## ANNUAL ISE Vistual CONFERENCE & EXPO 2021

#### Electric Power Planning for a Transmission Network Under Demand Volatility

Jay Ghodke, Gazi Nazia Nur, Dr. Cameron MacKenzie, Dr. K. Jo Min Iowa State University

## Objective

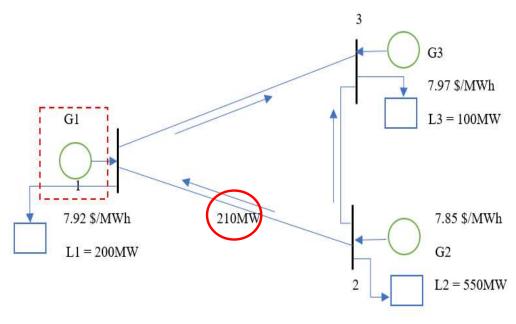
- Evaluating the option value of expanding the existing transmission line using Real Options approach
  - DCOPF is calculated to obtain LMP values for all buses
  - Binomial Lattice is constructed to map the uncertain demand
  - In part one, a new generator will be added to the network
  - In second part the option value of adding a new transmission line is evaluated as an alternative to a new generator



# Adding A New Generator to the Network

### **Optimal Power Flow (OPF)**

- There are 2 generators in bus 2 and 3. The generator at bus 1 is not available currently
- We will discuss the consequence of adding one generator at bus 1



Three bus network model

## Optimal Power Flow (OPF)

- **Case 1:** Bus 1 will have no generator and the demand at this node will be satisfied by generators 2 and/or 3
- **Case 2:** We will add a generator at bus 1 and the total demand will be met by the combination of all three generators



## Optimal Power Flow (OPF) (Case 1)

#### **Susceptance Matrix**

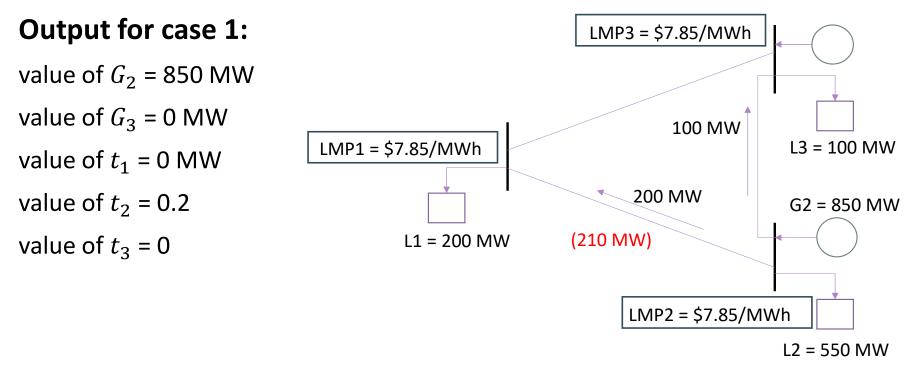
$$\begin{bmatrix} B_{\chi} \end{bmatrix} = \begin{pmatrix} (1/x_{12} + 1/x_{13}) & -1/x_{12} & -1/x_{13} \\ -1/x_{12} & (1/x_{12} + 1/x_{23}) & -1/x_{23} \\ -1/x_{13} & -1/x_{23} & (1/x_{13} + 1/x_{23}) \end{pmatrix}$$

#### Minimize (7.85\*G2 + 7.97\*G3)

$$\begin{array}{l} 1800 \times t_{1} - 1000 \times t_{2} - 800 \times t_{3} + 200 = 0 \\ -1000 \times t_{1} + 1500 \times t_{2} - 500 \times t_{3} - G_{2} + 550 = 0 \\ -800 \times t_{1} - 500 \times t_{2} + 1300 \times t_{3} - G_{2} + 100 = 0 \\ t_{1} = 0 \\ 1000 \times t_{1} - 1000 \times t_{2} <= 210; \ 1000 \times t_{2} - 1000 \times t_{1} <= 210 \\ G_{i} = \text{generation quantity at node i}; t_{i} = \text{phase angle for node i} \end{array}$$

#### OPF - Solving and Finding LMP values (case 1)

G3 = 0 MW



#### Optimal Power Flow (OPF) (Case 2)

#### Minimize (7.92\*G1 + 7.85\*G2 + 7.97\*G3)

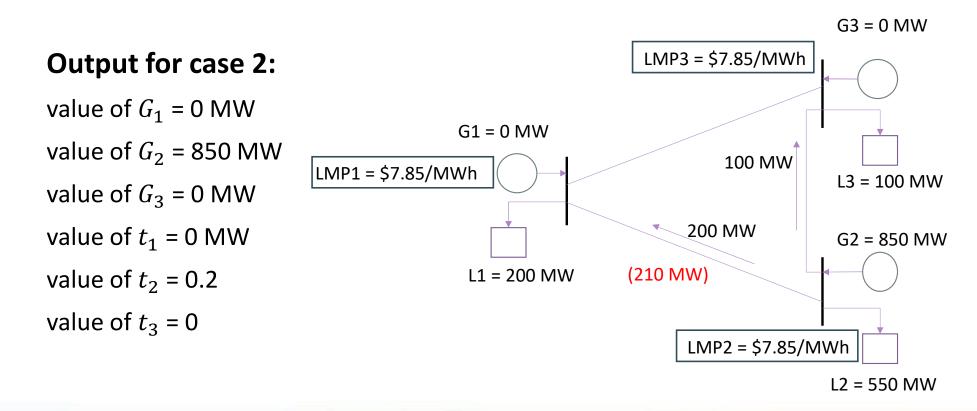
 $1800 \times t_1 - 1000 \times t_2 - 800 \times t_3 - G_1 + 200 = 0$ -1000 \times t\_1 + 1500 \times t\_2 - 500 \times t\_3 - G\_2 + 550 = 0 -800 \times t\_1 - 500 \times t\_2 + 1300 \times t\_3 - G\_2 + 100 = 0

 $t_1 = 0$ 

 $\begin{array}{l} 1000 \times t_1 - 1000 \times t_2 <= 210; \\ 1000 \times t_2 - 1000 \times t_1 <= 210 \end{array}$ 

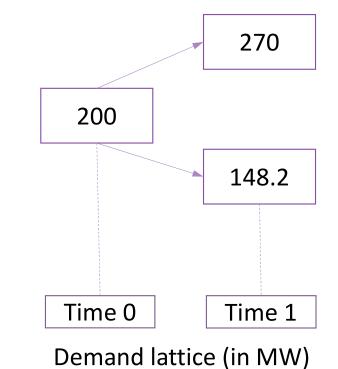
8

#### OPF - Solving and Finding LMP values (case 2)



### Demand Evolution at bus 1 for one time step

- Risk free discount rate  $(r_f)$ = 4.879% per annum compounded continuously
- Volatility ( $\sigma$ ) = 30%/year
- Time step  $(\Delta t) = 1$  year; Total time frame = 1 year
- Up-factor (*u*) =  $e^{\sigma \Delta t} = 1.35$
- Down factor (*d*) = 1/u = 0.741
- Initial demand at bus 1 (D)= 200 MW
- Up demand =  $u \times D$ ; Down demand =  $d \times D$
- Risk-neutral probability, q= (e<sup>rf</sup>-d)/(u-d) = 0.5074



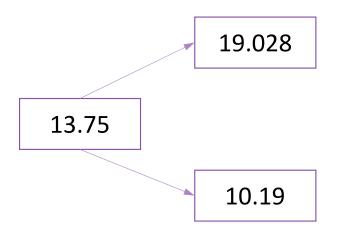
## **OPF - Solving and Finding LMP values**

| Case 1: Without generator 1 | Load at bus 1<br>(MW) | LMP at bus 1<br>(\$/MWh) | LMP at bus 2<br>(\$/MWh) | LMP at bus 3<br>(\$/MWh) |
|-----------------------------|-----------------------|--------------------------|--------------------------|--------------------------|
|                             | 200                   | 7.85                     | 7.85                     | 7.85                     |
|                             | 270                   | 8.045                    | 7.85                     | 7.97                     |
|                             | 148.2                 | 7.85                     | 7.85                     | 7.85                     |
| Case 2: With generator 1    |                       | LMP at bus 2<br>(\$/MWh) | LMP at bus 3<br>(\$/MWh) |                          |
|                             | 200                   | 7.85                     | 7.85                     | 7.85                     |
|                             | 270                   | 270 <b>7.92</b> 7.85     | 7.85                     | 7.893                    |
|                             | 148.2                 | 7.85                     | 7.85                     | 7.85                     |

#### Cost paid by the community at bus 1 (Case 1)

- When the demand at bus 1 is 270 MW, locational marginal price at bus 1 is \$8.045
- For other nodes, the locational marginal price is \$7.85

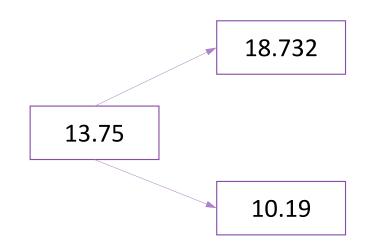
Cost= LMP x load at bus 1 x 8760



Cost lattice for case 1 (in \$ millions)

#### Cost paid by the community at bus 1 (Case 2)

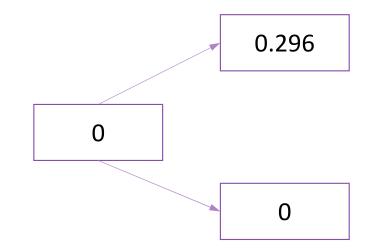
- When the demand at bus 1 is 270 MW, locational marginal price at bus 1 is \$7.92
- For other nodes, the locational marginal price is \$7.85
- Cost= LMP x load at bus 1 x 8760



Cost lattice for case 2 (in \$ millions)

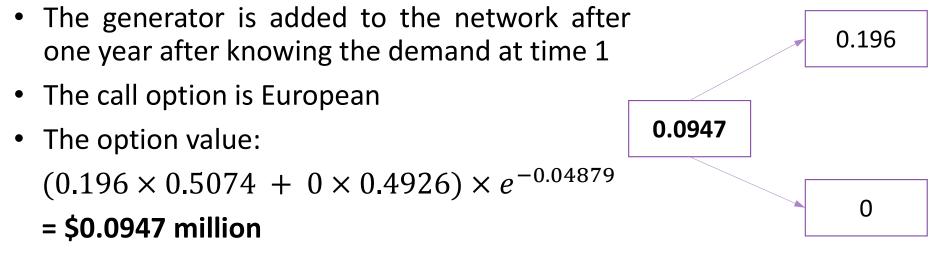
#### Net benefit

- We can calculate the net benefit by subtracting the two costs mentioned in previous two slides
- That is the amount of monetary benefit we get for adding a generator



Net benefit lattice (in \$ millions)

#### Option value tree



Option value tree (in \$ millions)

#### **Results & Discussion**

- The value of adding a new generator is \$94,700
- Exercising this option is beneficial only when the demand is 270 MW in our case
- Another alternative to adding a generator is adding a transmission line to the network
- Future research includes comparison of these two options

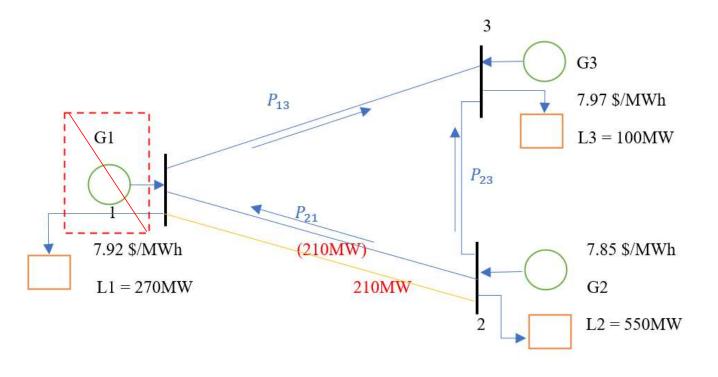
## Adding A New Transmission Line Parallel to Line 1-2

#### The Process to Derive the Option Value

- The susceptance matrix  $[B_x]$  is recalculated
- The LMP values are obtained from the new DCOPF
- The net benefit lattice is constructed using the binomial lattice structure
- The option value is calculated using risk neutral probability



#### **Network Model**



#### Reactance –

Line 1-2 = 0.1 PU Line 1'-2' = 0.1 PU Line 2-3 = 0.2 PU Line 1-3 = 0.125 PU

#### Susceptance matrix

- The susceptance matrix  $[B_x]$  will be changed as follows –
- $[B_{\chi}] = \begin{pmatrix} (1/x_{12} + 1/x_{13}) & -1/x_{12} & -1/x_{13} \\ -1/x_{12} & (1/x_{12} + 1/x_{23}) & -1/x_{23} \\ -1/x_{13} & -1/x_{23} & (1/x_{13} + 1/x_{23}) \end{pmatrix}$
- $x_{12}$  = 0.1 PU when there is single transmission line
- But  $x_{12} = 0.2$  PU for two parallel transmission lines by assuming 1-2 and 1'-2' as a single equivalent line

20

#### Case 1

## Without a new transmission line 1'-2'

- The DCOPF problem is programmed on Excel Solver
- The sensitivity report of the solution gives the LMP values

|         |                                  | Final | Reduced  |
|---------|----------------------------------|-------|----------|
| Cell    | Name                             | Value | Gradient |
| \$C\$17 | Generator 2: Power= P_gen_i (MW) | 827.5 | 0        |
| \$C\$18 | Generator 3: Power= P_gen_i (MW) | 92.5  | C        |
| \$C\$19 | theta_1: Power= P_gen_i (MW)     | 0     | 0        |
| \$C\$20 | theta_2: Power= P_gen_i (MW)     | 0.21  | 0        |
| \$C\$21 | theta_3: Power= P_gen_i (MW)     | 0.075 | C        |

#### Constraints

Variable Cells

| Cell    | Name                              | Final<br>Value      | Lagrange<br>Multiplier |
|---------|-----------------------------------|---------------------|------------------------|
| \$C\$12 | Planned delivery (MW): Cost(\$/h) | 920                 | 0                      |
| \$C\$37 | Bus_1 DC power flow formulation   | 270                 | 8.044999719            |
| \$C\$38 | Bus_2 DC power flow formulation   | 550                 | 7.849999905            |
| \$C\$39 | Bus_3 DC power flow formulation   | 100                 | 7.96999979             |
| \$C\$43 | P_flow_12 (MW)                    | - <mark>21</mark> 0 | 0                      |
| \$C\$44 | P_flow_21 (MW)                    | 210                 | -0.254999757           |
|         |                                   |                     |                        |

#### Case 2

#### With a new transmission line 1'-2'

• The LMP values change and are same for all the buses

|         |                                  | Final       | Reduced     |
|---------|----------------------------------|-------------|-------------|
| Cell    | Name                             | Value       | Gradient    |
| \$C\$17 | Generator 2: Power= P_gen_i (MW) | 920         | 0           |
| \$C\$18 | Generator 3: Power= P_gen_i (MW) | 0           | 0.120000362 |
| \$C\$19 | theta_1: Power= P_gen_i (MW)     | 0           | 0           |
| \$C\$20 | theta_2: Power= P_gen_i (MW)     | 0.253529412 | 0           |
| \$C\$21 | theta_3: Power= P_gen_i (MW)     | 0.020588235 | 0           |

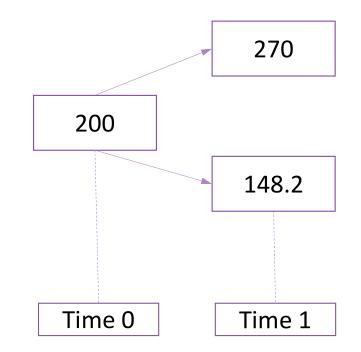
#### Constraints

Variable Cells

|         |                                   | Final        | Lagrange    |
|---------|-----------------------------------|--------------|-------------|
| Cell    | Name                              | Value        | Multiplier  |
| \$C\$12 | Planned delivery (MW): Cost(\$/h) | 920          | 0           |
| \$C\$37 | Bus_1 DC power flow formulation   | 270          | 7.849999905 |
| \$C\$38 | Bus_2 DC power flow formulation   | 550          | 7.849999905 |
| \$C\$39 | Bus_3 DC power flow formulation   | 100          | 7.849999905 |
| \$C\$43 | P_flow_12 (MW)                    | -126.7647059 | 0           |
| \$C\$44 | P_flow_21 (MW)                    | 126.7647059  | 0           |
|         |                                   |              |             |

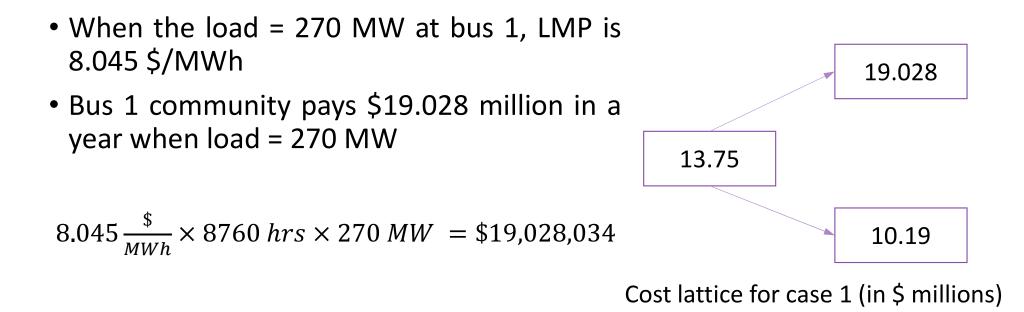
#### Demand Evolution at Bus 1

- We construct binomial lattice model to forecast the demand for one time step (1 year)
- We assume that electricity demand follows GBM
- Demand is 200 MW at node 1 at time = 0 and it can rise to 270 MW or drop to 148.2 MW at time = 1



Demand lattice (in MW)

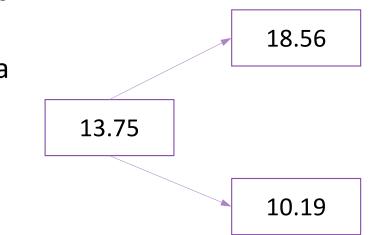
#### Economic Consequence – Case 1



#### Economic Consequence – Case 2

- When the load = 270 MW at bus 1, LMP is 7.85 \$/MWh
- Bus 1 community pays \$18.56 million in a year when load = 270 MW

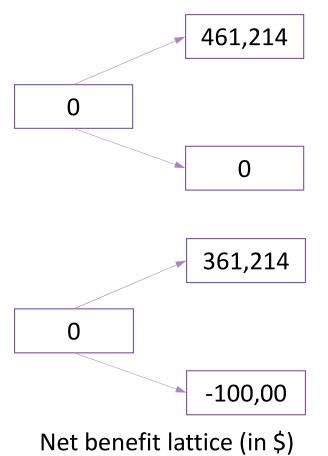
$$7.85 \frac{\$}{MWh} \times 8760 \ hrs \times 270 \ MW = \$18,566,820$$



Cost lattice for case 2 (in \$ millions)

#### Net Benefit Lattice

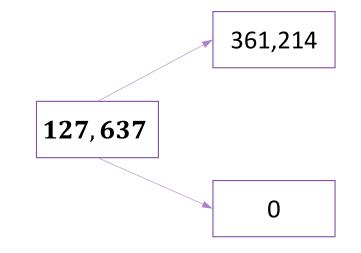
- The net benefit for any time point is the difference between the costs which is \$461,214
- We assume that the total construction cost of a transmission line 1'-2' is \$100,000
- The "net benefit lattice after paying the total construction cost" can be attained by simply subtracting the total construction cost from the net benefit
- The decision to build a transmission line is taken before knowing the future demand



#### Option value tree

- A new transmission line is added to the network after one year after knowing the demand at time 1
- The call option is European
- The option value is:

 $(361,214 \times 0.5074 - 100000 \times 0.4926) \times e^{-0.04879} = $127,637.16$ 



Option value tree (in \$)



#### **Results & Discussion**

#### (Recall back to slide 16)

- The value of the option of adding a new transmission line is superior to adding a new generator to bus 1
- The option value of adding a new generator is \$94,700
- The benefit for the whole grid is higher than that for the bus 1 community only
- This is due to reduced LMP at bus 3

#### Future Research

- Including the power losses in the OPF calculation will increase the practicality of the model
- Considering the accurate cost of transmission line, O&M costs, and the length of the line in the calculation will make the option value more appropriate
- To improve the accuracy of the model, the binomial lattice model can be increased up to 20 years



## Thank You!