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Abstract 

 
Designing flexibility in electricity generation is important for power planning for the future. Creating electric power 
portfolios is a difficult engineering economics problem due to cost and other uncertainties. The flexibility of planning 
represents the capability to modify electricity generation under different kinds of conditions. The main challenge of 
electricity generation is uncertainty in the future. Uncertainties bring various scenarios that need to be considered for 
electricity generation. Uncertainties include the future demand, the investment cost, the fuel cost, the requirements for 
using renewable sources, and the future carbon emission limit. Monte Carlo simulation can simulate different scenarios 
caused by uncertainties. Making decisions to minimize the expected cost with too many scenarios encounters the curse 
of dimensionality. In addition, for long-term planning in electricity generation, dynamic decisions are required at 
different periods in the future. Therefore, based on all challenges and requirements for electricity generation, we 
present two methods, myopic planning and deep reinforcement learning, to solve the challenges. The objective of 
electric generation planning is to minimize the total cost which includes investment cost, operations, and maintenance 
cost, cost of fuel generation, and salvage value. The constraints consist of demand, requirements to use renewable 
resources, and limit on carbon emissions. The myopic planning and deep reinforcement learning methods are applied 
to electricity generation in the state of Iowa. The results demonstrate the advantages and disadvantages of using 
myopic planning and deep reinforcement learning.  
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1. Introduction 
Electricity power generation is affected by difference sources of uncertainties. Renewable energy power resources 
such as wind and solar power are becoming more prevalent. The uncertainty of weather will have impact on electric 
generation. The wind speed varies during a day and across different seasons. The basic goal of electric generation is 
to meet customer demand. With the increasing population, the overall consumption of electricity will likely increase 
in the future. The variation of future demand introduces uncertainty to electric generation. In addition to the weather 
and demand, the changing price of the power source (gas) and modified carbon emission limits should be considered 
for electric generation. Since various uncertainties exist, static planning is insufficient to plan for future electricity 
needs. A flexible electric generation portfolio is able to provide a more reliable planning for the future. 
  
In engineering economics, common methods used to solve decision making under uncertainty are stochastic 
programming, robust optimization, and regret minimization. In this research, we formulate the electric generation 
problem as a stochastic programming problem. Instead of using traditional methods to solve the stochastic 
optimization, such as scenario reduction, we simulate different scenarios through Monte Carlo simulation. Two 
methods are used to solve the optimization problem. The first is myopic planning. The second one is deep 
reinforcement learning method. We apply our optimization model and solving methods to the electric generation in 
the state of Iowa.   
 
2. Problem Description 
The optimization model we use is taken from Mejia-Giraldo and McCalley [1]. The total cost of electric generation 
includes the cost of new generating capacity added to the current system 𝐶𝑎𝑝ௗௗ , the fixed cost of facility operation 
and the variable operating and maintenance cost 𝑂𝑀. In addition, we also consider the cost of fuel 𝐹𝐶෪ , such as natural 
gas and coal. The salvage value 𝑆𝑉෪  is added to the total cost to capture the value of the installed capacity of the system 
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during the final planning period. The decision variables considered for the optimization problem are newly added 
capacity 𝐶𝑎𝑝ௗௗ, the installed capacity 𝐶𝑎𝑝, and power 𝑃 generated at each time period. In our research we consider 
one region, Iowa. The objective function used in our research is: 
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(1) 

 
The parameter 𝑗 represents different technology used for electric generation. In the case in Iowa, we select the most 
widely used technologies, coal, natural gas, nuclear, wind, and hydro power. The parameter 𝑡 is the time period of 
planning. The parameter 𝑤 represents different scenario due to uncertainties. The parameter 𝑠 represents different 
demand profiles during a single planning period. The parameter 𝑚 denotes fuel-based technology, 𝑇 is the planning 
horizon, and 𝐼ሚ is the investment cost based on scenario 𝑤. The 𝑂&𝑀 cost consists of 𝑂𝑀௫ௗ  cost and 𝑂𝑀௩  
cost. 𝐻 is the heat rate of a technology, and ℎ represents the duration of each demand profile. 
  
In our research, the objective is to minimize equation (1) subject to seven constraints for electric generation planning. 
The installed capacity of the system equals the sum of the existing capacity and the newly added capacity at each time 
period 𝑡. 
 

 𝐶𝑎𝑝,௧,௪ =  𝐶𝑎𝑝,௧ିଵ,௪ + 𝐶𝑎𝑝,௧,௪
ௗௗ , ∀𝑗, 𝑡 

𝐶𝑎𝑝,௧,௪
ௗௗ ≥ 0, ∀𝑗, 𝑡 

𝐶𝑎𝑝,,௪ = 𝐶𝑎𝑝
௫௦௧

, ∀𝑗 

(2) 

 
The installed capacity needs to satisfy the peak demand for each time period 𝑡. 
 

 
 𝐶𝑎𝑝,௧,௪



≥ (1 + 𝑟)𝑑ሚ,௧,௪ , ∀𝑗 (3) 

 
For each technology at a different demand profile 𝑠 during each time period 𝑡, the power generation is limited by the 
currently available capacity which is described by capacity credit 𝐶𝐶෪ . For example, different weather causes the 
variation of available energy used to generate electricity.  

 
𝐶𝐶෪

,௦𝐶𝑎𝑝,௧,௪ ≥ 𝑃,௦,௧,௪ , ∀𝑗, 𝑠, 𝑡 (4) 

In addition, for each time period 𝑡, the total power generation is limited by the average generation level which is 
captured by the capacity factor 𝐶𝐹෪ . 

 
𝐶𝐹෪

𝐶𝑎𝑝,௧,௪  ℎ௦

௦

≥  𝑃,௦,௧,௪ℎ௦

௦
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The generated power must be at least equal to the demand. 
 

 
 𝑃,௦,௧,௪
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In order to ensure the renewable resources to be used for power generation, 𝜌  denotes the percentage of total 
generation from renewable energy sources,  
 

 
 𝑃௨,௦,௧,௪ℎ௦

௨,௦

≥ 𝜌௧,௪  𝑃,௦,௧,௪ℎ௦

,௦

, ∀𝑡 (7) 

where 𝑢 is the nonfuel-based renewable generation technology. The last constraint considers the carbon emission 
limitation for power generation. 
 

 
 𝐸𝑃,௦,௧,௪ℎ௦

,௦

≤ 𝐶𝑂෪
௧,௪


, ∀𝑡 (8) 

 
3. Related Research 
The most commonly used method for electric generation planning with uncertainty is stochastic programming. Two 
typical models of stochastic programming are two-stage stochastic optimization [2]-[4] and multi-stage stochastic 
optimization [5, 6]. For electric generation planning, the two-stage stochastic optimization splits the problem into two 
parts for electric generation planning. In the first stage, the investment decision is made without considering any 
uncertainty. The first stage plans the investment for the whole planning period. The second stage is operational 
decision. The value of decision variables for the second stage depend on the uncertain scenarios [7]-[10].  For the 
multi-stage stochastic optimization, both investment and operational decisions are made by considering uncertainty at 
different stages [11]-[14].  
 
The biggest challenge for solving the stochastic optimization problem is the large number of uncertain scenarios. With 
a large number of uncertainties, finding the optimal solution is computationally expensive for both two-stage and 
multi-stage stochastic optimization problems. Selecting the most representative scenarios can reduce the computation 
time. Several scenario reduction methods can be found in the existing literature, such as the fast forward selection and 
the simultaneous backward reduction [15-18]. Some decomposition methods are proposed to help solve multi-stage 
stochastic optimization more efficiently. Scenario-based decomposition methods include dual decomposition [19, 20] 
and progressive hedging [21, 22], and stage-based decomposition methods include stochastic dual dynamic 
programming [23, 24].  
 
Despite these methods, limitations still exist. The scenario reduction method eliminates uncertain scenarios. The 
number of required scenarios needs to be decided before using the reduction algorithm. The selected scenarios might 
ignore the useful information of eliminated scenarios. Dynamic programming is frequently realized by parallel 
computing, which requires careful coding to enable parallel computing to operate efficiently.  
 
4. Methodology 
Our research uses myopic planning and deep reinforcement learning to solve the energy planning problem with the 
objective of minimizing the expected cost. Myopic planning refers to decision making that focuses on optimizing for 
the current period [25]. We combine the Monte Carlo simulation with myopic planning to generate long-term planning 
for electric generation. A long-term planning horizon consists of several time periods. For the first period, every 
uncertain parameter of optimization starts with the fixed value. After the first period, we use Monte Carlo simulation 
to simulate different realizations of uncertain parameters. Myopic planning solves the static optimization given the 
values of uncertain parameters for the next time period. The simulation generates different uncertain decision-making 
scenarios for the whole planning horizon. For every simulated uncertain scenario path, the static optimization provides 
the optimal planning portfolio for the whole planning horizon. We create the flexible electric generation portfolios 
using the simulated paths with corresponding optimal generation planning results. 
 
The second method is using deep reinforcement learning to design flexible electric generation portfolios. Unlike 
myopic planning method, deep reinforcement learning provides the optimal generation planning for each simulated 
uncertain scenario using the learned neural network [26, 27]. The neural network is trained by the action and reward 
pairs. In our research, we choose to use the deep Q-learning to train the neural network [28, 29]. The Q function of Q-
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learning captures the approximate objective function value at each time period. For each time period over the whole 
planning horizon, the action taken for electric generation is selected through a 𝜀-greedy decision-making policy. The 
value of 𝜀 is between 0 and 1. During Q-learning, the 𝜀-greedy decision-making policy chooses an action having 
maximum reward with the 1 − 𝜀 probability. The random action is made with 𝜀 probability. Once the neural network 
is well trained by Q-learning with the 𝜀-greedy policy, the expected reward value over the fixed number of simulated 
uncertain scenarios will converge.  
 
5. Application 
The data we use for Iowa case study is from Mejia-Giraldo and McCalley [1] and online sources. The existing capacity 
and generation data is from the Iowa’s Electric Profile [30]. For the capacity factor 𝐶𝐹෪ , we integrate an online source 
[31] and values provided by [1] to use as input into optimization model. The emission data of the fuel-based electric 
generation technology, coal and natural gas, is obtained from the U.S. Energy Information Administration [32]. We 
use the carbon emission limits based on Iowa’s Pathway to Cutting Carbon Pollution report [33]. The overall planning 
horizon we choose for Iowa is 10 years. Each time period of the planning horizon consists of 2 years. Each time period 
is divided into 3 demand profiles. The uncertainties considered for Iowa electric generation are the investment of wind 
power 𝐼ሚௐூே,௧,௪, the demand for each time period 𝑑ሚ ௧,௪, the renewable power source percentage 𝜌௧,௪, and the carbon 
emission limit 𝐶𝑂෪

௧,௪
. We denote the change rate for a certain scenario is 𝜇௪. The current realization of an uncertain 

parameter 𝜒௧,௪ is calculated by 𝜒௧,௪ = 𝜒௧ିଵ,௪(1 + 𝜇௪). For each uncertain parameter, two potential change rates are 
considered. The transition probabilities between two change rates for each uncertain parameter is taken from [1]. We 
use the transition probabilities and Monte Carlo simulation to simulate uncertain scenarios for each time period.  
 
We compare the computation performance between myopic planning method and deep reinforcement learning 
method. For planning 4 years, 2 time periods, the running time of deep reinforcement learning is much longer than 
the myopic planning. Because myopic planning only involves a linear optimization calculation. The deep 
reinforcement learning consists of two parts, the neural network training and optimization calculation. In order to let 
the neural network learn as many potential scenarios as possible, we need to have at least tens of thousands of 
replications. The deep reinforcement learning results in a much longer computation time than the myopic method.  
 
Myopic planning is used to design flexible electric generation portfolios for 10 years in Iowa. Based on the data from 
the Iowa Utilities Board [30], Iowa’s existing generating capacity can always satisfy the demand. We assume that the 
fuel-based technology using coal and natural gas will need to retire in next 10 years to reflect carbon neutral goals. 
We simulate 1000 scenarios. The total number of unique simulated scenarios is 609. Based on all solutions provided 
by myopic planning, Iowa should add capacity in wind power but keep hydro power capacity constant. Figure 1 
presents the mean capacity to be added in wind power during each time period over 10 years (5 periods) under low, 
medium, and high demand scenarios. Myopic planning combined with Monte Carlo simulation is able to provide 
flexible generation portfolios to deal with a variety of uncertain scenarios within a reasonable time.   
 

 
 

Figure 1: Capacity added in wind power under different demand scenarios 
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6. Conclusions 
Our research provides methods to design flexible electric generation portfolios. The myopic planning combined with 
Monte Carlo simulation avoids the elimination of useful information caused by the scenarios reduction algorithm. 
Compared with similar dynamic decision-making process realized by deep reinforcement learning, the myopic method 
provides planning results within a reasonable time. The myopic method is simple and fast to use as generation planning 
tools and may be reasonable for the electricity planning problem where the objective function is separable. Additional 
GPUs could be used to improve the training time of the neural network in deep reinforcement learning or conduct 
parallel computation of dynamic programming in stage-based decomposition algorithm.  
 
The improvement of this research can be considered in several directions. More research needs to be conducted in 
order to generate accurate solutions in the reinforcement learning as applied to electricity generation planning and to 
understand the conditions when reinforcement learning provides better insights than myopic planning. The present 
research considers five main energy sources in Iowa: coal, natural gas, wind, hydro, and nuclear. Future research could 
include additional energy sources such as solar power and petroleum.  
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