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ABSTRACT 

Remanufacturing is the process of restoring a used product to the specifications of 

original manufactured product with a matching warranty. This process benefits the 

remanufacturers to a greater extent as it just requires the replacement of worn-out or obsolete 

components, thereby providing significant economic, social, and environmental benefits. 

Remanufactured components should meet the customer’s demand as new products and achieving 

this is a tough task due to uncertainty involved in the quantity and quality condition of the 

returned product. Inspection is one of the critical tasks in remanufacturing as it determines the 

quality of End of Life (EoL) product on arrival for remanufacturing, also inspection plays a 

crucial role in making the most appropriate decisions to proceed or scrap the product. Due to the 

drawbacks in the traditional manual inspection process because of its unreliable, subjective, 

time-consuming, and error-prone nature, attempts to adopt automatic inspection techniques 

gained attention in the industry. This study examines the capability of optical inspection 

techniques to increase productivity, profitability with higher reliability in remanufacturing. In the 

study, object detection methods are implemented to classify and locate defects on metallic 

surfaces using an open-source dataset GC10-DET. The detailed image pre-processing 

techniques, class imbalance techniques, and their effects on the model performance are also 

discussed. The YOLO (You Only Look Once) V4 algorithm with CSPDarknet-53 was used to 

locate and classify the defects. The performance of the algorithm is compared with other state-

of-the-art techniques published in the literature for recall, average precision, and mean average 

precision (mAP) metrics. Our model demonstrates effective defect localization with a mAP of 

66.78% and 93.63% for original and augmented datasets, respectively, which shows promise for 

the development of automated inspection technology. 
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CHAPTER 1.    INTRODUCTION 

1.1 Motivation 

Inspection is the process of inspecting the parts to identify the defects and ensure that a 

produced part has all the features (geometric dimensions and tolerances) within the design 

specifications. It is usual practice that manufacturing units do the inspection process even though 

it is economically expensive and time-consuming to ensure that products meet customer 

satisfaction and safeguard the business reputation. 

Montgomery et al. (1991) mentioned that inspection-free manufacturing is possible if the 

process capability ratio (PCR) is >= 1.33 for an existing process and >= 1.50 for a new process. 

Process capability ratio is the statistical measure of process capability, and process capability is 

the ability to produce the parts in specified tolerances. Mathematically PCR is represented as 

((USL – LSL)/6sigma). USL is upper specification limit, and LSL is lower specification limit. 

Only a few companies achieved this inspection-free manufacturing (e.g., Hewlett Packard 

LaserJet printers) (Mital et al., 1998). However, most companies still include the inspection 

process due to instability or large variability due to the manual inspection. 

There are three types of inspection processes a) Manual inspection, b) Hybrid inspection, 

c) Automated inspection (Kopardekar et al., 1993). As the name indicates, manual inspection 

purely depends on the human inspectors. Hybrid inspection is a semi-automated inspection 

process where some aspects of the inspection process can be automated and have the economic 

advantage compared with the fully automated process. Mital et al. (1998) stated that the hybrid 

method took less time with fewer errors (almost 47% fewer errors), and standard deviation of the 

process is better with  hybrid method. The manual inspection process is labor-intensive, time-

consuming, and has the scope to make the inspection process a bottleneck one (Intel, 2018). Intel 
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(2018) stated that it takes 6-9 months to train people for the manual inspection process to achieve 

the accuracy of 90 percent. Due to other factors like highly repetitive work, lack of insight, and 

process advancements, this accuracy can further decrease to 70-85%. Another drawback is that 

the manual inspection process results are not consistent and vary from person to person. To 

overcome these disadvantages, an attempt to implement a completely automated process using 

machine vision and machine learning techniques has been made in this thesis. 

Nowadays, ‘Sustainable growth’ has become one of the important objectives to achieve 

economic growth without reducing the natural resources. Recycling, recovery, and 

remanufacturing are the three primary ways to support sustainable growth. Recycling is the 

process of converting waste products into new ones, and it reduces the need for raw material. 

Recovery is the process of removing good components from the disposed parts. 

Remanufacturing is the process of recovering the usable parts and recycling the unusable parts 

and reassembling the recovered parts into good products. There are five important units in 

remanufacturing: Product Acquisition, Reverse Logistics, Inspection and Disposition, 

Reconditioning, Distribution, and sales. Errington et al. (2013) stated that the European Union 

had passed legislation for certain product manufacturers (e.g., plastic), which imposes 

responsibilities to the makers to dispose of the products at the end of life. This shows us the 

importance of remanufacturing in today’s industrial conditions. 

Extensive research is being done on different aspects of remanufacturing like production 

planning approaches, operations management, reverse logistic channels, but little research is 

involved in the inspection process (Guide et al., 2002). Steinhilper et al. (1998) stated that 

assessing the condition of disassembled and cleaned parts is the most crucial step in 
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remanufacturing. It is a labor-intensive and time-consuming process to test, sort, and grade the 

returned products (Guide et al., 2002).  

Inspection is one of the crucial aspects of remanufacturing to determine the returned 

item’s condition. The process of accepting or rejecting the returned item is determined in this 

step. Sorting the components in remanufacturing 100% inspection is necessary to gain the second 

user’s confidence and increase the manufacturer’s profitability (Errington et al., 2013). Because 

of this 100% inspection, remanufactured products have better reliability than the new ones. 

However, when carried out manually, this inspection process can be very tedious. Hammond et 

al. (1998) stated that the lack of skill in inspecting the parts and the difficulty in identifying the 

defects as some of the major issues that inspectors experience. This thesis discusses the potential 

implementation of complete automation for the inspection process using machine vision and 

machine learning techniques with a case study. 

 

1.2 Overview of Proposed Framework 

 

The purpose of this study is to automate the inspection process using machine vision and 

machine learning techniques with great accuracy. Inspection process carried out in this study is 

to detect and classify the defects of metal components; and types of defects are discussed later in 

the section. Machine vision involves the utilization of vision systems to collect the images of the 

defects. Machine learning algorithms help to detect the defects of a component automatically 

without manual intervention. The aim of this study is to locate and classify the defects with great 

accuracy. The number of defects per image could be more than one. It involves the extensive 

review of existing literature for the methods used, accuracy achieved, and metrics used to 
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determine the performance of the algorithms used. The research objectives that frame the scope 

of this research are: 

 

• Study the existing literature to collect the information to overcome the limitations 

involved in collecting the images and types of metrics to avoid bias and other 

factors of the algorithm. 

• Collect the defect images for the case study to investigate and validate the 

proposed method. For the case study, dataset comes from the open-source data 

repository ‘Kaggle’/ ‘GitHub’. 

• Identify and select the most appropriate image transformation techniques to 

augment the dataset. 

• Implement the object detection algorithm on the dataset from case study to 

classify and detect the defect location. 

• Tune the algorithm to choose the optimal set of hyperparameters for better model 

performance. Parameters that define the model architecture is known as 

hyperparameters and the process of searching the ideal model architecture is 

hyperparameter tuning. 

 

1.3 Thesis Roadmap 

The concept of automating the inspection process is not new; however, most discussed 

approaches are limited to classifying the defects where there is a single defect per image, or the 

performance of the algorithm is not sufficient to replace the manual inspection process. This 

study attempts to classify the defects which may not be visible to the human eye. Another 
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highlight of this study, apart from classifying the defects, is that to identify the exact location of 

defect.  

Chapter 2 covers the literature review about remanufacturing, automated defect detection 

techniques used and the research gap that needs to be fulfilled.  Chapter 3 explains the 

methodology, data pre-processing and information on the object detection algorithms considered 

in this thesis. Chapter 4 consists of the results. Chapter 5 features conclusions and limitations of 

the study. Further research scope is also provided. 
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CHAPTER 2.    LITERATURE REVIEW 

2.1 Introduction to Remanufacturing 

With rapid changes in features and capabilities, the useful life of products becomes short, 

which causes an increase in the generation of waste. Globalization also contributes to depleting 

natural resources due to its wide reach because this reach creates the demand for mass 

production due to a more extensive consumer base. The depletion of natural resources causes 

adverse effects on humankind, and to combat this, the concept of sustainability is introduced.  

The three pillars of sustainability are economic viability, environmental protection, and social 

equity. With the growing popularity and increase of awareness about sustainability, 

manufacturers started to implement their part to achieve the goals of sustainability. Reuse, repair, 

refurbish, recycle, and remanufacturing are significant ways to support sustainable growth. If it is 

feasible, remanufacturing could be the best approach among all (Kandukuri et al., 2019). This is 

because of the lower price of the remanufactured part. Environmentally, remanufacturing 

promotes scrap reduction by producing the new products with the old items. Steinhilper et al. 

(1998) stated that remanufacturing could save up to 90% of material compared with the new part. 

Ijomah et al. (2007) stated that remanufacturing is preferable to recycling to achieve better 

profits. These economic and environmental benefits of the remanufacturing help to achieve the 

aim of sustainability. 
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Figure 2-1 Remanufacturing as an alternative within the product life cycle (Kandukuri et al., 2019) 

 

 

The Fig 2-1 illustrates the importance of remanufacturing, recycling, repair in the product 

life cycle. Despite having the advantage of reducing the lead times compared to ordering new 

parts, remanufacturing is very often misunderstood with the repair process. Fig 2-1 shows that 

the method repair directs the parts to reuse by increasing the life cycle little more. But 

remanufacturing recovers the functional and material value from the used product and 

remanufactured product performs the same way or even better than the original new products. 

Remanufacturing refers to restoring a product to like-new condition by reusing, 

reconditioning, and replacing parts. Remanufacturing is also often confused with refurbishing 

and recycling. Refurbishing process brings the used product to a functional condition. The 

performance level may not be equal to the original product, whereas in remanufacturing, the 

performance level should be greater or equal to the new part. Recycling is just recovering the 

value of the material (Ortegon et al., 2013). 
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The reverse logistics of remanufacturing consists of the following stages (Ortegon et al., 2013): 

1. Collection of the used product 

2. Sorting 

3. Testing 

4. Disassembly 

5. Cleaning 

6. Reprocessing and part replacement  

7. Reassembly 

8. Inspection 

9. Packing and transportation  

10. Re-commercialization. 

Each stage has its challenges. The process of collecting the used products, part yield, and 

remanufacturing efficiency are significant factors in deciding a remanufactured product’s price 

(Sutherland et al., 2010). Traditionally, inspection is done after the complete disassembly and 

cleaning process. Only after inspection, the remanufacturing effort, time, and cost are determined.  

The cost of remanufacturing is volatile because the price of the remanufactured part depends on 

the quality of the returned product, product type, cost of material replaced.  Also, the cost varies 

depending on the type of industry. For the electronics company, the disassembly and assembly 

process drives the overall cost of remanufacturing, and for the automotive industry, it is due to 

replacing a new part in place of a damaged or worn-out part.  

Total cost of the remanufacturing can be written as (Ortegon et al., 2013): 

𝑅𝐶 = 𝐴 + 𝑅𝑝 + 𝑅𝑛 + 𝐻 + 𝐷    ………………………. (1) 
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Where 𝑅𝐶 represents total remanufacturing cost, 

              𝐴  is returned product acquisition cost, 

              𝑅𝑝 is cost of replaced components, 

              𝑅𝑛 is the reconditioning cost, 

              𝐻  is the Inventory cost, and 

              𝐷  is cost of disposal.  

 

2.2 Defect detection techniques 

Apart from manual inspection, defect detection approaches are divided into traditional 

recognition methods and deep learning methods. Traditional recognition methods consist of two 

steps: traditional image processing and machine learning techniques (Baumgartl et al., 2020). 

Traditional image processing techniques try to extract relevant data features from the raw images 

and these features are used to train the machine learning algorithm to learn the pattern in the 

images with target objects. Machine Learning (ML) techniques can be classified into three 

categories: supervised, semi-supervised and unsupervised (Baumgartl et al., 2020). In supervised 

learning, the data must be labelled as per their categories and fed to train the ML algorithm. For 

supervised learning, user must know, identify, and label the defects. In unsupervised algorithm 

data is used without labelling and the algorithm tries to predict defects by itself. Semi-supervised 

algorithm uses both labelled and unlabeled data and involves the mixed approach of supervised 

and unsupervised training method. 

 Traditional image processing techniques based on the image background texture and 

divided into four categories: structural-based, statistical-based, filter-based, and model-based 
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methods (Ren et al., 2017). Structural-based methods are used in the applications like textile, 

fabrics where repetitive patterns exist. Important structural methods widely used in the industry 

are edge features, skeleton representation, morphological operations, and primitive 

measurements. Statistical methods are efficient for stochastic textures like ceramic tiles, wood, 

and castings. This method is based on the distribution of pixel values in the image and some of 

the popular statistical methods are the histogram-based method, local binary pattern, and co-

occurrence matrix. Filter methods are the ones that apply filters to the image texture. The type of 

filter method used depends on the domain of the application, and some of the filter methods are 

spatial-domain, frequency domain, and spatial frequency domain. Model-based methods uses 

multiple properties of the defects for constructing the representations of the image. Gaussian 

mixture entropy model comes under model-based methods. 

Ren et al. (2017) stated that these traditional image processing techniques aim to 

construct features for images, but there were no clear guidelines for selecting the optimal 

method. Since the metallic surfaces are prone to illumination and background clutter, these 

traditional image processing techniques cannot be implemented directly to the metallic surface. 

Also, in applications of these methods, depending on environmental factors, some parameters 

need to be adjusted, and even there are times where the whole algorithm needs to be re-designed 

completely. These approaches generally aim at only one specific environment, which is difficult 

to deploy in the more challenging real-world due to the lack of robustness and adaptability.  

Another important factor is that machine learning algorithm will not learn any pattern if the 

image processing techniques miss any important features and the chances of missing the 

important features is very high using the manual, traditional methods. With these disadvantages 

of getting suboptimal results led to the introduction of deep learning techniques for extracting the 
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image features instead of constructing the images. The deep learning networks have the 

advantages of automatically generating the relevant features and classifying the objects without 

intervention of any manual image processing technique. CNNs convert the raw image data to 

meaningful data representation - ‘feature maps’ which supports the final classification 

(Baumgartl et al., 2020). 

Deep learning techniques have two challenges in their implementation. One is the dataset, 

and the other is the precise identification of the defect area. Collecting a large amount of dataset 

is costly and need tedious manual work to label the data. Ren et al. (2017) proposed a generic 

method that classifies the defects using a small dataset, and patches were extracted from the pre-

trained network, and predictions were made using the heat map. 

 

 

Figure 2-2 Crack detection using sliding window technique 

 (a) Original image, (b) Proposed CNN, (c) Canny edge detection, 

and (d) Sobel edge detection (Cha et al., 2017) 
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Cha et al. (2017) proposed implementing a convolutional neural network and sliding 

window technology to detect the concrete cracks. The proposed network is trained on 40,000 

images with 256 x256 resolution and achieved validation accuracy of approximately 98%. 

Reflective and shadow defects were classified with great accuracy. From the figure 2-2, we can 

see that the proposed CNN method gives the accurate results of the thin crack defects but the 

traditional methods like Canny and Sobel edge detection both failed to detect the crack defect. 

The performance of the traditional methods was dependent on various condition like lighting, 

brightness, contrast of the image. But the proposed method using CNN produced efficient results 

irrespective of any conditions of the image (Cha et al., 2017). This method uses the sliding 

window technology, which is computationally expensive and not feasible in real-time tasks. The 

main drawback of this method is that it needs large amount of training dataset that is practically 

expensive and impossible to get in many cases. 

Lv et al. (2020) proposed implementing an end-to-end detection network (EDDN) using a 

single shot multi-box detector. The author implemented the algorithm on two datasets: the public 

NEU dataset and his own GC10-DET metallic surface defect dataset. Comparisons with the 

existing methods like SSD, Faster RCNN and YOLO V3 were made, and it was stated that the 

proposed method achieved better accuracy with less computation cost. 

Rahaman et al. (2009) proposed a defect detection and classification technique using 

ceramic tiles. The author used the traditional image processing techniques and achieved the 

classification accuracy of almost 90% in all the classes, but the proposed method was tedious and 

time-consuming, which is not feasible in real-time situations. The method also failed to detect 

the glaze and the scratch defects. 
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Yun et al. (2020) proposed convolutional variational autoencoder (CVAE) to generate 

enough data for the deep learning network and used these images for training the deep 

convolution neural network to classify the metallic defects. Testing was performed using the 

images collected from actual metal production line and an accuracy of 99.69 % was achieved, 

but while using this CVAE technique performance of the algorithm varies with respect to 

number of images used for CVAE to generate extra samples. Also, the performance dropped by 

almost 6% when a smaller number of samples were used for CVAE. There is a high chance of 

getting more false positives if there is any ambiguity in the dataset. 

Essid et al. (2018) proposed autoencoder deep neural network architecture to classify and 

locate the manufacturing defects. The autoencoder trained on the images obtained from different 

feature extraction techniques and comparison was made using the classification method like 

KNN, SVM. Though there was an improvement in terms of false positives and false negatives, it 

was very minimal and may not be reliable in the real time situations. Also, this method needs 

additional feature extraction process, which may be computationally not feasible. 

Lin et al. (2021) studied the impact of quality of training images on the performance of 

the object detection algorithms and found that defect visibility and over exposure had a 

significant impact on the algorithm performance and this brings the importance of image pre-

processing techniques to match all possible conditions in the training dataset that can occur in the 

shop floor.   

Implementation of pretrained network using metallic defects is one of the complicated 

tasks due to the non-availability of thousands of data points, and defects may not be visible due 

to surface quality and reflective property of the metallic surface. The current research shows a 

gap in the detection and localization of metallic defects on uncleaned surfaces. Recent studies 
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used traditional methods, sliding windows, or single-shot multi-box detectors. There is a need for 

developing the most efficient algorithm which performs better in terms of accuracy while being 

economically viable. An advanced technique, YOLO v4, is used in this thesis on an open-source 

dataset. The dataset is publicly available (GC10-DET); it was collected in real time production 

shop floor (Lv et al., 2020). The comparative study is conducted using different industry 

techniques, and accuracy with false negatives and false positives are reported. 

 

2.3 Convolution neural network 

Convolution neural network is a feed-forward neural network and well known for its 

applications in speech and image-data analysis. CNN uses the convolution and pooling layers to 

transform the image into its essential features and with the help of these features, network 

classifies the image. CNN usually consist of four major layers (see Fig 2-3): 1) convolutional 

layer; 2) activation layer; 3) pooling layer; and 4) fully connected layer. Convolution layer uses 

filter, also known as kernel, to view the few pixels of the input at a time and obtains the feature 

maps of the input image. In convolution process, kernel goes over the input image and performs 

the matrix multiplication. Convolution operation is a dot product of the original pixel value with 

weights defined in the filter. Let us consider Wi the weight of filter i, bi is the bias of filter i, Xs 

be the small part of the image with pixel intensity values of the image, σ is the activation 

function, and the size of input image is M × N. The convolution of Xs with filter i is obtained as 

(Ren et al., 2018): 

fi,s = σ(Wi Xs + bi) 

This process goes over the whole image using sliding mechanism with the patch size of  

a×b and stride size s, the size of the final output after convolution process is obtained as  
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 k × ⌈ [(M − a + 1)/s] ⌉ × ⌈ [(N − b + 1)/s] ⌉ ,  

where ⌈.⌉  is the ceiling function & k is the number of filters (Ren et al., 2017). 

The activation layers help to induce non-linearity to allow the network to train through 

back propagation. ReLu, Tanh, Sigmoid are some of the activations that are widely used in the 

industry. 

The pooling layer is the process of down sampling and reduces the size of the matrix. In 

this process, only one value is taken from the group and what is shown below represents max. 

pooling, where maximum values in the group is being picked. 

Pools = max (Xs) 

The pooling operation helps to train the network much faster by focusing only on the 

critical and important features of the image. This helps to avoid the over fitting issues in the 

network. For example, the output of the max pooling process with input size M×N and patch 

size c × d is obtained with a size ⌈ [(M − 1)/c] ⌉ × ⌈ [(N − 1)/d] ⌉ where ⌈. ⌉ is the ceiling function. 

Fully connected layer has the structure like the traditional multilayer perceptron. Fully 

connected layer is obtained after flattening the output of its previous pooling or convolutional 

layer and represents in the form of a one-dimensional vector. Flattening is the process of 

unrolling all the values in a matrix into a vector. These fully connected layers uses the softmax 

activation function to get the probabilities. Output of the fully connected layer contains a list of 

probabilities of the input being in a particular class and classification decision is made based on 

these probabilities. 
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Figure 2-3 Detailed picture of the convolution neural network 

 

 

2.4 Deep neural networks  

In deep learning, CNN is the most representative model, and the typical architecture is 

generally referred to as VGG16. The architecture of VGG16 is shown in the figure below. Each 

layer in the CNN architecture is a feature map and the input layer feature map is a 3D matrix of 

pixel intensities of different color channels. Each neuron is connected to a portion of neurons in 

the previous layer, and this is known as receptive field. The feature maps can undergo different 

types of transformations like filtering, pooling. The final layers in the CNN architecture will be 

several fully connected layers and these layers will have different activation functions to 

calculate the conditional probability for each output neuron. From the above-mentioned 

components VGG16 has a total of 13 convolutional layers, 3 fully connected layers, 3 max-

pooling layers and a SoftMax activation function to the final layer to calculate the conditional 

probabilities. 

 

Figure 2-4 Architecture of VGG16 network. 
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Starting with Alexnet, deep neural networks showed their superiority over other 

techniques in the ImageNet data competitions, and this showed the importance of network depth 

and the depth of the networks increased from sixteen to thirty in consecutive years in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition.  In view of the 

results from ILSVRC competition, a debate on the significance of depth for learning within 

networks has started. He et al. (2016) stated that with the increasing number of layers, the 

algorithm does not always give the better results; and additional layers can also deteriorate the 

performance due to vanishing/exploding gradients and the degradation problem. The 

phenomenon of the accuracy reaching the saturation level and then rapidly degrading with the 

increase in depth is known as the degradation problem.  

 To address this issue of vanishing gradient and degradation problem, He et al. (2016) 

proposed a residual learning framework with skip connections. Fig 2-5 & 2-6 shows the training 

error and validation error using the plain and ResNet networks. In the case of plain network, it is 

evident that training and validation error is higher using the network with 34-layers than the one 

with 18-layers. But with the ResNet, the deep layered network (34-layer) performed better than 

the shallow network (18-layer). Also, error percentage is very less comparatively using the 

ResNet than the plain network. Fig 2-7 shows the feed forward network with shortcut 

connections (skip connections) at each layer. In ResNet, the output of the skip connections gets 

added to the outputs of the stacked layer. Mathematically, the output of ResNet at each layer can 

be written as H(x) = F(x) + x where H(x) is the desired underlying map, F(x) is the output of the 

stacked layer and x is the identity mapping. 
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Figure 2-5 Thin curve indicates the training error and bold curve indicates the validation error using the 

plain network (Adopted from He et al., 2016) 

 

Figure 2-6 Thin curve indicates the training error and bold curve indicates the validation error using 

ResNet (Adopted from He et al., 2016)  

                  

Figure 2-7 Residual learning framework with shortcut connections (Adapted from He et al., 2016) 
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He et al. (2016) stated that with the help of ensemble of these residual network 

frameworks, an error rate of 3.57% was observed on the ImageNet test set and won the 1st place 

in the ILSVRC 2015 classification task. Ensemble is the process of using multiple learning 

algorithms together to get the better results by combining output from all the algorithms. 

 

2.5 Feature learning from pretrained network 

To train a very deep and complex CNN from scratch, one needs a hundred of GBs of 

RAM and GPUs. Although little investment is required to get the RAM, GPUs are expensive, 

and to select an optimized GPU with better cost and performance requires lots of effort. Also, a 

large amount of data to train the network from scratch is needed. To overcome this issue, many 

researchers use the pretrained network whose network was already trained with a large-scale 

image dataset like ImageNet and uses the same pretrained weights as a feature extractor for the 

other data. This pre-trained network needs just a small modification to replace the last few layers 

of the pre-trained CNN as per the number of classes. 

 

2.6 Size of the training data 

Articulating the problem early is the important step to decide what type of data need to be 

collected and which data will be more valuable. Acquiring the training data for machine learning 

or deep learning models can be an expensive task as it involves significant manpower, equipment 

run time and licensing fees etc. Therefore, it is always a critical step to obtain huge amount of 

training data to achieve a specific model performance. The training data size issue is also known 

as sample complexity.  For image classification using deep learning, a rule of thumb for the 

number of images required for training is 1,000 images per class and this number can go down 
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depending on different criteria such as using the transfer learning technique with the same 

domain and images with great quality (Warden, 2017).  

 

Figure 2-8  Performance of the algorithm with the quantity of training data (Adopted from Mista 

2019) 

The above figure (Fig 2-8) shows the change in performance of machine learning 

algorithms with increasing data size in the case of traditional machine learning and deep learning 

algorithms. For both traditional machine learning (traditional ML) and deep learning algorithms, 

the performance of the algorithms grows according to a power law but in the traditional ML case 

the performance reaches a plateau. Sun et al. (2017) stated that performance of the deep learning 

techniques increased logarithmically with increasing training data size. On the other hand, Joulin 

et al. (2016) stated that performance of the convolutional networks using a dataset of 100 million 

Flickr images and captions flattens after 50 million training images. Lei et al. (2018) stated that 

image classification accuracy increases with training data size, but the model robustness started 

to decline after a certain model-dependent point. 

For determining the optimum size of the training dataset to achieve high classification 

accuracy with low variance, Cho et al. (2015) used the learning curve method which can be 



21 

 

represented as an inverse power law function and has the ability to check the variance, bias, 

underfitting, overfitting using the single graph between MSE and training size. 

Bias and variance are the two important metrics for measuring the error of the model. A 

low bias model fits the training data very well and change in training error will be significantly 

high with change in dataset and this change in error represents the variance involved in the 

model. Low bias model will have high variance and vice versa. These two metrics play an 

important role in deciding the size of the dataset. Fig 2-9 illustrates that output of the model (f̂) 

changes with change in training data which indicates that model is having low bias and high 

variance. Fig 2-10 illustrates that output of the model (f̂) is constant with change in training data, 

but the output failed to fit all the points in the model, and this indicates that model is having high 

bias and low variance. 

 

 

Figure 2-9 Different training data gives different output (redline) which shows the low bias and 

high variance in the model (Adopted from Olteanu 2018) 
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Figure 2-10 Different training data gives similar output (redline) which shows high bias and low 

variance in the model (Adopted from Olteanu 2018) 

 

From the above two graphs, one can say that it is not possible to have low bias and low 

variance at once. One should choose the model with optimum values of both bias and variance.  

 
 

Figure 2-11 Model complexity with optimum values of bias and variance (Adopted from Olteanu 

2018) 

 

Fig 2-11 illustrates the relationship between bias and variance with respect to the model 

complexity and error. If the model is simple, then bias in the model will be high with low 

variance and vice versa. Also, training the model with huge amount of data makes the model 

becomes less bias and thereby increases the complexity of the model. For the Machine learning 

models, bias and variance should be at optimum level to have less error, better performance and 
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less complexity.  The optimum size of the training data can be estimated using the learning curve 

as described below. In any dataset, the minimum size of the training data is one. But using a 

single sample, the validation error (green line in the below graph) will be high. The maximum 

size of the training dataset can be the whole dataset. From the fig 2-12a, it is evident that using 

the whole dataset is not a better option as both the training and validation curves plateau at some 

point and therefore, it increases the computational time unnecessarily. In fig 2-12b, we can see 

that there is good scope to further converge the validation curve towards the training curve. In 

this scenario adding more data helps to get the best results. The optimum size of the training 

dataset will be the point where the gap between training and validation curve is minimum i.e., 

low variance. The gap between two curves indicates the variance.  Adding more data beyond that 

point will not help the model to further increase the accuracy. Another important observation in 

the graph is the error value. If the error value is higher, it indicates that training error is larger 

with higher bias. The training size should be selected according with optimum bias and variance 

values as shown in the figure below. Depending on the difficulty in collecting the dataset, data 

augmentation techniques like photometric, geometric, or generative adversarial networks 

(GANs) will be implemented to increase the dataset. 

 

 

Figure 2-12 a) High bias and b) low bias scenarios that guides to select the size of training dataset 

(Adopted from Olteanu, 2018). 

a b 
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2.6 Object detection 

  Object detection is the technique which not only performs the task of classifying 

different images but also detects the position of the objects (object localization) contained in 

each image. It also helps to provide important information related to images and videos which 

solves many computer-vision tasks. Object detection has not evolved in a single day. It started 

with the help of handcrafted feature extraction techniques and shallow networks. In general, 

pipeline of an object detector is classified into three categories: Informative region selection, 

feature extraction and classification (Zhao et al., 2019). 

Informative region selection is the process of scanning the whole image with a multi-

scale sliding window to find all the possible positions of the objects. Zhao et al. (2019) stated 

that the process of scanning the images is computationally expensive and produces too many 

unwanted results. This process can also lead to unsatisfactory results in case any constraints 

imposed on the sliding window templates. 

Feature extraction is the process of extracting the visual features that give the semantic 

and robust representations. Scale invariant feature transform (SIFT), Histogram of oriented 

gradients (HOG) and Haar – like features are some of the traditional feature extraction methods. 

They have drawbacks due to their high dependency on the illumination and background 

conditions. 

Classification is the task of distinguishing the objects into different categories and this 

can be achieved with the help of classifiers like Support Vector Machine, AdaBoost, Deformable 

Part-based model and these classifiers provide better hierarchical, semantic, and informative 

representations.  

Though with the help of these local feature descriptors and shallow networks have less 

burden on the hardware, only small improvements have been obtained with the minor changes of 
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successful methods until the emergence of deep neural networks (DNN) (Girshick et al., 2014). 

The reasons for the small improvements and their inferiority to DNN is due to the redundant 

sliding window strategy, which is inefficient and inaccurate, and difficulties with the feature 

extraction process due to their high dependency on manual operations. 

Zhao et al. (2019) stated that a greater improvement in performance was achieved with 

the introduction of Regions with CNN features (R-CNN). Deep neural networks differ from the 

traditional and shallow networks in such a way that they have deeper architecture that helps to 

learn complex features than the traditional ones. Significant gain in performance of the model 

was observed since the proposal of R-CNN. Faster R-CNN optimizes both the classification and 

bounding box regression tasks, and YOLO performs the object detection task with the help of 

fixed-grid regression. 

 

 

Figure 2-13 Applications of object detection (Adapted from Zhao et al., 2019) 

 

Fig 2-13 illustrates that the task of object detection is categorized into two parts: 1. 

Generic object detection, and 2. Salient object detection as shown in the above figure. Generic 

object detection is achieved with the help of bounding box regression whereas the latter one 
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depends on the local contrast enhancement and pixel-level segmentation tasks. The generic 

object detection model was used in this study to detect the defects on the metallic defects. 

 

2.7 Generic object detection 

The goal of the object detection model is to locate and classify the existing objects in the 

image with the help of bounding boxes and their confidence score. Generally, the generic object 

detection model was classified into two categories based on their approaches to detect the 

objects. One category first generates the region proposals and then classifies the proposal into 

different categories. The second one performs both region proposals and classification task in a 

single step to achieve the results. The first category is termed as a two-stage object detector and 

the second is known as a one-stage object detector. The two-stage object detector includes 

methods like R-CNN, SPP-net, Fast R-CNN, Faster R-CNN, R-FCN, and mask R-CNN. The 

examples for one stage object detectors are YOLO, SSD, DSSD, DSOD, Multibox. 

 

2.7.1 Two stage object detectors 

In this process, coarse scan of the whole image is carried out first and then the algorithm 

focuses on the region of interest. 

 

2.7.1.1 R-CNN 

Girshick et al. (2014) proposed the R-CNN method to improve the quality of bounding 

boxes with the help of deep architecture to extract the high-level features. R-CNN process is 

divided into three stages: 1) Region proposal generation, 2) CNN based deep feature extraction, 

and 3) Classification and localization. As shown in the fig 2-14, region proposal algorithms like 

selective search method is used to generate proposal that contains the target object, and these 



27 

 

were fed to the convolutional neural network to extract the features from the proposals. With the 

help of linear support vector machine algorithms (SVMs), the extracted features were classified 

into their respective classes with a confidence score which were later produced with bounding 

boxes using the bounding box regressor. 

 

 

Figure 2-14 Architecture of R-CNN (Adopted from Girshick et al., (2014)) 

 

The region proposal method uses the image as an input and generates bounding boxes to 

all patches in an image which are most likely to be objects. These bounding boxes can be noisy, 

overlapping and may not exactly contain the objects. However, among the region proposals, 

there will be one that is very similar to the actual image's object. These proposals can be 

classified using an object classification model. Region proposals with high confidence scores 

correspond to object locations. Region proposal method should have very high recall rate 

because it is okay to have some false positives rather than missing true positives. Objectness, 

Constrained Parametric Min-Cuts, Randomized Prims, and selective search are some of the 

region proposal methods. The most popular method of selection is selective search because it is 

fast and possesses a high recall rate. 
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Selective search is based on the process of grouping similar pixels based on their color, 

texture, size, and shape using hierarchical clustering. This method starts by over-segmenting the 

image using graph-based segmentation based on pixel’s intensity. The fig 2-15 shows the region 

proposals of the input image at different scales using the selective search algorithm. This region 

proposal method generates 2000 different regions for each individual image, which are still very 

small compared to the sliding window approach. 

 

Figure 2-15 The region proposals of selective search algorithm at different scales (Uijlings et., (2013)) 

 

A large convolution neural network is used to extract the fixed length feature vectors 

from each region proposal and classifies each region using class specific linear support vector 

machines. CNN can be selected based on the application. Bounding box regressor is used to 

generate the bounding box to locate the target objects. Girshick et al. (2014) stated that it can 
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significantly reduce the dominant error mode like mis-localizations. Girshick et al. (2014) stated 

that R-CNN achieved the mAP value of 31.4% which is a large improvement compared to the 

Over Feat model which had the previous best results of 24.3%.  

2.7.1.2 Faster R-CNN 

 

Figure 2-16 Unified architecture of Faster R-CNN (Adopted Ren et al., 2015) 

 

According to Ren et al. (2015), convolutional feature maps used by region-based 

detectors, like R-CNN & Fast R-CNN, can also be used for Faster R-CNN to generate region 

proposals. The Faster R-CNN object detection network consists of a feature extraction network, 

which is typically a pretrained CNN, just as like its predecessor like Fast R-CNN. The Region 

proposal network (RPN) was constructed with the help of additional convolutional layer on the 

top of the feature extraction network (pretrained CNN), thus makes the RPN a type of fully 

convolutional network that can be trained end-to-end for generating proposals for detections.   

Faster R-CNN consists of two parts: 1) Region proposal network (RPN), which generates 

object proposals and scores at each location simultaneously, and 2) Fast-RCNN detector for 

predicting the actual object class. Fig 2-16 shows the unified architecture of faster R-CNN. From 
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the fig, it is evident that image is used as an input for the convolutional layers which were 

common for both RPN and detector. RPN uses the input as feature maps from the convolutional 

layers and produces rectangular object proposals as output along with the confidence scores for 

each one of the proposals. After getting the region proposals from RPN, ROI pooling and 

upstream classifier and bounding box regressor will be used to produce the desired prediction 

results. With the help of this RPN technique, one can avoid the computationally expensive 

methods like Selective Search.   

In short, RPNs share the convolutional layers along with the state-of-the-art object 

detection networks as shown in the fig 2-16. With the help of Faster R-CNN, region proposals 

can be generated in10ms per image. Another advantage of the RPN is that it generates the region 

proposals with a wide range of scales and aspect ratios using anchor boxes (Ren et al., (2015)).  

 

2.7.2 One stage object detector 

2.7.2.1 YOLO v4 

YOLO v4 is one of the popular one stage object detectors that was developed to improve 

the accuracy and the speed of previous YOLO models. It is the latest and the most advanced 

version of YOLO algorithms and capable of producing 12% faster and 10 % more accurate 

detections than YOLO v3 (Bochkovskiy et al., 2020). YOLO-V4 boosts the prediction accuracy 

via a deeper and complex network architecture, where dense blocks (Huang et al., 2017) are 

used. In a dense block, each layer is connected to all other layers in the network. The feature 

maps of all the preceding layers along with its own feature maps are used as the inputs to all the 

subsequent layers. The architecture of a dense block is shown in below figure 2-17. 
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Figure 2-17 Dense block. All the preceding feature-maps taken as input for each layer. 

The use of Bag of Freebies (Bochkovskiy et al., 2020) and Bag of Specials (Bochkovskiy 

et al., 2020) strategies also account for better performance. Bag of Freebies strategies improve 

the performance by changing the training process without increasing the inference cost. These 

strategies include applying data augmentation methods, solving the semantic distribution bias in 

the dataset, and using Complete Intersection over Union (CIoU) (Zheng et al., 2020) loss 

function in the objective function of the bounding box regression. Complete IoU is based on the 

three geometric factors like overlapping area, distance and aspect ratio and it is proposed by 

imposing the consistency of aspect ratio. A data augmentation technique increases the variability 

of the input images and helps to improve the performance of the model. Data augmentation can 

be done in terms of photometric distortions and geometric distortions. Photometric distortions 

deal with image aspects such as brightness, contrast, hue, saturation, and noise. Geometric 

distortions deal with random scaling, cropping, flipping, and rotating. Cutout (DeVries et al., 

2017), Random Erase (Zhong et al., 2020), MixUp (Zhang et al., 2017), and Mosaic 

augmentation techniques (Bochkovskiy et al., 2020) can also be used for improving the 

robustness of the model. Semantic distribution in a dataset may have bias due to class imbalance 

in the dataset and this can be addressed using techniques like hard negative mining. A CIoU loss 

function enhances the convergence accuracy and speed of solving the Bounding Box regression 

problem as it adjusts the predicted bounding box closer to the ground truth box. The Bag of 

layer 3 

 

layer 2 

 

Input 

layer 1 
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Specials strategy significantly improves the accuracy of the model with an increase in the 

inference time (Bochkovskiy et al., 2020).  

 

2.8 Overview of the literature review 

From the table 2-1, we can see that there is at least one drawback in all the methods in 

terms of either computational or accuracy of the model. Tao et al. (2018) successfully segmented 

the metallic defects, but no information is provided about training and inference time. Also, the 

accuracy is less than 90%. Essid et al. (2018) proposed autoencoder deep neural network to 

classify and detect the metal defect. There is no information provided on inference time and 

metrics like average precision, recall mAP. Gai et al. (2020) proposed modified VGG network, 

but the performance is limited to 77% which does not hold good for real time practices.  Cha et 

al. (2017) proposed detection method using sliding widow technique which is computationally 

expensive. Natarajan et al. (2017) proposed a deep neural network method on metal surface 

defects with better accuracy, but the method was limited to classification task only. There is a 

large gap for detecting and classifying the metal defects with good accuracy while keeping 

computations inexpensive. In this study, YOLOV4 is considered for better mAP values and its 

computationally feasible methods to implement in real time applications. 
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    Table 2-1 Overview of literature review 

Authors 
Type of 

Inspection 
Architecture 

used Type of defects Achievements Limitations 

Tao et al. 

(2018)  
Automatic 

inspection  

A novel 

cascaded 

autoencoder 

(CASAE) for 

localization & 

CNN 

architecture as 

classifier 

 Metallic 

surface defects 

Successfully 

segmented the 

metallic defects 

under complex 

lighting conditions 

and ambiguous 

defects 

Information about 

training and 

inference time not 

mentioned and 

accuracy is less 

than 90% 

Essid et al. 

(2018)  
Automatic 

inspection 

 Autoencoder 

deep neural 

network to learn 

features and 

Gaussian 

process as 

classifier 

Manufacturing 

defects in metal 

boxes  

Proposed network 

outperforms 

traditional 

techniques based 

on hand crafted 

features. False 

positives and false 

negatives were 

about 10% & 5% 

respectively. 

There is no 

information 

provided on 

inference time and 

metrics like 

average precision, 

recall, mAP 

Gai et al. 

(2020)   
 Automatic 

inspection 

Modified VGG 

network (used 

ResNet and 

Inception 

ideology for one 

layer)  

 Metal surface 

defects 

Obtained better 

results in 

comparison with 

VGG foundation 

model. 

The mAP of 77% 

is still less for real 

time inspection. 

 Cha et al. 

(2017) 
Automatic 

inspection  
Deep 

architecture of 

CNN 
Concrete 

cracks  

Successfully 

detected cracks 

(98% accuracy) 

without any IPTs 

for extracting 

features.  

Used sliding 

window 

technology which 

is computationally 

expensive  

Baumgartl 

et al. 

(2020)  

Monitoring 

the printing 

process   
Depthwise-

separable CNN 

 In process 

defects like 

splatter, 

delamination 

Defects detected 

with an accuracy of 

96% with low 

computational 

cost.  

Investigations on 

defects like cracks, 

pores, bailing yet 

to evaluate  

Yun et al. 

(2020)  

Automatic 

inspection  

CVAE and deep 

CNN based 

algorithm  

 Metal surface 

defects 

Successfully 

implemented 

CVAE method to 

deal with class 

imbalance and 

insufficient data  

CVAE crops the 

defects and can 

provide mislead 

information in 

case of similar 

defects  
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Table 2-1 Continued 

 

Authors 

Type of 

Inspection 

Architecture 

used Type of defects Achievements Limitations 

Lv et al. 

(2020)   

Automatic 

inspection  

 EDDN using 

single shot multi 

box detector 

Metallic 

surface defects  

Better performance 

in comparison with 

SSD, Faster R-

CNN, YOLOv2 & 

YOLOv3  

Achieved mAP 

does not suit for 

real time detection 

in the shopfloor  

Yeum et 

al. (2015) 

Automatic 

inspection  

Object detection 

and grouping 

technique 

Cracks on 

bridges 

Detected cracks on 

difficult to access 

bridges with an 

accuracy of 98.7% 

Further validation 

on defects like 

pinholes yet to 

make. 

computationally 

not effective. 

Masic et 

al. (2013) 

Semi-

automated 

inspection 

Multi scale 

pyramid pooling 

network 

Steel defects 

Classified steel 

defects with 

variable input sizes 

Limited to only 

classifying the 

defects  

Natarajan 

et al. 

(2017) 

Semi-

automated 

inspection 

Flexible multi-

layered deep 

feature 

extraction 

framework 

based on CNN 

Metal surface 

defects 

Outperformed 

traditional 

handcrafted 

features and 

achieved better 

accuracy 

Limited to only 

classifying the 

defects and may 

not be 

 helpful for large 

datasets. 
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CHAPTER 3.    METHODOLOGY 

3.1 YOLO v4  

 The overall architecture of YOLO-V4 used in this study presented in the figure 3-1.  

 

Figure 3-1 Architecture of YOLO-V4 

The input image is divided into 𝑆 × 𝑆 number of grids and CSPDarknet53 (Cross Stage 

Partial Darknet53) is used as a backbone for feature extraction. CSPNet (Wang et al., 2020) helps 

to achieve a richer gradient combination with reduced computation time and increased speed and 

accuracy. The CSPDarknet53 network with its deeper layer can produce different levels of 

features with its higher semantics. Instead of concatenating the output with its input, 

CSPDarknet53 divides the input into two parts: one part goes through the network and other part 

concatenates with the output of the other half. The SPP-block (Spatial Pyramid Pooling) (He et 

al., 2015) serves as the neck part of the architecture and generates fixed size features irrespective 

of the size of the feature maps using the max-pooling technique. The SPP is selected because of 

its multi-level spatial bins and its capability to extract features at variable scales (Bochkovskiy et 

al., 2020). YOLO is used as a head for dense predictions. Dense prediction is a vector that 

contains the coordinates of the predicted bounding box, confidence score of the prediction, and 

the label.  
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The defect detection process for YOLO-V4 is shown in figure 3-2 for the GC10-DET 

defect dataset. The detection initiates with original input image shown in the figure 3-2a. Then 

the image is divided into 𝑆 × 𝑆 grid as seen in figure 3-2b. The grid cell is responsible for 

detecting the defect if the center of the defect falls into that grid cell. These detections were 

represented in the form of ‘B’ bounding boxes and the respective confidence score of each 

bounding box (see figure (c)) along with the object class. A confidence score indicates how 

confident the algorithm makes the prediction. The confidence score of a bounding box C, is 

calculated as: 

C =  Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝐷𝑒𝑓𝑒𝑐𝑡) × Pr(𝐷𝑒𝑓𝑒𝑐𝑡) × 𝐼𝑜𝑈𝑃𝑟𝑒𝑑
𝑇𝑟𝑢𝑡ℎ  

 where  Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝐷𝑒𝑓𝑒𝑐𝑡) represents the probability of the defect inside the box belongs to 

𝐶𝑙𝑎𝑠𝑠𝑖 type of defect. Pr(𝐷𝑒𝑓𝑒𝑐𝑡) is the probability of having the center point of the defect in 

the grid cell, and  𝐼𝑜𝑈𝑃𝑟𝑒𝑑
𝑇𝑟𝑢𝑡ℎ   refers to the degree to which the bounding box interacts with the 

ground truth box. 

 

 

Figure 3-2 Detection process of YOLO-V4 

3.2 Performance metrics 

To evaluate the algorithm’s performance, we used the mean average precision, recall, and 

average precision metrics. Generally, for object detection, the concept of intersection over union 

(a) original image      (b) S x S grid (c) Detection result 
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(IoU) is used, and it is defined as the ratio of intersection of two bounding boxes (ground truth 

and prediction box) to their union. In this study, an IoU threshold value of 0.5 was considered. 

For bounding boxes with an IoU > 0.5, the bounding box is considered to be a true positive for 

an object. Otherwise, it is considered to be a false positive. A false negative occurs when the 

model fails to detect an object that is present. Recall is the ratio of the number of true positives to 

the total number of actual objects in the image. Recall measures the accuracy of the model in 

predicting all the actual objects. Precision is the proportion of true positives to the total number 

of positive predictions. Precision increases with increasing true positives and decreases with 

increasing false positives. Below equations present the calculation of the precision and recall, 

respectively. Mean average precision (mAP) is the mean of average detected precision for all 

defect categories. Average precision (AP) is the area under the curve of precision versus recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

 

3.3 Dataset 

For this study, we used the benchmark dataset GC10-DET from the literature, which is 

available on GitHub. GC10-DET includes a steel surface defect dataset from real industry 

applications including punching hole, weld line, crescent gap, water spot, oil spot, silk spot, 

inclusion, rolled pit, crease, waist folding defect categories, which were recoded as Pu, Wl, Cg, 

Ws, Os, Ss, In, Rp, Cr, Wf, respectively (Lv et al., 2020). The total number of images in the 

dataset is 2306 and the size of each image is 2048 x 1000 pixels. The number of images in each 

defect category, as well as the train and test datasets used in this study are shown in Table 3-1. 
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Table 3-1 Number of Images per Category 

Image Usage 
Defect Category 

Number of Images 
Pu Wl Cg Ws Os Ss In Rp Cr Wf 

Training 176 223 201 235 169 531 177 26 47 127 1912 

Testing 63 84 32 54 48 132 36 7 6 19 394 

All Images 219 273 226 289 204 650 216 31 52 146 2306 

 

 3.4 Data augmentation 

Image data augmentation is the process of artificially expanding the size of a dataset by 

creating modified versions of images in the dataset. In real time practice, it is not possible to 

include all the varieties of conditions that can impact the image quality in the dataset. Thus, data 

augmentation is important in these cases and all the augmentation techniques should be selected 

in such a way that they are closely related to the application/target goal. Considering this 

criterion, rotation, blur, and contrast suit best for this application. The performance of any deep 

neural network is greatly dependent on the number of images in the training dataset. In this 

study, since the number of images in the original dataset is small at least for some classes and it 

is evident that there is class imbalance with respect to some classes like Rp, data augmentation 

techniques were adopted to increase the dataset so that algorithm gets enough number of samples 

to get familiar with the defect classes. Data augmentation techniques considered in this study are 

rotation, gaussian blur, median blur, bilateral blur, box blur, contrast techniques like Min-Max 

contrast stretching, CLAHE (contrast limited adaptive histogram equalization) contrast stretching 

and histogram equalization method. 

 

3.4.1 Rotation  

The rotation technique changes the angle of the target object that appears in the dataset 

and this augmentation technique benefits applications where there is a chance that an image gets 
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skewed during the regular application. This technique can even help in the applications where 

the camera position is fixed relative to the object.  The variations produced by this technique can 

help prevent the model from memorizing the data and help to combat potential overfitting. 

Below figure shows an example of the rotation technique. 

 

           

Figure 3-3 Original image (left) and Rotated image (right) 

 

 3.4.2 Blur techniques 

 Image blur is another important technique for data augmentation.  These techniques 

generate blurred images which are used for training the algorithm. For the current study, four 

types of blur techniques are being evaluated.  Each blur technique differs statistically from each 

other.  These four techniques being used include median blur, bilateral blur, gaussian blur, and 

box blur. For all the blur operations a kernel with some specific shape (m x n) is used. This 2D 

filter (i.e., kernel such as the 3 x 3 shown in Fig 3-4) will be used to convolve with an image and 

statistical methods are used to make the modifications to the pixel values in the image. The type 

of statistical method determines the type of blur introduced.  
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Figure 3-4 Kernel with size 3 x 3 and center of the kernel represented with ‘X’ 

 

3.4.2.1 Median blur 

In the median blur technique, a 2D filter is used to convolve with an image and median of 

all the pixel intensity values that lie in the kernel is calculated. This median value is designated 

as the new pixel intensity value to the pixel which is positioned at the center of the kernel. Here 

as its name indicates the statistical method ‘median’ is calculated to get the new pixel value. 

Below figure 3-5 shows the original image and median blur image with kernel 9 x 9. 

 

                    

Figure 3-5  Original image (left) and median blur image with kernel 9 x 9 (right) 

 

3.4.2.2 Gaussian blur 

Gaussian blur uses the Gaussian kernel, which gives more weight to pixels closer to the 

center. In the application of Gaussian blur, a weighted average of the color values of the pixels in 

the kernel is calculated and because of the property of the Gaussian kernel, the pixels nearest to 

the center of the kernel are given more importance than those far away. Because of this, larger 
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kernels will blur the image more than smaller kernels. Figure 3-6 & 3-7 shows the example of 

the gaussian blur image along with their original image. 

         

Figure 3-6 Original image (left) and Gaussian blur image with kernel 11 x 11 (right) 

 

                          

Figure 3-7 Original image (left) and Gaussian blur image (right) (Adopted from Hoang, 2019)  

 

3.4.2.3 Bilateral blur 

In the Gaussian filter, only nearby pixels are considered while filtering. It doesn’t 

consider whether pixels have almost the same intensity or the pixel is an edge or not. Due to this, 

Gaussian blur affects the edges of the target object. Therefore, we implemented the bilateral filter 

blur to have some more variant blur images. Bilateral filter does not average the pixels near the 

edges rather it preserves the edges. Also, bilateral filter considers the pixels whether they have 

similar intensities. It takes account of the Gaussian blur (space parameter), and it also considers a 
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function of pixel intensity difference. So, it preserves the edges since pixels at edges will have 

large intensity variation. Figure 3-8 shows the example of the bilateral blur technique. 

 

      

Figure 3-8 Original image (left) and Bilateral blur image with kernel 11 x 11 (right) 

 

3.4.2.4 Box blur 

The box blur is also known as the box linear filter (GeeksforGeeks, 2020). The blurred 

color of one pixel is the average of the pixel’s color value and its neighboring pixels. Below 

figure shows the original images and its blurred image using box blur technique. 

 

         

Figure 3-9 Original image (left) and box blur image with kernel 7 x 7 (right) 
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3.4.3 Contrast stretching techniques 

3.4.3.1 Min-max contrast stretching 

Min-max stretching is a linear stretching mechanism which uses the tails of the pixel 

intensity values and stretches the pixel values throughout the region. In Figure 3-10, pixel 

intensity values were stretched using the end points (r1, s1) and (r2, s2). Figure 3-11 shows the 

example of original, and contrast stretched image. 

 

Figure 3-10 Linearly stretching the intensity values using the end points 

Mathematically, min-max stretching for new pixel values is represented as: 

Xnew =
Xinput -Xmin

Xmax -Xmin
× 255 

 

Figure 3-11 Linear stretching of the pixel values using min-max contrast technique. 
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3.4.3.2 Histogram Equalization 

Histogram equalization is a non-linear contrast enhancement technique which uses non-

linear functions to reassign the intensity values of an image. In contrast to the linear techniques, 

this technique does not use lower and higher intensity values for reassigning the new pixel 

values. Figure 3-12 shows the example of original and histogram equalized contrast image. The 

non-linear function shown in below equation is used to assign the new pixel value: 

𝑆𝑘 = (𝐿 − 1) ∑ 𝑝𝑟(𝑟𝑗)𝑘
𝑗=0    

 

where,  𝑃𝑟(𝑟𝑗) =  
𝑛𝑗

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 & nj = number of pixels that have intensity 𝑟𝑗 

 

 

Figure 3-12 Linear stretching of the pixel values using histogram contrast technique. 

 

3.4.3.3 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

Contrast limited adaptive histogram equalization (CLAHE) is also a non-linear 

method and improves the contrast of the image by stretching the intensity values using the 

technique called tiles. CLAHE is like histogram equalization; however, it operates on small 

regions in the image called tiles and all the neighboring tiles are then combined using bilinear 
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interpolation to remove the artificial boundaries. Figure 3-13 shows the example of original and 

CLAHE stretched image. 

 

 

Figure 3-13 Linear stretching of the pixel values using CLAHE contrast technique. 

 

3.4 Overview of Methodology 

The fig 3-14 shows the overall methodology intended to use in the industry for defects 

detection. 

 

 

 

 

 

 

 

 Figure 3-14 Overview of the methodology 
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3.5 Training 

For training, the images were divided into several batches, and each batch was used to 

train the network each time. Batch normalization (Ioffe et al., 2015) was implemented in this 

network to normalize the data for each batch. Batch normalization stabilizes the learning process 

and reduces the number of epochs required to train the deep networks. It also helps with some 

regularization and reduces the generalization error. The YOLO network was trained with 20,000 

training steps and the batch size and subdivisions were 64 and 16, respectively. The momentum 

and decay were selected as 0.949 and 0.0005. The learning rate was 0.0013. Leaky ReLu (Maas 

et al., 2013) and Mish (Misra et al., 2019) activation functions were used for the final and other 

layers.  

Bag of Specials for detector includes the Leaky ReLu activation function, SPP-block, and 

Greedy NMS. 

Bag of Freebies for detector includes the CIoU-loss function, mosaic data augmentation, 

elimination of grid sensitivity, and multiple anchors for single ground truth. 

The loss function is given by (Zheng et al., 2020):   

𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 =   1 − 𝐼𝑜𝑈 +
|𝐶 − 𝐵 ∪ 𝐵𝑔𝑡|

𝐶
 

 

where 𝐶 is the smallest box that covers the predicted bounding box 𝐵 and ground truth 

(gt) bounding box 𝐵𝑔𝑡. 
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CHAPTER 4.    RESULTS 

4.1 Results and discussion 

This study used YOLO-V4 with Google Colaboratory (Bisong et al., 2019) that offers 

GPU ‘Tesla P100-PCIE' with a total memory of 16 GB. YOLO-V4 was pre-trained on both the 

ImageNet dataset and MS COCO dataset to extract basic image features such as edge and 

texture. Then, adopting the pre-trained model, YOLO network was trained for 20,000 iterations 

on ten types of defect images. The input size of 608 x 608 is used for training and testing.  

      

 

Figure 4-1 Loss decay curve during training and mAP values 
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The loss decay curve during training and mAP values obtained during testing using 

original dataset shown in Figure 4-1. We can see that loss values reduce gradually with 

fluctuations in the mAP values; mAP over ten classes are observed as 66.8% using the original 

dataset with no data augmentation. The mAP value using the augmented dataset is observed as 

93.6%, the highest of all cases. The detection time per image is observed as 0.022 sec, which is 

faster and can be deployed in the production shop floor. 

Although the test and training split of other methods (which plays a vital role in 

determining the algorithm accuracy) is unknown, Table 4-1, Table 4-2 shows the performance of 

the YOLO-V4 using both original and augmented dataset compared with other state-of-the-art 

algorithms, namely SSD, Faster R-CNN, YOLO-V2, YOLO-V3, and EDDN based on SSD as 

per the study (Lv et al. 2020). Table 4-1 shows the results for recall and Table 4-2 shows the 

results for average precision (AP) and mean average precision (mAP). 

 From Table 4-1, we can see that recall values of YOLOv4 with data augmentation 

technique performed better than all other methods for all the minority classes like Inclusion, 

rolled pit, crease and waist folding. Also, it performed better for the defect classes, oil spot and 

water spot classes where there is high similarity between the defects. For the defects like welding 

line the recall value is less because there are chances that algorithm gets confused between 

welding line and pale continuous line due to change in intensity portions in the image. Similar to 

recall values, average precision of YOLOv4 using augmented dataset performed better than 

YOLOv4 trained with no augmented dataset.  

From Table 4-2, we can see that YOLOv4 with data augmentation technique 

outperformed all other methods for all the classes (except welding line defect). For welding line 

defect, the average precision is less compared with SSD because of the false positives error. The 
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algorithm predicting a pale continuous line as welding line defect and there are chances that it 

might be a labelling error since there are no standard rules mentioned by the author for labelling 

the GC10-DET dataset. Also, for the minority or ambiguous defect classes YOLOv4 trained with 

augmented dataset outperformed the other techniques by a huge margin. The impact of data 

augmentation on the performance of the object detection algorithm can be seen from results of 

YOLOv4 trained with non-augmented and with augmented dataset. 

Table 4-1 Comparison of Recall values with respect to different methods (Adapted from Lv et al., 2020) 

Recall 

Defect 

Category 
SSD 

Faster R-

CNN 
YOLO-V2 YOLO-V3 

EDDN 

based on 

SSD 

YOLO-V4 

YOLO -V4 

with 

augmentation 

Pu 0.964 0.964 0.857 0.964 0.965 0.920 0.950 

Wl 1.000 0.623 0.869 0.869 0.967 0.930 0.910 

Cg 0.968 0.968 0.936 0.871 0.969 0.880 0.910 

Ws 0.696 0.696 0.674 0.609 0.739 0.800 0.980 

Os 0.848 0.761 0.63 0.565 0.891 0.610 0.970 

Ss 0.956 0.708 0.694 0.542 0.988 0.530 0.760 

In 0.578 0.551 0.444 0.311 0.667 0.360 0.860 

Rp 0.667 0.333 0.333 0.333 0.333 0.330 1.000 

Cr 0.571 1.000 0.429 0.429 0.857 0.830 1.000 

Wf 1.000 0.800 0.900 0.700 1.000 0.790 1.000 
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Table 4-2 Comparison of AP and mAP values with respect to different methods (Adapted from Lv et al., 

2020) 

Average Precision (AP) 

Defect 

Category 
SSD 

Faster 

R-CNN 
YOLO-V2 

YOLO-

V3 

EDDN 

based on 

SSD 

YOLO-

V4 

YOLO -V4 

with 

augmentation 

Pu 0.860 0.899 0.725 0.836 0.900 0.887 0.902 

Wl 0.974 0.554 0.328 0.241 0.885 0.896 0.902 

Cg 0.861 0.872 0.819 0.752 0.848 0.854 0.903 

Ws 0.552 0.599 0.476 0.495 0.558 0.780 0.997 

Os 0.612 0.653 0.403 0.329 0.622 0.617 0.905 

Ss 0.689 0.579 0.473 0.325 0.650 0.456 0.873 

In 0.168 0.194 0.096 0.036 0.256 0.363 0.881 

Rp 0.105 0.364 0.018 0.036 0.364 0.295 1.000 

Cr 0.527 0.736 0.212 0.429 0.521 0.773 1.000 

Wf 1.000 0.818 0.614 0.400 0.919 0.717 1.000 

mAP 0.635 0.627 0.433 0.388 0.651 0.668 0.936 

 

Figure 4-2(a): Test images: Pu, Wl, Cg, Os, Ws defect classes 

 

Figure 4-2(a) shows the test images with bounding box detections for the defect classes such as Punching 

hole, Welding line, Crescent gap, Oil spot, Water spot. Figure 4-3(b) shows the bounding box detections 

for the remaining defect classes such as Silk spot, Inclusions, Rolled pit, Crease, Waist folding. 
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Figure 4-2(b): Test images: Ss, In, Rp, Cr, Wf defect classes 

 

Figure 4-2 (Continued) 

 
 

4.2 Insights from Experiments 

It is common knowledge that training the machine learning model with very little data 

gives poor results. The size of the training dataset plays a crucial role on the performance of the 

model. Too little data can result in an optimistic and high variance estimation of model 

performance. Also, small dataset may cause the chosen machine learning model overfits the 

training set due to insufficient representation of the problem and will result in low-test accuracy. 

On the other hand, too much of data may cause the model to perform lower than the ideal test 

accuracy because of the difficulty to learn nuance of such large training dataset or sometimes due 

to over-representation of the problem. 

Machine learning algorithms requires large amounts of data to give better results. For 

example, neural networks are the ones that requires copious amounts of training data. If the 
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architecture is deep, then the model needs more data to produce viable results. Reusing data is 

not a good idea, and data augmentation is recommended incase left with no choice of collecting 

more data due to complexity in data collection.  

Two metrics plays a crucial role when it comes to the size of a dataset. They are 1. Bias 

and 2. Variance. Bias is expressed as the difference between observed value and the predicted 

value. For the models with high bias, models possess underfitting. Variance is defined as the 

difference in performance on the training set vs on the test set. The major issue with high 

variance is the model fits the training data well, but it does not generalize well on out of training 

datasets. This is the reason behind the use of validation and test set in the model building 

process. Data augmentation is used in this study to increase the dataset without overfitting and to 

help the model to learn the pattern of the classes in the images. To check the bias in the model, 

experiment is conducted ten iterations using the stratified sampling technique with replacement. 

Below results from the table 4-3 and 4-4 shows that results were consistent for both original and 

augmented dataset. It indicates that model performance is reliable. 

Table 4-3 mAP values for ten iterations to validate the performance of the model for bias using original 

dataset 

Test 

iterations 1 2 3 4 5 6 7 8 9 10 

mAP 88.14%  87.64%  90.84%  88.37%  88.13% 90.48%   90.01% 88.64%   89.25% 89.41%  

 

Table 4-4 mAP values for ten iterations to validate the performance of the model for bias using 

Augmented dataset 

Test 

iterations 1 2 3 4 5 6 7 8 9 10 

mAP 92.40%   92.48% 93.69%   92.22%  93.18% 92.52%  92.98%  93.46%   92.19% 91.93%  
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The advantage of the YOLOv4 algorithm is that it is a one stage object detector and have 

a glance on the image and produces the results with small amount of time. Along with its 

computationally excellence, this method can be easily trained and deployed in the production 

system. This requires only one GPU and best to operate in the real time case studies. In the 

current study, it just took 0.022 sec per image to produce the detection results with their labels.  

The performance of the model on the given dataset depends on two factors: number of 

images and ambiguity. If the number of training images is less, then model will not get 

opportunity to learn the pattern of the defects and performs poor. Also, if the similarity between 

two defects is same then model needs large number of images to overcome the ambiguity 

between the classes. 

Table 4-5 Type I and Type II errors of each defect classes using the original and augmented 

dataset 

 

  Original dataset (Avg IoU - 53.65) Augmented dataset (Avg IoU - 73.31%) 

Class TP FP FN Recall  
Average 

Precision 
TP FP FN Recall  

Average 

Precision 

 Pu 58 12 5 0.92 88.68% 60 8 3 0.95 90.21% 

 Wl 79 5 6 0.93 89.63% 77 7 8 0.91 90.24% 

 Cg 28 5 4 0.88 85.41% 29 3 3 0.91 90.32% 

 Ws 45 18 11 0.8 78.01% 55 2 1 0.98 99.69% 

 Os 67 24 43 0.61 61.72% 107 5 3 0.97 90.46% 

Ss 86 43 76 0.53 49.56% 123 11 39 0.76 87.27% 

 In 25 24 44 0.36 36.33% 59 8 10 0.86 88.12% 

Rp 6 7 12 0.33 29.47% 18 2 0 1 100.00% 

Cr 5 1 1 0.83 77.27% 6 0 0 1 100.00% 

 Wf 15 7 4 0.79 71.75% 19 0 0 1 100.00% 

          66.78%         93.63% 

 

From the above table 4-5, we can see that false positives and false negatives were high 

for the classes Os, Ss, and In. Due to similarity between the defect classes with respect to their 

size and shape, the model failed due to ambiguity. Some of the Ss and In defects were detected 

as Ws. Inclusions (In) defects were detected as Os and Ws, Ss, Os were detected as In class. The 
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main reason for this poor performance is due to similarity between the classes. But with the help 

of augmented dataset the performance is enhanced in terms of false positives and false negatives. 

Though the number of false negatives were still high for Ss even with more number of images 

but the results were better in comparison with other methods.  

Example for Silk spot defect false positives: 

 

 

 

 

 

 

 

  

 

 

Figure 4-4 Detected image with label (left) and original image with ground truth label (right) 

 

In the figure 4-3, there is no Silk spot defect, but model predicted some foreign feature as 

defect and represents the false positives. In this similar way 46 images were detected as false 

positive for the defect silk spot. 

Example for Inclusion defect false positive: 

 

 

 

 

 

 

 

Figure 4-5 Detected image with label (left) and original image with ground truth label (right) 
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In the figure 4-4, oil spot defects were misclassified as Inclusion defect due to their close 

resemblance. This is one of the reasons for the Inclusion defects having false positives. 

 

 

 

 

 

 

 

 

Figure 4-6  Detected image with label (left) and original image with ground truth label (right) 

 

In the figure 4-5, water spot defects were misclassified as Inclusion defect due to their 

close resemblance in terms of their size and shape. This is one of the reasons for the Inclusion 

defects having false positives. 

 

 

 

 

 

 

 

          Figure 4-7 Detected image with label (left) and original image with ground truth label (right) 

 

In the figure 4-6, there is no Inclusion defect, but model predicted some foreign feature as 

defect and represents the false positives. From all the three ways explained above, 24 images 

were detected as false positive for the defect Inclusion. 

6 

6 
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Overall, the main reason for false positives were detecting some foreign objects as 

defects or incorrect detection of other classes as shown in the above examples. 

Defect size and shape played crucial role in this study. The average precision is higher for 

the defects like Punching hole, welding line and crescent gap due to their distinctive shapes and 

large sizes when compared to the other defects. For the other defect classes, size is small, and 

model required more images to get better results with the help of data augmentation. For 

Machine learning/deep learning model, size of the dataset depends on the complexity and size of 

the defects, bias, variance, and type of algorithms like transfer learning used for the study. If the 

target size is large and has distinct features, then model requires less amount of dataset to learn 

the pattern of the features. 

False positives and False negatives are another important metrics considered for this 

study. False positives represent the Type I and false negatives represent the Type II errors. In this 

metal defect case study, false negatives are not acceptable because skipping the defects for 

rework can cause the defective product delivering to the customer. False positives cause the 

investment of extra time for inspecting the component and it is kind of acceptable if the false 

positives are less for any class, but false negatives are strictly not allowed as this cause the loss 

of customer’s trust and reliability. 

 

4.3 Limitations and Future Work 

There is still scope for improvement of the precision values in terms of FNs and FPs. The 

main limitation of this work is to get the required quantity and quality of the dataset. To increase 

the size of the dataset, degenerative networks like GANs can be used. GANs are the techniques 

which generates the images artificially using the original images. Study can be conducted using 

GANs and investigation can be done for better results. Also, an attempt can be made with 
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unsupervised learning method. The advantage of the unsupervised method is that there is no need 

of labelling the defect classes and this saves lot of time for preparing the data. Also, it eliminates 

the errors involved in the labels of the dataset. One incorrect label can impact the performance of 

the model significantly. Unsupervised learning method first finds the unknown patterns in the 

data and these pattern or features were used to cluster the classes as groups. Also, it is good idea 

to use the semi supervised model if there are any missing labels. This work can be extended by 

implementing the methods which can achieve better accuracy. Ablation study can be conducted 

to study the inner representation of the network. Ablation study determine the importance of 

specific parts of the network that are crucial for the detection process. Also, ablation study helps 

to identify the redundant representations in specific parts of the network that damages the 

performance of the network.  
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CHAPTER 5.    CONCLUSIONS 

The process of assessing the condition and cleaning of candidate parts is an important 

step in remanufacturing. Traditionally, the inspection process in remanufacturing is carried out 

manually, which is a tedious process that is prone to human error. The goal of the inspection 

process is to locate and recognize the defects. There is always a chance that manual inspections 

may fail to locate the defects and as a result parts that cannot be remanufactured are released to 

remanufacturing processes, incurring unnecessary costs. To overcome this problem and to 

improve user confidence, this study has explored the capabilities of an object detection method 

to characterize defects in images of steel surfaces. 

We implemented the YOLO-V4 object detection model and evaluated its effectiveness 

using an existing defect image dataset, GC10-DET. The dataset is very challenging due to 

unbalanced image sizes and similarity between different defect classes. Data augmentation 

techniques were implemented to increase the number of images per class available for training 

the algorithm. With this increase in dataset, model achieved familiarity with the defects and 

thereby reduced ambiguity due to similar classes in the data. 

Despite challenges with the dataset, the performance of YOLO-v4 with no augmentation 

in terms of recall, AP, and mAP is comparable with other state-of-the-art techniques. Using data 

augmentation techniques, YOLOv4 showed its superiority over other techniques. The 

performance of the YOLOv4 when using no augmentation techniques is less because of higher 

false positives. False positives can occur because of two reasons. Incorrect detection of non-

existing object or misplaced detection of an existing object. In the first case with no detection, it 

is observed that for some images, defects of water spot and oil spot are detected as silk spot or 

inclusion. Some of the inclusion defects were detected as water spot and small semi-circular 
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holes were detected as punching holes. Because of these false positives, the performance lacked 

behind and with the help of data augmentation, the performance of the algorithm improved 

greatly. 

The selection of data augmentation techniques is completely dependent on the 

application, indicating that there is a need for the augmentation techniques that can be 

implemented in any application. With the help of other available Bag of Specials and Bag of 

Freebies techniques, the features may be detected more accurately without using augmentation 

techniques to save time with less false positives and false negatives. 

As provided in the previous chapter, YOLOv4 algorithm with augmented dataset 

outperforms all other techniques in most of the cases. The recall values for some of the defects 

are less in comparison with other techniques; this is because of two reasons: due to labelling 

error in the original dataset and due to algorithm’s performance issue. Algorithm’s performance 

issue is mainly due to similarity between the defect classes. The standards for labelling the 

GC10DET is not mentioned and there is a confusion with some of the defects like weld line. 
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