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ABSTRACT

A commercial plant breeding program is a complex operation. A typical operation starts with

several tens of thousands of experimental genotypes (e.g., soybean varieties or corn hybrids) that

are planted in what is termed an early-stage experiment. At the end of the growing season, the

most promising genotypes are selected for advancement. That is, they will be planted the next

year again with the expectation that the best will eventually become commercialized. Thus,

advanced genotypes are planted over multiple years, starting with early-stage experiments of tens

of thousands of genotypes planted in a few locations, extending to late-stage experiments where a

few of the best performers are planted in a larger number of locations.

Decisions regarding the advancement of a specific plant genotype is challenging due to a very

limited number of observations. But identifying subsets of varieties that are performing similarly

to the current commercial seeds in variety of the environments can help to identify potential

commercial plant seeds. To aid the decision making, machine learning can be used to predict the

yield of a genotype based on past observations of multiple genotypes. In this dissertation we

propose predictive models using observation of commercialized varieties that are able to identify

varieties those perform similarly to the different environments in laboratory stage when there is

no field observation available.

Also, we must deal with a complex assignment problem. Practically speaking, experimental

genotypes belong to groups based on their similarities, such as relative maturity (RM), and stage

of the experiment. Trials that are similar in terms of stage and RM should also be placed together

as much as possible to keep the environmental condition consistent to make the comparison fair

among those. Furthermore, within a plant breeding program, there are typically multiple

breeding groups, each responsible for making decisions regarding a portfolio of experimental

genotypes would also like their trials to be positioned close to each other for convenience. We,
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therefore, develop an optimization model that focuses on desirable properties, that is, placing

trials from the same breeding groups and with the same RM and stage together while indirectly

reducing wasted space in the field. The model is scalable and provides advantage of reaching the

optimal solution over the entire breeding program in a fully automated two-phase process.
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CHAPTER 1. INTRODUCTION

1.1 Overview

A commercial plant breeding program is a complex operation. A typical operation starts with

several tens of thousands of experimental genotypes (e.g., soybean varieties or corn hybrids) that

are planted in what is termed an early-stage experiment. At the end of the growing season, the

most promising genotypes are selected for advancement. That is, they will be planted the next

year again with the expectation that the best will eventually become commercialized. Thus,

advanced genotypes are planted over multiple years, starting with early-stage experiments of tens

of thousands of genotypes planted in a few locations, extending to late-stage experiments where a

few of the best performers are planted in a larger number of locations.

To have a reliable estimation on the performance of a plant seed for decision making, breeders

need to observe the seed varieties across the years and locations (environments) which is not

possible in early stages due to having several thousands of varieties. But identifying subsets of

varieties that are performing similarly to the current commercial seeds in variety of the

environments can help to identify potential commercial plant seeds. In practice this is it is only

economically feasible to plant each seed variety in a limited number of locations are selected by

plant breeders which is a challenging assignment problem itself for various reasons. In fact in a

commercial plant breeding trials from different breeding groups those are responsible for making

decisions regarding a portfolio of experimental genotypes, in different stages which is the year in

the breeding program the genotype is planting and with varying relative maturity (RM) that is,

the number of growing days needed for the plant to mature must all be planted in the same field.

Meeting all these requirement at the same time is not possible due to limited capacity of the

fields. In the first part of this dissertation we propose predictive models using observation of

commercialized varieties that are able to identify varieties those perform similarly to the different
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environments in laboratory stage when there is no field observation available. Then in the second

part of the dissertation we provide an optimization model to optimize the trials field assignment

process.

1.2 Research Questions

We assume that observations of genotype varieties those have similar genetic-by-environment

(GxE) interaction effect can be used to predict phenotypic performance of a target variety when

the target observations is not sufficient to make advancement decision. Thus in Chapter 2 of this

dissertation we are trying to answer a practical question: How can we find clusters of genotypes

with similar GxE effects using phenotype data? To define subsets of genotype varieties those have

similar GxE interaction effect, data clustering can be used which requires a complete matrix of

GxE similarity/dissimilarity of each and every pair of varieties. It is not possible to define this

GxE similarity for all variety pairs, as it requires the varieties having been planted in the same

environments. Therefore, the proximity matrix obtained by phenotype data has huge percentage

of missing observations and no standard clustering method is directly applicable. Thus we have to

address a technical difficulty of How can we do data clustering when we only have proximity

matrix with mostly missing values? A proximity matrix completion method is developed to solve

this issue.

Although PMC algorithm proposed in Chapter 2 can help with identifying subsets of GxE

similar varieties, it requires variety pairs to be observed in same environment repeatedly which

only happen in late stages where breeders have enough information about varieties. In other

words, breeders are interested to identify subsets of GxE similar varieties for early stage varieties

that number of phenotypic observations is very limited to make advancement decision. Thus,

breeders are interested to answer this question: How to predict the GxE similarity of genotypes

using genetic information? to make sure are they able to make a reliable decision regarding

advancement of a trial genotype in advance without observing its phenotypic performance across

the various environments using observations of similar GxE varieties in the past. We have
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developed a framework in Chapter 3 of this dissertation which defines an empirical measure of

GxE dissimilarity using phenotypic observation so that machine learning can be used to predict

GxE similarity using genetic variables.

Finally from operational point of view, breeders are interested to know: How should field

trials be planted to aid advancement decisions? This can be achieved knowing how to model field

trials mathematically in a way that accounts for all of the plant breeder concerns, while still

having the ability to solve the problem under tight time constraints. Chapter 4-5 of this

dissertations provide optimization modelling approach to aim this goal.

Therefore this dissertation facilitates the breeding process in two main approaches of

Predictive models to aid advancement decisions and Optimization of field trials.

1.3 Predictive models to aid advancement decisions

Decisions regarding the advancement of a specific plant genotype is challenging due to a very

limited number of observations. To aid the decision making, machine learning can be used to

predict the yield of a genotype based on past observations of multiple genotypes, but this

approach is challenged by the fact that yield is a function of genotype, environment, and the

genotype-by-environment (GxE) interaction effects. As a result, the sufficiency of past

observations in target environments is crucial in building the prediction model. When the

observations of the target genotype are not enough to train an accurate model, using observation

of related genotypes those have the same GxE behavior is a possible solution, but identifying

those related genotypes is challenging as well.

A data clustering approach could be applied to identify such sets of related genotypes that

require a proximity matrix of GxE similarity of all genotype pairs. Furthermore, it is not

practically possible to define this GxE similarity for all genotype pairs, as it requires the

genotypes having been planted in the same environments repeatedly. This will not happen for

most pairs for various reasons. For some pairs, their environmental requirements are simply too

dissimilar, which makes them unlikely to be planted in the same location. For some others, it is
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only economically feasible to plant each genotype in a limited number of locations. Thus, it

naturally gives rise to a proximity matrix where most of the values are missing for either of these

two fundamentally different reasons. Therefore, if the proximity matrix has missing values, no

standard clustering method is directly applicable. Imputation can be done to replace missing

values, but none of the current imputation methods such as imputing the mean or median of the

observations could address the reason for values are missing. As a solution, we propose the

Proximity Matrix Completion (PMC) algorithm in Chapter 1 that can impute missing values that

addresses reasons values are missing. To determine which case applies, the data is modeled as a

graph, and a set of maximum cliques in the graph is found. The overlap between cliques then

determines the case and hence the method of imputation for each missing data point.

Besides the clustering, we are able to determine pairs of genotypes that have the same

preference to the environment (low dissimilarity in GxE effect) using historical data where we

have a wide observation of genotypes in common environments. However, that only happens in

the late stages of a breeding program when the breeders have enough information to make a

decision. Since the GxE effect is a response of genetic interaction to the environment, the

similarity in genetic markers in a pair of genotypes can be used to predict similarity/dissimilarity

in the GxE effect. In Chapter 2 we deploy a supervised learning model on commonality in genetic

markers can predict a pair of varieties related or non-related as a binary response of a

classification problem. Using related genotypes versus non-related genotypes affects yield

prediction accuracy and benefits of the advancement decision-making process. This early

prediction of related genotypes in the early stages can save time and money in different ways.

Having advanced knowledge of related genotypes, breeders can plan to plant experiments in a way

that maximizes information gain in the early stage. Knowing that related genotypes have the

same GxE preference to environment, breeders can avoid planting related genotypes in the same

environments and expand the experiment to more environments through related genotypes. We

also validate the capability of the proposed GxE similarity measure in estimating phenotypic
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stability by comparing the results with some of the existing stability/adaptability models and

discuss its contribution to the field.

1.4 Optimization of field trials

Having all information about related genotypes and target environments, we must deal with a

complex assignment problem. Practically speaking, experimental genotypes belong to groups

based on their similarities, such as relative maturity (RM), and stage of the experiment. Trials

that are similar in terms of stage and RM should also be placed together as much as possible to

keep the environmental condition consistent to make the comparison fair among those.

Furthermore, within a plant breeding program, there are typically multiple breeding groups, each

responsible for making decisions regarding a portfolio of experimental genotypes would also like

their trials to be positioned close to each other for convenience. We, therefore, develop an

optimization formulation in Chapter 3 that focuses on desirable properties, that is, placing trials

from the same breeding groups and with the same RM and stage together while indirectly

reducing wasted space in the field. The core idea of our formulation is to split each field into

blocks and then create homogenous blocks. By favoring placing similar trials together in blocks,

the optimization formulation indirectly favors using fewer blocks, which reduces wasted space in

the field.

However, the proposed optimization model can minimizes the wasted space and provide the

most favorable arrangement of trials within in a field it has limitations for scaling that to the

whole breeding program. First, a commercial breeding program includes multiple fields which

trials should be placed and splitting trials among those fields requires same considerations as

arranging trials within a field. Also, there are other practical considerations that make a field

suitable for a specific group of trials or force the program to avoid a particular field for some

trials. So the current formulation is not applicable to the entire breeding program. To address

this issue we propose a two phase solution in Chapter 4 for optimal assignment of trials to the

fields and arrangement within each. Another limitation with the baseline optimization model is
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that the formulation is limited to three mentioned objectives and these criteria may change from

one year to the next as practices within the breeding program evolve. For instance there could be

decision groups that requires trials of same group to be placed nearby for dicision purpose. So the

model requires some level of flexibility in terms of objectives to adjust to the program. The new

formulation not only provides an advancement on the existing model to help with scalability and

applicability in practice but also makes the process fully automated through the two phase

optimization.

1.5 Contributions

One cycle of breeding program takes several years and requires vast testing resources. Such

predictive models can optimize the breeding program and accelerate it by providing knowledge on

performance of varieties in a breeding program years in advance using machine learning

techniques. Knowing that similar GxE varieties have same GxE preference to environment

breeders can avoid planting similar GxE varieties in same environments and expand the

experiment to more environments through similar GxE varieties in a way that maximizes

information gain. A precise prediction of the yield of a target variety in early stages will provide a

valuable source of information for breeders to make a better decision on future of a variety in

breeding program. In other words, determining a set of similar GxE varieties breeders are able to

predict yield of a target variety in some unseen environments. A better evaluation of the target

performance saves considerable amount of time and cost. Also, a better evaluation of a target

performance using prediction can refuse an unwanted decision of keeping a future failure variety

or discarding a potential winner variety based on few unreliable observations in early stages.

Along with all the predictive advancement we improve the breeding process from practical

point of view as well. We consider optimization of field trial experiments from the perspective of

the plant breeder. Namely, given a set of trials from multiple breeding groups, how should the

trials be assigned to specific locations within a large field? The overall goal is improved utilization

of each field, but each breeding group would also prefer their trials to be positioned close to each
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other for convenience, and trials that are similar in terms of stage and RM should also be placed

together as much as possible as this makes them easier to compare and evaluate for possible

advancement.

In the end, a correct advancement decision is paramount and anything that can be done to

facilitate the comparison between competing experimental genotypes, and would thus aid the

advancement process, would be of great value. In fact, the benefit of good trial placement is likely

higher than the monetary benefit of reduced waste, although the former is hard to quantify since

it depends on ultimately selecting the best varieties and hybrids for commercialization. Needless

to say that an optimization tool can solve the assignment problem in order of seconds and help

the breeders to save weeks by solving the problem manually. Also the solution provided by the

model is the optimal solution which could not be easily obtained by human. A comparison of the

model solution to a commercial breeding man-made solution shows considerable improvement.

Finally, in practice there are last minute changes to the program like adding new trials or

changing the objectives in terms of adding a new consideration or changing the importance of

one. In such situation the model still would provide the optimal solution quick regardless of the

changes but in manual approach it will require a lot more time and resources to solve the new

problem along with more complexity for human brain to handle.
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CHAPTER 2. DATA CLUSTERING USING PROXIMITY MATRICES

WITH MISSING VALUES

Samira Karimzadeh and Sigurdur Olafsson

Department of Industrial and Manufacturing Systems Engineering, Iowa State University

published in Expert Systems With Applications

Abstract

In most applications of data clustering the input data includes vectors describing the location

of each data point, from which distances between data points can be calculated and a proximity

matrix constructed. In some applications, however, the only available input is the proximity

matrix, that is, the distances between each pair of data point. Several clustering algorithms can

still be applied, but if the proximity matrix has missing values no standard method is directly

applicable. Imputation can be done to replace missing values, but most imputation methods do

not apply when only the proximity matrix is available. As a partial solution to fill this gap, we

propose the Proximity Matrix Completion (PMC) algorithm. This algorithm assumes that data is

missing due to one of two reasons: complete dissimilarity or incomplete observations; and imputes

values accordingly. To determine which case applies the data is modeled as a graph and a set of

maximum cliques in the graph is found. Overlap between cliques then determines the case and

hence the method of imputation for each missing data point. This approach is motivated by an

application in plant breeding, where what is needed is to cluster new experimental seed varieties

into sets of varieties that interact similarly to the environment, and this application is presented

as a case study in the paper. The applicability, limitations and performance of the new algorithm

versus other methods of imputation are further studied by applying it to datasets derived from

three well-known test datasets.
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2.1 Introduction

Data clustering is a well−studied field and many clustering algorithms have been proposed for

finding clusters in data. This includes classic but still widely used methods such as k−means and

hierarchical clustering Xu and Tian (2015), as well as more recent variants, such as kernel

k−means Das et al. (2008), gaussian kernel clustering Güngör and Özmen (2017), Bayesian

clustering CHEN et al. (2007) and quantum clustering Shuiping et al. (2013). The applicability of

these algorithms, however, depends on the available input data.

Data clustering aims to find groups of points that are similar, which implies that all clustering

methods require a distance between any two points to assess their similarity. In most applications

those points are characterized by some vectors, which we can think of as the primary input

variables, and distances between points are calculated based on the observed values of these

vectors. But sometimes those input variables are not available and all we know is a distance or

proximity matrix, that is, the distance of one point to another, not how it was or could be

obtained. Well−known examples of only having a proximity matrix available occur when we are

interested in similarity between documents Jian-Ping and Lihui (2014). While starting from the

proximity matrix may appear to simplify the clustering calculations – we need those distances

anyway − it is, in fact, limiting since many clustering methods assume the availability of the

original vectors. For example, k−means iteratively calculates a centroid for a cluster and then

assigns each data point to the closest centroid. Without the original vectors we cannot calculate

the centroid and cannot apply k−means or similar methods. Fortunately, some clustering

methods are proximity based and only require a distance between points as inputs. This includes

hierarchical clustering Ellen (1986), partitioning around medioids Ng and Han (1994), fractal

clustering Dan (2000), quantum clustering Shuiping et al. (2013) and certain graph−theory based

clustering methods Amir et al. (1999). Such methods can thus be applied in cases where only the

proximity matrix is available.

Missing values pose another difficulty in data clustering. Imputation methods are commonly

used to deal with missing values and here we propose a new method of this type. While other
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solutions exist, using an imputation method has the advantage that it can be applied once to

modify the data; and then any clustering algorithm can subsequently be used to cluster the

modified data. Many imputation methods are applicable to deal with missing data when a vector

characterization of the original data is available; but we are not aware of many imputation

methods that can be applied for data clustering where the proximity matrix is partially observed

and is the only available information about the data points. In particular, what may be

considered advanced methods for imputation, including hot/cold deck imputation, regression

imputation, interpolation, and extrapolation all use vectors characterizing each data point to

estimate missing values and are therefore not applicable when only the proximity matrix is

available Daniel (2003). The only option that we are aware of for such cases is therefore to use a

summary statistic such as the mean or median for the imputation. It is possible for such methods

to perform well on a specific dataset, but they are also known to be biased and do not account for

the fundamental reason for why the data is missing Baraldi and Enders (2010). Furthermore, such

statistical summary imputations consider all missing values to be the same, which is often not

true in practice. Other approaches, such as maximum likelihood and expected maximization can

provide an unbiased estimate of missing values; however, as noted above, these algorithms assume

that that the missing values are missing values in the vectors characterizing each data point

Daniel (2003), as opposed to missing values in the proximity matrix. As far as we know, no

previous work has therefore systematically addressed the issue of missing values in the proximity

matrix when only the proximity matrix is observed, reducing the users options to simple

imputation of mean or median, which may not be effective.

Based on the reasons outlined above, we contend that the lack of effective imputation

methods for the scenario where only the proximity matrix is available is significant because

simply imputing a mean or a median does not address the reason why a value is missing, which is

recognized as a critical issue Garciarena and Santana (2017); Jaemun et al. (2016). In other

words, imputing all missing values with the same estimation may end up clustering objects that

have no reasonable relation in same clusters. As an illustrative example of an application area
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where this would be important, consider a recommendation system where clustering is used to

identify groups of raters have the same taste. Intuitively there are likely specific reasons of

missing proximity values between different groups of raters; namely they deliberately choose not

to rate the same items. Imputing uniform proximity for every missing value may lead some

clustering algorithms to place raters that belong to disjoints groups together. There is therefore a

need for an imputation method that considers the reason a value is missing.

In order to partially address the shortcoming in the current state−of−the−art, we develop a

new method for imputation of missing values in a proximity matrix where the missing values are

not missing at random. We do not address all possible reasons for why an observation may be

missing, but specifically address scenarios where missing values can be assumed to fall in one of

two categories: missing due to complete dissimilarity and missing due to lack of observations.

These categories are motivated by a plant science case study to be discussed in detail later and we

believe them to be applicable in other areas as well. To get a better quality of data clustering, we

therefore need to distinguish these two missing value categories and estimate those missing values

appropriately. This is a novel contribution since, as far as we know, no existing imputation

methods consider the importance of these two different types of missing values.

The goal of this paper is thus to provide a new method for dealing with specific types of

missing data when only the proximity matrix is available. To achieve this goal, in Section 2 we

present a graph reformulation of the proximity matrix to identify the reason a value is missing

and estimate each missing value as a unique case using a maximum clique algorithm. In Section 3

we evaluate the generality and performance of our imputation method compared to the limited

existing benchmark imputation methods using the well−known Iris data. This evaluation

suggests a generalization of our method that is presented and evaluated in Section 4. In Section 5

we evaluate the applicability of our method to data with less favorable structure via two more

publicly available dataset, and we conclude the paper in Section 6 with a case study based on a

real application in plant breeding that motivated this work.
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2.2 Proximity Matrix Completion Algorithm

In general, we assume that we have n data points {xi : i = 1, 2, . . . , n} and we have a distance

metric that gives us a the distance dij = distance (xi, xj) between pairs of those data points,

resulting in what we will refer to as a proximity matrix

D =


d11 . . . d1n
...

. . . · · ·

dn1 · · · dnn

 .

As noted in the introduction, when this matrix is completely observed there is a limited set of

existing clustering methods can be applied directly to generate clusters of these data points. This

includes classic hierarchical clustering such as the single−line and complete−link algorithms, the

latter of which will be used for illustration later in this paper. However, the case where this

matrix is only partially observer, either at−random or not−at−random, has not been sufficiently

addressed.

Our imputation method utilizes a graph theoretic formulation of the data points, primarily to

distinguish between the two categories of missing not−at−random values in the proximity matrix

(missing due to complete dissimilarity, and missing due to lack of observations). Specifically, we

let V = {1, 2, . . . , n}denote the set of data points (rows and columns in D), which we will now

interpret as vertices in a graph G = (V,E), where an edge e = (i, j) ∈ E represent an observed

similarity between the corresponding data points (and a lack of an edge implies a missing value in

D). A clique C ⊆ V in G is a subset of vertices such that each pair of distinct vertices is

connected by an edge. A clique thus corresponds to a subset of data points with complete

distance information. A maximum clique is a clique with the property that if one more vertex is

added, that subset of vertices is no longer a clique.

Example 2.1 Suppose we are given a proximity matrix with many missing values as follows:
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D =



0 0.35 0.24 NA NA NA NA NA NA

0.35 0 NA 0.25 0.31 NA NA NA NA

0.24 NA 0 0.45 NA 0.19 NA 0.53 0.40

NA 0.25 0.45 0 0.11 0.13 NA 0.45 NA

NA 0.31 NA 0.11 0 NA NA NA NA

NA NA 0.19 0.13 NA 0 0.12 0.32 NA

NA NA NA NA NA 0.12 0 NA NA

NA NA 0.53 0.45 NA 0.32 NA 0 0.12

NA NA 0.40 NA NA NA NA 0.12 0



.

Note that D is symmetric. This matrix corresponds to a graph G = (V,E) with nine vertices

V = {1, 2, . . . , 9} and edges

E =

{(1, 2) , (1, 3) , (2, 4) , (2, 5) , (3, 4) , (3, 6) , (3, 8) , (3, 9) , (4, 5) , (4, 6) , (4, 8) , (6, 7) , (6, 8) , (8, 9)} ,

And the distances can be viewed as the weights of the edges. This graph is further visualized

in Figure 1, and we observe that we can form a partition V =
⋃6
i=1Ci of the vertices using

maximum cliques

C1 = {3, 4, 6, 8} , C2 = {3, 8, 9} , C3 = {2, 4, 5} , C4 = {1, 2} , C5 = {6, 7} , C6 = {1, 3} .

 

Figure 2.1 Graph corresponding to example proximity matrix
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The key idea of our imputation method is, in fact, to utilize the concept of a maximum clique

as the basis for dealing with missing data in the proximity matrix D, and specifically

distinguishing two types of missing values. Missing values in the proximity matrix imply that the

corresponding graph is also incomplete, that is, the graph has missing edges. We use a set of

maximum cliques in the graph to identify how to construct a complete graph, corresponding to a

new proximity matrix D̂ that does not contain any missing values. The algorithm for this is

detailed below.

Algorithm Proximity Matrix Completion

• Let G = (V,E) be the graph corresponding to a proximity matrix D, where each vertex in

V corresponds to a row/column and an edge in E corresponds to a value in D (and

(v, u) /∈ E implies that dvuis missing).

• Any non−missing value in D will be the same in D̂, that is,

d̂vu = dvu,∀(v, u) ∈ E (2.1)

• To determine how missing values are imputed, identify a subset of maximum cliques

C1, . . . , Cm such that

V =

m⋃
i=1

Ci. (2.2)

Finding maximum cliques is a hard but well−studied problem, and any standard maximum

clique algorithm may be used for this step. In particular, we have used the classic

Bron–Kerbosch algorithm Coen and Joep (1973). Note that these cliques are not unique

and may overlap.

• (Imputation of missing−due−to−complete−dissimilarity values.) Let v, u ∈ V be

two vertices such that ∀C1, C2 : v ∈ C1, u ∈ C2 ⇒ C1 ∩ C2=∅, that is, these vertices do not

belong to any maximum cliques that intersect. Then we assume that disconnected nodes in



15

different partitions should in a sense be disconnected because they are completely dissimilar,

that is, the corresponding distance values are not missing at random but missing because

they are essentially cannot be compared due to complete dissimilarity. We hence introduce

an edge with a maximum distance for any such pair of vertices:

d̂uv = dmax, ∀ (v, u) /∈ E : ∀C1, C2 : v ∈ C1, u ∈ C2 ⇒ C1 ∩ C2 = ∅. (2.3)

• (Imputation of missing−due−to−incomplete−observations values.) Let v, u ∈ V be

vertices such that ∃C1, C2 : v ∈ C1, u ∈ C2, C1 ∩ C2 6= ∅. Even if those vertices are not

connected, that is, (v, u) /∈ E , there must exist at least one other vertex with edge to both

oan f those vertices, and we can therefore triangulate a value for d̂ij using one or more of

those vertices in common. First define the set o,f all vertices that have edges to both u and v

V0 (u, v) = {t ∈ V : (u, t) ∈ E, (t, v) ∈ E} . (2.4)

We now use V0 (u, v) to triangulate an estimate of the distance between u and v and we add an

edge (v, u) ∈ E with value

d̂uv =
1

|V0 (u, v)|
∑

t∈V0(u,v)

|dut − dtv|. (2.5)

With the non−missing values address in Step 1 of the algorithm above, and every

missing−value case falling into either the scenario described in Step 3 or Step 4, the algorithm

has constructed a complete graph and a corresponding proximity matrix D̂ =
(
d̂ij

)
that has no

missing values. Figure (2) shows a flowchart of the complete PMC algorithm.

Example 2.2: Applying the PMC algorithm to the proximity matrix D in Example 2.1 gives

a complete proximity matrix D̂ where the missing edges {(2, 7) , (2, 9) , (5, 7) , (5, 9) , (1, 7) , (7, 9)}

are estimated in step 4 as values are missing due to incomplete dissimilarity and the rest of

missing edges are estimated in step 3 by triangulation. As a case in point for missing edge d14 in

step 4 V0 (u, v) = {2, 3} which V2 comes from intersection of cliques C3 ∩ C4 and V3 from
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intersection of cliques C1 ∩ C6. So, triangulated estimate of distance

d̂14 = 1
2 (|0.35− 0.25|+ |0.24− 0.45|). The completed proximity matrix is

D̂ =



0 0.35 0.24 0.16 0.04 0.05 1.00 0.29 0.16

0.35 0 0.16 0.25 0.31 0.12 1.00 0.20 1.00

0.24 0.16 0 0.45 0.34 0.19 0.07 0.53 0.40

0.16 0.25 0.45 0 0.11 0.13 0.01 0.45 0.19

0.04 0.31 0.34 0.11 0 0.02 1.00 0.34 1.00

0.05 0.12 0.19 0.13 0.02 0 0.12 0.32 0.21

1, 00 1.00 0.07 0.01 1.00 0.12 0 0.20 1.00

0.29 0.20 0.53 0.45 0.34 0.32 0.20 0 0.12

0.16 1.00 0.40 0.19 1.00 0.21 1.00 0.12 0



.

2.3 Numerical Example: Iris Data

We first evaluate the PMC algorithm using a well−known dataset that is often used for

illustrating data clustering, namely the iris data first introduced by FISHER (1936). The iris data

describes three types of iris flowers (iris setosa, iris versicolor and iris virginica) based on four

variables (petal length and width, sepal length and width). There are 50 examples of each type of

iris for a total of 150 data points. Since the correct classes are known this is a useful dataset to

evaluate the effectiveness of the proposed approach, as well as its potential limitations. The

structure of the iris data, with two class values that appear more similar (iris versicolor and iris

virginica) and one that is easier to separate (iris setosa), allows us to simulate both scenarios that

fit closely with the PMC algorithm assumptions and scenarios that fit less well.

We design an experiment based on two different structures of missing data and use three

clustering methods: single−link and complete−link hierarchical clustering, and partitioning

around mediod (PAM) partitional clustering. The different structures allow us to evaluate how

deviations from the assumptions of the PMC algorithm affect its performance. The three

algorithms chosen allow us to evaluate how the clustering algorithm fit for the specific data
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impacts the performance of the new PMC algorithm. Since we must use a clustering methods

that requires only the proximity matrix the choice of methods is limited and these methods

demonstrate a range of fit with the data. For the iris data single−link clustering completely

misses the mark by combining the two similar class values into one cluster, complete link

hierarchical clustering performs better, but PAM has the best performance on this data. We first

calculate a complete proximity matrix and from that point onward assume that this is the only

input data (that is, we do not have access to the four primary variables again). We first assume

data missing−at−random and remove various percentage of the data. We then evaluate how well

complete−link, single−link and PAM k−mediods clustering algorithms recovers the correct

clustering results after the missing values are imputed using the PMC algorithm. Here there are

no missing values due to complete dissimilarity so no values should be calculated according to

Step 3 of the PMC algorithm. This may be considered a non−ideal case for the PMC algorithm,

but it should still be able to impute values that lead to a clustering algorithm recovering the

correct clusters a reasonable fraction of time. For the second setting we remove all distance

comparisons between certain types of iris flowers, namely, iris setosa is assumed completely

dissimilar, before removing a certain percentage of the remaining distance values at random

(incomplete information). We then apply the PMC algorithm to impute values. Here some values

are missing due to complete dissimilarity and should be imputed according to Step 3, while others

are missing due to incomplete information and should be imputed according to Step 4 of the

PMC algorithm. This setting is therefore a better fit with the assumptions of the PMC algorithm,

and we would expect it to perform well.

For the first experiment, when values are missing at random, we tested the PMC algorithm

for different percentage of missing values ranging from 10% to 95%, cluster using a complete link

algorithm into three clusters, and determine how well we identify the true iris classes. As noted

above, imputation methods that use observation of the original vectors cannot be compared to

the PMC algorithm because we assume that we only have access to the partially observed

proximity matrix. The benchmarks that we use are therefore a simple imputation of the mean
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and imputation of the median. Table 1 compares average accuracy of the PMC algorithm to the

benchmarks with 1000 replications of the imputation and clustering process.

Table 2.1 PMC vs.benchmark imputations (values missing-at-random)

 

The first row of Table 1 in each section shows how well each algorithm can cluster the iris

data with a completely observed proximity matrix. When the data has missing−at−random

values, the PMC algorithm results in higher accuracy than the benchmark imputation methods

for up to 80% sparsity in the proximity matrix for agglomerative hierarchical algorithms, and

consistently better accuracy for PAM k−mediod clustering method. Although the performance of

clustering methods might seem similar for some levels of sparsity, especially for the hierarchical

methods, the silhouette width shows that the quality of final clusters found from the data

imputed using the PMC method could be considered better.

The accuracy of the method decreases by increasing the sparsity rate for every imputation

method. However, for an extremely sparse distance matrix in this case 90% sparse, simply

imputing the mean or median outperforms the PMC algorithm for this missing data structure

based on the clustering method. For the benchmark methods the accuracy decreases slowly but

steadily, while for the PMC algorithm the accuracy first increases slightly and then drops of very

quickly. These observations are in fact intuitive. The PMC algorithm works based on

triangulation when there is a maximum clique in common and for an extremely sparse data the
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algorithm is often unable to find any vertices in common to estimate the missing edge. In such

cases the algorithm assumes complete dissimilarity and estimates the missing edge accordingly,

which for this experiment should never be done (that is, here all missing values are

missing−at−random). For moderate to large percentage of missing data this does not happen,

but for extremely high percentage of missing data this suddenly starts occurring frequently, which

explains why a simple imputation method performs better when we have high percentage of

missing data. The reason why, using the PMC algorithm, the accuracy first increases before

decreasing rapidly has to do with a property of the iris data. It is well known that for this dataset

one type of iris is easy to separate from the others while two have some overlap in the explanatory

variables. What we observe is that for high percentage of missing data many of the overlapping

pairs in the proximity matrix are removed and replaced by triangulated values based on

non−overlapping pairs, making it easier for clustering algorithm to correctly separate these two

iris types. While interesting, this is thus due to an idiosyncrasy of this test data, not a pattern we

can expect to generalize to many other datasets.

Table 2.2 PMC vs. benchmark imputations (values missing due to two reason)

 

Table 2 shows same comparison when values are missing both at random and due to complete

dissimilarity. This means that the data is missing for the two underlying reasons assumed by the

PMC algorithm. As expected, PMC performs significantly better than the benchmark imputation



20

methods because of ability to distinguish between types of missing values. However, for extremely

high percentage of missing data, a simple imputation of mean or median may still be better. In

particular, when the PMC algorithm is used in conjunction with the complete−link algorithm and

more than 80% of the data is missing, the clusters obtained may not be sensible as evidenced by

the negative Silhouette width. However, when applied in conjunction with either single−link or

PAM, imputing data using PMC results in sensible clusters and better clusters than the

benchmark methods even for the highest percentage of missing values. It therefore appears to be

a combination of the clustering method and the data that may cause PMC to perform poorly for

high percentage of missing data. While our results indicate that this rarely happens when the

PMC assumptions regarding why data is missing are satisfied (Table 2), this potential limitation

will be addressed in the next section.

2.4 Extension of PMC for High-Percentage Missing Data

As is noted before, the PMC algorithm assumes that every missing data point in the

proximity matrix is missing for one of two reasons: 1) missing due to complete dissimilarity of the

objects being compared, or 2) missing due to lack of observations (random or not−at−random).

As explained in Section 2, we furthermore assume that we can identify each case via the existence

of maximal cliques. In the case of overlapping maximal cliques we assume the second case, and if

there are no overlapped maximal cliques we assume the first case. As we have seen for the iris

data in Section 3 this may work well in practice, but it is also possible that very high percentage

of missing−at−random data may result in missing observations with no overlapping maximal

cliques. In other words, large percentage of missing data may result in missing values in the

proximity matrix being incorrectly identified as missing due to complete dissimilarity. For such

cases it is possible to extend the PMC algorithm while still utilizing the maximal clique concept.

We specifically suggest that the following extension may work well for datasets with very high

percentage of missing data, where most of the data is missing at random. Instead of imputing a

maximal distance for all values with no overlapping cliques, we find the number of cliques needed
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to connect two vertices and if it meets a minimum number then we use another imputation. In

other words, we apply Step 4 unchanged but essentially split Step 3 cases depending on how close

the vertices are in terms of overlapping cliques. Vertices that are, say, only two cliques apart

could be assigned a mean or a median value, whereas all vertices that are more than two cliques

apart would be assigned the maximum distance as in the standard Step 3 procedure.

Table 2.3 Extended PMC vs. benchmark imputations (values missing-at-random)

 

We repeat the two experiments from Section 4 and the results are shown in Tables 3−4. The

results indicate that extending the algorithm to impute mean or median of the observed distances

for missing values when there is no overlap among cliques helps to improve the accuracy as

intended, especially when the percentage of missing values is high and when the values are

exclusively missing−at−random. When the assumptions of the PMC algorithm are better

satisfied (second experiment), then the original PMC algorithm performs best except for

extremely high percentage of missing values, where the extended PMC algorithm outperforms all

other approaches.

Overall, the experiments with the iris data indicate that the PMC algorithm is useful for a

variety of missing data structures. Furthermore, its major limitation is in cases where the
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Table 2.4 Extended PMC vs. benchmark imputations (values missing due to two reason)

 

percentage of missing data becomes so large that many pairs are misidentified as missing due to

complete dissimilarity. However, even in such cases the extended PMC algorithm can be applied

effectively in its place. Of course, as expected, the PMC algorithm performs best when the

missing data structure is the closest to its assumptions and results for both experiments illustrate

that selecting an effective clustering algorithm is also important to the effectiveness of the PMC

algorithm.

The results reported in tables 1−4 are average performance of PMC algorithm versus

benchmark imputation methods over 1000 replication of the experiments. A t−test with 95%

confidence interval has been done on accuracy difference of PMC to benchmark imputation

methods to evaluate the significance of the improvement that PMC algorithm can achieve. Table

5 reports the results of these tests. As is shown in the table, the PMC algorithm can result in

significant improvements in quality of clustering output even in extremely sparse proximity

matrices.
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Table 2.5 T-test of 95% CI on PMC accuracy improvement over benchmark imputations

 

2.5 Evaluation on Different Datasets

The iris data experiment reported in the previous two sections provided insights into the

effectiveness of the PMC algorithm and specifically demonstrated that while it is generally

applicable, it is more effective when the structure of the missing data is close to it’s assumptions

(that is, both missing at random and due to complete dissimilarity) and when the chosen

clustering algorithm is effective for the data (e.g., PAM or complete−link versus single−link).

What remains to be investigated is how its effectiveness depends on the nature of the data itself.

In this section we explore this via two very different datasets, both available through the UCI

repository of machine learning datasets. The first dataset is the wine data, which includes 178

observation of chemical analysis of 13 quantities of three types of wine grown in the same region

of Italy Aeberhard et al. (1992). The second data set is the glass data, which includes 214

observations of six types of glass and is motivated by criminal investigations at the scene of a

crime Evett and Spiehler (1987). Table 6 provides cluster quality results for the three candidate

clustering methods for these two datasets with no missing values. We observe that PAM performs

best for the wine data, whereas complete−link performs best for the glass data. Since we now
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want to investigate the effect of the data itself, we ran 1000 replications of the experiment

described in Section 3 and 4 above using the best clustering method on each dataset (PAM for

wine data and complete−link for glass data). Tables 7−8 show results of these experiments.

Table 2.6 Candidate clustering methods performance on new datasets

Dataset/clustering method Wine Glass

Accuracy Silhouette Accuracy Silhouette

Complete-link 67.4 0.54 50.5 0.59

Single-link 29.8 0.49 21.0 0.37

PAM k-mediods 70.8 0.57 33.2 0.31

Table 2.7 PMC performance over new datasets (values missing-at-random)

 

These results illustrate how the conclusions of Section 3 and Section 4 might change for data

with different structure, and this structure is insightful to interpret the results. The glass data

has seven class values and the ideal clustering result would identify seven clusters corresponding

to these values. However, there are two majority classes, including one that represents 35.5% of

the data. From a classification perspective we could therefore simply predict the majority class,

ignore the other six class values and achieve 35.5% classification accuracy on the data. We notice

that while the best clustering algorithm (complete−link) achieves a better performance in

separating the seven class values when given the whole data, when at least 50% of the data is



25

Table 2.8 PMC performance over new datasets (values missing due to two reason)

 

missing (at random or otherwise), the performance becomes similar to simply predicting that all

the data belongs to the majority class. It is therefore not surprising that imputing the mean or

median is very competitive relative to the PMC algorithm, and it is likely not worthwhile to use

the PMC algorithm for such datasets.

The wine data has a very different structure. Here removing 50% of the data at random

appears to have minimal effect on the performance. For such data, the PMC algorithm dominates

the performance of imputing the mean or the median, but the patterns observed in Section 3 and

Section 4 for how relative performance changes as the percentage of missing data increases are

much less pronounced. For such data the effectiveness of the PMC algorithm appears clear, but

on the other hand, there is little motivation to use the extended PMC over the basic PMC

algorithm. The results from these two datasets thus provide some insights into the type of data

where the PMC algorithm and its extension can be expected to be most effective.

2.6 Case Study: Plant Breeding

We now turn to the application that motivated the PMC algorithm. While we have developed

a general method to treat missing values in a proximity matrix, and we have developed some

insights into when it is most effective, our original motivation comes from an application in plant
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breeding. In this application our data points correspond to different experimental plant varieties

that will potentially become commercial crop varieties. In this context it is valuable to know the

similarity between those varieties as it pertains to how they react to different environments, what

is generally referred to as genotype−by−environment (GxE) effects Des Marais et al. (2013); Li

et al. (2018). Thus, a distance measure can be defined where zero difference implies two varieties

respond in exactly the same way to different growing environment, and the larger the value the

more dissimilar the varieties. A proximity matrix is thus defined, but only the proximity matrix is

available. Furthermore, it is not possible to define this GxE similarity for all variety pairs, as it

requires the varieties having been planted in the same environments. This will not happen for

most pairs for various reasons. For some pairs, their environmental requirements are simply too

dissimilar, which makes them unlikely to be planted in the same location. For such cases, there

are no environments in common for explainable reasons and the corresponding values in the

proximity matrix will be missing due to complete dissimilarity. Other elements of the matrix are

missing for unknown but potentially not−at−random reasons. The main reason for this is it is

only economically feasible to plant each variety in a limited number of locations (decisions made

by plant breeders). The corresponding values in the proximity matrix will be missing due to

incomplete observations. This application thus naturally gives rise to a proximity matrix where

most of the values are missing for two fundamentally different reasons (environmental

dissimilarity versus breeder decisions) and we are interested in finding clusters based on this

incomplete proximity matrix.

For this case study we start from a two−way data matrix where rows correspond to

experimental soybean varieties and columns correspond to test environments. The response in the

matrix is the mean yield observed for a variety in that environment. What is of interest is to

determine what we call GxE similarity, that is, how similarly two varieties interact with the same

environment, similarity of GxE interactions.
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Example 5.1: To illustrate what we mean by GxE similarity, let’s consider a small synthetic

example of 5 varieties in 9 environments. Suppose the following yield observations in table 9 are

made:

Table 2.9 Sample field observations

E1 E2 E3 E4 E5 E6 E7 E9

V1 68.0 60.4 72.2 57.6 59.9 81.1 52.2 90.4

V2 59.8 51.1 62.4 49.8 37.6 60.2 31.9 68.7

V3 48.9 39.2 52.7 37.5 38.1 62.9 33.8 70.6

V4 64.5 57.4 67.3 55.7 42.6 65.2 37.4 74.0

V5 63.3 55.7 67.2 52.2 53.7 77.3 48.3 84.5

It may, for example, seem that V2 and V3 are similar as they have lower yield and the other

three have higher yield. However, the similarity we are interested in is not similarity of yield, but

rather similarity of the GxE interactions. Considering the sum of squared difference in estimated

interaction effects in this two−way table and then normalizing the numbers to be between zero

and one, these yield observations are converted into proximity matrix:

D =



0 0.88 0.03 0.93 0.01

0.88 0 0.95 0.01 0.88

0.03 0.95 0 1 0.01

0.93 0.01 1 0 0.93

0.01 0.88 0.01 0.93 0


.

We note that V1, V3 and V5 are very similar, not because they have similar yield (in fact, V1

has very high yield but V3 has very low yield), but because they have similar preference for each

environment. All three varieties have higher than expected yield in E6, E7 and E9, and lower than

expected performance in the other four environments. The opposite is true for V2 and V4, which

are hence similar to each other but dissimilar to the other three varieties.

Understanding GxE similarity is important when it comes to predicting plant phenotype, such

as yield, and hence to decision making in commercial plant breeding. Specifically, if the two

varieties have exactly the same interaction effects between genotype and environment, yield can
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be modeled with a non−interaction model that predicts yield simply as a function of genotype

main effects and environment main effects, which makes predicting yield in new environments

simpler. Having the ability to predict yield of experimental soybean varieties in environments

where they have not been tested aids decision makers when breeders need to decide if to keep a

specific variety in breeding program and plant the variety again in following year, or discard it

from the program.

Plant phenotype is often modeled as function of genotype effect xv, environmental effect xe,

and the interaction effects xve between genotype and environment (GxE). We will use the

following model of the yield µve of variety v in environment e

µve = µ+ xv + xe + xve + εve (2.6)

where µ denotes the overall average yield and εve models the variability. We are interested in

similarity of the interaction effects, that is, how similar xve and xue are across all environments

for a pair of varieties (v, u). If variety v is tested (planted) in a set of environments E(v) and u is

similarly tested in E(u), where the set of common testing environments is non−empty, that is,

E(v, u) ≡ E(v) ∩ E(u) 6= ∅, then we can estimate this similarity (across common testing

environments) as follows. Dropping εve, since we will be using empirically observed averages, we

note that xve = µve − (µ+ xv)− xe, and xe is fixed in a common testing environment e ∈ E(v, u).

Furthermore, µv ≡ µ+ xv represents the average yield of variety v, and we can write the

difference in interaction effects between the two varieties in a fixed environments as

xve − xve = (µve − µv)− (µue − µu). We can therefore calculate the estimated dissimilarity or

distance between the two varieties as

d (v, u) =
1

K

1

|E(v, u)|
∑

e∈E(v,u)

|(µve − µv)− (µue − µu)| . (2.7)

Here µve is the observed average yield of variety v in environment e, and µv is the observed

overall average yield for variety v. We finally normalize the values to be between zero and one, by

dividing by K = maxv,u

∑
e∈E(v,u)|(µve−µv)−(µue−µu)|

|E(v,u)| , resulting in a proximity matrix D.
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This proximity matrix will have a large percentage of missing values. Having a complete

proximity matrix D requires that we have planted each pair of varieties in at least one common

test environments. As noted in the introduction this is not possible for two reasons. First, it is

economically infeasible to plant every experimental variety in every location every year. Breeders

must make choices as to which locations to plant each experimental variety and there are many

GxE distances missing in the proximity matrix due to simple lack of observations. Second, there

are other values missing due to complete dissimilarity because they are not intended for the same

location. Soybeans, like other crops, have what is called relative maturity (RM) that we can think

of as indicating the number of days needed to mature before first frost. Varieties with small RM

values are appropriate for locations with short growing seasons and varieties with large RM values

are appropriate for locations with longer growing seasons. While there is significant overlap in

where different varieties are tested, certain varieties will simply never be tested against each

other, that is, they have complete dissimilarity. Therefore, distinguishing different types of

missing values in a sparse proximity matrix is crucial for this application.

To demonstrate the PMC algorithm in practice we apply it to observation of 1033 soybean

varieties that are part of a commercial breeding program. We start by building a proximity

matrix using only field observations. This set of 1033 varieties was specifically selected as varieties

that have been planted the most widely, but even in this case the proximity matrix is just 40%

filled. (Depending on where they are in the breeding program, other sets of varieties will results

in proximity matrices with much higher percentage of missing values, many over 90% missing.)

The PMC algorithm can now be applied to fill in the similarity matrix completely, either by

imputation through triangulation or by assigning the maximum value of one (complete

dissimilarity). For this case study of 1033 soybean varieties, Figure 3 graphically represents the

sparsity of the proximity matrix. For this graph, the varieties have been ordered by the size of the

maximum cliques to which they belong. Color indicates the number of common planting

environments, that is, at least 20 (yellow), 1-19 (green), or zero (white). Yellow dots correspond

to pairs of varieties with substantial number of testing environment in common
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(|E(v, u)| ≥ 20)and green dots correspond to measures of GxE based on a few environments in

common (|E(v, u)| ∈ [1, 19]). Finally, white dots represent pairs of varieties with no common

testing environments.

As is mentioned before, in this case study values are missing because of lack of observation in

common environment or due to complete dissimilarity of varieties based upon RM. So sorting the

proximity matrix based on RM given more insights into the nature of the missing values. Figure 4

represents the same proximity matrix as in Figure 2 ordered by RM from low rm to the left/high,

high rm to the right/low). Color indicates at least 20 common testing environments (yellow), 1-19

common testing environments (green), overlapping maximum cliques (white), and no overlapping

maximum cliques (blue).

Reordering the proximity matrix makes it clear that pair of varieties where |E(v, u)| ≥ 20

(yellow) have mostly similar RM values (close to diagonal), and pairs with no common testing

environments (neither yellow nor green) tend to have very dissimilar RM values (far from

diagonal). Figure 4 further identifies those variety pairs that belong to at least one pair of

overlapping maximum cliques (white) versus those with no overlapping maximum cliques (blue).

The former values we assume are missing due to incomplete observations and are imputed

according to Step 4 in the PMC algorithms, and the latter values we assume are missing due to

complete dissimilarity and are imputed according to Step 3 in the PMC algorithm. Values

imputed as maximum dissimilarity are thus identified in blue in Figure 4, which makes intuitive

sense given the large difference in RM values (furthest from diagonal), whereas most of the

imputed values are calculated according to the triangulation approach.

After applying the PMC algorithm we now have a complete proximity matrix and can apply

standard clustering algorithms to find clusters, that is, sets of soybean varieties with similar GxE

interactions. As an illustration, we consider one such cluster obtained by again applying

complete−link algorithm to the completed proximity matrix. This cluster includes seven varieties

and Figure 5 shows a graphical representation of the yield of those seven varieties in three

environments. The columns show yield above or below environmental average in three
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environments (e1, e2, e3). Varieties in the same cluster are expected to have the same preference

for environments (that is, the same GxE interactions). Here we have plotted the yield versus the

environmental average, so values above zero indicate that the variety does better than average in

this environment and vice versa for values below zero. With a few exceptions, these varieties that

were clustered together do in fact have preference for the same environments (same GxE

interactions). For example, varieties V1 and V3 yield above environment average in environment

E1 and below average in environment E2.

This case study serves to illustrate how clustering with incomplete proximity matrices may

arise in real applications. Furthermore, it serves to illustrate how data may be missing in the

proximity matrix for different underlying reasons, including the two assumed by the PMC

algorithm proposed in this paper. The purpose of this section is thus to demonstrate the need for

the PMC algorithm to analyze real data, but a complete discussion of the value of identifying

soybean varieties with same GxE interactions to decision making in a commercial breeding

program is not possible within the scope of this paper. However, as noted before, within a subset

of varieties in the same cluster the GxE interactions can now be ignored and a simple

non−interaction model of yield will be appropriate. This allows us to better predict and compare

yield, ultimately contributing to the decision as to which experimental varieties should be

advanced.

2.7 Conclusions

We have presented the Proximity Matrix Completion (PMC) algorithm for imputing missing

values before clustering when only the proximity matrix is available. The algorithm assumes that

values are missing in the proximity matrix due to one of two underlying reason: incomplete

observations or complete dissimilarity. This assumption is motivated by an application in plant

breeding where the goal is to find clusters of experimental soybean varieties with the same

genotype−by−environment (GxE) interactions. However, an extended PMC algorithm we present

is general and could be applied to any scenario where we need to perform clustering and only an
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incomplete proximity matrix is available. To further evaluate and provide insights into the

effectiveness of the PMC algorithm, we also presented numerical results using the well−known iris

data, where we simulated different types of missing−value structures. These results indicate that

the PMC algorithm is in fact effective for a wide−range of missing value structures, and that it

can be effectively extended to applications with very high percentage of missing data which

common imputation methods are unable to deal with. One notable benefit of the PMC algorithm

over benchmarks is treating every missing value as a unique case while benchmarks consider all

missing values uniform, which affects the results specially in highly sparse datasets. In practice

there are reasons why values are missing and PMC algorithm tries to identify those reasons by

taking advantage of a graph formulation of the clustering. Specifically, identifying maximum

cliques in the graph and doing triangulation on overlaps among these maximum cliques form the

basis for identifying and treating difference cases of missing values in our approach. Being an

imputation method the PMC algorithm does is independent to clustering method subsequently

applied. As is shown is numerical results the PMC algorithm can be used with any clustering

method that only requires the proximity matrix as input. However, as might be expected, its

effectiveness is higher if the clustering method fits well with the structure of the data to be

clustered.
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Figure 2.3 Sparsity of the initial proximity matrix for 1033 soybean varieties
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Figure 2.4 Graphical representation of sparsity with varieties reordered by rm value
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Figure 2.5 Yield values for an example cluster of seven varieties (v1 – v7)
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Abstract

In commercial plant breeding decisions regarding the advancement of a specific plant variety,

that is, if the variety should continue within the program and be planted again the following year,

is challenging due to very limited amounts of observations. To aid the decision making, machine

learning can be used to predict yield of a seed variety based on past observations of multiple

varieties, but this approached is challenged by the fact that yield is a function of genotype,

environment and the genotype-by-environment (GxE) interaction effects. As a result, sufficiency

of the past observations in target environments is crucial in building the prediction model. Where

the observations of the target variety is not enough to train an accurate model, using observation

of similar GxE varieties, that is those have same GxE behavior is a possible solution but

identifying those similar GxE varieties is challenging as well. In this study, we have developed a

supervised prediction model to identify similar GxE varieties using genetic data when there is no

yield observation available to identify similar GxE varieties directly based on the observed GxE

effects. The study shows how using similar GxE varieties versus non-similar GxE varieties affects

yield prediction accuracy and benefits advancement decision making process in a case study.

3.1 Introduction

GxE interactions are important to plant breeding. Most work has focused on phenotypic

stability and/or adaptabilitiy. Our work focuses on another aspect of GxE interactions, namely
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GxE similarity, which is different but somewhat related to stability. The importance of selecting

genotype based on their phenotypic stability has long been well understood in plant breeding.

The analysis of phenotypic stability based on phenotype observations was originated by Finlay

and Wilkinson (1963) and followed by Ribaut et al. (1996); Via et al. (1995). More recently

several studies have investigated the genomic underpinnings of phenotypic stability, and methods

for predicting phenotypic stability based on genotype data such as Kusmec et al. (2018) and

Arnold et al. (2019). Such methods potentially allow for selecting genotypes based on their

phenotypic stability at various stages of the breeding and experimental process.

To make the idea of phenotypic stability more concrete, consider a traditional linear model

involving genetic effect, environmental effect, and genetic-by-environment (GxE) interaction effect

Becker and Léon (1988).

yij = µ+ gi + hj + bij + εij (3.1)

In this equation the bi factor represents the sensitivity of each genotype to the environmental

effect, that is, to the quality of the environment in which it is grown. This model can also be

rewritten in terms of the normalized phenotype, that is the observed phenotype minus the

environmental mean, which eliminates the environmental effect from the equation above. The

response thus only has two components: the genetic effect (G) and the genetic-by-environment

(GxE) interaction effects.

ỹij = yij − (µ+ hj) = gi + bihj + εij (3.2)

The objective of Finlay-Wilkinson analysis of phenotype stability is to estimate the bi factor as

genotype sensitivity to the environment quality. The lower the bi is the more stable (less plastic)
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genotype comes in terms of responding to environmental inputs. In other words, stability is a

measure helps plant breeders to identify varieties which consistently over perform in target

environments with low sensitivity to the environment quality Happ et al. (2021).

In this paper we address a related but slightly different objective. We investigate predicting

groups of genotypes that behave similarly with respect to phenotypic stability, that is, groups of

genotypes that have similar genetics-by-environment (GxE) effects. Thus, we consider a

full-interaction linear model. The goal of this paper is to identify subsets of genotypes

I = I1 ∪ I2 ∪ ... ∪ Im such that bi1 ≈ bi2 , ∀i1, i2 ∈ Ik,∀k. The advantages of being able to make

such predictions are considerable. Such information could be utilized as an input to creating trial

groups for planting, and the analysis of observed field data is simplified by the knowledge that

some genotypes have the same GxE effects, as it effectively implies that for the subsets of those

genotypes there are no GxE interaction effects, only a main environmental effect. The ability to

predict such subsets could thus be put into effective use by plant breeders.

Our motivation is thus that understanding GxE similarity helps understanding of phenotype

such as yield. knowing that the yield of a genotype is a function of the genetics of the plant (G),

the environment in which the plant is grown (E) and the way genetic of the variety as internal

characteristics of the plant reactions to the external factors in a target environment (GxE effect),

breeders need to observe a variety in a wide range of locations across the years to cover target

environments precisely and make a reliable prediction of the yield. Collecting such data requires

resources in terms of land and time that are simply not feasible in practice. In such situation,

observations of the other varieties in past might become useful in training a prediction model on

the yield. The key here is how to make observations of other varieties usable to predict yield of a

target variety?

As mentioned before, yield of an individual is a function of genotype, environment and GxE

interaction. Genotype of a variety determine efficiency of a plant to capture environmental inputs

and convert it into biomass output. Also, environment represent quality of supplies such as

nutrients, water, radiation etc. that a plant need to flourish. These two elements, genetic and
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environment are measurable through historical data for every type of genetic and environment.

That means yield of a target variety can be measured by expected yield of the variety across all

environments, corrected by the quality of the environment and preference of the variety for a

target environment. Thus, knowing expected yield of every variety we are able to measure

difference between the quality of genetics interaction to the environment for each pair of two

varieties those have been observed in common environments. Considering the fact that factors

such as weather, soil quality, precipitation, etc. are fixed within a location in a particular year

called environment, expected quality of an environment is measurable and the same for a pair of

varieties in common environment. So finding any pairs of varieties that have same preference to

the environment (GxE) in commonly observed environment can gives a variety interact similarly

to the environment than its observation be used to expand knowledge of a target variety in

unseen environments those the similar variety is planted. This preference to the commonly

observed environments can be estimated as GxE dissimilarity having the two variety observed in

enough number of environment in common.

3.2 Data

In this study, we use a commercial soybean breeding program data to build our prediction

model. As we model the GxE interaction effect by genetic data we need genotypic information of

varieties to use as predictor variables along with the phenotypic information to build an

estimation on GxE similarity of variety pairs. So, two main datasets are used to build the

training dataset. The phenotypic dataset includes over 430K phenotypic observations of nearly

2300 soybean varieties in 1700 environments from 2009 to 2017. This dataset contains three

columns corresponding to genotype, environment and phenotype that means each observation in

this dataset represents a genotype observed phenotype in a particular environment. The main

purpose of this dataset is to build a source of GxE interaction effect to use as response variable in

the prediction model. As mentioned before, GxE is the result of internal factors (Genetic)

interaction to the external factors (Environment). So, to have an unbiased estimation of GxE
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interaction effect, the sufficiency of phenotypic observation across the environments is essential.

Figure 1 shows a histogram on number of environments our soybean varieties have been observed.

 

Figure 3.1 Histogram for number of planting environments

As is shown majority of varieties are observed in 20-40 environments which is statically a

reasonable sample size for our estimation. Simply speaking by GxE interaction effect we are

interested in having an estimation on how a genotype over perform the environment average using

a random sample of environments. Thus, number of varieties are observed in each environment

would help to get a better estimation on the quality of the environment. Figure 2 show a

histogram on number of varieties are planted in each environment.

As is shown majority of environments cover more than 20 varieties that means we can get a

fair estimation of environment average performance.

For genetic data we have used a SNP 1 genotyping array of 5602 genetic variables. For each of

the soybean varieties used in this study a subset of genetic variables information is available.

Decision on number and genetic variables to explore has made by breeders based on the available

resources for genotyping and prior knowledge on the genotype. So the number and subset of

1Single Nucleotide Polymorphism
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Figure 3.2 Histogram for number of planted varieties

genotyped variables could vary for each genotype. Study shows that a few thousands of genetic

variables are sufficient in genome pool for crop plants to identify important adaptive genes

Yun-Gyeong et al. (2015). Figure 3 shows histogram for number of genetic variables are

genotyped in our varieties’ set.

As is shown majority of varieties have around 2000 genetic variables genotyped and there are

only few genotypes that are massively genotyped in recent years due to advancement in

genotyping technologies.

3.3 Methods

In commercial plant breeding the main source of information for breeders in advancement

process is the phenotypic observations of the varieties in experimental environments. Basically

varieties those can outperform other varieties in the decision group specially previously

commercialized varieties will be chosen to be advanced and planted for at least one more year. So

the sufficiency of the phenotypic observation in terms of planting the target variety in wide range
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Figure 3.3 Histogram for number of genotyped genetic variables

of environments along with other experimental and commercial varieties is crucial and need huge

amount of resources. Therefore, advancement decisions in early stages are based on limited

number of observation that makes the decisions weak. Considering the fact that GxE is a

function of genetic interaction to environment, identifying similar GxE varieties those have same

GxE interaction effect to our target variety, we can use observation of the similar GxE varieties to

estimate the target variety performance in unseen environment where the similar GxE variety has

is planted. But in order to define such similar GxE varieties based on phenotypic observations we

need the two variety have been observed in common environments repeatedly. We use the

framework presented in Figure 4 to build an empirical source of GxE dissimilarity of two varieties

using phenotypic observation of late stage varieties to put into prediction model with genetic data

as known responses in order to predict GxE dissimilarity of two varieties in early stage that the

phenotypic observations of a target variety is not sufficient to make advancement decision thus

using observations of similar GxE varieties are essential to estimate phenotypic performance of

the target variety.
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3.3.1 Data Labeling

In order to learn from the data described above, we first come up with appropriate labeling.

In the labeling process understanding GxE similarity is important and a critical step. As noted

before, plant phenotype is often modeled as function of genotypic effect gi , environmental effect

hj , and the interaction effects between genotype and environment bij provided in equation (3.1)

where µ denotes the overall average yield and εij models the variability. We are interested in

similarity of the interaction effects, that is, how similar bi1j and bi2j are across all environments

for a pair of varieties (i1, i2) . If variety i1 is tested (planted) in a set of environments E (i1) and

i2 is similarly tested in E (i2) , where the set of common testing environments is non-empty, that

is, E (i1, i2) ≡ E (i1) ∩ E (i2) 6= ∅ , then we can estimate this similarity (across common testing

environments) as follow. Dropping the εij , since we will be using empirically observed averages,

we note that yi1j = yi1j − (µ+ gi1)− hj , and hj is fixed in a common testing environment

e ∈ E (i1, i2) . Furthermore, yi1 ≡ µ+ gi1 represents the average yield of the variety i1 , and we
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can write the difference in interaction effect between the two varieties in a fixed environment as

bi1j − bi2j = (yi1j − gi1)− (yi2j − gi2) . We can therefore calculate the estimated GxE dissimilarity

as:

d (i1, i2) =
1

K

1

|E (i1, i2) |
∑

e∈E(i1,i2)

|
(
yi1j − gi1

)
−
(
yi2j − gi2

)
|

K = max
i1,i2

∑
e∈E(i1,i2)

|
(
yi1j − gi1

)
−
(
yi2j − gi2

)
|

|E (i1, i2) |
(3.3)

Here yij is the observed average yield of variety i in environment j , and gi is the observed

overall average yield for variety i. We finally normalize the values to be between zero and one, by

dividing by K that is resulting a proximity matrix

D =


0 ... d1n
...

. . .
...

dn1 ... 0


where all the varieties have a distance to some other varieties in the same scale from zero to

one that represents the most similar to the most dissimilar.

Since GxE effect is a response of genetic interaction to the environment, the similarity in

genetic in a pair of varieties can be used to predict similarity/dissimilarity in GxE effect. So, by

determining pairs of similar GxE varieties using the empirical measure discussed, we’re able to

train a predictive model on genetic data in common to predict similarity/dissimilarity of GxE

interaction effect between two varieties. Simply speaking, a supervised learning model on

commonality in genetic data can predict a pair of varieties similar GxE or dissimilar GxE as a

binary response of the classification problem.

In order to build such genetic variables in a common training source, we make a three-class

predictor model of genetic variables in common in which class (+1) correspond to have genetic

variable mj in common, class (-1) represents different values for variable mj between the two

varieties of a pair and class (0) is set for missing variable mj in either variety of the pair. Finally,

to make the response variable, we then use a cutoff of .25 to map the normalized dissimilarity
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measured above to a binary response of relatedness. Any pair with dissimilarity estimation of less

than or equal to 0.25 are labeled as similar GxE, and all pairs with dissimilarity measure above

0.25 are called dissimilar GxE.

3.3.2 Variable Selection

Building the genetic data, we have a training dataset, includes thousands of predictor variables

to train the prediction model. As discussed in the data section for each genotype there is a subset

of genetic variables available and that subset could vary. Also, from the genotypic information we

know that most of the varieties are missing majority of genetic variables. Thus, to avoid

over-fitting, a variable selection model could be used not only for increasing the quality of the

prediction model but also for managing feasibility of the training process in terms of computation

power and time. To identify the predictors, the model relies on more to make a prediction model;

we have used variable importance methods of all types, from regression filter methods to wrapper

methods and practical method such as information gain. Specifically, LASSO variable importance

measure is used to cover filter methods, Relief is used from all wrapper methods and completeness

of genetic information is used as a practical method for discarding predictor variables class (0)

those are missing or have not been genotyped often for a practical reason. Using any of these

three variable selection methods reduces the number of predictors considerably.

LASSO validated around 1400 variables with a non-zero score to use. Relief weight also gives

a similar number of variables to use according to figure (4) which presents relief weights sorted

descending. Approximately after 1500 variables the weights’ plot gets almost flat.

But taking the information availability for variety pairs shown in figure (5) as the base for

predictor variables to use, we’ll get slightly more variables to use in the prediction model which is

expected considering the common range for number of genotyped genetic variables.

Another challenge that should be addressed here is the class-imbalanced issue. In other words,

in such prediction problems in which the positive class (here similar GxE variety pairs) has

extremely fewer observation compared to the negative class (in our case 27% positive), there is a
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Figure 3.5 Ordered relief weights

natural tendency in prediction models to ignore the minority positive class to reach a better

accuracy. While the objective of the prediction is to catch the minority class. We have used the

synthetic minority class oversampling technique (SMOTE) to address the class-imbalance issue

Chawla et al. (2002).

3.3.3 Predictive Models

The approach we have taken in this study is predictive modeling. Among all predictive

models available in toolbox we have chosen some advanced models those are well known for

predicting nonlinear response as we have some clue from the literature that GxE interaction effect

is a complex nonlinear response of genetic interaction with the environment. LASSO regression,

random forest and xg-boosted trees are the chosen models. Considering the scale of predictors we

use, ensemble models such as random forest gives us the advantage of taking majority votes of

several uncorrelated weak learners as a professional committee of predictions. Also, boosting

methods such as xgboost could help in getting a better balance in bias-variance of the prediction

where there is a high risk of over-fitting in weak learners. LASSO regression is also used to add

the power of regularization and shrinkage as it is a popular model in analysing correlation and
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Figure 3.6 genome availability ordered by rate

linear dependencies in high dimensional genomic dataWang et al. (2018). Although there are lots

of other advanced method could be used, computational power resource and tuning simplicity led

us to these three models. The prediction model goal is to identify similar GxE varieties using

genetic variables commonality information as predictor variables. Although relatedness is a

binary response but we believe predicting probability of the posterior which means probability

that the two variety being similar GxE varieties gives us some advantages over predicting the

binary class. Using the probabilities let us to add an extra level to the tuning process by taking a

probability cutoff that gives the best performance.

3.3.4 Model Validation

To build the prediction model, we need two components in the dataset. First, the genetic

information of varieties which is provided as a set of 5602 genetic variables we use as predictors

and GxE dissimilarity for every pair of the varieties as the response. For each pair of soybean

varieties in our dataset, we can make an estimation of how similarly they interact with the

environment using phenotypic observation of those in the environments that they have in

common. That is called estimated GxE dissimilarity. For minimizing the randomness effect and
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having a reliable estimation of the GxE we restrict the pairs to those that have at least 20

environments in common as that is a statically reasonable sample size for our estimation and is

satisfied by most of the varieties of the study.

Furthermore, to have an unbiased estimation of error, we split the data into two sets for

training and evaluation so that every target variety has no observation in the train set in neither

side of a pair. Using this approach, we are able to evaluate the model performance for a new

target variety that has never been observed before. We keep 20% of varieties for evaluation, which

gives 190 over 18K variety pairs, and the rest of the 80% containing around 2100 target varieties

and 104K pairs, for the train purpose.

3.4 Numerical Results

Addressing all the challenges in this prediction model, we evaluate our prediction model based

on the model, applied feature selection method and re-sampling technique. Table 1 shows the

classic supervised learning performance metrics for all the possible 24 setups.

Table 3.1 Prediction models’ performance metrics

Imbalanced data SMOTE balanced

Prediction Model Feature Selection Accuracy Specificity recall rrecision Accuracy Specificity Recall Precision

LASSO Regression None 0.7 0.79 0.31 0.24 0.6 0.61 0.52 0.24

Completeness 0.75 0.86 0.22 0.27 0.57 0.58 0.5 0.26

Relief 0.75 0.87 0.21 0.25 0.37 0.28 0.79 0.25

LASSO 0.76 0.88 0.19 0.26 0.58 0.6 0.49 0.22

Random Forest None 0.78 0.92 0.15 0.27 0.78 0.92 0.16 0.28

Completeness 0.79 0.93 0.15 0.3 0.79 0.93 0.15 0.3

Relief 0.78 0.92 0.16 0.29 0.78 0.92 0.16 0.29

LASSO 0.79 0.93 0.15 0.31 0.79 0.93 0.16 0.32

Boosted Trees None 0.78 0.92 0.15 0.27 0.78 0.92 0.15 0.28

Completeness 0.75 0.87 0.19 0.24 0.78 0.92 0.16 0.29

Relief 0.75 0.87 0.22 0.26 0.78 0.91 0.17 0.27

LASSO 0.75 0.87 0.2 0.26 0.79 0.93 0.14 0.28

Considering only the overall accuracy of the models’ performance are considerable. But

bringing the problem complexity and main goal of the prediction, the models performance are

reasonable. A desired model here is the one that have a high specificity and recall at the same
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time which is very difficult to achieve. By high specificity we mean the model can identify

dissimilar GxE varieties correctly as specificity is a metric represents the ration of truly caught

dissimilar GxE variety pairs to all are predicted as dissimilar GxE. Thus, the more mistakes the

model make in predicting a similar GxE varieties as dissimilar GxE the lower is the specificity.

Checking the specificity numbers, most of the models are performing well in catching dissimilar

GxE varieties. The best performance models got here is catching 93% of the dissimilar GxE

varieties correctly. But the main purpose of developing these prediction models is to identify the

similar GxE varieties which could be represented by recall and precision of the predictions. The

higher the recall is means the less similar GxE varieties are missed as the recall is ratio of truly

similar GxE variety pairs to all are labeled as similar GxE. As is shown the best recall

performance is 79% obtained by Lasso Regression using SMOTE balanced data over the relief

selected variables. But a high recall is not the only objective. Basically a model can improve the

recall by deteriorating the specificity and predicting more cases as similar GxE. So the desired

model is the one can precisely predict the similar GxE varieties. In other words the more truly

similar GxE varieties we get over the all pairs predicted as similar GxE the higher the precision

is. It concludes the winner here is random forest model that using LASSO variable selection and

SMOTE balanced data as the base by catching 1/3 of the similar GxE variety pairs. However all

the models performances are competing closely which is the absolute advantage of tuning the

probability cutoff. In fact the random forest model can achieve almost the same performance

without re-sampling that means using less computation power and time.

Getting back to the main motivation of the prediction model, We are looking for a model can

identify varieties with similar GxE effects as a target variety to use observation of those varieties

in estimating the performance of the target. To make sure the sets of predicted varieties with

similar GxE effects are the best to use for estimating target variety performance, we evaluate all

the prediction models using average MSPE of the prediction over 190 target varieties. To have a

fair comparison of the MSPE numbers we pick all the varieties predicted as similar GxE using the

tuned cutoff as the similar GxE set performance and all the varieties have probability of being
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similar GxE greater than (1− c) as the dissimilar GxE set performance. Table 2 shows the

average MSPE of predicting target phenotype using observation of the predicted similar

GxE/dissimilar GxE set for 190 target soybeans.

Table 3.2 Average MSPE of yield prediction over 190 target variety

Imbalanced data SMOTE balanced

Prediction Model Feature Selection Similar GxE Dissimilar GxE Similar GxE Dissimilar GxE

LASSO Regression None 8.07 11.04 8.32 9.48

Completeness 8.19 10.59 8.02 9.79

Relief 8.46 11.41 8.64 9.42

LASSO 8.21 10.76 8.25 9.96

Random Forest None 8.14 11.32 7.84 11.83

Completeness 8.27 12.04 8.03 11.63

Relief 8.17 12.24 8.21 10.14

LASSO 8.11 12.09 8.05 11.96

Boosted Trees None 8.42 10.93 NA NA

Completeness 8.49 9.1 8.39 9.07

Relief 8.36 9.12 8.35 9.1

LASSO 8.47 9.15 8.41 9.05

As is shown using observation of predicted similar GxE varieties has a considerable impact on

predicting the yield in either scenarios. So, no matter how many similar GxE varieties we can

catch using the prediction model, we need a model that is able to exclude the dissimilar GxE and

avoid the randomness they can add to the yield prediction.

In other words, the similarity in GxE interaction effect for similar GxE varieties let to have a

precise approximate of the target variety performance in unseen environment where the similar

GxE is observed. So even having few number of similar GxE varieties takes advantage over

averaging variance added by dissimilar GxE observations. Figure 7 represent a sample of GxE

dissimilarity of a similar GxE and dissimilar GxE varieties to a target variety over the common

environments.

As is shown for similar GxE varieties the GxE difference is low and stable across the common

environments, while dissimilar GxE varieties have a bigger GxE difference with high variability.

So using observation of similar GxE varieties will conclude a lower MSPE.
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GxE Difference (similar) GxE Difference (dissimilar) 

Figure 3.7 Similar/dissimilar GxE varieties absolute GxE difference to a target variety

3.5 Discussion

In this section we compare our empirical GxE dissimilarity model with some of the existing

stability/adaptability models and discuss its contribution to the field. To start, we compare the

classic model of phenotypic stability analysis by Finlay and Wilkinson (1963) with our estimation

of a pair of varieties GxE dissimilarity. Following the Finlay-Wilkinson (FW) approach, we can

estimate the stability of a phenotype in two steps: First estimate the environmental effect from a

simple main-effect model yij = µ+ gi + hj + εij and then Substituting the estimate hj into the

main model of yij = µ+ gi + hj + bij + εij to estimate slopes bi for each genotype. Figure 8 shows

normalized absolute difference of a target variety estimated bi (stability index) to the varieties

stability that the target has been observed repeatedly compared to our empirical measure of

normalized GxE dissimilarity.

Considering a cut-off of 0.25 for our normalized GxE dissimilarity measure to call two varieties

similar GxE it is shown there is no strong correlation between the GxE dissimilarity and stability

similarity. A correlation test gives sample correlation of 0.060 with 95% intervals [0.45, 0.74] and
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Similar GxE 

Figure 3.8 Correlation between GxE dissimilarity and stability

p-value of 5.049e− 16 for our sample of 18K variety pairs. That means two variety with different

stability to the environment may show similar GxE interaction in variety of environments.

Next we compare the normalized GxE dissimilarity measure to genotype main effects and

genotype × environment interaction effects (GGE) introduced by Yan and Tinker (2006).Figure 9

shows, GGE biplot for the same target variety discussed above besides the normalized GxE

dissimilarity matrix introduced in this study.

The GxE matrix shows the GxE dissimilarities normalized by terget. Thus, the matrix is not

symmetric. It means for a pair of varieties GxE dissimilarities might be slightly different and that

is because the set of the other varieties each of the varieties if the pair have been observed

frequently are different. For example, similar GxE variety ’RG5’ is the most similar GxE variety

to the target ’TG’. However, for the variety ’RG5’, target ’TG’ is the third most similar GxE

after varieties ’RG2’ and ’RG8’. It also can be observed that the most similar GxE variety to

’RG5’ is not in this set of the varieties of the discussion.

Based on the biplot target variety ‘TG’ and similar GxE variety ‘RG7’ are not similar. But

the GxE matrix says ‘RG7’ is the 6th similar GxE variety to the target variety ’TG’ from the 10
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Figure 3.9 GGE biplot vs GxE dissimilarity matrix

empirically similar GxE varieties. Also, ’RG7’ and ’RG1’ are the most similar varieties based on

the biplot which the dissimilarity matrix defines those as similar GxE too. This agreement is hold

for most of the pair-wised comparisons of the biplot and the normalized GxE dissimilarity. Figure

10 shows detailed GxE interaction for target variety ’TG’ and empirically similar GxE variety

’RG7’ in common environments to address the reason for disagreement between the bipot and the

empirical GxE measure. According to this detailed GxE interaction plot, the two varieties have

same interaction to the environment as they both perform above or below the environment

average phenotypic performance with a close magnitude. However they might perform a bit

differently in poor environments but as it goes to more rich environments their interaction to the

environment becomes identical.

To have a better understanding of this pair-wised comparisons of GxE a heatmap of GxE

interaction effect is provided in Figure 11. The top heatmap shows the observed phenotype of the

varieties in environments and the bottom heatmap shows the phenotypic difference to the

environment average. In these heatmaps the x-axis of environments is sorted by the average
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Figure 3.10 TG and RG7 detailed GxE

environment phenotype increasing from right(worst) to the left(best). It can be concluded from

the heatmaps that this set of empirically similar GxE varieties are interacting similarly to the

environments.

 

Figure 3.11 GxE dissimilarity Heat-map

Considering the advantage that similar GxE varieties can provide in predicting the yield

(phenotype) of the target variety and having the prediction model, we can identify groups of

similar GxE varieties. Identifying such groups let the breeders to plan where to plant each variety

to maximize the information gain. One way of identifying such groups is to make the prediction
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for similar GxE varieties using all the information is available and then cluster the varieties to

similar GxE groups using a common similar GxE variety. Figure 12 show heat-map of available

normalized GxE dissimilarity for a sample group that are considered similar GxE through a

common predicted similar GxE variety.

 

Figure 3.12 Heat-map of GxE dissimilarity: scale[0,1]

As is shown, most of the empirical GxE dissimilarities are missing due to practical limitations.

Basically, clustering the varieties into groups of similar GxE varieties having only the phenotypic

observations requires a complete matrix of empirical GxE dissimilarity which is not practical. In

order to have a complete GxE dissimilarity matrix, we need to have each pair of varieties

observed in common environments repeatedly. In practice it only happens for late stage

experimental varieties to have been planted with other varieties repeatedly. Also those commonly

observed varieties are usually commercialized varieties (e.g. G1,G5 in the heatmap) so breeders

have a baseline that if an experimental variety is good enough to be advanced. Thus, measuring

the GxE dissimilarity of experimental varieties empirically is not possible for most of the cases

and imputation is required. But there are issues with regular imputation methods make them
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ineffective for breeding context. In a recent study Karimzadeh and Olafsson (2019) address those

issue and provide an imputation method for breeding context can estimate the reason a value is

missing in the proximity matrix using graph theory and impute that based on the reason the

value is missing.

3.6 Conclusion

This advance prediction of GxE similarity specially, in early stages can save time and money

in different ways. Having knowledge of similar GxE varieties in advance, breeder can plan

planting experiments in a way that maximizes information gain. Knowing that similar GxE

varieties have same GxE preference to environment breeders can avoid planting similar GxE

varieties in same environments and expand the experiment to more environments through similar

GxE varieties. If the two varieties have exactly the same interaction effects between genotype and

environment, yield can be modeled with a non-interaction model that predicts yield simply as a

function of genotype main effects and environment main effects, which makes predicting yield in

new environments simpler and provide information on variety performance in more target

environments which is a key in making decision about advancing a variety or discarding it from

the breeding process.

Also, a precise prediction of the yield of a target variety in early stages will provide a valuable

source of information for breeders to make a better decision on future of a variety in breeding

program. In other words, determining a set of similar GxE varieties those have a similar GxE

interaction as the target and using observations of those we are able to predict yield of a target

variety in some unseen environments and have a better evaluation of the target performance saves

considerable amount of time and cost. Also, a better evaluation of a target performance using

prediction can refuse an unwanted decision of keeping a future failure variety or discarding a

potential winner variety based on few unreliable observations in early stages.
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Abstract

We describe a mathematical programming formulation and solution for a problem that occurs

in commercial plant breeding operations. In such operations, a large number of experimental

plant varieties are planted each year in different field trials, and assigning these trials to specific

locations within each field is an important problem. What is of importance is not just an efficient

solution that minimizes wasted space, but a solution that is favored by the plant breeders who

oversee a set of such trials. This involves multiple considerations. First, it is advantageous to

place trials involving plants that mature at the same time together. Second, each breeding group

within the program prefers their own trials to be placed close together, and finally, trials that are

in the same stage of the breeding process should ideally also be placed together. Specifically,

early-stage trials where a very large number of experimental genotypes are planted in small plots

should preferably be placed together, and late-stage trials where much fewer experimental

genotypes planted in larger plots should be planted together. A mathematical programming

formulation to successfully optimize trial locations should account for all three dimensions as well

as make good use of space. The core idea of the formulation we present here is to split each field

into blocks and then create blocks where the homogeneity is enforced via an objective function

that penalizes deviations from a perfectly homogenous block. By favoring placing similar trials

together in blocks, the model indirectly favors using fewer blocks, which in turn reduces wasted
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space in the field. This optimization model was found to result in solutions that are a significant

improvement of existing practices, both in terms of space utilization and in terms of having

properties that are found desirable by plant breeders.

4.1 Introduction

Mathematical programming has been used in a wide range of agricultural applications over

the years Mérel and Howitt (2014)Wang and Jiang (2012)Sarker and Quaddus (2002)Moeinizade

et al. (2019), but there are still many areas where there are unexplored opportunities for taking

advantage of mathematical programming and other industrial engineering methods to improve

agricultural operations. Commercial plant breeding, in particular, involves operations ranging

from the scheduling of planting equipment to the packing and warehousing of seed after harvest,

where traditional industrial engineering methods could play a significant role but have not been

heavily utilized. In this paper, we show how a mathematical programming approach can not just

automate but significantly improve the solution quality of a difficult process within a commercial

plant breeding operation, which until now had been performed without any such support, namely

the planning of plant breeding trials in the field. This problem shares many features with other

assignment problems that have been addressed extensively by the industrial engineering

community, but also has some unique elements that derive from the application context.

4.1.1 Field Trial Placement

A commercial plant breeding program is a complex operation that stretches over multiple

years. It typically starts with several tens of thousands of experimental genotypes (e.g., soybean

varieties or corn hybrids) that are planted in what is termed an early-stage experiment and

involves a small plot for each trial. At the end of the growing season, the most promising

genotypes are selected for advancement; that is, they will be planted again the next year with the

expectation that the best will eventually become commercialized. Thus, advanced genotypes are

planted over multiple years, starting with early-stage experiments of tens of thousands of



63

genotypes planted in a few locations and small plots, extending to late-stage experiments where a

few of the best performers are planted in a larger number of locations and bigger plots. Each

experimental genotype is compared with others that will grow under similar conditions, primarily

based on relative maturity (RM), that is, the number of growing days needed for the plant to

mature. Furthermore, within a plant breeding program, there are typically multiple breeding

groups, each responsible for making decisions regarding a portfolio of experimental genotypes.

Trials from different breeding groups, in different stages and with varying RM must all be planted

in the same field.

We consider optimization of field trial experiments from the perspective of the plant breeder.

Namely, given a set of trials from multiple breeding groups, how should the trials be assigned to

specific locations within a large field? The overall goal is improved utilization of each field, but

each breeding group would also prefer their trials to be positioned close to each other for

convenience, and trials that are similar in terms of stage and RM should also be placed together

as much as possible as this makes them easier to compare and evaluate for possible advancement.

In the end, a correct advancement decision is paramount and anything that can be done to

facilitate the comparison between competing experimental genotypes, and would thus aid the

advancement process, would be of great value. In fact, the benefit of good trial placement is likely

higher than the monetary benefit of reduced waste, although the former is hard to quantify since

it depends on ultimately selecting the best varieties and hybrids for commercialization.

4.1.2 Related Work

Field trial optimization has been addressed from the perspective of design of experiments

Sarandon and Sarandon (1995) Zhang et al. (2019) Groot et al. (2012) but as far as we know not

from the breeder perspective, that is, it has not been previously addressed from an operational

perspective of assigning trials in a way that meets breeder preferences. However, other somewhat

similar operational problems in agriculture have been addressed using mathematical programming

and here we briefly mention the literature for some of those areas.
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One of the critical operational problems is the planting and/or harvesting schedule. The time

window a seed is planted and the resulting crop is harvested has a great impact on the amount

and quality of the final product. To address this problem, Florentino, et al. implemented a

mathematical programming model for selecting sugarcane varieties to be planted and an optimal

schedule for planting and harvesting to maximize production in the sugarcane industry H.d.O

et al. (2020). The routing of the relevant machinery is another area where optimization can

improve agricultural operations. As mentioned above, both the planting and harvesting time is a

key in maximizing plant yield. Needless to say, these two processes are mechanical and the

machinery required for these operations is limited. Thus machinery routing is a critical issue in

operation efficiency. To address this issue, Neungmatcha and Sethanan proposed a mixed integer

model to optimize the transportation operation in sugarcane field Neungmatcha and Sethanan

(2015). Jensen, et al. also have proposed a graph-search based path planning method for In-field

and inter-field path planning transport of agricultural units to minimize the traveling distance

and improve productivity of the whole system Jensen et al. (2012). The work of Lamsal, et al.

also focuses on harvesting logistic systems and compares a variety of economically significant

systems using two practical conditions: a multiple, independent producers and no on-farm storage

Lamsal et al. (2016). There are many other relevant operational problems. For example, in one

study Zhang and Gu attempt to maximize the economic profit through water resource allocation

Zhang and Guo (2016). In another study, Zhang, et al. discuss the importance of water reservoir

operation optimization Zhang et al. (2013), and finally, Solano, et al. modeled sustainability of the

operation through minimizing the waste in agricultural operations Caicedo Solano et al. (2020).

4.2 Optimization Model

In this section we describe the optimization model we designed to improve field planting

operations. While reducing wasted space is certainly an objective of this improvement effort,

simply taking the utilization or wasted space as the objective function of an optimization

formulation would likely lead to impractical solutions. Packing trials into fields too tightly may
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lead to trials from the same breeding group being placed far apart, and dissimilar trials being

placed together. This would lead to such an optimized trial layout being viewed unfavorably by

the breeders, that is, the end-users of the planting layout, and hence be unlikely to be

implemented. We therefore, develop an optimization formulation that focuses on desirable

properties, that is, placing trials from the same breeding groups and with the same RM and stage

together; while indirectly reducing wasted space in the field. The core idea of our formulation is

to split each field into blocks, and then create homogenous blocks. By favoring placing similar

trials together in blocks, the optimization formulation indirectly favors using fewer blocks, which

in turn reduces wasted space in the field. Thus, the utilization of fields is improved while

generating field layouts that are more desirable to the end-users (that is, the plant breeders) than

existing field layouts.

4.2.1 Notation

The notation we are use for the formulation of this field layout problem is as follows. We let

F denote the set of fields. There is a set B of breeders who need to plant trials, each trial

belonging to one of a set S of stages and a set R of relative maturity groups. We let T denote this

set of trials, and partition the trials into subsets Tbsr according to breeding group, stages and

relative maturity. That is,

T =
⋃
b∈B

⋃
s∈S

⋃
r∈R

Tbsr.

A breeder b ∈ B might have trials in different stages s ∈ S or relative maturity groups r ∈ R.

Each trial has some size ci for i ∈ T ; and each block has a capacity bj that cannot be exceeded.

There is a distance matrix D that defines the distance between blocks:

D =


0 ... d1j
...

. . .
...

dj1 ... 0

 , j = |F |.

Adjacent blocks will have distance of one, blocks separated by a single block will have

distance of two and so forth. Distance between trials is taken as the distance between the block to
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which they are assigned, which means that the distance between trials that are assigned to the

same block is taken as zero.

The decision variables simply determines the block assignment for each of the trials, that is,

xij =


1, if trial i is assigned to block j

0, otherwise.

(4.1)

We then define several additional binary variables to keep track of different breeding groups,

stages and RM values as they are assigned to blocks.

ybj = 1 if breeder b has trials assigned to block j

zbij = 1 if breeder b has trials assigned to blocks i and j

gsj = 1 if stage group s has trials assigned to block j

qsij = 1 if stage group s has trials assigned to block i and j

urj = 1 if RM group r has trials assigned to block j

vrij = 1 if RM group r has trials assigned to blocks i and j

wj = 1 if block j is used

This problem is essentially an assignment task. Each trial i ∈ T will require certain amount of

space ci in the field j ∈ F where it planted, and each field has some maximum capacity of

bj ,∀j ∈ F . The binary decision variables xij are defined to determined these paired assignments

in a very straightforward manner. Specifically, xij = 1 if and only if trial ti is assigned to field fj .

The remaining variables, namely y, z, g, q, u, v, are auxiliary variables to keep track of what may

be considered the key component of the formulation, namely the penalty costs in the objective

function. Those will be discussed in more detailed next.

4.2.2 Objective Function

The key to our formulation is to define penalties for assigning trials by the same breeding

group, experimental stage, relative maturity (RM) far apart. We will also assign a small penalty

for using each block, which will favor solutions to use as few blocks as possible. The motivation

behind this approach is that it is not possible to obtain the ideal assignment where there is no
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distance between any trials from the same breeding group, stage and RM. Thus, hard constraints

would result in an infeasible formulation and assigning appropriately weighted penalties is a

sensible approach that results in practical solutions. We use a single penalty weight for each type,

defined as follows.

P1 = penalty weight due to breeder,

P2 = penalty weight due to stage group,

P3 = penalty weight due to RM group,

P4 = penalty weight due to activating a field block.

These penalty weights will apply to both assigning trials to different blocks and to the distance

between blocks when trials of the same type are assigned to different blocks.

Using the above penalty weights, the objective function measures the total cost of assigning

trials in set T to available fields in set F using linear mathematical model as follow:

min P1

(
|B|∑
b=1

|F |−1∑
i=1

|F |∑
j=i+1

dijzbij +M
|B|∑
b=1

|F |∑
j=1

ybj

)
(4.2)

+P2

(
|S|∑
s=1

|F |−1∑
i=1

|F |∑
j=i+1

dijqsij +M
|S|∑
s=1

|F |∑
j=1

gsj

)

+P3

(
|R|∑
r=1

|F |−1∑
i=1

|F |∑
j=i+1

dijvrij +M
|R|∑
r=1

|F |∑
j=1

urj

)

+P4

|F |∑
j=1

wj

We observe that the objective function consists of four parts, corresponding to the penalties due

to breeder, stage, RM and number of blocks. The first three parts have two components each, the

first one corresponding to the distance between blocks if similar trials are assigned to different

blocks, which we refer to as distance cost; and the second corresponding to not assigning such

similar trials to the same block, which we refer to as occupation cost. Needless to say, the

magnitude of these three penalty weights determines how this objective function prioritize the

similarity of assignments for a set of trials. For each of the three groups let say breeders, there

exist a binary variable zbij that indicates if the breeder b ∈ B has trial(s) in fields Fi and Fj to
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consider in the total cost. Also, for every breeder b ∈ B there exist a dummy cost of MP1 where

M>>max(D) on scale of M for breeder b and field j using binary variable ybj to avoid ghost

assignments. Simply speaking, based on the magnitude of the penalty costs, the objective

function might enable a ghost ybj that fits the constraints with lower penalty where there is no

actual trial(s) from group b assigned to the field j. The same structure exist for the stage and

relative maturity groups.

Although the distance penalty constraints force the model to put related trials as close as

possible, in some cases there could be unrelated trials fit into the same field block which the

model put them in different fields because there is no direct penalty for using maximum capacity

of each field. The last term in the objective function is intended to take care of maximizing each

field capacity usage and avoid activating a field when there are some capacity in other field to

assign trials without violating connections’ criteria.

4.2.3 Constraints

There are only two physical constraint needed. The first such constraint ensures that capacity

needed for the trials assigned to each field does not exceed the field capacity:

|T |∑
i=1

cixij ≤ bj ∀j ∈ {1, ..., |F |}. (4.3)

The second set of physical constraints ensures that each trial is assigned to exactly one field:

|F |∑
j=1

xij = 1 ∀i ∈ {1, ..., |T |}. (4.4)
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In addition, there are technical constraints that are needed to ensure the correct penalties in

the objective function:

|F |∑
j=1

xij ≤ |Tb|ybj ∀b ∈ {1, ..., |B|} (4.5)

∀i ∈ Tb, ∀Tb ⊆ T

∀j ∈ {1, ..., |F |}

ybi + ybj ≤ 1 + Zbij ∀b ∈ {1, ..., |B|} (4.6)

∀i ∈ {1, ..., |F | − 1}

∀j ∈ {i+ 1, ..., |F |}
|F |∑
j=1

xij ≤ |Ts|gsj ∀s ∈ {1, ..., |S|} (4.7)

∀i ∈ Ts,∀Ts ⊆ T

∀j ∈ {1, ..., |F |}

gsi + gsj ≤ 1 + qsij ∀s ∈ {1, ..., |S|} (4.8)

∀i ∈ {1, ..., |F | − 1}

∀j ∈ {i+ 1, ..., |F |}
|F |∑
j=1

xij ≤ |Tr|urj ∀r ∈ {1, ..., |R|} (4.9)

∀i ∈ Tr,∀Tr ⊆ T

∀j ∈ {1, ..., |F |}

uri + urj ≤ 1 + vrij ∀r ∈ {1, ..., |R|} (4.10)

∀i ∈ {1, ..., |F | − 1}

∀j ∈ {i+ 1, ..., |F |}.

The first set of constraints (4.5) forces the model to enable auxiliary variable ybj if there exist

trial(s) from breeder b assigned to the field j in order to penalize the objective function. This

second set of constraints (4.6) forces the model to enable auxiliary variable zbij if there exist

trial(s) from breeder b assigned to the field i and j in order to penalize the objective function in
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scale of the distance between the two fields. The third set of constraints (4.7) forces the model to

enable auxiliary variable gsj if there exist trial(s) from stage s assigned to the field j in order to

penalize the objective function. The fourth set of constraints (4.8) forces the model to enable

auxiliary variable qsij if there exist trial(s) from stage s assigned to the field i and j in order to

penalize the objective function in scale of the distance between the two fields. The fifth set of

constraints (4.9) forces the model to enable auxiliary variable urj if there exist trial(s) from

relative maturity group r assigned to the field j in order to penalize the objective function. The

final set of constraints (4.10) forces the model to enable auxiliary variable vrij if there exist

trial(s) from relative maturity group r assigned to the field i and j in order to penalize the

objective function in scale of the distance between the two fields.

With our approach, what might be thought of as constraints by the breeders (that is, placing

trials in the same stage in the same blocks) are not formulated as constraints but rather

incorporated into the objective function as penalties. However, in practice there are also some

hard constraints to be considered. Such constraints can be of two types, either trials must be

planted together because they need to be compared directly, or they cannot be planted together,

for example if some trials should be sprayed with a chemical and others should not. Thus, the

model must also include both inclusive and exclusive hard constraints. In the exclusive case that

trials should not be planted in the same field we simply use the following constraint:

xai + xbi ≤ 1. (4.11)

And for the inclusive case where trials must be planted in the same field, these two constraint

must be added:

xbi − xai ≤ 0 (4.12)

xai − xbi ≤ 0.

Finally, we add a constraint with the purpose of eliminating solutions that use extra blocks. The

main purpose of the model is to minimize the distance of related trials, resulting in a planting

that is viewed favorably by breeders, an indirect goal of the optimization model is to assign trials
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into the experimental fields in a way that minimizes wasted space. While creating homogeneous

blocks tends to lead to fewer blocks, there are also some scenarios where equivalent solutions can

be generated (in terms of the penalty values) by using an extra block that is not necessary. We

therefore add the following constraint:

|B|∑
b=1

ybj ≤ |B|wj ∀j ∈ {1, ..., |F |}. (4.13)

This constraint makes sure that the penalty variable of using each field is activated in the

objective function, and hence helps minimize the number of blocks used and reduce wasted space.

4.3 Case Study

The mathematical program formulated in the previous section was directly developed to

address a scenario faced every year at multiple sites by a major commercial plant breeding

program. To illustrate the use of the model, we present a case study involving a single field from

this plant breeder. The starting point is a field assignment that was planted in a prior year and

our results compare this actual implementation to the solution that would have been obtained

using our formulation. The result reported here were obtained using academic license Gurobi

solver for linear programming and the results were implemented by the company created by

expert schedulers manually. We ran the model on a 64-bit windows 10 desktop computer with two

3.40GHz Intel(R) Core(TM) i7-4770 CPU, 8 processing core and 16.0GB RAM.

4.3.1 Data Description

The naming and plant location details of the trials are confidential but can be summarized as

follows. A planting plan was implemented in a prior year that involved a total of 71 trials

including 2 exclusive trials assigned to 10 blocks within a field. The trials are spread among 11

breeding groups, 7 stage groups and 3 RM groups. Figure 1 shows distribution of the trials in

each group and we observe that one breeder supervised almost half of the trials, with the other

spread among the remaining 10 groups. Most of the trials are in early-stage (stage 1-3), with
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fewer larger late-stage trials (stage 4-7). Finally, most of the trials are the same RM groups with

a few trials in further two groups. This will be typical for most planting locations since there is a

natural match between the RM of the genotype being evaluated and the geographical location

(primarily latitude) of the site of the experiment.

 

Figure 4.1 Breeder, stage and RM groups distribution of 71 trials

4.3.2 Model Parameters

As described in detail in Section 2 above, the goal is to place as many similar trials as possible

together, while also improving field utilization. The solution will depend on the relative size of

the penalty weights for different types of groups. For the implemented solution, those weights

were set in consultation with experts as 30,50,20,1 for breeder, stage, RM and field activation,



73

respectively. Thus, placing similar stage trials together has the highest priority, followed by

breeding group and RM value. The weight for the block activation is very small and thus

essentially only makes a difference where there are multiple solutions that are identical except

that one uses fewer blocks than the others. The importance order of stage, breeding group and

RM, where given and the specific values were adjusted somewhat by looking at the desirability of

solutions obtained via different weights. To determine the distances among the 10 blocks we use

horizontal distance between the blocks. Since all the blocks in this case study are the same width

we use the absolute difference of the IDs based on fields’ geographical order which conclude the

following distance matrix:

D =



0 1 2 ... 9

1 0 1 ... 8

...
...

...
...

...

9 8 7 ... 0


.

When solving the optimization problem, a ”big M” value of M = 100 is used in the

formulation to avoid activating any variable yj , gj or uj by the solver to reach a lower cost when

the corresponding group does not have any trial(s) in block j. Mathematically speaking these

three groups of binary variables are the dominant part of the cost function. When comparing

optimized solutions obtained using different penalty values and the original solution that was

constructed manually we substitute the M = 100 with M = 1 for a fair cost comparison between

the solutions. We are thus able to measure the cost for any given solution x and objective

coefficients C. In this approach, the number of fields each group has occupied would not dominate

the total cost. In fact, the focus in this approach is on the distance cost of groups’ assignment.

4.3.3 Comparison of Optimal and Original Solution

Table 1 shows both the total cost and a detailed costs’ break down for the original and

optimal solution. As is shown in this table, the optimal solution can considerably improve the

total cost, with the objective function value of the manual solution originally implemented being
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Table 4.1 Cost breakdown for original and optimal layout

Original Layout Optimal Layout Original/Optimal

Breeder Cost 2220 570 3.89

Occupation 660 420 1.57

Distance 1560 150 10.40

Stage Cost 2100 550 3.82

Occupation 750 450 1.67

Distance 1350 100 13.50

RM Cost 3520 540 6.52

Occupation 140 140 1.00

Distance 3380 400 8.45

Field Cost 10 5 2.00

Occupation 10 5 2.00

Total Cost 7850 1665 4.71

nearly four times that of the optimal solution. The largest improvement is with respect to the

RM penalty. However, improvements in all areas are considerable. Using this optimization model,

breeders are able to put the trials in the fields in a way that is more favorable from all three

aspects, and with the optimal solution using only five blocks versus the ten used in the original

solution, wasted space within the field is significantly reduced. To provide some insights into how

the mathematical programming approach improves the original layout, we show the details of the

two layouts in Figure 2.

As indicated in this figure the original layout providing a reasonable assignment for each of

the three objectives. Trials of each group are assigned to adjacent blocks as much as possible and

there are numerous similarities between the two solutions. For example, both solutions assign all

16 trials in stage group S2 to a single block, and all trials belonging to breeding group B6 to a

single block. However, there are also important differences, such as stage group S3 being spread

across five blocks in the original solution but is combined in a single block in the optimal solution.

Similarly, breeding group B11 has trials assigned in four blocks in the original solution but has all

its trials in a single block in the optimal solution. Furthermore, the optimal layout obtained by

the mathematical model provides a more homogeneous assignment in a way that no group has

trials in more than two adjacent block unless a hard constraint or capacity limit force it. The
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Figure 4.2 Original vs. optimal layout trial assignments to blocks

Original Layout Optimal Layout 

Field Blocks 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

Stage 
Group 

S1 22 3 17 8 

S2 16 16 

S3 4 3 4 2 3 16 

S4 6 1 7 

S5 1 1 

S6 1 1 1 1 

S7 2 2 4 

Breeding 
Group 

B1 1 1 

B2 2 1 3 

B3 2 1 3 

B4 1 1 

B5 2 2 

B6 8 8 

B7 2 1 1 4 

B8 1 1 

B9 5 1 1 1 1 1 6 

B10 22 11 17 16 

B11 2 2 1 2 7 

RM 
Group 

R1 2 1 3 6 

R2 1 1 

R3 22 6 5 1 4 2 3 19 1 1 1 1 21 17 24 

intuitive reason for how such major improvement between two good enough solutions is possible is

that considering number of trials and all the pair-wised relationships among the groups it is too

difficult for the expert schedulers to manually try all possible solutions to get the minimum cost.

Checking the details of the assignment, nearly all the gaps in original layout are caused by stage

since the stage homogeneity is the priority for the company.

4.3.4 Sensitivity Analysis

As previously stated the penalty weights used in the above solution were obtained with input

for experts. If the solution is extremely sensitive to small changes in those penalties it would limit
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its practical use due to the potential need to tune the penalties for each field, which would not be

practical. In order to evaluate sensitivity of the model to penalty weights we run the model with

different set of penalties. In the first three experiment we put the focus on stage, breeder and RM

respectively by giving a higher weight to that group. Experiment 1 is the main experiment that is

discussed above. Then we solve the model for equal weights in experiment four and for the next

three experiments, we run the model for optimizing only one of the three groups

breeder/stage/RM at the time. Table 2 shows the cost breakdowns and gained improvements for

these experiments.

Table 4.2 Cost breakdown for different penalty weights

*Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7

Stage Focus Breeder Focus RM Focus Equal Focus Breeder Only Stage Only RM Only

Penalty Costs

P1 (Breeder) 30 50 30 30 100 0 0

P2 (Stage) 50 30 20 30 0 100 0

P3 (RM) 20 20 50 30 0 0 100

P4 (Field) 1 1 1 1 1 1 1

Original / Optimal Cost Ratio

Breeder Cost 3.89 3.22 3.89 2.74 3.89

Occupation 1.57 1.57 1.57 3.14 1.57

Distance 10.40 5.78 10.40 2.60 10.40

Stage Cost 3.82 3.82 3.82 3.82 3.82

Occupation 1.67 1.67 1.67 1.67 1.67

Distance 13.50 13.50 13.50 13.50 13.50

RM Cost 6.52 6.78 6.78 6.78 6.78

Occupation 1.00 2.00 2.00 2.00 2.00

Distance 8.45 8.45 8.45 8.45 8.45

Field Cost 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Occupation 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Total Cost 4.71 4.26 5.70 4.59 3.89 3.81 6.77

Time to Solve (Seconds)

59 22 64 47 4 5 6

The results show that while some of the solutions differ, the solution is not very sensitive to

how the penalties are set. All the solutions use five blocks and all the solutions have the same

stage cost relative to the original solution. The other penalties components differ for some of the

solutions but all are similar. Optimizing only one of the objectives at the time, the model makes

the most improvement in RM cost followed by breeder and stage cost respectively. Also,

comparing the improvements obtained by the optimization model in first four experiment shows

RM is the main area to improve.
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4.4 Conclusion

We have modeled the assignment of experimental planting trials within a field as a

mathematical program. This formulation aims not just to reduce wasted space in the field, but to

create planting plans that have properties that are viewed favorably by the breeders. In

particular, the assignment aims to place trials from the same breeding group, trial stage and

relative maturing (RM) close together. We demonstrate the application of this model via a case

study that optimizes an actual field trial assignment that was planted in a previous year. The

results show that the optimized solution reduces waste, has more similar trials placed together,

and is robust with respect to exact values of the parameters needed by the mathematical

program. The model can be solved reasonably fast and thus multiple fields can be solved within

practical time constraints. This is important since breeders will have large number of fields. For

example, the example field described in Section 3 is one of three fields at this site and the breeder

has tens of similar sites in multiple countries. Future work will focus on optimizing multiple fields

simultaneously by both assigning trials to fields and within each field.
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Abstract

Typical operation starts with several tens of thousands of experimental genotypes (e.g.,

soybean varieties or corn hybrids) that are planted in what is termed an early-stage experiment.

At the end of the growing season, the most promising genotypes are selected for advancement.

That is, they will be planted the next year again with the expectation that the best will

eventually become commercialized. Each experimental genotype is compared with others that will

grow under similar conditions, primarily based on relative maturity (RM), that is, the number of

growing days needed for the plant to mature. Furthermore, within a plant breeding program,

there are typically multiple breeding groups, each responsible for making decisions regarding a

portfolio of experimental genotypes. Thus, a correct advancement decision is paramount and

anything that can be done to facilitate the comparison between competing experimental

genotypes, and would thus aid the advancement process, would be of great value.

We deploy a two-phased model to consider optimization of trials assignment from perspective

of the breeding program. Namely, given a set of trials from multiple breeding groups, how should

the trials be assigned to specific locations (Fields) and arranged within each field? The overall

goal is improved utilization of each field and keep similar trials as close as possible for operational

convenience. However, the benefit of good trial placement is likely higher than the monetary

benefit of reduced waste and operational costs, although the former is hard to quantify since it

depends on ultimately selecting the best varieties and hybrids for commercialization.
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5.1 Introduction

We aim to advance mathematical formulation of an operation in plant breeding from

scalability point of view for practical purpose. In this operation a large number of experimental

plant varieties are planted each year in different field trials through a breeding program. The

baseline solution provides a mathematical formulation that minimizes the waste space along with

arranging trials within a field in a way that is the most favorable for the breeding program from

three aspects. First, it places trials involving plants that mature at the same time together.

Second, each breeding group within the program prefers their own trials to be placed close

together, and finally, trials that are in the same stage of the breeding process should ideally also

be placed together. There are limitations with the baseline solution from practical point of view.

First, a commercial breeding program includes multiple fields which trials should be placed, and

splitting trials among those fields requires same considerations as arranging trials within a field.

Also, there are other practical considerations that make a field suitable for a specific group of

trials or force the program to avoid a particular field for some trials. Another limitation with the

baseline formulation is that the formulation is limited to three mentioned objectives. and these

criteria may change from one year to the next as practices within the breeding program evolve.

For instance there could be management practices like spraying method that requires trials of

same spraying system to be placed nearby for operational purpose. So the model requires some

level of flexibility in terms of objectives to adjust to the program.

So the baseline formulation is not applicable to the entire breeding program. To address these

issues we propose a two phase solution illustrated in figure 1 for assigning trials to the field and

arrange those within a field. The two-phase approach provides an advancement on the existing

solution to help with scalability and applicability in practice.

In the two-phase approach we consider each field a big block of a master field and solve the

optimization model with 90% capacity of fields. This proportional capacity usage is a way to

guarantees phase two feasibility when we arrange trials within a field considering the field blocks.

Also if there are trials need to be place alone in a field block, we break each of fields into n+ 1
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Figure 5.1 Two-phase approach for optimization.

blocks based on the field blocks capacity which n is number of standalone trials, and use a large

distance for distance between blocks of a field to other fields to assure optimality of the two-phase

solution. Needless to say that practical constraints of usability of each field for different group of

trials in phase one can be assured by hard constraints. After obtaining phase one solution we run

the model for each of the fields with full capacity based on the assigned trials of the phase one.

5.2 Optimization Model

In this section we describe the scalable optimization model we designed to improve field

planting operations. We use the model described in Chapter (4) of this dissertation as the

baseline formulation and try to modify that to reach scalabilty along with couple of improvement

in hard constraints to speed up the model.

5.2.1 Notation

The notation we use for the formulation of this trial assignment problem is as follows. We let

F denote the set of fields. Each trial belongs to different sets Gk consideration groups need to

plant trials as close as possible, preferably in same field. We let T denote this set of trials, and

partition the trials into subsets Tgk according to breeding group, stages, relative maturity and any

other consideration group. That is,

T =
⋃
s∈Gk

Ts ∀k ∈ {1, 2, ..., k}.
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There is a distance matrix D that defines the distance between field’s blocks:

D =


0 ... d1j
...

. . .
...

dj1 ... 0

 , j = |F |.

Adjacent blocks will have distance of one, blocks separated by a single block will have

distance of two and so forth. Distance between trials is taken as the distance between the block to

which they are assigned, which means that the distance between trials that are assigned to the

same block is taken as zero.

The decision variables simply determines the block assignment for each of the trials, that is,

xij =


1, if trial i is assigned to block j

0, otherwise.

(5.1)

We then define two types of additional binary variables to keep track of different consideration

groups are assigned to blocks.

ysj = 1 if group s ∈ Gk has trials assigned to block j

zsij = 1 if group s ∈ Gk has trials assigned to blocks i and j

We also consider a binary variable to keep track of used field blocks to penalize in objective

function for minimizing space usage.

wj = 1 if block j is used

This problem is essentially an assignment task. Each trial i ∈ T will require certain amount of

space ci in the field j ∈ F where it planted, and each field has some maximum capacity of

bj , ∀j ∈ F . The binary decision variables xij are defined to determined these paired assignments

in a very straightforward manner. Specifically, xij = 1 if and only if trial ti is assigned to field fj .

The remaining variables are auxiliary variables to keep track of what may be considered the key

component of the formulation, namely the penalty costs in the objective function. Those will be

discussed in more detailed next.
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5.2.2 Objective Function

The key to our formulation is to define penalties for assigning trials by the same consideration

group far apart. We will also assign a small penalty for using each block, which will favor

solutions to use as few blocks as possible. The motivation behind this approach is that it is not

possible to obtain the ideal assignment where there is no distance between any trials from the

same consideration group. Thus, hard constraints would result in an infeasible formulation and

assigning appropriately weighted penalties is a sensible approach that results in practical

solutions. We use a single penalty weight for each type, defined as follows.

Pg = penalty weight due to consideration group Gk,

Pf = penalty weight due to activating a field block.

These penalty weights will apply to both assigning trials to different blocks and to the distance

between blocks when trials of the same type are assigned to different blocks.

Using the above penalty weights, the objective function measures the total cost of assigning

trials in set T to available fields in set F using linear mathematical model as follow:

min
k∑
g=1

Pg

(
|Gk|∑
s=1

|F |−1∑
i=1

|F |∑
j=i+1

dijzsij +M
|Gk|∑
s=1

|F |∑
j=1

ysj

)
(5.2)

+Pf
|F |∑
j=1

wj

We observe that the objective function consists of k + 1 parts, corresponding to the penalties due

to consideration groups {1, 2, ..., k} and number of blocks. The first k parts have two components

each, the first one corresponding to the distance between blocks if similar trials are assigned to

different blocks, which we refer to as distance cost; and the second corresponding to not assigning

such similar trials to the same block, which we refer to as occupation cost. Needless to say, the

magnitude of these penalty weights determines how this objective function prioritize the

similarity of assignments for a set of trials. For each of the groups let say breeders, there exist a

binary variable zsij that indicates if the breeder s ∈ Gk has trial(s) in fields Fi and Fj to consider

in the total cost. Also, for every breeder s ∈ Gk there exist a dummy cost of MPg where
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M>>max(D) on scale of M for breeder s and field j using binary variable ysj to avoid ghost

assignments. Simply speaking, based on the magnitude of the penalty costs, the objective

function might enable a ghost ysj that fits the constraints with lower penalty where there is no

actual trial(s) from subgroup s in consideration group Gk assigned to the field j.

Although the distance penalty constraints force the model to put related trials as close as

possible, in some cases there could be unrelated trials fit into the same field block which the

model put them in different fields because there is no direct penalty for using maximum capacity

of each field. The last term in the objective function is intended to take care of maximizing each

field capacity usage and avoid activating a field when there are some capacity in other field to

assign trials without violating connections’ criteria.

5.2.3 Constraints

There are only two physical constraint needed. The first such constraint ensures that capacity

needed for the trials assigned to each field does not exceed the field capacity:

|T |∑
i=1

cixij ≤ bj ∀j ∈ {1, ..., |F |}. (5.3)

The second set of physical constraints ensures that each trial is assigned to exactly one field:

|F |∑
j=1

xij = 1 ∀i ∈ {1, ..., |T |}. (5.4)

In addition, there are technical constraints that are needed to ensure the correct penalties in

the objective function:

|F |∑
j=1

xij ≤ |Ts|ysj ∀s ∈ {1, ..., |Gk|} (5.5)

∀i ∈ Ts, ∀Ts ⊆ T

∀j ∈ {1, ..., |F |}

ysi + ysj ≤ 1 + Zsij ∀s ∈ {1, ..., |Gk|} (5.6)

∀i ∈ {1, ..., |F | − 1}

∀j ∈ {i+ 1, ..., |F |}
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The first set of constraints (5.5) forces the model to enable auxiliary variable ysj if there exist

trial(s) from subgroup s of consideration group Gk assigned to the field j in order to penalize the

objective function. This second set of constraints (5.6) forces the model to enable auxiliary

variable zsij if there exist trial(s) from subgroup s of consideration group Gk assigned to the field

i and j in order to penalize the objective function in scale of the distance between the two fields.

Finally, we add a constraint with the purpose of eliminating solutions that use extra blocks.

The main purpose of the model is to minimize the distance of related trials, resulting in a

planting that is viewed favorably by breeding program, an indirect goal of the optimization model

is to assign trials into the experimental fields in a way that minimizes wasted space. While

creating homogeneous blocks tends to lead to fewer blocks, there are also some scenarios where

equivalent solutions can be generated (in terms of the penalty values) by using an extra block

that is not necessary. We therefore add the following constraint:

|T |∑
i=1

xij ≤ |T |wj ∀j ∈ {1, ..., |F |}. (5.7)

This constraint makes sure that the penalty variable of using each field is activated in the

objective function, and hence helps minimize the number of blocks used and reduce wasted space.

With our approach, what might be thought of as constraints by the consideration groups

(that is, placing trials belong to the same breeders, stage, RM group , etc. in the same blocks) are

not formulated as constraints but rather incorporated into the objective function as penalties. In

other words, these technical constraint are responsible to enable auxiliary variables corresponding

to penalty costs in objective function. However, in practice there are also some hard constraints

to be considered. Such constraints can be of two types, either trials must be planted together

because they need to be compared directly, or they cannot be planted together, for example if

some trials should be sprayed with a chemical and others should not. Thus, the model must also

include both inclusive and exclusive hard constraints.
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For exclusive case that trials of two groups T1 and T2 such T1, T2 ⊂ T and T1 ∩ T2 = Ø cannot

be planted together we use an auxiliary variable hj :

hj =


1, if trial(s) from T1 is assigned to block j

0, otherwise.

(5.8)

and two hard constraints: ∑
i∈T1

xij ≤ |T1|hj ∀j ∈ {1, ..., |F |} (5.9)

∑
i∈T2

xij ≤ |T2|(1− hj) ∀j ∈ {1, ..., |F |} (5.10)

needless to say that decision variables hj are only for controlling exclusive trials hard constraint

and there should be no penalty for those in objective function.

And for the inclusive case that trials of two groups T1 and T2 such T1, T2 ⊂ T and T1 ∩ T2 = ∅

must be planted in the same field, no extra auxiliary variable is needed and these two constraints

must be added:

xbj − xaj ≤ 0 ∀a ∈ T1, ∀b ∈ T2,∀j ∈ {1, ..., |F |} (5.11)

xaj − xbj ≤ 0 ∀a ∈ T1, ∀b ∈ T2,∀j ∈ {1, ..., |F |} (5.12)

5.3 Case Study

The mathematical program formulated in the previous section was directly developed to

address a scenario faced every year at multiple sites by a major commercial plant breeding

program. To illustrate the use of the model, we present a case study involving four fields from

this breeding program. The starting point is a field assignment that was planted in a prior year

and our results compare this actual implementation to the solution that would have been

obtained using our approach. The result reported here were obtained using academic license

Gurobi solver for linear programming and the results were implemented by the company created

by expert schedulers manually. We ran the model on a 64-bit windows 10 desktop computer with

two 3.40GHz Intel(R) Core(TM) i7-4770 CPU, 8 processing core and 16.0GB RAM.



87

5.3.1 Data Description

The naming and plant location details of the trials are confidential but can be summarized as

follows. The planting plan was implemented in a prior year that involved a total of 547 trials

assigned to 4 fields and 39 blocks within the fields. The trials are spread among 25 breeding

groups, 8 stage groups and 3 RM groups. Figure 2 shows the distribution of trials within each of

the three consideration groups. As is shown most of the trials are the same RM groups with a few

trials in further two groups. This will be typical for most planting locations since there is a

natural match between the RM of the genotype being evaluated and the geographical location

(primarily latitude) of the site of the experiment.

 

Figure 5.2 Distribution of the trials for breeder, stage and RM groups

5.3.2 Model Parameters

As described in detail in optimization model section, the goal is to place as many similar trials

as possible together, while also improving fields utilization. The solution will depend on the

relative size of the penalty weights for different types of groups. For the implemented solution,

those weights were set in consultation with experts as 30,50,20,1 for breeder, stage, RM and field
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activation, respectively. Thus, placing similar stage trials together has the highest priority,

followed by breeding group and RM value. The weight for the block activation is very small and

thus essentially only makes a difference where there are multiple solutions that are identical

except that one uses fewer blocks than the others. The importance order of stage, breeding group

and RM, where given and the specific values were adjusted somewhat by looking at the

desirability of solutions obtained via different weights.

When solving the optimization problem, a ”big M” value of M = 1000 is used in the

formulation to avoid activating any occupation variable ysj , by the solver to reach a lower cost

when the corresponding group does not have any trial(s) in block j. Mathematically speaking

these occupation binary variables are the dominant part of the cost function. When comparing

optimized solutions obtained using different penalty values and the original solution that was

constructed manually we substitute the M = 1000 with M = 1 for a fair cost comparison between

the solutions. We are thus able to measure the cost for any given solution x and objective

coefficients C. In this approach, the number of fields each group has occupied would not dominate

the total cost. In fact, the focus in this approach is on the distance cost of groups’ assignment.

5.3.3 Comparison of optimal and original solution

Although optimizing the arrangement of the trials within a field can provide considerable

advantage over manual arrangement, the two-phase optimization approach can minimize the

distance cost for all of the consideration groups for the entire breeding program. Table 1 shows

the improvement for breeding groups:

As is shown, using the two-phase approach 6 out of 9 breeding group those have trials in

multiple fields are able to move all trials in a single field. Although for some breeder such as

breeder B2 having roughly 30% of trials in one field and 70% in could be a reasonable assignment

but breeders B14 and B18 having all trials in one field and a single trial in another field is not

favorable at all. So this sort of re-arrangement between the fields can provide a more favorable
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Table 5.1 Two-phase optimization improvements for breeders

Breeding Original Layout Two-phase Layout

group Field 1 Field 2 Field 3 Field 4 Field 1 Field 2 Field 3 Field 4

B1 35 22 35 22

B2 40 16 56

B3 33 22 38 17

B4 31 17 48

B5 42 41 1

B6 41 41

B7 8 31 39

B8 33 33

B9 32 32

B10 27 27

B11 22 22

B12 20 20

B13 16 16

B14 1 11 12

B15 10 10

B16 8 2 10

B17 7 7

B18 3 1 4

B19 4 4

B20 4 4

B21 3 3

B22 2 2

B23 1 1

B24 1 1

B25 1 1

assignment and reduce the operational costs considerably. This improvement also holds for stage

groups as well. Table 2 shows the two-phase approach improvement for stage groups;

Table 5.2 Two-phase optimization improvements for stage groups

Stage Original Layout Two-phase Layout

Field 1 Field 2 Field 3 Field 4 Field 1 Field 2 Field 3 Field 4

S1 43 25 41 203 75 65 172

S2 151 151

S3 2 35 5 32

S4 16 3 19

S5 16 16

S6 7 7

S7 4 4

S8 1 1

similar to the breeding groups, there are improvements for stage groups using the two-phase

optimization approach as well. With this approach stage group S1 is able to reduce fields from

four fields to three fields and stage group S4 can have all its trials in a single field.
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Table 3 shows the total cost and cost breakdown for the two optimization approaches. Based

on the costs breakdown, the two phase approach can save more field space compared to within

field optimal arrangement of the trials. The two-phase approach saves two more blocks by using

33 out of 39 field blocks. However this improvement in field utilization is not the main purpose of

neither two-phase optimization nor within field optimization.

Table 5.3 Cost breakdown for original and optimal layout

Cost Category Original Layout Within Field Optimization Two-phase Optimization
Original/

Within Field

Original/

Two-phase

Breeder Cost 8250 4110 5700 2.01 1.45

Occupation 2190 1620 1710 1.35 1.28

Distance 6060 2490 3990 2.43 1.52

Stage Cost 26750 17900 14750 1.49 1.81

Occupation 2400 2000 1850 1.20 1.30

Distance 24350 15900 12900 1.53 1.89

RM Cost 24100 8580 7940 2.81 3.04

Occupation 1420 980 920 1.45 1.54

Distance 22680 7600 7020 2.98 3.23

Field Cost 39 35 33 1.11 1.18

Occupation 39 35 33 1.11 1.18

Total Cost 59139 30625 28423 1.93 2.08

Considering the main objective which is putting trials from same breeding group as the first

priority followed by trials from same stage and RM groups, the two phase approach can provide

slightly better cost compared to the baseline optimization which is assigning trials to the field by

a breeding expert and optimal arrangement of trials within each field using the baseline

formulation. Comparing the cost ratios for the breeding group shows that the two phase

optimization is able to make better assignment of trials to the fields by considering all cost

priorities for the entire breeding program while manual assignment of the trials to the field

focuses on the most important objective of keeping trials of the same breeding group as close as

possible.This ensures the importance of automating the entire trial assignment process in a

two-phase optimization program.
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5.4 Conclusion

We have used a mathematical formulation aimed to improve utilization of each field, as it

assures each breeding group would also prefer their trials to be positioned close to each other for

convenience, and trials that are similar in terms of stage and RM should also be placed together

as much as possible as this makes them easier to compare and evaluate for possible advancement

to provide a scalable optimization model can achieve the same goal for entire breeding program.

The results show that the two-phase optimized solution reduces waste space and cost of putting

similar trials far apart more than within field optimization.

Needless to say that the optimization tool can solve the assignment problem in order of

seconds and help the breeders to save weeks by solving the problem manually. The two-phase

model is a way to make the process automated. Also, the solution provided by the model is the

optimal solution which could not be easily obtained by human. A comparison of the model

solution to a commercial breeding man-made solution shows considerable improvement. Finally,

in practice there are last minute changes to the program like adding new trials or changing the

objectives in terms of adding a new consideration or changing the importance of one. In such

situation the model still would provide the optimal solution quick regardless of the changes but in

manual approach it will require a lot more time and resources to solve the new problem along

with more complexity for human brain to handle.
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CHAPTER 6. CONCLUSION

6.1 Summary

This dissertation was aimed to support plant breeding process in two ways. First helping in

making advancement decisions in a more reliable approach by providing a data-driven method to

identify groups of similar GxE varieties that enhances the quality of phenotypic performance

estimation and a prediction method which enables breeders to make advancement decision ahead

of the time by identifying similar GxE varieties in laboratory stage using genetic data. Second, it

helps with enhancing the breeding process through optimizing trails assignment between and

within fields.

A data clustering approach could be applied to identify sets of related genotypes those have

similar GxE interaction effect that require a proximity matrix of GxE similarity of all genotype

pairs. Furthermore, it is not practically possible to define this GxE similarity for all genotype

pairs, as it requires the genotypes having been planted in the same environments repeatedly.

Thus, it naturally gives rise to a proximity matrix where most of the values are missing for either

of these two fundamentally different reasons.For some pairs, their environmental requirements are

simply too dissimilar, which makes them unlikely to be planted in the same location and for

others this is it is only economically feasible to plant each seed variety in a limited number of

locations are selected by plant breeders. Therefore, if the proximity matrix has missing values, no

standard clustering method is directly applicable. Imputation can be done to replace missing

values but considering the reason of missing values in imputation process has important effect in

final output of clustering. The results show increasing number of missing values, statistical

summary imputation methods loose ability to estimation and in very high sparse proximity

matrices the PMC algorithm may fall into a wrong step of estimation.
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Besides the clustering, we are able to determine pairs of genotypes that have the same

preference to the environment (low dissimilarity in GxE effect) using the prediction model trained

by historical data where we have a wide observation of genotypes in common environments in

laboratory stage when there are no phenotypic observations available. Knowing that similar GxE

varieties have same GxE preference to environment breeders can avoid planting similar GxE

varieties in same environments and expand the experiment to more environments through similar

GxE varieties in a way that maximizes information gain. A precise prediction of the yield of a

target variety in early stages will provide a valuable source of information for breeders to make a

better decision on future of a variety in breeding program. In other words, determining a set of

similar GxE varieties breeders are able to predict yield of a target variety in some unseen

environments in advanced that saves considerable amount of time and cost. Also, a better

evaluation of a target performance using prediction can refuse an unwanted decision of keeping a

future failure variety or discarding a potential winner variety based on few unreliable observations

in early stages.

Along with all the predictive advancement we improve the breeding process from practical

point of view as well. Modeling all the preferences and constraints in linear space, we’re able to

get a layout that fits the preferences the best. Given a set of trials from multiple breeding groups,

we are able to split trials between the fields and arrange those within each field using the

two-phase optimization model in a fully automatic and scalable process. Needless to say that an

optimization tool can solve the assignment problem in order of seconds and help the breeders to

save weeks by solving the problem manually. Also the solution provided by the model is the

optimal solution which could not be easily obtained by human. A comparison of the model

solution to a commercial breeding man-made solution shows considerable improvement. Also, in

practice there are last minute changes to the program like adding new trials or changing the

objectives in terms of adding a new consideration or changing the importance of one. In such

situation the model still would provide the optimal solution quick regardless of the changes but in

manual approach it will require a lot more time and resources to solve the new problem along
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with more complexity for human brain to handle. These sort of resource optimization can provide

field space to put more trials in practice that adds more knowledge to the program.

6.2 Future work

A correct advancement decision is paramount and anything that can be done to facilitate the

comparison between competing experimental genotypes, and would thus aid the advancement

process, would be of great value. In fact, the benefit of good trial placement is likely higher than

the monetary benefit of reduced waste, although the former is hard to quantify since it depends

on ultimately selecting the best varieties and hybrids for commercialization. As is mentioned, one

of the advantages of identifying similar GxE varieties is that we can model yield of the similar

GxE varieties with a non-interaction model that predicts yield simply as a function of genotype

main effects and environment main effects, which makes predicting yield in new environments

simpler. Having the ability to plan trials placement in a way that enables breeders to predict

yield of experimental soybean varieties in environments where they have not been tested through

similar GxE varieties aids decision makers when breeders need to decide if to keep a specific

variety in breeding program and plant the variety again in following year, or discard it from the

program with higher precision. So incorporating GxE similarities in trials placement optimization

process can evolve the breeding process in a way that maximizes the information gain along with

all discussed benefits. Needless to say that the two-phase optimization framework can simply

enable this evolution.
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