11 as our starting point; namely, we assume a linear model yij = gi + bihj + ϵij

for the normalized yield of the ith variety in the jth environment. We then assume a distribution

for gi ∼ FG, bi ∼ FGI , and hj ∼ FL, and assume that ϵij ∼ N(0, σ) follows a normal distribution

with zero mean.

For this study, distributions FG, FGI and FL are determined by comparing simulated data to

real yield data observed from a commercial soybean breeding program. Specifically, we attempt to

mimic early-stage soybean experiments. For each of these experiments, we have 38 experimental

varieties usually planted in a small number of locations within a single year in the Midwest, U.S.

The normalized yield of a representative sample of six such experiments is plotted in Figure 2.2.

Note that the yield is normalized by subtracting the environmental average. As expected, these

distributions do not look perfectly identical; still, based on these observations, we conclude that a

realistic simulated yield data would have a symmetric peak around zero with an approximate

range of [−25, 25]. We experiment with three shapes and distributions of finite range distributions

for both the genetic main effect (gi) and the G×E interaction effects, contributed from the
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environment (hj), namely a uniform distribution, a beta distribution, and a normal distribution,

along with three different shapes of G×E interaction effects, contributed from the genotype (bi)

following a beta distribution. In all cases, the sum of the two effects (G+G× E) provides a

reasonable fit to the empirical data. We also experiment with different ranges and shape

parameters for each of the distributions considered. For the distributions considered for the gi

term, the uniform distributions have ranges [−15, 15], [−20, 20] and [−30, 30], the normal

distributions have mean of zero and standard deviations of 15
3 ,

20
3 , and

30
3 , and the beta

distributions used have scale parameters of 15, 20 and 30, and shape parameters of 5, 15 and 25.

As the environmental effect is empirically twice as big as genetic main effect, we consider twice as

big as the aforementioned distributions for hj . The beta distributions considered for bi term are

beta(8, 4), beta(8, 8), and beta(4, 8).

Figure 2.2: Empirically observed distributions for the normalized yields of commercial soybean
experiments.
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Using the distributions described above, we simulated the observed yield for 200 locations.

The rank based on the average across these 200 locations is the ground truth rank. With the true

rank being known, we can then evaluate how well the empirical coverage of the rank CIs matches

with theoretical coverage. For example, if we construct rank CIs with α = 0.05, we expect that

those intervals include the ground truth rank 95% of the time, and for our procedure to work, we

should observe empirical coverage close to this value.

To evaluate the empirical coverage, we mimic a MET where in practice, we can only observe a

fraction of all possible locations. Specifically, we evaluate the empirical coverage for 10%, 50%,

and 90% of the locations being observed. We also vary the variance of the normally distributed

noise (ϵ = 1 versus ϵ = 15). These two parameters jointly determine the uncertainty, with more

uncertainty when a small percentage of locations is observed (say, 10%) and the noise is high at

each location (α = 15). Finally, we repeat the experiment using different confidence levels

(α = 0.05, 0.10, 0.20), and the results for each of confidence levels are presented in Table 2.1, 2.2,

and 2.3, respectively. Each empirical coverage number is based on ten replications for those

specific parameter settings.

Note that each row in Table 2.1 corresponds to a specific shape of the main G effect and the

G×E interaction effects but multiple parameters for those distributions for a fixed bi and

confidence level of α = 0.05. For example, for a row with a left-skewed genotype contribution to

the G×E effect (bi), and a uniform main G effect (gi), and a normal hj (environment contribution

to G×E effect), all three uniform ranges and all three standard deviation values of the normal

distributions are used, each replicated 10 times, so each number in the row is an average of 90

empirical coverage values.
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Table 2.1: Summary of Empirical Coverage at α = 0.05

Fraction of Environments Observed 10% 50% 90%

Noise (Std Dev of Normal) 1 15 1 15 1 15

Genotype Main

Effect (G)

Environment

Contribution to

Interaction Effect

(E in G×E)

Genotype

Contribution to

Interaction Effect

(G in G×E)

Empirical Coverage %

skewed beta skewed beta left skewed 93.72 87.04 98.89 92.98 99.97 94.13

skewed beta beta left skewed 92.33 84.91 98.65 91.90 99.97 93.79

skewed beta normal left skewed 91.88 85.07 98.64 92.24 99.98 93.75

skewed beta uniform left skewed 86.23 83.04 97.84 93.59 100.00 97.41

beta skewed beta left skewed 94.16 88.21 98.96 93.32 99.97 94.60

beta beta left skewed 93.01 86.68 98.74 92.91 99.98 94.19

beta normal left skewed 92.73 86.57 98.88 92.41 99.99 94.88

beta uniform left skewed 88.05 85.11 98.03 94.55 99.99 97.74

normal skewed beta left skewed 95.09 90.65 99.20 94.39 99.97 95.33

normal beta left skewed 94.55 89.95 99.05 94.66 99.97 95.51

normal normal left skewed 93.91 89.71 99.04 94.07 99.98 95.49

normal uniform left skewed 91.19 88.34 98.72 96.25 99.99 98.54

uniform skewed beta left skewed 95.97 91.91 99.41 95.25 99.99 96.17

uniform beta left skewed 94.89 91.50 99.30 95.19 100.00 96.17

uniform normal left skewed 94.64 91.26 99.33 95.18 99.99 96.75

uniform uniform left skewed 92.69 90.96 98.74 96.22 100.00 98.38

skewed beta skewed beta right skewed 94.84 87.18 98.78 92.49 99.75 93.44

skewed beta beta right skewed 93.80 85.12 98.60 91.42 99.78 92.58

skewed beta normal right skewed 93.66 84.96 98.70 91.36 99.90 92.43

skewed beta uniform right skewed 89.97 84.47 98.33 92.34 99.98 94.18

beta skewed beta right skewed 95.29 88.30 98.90 93.09 99.75 93.88

beta beta right skewed 94.48 86.72 98.78 92.12 99.83 93.40

beta normal right skewed 94.02 86.86 98.87 92.41 99.94 92.77

beta uniform right skewed 91.20 86.13 98.60 92.70 99.98 94.22

normal skewed beta right skewed 96.09 90.55 99.18 94.40 99.87 95.16

normal beta right skewed 95.76 90.18 99.17 94.14 99.91 94.69

normal normal right skewed 95.20 90.19 99.10 94.11 99.95 94.16

normal uniform right skewed 93.16 89.48 99.00 93.75 99.99 93.95

uniform skewed beta right skewed 97.13 91.92 99.39 95.00 99.83 95.74

uniform beta right skewed 96.44 91.42 99.50 94.50 99.90 95.89

uniform normal right skewed 96.17 91.51 99.39 94.92 99.96 95.96

uniform uniform right skewed 94.54 91.57 99.35 94.38 100.00 96.52

skewed beta skewed beta symmetric 94.21 87.08 98.85 92.72 99.93 93.72

skewed beta beta symmetric 93.18 84.85 98.72 91.61 99.95 93.39

skewed beta normal symmetric 92.82 84.91 98.74 91.60 99.96 93.26

skewed beta uniform symmetric 88.28 83.72 98.16 93.34 99.99 96.01

beta skewed beta symmetric 94.60 88.12 98.98 93.23 99.94 94.15

beta beta symmetric 93.73 86.57 98.83 92.49 99.96 93.83

beta normal symmetric 93.63 86.96 98.88 92.98 99.97 93.71

beta uniform symmetric 89.24 85.64 98.33 93.99 99.99 96.29

normal skewed beta symmetric 95.50 90.58 99.19 94.40 99.95 95.07

normal beta symmetric 95.09 90.15 99.18 94.08 99.95 95.16

normal normal symmetric 94.51 89.77 99.10 94.40 99.99 94.47

normal uniform symmetric 92.24 89.78 98.58 95.37 99.99 97.31

uniform skewed beta symmetric 96.49 92.02 99.46 95.29 99.93 95.98

uniform beta symmetric 95.85 91.75 99.35 94.89 99.97 96.10

uniform normal symmetric 95.57 91.32 99.44 95.35 99.99 95.23

uniform uniform symmetric 93.58 91.21 99.08 95.53 100.00 96.94
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Table 2.2: Summary of Empirical Coverage at α = 0.10

Fraction of Environments Observed 10% 50% 90%

Noise (Std Dev of Normal) 1 15 1 15 1 15

Genotype Main

Effect (G)

Environment

Contribution to

Interaction Effect

(E in G×E)

Genotype

Contribution to

Interaction Effect

(G in G×E)

Empirical Coverage %

skewed beta skewed beta left skewed 89.42 80.76 97.33 88.06 99.86 89.62

skewed beta beta left skewed 87.40 78.15 96.73 86.58 99.87 89.19

skewed beta normal left skewed 86.77 78.39 96.76 87.13 99.91 89.10

skewed beta uniform left skewed 79.51 76.03 95.07 88.68 99.95 94.71

beta skewed beta left skewed 90.08 82.14 97.51 88.55 99.87 90.33

beta beta left skewed 88.33 80.37 97.01 87.87 99.89 89.96

beta normal left skewed 87.97 80.25 97.18 87.33 99.91 90.80

beta uniform left skewed 81.86 78.55 95.58 90.17 99.95 94.98

normal skewed beta left skewed 91.51 85.14 98.03 90.12 99.89 91.53

normal beta left skewed 90.63 84.38 97.67 90.47 99.88 92.01

normal normal left skewed 89.66 84.17 97.61 89.74 99.92 92.07

normal uniform left skewed 85.73 82.05 96.66 92.70 99.97 96.54

uniform skewed beta left skewed 92.96 86.93 98.52 91.52 99.91 92.89

uniform beta left skewed 91.19 86.35 98.26 91.34 99.92 92.76

uniform normal left skewed 90.83 86.08 98.33 91.41 99.94 93.51

uniform uniform left skewed 87.71 85.46 97.04 92.61 99.95 96.35

skewed beta skewed beta right skewed 91.18 80.94 97.28 87.36 99.33 88.78

skewed beta beta right skewed 89.61 78.52 96.90 85.98 99.39 87.57

skewed beta normal right skewed 89.38 78.30 97.00 85.95 99.62 87.34

skewed beta uniform right skewed 84.21 77.61 96.18 87.09 99.90 89.74

beta skewed beta right skewed 91.90 82.29 97.56 88.24 99.36 89.49

beta beta right skewed 90.56 80.39 97.23 86.88 99.51 88.66

beta normal right skewed 90.00 80.54 97.31 87.19 99.77 87.69

beta uniform right skewed 85.73 79.69 96.71 87.57 99.91 89.62

normal skewed beta right skewed 93.19 85.00 98.16 90.11 99.59 91.28

normal beta right skewed 92.62 84.72 98.02 89.85 99.66 90.68

normal normal right skewed 91.87 84.59 97.97 89.92 99.85 89.91

normal uniform right skewed 88.64 83.73 97.50 89.31 99.96 89.33

uniform skewed beta right skewed 94.76 86.95 98.66 91.14 99.58 92.27

uniform beta right skewed 93.66 86.28 98.66 90.49 99.73 92.46

uniform normal right skewed 93.29 86.35 98.57 91.16 99.86 92.61

uniform uniform right skewed 90.66 86.41 98.15 90.05 99.96 93.11

skewed beta skewed beta symmetric 90.16 80.76 97.32 87.66 99.74 89.11

skewed beta beta symmetric 88.58 78.20 96.92 86.19 99.78 88.51

skewed beta normal symmetric 88.09 78.29 97.00 86.18 99.85 88.35

skewed beta uniform symmetric 82.12 76.83 95.64 88.40 99.95 92.41

beta skewed beta symmetric 90.78 82.14 97.58 88.41 99.76 89.80

beta beta symmetric 89.42 80.22 97.31 87.29 99.81 89.23

beta normal symmetric 89.14 80.64 97.23 88.09 99.86 89.30

beta uniform symmetric 83.35 78.97 96.02 89.34 99.95 92.99

normal skewed beta symmetric 92.24 85.10 98.02 90.10 99.82 91.16

normal beta symmetric 91.58 84.47 97.93 89.54 99.80 91.24

normal normal symmetric 90.73 83.89 97.97 90.01 99.89 89.98

normal uniform symmetric 87.18 83.92 96.83 91.64 99.93 94.34

uniform skewed beta symmetric 93.81 86.91 98.67 91.58 99.79 92.58

uniform beta symmetric 92.63 86.48 98.42 90.87 99.87 92.77

uniform normal symmetric 92.28 85.89 98.45 91.69 99.94 91.66

uniform uniform symmetric 89.02 85.88 97.67 91.82 99.96 93.87
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Table 2.3: Summary of Empirical Coverage at α = 0.20

Fraction of Environments Observed 10% 50% 90%

Noise (Std Dev of Normal) 1 15 1 15 1 15

Genotype Main

Effect (G)

Environment

Contribution to

Interaction Effect

(E in G×E)

Genotype

Contribution to

Interaction Effect

(G in G×E)

Empirical Coverage %

skewed beta skewed beta left skewed 80.91 69.96 92.88 78.54 99.03 80.76

skewed beta beta left skewed 77.90 67.04 91.57 76.59 99.09 79.93

skewed beta normal left skewed 76.98 67.22 91.47 77.25 99.30 79.98

skewed beta uniform left skewed 68.18 64.72 87.95 78.96 99.44 87.89

beta skewed beta left skewed 81.91 71.53 93.29 79.27 99.11 81.58

beta beta left skewed 79.32 69.53 92.22 78.36 99.20 81.42

beta normal left skewed 78.67 69.39 92.32 77.89 99.34 82.34

beta uniform left skewed 71.16 67.39 89.11 81.20 99.43 87.87

normal skewed beta left skewed 84.14 75.09 94.49 81.57 99.30 83.68

normal beta left skewed 82.46 74.09 93.65 82.04 99.30 84.53

normal normal left skewed 81.19 73.75 93.68 81.24 99.33 84.50

normal uniform left skewed 75.54 71.64 91.27 84.88 99.66 91.34

uniform skewed beta left skewed 86.29 77.39 95.65 83.77 99.40 85.82

uniform beta left skewed 83.64 76.36 95.11 83.45 99.43 85.29

uniform normal left skewed 82.95 76.66 94.86 83.39 99.45 86.26

uniform uniform left skewed 78.04 75.33 92.13 85.01 99.59 91.07

skewed beta skewed beta right skewed 83.66 70.22 93.16 77.68 97.66 79.73

skewed beta beta right skewed 81.20 67.44 92.16 75.85 97.77 77.95

skewed beta normal right skewed 80.76 67.21 92.29 75.82 98.27 77.63

skewed beta uniform right skewed 73.68 66.44 90.32 77.01 99.25 80.81

beta skewed beta right skewed 84.75 71.74 93.81 78.89 97.86 80.71

beta beta right skewed 82.72 69.57 92.96 77.19 98.15 79.52

beta normal right skewed 81.88 69.82 93.08 77.49 98.66 78.38

beta uniform right skewed 75.78 68.71 91.34 77.58 99.33 80.59

normal skewed beta right skewed 86.98 75.20 95.25 81.49 98.37 83.28

normal beta right skewed 85.67 74.33 94.80 81.02 98.55 82.86

normal normal right skewed 84.46 74.26 94.66 81.24 99.04 81.73

normal uniform right skewed 79.69 73.16 92.89 80.22 99.52 79.54

uniform skewed beta right skewed 89.65 77.42 96.42 83.11 98.65 84.90

uniform beta right skewed 87.42 76.57 96.29 82.01 98.99 85.28

uniform normal right skewed 86.75 76.79 95.87 83.06 99.27 85.52

uniform uniform right skewed 82.50 76.77 94.59 81.66 99.42 85.36

skewed beta skewed beta symmetric 81.97 69.92 93.02 78.06 98.66 80.04

skewed beta beta symmetric 79.56 67.19 92.01 76.05 98.80 79.02

skewed beta normal symmetric 78.87 67.14 92.21 76.14 99.02 78.90

skewed beta uniform symmetric 71.31 65.44 89.25 78.79 99.40 84.26

beta skewed beta symmetric 82.89 71.48 93.59 79.14 98.75 80.96

beta beta symmetric 80.90 69.35 92.86 77.71 98.93 80.24

beta normal symmetric 80.30 69.74 92.60 78.52 99.17 80.45

beta uniform symmetric 72.77 67.90 90.04 80.09 99.46 85.34

normal skewed beta symmetric 85.40 75.01 94.70 81.53 99.06 83.25

normal beta symmetric 84.08 74.16 94.19 80.65 99.04 82.97

normal normal symmetric 82.57 73.91 94.34 81.23 99.27 81.62

normal uniform symmetric 77.50 73.80 91.60 83.24 99.51 88.01

uniform skewed beta symmetric 87.73 77.30 96.16 83.76 99.08 85.26

uniform beta symmetric 85.86 76.68 95.49 82.75 99.31 85.37

uniform normal symmetric 85.09 76.14 95.58 83.80 99.41 84.59

uniform uniform symmetric 80.00 75.67 93.25 83.92 99.45 87.01
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From the empirical coverage results reported in Table 2.1, we can make several observations.

First, the empirical coverage is good overall and for each of the three confidence levels, the

empirical coverage matches or exceeds the theoretical coverage for most parameter settings.

Second, the shape of genotype contribution to the G×E effect (bi), seems to have not a significant

relationship with the empirical coverage, and this can be seen in Figure 2.3.

Third, there is a relationship between the shape of the main G effect distribution and the

shape of the G×E interaction effects, especially E’s contribution in G×E interaction effects (hj)

with the empirical coverage. The coverage appears to be lower for the skewed beta distribution

and highest for the normal and uniform distributions regarding the main effect. This is further

illustrated in Figure 2.4, from which we can also note that this relationship is consistent

regardless of the level of uncertainty (that is, fractions of locations observed and the random noise

at each location).

On the other hand, uniform distribution of E’s contribution in G×E interaction effects (hj)

has the lowest empirical coverage in the scenario where both a small number of locations is

observed and the noise is low (see the top-left plot in Figure 2.5). In fact, in this scenario, the

relationship is exactly the opposite as for the main effect. We note that for the main effect, the

distribution is across genotypes, whereas for the interaction effects, the distribution is across

locations, which may explain the differences in behaviors. If the distribution of the main G effect

is such that many genotypes have very similar effects, i.e. skewed beta, then the coverage of the

CIs is observed to be lower, whereas if the main effects of each genotype are uniformly distributed

(essentially spaced somewhat evenly apart), they are easier to rank, and the empirical coverage is

observed to be higher.
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On the other hand, the uniform distribution of G×E interaction effects across locations may

exacerbate the difficulties due to only observing a fraction of all possible locations. This

observation is further supported by the results in Figure 2.5, as we note that as the percentage of

locations observed becomes large (90%), the lower empirical coverage for uniform hj effects

completely disappear. In practice, the shape parameters of these distributions could be estimated

from the observed METs data to determine if we expect empirical coverage to be slightly higher

or slightly lower than the theoretical coverage.

The third and final observation that is evident from all three figures is that less uncertainty

implies higher empirical coverage and vice versa. This is true for both uncertainties due to the

limited number of locations being observed and for the noise observed at each location. This is

not an unexpected observation, but for analysis of non-simulated data, the amount of uncertainty

estimate in the experiment would give us an idea of the empirical coverage of the rank CIs

relative to other experiments.

The proposed rank confidence intervals work as expected; that is, the observed empirical

coverage is close to the predicted theoretical coverage. If most of the possible environments are

observed, then the empirical coverage will tend to be higher than the theoretical coverage, and

vice versa when only a small percentage of locations is observed. Higher observation noise will

also lead to worse empirical coverage, especially when the main G effect has a peaked and skewed

distribution, in which many genotypes will have a similar main G effect. If only a few locations

are observed but with little uncertainty, then the uniform distribution of the G×E effects with

respect to environments would also lead to reduced empirical coverage. However, even in the

worst scenarios, the difference in empirical and theoretical coverage is sufficiently small that we

believe the rank CIs will still be useful. Finally, we note that even though we have focused on

illustrating the patterns at α = 0.05 significance level, the results reported in Table 2.1 illustrate

the same patterns held at other significance levels.
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2.5.2 Application of Rank Confidence Intervals

This section illustrates a practical use of rank confidence intervals and compares the

information gained from the rank confidence intervals with the information obtained from a

popular method for ranking in agriculture context, namely, BLUP analysis as it is a popular

method for ranking in agriculture. For these results, the BLUP analysis was performed using the

metan package in R (Olivoto and L’ucio, 2020) and the rank CIs are also obtained using R. The

order in which the rank confidence intervals for genotypes are displayed is independent of the

construction of the confidence intervals. Here, they are displayed in an order the same as in the

predicted response. We performed the analysis for two soybean experiments. The first one is an

example of an experiment with relatively low uncertainty and a clear winner. The second one has

much higher uncertainty and more ambiguity regarding which experimental soybean variety is the

best.

The BLUP analysis and the rank CIs for the first experiment are shown in Figures 2.6 and

2.7. In this experiment, there is one soybean variety, G4, that clearly outperforms all others. This

is indicated by both the BLUP output and the rank CIs. In such transparent cases, the breeder

will likely recognize this without the assistance of any statistical method. The more interesting

comparison happens for cases that are less transparent. For example, varieties G11 and G9 appear

virtually identical when comparing the BLUP confidence intervals, whereas the rank confidence

intervals, while still largely overlapping, show that G11 has a significantly higher probability of

ranking in the top 5 spots while G9 have just 4% probability of being in top 5 ranks within 80%

confidence interval. A more interesting contrast comes from the width of the confidence intervals.



29

Figure 2.6: BLUP confidence intervals of yielD for a certain experiment.
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Figure 2.7: Rank confidence intervals of yield for a certain experiment.
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The width of the confidence intervals for the BLUP predictions, as shown in Figure 2.6, does

not depend on the individual genotype, whereas the width of the rank CIs, Figure 2.7, varies

significantly from one variety to the next. For example, since G4 ranks 1st with estimated

probability of 0.83 > 0.80, the width is only one spot. Similarly, the probability of G13 being in

the top 3 exceeds 0.8, so the width is only three spots. The reason for these tight confidence

intervals is the relative difference in main effects, namely, relative to the other varieties in this

experiment. The yields of varieties G4 and G13 are easily seen as best and second best,

respectively.

As noted above, statistical tools such as BLUP or rank CIs may be viewed as more beneficial

for breeders when decisions are not as clear. The BLUP predictions indicate a very similar yield

for G11 and G9. However, while the rank CI for G11 is tight (rank 4–7), the confidence interval

for G11 spans 16 rank positions (rank 1–19). The intuitive explanation for this is in the relative

G×E effects, that is, the G×E effects relative to other varieties in the experiment. Variety G11

performs more predictable compared to G9 while G9 has a highly variable rank. It should be

noted that the BLUP analysis also estimates the G×E effects, and it would be possible to infer

similar conclusions about G×E from those as what we obtain from the rank confidence interval

width. Another key difference that should be emphasized is that while the BLUP analysis

provides an estimation of the main genotype effects (and the G×E effects, although they are not

shown here), the rank CIs provide information on the relative main genotype effect (and

indirectly on the relative G×E effects via the CI width).

The analyses for the second experiment are shown in Figures 2.8 and 2.9. For this experiment,

it is much less clear which variety is the top variety. The BLUP analysis predicts G21 as having

the highest yield, but the prediction interval overlaps significantly with all of the above-average

varieties.
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Figure 2.8: BLUP confidence intervals of yielD for a certain experiment.
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Figure 2.9: Rank confidence intervals of yield for a certain experiment.
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The BLUP analysis also indicates that G21, G8, and G24, G7, and G5 are almost the same.

On the other hand, the rank CIs provide more insights into this set of varieties and show that

G21 has the highest probability of top rank among these five and it has the tightest confidence

interval (ranks 1–6), indicating good performance in many locations, whereas the CI for G8

includes rank 1-8, and for G7 includes 1–12 spots with the probability of top rank being much

smaller. Several varieties have very wide CIs, including G19 (rank 1–20) and G11 (rank 1–13).

These varieties rank 7th, and 8th respectively, in the BLUP analysis. Their rank CI widths

relative to other top varieties have an additional piece of information that breeders can consider

for advancement decisions. While these genotypes ranked 7th and 8th in the BLUP output, they

have the probability of 4% and 5% for the being the top variety. Rank CIs help the breeder to

identify such genotypes in the case BLUP analysis cannot detect between them. Furthermore, the

rank CIs would help separate these genotypes as G11 has a CI width much smaller than G19,

perhaps indicating higher stability, as well as a higher probability of top rank.

2.6 Conclusions

We have proposed novel rank confidence intervals for plant breeding experiments. Such rank

CIs do not provide a prediction of the response, and they are not intended to replace existing

models such as BLUP or AMMI but rather provide a complementary analysis. This has been

demonstrated via a comparison with a BLUP analysis. While the BLUP analysis provides an

accurate prediction of the response (yield), the rank CIs focus explicitly on rank and hence the

relative performance. In practice, the primary purpose of breeders is often comparison and

selection among two or more genotypes. In such cases, where relative performance is most

important, the new method may prove particularly helpful as it tries to capture the uncertainty

due to the limited environments in which genotypes have been planted.

For further insights into the rank CIs, we argue that the width of the rank CIs captures two

aspects of relative performance: separation in response for the genotypes (essentially the genotype

main effects) and the relative G×E interaction effects as tighter CIs imply more stable genotypes
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if the main effects are similar. This provides further information that complements traditional

stability analysis.
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3.1 Abstract

In the plant breeding multi-environment trials, the mean phenotypic responses of two

experimental genotypes are often close and depend on the specific target environments in which

they are observed. This makes a simple comparison of the mean response problematic in practice.

We propose a new approach to comparing genotypes that selects the genotype that is more likely

to perform better rather than the one that has the better mean. Our implementation uses

bootstrap resampling to estimate the probability that one genotype outperforms another in a set

of observed environments. This not only provides more information, that is, the probability of one

genotype being preferable versus a simple mean comparison, but we also show that due to the

different G×E effects, the probabilistic comparison is sometimes different than a simple mean

comparison. We further evaluate the underlying reasons for these differences and show that the

probabilistic comparison accounts for the uncertainty caused by observing limited environments.

3.2 Introduction

Plant breeding is costly and time-consuming and it takes years to go from the initial

experimental stages to commercialization (Luckett and Halloran, 2017). Each year, plant breeders

want to select the best genotype for the potential target environments by assessing their relative

performance to the other experimental genotypes planted in a subset of target environments
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(Abberton, 2012; Vargas et al., 2013; Cooper and DeLacy, 1994). They are faced with a difficult

selection decision. Given a large set of experimental plant varieties or hybrids, which should be

selected as having the highest potential, that is, which genotypes should be advanced and planted

for at least one more year. This selection is always imperfect due to the amount of randomness in

the observed performance of these genotypes. There are practical limitations on the size of the

subset to be selected and advanced. Still, in the end, there are only a few genotypes that become

a success – for a commercial plant breeder, become commercial varieties or hybrids. The ultimate

concern is not to miss out on a potential success, even if it happened to perform relatively poorly

in a single year of experiments. The cost of a miss is much higher than the cost of including a

genotype that ultimately does not succeed. Indeed, it is expected that most of the genotypes that

are selected and advanced will ultimately not succeed.

At its core, this complex selection process comes down to making pair-wise comparisons

between genotypes (Vargas et al., 2013). A pair-wise comparison may incorporate many factors.

For example, a set of experimental soybean varieties with a similar relative maturity (RM) will be

compared according to their normalized yield, where the normalization might take into account

such factors as the planting locations and the RM values. Typically, when it comes to finding the

best genotypes, comparison is made based on some mean comparison of one or more phenotype,

while also considering some measures of stability or adaptability. The mean may be observed

directly or predicted using some standard statistical models. While it may have corrective factors

and normalization, but it inherently remains a comparison of means. In this paper, we suggest

that mean comparison may not be the best approach for advancement selection, but instead the

comparison should be based on comparing probabilities of performing better across a set of

planting environments. In other words, we suggest that the selected genotype should be the

genotype that is more likely to perform better rather than the genotype with the better mean. Of

course, selecting based on mean and selecting based on such probability will often agree. For

example, if the mean difference is large. However, it is likely to be different in important cases,

such as for two genotypes with difficult to discriminate means and when we only observe a small
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portion of possible environments. Additionally, we will show that the differences depend on the

G×E structure and magnitude.

3.3 Motivating Example

As noted in the introduction, it is a standard practice in plant breeding to compare

experimental genotypes according to their observed or predicted mean phenotype (most

commonly yield) and select the genotype with the better mean for advancement (Schrama et al.,

2018). While this is a very intuitive approach, it has some limitations that will be explored in this

paper. To obtain some insights into those limitations, we start by presenting a simplified

motivating example.

Suppose we have two soybean varieties, Variety 1 and Variety 2, that could be planted in five

environments, E1, E2, E3, E4, E5, and the phenotype of interest is yield measured in

bushels/acre. Note that these five environments represent the entire universe of possible

environments (locations and years), so in practice this would be a very large number of

environments. The yield of Variety 1 is 73.0, 51.0, 61.0, 48.0, and 55.0 in the five environments,

respectively; and the yield of Variety 2 is 63.5, 53.5, 59.5, 50.5, and 56.5 in the five environments,

respectively. By calculating the average we can observe that Variety 1 has the better mean across

all possible environments, or 57.6 versus 57.1. Variety 1 also has the better average rank (1.4

versus 1.6) since it is has higher yield in more environments. However, a crop will never be

planted in all possible environments, not even within a single year, so another quantity of interest

would be which variety is more likely to have higher yield when planted in some fixed number of

environments? For example, we select two out of the five environments at random. There are

exactly ten such pairs and it is easy to verify that Variety 1 performs better in only four out of

those ten pairs. Specifically, Variety 1 does better in every pair that includes the highest-yielding

environment E1 and Variety 2 does better in every pair that does not include E1. Thus, we can

conclude that even though Variety 1 has a higher mean yield it will only have higher yield 40% of

the time if the two varieties are planted in two randomly selected environments.
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We argue that this small-scale example mirrors what happens in real situations, where there is

a large set of potential target environments, and each year a crop is only planted in a very small

subset of all possible environments. This example therefore motivates the main idea of this paper,

which is to have probabilistic comparison along with mean-based comparison.

A couple of important observations need to be made about the motivating example. First,

this scenario would not happen if the varieties had the same G×E structure. The yield in this

example is calculated according to yij = 50 + gi + ej + hij , where gi ∈ {3, 2.5} is the genetic effect

of the two varieties, ej ∈ {10,−2, 4,−5, 1} is the environmental effect and the G×E interaction

(hij) is given in Table 3.1.

Table 3.1: G×E effects values for the motivating example.

G×E effects E1 E2 E3 E4 E5

Variety 1 10 0 4 0 1

Variety 2 3 3 3 3 3

We note that
∑5

j=1 h1j =
∑5

j=1 h2j = 15 (row sums in the table), and on the average the

interaction is therefore the same; but whereas Variety 2 is very stable, Variety 1 is able to double

the environmental effect of good environments but is neutral in poor environments. Variety 1 is

precisely the type of variety that we expect to appear better with respect to mean performance

versus a probabilistic approach.

Second, if the difference in main genetic effect is sufficiently large then the mean-based and

probabilistic approach will always reach the same conclusion. For example, if g1 = 3 and g2 = 2.4

but everything else stays the same, that is, the difference in mean increases from 0.5 to 0.6

bushels/acre, it is easy to verify that Variety 1 will be selected 50% of the time based on two

random environments. And if g2 = 1.9 then Variety 1 will be selected 70% of the time. Thus, the

proposed probabilistic approach is primarily relevant for comparisons where the difference in

genotype effects is relatively small; but we argue that those are also the comparisons that are the

most important to plant breeders in practice.
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The observation made above regarding differences in G×E structure suggests that there is a

relationship between the proposed approach and stability measures. This interesting connection

will not be explored in detail in this paper, but it should be pointed out that no stability measure

could completely replace the probability-based approach. Just like the mean phenotype is a

summary statistic of the probability distribution of phenotype across environments, stability

measures provide another complementary summary statistic. While considering two or more such

summary statistics is certainly preferable to a single statistic, no summary statistics can

completely replace considering the whole probability distribution. In fact, in some sense the

probabilistic approach accounts for the entire G×E structure in whatever is selected as the target

environments, rather thus the mean and some measure(s) of stability.

3.4 Probabilistic Pairwise-Comparison Methodology

Quantitative analysis of phenotype data for advancement decisions is heavily based on what

may be considered as the analysis of mean performance (Reckling et al., 2021; Schrama et al.,

2018). The genotype effect of experimental genotypes is estimated using some model that

combines all available input data (e.g., phenotype observations and genetic markers) and when

two experimental genotypes are compared according to their mean yield (or other phenotypic

response of interest). As argued through the motivational example above, such mean analysis

may be misleading, especially as extreme responses of genotypes in different environments pull

the mean up or down and do not reflect the absolute superiority of one genotype over the other.

This problem is unavoidable and causes uncertainty because of the limited sampling of locations.

We therefore propose a new statistic to compare genotypes that, instead of predicting the mean,

estimates the probability distribution that one genotype performs better than another. If the

distribution of yield (or any other phenotype) is symmetric in the planted locations, then this is

not probabilistic and mean comparison would produce the same result. However, if they have

asymmetric distributions with respect to locations planted, which we believe to most often be the

case in practice, then we argue that a probabilistic comparison is more sensible. This is because
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the probabilistic comparison combines genetic gain, that is, the main effects, with

stability/adaptability, that is, the interaction effects, as well as the distribution of the

environmental effects in the observed environments. This happens without estimating these

effects directly but is reflected in the estimated probabilities.

The goal is to understand the performance of n genotypes in m target environments

(locations and year). Let yij denote the phenotype of genotype i in environment j, where

i = 1, 2, . . . , n; j = 1, 2, . . . ,m. What is traditionally of interest is the mean of each genotype

across all environments, denoted gi =
1
m

∑m
j=1 yij , and may be thought of as representing the

genotype effect. As noted above, what is specifically of interest is comparing two genotypes i1, i2,

which is usually done based on the genotype effect and one approach would be to try to estimate

the mean difference gi1 − gi2 with as much precision as possible and use this as the basis of a

decision. However, the analysis here is based on the indicator function

I(i1, i2) =

 1 gi1 > gi2 ,

0 gi1 ≤ gi2 .
(3.1)

It is impossible to observe every possible environments. A plant breeder observes some small

sample A ⊂ {1, 2, . . . ,m} of m0 environments, where m0 << m, and uses the observed values

{yij}, j ∈ A; i = 1, . . . , n, to obtain estimates ĝi =
1
m0

∑
j∈A yij . From the observed environments

A it is straightforward to obtain a point estimate of the indicator of interest

ÎA(i1, i2) = IA(i1, i2). (3.2)

This will simply equal either zero or one, depending on the relative performance of the two

genotypes in this set A of environments. Based on this estimate, a plant breeder might conclude

that genotype i1 is better than genotype i2 if Î(i1, i2) = 1. This is equivalent to directly

estimating the mean difference ĝi1 − ĝi2 and making a decision based on this mean. However, as

we argued above, focusing on the mean can be misleading if the two genotypes have different

G×E structures, in which case it would be more informative to know the distribution of the

indicator function in addition to the mean.
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To characterize the distribution of I(i1, i2), we start by generating B bootstrap samples A1,

A2, ..., AB by resampling the set A of environments with replacement. This results in B

estimates of the indicator

ÎA1(i1, i2), ÎA2(i1, i2), ..., ÎAB
(i1, i2). (3.3)

Thus, instead of a single estimate, we now have B estimates, capturing the uncertainty due to

the set of environments that were observed. Using the estimates calculated on the bootstrap

samples, the probability of genotype i1 being better than genotype i2 in a randomly selected set

of environments can now be estimated as

P̂ (gi1 > gi2) =
1

B

B∑
b=1

ÎAb
(i1, i2) (3.4)

Given these probability estimates, a plant breeder could now conclude that genotype i1 is

better than genotype i2 if P̂ (gi1 > gi2) >
1
2 .

In this paper we refer to decisions based on equation (3.2) as mean-based selection and

decisions based on (3.4) as probabilistic selection. Thus, decisions are determined by either the

following sets of genotype pairs, which completely describe which genotypes should be selected

over others:

SMean =
{
(i1, i2) ∈ {1, 2, . . . , n}2 : IA(i1, i2) = 1

}
, (3.5)

SProb =

{
(i1, i2) ∈ {1, 2, ..., n}2 : P̂ (gi1 > gi2) >

1

2

}
. (3.6)

As far as we know, this type of probabilistic selection has not been proposed before in the plant

breeding domain, whereas incorporating the mean-based selection is standard practice.

An example of the mean-based and probabilistic selection approaches is illustrated in Figure

3.1. In this example the two approaches would reach different conclusions because while one

genotype has a better mean across the observed locations, this is not true for the majority of the

resampled subsets of locations. This paper explores when these two approaches result in different

conclusions, that is, SMean ̸= SProb, and the explanations behind those differences.
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Figure 3.1: Mean versus probabilistic comparison of two genotypes. Based on direct observations
the first genotype is better, but as it is only better in two out of five resampled environments the
probabilistic comparison favors the second genotype.

3.4.1 Simulated Data

To provide insights into if and when probabilistic pair-wise comparison differs from

mean-based comparison, we generate simulated data that can be considered as a generalized

version of the motivational example introduced in a previous section. To generate this data, we

assume that the phenotype of interest is plant yield, although any other phenotype could be used,

and that yield follows what might be considered a standard linear model involving genetic (Gi),

environmental (Ej), and genetic-by-environment interaction effects, which we refer to as G×E

effects (Becker and Léon, 1988; van Eeuwijk et al., 2016). As the noise does not provide any

insight with respect to the purpose in this research, for simplicity and clarity, we ignore the noise

from the following equation.

ỹij = µ+Gi + Ej +Gi × Ej + ϵij . (3.7)

As will be further described below, the simulation then generates values for each effect

accroding to specific distribution Gi ∼ FG, Ej ∼ FE , and assumes different structures for the

G× E interactions. This experiment includes four factors that will be set as follows:

1. Difference in main effect. Will be determined by the generated G effects for each genotype.
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2. Similarity in interactions. Will generate three types: a) same in all environments, b) very

good in good environments, neutral in others, c) very good in good environments and very

poor in poor environments. The sum of the G×E effects will be kept as constant.

3. Magnitude of interactions. We consider a set the average magnitude of the G×E effects as

half or double to the average magnitude of the main G effect.

4. Fraction of environments observed. We consider the scenarios with 5%, and 10% and 100%

of the environments observed.

Following the above description, after generating a mean genotype effect, we generate three

genotypes with three levels of G×E structures. The first is completely stable. i.e., has it has the

same G×E effects over all environments. The second might be considered adaptive, i.e., takes

advantage of good environments and performs very well in those environments. Finally, the third

one is highly variable, with both very good and very poor performance based on the E effect. All

three types have a exact same mean phenotype if we observe all of m environments, while their

distributions are different.Therefore, with any subset of the m environments, the mean phenotypic

response would also be different. Furthermore, for each set of genotypes, we consider uniform

distribution of [−1.5, 1.5] for FG and uniform distribution of [−10, 10] for FE . As explained, G×E

distributions derive from G and E effects based on their structures. To cover every aspect, we

consider different magnitude of G×E with different fractions of environments to explore how

different are the comparisons based on different contributing factors.

The synthetic data considered in this section consists 30 different genotypes with 3 different

G×E interaction effects on 100 environments. For each three set of genotypes, genetic main effect

identical, i.e., we have 10 distinct genetic effects. Probabilistic comparisons give us information on

how certain we can be with the comparison we are making. The description of the simulated

genotypes is shown in Table 3.2.
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Table 3.2: Thirty simulated genotypes. A set of three genotypes has identical main genetic effect
(G), but each of those three has a different G× E structure.

Name Main Effect (G) G×E Structure

GS1.44 1.44 Stable

GA1.44 1.44 Adaptive

GV1.44 1.44 Variable

GS1.39 1.39 Stable

GA1.39 1.39 Adaptive

GV1.39 1.39 Variable

GS1.13 1.13 Stable

GA1.13 1.13 Adaptive

GV1.13 1.13 Variable

GS0.81 0.81 Stable

GA0.81 0.81 Adaptive

GV0.81 0.81 Variable

GS0.09 0.09 Stable

GA0.09 0.09 Adaptive

GV0.09 0.09 Variable

GS0.39 -0.39 Stable

GA0.39 -0.39 Adaptive

GV0.39 -0.39 Variable

GS0.52 -0.52 Stable

GA0.52 -0.52 Adaptive

GV0.52 -0.52 Variable

GS0.66 -0.66 Stable

GA0.66 -0.66 Adaptive

GV0.66 -0.66 Variable

GS1.23 -1.23 Stable

GA1.23 -1.23 Adaptive

GV1.23 -1.23 Variable

GS1.29 -1.29 Stable

GA1.29 -1.29 Adaptive

GV1.29 -1.29 Variable
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3.4.2 Estimated probabilities for pair-wise comparison

We start by looking at the estimated probabilities of one genotype being superior to another

genotype. The results are displayed in Figure 3.2 and demonstrate how the probabilities of one

genotype being better than another depend on the genetic main effect differences and the

differences in G×E structures. All plots in Figure 3.2 are showing the comparison among the

genotype with better main G main effect with respect to the other genotype in the pair.

Furthermore, the genotypes are ordered according to their main effects with the one with the best

mean yield being furthest to the right. Several observations can be made.

• If the G×E structure does not differ, then the probabilities are all either zero or one, that is

there is no ambiguity. The three plots on the top in Figure 3.2 compares pairs with identical

G×E structure. In those cases, the probability that the genotype with the higher mean is

better is always one, even if the difference in the means is very small.

• One the other hand, when comparing genotypes that differ with respect to their interactions

to environments, the likelihood of one genotype being better than the other genotype gets

smaller as their genetic effects (yield similarity) get apart from each other. This trend is

consistent in all three plots shown on the bottom row of the Figure 3.2 and the bigger the

genetic difference, the more certain the comparison gets probabilistically.

• Finally, a more subtle observation is that absolute certainty (probability equal one) is

observed when comparing adaptive genotypes to stable and variable genotypes, while it is

not observed in comparison of two other structures. The reason may be that adaptive

genotypes never exhibit very bad performance as they take advantage of good environments;

therefore, when the difference is large enough, the comparison becomes certain at a fast rate.

As noted above, values over 0.5 indicate the win probability of genotype with higher genetic main

effect over the other genotype and vice versa. It can be further observed from figure 3.2 that

stable genotype is always selected over the adaptive and variable genotypes when the G main

effect is bigger, even if they are very close; that is, for the plots in the bottom-right and
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bottom-left, the probabilities are always greater than 0.5 for all pair-wise comparisons. On the

other hand, the comparison among highly variable genotypes and adaptive ones is more

complicated. Even though adaptive genotypes take advantage of good environments, when

comparing with highly variable genotypes with a same mean, it depends on bad environments as

well. Accordingly, for genotypes with close G main effect, we might select the genotype with lower

G main effect. This statement is true for the case of variable genotype comparison with stable

genotypes as well. This illustrates the point that when comparing genotypes, it is very important

to consider the distribution of environments, because, for detecting the adaptive genotype, there

should be high enough proportion of good environments so that it reflects in them taking

advantage of good environments. Otherwise, since the highly variable G×E structure goes to both

good and bad extreme directions, it is possible that under certain situations, this structure might

be preferable and should be called over the other structures. This shows the complexity of the the

process and as it can be seen, the probabilistic comparison incorporates the distribution of

environments and takes into account some of the underlying components and constraints when

making the comparison.

3.4.3 Comparison of probabilistic selection and mean selection

In the previous section, we explored the probabilistic comparisons and noted that the

genotype with the better mean is not always the genotype that is more likely to perform better,

given the different G×E structure of the pair of genotypes, as well as the distribution of the

environmental effects in the target environments. In this section, we further explore whether

decisions made using the new probabilistic approach characterized by Equation (3.4) are different

than decisions made using the traditional mean approach characterized by Equation (3.2), that is,

is SProb = SMean? And if yes, what circumstances lead to such differences? Thus, we look at the

fraction of pair-wise comparisons that are different as a function of both the mean yield difference

and difference in G× E structure.
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For this purpose, we calculate the probabilistic and mean comparisons for the synthetic data

defined in Table 3.2. For further insights, we calculate the results of probabilistic comparisons

when the average G×E magnitude is either reduced by half or doubled. Figure 3.3 illustrates the

cases where the results of two methods differ or are the same with respect to their difference in

yield for different G×E structures and magnitudes.

(S A 200 200)

(S A 100 100)

(S A 50 50)

(S S 200 200)

(S S 100 100)

(S S 50 50)

(S V 200 200)

(S V 100 100)

(S V 50 50)
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Figure 3.3: Mean and probabilistic comparison match/mismatch for stable genotypes and three
levels of the magnitude of G×E interactions (50, 100 and 200). The red dots indicate pairs where
the genotype with the better mean is not the genotype that is more likely to perform better.

As it can be seen, when comparing two perfectly stable genotypes, the comparison between

two stable genotypes would always be the same no matter how big the G×E magnitude is. The

comparison gets challenging when the structures are different and that makes the decision on the
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desirability of genotypes complicated. When the interaction structures differ, the two methods

give different results when the genotypes are close. Additionally, the mismatch cases increase

when the G×E magnitude increases. This is consistent for both adaptive and variant genotypes

comparisons to stable genotypes.

Similar plots are shown in Figure 3.4 for the adaptive and highly variable genotypes. The

results of same structures’ comparisons are consistent with what have been detected in Figure 3.3,

if the G×E structure is the same then the genotype with the better mean is always the genotype

that is more likely to perform better. It also indicates, as expected that if the magnitude of the

G×E effect is larger, then it is more frequent that the genotype with the better mean is not the

genotype that is more likely to perform better.

The results above show that the frequency of when the genotype with the better mean is not

the genotype that is more likely to perform better depends on the differences of G×E structures

and the magnitude of the G×E effects, as well as the difference in the main genotype effects.

However, this frequency may also depend on the set of environments, and in particular the

fraction of environments where the genotypes have been planted. Figure 3.5 shows the results for

all comparisons for the case when 10% of the locations are observed.

For additional insights into when the genotype with the better mean is not the genotype that

is more likely to perform better, a summary mean and probabilistic pair-wise comparison between

different genotypes with different G×E magnitudes has been presented in Table 3.3.
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It reports the fraction of time that the two definitions of what constitutes the best genotype

disagree for all of the scenarios considered above as well as three cases for the fraction of locations

observed: 5%, 10%, and 100%. Rather than a continuous scale of mean yield difference we have

used the previously reported results to create three buckets as follows. The first bucket has a

yield difference of less than 0.5, the second between 0.5 and 1, and finally above one. These

buckets can be thought of as genotypes with yields that are very similar, somewhat similar, and

significantly different, respectively. In two scenarios the genotype with the better mean is always

the genotype that is more likely to perform better, namely when the yield difference is larger than

one and if the G× E structure is identical for the two genotypes. This further supports the

observations made above. In other cases, the fraction of pairs where the one with the higher mean

is not more likely to be better can be very high. For example, when comparing stable and

adaptive genotypes with a large magnitude of G× E effects and similar mean yield, the fraction is

43.8%, 68.8% and 68.8% when observing 5%, 10% and 100% of the environments, respectively. In

general, as expected, the fraction is higher if the yield difference is smaller and the magnitude of

the G× E effects is larger, but it is worth noting that the pattern is more complex when

comparing the highly variable genotypes. As noted above, this is explained by the fact that the

probabilistic approach accounts for the distribution of environmental effects for the target

environments, as well as the main G effects and the G× E interaction effects.
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Table 3.3: Fraction of Pairs where Genotype with Better Mean is Less Likely to Perform Better

Pairs Compared

Fraction of locations observed

5% 10% 100%

Yield Difference

[0,0.5) [0.5,1) [1,∞) [0,0.5) [0.5,1) [1,∞) [0,0.5) [0.5,1) [1,∞)

(S S 50 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(S S 100 100) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(S S 200 200) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(S A 50 50) 10.3 0.0 0.0 6.3 0.0 0.0 43.8 0.0 0.0

(S A 100 100) 0.0 0.0 0.0 28.6 0.0 0.0 71.4 0.0 0.0

(S A 200 200) 43.8 0.0 0.0 68.8 10.5 0.0 68.8 11.1 0.0

(S V 50 50) 11.5 0.0 0.0 31.6 0.0 0.0 45.9 0.0 0.0

(S V 100 100) 11.8 0.0 0.0 31.8 23.5 0.0 62.2 0.0 0.0

(S V 200 200) 0.0 0.0 0.0 49.1 0.0 0.0 69.4 0.0 0.0

(A A 50 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(A A 100 100) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(A A 200 200) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(A V 50 50) 0.0 0.0 0.0 17.7 0.0 0.0 0.0 0.0 0.0

(A V 100 100) 8.7 0.0 0.0 29.5 0.0 0.0 5.4 0.0 0.0

(A V 200 200) 38.9 15.6 0.0 60.8 15.7 0.0 15.3 0.0 0.0

(V V 50 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(V V 100 100) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(V V 200 200) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The analysis shown in this section demonstrates that comparing genotypes can get

challenging under certain circumstances. When the difference in main effects is large or the two

genotypes have the same G×E structure then the comparison is straightforward as the genotype

with the better mean is also the one that is more likely to perform better across the target

environments. However, in cases where the means are closer and the G×E structure differs, this

may not be the case and indeed in such cases the simulated data experiments show that in some

cases the majority of pair-wise comparisons differ in these two criteria. These differences also

depend on the magnitude of the G×E effects and the specific subsets of environments that are

observed. The proposed probabilistic comparison incorporates all of those factors in order to

identify the genotype that is more likely to perform better across the environments.

3.5 Conclusions

Experimental genotypes are frequently compared according to mean phenotypic response, and

such comparison is then used as the basis of further decision-making, for example, to determine
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which experimental soybean varieties or corn hybrids should be advanced within a breeding

program. This paper introduces a new way to compare genotypes, namely to estimate and select

genotypes based on which genotype is most likely to perform better across a set of environments.

We further evaluate how often this differs from a simple means-based selection, and evaluate the

underlying reasons for why the genotype with the better mean is not always most likely to

perform best. The probabilistic approach accounts for both mean and G×E interactions and thus

incorporates both main effects and in some sense the stability and adaptability of the genotypes.

However, the probability estimates account for not only the uncertainty that stems from the

selection of planting locations but also the distribution of locations in which they have been

planted.

Results on simulated data demonstrate that when the difference in main effects is large or the

two genotypes have the same G×E structure then the genotype with the better mean is also the

one that is more likely to perform better across the target environments. However, these cases are

likely to be considered straightforward in practice as any selection approach is likely to result in

the same decision. It is in the more difficult cases where the simulation results show that the

probabilistic and mean-based approaches differ. Specifically, when the means are close, the G×E

structure differs, and the magnitude of the G×E effects is large relative to the main effects, then

the majority of pair-wise comparisons may differ. By incorporating the genotype’s main effects,

the G×E effects, and the distribution of the environmental effects for the target environments

into a single probability, the proposed approach provides a new way to identify the genotype that

is more likely to perform better across the environments.

The next step in this research will be to incorporate the proposed approach into a decision

support tool that can provide a probabilistic ranking of genotypes, and compare this novel

approach to ranking with existing approaches. Further research will explore how the proposed

approach relates to existing stability measures as well as existing methods that combine mean

and stability into a single metric.
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CHAPTER 4. METANALYZER: AN R PACKAGE FOR PROBABILISTIC

RANKING AND RANK CONFIDENCE INTERVALS

Authors: Reyhaneh Bijari 1, Sigurdur Olafsson 1

1 Department of Industrial and Manufacturing Systems Engineering, Iowa State University

4.1 Introduction

Analyzing experimental genotypes is one of the meticulous steps in plant breeding programs.

Breeders try to identify the best genotypes with respect to one or some of the phenotypic traits in

multi-environment trials (METs), where they are planted in a subset of the target population of

environments (Abberton, 2012; Vargas et al., 2013). Due to complicated

genotype-by-environment interactions (G×E) effects, and the uncertainty that stems from

observing genotypes’ performance in a very limited number of environments in plant breeding

programs, there has been extensive attention to study and capture their contribution to

phenotypic traits, e.g., yield (Cooper and DeLacy, 1994; Pour-Aboughadareh et al., 2022). With

respect to analytical tools, over decades, there have been many tools being developed that employ

traditional measures from Shukla (Shukla, 1972) to regression-based methods (Eberhart and

Russell, 1966) and up-to-date ones such as AMMI models (Sa’diyah and Hadi, 2016) to detect

such interactions and have an inclusive analysis of the multi-environment trials. One of the recent

tools is the metan package in R (Olivoto and L’ucio, 2020) which has collected a set of functions

to analyze MET datasets, whether with a comprehensive list of stability measures to different

models for performance prediction of genotypes. Another tool for MET analysis is META-R that

provides performance predictions and data features’ correlation for the set of locations in which

genotypes are planted. Spatial META-R is a similar application that uses R and ASReml v1.0 and

provides statistical analyses to account of G×E interaction effects and estimates the genotypes’



60

performance. Many useful packages are also available for this purpose like baystability which

gives Bayesian stability analysis of G×E interactions. Another useful packages are GEInfo, GEint,

stability, statgenGxE, and MPGE, to name a few.

In this chapter, we develop a package called METanalyzeR that provides a framework for

implementing the proposed methodologies in the previous chapters. Furthermore, as data in real

applications is not usually like the standard datasets and needs to be processed before any

analysis, we define a set of proposed functions that we have found practical in real applications.

We also propose a new ranking approach for comparing genotypes in MET datasets, which

have been derived from the concepts of previous chapters. The new method differs significantly

from what is assumed in the existing literature as it considers the probabilistic comparison of

genotypes when ranking them and tries to give complementary information to the decision-maker.

In the following sections of this chapter, first, we explain two new methodologies that this

dissertation offers to the field of plant breeding for the evaluation of corresponding experimental

genotypes. The new proposed ranking approach is described in detail. Following that, we briefly

go through the rank confidence intervals concept proposed in Chapter 2. In the third section, we

go through the METanalyzeR package and explain its functions and implementations. This tool

tries to provide users the two new proposed methods for MET datasets’ analysis. We will

continue analyzing different ranks, followed by some visualization. Finally, we will use the

package for some standard datasets and report the outputs for the use cases.

4.2 Methods

Ranking is an essential component of numerous decision-making processes where the selection

of the best is of interest and there is therefore a great deal of related literature in different

application domains. Statistical methods for subset selection and ranking-and-selection have been

received extensive attention for decades (Gibbons et al., 1979; Seong-Hee Kim and Nelson, 2007),

with many of those focus on determining how many samples are needed to make a selection

(Dudewicz, 1980). In the type of plant breeding applications we address, however, the number of
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samples is fixed, and we need to address the uncertainty of the ranking considering this

limitation. Govindarajulu and Harvey (1974) presented the ranking and subset selection problem

from a Bayesian view. They suggested that ranking populations just by the posterior probabilities

might not be an ideal approach unless one understands the selection process’s purpose. In

another study, Laird and Louis (1989) developed ranking methods based on the conditional

distribution of ranks instead of the conditional distribution of parameters by treating the ranks of

the prior parameters as the parameters of interest. Previous studies have primarily analyzed

ranks considering observations independent (DiCiccio and Efron, 1996; Efron, 1987) and

therefore, they are not directly applicable to the case of plant breeding, where there exists

significant correlation among the observations.

4.2.1 Probabilistic Ranking of Experimental Crops

In this study, we define a new ranking structure for experimental plant genotypes that differs

significantly from what is assumed in the existing literature and use bootstrapping to comparing

genotypes probabilistically and deriving probabilistic ranking. We show how the proposed

approach works well for real plant breeding data and thus provides a useful tool for plant

breeders. In the following part, we explain the new ranking method that is based on the

probabilistic comparison defined in chapter 3 which accounts for the uncertainty caused by

observing limited environments in real world plant breeding experiments.

4.2.1.1 Algorithm

The procedure is about the act of swapping. This algorithm starts with a table with some

ranking as the starting point. Starting from the top genotype, it is compared with the next

genotype in the table. It then swaps if the second genotype is better based on the probabilistic

approach. If the second genotype is not better, it moves down and compares the second genotype

with the third one. The question here is: ”Is the third genotype better than the second one?” If

yes, another swap occurs; otherwise, it moves down. The algorithm continues down and then
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starts from the top again. The first time it makes down without swapping, the algorithm will

stop, and it has converged.

For completeness, a description of the new probabilistic ranking is provided in algorithm 1.

Algorithm 1: Probabilistic Rank

Data: A table with some ranking as the starting point

Result: Sorted genotypes’ table based on probabilistic rank

swaps : swapping counter;

r : rank of genotype;

n: number of genotypes;

gr: genotype with rank r;

swaps = 1;

while swap ̸= 0 do

swap = 0;

r = 1 ;

while r ≤ n− 1 do

Compare the pairwise comparison probability between gr, and gr+1;

if P (gr < gr+1) then

rank gr ← r;

rank gr+1 ← r + 1
else

rank gr ← r + 1;

rank gr+1 ← r;

swap← swap+ 1
end

r ← r + 1
end

end

4.2.2 Rank Confidence Intervals

Current advancement starts with a ranked list of genotypes, usually ranked according to

corrected mean yield (yield minus environmental average) and do not account for the variability

from a relatively small subset of planting locations. This inherent uncertainty makes the

decision-making challenging because it dramatically impacts the relative performance of

genotypes and might not reflect their true ranks, mainly because of significant and differing

genotype-by-environment interactions (G×E) that genotypes might have across the set of
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observed environments. Rank Confidence Intervals try to illustrate this uncertainty by estimating

the distribution of rank and helping decision-makers (e.g., breeders). It shows the separation of

genotypes and also the relative G×E interaction effects through the widths of CIs (the tighter,

the more stable). This can be insightful information, especially when the genotypes’ main effects

are similar.

4.3 METanalyzeR

In this section, we describe the R package we have developed to implement the new

multi-environment trials analysis methods from rank confidence intervals proposed in Chapter 2

to new ranking method from Chapter 3 as new decision support tools in plant breeding. The

package also collects some of the existing popular methods for METs analysis. METanalyzeR has

used some popular functions (Olivoto and L’ucio, 2020) for the sake of comprehensiveness and to

illustrate comparison among different methods for METs analysis. We compare the new

probabilistic ranking with three popular ranking approaches that have been used with the same

aim in plant breeding practice for decades. It also includes functions we have found useful for

data pre-processing in real-world MET data if the information is provided in the dataset. To

illustrate the main features of the package, three example datasets (oat data (Olivoto and L’ucio,

2020), rapeseed data (Wright, 2021), maize data (Malosetti et al., 2013)) are embedded to

METanalyzeR for further exploration.

4.3.1 Package Overview

In this section, we explain the functions created in the package. For this purpose, we start

with a flowchart of the main functions in the package in Figure 4.1.
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Figure 4.1: Flowchart of the main functions in METanalyzeR package.
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As shown in the flowchart, there are four functions in the high level of this package:

• data preparation()

• rm correction()

• rank analyzer()

• rank visualization()

4.3.2 Analysis of Rank and Rank Uncertainty Using METanalyzeR

In this section, we show how different functions are connected and how we can use the

provided workflow to explore plant breeding multi-environments trials.

With this regard, the input of the package would be datasets consist of genotypes information

with at least their phenotypic responses in the locations and years (environments) they were

observed in. We assume that the data we are analyzing is a complete dataset of genotypes in the

intended experiment, i.e., all genotypes have been observed in all environments of the experiment.

To start the analysis, the input dataset should have the following necessary columns:

– GENOTYPE: A character list of genotypes’ names to be analyzed in the experiment.

– LOCATION: A character list of locations that genotypes were planted in.

– YEAR: A numeric list of the years the experiment was conducted in.

– REPNO: A numeric list of replications that each genotype has been observed in a specific location-year.

– PT: A continuous list of phenotypic response observed in each set of specific location-year.

It worth mentioning that the user can use direct observations or estimated phenotypic

responses, e.g., BLUP or AMMI estimations of yield as an input of the workflow. As explained in

Chapter 2, these methods are popular for estimating genotypes’ mean phenotype in a

multi-environment trials (Sa’diyah and Hadi, 2016) and can be incorporated in any of the

comparison/selection methods.
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The input data first goes to data preparation function. Since the environment is

representative of location-year, which is the feature that genotypes are compared with each other

in, the function creates this feature if it is not available in the original dataset. It returns the

corrected phenotype (phenotype minus environmental mean) named Corrected PT along with

M Corrected PT as its average:

Since environment is representative of location-year, we keep both ENVIRONMENT and

LOCATION for further consideration on LOCATION effects in future studies.

– Inputs: A dataframe including at least GENOTYPE, LOCATION, YEAR, REPNO, PT.

– Ouputs: A dataframe including GENOTYPE, LOCATION, YEAR, ENVIRONMENT, REPNO,

PT, Corrected PT, M Corrected PT, ACTUAL PT.

After this step, depending on the need for removing the locations’ effect with respect to

relative maturity bands, i.e., their physiological maturity information, RM correction function

can be used. The term Relative Maturity is especiallay used for soybean and corn hybrids. It

serves as a criteria to compare genotypes with similar maturity bands. This set of data

pre-prosessing can be used as of the user’s preference. This function takes and gives the following

arguments:

– Inputs: A dataframe including GENOTYPE, LOCATION, YEAR, ENVIRONMENT, REPNO,

PT, Corrected PT, M Corrected PT.

– Ouputs: A dataframe including GENOTYPE, LOCATION, YEAR, ENVIRONMENT, REPNO,

PT, Corrected PT, M Corrected PT, CORRECTED PT RM.

Following the data pre-processing functions, as shown in the flowchart, the next function that

is implemented, is rank analyzer. This function is one of the most important functions in this

package and is responsible for the analysis derived from bootstrapping approach.

The pre-processed output as experiment data input argument along with other input data

such asgenotypes set, boots matrix, and method will be fed into rank analyzer This function

has the following input arguments:
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– experiment data: A dataset (e.g., output dataset of data pre-processing) including all the

experiment (trial) information.

– output name: A character value indicating the name of the file to be saved on the

directory /Outputs/. If this directory doesn’t exist, it will be generated.

– genotypes set: A vector of genotypes’ subset to be analyzed. The default genotype set

includes all genotypes in the experiment.

– boots matrix: A matrix of bootstrap samples of the locations. By default, the value for

this argument is NULL, which means a matrix of bootstrap resamples should be generated

with size 1000. Otherwise, the user should provide the matrix.

– method: The method to do the analysis based on it. It can be whether mean phenotype,

probabilistic or both. The default method is both.

It worth mentioning that boots matrix is set as an input for the sake of traceability.

However, to make the package applicable for all potential users, such as breeders who might not

be interested in feeding a matrix of locations and seek only the output of the function, the

function sets a set of bootstrap samples if the user would not provide it. In this regard, the

output of this function is automatically saved for further analyses.

As mentioned above, rank analyzer is one of the package’s important functions, which

utilizes different helper functions to generate the outputs of interest. The helper functions are:

• RankPhenotype extractor()

• gen comparison()

• genotype list probs()

• CI calculator()

• pairwise probs()
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• Probabilistic ranks()

Figure 4.2 shows the flowchart of the helper functions within rank analyzer function.

Figure 4.2: Flowchart of the helper functions within rank analyzer function.
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In the first step, the pre-processed data will be fed into the RankPhenotype extractor. This

function creates rank table and phenotypic response table for the experiment data. In the next

step, if the defined method is mean phenotype, gen comparison function will be executed. Rank

table information is the main input of this function.It creates the the frequency distribution of

locations for each potential rank for all genotypes.

The path leads toward genotype list probs and the distribution of the rank probabilities for

each genotype will be produced. This output along with the p (indicating the percentage

corresponding to the confidence interval) will then feed into the CI calculator which computes

the CI for each genotype.

If the defined method is probabilistic, the path goes to pairwise probs function. This

function creates pairwise probability comparisons. This output is then used for in

Probabilistic ranks to generate probabilistic ranks. Here is the rank analyzer function with

its default arguments’ values:

rank_analyzer = function(experiment_data,

output_name = ’output’,

genotype_set = unique(experiment_data$GENOTYEP),

boots_matrix = NULL,

method = ’both’)

As stated before, this function uses bootstrapping for generating its following objects, which

can be generated based on the method defined in the function input argument. The function

provides the following outputs:

• experiment data: The dataset analyzed.

• CI data: A dataframe of all ranks probabilities for each genotype.

• CI Info: A dataframe of genotypes with their most probable rank.

• boots ranks: Frequency matrix of genotypes’ ranks in all locations throughout all

bootstrap resamples.
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• boots PTs: A dataframe of genotypes’ mean phenotype in all bootstrap resamples.

• pairwise probs: A dataframe of pairwise comparison probabilities.

• probabilistic ranks: A dataframe including probabilistic ranks of genotypes along with

their mean phenotype ranks.

With regard to the first output, we keep the input dataset which has been analyzed through

rank visualization for the sake of traceability and further exploration.

4.3.3 Visualization of Rank Uncertainty

Once all the outputs are generated, the users can visualize the information through the

heatmap of the genotypes’ ranks (whether traditional observed mean phenotype or probabilistic)

confidence intervals. If the generated rank is mean phenotype, rank CIs generated with this

function can be an insightful tool for breeders with respect to genotypes’ ranks because it tries to

show the uncertainty roots in absolute ranks through their confidence intervals. The other

method would be probabilistic which delivers the probabilistic ranks heatmap. As explained in

section 4.2.1, we propose a new ranking approach which takes advantage of probabilistic

comparison of genotypes and ranks them accordingly (See algorithm 1). The function sorts the

genotypes based on their most probable ranks for visualization.

– Inputs:

– input name: A character value indicating the name of the saved file from

rank analyzer function which is stored.

– p: A float in [0, 1] used for constructing the confidence interval. The default value is

set for 0.8.

– n top: A numeric value specifying the number of n-top genotypes to visualize. By

default, it shows the top two genotypes based on the method ranks are calculated.

– Ouputs: A ggplot object of the heatmap for the CI of the ranks.
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If the input name does not exist, it prints out to the screen that ”The file doesn’t exist. First, run

the rank analyzer function to generate the input for this function.”

Here is the rank visualization function with its default arguments’ values:

rank_visualization = function(input_name,

p = 0.8,

n_top = 2,

method = ’mean_phenotype’)

4.4 Use Cases

This package has been developed for the purpose of multi-environment trails’ analysis using

new proposed probabilistic approaches. For the rest of this chapter, we bring two datasets of oat

and rapeseed to demonstrate the concepts and applicability of the package for real world datasets.

We have used these datasets as a demonstration guide and one can use much bigger datasets for

further explorations of the package. It is noteworthy to mention that while we use yield as the

phenotypic response in the following sections, the package can handle any continuous phenotypic

response.

4.4.1 Oat Dataset

In this part, we will utilize the multi-environment trial of oat yield from metan package

(Olivoto and L’ucio, 2020). The dataset has 420 observations, 10 genotypes in 14 environments

with 3 replications in each environment for all genotypes. It is noteworthy to mention that

columns’ names are not compatible with the package requirements and one should rename them if

using this dataset.

4.4.1.1 Main Functions and Their Outputs

First, as shown in Figure 4.1, the data goes to data preparation function. Below is a

summary of the output dataframe columns with some of their data and their structures. As
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mentioned before, REPNO is indicating the number of replications each genotype has in each

environment and PT is representing the phenotype, i.e., yield. Also, since ENVIRONMENT is not

available in the dataset, the data preparation function creates it by default. Yet, it keeps both

ENVIRONMENT and LOCATION for further consideration on LOCATION effects in potential future

explorations.

oat_data = data_preparation(data)

glimpse(oat_data)

## Rows: 420

## Columns: 9

## Groups: GENOTYPE, ENVIRONMENT [140]

## $ ENVIRONMENT <chr> "E1 2020", "E1 2020", "E1 2020", "E1 2020", "E1 2020", ~

## $ GENOTYPE <fct> G1, G1, G1, G2, G2, G2, G3, G3, G3, G4, G4, G4, G5, G5,~

## $ REPNo <fct> 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1~

## $ PT <dbl> 2.16700, 2.50304, 2.42732, 3.20750, 2.93290, 2.56484, 2~

## $ YEAR <dbl> 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2~

## $ LOCATION <fct> E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1,~

## $ P_Env <dbl> 2.520683, 2.520683, 2.520683, 2.520683, 2.520683, 2.520~

## $ Corrected_PT <dbl> -0.353683333, -0.017643333, -0.093363333, 0.686816667, ~

## $ M_Corrected_PT <dbl> -0.15489667, -0.15489667, -0.15489667, 0.38106333, 0.38~

As we have mentioned in section 4.3.2, rank analyzer provides a set of outputs based on the

provided bootstrap matrix. Here we bring the outputs for 50 iterations to serve its purpose as a

demonstration guide. The user would use this function for much larger bootstrap samples for

more accurate results. In the following, the summary of three outputs along with some of their

data and columns’ structures for oat experiment data are shown.

glimpse(rank_analysis_info[[2]])
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This is showing a summary of the second output of the dataframe rank analyzer function

consisting of all ranks probabilities for each of 10 genotypes in oat dataset.

## Rows: 10

## Columns: 13

## $ GENOTYPE <fct> G8, G3, G2, G7, G4, G1, G9, G6, G5, G10

## $ ‘1‘ <dbl> 0.67, 0.32, 0.09, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0~

## $ ‘2‘ <dbl> 0.26, 0.60, 0.04, 0.04, 0.01, 0.01, 0.00, 0.00, 0.00, 0~

## $ ‘3‘ <dbl> 0.04, 0.06, 0.45, 0.27, 0.04, 0.04, 0.01, 0.02, 0.02, 0~

## $ ‘4‘ <dbl> 0.01, 0.02, 0.22, 0.39, 0.14, 0.05, 0.06, 0.04, 0.01, 0~

## $ ‘5‘ <dbl> 0.01, 0.00, 0.11, 0.11, 0.39, 0.11, 0.09, 0.06, 0.03, 0~

## $ ‘6‘ <dbl> 0.00, 0.00, 0.05, 0.10, 0.17, 0.21, 0.17, 0.14, 0.08, 0~

## $ ‘7‘ <dbl> 0.00, 0.00, 0.02, 0.03, 0.14, 0.21, 0.19, 0.19, 0.12, 0~

## $ ‘8‘ <dbl> 0.01, 0.00, 0.00, 0.02, 0.08, 0.15, 0.16, 0.27, 0.15, 0~

## $ ‘9‘ <dbl> 0.00, 0.00, 0.00, 0.01, 0.03, 0.14, 0.17, 0.17, 0.32, 0~

## $ ‘10‘ <dbl> 0.00, 0.00, 0.01, 0.03, 0.01, 0.08, 0.15, 0.11, 0.28, 0~

## $ M_Corrected_PT <dbl> 0.33, 0.28, 0.07, 0.07, -0.03, -0.07, -0.16, -0.14, -0.~

## $ Rank <dbl> 1, 2, 3, 3, 5, 6, 9, 7, 7, 10

Another output that rank analyzer gives us is the pairwise comparison probabilities. This

dataframe is reported as the sixth output of this function.

glimpse(rank_analysis_info[[6]])

## Rows: 90

## Columns: 3

## Groups: GENOTYPE [10]

## $ GENOTYPE <chr> "G1", "G1", "G1", "G1", "G1", "G1", "G1", "G1", "G1", "G10~

## $ Compared_to <chr> "G10", "G2", "G3", "G4", "G5", "G6", "G7", "G8", "G9", "G1~

## $ Prob <dbl> 0.464, 0.329, 0.071, 0.386, 0.550, 0.500, 0.286, 0.000, 0.~
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If the user considers method in its input parameters as probabilistic or both, one of the

main outputs of the rank analyzer function would be the new proposed probabilistic ranks. It is

derived from the embedded helper function, Probabilistic ranks.

Following, the example of the generated output for oat dataset is shown:

glimpse(rank_analysis_info[[7]])

## Rows: 10

## Columns: 3

## $ GENOTYPE <chr> "G1", "G10", "G2", "G3", "G4", "G5", "G6", "G7", "G8~

## $ Observed_Rank <int> 6, 10, 3, 2, 5, 7, 8, 4, 1, 9

## $ ProbabilisticRank <int> 6, 10, 3, 2, 5, 8, 7, 4, 1, 9

4.4.1.2 Visualization Function and its Outputs

Figure 4.3 is showing the CIs of mean yield ranks (input argument method is defined as

mean phenotype) for 80% confidence level (p = 0.8). It is the output of rank visualization

when the output object of rank analyzer is fed to the function as rank.analyzer.output.

Rank_CI = rank_visualization(input_name = rank.analyzer.output,

p = 0.8,

n_top = 10,

method = ’mean_phenotype’)
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Figure 4.3: Confidence intervals of rank when ranking oat cultivars according to mean yield across
the target environments.

To see how reliable the new tool is compared to ranks based on observed yield, the rank

confidence interval of probabilistic ranks is also provided as an output for this function in Figure

4.4. It should be noted that to create this plot, the function needs to run rank analyzer

repeatedly which is embedded inside the function.

As can be seen, the CIs are tighter for genotypes’ probabilistic ranks, and it is suggested that

one can be more certain when reporting the probabilistic ranks compared to observed yield ranks.

This affirms the gap in the literature and the importance of the new approach we have proposed

in our endeavor to fill in the gap in plant breeding MET analysis to address the uncertainties

rooted in G×E interactions of genotypes when comparing them.



76

Figure 4.4: Confidence intervals of rank when ranking oat cultivars according to which is the most
likely to have higher yield across the target environments.

4.4.1.3 Comparison of probabilistic ranking and other selection methodologies

As mentioned before, at its core, this complex selection process comes down to making

pair-wise comparisons between two genotypes. A pair-wise comparison may be converted into a

ranked list. Table 4.1 demonstrates the results of ranked list of genotypes according to

probabilistic ranking along with ranked lists with mean phenotype ranking and three classic

approaches, i.e., Kang’s rank-sum method (Kang, 1988), stability variance (Shukla, 1972), and

superiority measure (LIN and BINNS, 1988) for comprehensive exploration. The very first

method measure calculates the stability variation as an unbiased estimate of G×E. The second

measure adds the ranks of mean yield with stability measure of variance defined by Shukla so as

to achieve relatively stable genotype with higher yield by way of lower rank-sum. The latest one

is a stability measure that finds the average mean square differences of genotypes’ response with

the best response over the locations. Superiority indices are defined as Pi a, Pi f , Pi u in the

table for all, favorable and unfavorable environments respectively.
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Table 4.1: Oat Genotypes’ ranks based on probabilistic and some traditional ranking methods.

Genotype

Ranking Method

Probabilistic

Rank
Mean Yield

Shukla’s

Variance

Kang’s

Rank-Sum

Superiority Measure

All Env. Favorable Unfavorable

G8 1 1 6 2(7) 2 2 1

G3 2 2 1 1(3) 1 1 2

G7 3 4 8 6(12) 4 6 3

G2 4 3 7 4(10) 3 3 5

G4 5 5 5 4(10) 6 5 4

G1 6 6 2 3(8) 5 4 6

G6 7 8 3 5(11) 7 7 8

G5 8 7 4 5(11) 8 8 7

G9 9 9 9 7(18) 9 9 9

G10 10 10 10 8(20) 10 10 10

4.4.1.4 Convergence of Bootstrap Sampler

In this section, we evaluate the convergence for the bootstrap estimates of the desired

probabilities with respect to the bootstrapping sample size. Specifically, we try to show that the

probability estimates converge as the number of samples increases. The convergence plot shown

in Figures 4.5 and 4.6 suggest a practical recommendation on how long the user need to run the

model. As shown in Figure 4.5, the number of iterations needed is a function of the mean

difference between genotypes and in order to compare genotypes, we may need increased precision

depend on the similarity of genotypes. It means that for the similar genotypes, we may need a

large number of of bootstrap samples while if we have a substantial gap between genotypes, less

precision is needed. As can be detected in Figure 4.5, to have a reliable estimation on how G8

outperform G3 in oat data set (e.g., P̂ (G8 > G3) > 1
2), i.e., have its win probability converged, we

might need to have more than 8000 bootstrap samples.
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On the other hand, when comparing top genotype, i.e., G8, to another genotype, e.g., G5, it

can be detected that the convergence starts in much lesser number of bootstrap samples. It is

shown in Figure 4.6 that the trend gets almost stable after around 2000 iterations. This

procedure has been reproduced three times for validation as shown in Figures 4.5 and 4.6. This

suggests that bootstrapping as having good asymptotic properties can account for a proper

comparison when one consider to draw enough samples to have accurate probabilities.
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4.4.2 Rapeseed Dataset

In this part, we use rapeseed yield multi-environment trial that has been described by (Shafii

et al., 1992) and is available through agridat package (Wright, 2021). It contains 6 cultivars

(genotypes) grown in 14 locations across 3 years of 1987, 1988, and 1989.

4.4.2.1 Main Functions and Their Outputs

Here, a same procedure done for oat dataset in previous part, is implemented for rapeseed

dataset. Below is a summary of data preparation output dataframe with a brief information of

each column, their data and structures.

rapeseed_data = data_preparation(data)

glimpse(rapeseed_data)

## Rows: 648
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## Columns: 9

## Groups: GENOTYPE, ENVIRONMENT [162]

## $ ENVIRONMENT <chr> "GGA 87", "GGA 87", "GGA 87", "GGA 87", "GGA 87", "GGA ~

## $ YEAR <int> 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87,~

## $ LOCATION <fct> GGA, GGA, GGA, GGA, GGA, GGA, GGA, GGA, GGA, GGA, GGA, ~

## $ REPNO <fct> R1, R2, R3, R4, R1, R2, R3, R4, R1, R2, R3, R4, R1, R2,~

## $ GENOTYPE <fct> Bienvenu, Bienvenu, Bienvenu, Bienvenu, Bridger, Bridge~

## $ PT <dbl> 960.61, 1329.39, 1781.11, 1698.16, 1605.13, 1211.69, 13~

## $ P_Env <dbl> 1396.081, 1396.081, 1396.081, 1396.081, 1396.081, 1396.~

## $ Corrected_PT <dbl> -435.47125, -66.69125, 385.02875, 302.07875, 209.04875,~

## $ M_Corrected_PT <dbl> 46.23625, 46.23625, 46.23625, 46.23625, -32.78625, -32.~

As mentioned in the previous section, the experiment data is returned as the first output of

rank analyzer package concerning traceability. Therefore, we bring the review for the rest of the

outputs.

glimpse(rank_analysis_info[[2]])

## Rows: 6

## Columns: 9

## $ GENOTYPE <fct> Glacier, Bienvenu, Bridger, Jet, Cascade, Dwarf

## $ ‘1‘ <dbl> 0.71, 0.10, 0.19, 0.04, 0.02, 0.01

## $ ‘2‘ <dbl> 0.18, 0.28, 0.35, 0.14, 0.04, 0.03

## $ ‘3‘ <dbl> 0.07, 0.26, 0.26, 0.22, 0.11, 0.11

## $ ‘4‘ <dbl> 0.02, 0.22, 0.09, 0.29, 0.19, 0.17

## $ ‘5‘ <dbl> 0.01, 0.10, 0.07, 0.24, 0.24, 0.31

## $ ‘6‘ <dbl> 0.00, 0.04, 0.04, 0.07, 0.39, 0.37

## $ M_Corrected_PT <dbl> 113.51, 119.68, 1.34, -89.51, -45.74, -99.28

## $ Rank <dbl> 2, 1, 3, 5, 4, 6
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The above table shows the probability of each cultivar being ranked from 1 to 6 along with

their mean yield and rank. The third object returned from rank analyzer is a list off genotypes

with their most probable rank derived from the bootstrap resampling procedure.

glimpse(rank_analysis_info[[3]])

Rows: 6

Columns: 2

$ GENOTYPE <fct> Glacier, Bienvenu, Bridger, Jet, Cascade, Dwarf

$ MostProbable_rank <dbl> 1, 2, 2, 4, 6, 6

The forth object is a table of rank frequency of genotypes in all locations throughout all

bootstrap resamples. This output can be potentially useful when analyzing a subset of

environments, if needed.

glimpse(rank_analysis_info[[4]])

## Rows: 300

## Columns: 7

## $ GENOTYPE <fct> Bienvenu, Glacier, Bridger, Cascade, Jet, Dwarf, Bienvenu, Gl~

## $ ‘1‘ <int> 2, 22, 0, 0, 4, 0, 2, 15, 10, 1, 0, 1, 27, 1, 0, 0, 0, 0, 0, ~

## $ ‘2‘ <int> 1, 2, 16, 0, 8, 2, 1, 12, 13, 1, 1, 2, 0, 21, 1, 0, 4, 3, 11,~

## $ ‘3‘ <int> 10, 2, 2, 8, 4, 4, 10, 0, 2, 2, 9, 9, 0, 1, 8, 0, 10, 9, 10, ~

## $ ‘4‘ <int> 7, 0, 3, 11, 2, 4, 4, 0, 0, 3, 5, 12, 0, 2, 7, 0, 13, 5, 4, 0~

## $ ‘5‘ <int> 6, 1, 1, 6, 9, 2, 9, 0, 0, 2, 9, 3, 0, 2, 11, 0, 0, 10, 1, 0,~

## $ ‘6‘ <int> 1, 0, 5, 2, 0, 15, 1, 0, 2, 18, 3, 0, 0, 0, 0, 27, 0, 0, 1, 0~

The fifth output derived from rank analyzer is a dataframe of genotypes’ mean phenotype in

all bootstrap resamples.

glimpse(rank_analysis_info[[5]])
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## Rows: 300

## Columns: 2

## $ GENOTYPE <chr> "Bienvenu", "Glacier", "Bridger", "Cascade", "Jet", "Dwarf",~

## $ MeanYield <dbl> -11.387, -35.096, 59.356, -93.081, 97.228, -17.020, -21.710,~

The pairwise comparison probabilities of rapeseed genotypes is the sixth output returned by

rank analyzer.

glimpse(rank_analysis_info[[6]])

## Rows: 30

## Columns: 3

## Groups: GENOTYPE [6]

## $ GENOTYPE <chr> "Bienvenu", "Bienvenu", "Bienvenu", "Bienvenu", "Bienvenu"~

## $ Compared_to <chr> "Bridger", "Cascade", "Dwarf", "Glacier", "Jet", "Bienvenu~

## $ Probability <dbl> 0.440, 0.613, 0.693, 0.273, 0.660, 0.560, 0.667, 0.634, 0.~

The last object returned by this function is the table of probabilistic ranks for rapeseed data.

glimpse(rank_analysis_info[[7]])

Rows: 6

Columns: 3

$ GENOTYPE <chr> "Bienvenu", "Bridger", "Cascade", "Dwarf", "Glacier", "Jet"

$ observed_Rank <int> 1, 3, 4, 6, 2, 5

$ ProbabilisticRank <int> 3, 2, 4, 6, 1, 5

The outputs of rank analyzer are then feed into the visualization function that incorporate

valuable insights to users, especially breeders, from the proposed bootstrapping approach.

4.4.2.2 Visualization Function and its Outputs

Figure 4.7 is showing the rank CIs of rapeseed from rank visualization for the mean yield

ranks with 80% confidence level (p = 0.8).
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Figure 4.7: Confidence intervals of rank when ranking rapeseed cultivars according to mean yield
across the target environments.

Regarding the performance comparison of the genotypes in rapeseed data, Shafii et al. (1992)

have shown that the Bridger and Bienvenu cultivars have strong interaction effects with the

environment whereas the Glacier cultivar had the least interaction effects. They have also shown

that Glacier is the most stable cultivar, whereas Bridger and Bienvenu are the least stable (Shafii

and Price, 1998).

We can see that confidence intervals of rank can detect their findings in Figure 4.8. It also

shows how Bienvenu and Bridger are adaptive and have a chance to perform very well in their

desirable environments, which might become misleading when compared with a good-performing

stable cultivar if the observed environment distribution gives the preference toward them. This

brings up concerns when decision-making. The literature has also tried to explain it (Shafii et al.,

1992; Shafii and Price, 1998; Tai, 1971).

One other output we find an insightful visualization is the CIs we get from probabilistic ranks.

When using probabilistic rank, as it captures both genetic effect superiority and stability

simultaneously, one can consider these decision criteria being reflected in probabilistic rank and

be more confident about their decision because probabilistic ranking tries to capture the
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uncertainty stems in limited environments observed. This is the case for the rapeseed dataset

when we visualize the probabilistic rank CIs, shown in Figure 4.8, where we get tighter CIs for

the top cultivars that implies a greater degree of precision for selecting Glacier.
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Figure 4.8: Confidence intervals of rank when ranking rapeseed cultivars according to which is the
most likely to have higher yield across the target environments.

Looking at Table 4.2, the Bienvenu cultivar ranks the highest based on mean yield, followed

closely by the Glacier cultivar (2487.95 and 2481.78 kg/ha). It is therefore predictable that the

probabilistic analysis ranks Glacier ahead of Bienvenu due to its superior stability. An interesting

observation is that the cultivar that is third according to mean yield rank, namely Bridger, also

ranks above Bienvenu according to the probabilistic analysis. The mean yield of Bridger is almost

118 kilograms smaller than Bienvenue and only 101 kilograms more than the Dwarf cultivar that

has the smallest yield. Furthermore, the analysis reported by (Shafii and Price, 1998) does not

show differences in stability between the two cultivars. Nonetheless, the probabilistic comparison

can show that Bridger is more likely to perform better than Bienvenue across these environments.
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Table 4.2: Rapeseeds’ ranks based on probabilistic and some traditional ranking methods.

Genotype

Ranking Method

Probabilistic

Rank
Mean Yield

Shukla’s

Variance

Kang’s

Rank-Sum

Superiority Measure

All Env. Favorable Unfavorable

Glacier 1 2 1 1(3) 2 2 3

Bridger 2 3 5 3(8) 5 6 1

Bienvenu 3 1 6 2(7) 1 1 4

Cascade 4 4 4 3(8) 3 4 2

Jet 5 5 3 3(8) 6 5 5

Dwarf 6 6 2 3(8) 4 3 6

4.4.2.3 Convergence of Bootstrap Sampler

Here, the convergence of pairwise comparisons with respect to the bootstrap sample sizes is

explored for rapeseed data. Figure 4.9 is showing how method converges fast when the cultivars

(genotypes) are far from each other (with respect to their genetic effects) and the model does not

need large bootstrapping. On the contrary, Figure 4.10 shows that more than 2000 bootstraps are

required for a convergence of Bridger win probability over Bienvenu. This concept needs to be

considered by the user when inserting the bootstrap samples matrix of boots matrix to

rank analyzer function.
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Figure 4.9: Convergence of the estimated win probability based on pairwise comparison for Glacier
and Dwarf.
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Figure 4.10: Convergence of the estimated win probability based on pairwise comparison for Bridger
and Bienvenu.

To sum up the understanding from analyzing the rapeseed dataset, one can notice that along

with the literature that has done a detailed analysis of this data using the AMMI model, biplots

based on the principal components obtained from that model, and thorough investigation of the

environment-by-environment performance of cultivars, the user can detect the same conclusion

from Figure 4.8 when using the new proposed method. To the best of our knowledge, no other

method has pulled together all the information and shown this conclusion in a summary plot.
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4.5 Conclusion

There exists a lot of tools that are being used for analysis of multi-environment trial data. In

this chapter, we try to add a new one for analyzers to investigate METs from a new perspective.

It would be particularly interesting for breeders to make sure they have considered both the

traditional and newly proposed approaches when decision-making. METanalyzeR package can be

used on real world large datasets as well as synthetic datasets for specific research explorations.

The development version of this package is on Github for usage at (Bijari). It can also be

installed using devtools as below:

# install.packages("devtools") run this line to install devtools

devtools::install_github("ReyhanehBijari/METanalyzeR")

library(METanalyzeR)

As the next step, we will upload an stable version of METanalyzeR package on CRAN.
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CHAPTER 5. GENERAL CONCLUSION

5.1 Summary

This dissertation is devoted to help solving a real world problem innovative using data

science. There have been lots of efforts in the area of plant breeding to improve the quality of

decisions made in such programs. While the use of new techniques has increased in this area,

there exist lots of limitations in these programs that tie to unavoidable uncertainties that need to

be taken into account for proper analysis. We believe plant breeding would benefit from the body

of this work as it tries to fill the gap in the analysis of METs data.

The novel methods presented in this dissertation have two themes in common. First, we aim

to account for the uncertainty due to the limited number of environments being observed. This is

particularly important in plant breeding because the interaction effects between genotype main

effect and the environment are typically large, and it is impossible to ever observe all

environments of interest. The year effect is the larger part of the environmental interactions and

it is simply impossible to experiment with tens of years. And even within a year, experimenting

with a large number of locations is expensive and thus rarely feasible. The second common theme

is how the uncertainty is estimated. We propose the use of resampling with replacement of

environments, that is, bootstrap resampling, to estimate the probabilities of interest. To the best

of our knowledge, this has not been investigated before in the plant breeding context, but our

results indicate that it works well and could thus perhaps be utilized further for such data.

More specifically we investigate two new methods. In Chapter 2 we have proposed a novel

method for constructing approximate rank confidence intervals when ranking experimental

genotypes. The relevant probabilities are estimated using the above-mentioned bootstrap

approach and the confidence intervals thus capture the uncertainty due to the selection of

environments observed. We show that the empirical coverage of the confidence intervals is good,
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that is, they work well in practice, and compare the use of rank confidence intervals to a standard

approach.

In Chapter 3 we propose an entirely new method for making pair-wise comparisons between

genotypes, namely to prefer the genotype that is more likely to be better across a sample of

environments rather than the genotype with the better mean. Again, the probabilities are

estimated using bootstrapping. We show that in many cases decisions made using such

probabilistic comparison differ from those made using means-based comparison; and this is

especially true of cases that are of the most practical interest, namely when the main effects are

close and the two genotypes interact with the environment in different manners.

Finally, Chapter 4 pulls together the material from Chapter 2 and Chapter 3. We describe an

R package developed so that users can apply these two new methods to support advancement

decisions. We further convert the probabilistic comparison into probabilistic rank and compare

this new ranking method to standard methods.

5.2 Future Work

As a new perspective to solve the research problem we defined, there is a lot into this research

for future work. As probabilistic comparison is not directly estimating any component of the

phenotypic response, it combines their effects within itself. The next step can be to investigate

whether and how the probabilistic selection includes more than the existing models (whole

distribution of phenotype), i.e., it includes both elements of mean prediction (BLUP, AMMI) as

traditional selection procedures and stability measures. An insightful future work can extend the

applicability of probabilistic comparisons by comparing them with traditional stability measures.

Another research can be applying predictive models for explaining when probabilistic selection is

different than mean selection.
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