IOWA STATE UNIVERSITY

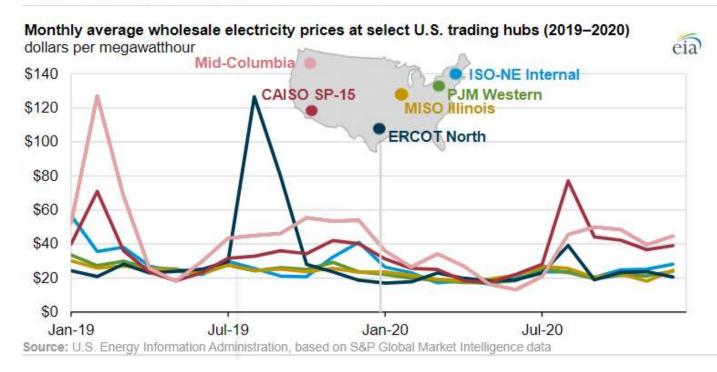
Department of Industrial and Manufacturing Systems Engineering

Engineering Economics Applied to Electricity Generation Decisions with Uncertainty

Cameron MacKenzie, Assistant Professor Gazi Nazia Nur, PhD student

Presentation to IAMU Energy Conference February 21, 2022

Value of renewable energy sources

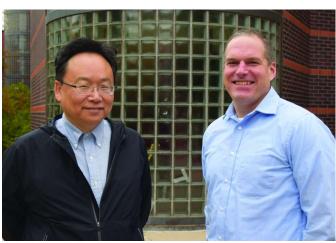


IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

Uncertainty

Wholesale U.S. electricity prices were generally lower and less volatile in 2020 than 2019

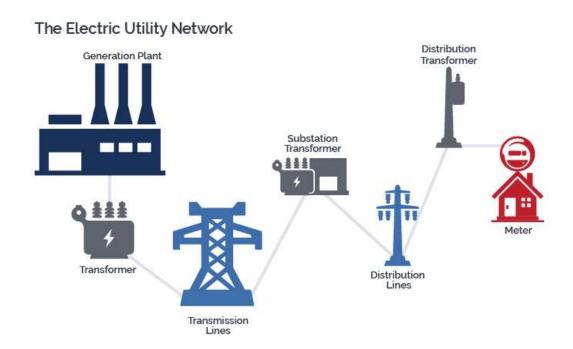

IOWA STATE UNIVERSITY

Solar and Wind Energy Using Engineering Economics Theory (SWEEET)

- Study the economic viability of incorporating more solar and wind into lowa's electrical grid
- Renewable resources to better serve rural and underserved areas
- Funded by Iowa Energy Center

www.imse.iastate.edu/sweeet

IOWA STATE UNIVERSITY

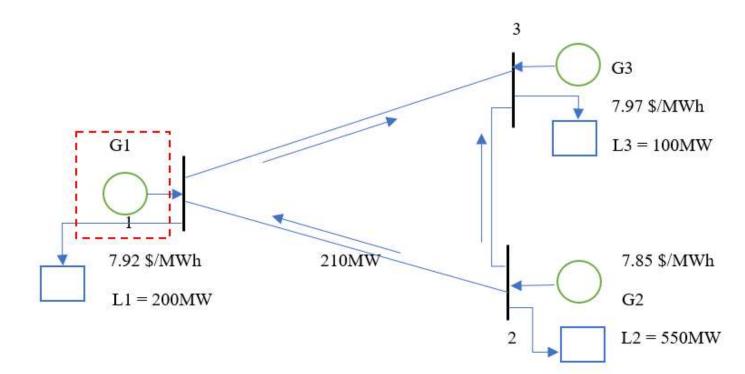

Outline

- 1. Optimal power flow and locational marginal price (LMP)
- 2. Valuing future sources of electricity generation
- 3. Valuation without hedging

www.imse.iastate.edu/sweeet

Optimal power flow model

- Determine best operating levels for electric power plants
- Objective: minimize cost while meeting demand
- Constraints of transmission network



IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

Example

- Load
- Generation units
- Maximum generation capacity
- Generation cost
- Transmission capacity
- Line reactance

IOWA STATE UNIVERSITY

Excel tool inputs

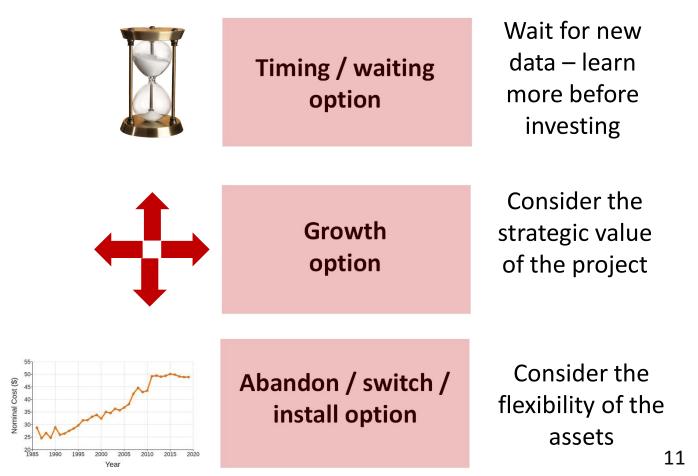
	Load	Generation units available	Max generation capacity	Generation cost (\$/MWh)	
Bus 1	270	1		\$7.92	
Bus 2	550	1		\$7.85	
Bus 3	100	1		\$7.97	
Transmission Capacity	(leave blar	nk if no transm	ission capacity	()	
From \ To	Bus 1	Bus 2	Bus 3		
Bus 1		210			
Bus 2	210				
Bus 3					
Line Reactance	(leave blar	nk if no transm	ision from one	bus to another	bus)
From \ To	Bus 1	Bus 2	Bus 3		
Bus 1		0.1	0.125		
Bus 2	0.1		0.2		
Bus 3					
		:	-		

www.imse.iastate.edu/sweeet

IOWA STATE UNIVERSITY

Excel tool outp	uts	Cost per hour	\$7,225.98					Calucate al Power	Flow
	Decision variables	Generator 1	56.9						
		Generator 2	863.1						
		Generator 3	0.0						
		Phase angle 1	0						
		Phase angle 2	0.21						
		Phase angle 3	0.0038						
		DC power flow fo	Location marginal price (LMP)						
		Bus 1	270		Bus 1	\$7.920			
		Bus 2	550		Bus 2	\$7.850			
		Bus 3	100		Bus 3	\$7.893			
		Power flow							
		From \ To	Bus 1	Bus 2	Bus 3				
		Bus 1		-210.0	-3.1				
		Bus 2	210.0		103.1				
		Bus 3	0.0	0.0					

IOWA STATE UNIVERSITY


Locational marginal price (LMP)

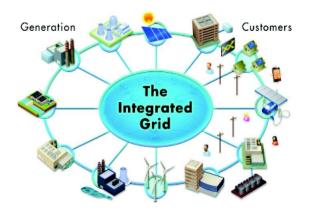
- Price for electricity energy at each load zone
- Calculated from the optimal flow model
 - Reflects operating characteristics of network
 - Constraints on the transmission system
 - Losses from physical limits of the transmission system
- LMPs differ among locations: Transmission and reserve constraints prevent the cheapest MW of electricity from reaching all locations

IOWA STATE UNIVERSITY

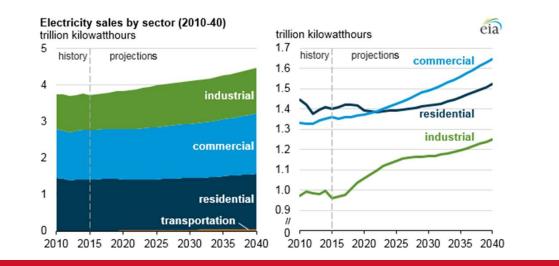
Real option

- Gives firms the right but not obligation to undertake business opportunities
- Projects involve tangible assets

IOWA STATE UNIVERSITY

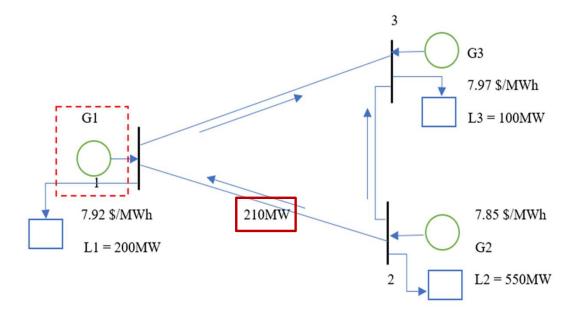

Option valuation

- Option valuation is a process to evaluate the option
- Option value expresses the project's worth
- Our option here is to add a generator to the network


IOWA STATE UNIVERSITY

Motivation

- Adding a new generation source to an existing electrical network is a critical part of power planning
- Obtaining the permit for new generation can be lengthy and expensive
- Electricity demand is uncertain and variable

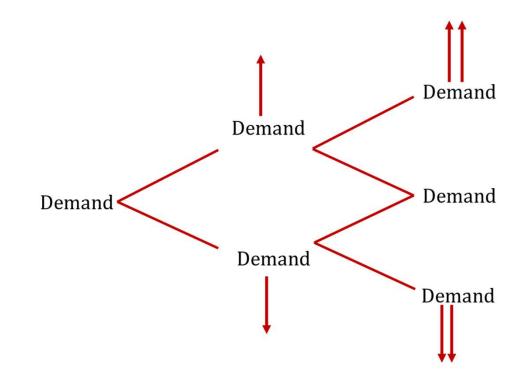


IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

3- bus network for option valuation

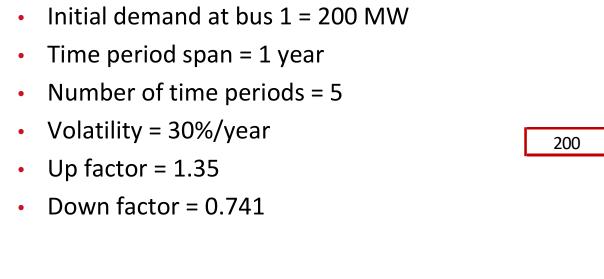
- Case 1: Bus 1 will have no generator and the demand at this node will be satisfied by generators 2 and/or 3
- Case 2: We will add a generator at bus 1 and the total demand will be met by the combination of all three generators



14

IOWA STATE UNIVERSITY

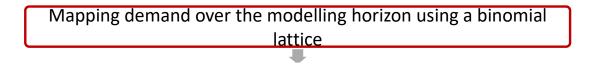
Demand evolution at bus 1


- Demand at bus 1 is uncertain
- If demand increases after one period, the initial demand will be multiplied with an up factor
- If demand decreases after one period, the initial demand will be multiplied with a down factor
- These factors are derived from the volatility in electricity demand

IOWA STATE UNIVERSITY

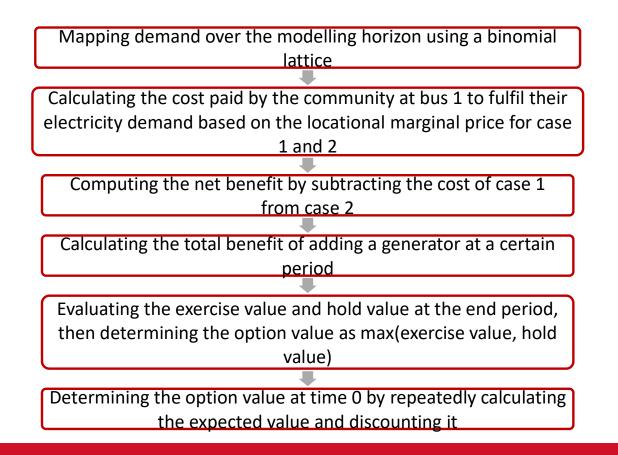
Industrial and Manufacturing Systems Engineering

Demand Lattice



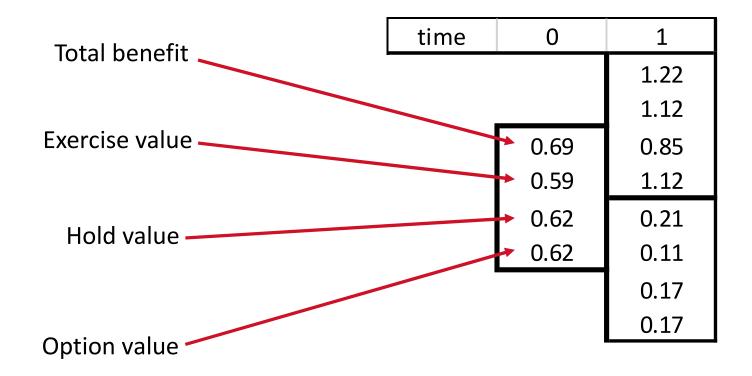
Time	0	1	2	3	4	5
						896
					664	
				492		492
			364		364	
		270		270		270
	200		200		200	
		148		148		148
			110		110	
				81		81
					60	
						45

16


IOWA STATE UNIVERSITY

Framework of option valuation

IOWA STATE UNIVERSITY

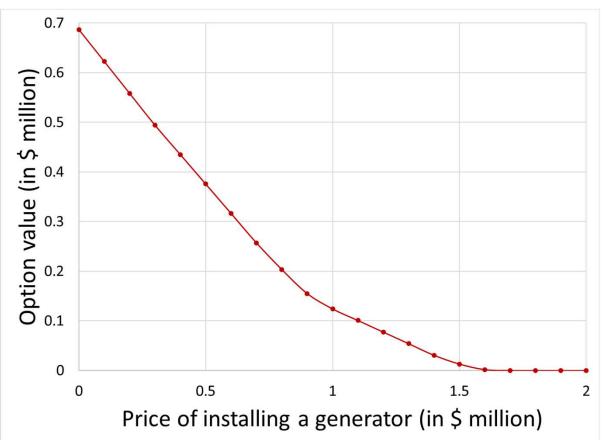

Framework of option valuation

IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

Option value tree

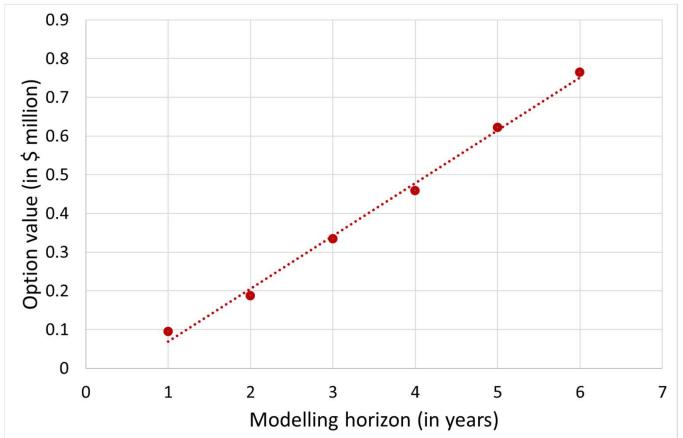
19


IOWA STATE UNIVERSITY

	time	0	1	2	3	4	5
							0.98
Option value tree						0.88	
Option value tiee						1.45	0.00
						1.35	0.88
					1.62	0.63	0.54
					1.52	1.35	0.44
			Add	1.53	0.98	0.80	0.00
		TT 11		1.43	1.52	0.70	0.44
		Hold	1.22	1.04	0.75	0.30	0.30
		,	1.12	1.43	0.65	0.70	0.20
 Hold → Wait for another 			0.85	0.39	0.38	0.14	0.00
year to make a decision		0.35	1.12	0.29	0.65	0.04	0.20
year to make a decision		0.62	0.21	0.33	0.07	0.09	0.00
 Add → Add a generator now 		0.62	0.11	0.33	0.00	0.09	0.00
			0.17	0.03	0.05	0.00	0.00
			0.17	0.00	0.05	0.00	0.00
				0.02	0.00	0.00	0.00
			Hold	0.02	0.00	0.00	0.00
			11010		0.00	0.00	0.00
					0.00	0.00	0.00
						0.00	0.00
						0.00	0.00
							0.00
							0.00

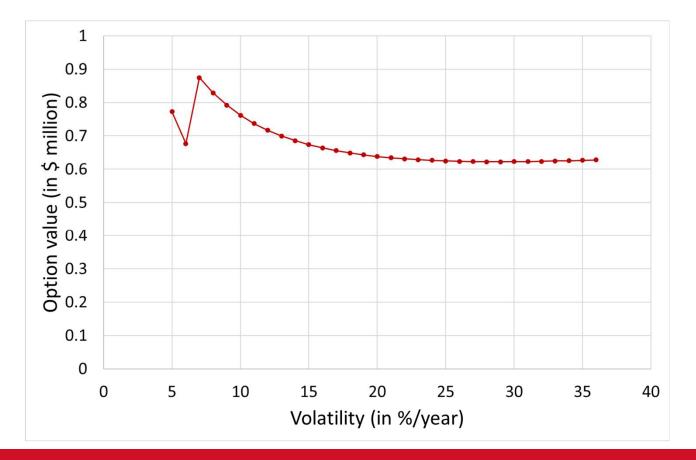
20

IOWA STATE UNIVERSITY


Sensitivity with installation price

IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering


Sensitivity with modelling horizon

22

IOWA STATE UNIVERSITY

Sensitivity with volatility

IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

Sensitivity with discount rate

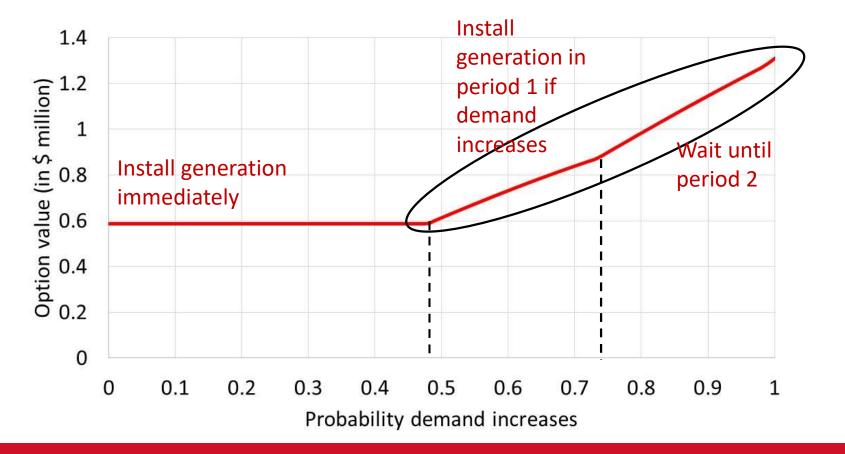
IOWA STATE UNIVERSITY

Industrial and Manufacturing Systems Engineering

Extension of option value model

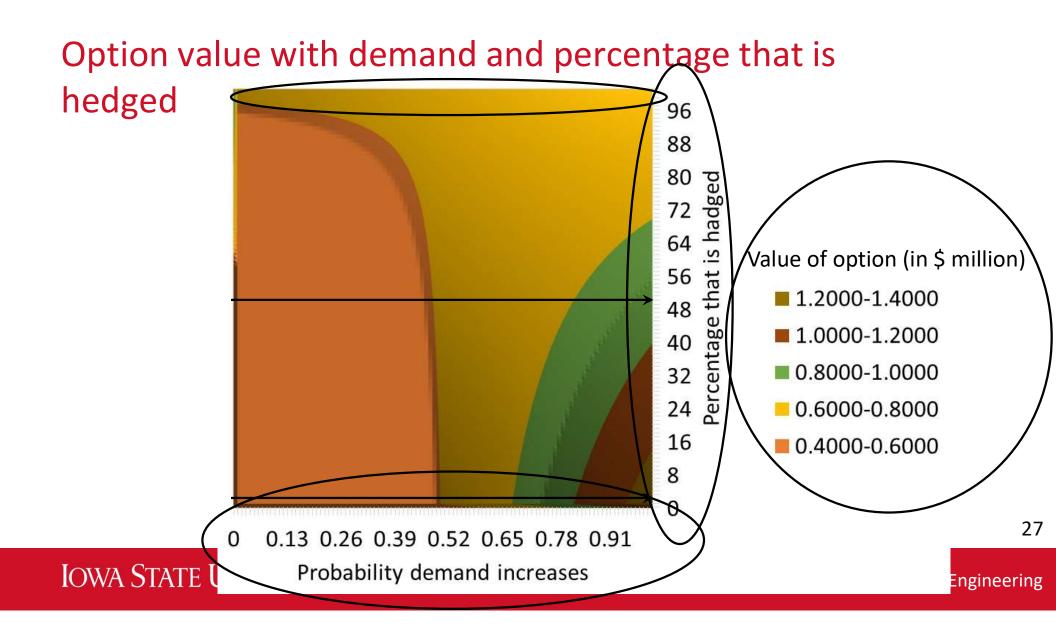
Option value model assumes that cost uncertainty can be hedged

- Purchase futures on price of energy
- Future price = LMP



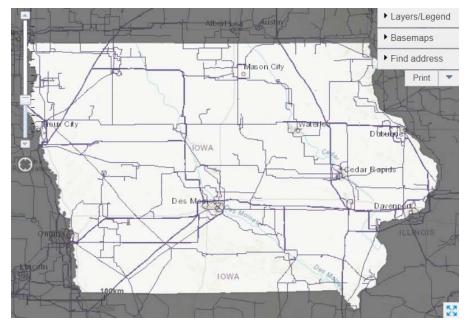
What if cost uncertainty cannot be hedged or only partially hedged?

25


IOWA STATE UNIVERSITY

Value of option without hedging

IOWA STATE UNIVERSITY


Industrial and Manufacturing Systems Engineering

Economic value of transmission capacity

- How much is additional transmission capacity worth to state? A community? A municipal utility?
 - Where should existing transmission lines be improved?
 - Where should additional transmission lines be added?
- Challenges to answering these questions
 - Physics of electric power
 - Long-range planning
 - Uncertainty in demand planning
 - Uncertainty in weather events

Source: Iowa Energy Profile, U.S. Energy Information Administration

28

Economic decision making for farmers leasing land for wind turbines

- Under what circumstances should farmers lease land for developers to install wind turbines?
- Different payment types
 - Fixed payment
 - Royalty payments based on revenue
- End of lease considerations
- Farmers' loss of control

IOWA STATE UNIVERSITY

Flexible electric generation portfolio in Iowa

- How should Iowa's electric profile change in the next 10-20 years?
- Uncertainties
 - Demand
 - Costs (investment, fuel)
 - Requirements for using renewable sources
 - Future carbon emission limits
- Dynamic decision making
- Requires long-term planning

IOWA STATE UNIVERSITY

Iowa Electric Profile (2020 - Including Non-Utility Generation)

ELECTRIC GENERATION IN IOWA BY PRIMARY ENERGY SOURCE	2020 NAMEPLATE CAPACITY (MW) ¹	PERCENT OF NAMEPLATE CAPACITY	2020 GENERATION (MWH) ²	PERCENT OF GENERATION			
Coal	5,754.7	25.61%	14,146,835	23.72%			
Wind	11,406.9	50.76%	34,182,302	57.32%			
Nuclear	0.0	0.0%	2,904,863	4.87%			
Natural Gas	4,215.0	18.76%	7,036,824	11.80%			
Hydro	129.2	0.58%	1,025,215	1.72%			
Source: Iowa's Electric Profile, Iowa Utilities Board 3							

Conclusions

- Optimal power flow enables LMP calculations
- Option value: value of installing new generation capability
 - Estimates project's financial worth
 - Determine when to install generation
 - Relation of different parameters (installation price, volatility, discount rate) to option value
- Extension to partial or no hedging
- Development of Excel tool: <u>https://imse.iastate.edu/sweeet</u>
- Applicable to renewable generation sources
- Day-long workshop at Iowa State University in summer 2022

Email: Cameron, camacken@iastate.edu Nazia, nazianur@iastate.edu

31

IOWA STATE UNIVERSITY