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ABSTRACT

Population growth, climate change, and biofuel consumption for agricultural products have

been estimated to be doubled by 2050. Due to population growth, the agricultural production

system has to become ever e�cient and robust to ensure the food security. To address this

challenge, crop improvement and plant breeding process have to be employed to enhance the

quality and quantity of crop productions. In this dissertation, we adopt simulation and data

analytics methods to tackle a few challenges in the crop improvement and breeding process. First

of all, we address the high-dimensionality issue in the genetic data and introduce a novel

two-layer feature selection method to reduce the feature space dimension while improving the

genetic prediction accuracy in genomic selection algorithms. Furthermore, we design a realistic

simulator that can be adopted to simulate the breeding process where the goal is to imitate the

uncertainty of nature to provide reliable genetic outcome. Moreover, from the decision making

perspective, we propose a new selection strategy called, look ahead trace back selection, that aims

at improving the performance of a single trait at the end of breeding cycle. Additionally, a new

optimization model is introduced to maximize the performances of multiple traits simultaneously.

Multiple challenges in the breeding process make its improvement more di�cult. Two of these

challenges, namely, improving prediction accuracy in genomic prediction, and uncertainties due to

the recombination events in the mating process are addressed. To address the first challenge, we

tune the hyper-parameters of the adopted prediction methods inside cross-validation loops and

the proposed two-layer feature selection parameters constrained by the available computational

capacity. To address the second challenge, we develop a comprehensive simulation platform in

which multiple simulation runs are conducted independently to ensure the robustness of the

results of any proposed approaches in comparison with the conventional methods.



x

This dissertation includes 5 chapters in which chapter 1 presents a general overview along

with the problem statements and a summary of contributions. In chapter 2, we develop a

two-layer feature selection, a hybrid of wrapper-embedded method to reduce the feature

dimension in genomic prediction while maintaining/improving the prediction accuracy. In chapter

3, we design look ahead trace back selection algorithm that improve the genetic gain in the

breeding process. Moreover, a realistic opaque simulator is introduced in this chapter which

accounts for nature uncertainties. In chapter 4, a L-shaped selection algorithm is proposed to

improve the genetic gain in multi-trait genomic selection. The aim of this algorithm is to

maximize multiple traits at the same time by capturing all Pareto optimal individuals and

maintain the population diversity. In chapter 5, we analyze the performance of integrating the

proposed two-layer feature selection in improving the genetic gain in di↵erent genomic selection

algorithms. Moreover, a comprehensive comparison framework has been formulated that can

integrate di↵erent prediction methods, multiple genomic selection algorithms and di↵erent

simulation methods, such as transparent and opaque simulator.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Overview

Increasing human population, meat and dairy consumption from growing a✏uence, and

biofuel consumption have resulted in a rising demand for food and put more pressure on global

agriculture to increase yield [Ray et al. (2013); Delgado et al. (2019)]. It is anticipated that the

food demand will be doubled by 2050, therefore, significant crop production will be necessary for

food security Foley et al. (2011). To address this challenge, the agriculture community has

focused on improving the genetic gain given the limited available resources. Plant breeding

introduced by Fehr (1991) has made significant contributions in increasing the quantities and

qualities of the crops. Plant breeding is the art of selecting the most desirable plants or seeds to

improve the genetic gain of plants, instead of randomly taken what nature provided Fehr (1991).

The e↵ectiveness of plant breeding has contributed to the increases the crop genetic gain over

generations that assists the global food production. At the beginning of plant breeding era,

breeders select the superior individual visually based on their phenotype performance. Although

rapid development of phenotyping technologies helped breeders to collect and analyze phenotypic

data, it may not be time and cost e�cient [Fehr (1991)]. Therefore, Genomic Selection (GS) was

introduced by Meuwissen et al. (2001) to overcome this issue. The significant merit of GS over PS

lies in the fact that genetic (DNA) information are expected to be achieved faster than

phenotypic data. It estimates the breeding value of individuals using a set of markers distributed

across the genome to predict the performance of quantitative traits [Meuwissen et al. (2001);

Goddard (2009)]. The e↵ectiveness of GS, significantly depends on its genomic prediction ability

and the selection and mating strategies. Genomic prediction methods have been used in GS to

predict the plants’ phenotype based on their genotype information. Afterward, a selection and

mating strategy is adopted to select and mate the elite parents based on their predicted
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phenotypic performances. This dissertation will focus on improving both mentioned aspects of GS

to improve the crop production by enhancing the genetic gain.

1.2 Problem Statement

Although the rapid development of genotyping and phenotyping technologies have led to

increasingly comprehensive databases, relatively large number of markers (p) in comparison with

limited number of phenotyped individuals remains a challenging problem in genomic prediction

Meuwissen et al. (2001). This curse of dimensionality not only increase the cost of data storage,

but also it might decrease the prediction accuracy. Therefore, a feature selection method is

needed to decrease the dimensionality of genotype data to avoid overfitting while maintaining the

prediction accuracy in phenotype prediction [Crossa et al. (2014); Bhat et al. (2016)]. Having a

well-performing genomic prediction model does not guarantee of achieving the desired genetic

gain over generations. Identification of elite individuals within the population that should be

selected and crossed as breeding parents to produce the next generation of individuals plays a

significant role on improving the genetic gain. Many researchers have address this problem

[Daetwyler et al. (2015); Goi↵on et al. (2017); Moeinizade et al. (2019)], however, a simulation

platform is necessary to imitate the nature as close as possible to simulate the breeding process.

This simulation platform is required to capture the uncertainty of nature. Adopting a good

feature selection method in the genomic prediction along with a well-performing selection and

mating strategy will not always result in best outcome in terms of the genetic gain. The interplay

between genotypes and phenotypes is complex and varies widely from trait to trait, therefore the

best general GS does not exist to performs well in all the cases [Whalen et al. (2020)]. So, a

comprehensive GS platform is needed to adopt di↵erent prediction model and di↵erent selection

strategies and selects the outperforming one regarding the crop/traits. Improving the genetic gain

of one trait would not be economically worthy regarding the breeders’ perspectives. In real world,

breeders are more likely to invest on a GS methods that can improve multi traits of a crop or

maintain an acceptable level of multi traits over multiple generations. Although, there is
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significant improvements in genetic gain using di↵erent selection strategies, a few of them have

focused on obtaining sustainable genetic gain in multi traits. Multi-trait GS may include multiple

and even competing objectives regarding to each trait and these complex decisions can be

supported by considering the multi-objective optimization principles [Akdemir et al. (2019);

Cowling et al. (2019)]. Therefore, the problem of achieving a robust, well-performing and

time-e�cient optimization model is being still under consideration. To address the

aforementioned challenges in genomic selection, we develop a two-layer feature selection method

to decrease the genotype dataset’s feature space while maintaining the prediction accuracy in

genomic prediction. In addition, we propose an opaque simulator which imitates the uncertainty

of nature along with a new selection strategy that outperformed the exiting methods. Moreover,

we develop a time and cost-e�cient optimization model to handle the multi-trait genomic

selection. And finally we design a holistic comparison platform in which di↵erent feature selection

and prediction methods along with the existing selection methods are provided to facilitate the

selection of the best GS for the desired trait.

1.3 Summary of Contributions and Dissertation Structure

The objective of this dissertation focuses on improving genetic gain in crops to fill the gaps

between analytics and plant breeding using operations research, simulation-based optimization

and data analytic methods. This dissertation includes four papers as follows: The first paper

address the curse of dimensionality challenge in genetic data. A feature selection method has been

introduced to eliminate irrelevant SNP markers in predicting the RNA-sequencing of multiple

genes while maintain the prediction accuracy. It is a two-layer feature selection method that has

Genetic Algorithms (a wrapper method) as its first layer and Elastic Net (an embedded method)

as its second layer to refine the features as to result in the most informative features while

maintaining the prediction accuracy. This method has been adopted on Maize data sets to refine

the SNP markers to the most relevant ones in predicting the RNA-sequencing of di↵erent genes of

individuals. The results demonstrated that, it outperforms the existing feature selection methods
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in terms of feature reduction rate and prediction accuracy. The second paper develops a new

selection strategy along with an opaque simulator in GS to not only improve the genetic gain but

also simulate the breeding process in a more realistic simulated platform. The selection strategy

named Look Ahead Trace Back (LATB) approach is an extension of look ahead selection that

selects breeding parents based on their chance of producing elite progeny over generations in

future and not necessarily from those who performed well in the current generation. In addition,

an opaque simulator that is partially observable, explicitly capture both additive and non-additive

genetic e↵ects, and simulate uncertain recombination events more realistically, despite the

existing GS simulation setting that are transparent. In addition, the paper includes the

performance of existing GS methods under the opaque simulator as well.

The third paper focuses on improving the genetic gain of multiple traits at the same time

considering di↵erent significance of each trait. The main contribution of this paper is to adopt a

non-convex objective function to select the breeding parents, while it has the same complexity as

the index selection (linear objective function), it is able to produce better-performing and more

diverse progeny in the final generation. The proposed method has been tested on multiple traits

with di↵erent characteristics, simultaneously. Regardless of the fact that the considering traits are

continuous or binary, the method outperforms the index selection in improving the genetic gain

and genetic diversity in the final generation.

In the last paper, the performance of the proposed two-layer feature selection method on

improving the crops genetic gain has been analyzed. Although in the first paper, the e↵ectiveness

of adopting the two-layer feature selection on feature space dimension reduction and prediction

accuracy improvement has been shown, this paper focuses on genetic gain improvement of using

the two-layer feature selection method in di↵erent scenarios. A comprehensive comparison

platform is designed to incorporate di↵erent scenarios such as, di↵erent genomic selection

algorithms with di↵erent prediction methods under di↵erent simulators using the two-layer

feature selection. This allows breeders and analyst to assess the performance of any genomic
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selection algorithms with any prediction methods under some pre-defined simulation platforms

and select the best-performing one regarding the target trait..

To summarize the contributions of this dissertation, we have addressed the curse of

dimensionality challenge in the genetic data with proposing a novel two-layer feature selection

method. Also a new genomic selection strategy with an opaque simulator that imitates the nature

has been proposed to not only improve the genetic gain but also simulate the nature as closely as

possible. Moreover, the challenge of multi-trait genomic selection has been addressed with

introducing a non-convex optimization model. Furthermore, the e↵ectiveness of the proposed

feature selection model on improving the genetic gain of di↵erent genomic selection algorithms

under an opaque and a transparent simulator has been discussed.

The first paper, is presented in Chapter 2 [Amini and Hu (2021)]. The second paper, in

Chapter 3 [Amini et al. (2021)]. The third paper is accepted in Genetics and the last paper is

under preparation presented in Chapter 4 and 5, respectively. Finally, we conclude this

dissertation and suggest future directions in Chapter 6.
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CHAPTER 2. A TWO-LAYER FEATURE SELECTION USING GENETIC

ALGORITHM AND ELASTIC NET

Authors: Fatemeh Amini ⇤ and Guiping Hu ⇤

⇤ Department of Industrial and Manufacturing Systems Engineering, Iowa State University

Modified from a manuscript published in Expert Systems with Applications journal

2.1 Abstract

Feature selection, as a critical pre-processing step for machine learning, aims at determining

representative predictors from a high-dimensional feature space data set to improve the prediction

accuracy. However, the increase in feature space dimensionality, comparing to the number of

observations, poses a severe challenge to many existing feature selection methods considering

computational e�ciency and prediction performance. This paper presents a new two-layer feature

selection approach that combines a wrapper and an embedded method in constructing an

appropriate subset of predictors. In the first layer of the proposed method, Genetic

Algorithm(GA) has been adopted as a wrapper to search for the optimal subset of predictors,

which aims to reduce the number of predictors and the prediction error. As one of the

meta-heuristic approaches, GA is selected due to its computational e�ciency; however, GAs do

not guarantee the optimality. To address this issue, a second layer is added to the proposed

method to eliminate any remaining redundant/irrelevant predictors to improve the prediction

accuracy. Elastic Net(EN) has been selected as the embedded method in the second layer because

of its flexibility in adjusting the penalty terms in the regularization process and time e�ciency.

This two-layer approach has been applied on a Maize genetic data set from NAM population,

which consists of multiple subsets of data sets with di↵erent ratios of the number of predictors to

the number of observations. The numerical results confirm the superiority of the proposed model.
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2.2 Introduction

Advances in information technology have led to increasingly large data sets in both number of

instances and number of predictors, such as applications in text mining and bioinformatics

[Guyon and Elissee↵ (2003)]. One significant problem for prediction with high dimensional data is

that the number of predictors exceeds the number of observations [Yu and Liu (2003)]. In these

situations, some of the predictors may be redundant, irrelevant, and harmful for the model

training [Cilia et al. (2019); Xue et al. (2015)]. Redundant predictors provide information that is

already represented with other predictors, while irrelevant predictors do not contribute to model

training [Welikala et al. (2015)]. In fact, these predictors unnecessarily increase the computation

time and deteriorate the performance of the classification/regression models [Lin et al. (2015);

Oztekin et al. (2018)]. Thus, extracting a smaller subset of predictors with most relevant

predictors would be essential since it saves time in data collection and computation, and avoids

overfitting problem in the prediction models [Aytug (2015)]. Feature selection methods have been

introduced to filter out the irrelevant and redundant predictors to achieve the smallest, most

powerful subset of predictors in order to not only reduce the computation time but also improve

the prediction accuracy [Huang and Wang (2006); Lin et al. (2015)].

Feature selection approaches can be categorized into three broad classes: the filter methods,

the wrapper methods, and embedded methods. For filter methods, each predictor is evaluated

with a statistical performance metric and then ranked according to its performance indicator.

Truncation selection is then applied to select the top-performing features before applying machine

learning algorithms. Filter methods serve as a pre-processing step since they do not consider the

complex interactions between predictors and are independent of learning algorithms [Guyon and

Elissee↵ (2003); Hu et al. (2015)]. These methods are computationally e�cient; however, they

su↵er from getting stuck in local optimum because the complex interactions among predictors

may have been ignored [Cheng et al. (2016); Hong and Cho (2006); Welikala et al. (2015)]. The

second class, wrapper methods, incorporate prediction models into a predetermined objective

function that evaluates the appropriateness of the predictor subsets through an exhaustive search
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[Kabir et al. (2010)]. Although wrapper methods consider the interaction among predictors, they

are not as computationally e�cient as filter methods because of the larger space to search [Cilia

et al. (2019); Hall (1999); Hu et al. (2015); Kabir et al. (2010)]. The issue arises that evaluating

all possible 2P predictor combinations is neither e↵ective nor practical in terms of computation

time, especially when the number of predictors, P , gets larger [Cilia et al. (2019); De Stefano

et al. (2008); Peng et al. (2005)]. Feature selection is among NP-hard problems in which the

search space grows exponentially as the number of predictors increases [Hu et al. (2015); Jeong

et al. (2015)]. The third class, embedded methods, are more e�cient than wrappers since they

incorporate feature selection as part of the training process and select those features which

contribute the most to the model training [Guyon and Elissee↵ (2003)]. Regularization methods,

also called penalization methods, are the most common embedded methods. These methods would

push the model toward lower complexity by eliminating those predictors with coe�cients less than

a threshold. The underlying assumption of regularization methods is the linear relation between

predictors and response variable, which may not hold, especially in high dimensional data sets.

To avoid the aforementioned shortcomings of the existing feature selection methods, a

two-layer feature selection method has been proposed in this study. The proposed method is a

hybrid wrapper-embedded approach, which complements wrapper and embedded methods with

their inherent advantages. For the wrapper part, a population-based evolutionary algorithm (the

GA), has been adopted in the first layer of the proposed method due to the e�ciency in the

searching process. It can achieve excellent performance as well as avoid the exhaustive search for

the best subset of predictors. This reduces the computation time of the wrapper component while

finds near-optimal solution through an e�cient process. However, as a meta-heuristic algorithm,

there is no guarantee finding the optimal solution. Therefore, in the second layer, an embedded

method is applied on the reduced subset of predictors to eliminate those remaining irrelevant

predictors[ Jeong et al. (2015)]. The assumption of linearity between a reduced subset of

predictors and response variable is much relaxed than linearity assumption among the full original

predictors and response variable. In the implementation of this proposed two-layer feature
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selection scheme, Elastic Net (EN) is selected as the training model because of its flexibility in

adjusting the penalty terms in the regularization process and time e�ciency.

The rest of the paper is organized as follows. Section 2 describes the related literature, the

motivations of this study, along with the contributions of this paper. Section 3 provides

background on the mathematical model of the GA, EN method, and the proposed two-layer

approach. A description of the case study, which the proposed method has been applied to is also

covered in Section 3. Section 4 explains the detailed experimental setting, discusses the results of

the two-layer Genetic Algorithm-Elastic Net (GA-EN) method, and compares the results with

selected counterparts in terms of the prediction accuracy. Finally, section 5 concludes this study

and suggests future research directions.

2.3 Related Work

Genetic Algorithms, as a meta-heuristic search strategy, have mainly been adopted to find the

optimal hyper-parameters for machine learning algorithms. A modified genetic algorithm, known

as a real-value GA, was constructed to find the optimal parameters for a Support Vector Machine

(SVM) algorithm. The algorithm was then applied to predict aquaculture quality [Liu et al.

(2013)]. Similarly, the set of optimal parameters for both SVM and Random Forest (RF) have

been found using GA. The SVM and RF models were then applied to construct a fire

susceptibility map for Jiangxi Province in China [Hong et al. (2018)]. SVM has been adopted

widely for feature selection. A wrapper method using SVM with a specific kernel has been

designed to iteratively eliminate those features with the least impact on classification importance

until a stop criteria has been met [Maldonado and Weber (2009)]. Furthermore, an embedded

feature selection method using SVM with Gaussian kernel was proposed to mainly handle the

case of class-imbalance and high-dimensionality in the feature space in classification problems

[Maldonado and López (2018)].

Recently, the applications of GA are going beyond the hyper-parameter tuning of prediction

models. They have been adopted as a search strategy inside the feature selection methods
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because of their ability to avoid exhaustive search that reduces high dimensional feature spaces.

So far, many studies have combined GA with machine learning algorithms to improve prediction

accuracy, especially in classification problems. Cerrada et al. (2016) implemented GA to reduce

the feature space to construct a more e�cient RF model that predicts multi-class fault diagnosis

in spur gears. As Oztekin et al. (2018) illustrated, GA was combined with three di↵erent machine

learning methods, K-Nearest Neighbor (KNN), SVM, and Artificial Neural Network (ANN) to

improve the prediction accuracy of the patient quality of life after lung transplantation. Although

the GA-SVM model outperforms both the GA-KNN and GA-ANN approach, these last two

models still yield high prediction accuracy. Among the hybrid methods of di↵erent machine

learning with GA, deep synergy adaptive-moving window partial least square-genetic algorithm

(DSA-MWPLS-GA), was designed to obtain accurate predictions of common properties of coal

[Wang et al. (2019)]. Additionally, Cheng et al. (2016) combined a GA with a Successive

Projections Algorithm to select the most relevant wavelengths. The most five important

wavelengths were then used to establish Least-Squares Support Vector Machine (LS-SVM) and

Multiple Linear Regression (MLR) models in order to predict drop loss in grass carp fish. This is

further evidenced by Cornejo-Bueno et al. (2016) in which a new hybrid feature selection method

was proposed. The method combines Grouping Genetic Algorithm with an Extreme Learning

Machine approach (GGA-ELM). The GGA was used as a search strategy to find the ideal

subsets, while the ELM was implemented as the GGA’s fitness function to evaluate the candidate

subsets. The GGA-ELM model yielded a significantly smaller RMSE value than the ELM model

using all features, validating that combining feature selection approaches can improve overall

model performance. The model was then applied to marine energy data sets to predict the

significant wave height and energy flux. Moreover, most of the hybrid approaches have been

applied to classification problem and not much attention has been devoted to regression problems.

This serves as one of the primary motivations in this study.

It should be noted that GAs can only be combined with supervised learning algorithms with a

response variable. For data sets without response variable, clustering, and classifying based on
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the feature space should be applied before implementing GAs. Sotomayor et al. (2018) firstly,

applied K-means clustering approach to classify the water station into two types based on their

associated water quality. A hybrid model was then developed with K-nearest neighbor and GA to

reduce the dimension of feature space and achieve higher prediction accuracy.

One of the most common concerns on high-dimensional data sets is that models are prone to

overfitting, which is aggravated as the ratio of predictors to observations increases [Guyon and

Elissee↵ (2003)]. It can be observed that the performance of a feature selection mechanism can be

improved if it is carefully designed in conjunction with another filter or wrapper approach, as it

will further reduce the feature space and facilitate the design of a more e�cient and accurate

prediction model. Therefore, two-layer feature selection approaches have been proposed to extract

the best subset from the selected predictors obtained from the first layer feature selection. Hu

et al. (2015) proposed a hybrid filter-wrapper method that uses a Partial Mutual Information

(PMI) based filter method as the first layer to remove the unimportant predictors. Once the

dimensions of feature space are reduced, a wrapper process consisting of a combination of a SVM

and the Firefly Algorithm (FA), which is a population-based meta-heuristic technique, was then

applied on the reduced feature space. However, since filter methods, such as the PMI approach,

do not take into account the possible dependencies/interactions among predictors, the

performance, when applied for high dimensional feature spaces, is not satisfactory. This is due to

the fact that two factors may be independently counted as irrelevant and/or redundant predictors

when keeping both in the model could result in a performance gain. In this paper, the proposed

algorithm adopts a wrapper, as its first layer of feature selection and an embedded method, EN

regularization algorithm, as the second layer in order to reduce feature space dimension while

improving the prediction accuracy.

The contributions of this study can be summarized as follows. Firstly, unlike most existing

studies, which focused on classification problems, our proposed model has combined a wrapper

(GA) and an embedded feature selection method (EN) that focuses on regression problems.

Elastic Net is selected as the embedded method and it is the generalized form of LASSO and
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Ridge regression that has been adopted widely for high-dimensional feature space regression

problems. Secondly, the fitness function of Genetic Algorithm has been designed to incorporate

root mean square error (RMSE) minimization as well as reduction of feature space dimension.

2.4 Methods and Materials

This section describes the proposed two-layer feature selection method. In the first layer, a

wrapper has been designed to select the best subset of predictors with the lowest prediction error

while includes as few predictors as possible. This is done with a GA-based search strategy. In the

second layer, EN has been applied to further eliminate the remaining redundant/irrelevant

predictors to improve the prediction accuracy, using the best subset of predictors outputted from

the first layer. Additionally, the case study adopted to validate the proposed method has been

described in this section.

2.4.1 Elastic Net Regularization Method

EN regularization is a modification of the multiple linear regression approaches designed to

solve high-dimensional feature selection problems [Fukushima et al. (2019)]. Using two penalty

terms (L1-norm and L2-norm), the EN selects variables automatically and performs continuous

shrinkage to improve the prediction accuracy. This method works like a stretchable fishing net

that keeps “all big fish”, i.e., important predictors and eliminates those irrelevant ones [Park and

Mazer (2018); Zou and Hastie (2005)].

Suppose that we have p = 1, . . . , P predictors denoted by x1, . . . , xP , an estimate of the

response variable Y can be written as Ŷ = �0 + �1x1 + . . .+ �PxP , based on linear regression.

The coe�cients (�̂ = [�0, . . . ,�P ]>) are calculated by minimizing the sum of the squares of the

error residuals in Eq.(2.1).

SSE = ||Y �X�̂||2 (2.1)

Where:
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In the case where the dimensions of the feature space are higher than the number of

observations, the coe�cients are calculated by minimizing the L function (Eq.(2.2)) instead of

minimizing SSE [Wei et al. (2019)]:

L = SSE + ↵⇢||�̂||1 + ↵(1� ⇢)||�̂||2 (2.2)

Where ||�̂||1, ||�̂||2, ↵ , and ⇢ are defined in Eqs.(3-5), respectively.

||�̂||1 =
PX

p=0

|�p| (2.3)

||�̂||2 =
PX

p=0

�
2
p (2.4)

↵ > 0 , 0  ⇢  1 (2.5)

The degree to which model complexity is penalized is controlled by weighting terms ↵ and ⇢.

As the outcome of the Elastic Net is a↵ected by ↵ and ⇢, tuning them should be done within the

learning process. Two special cases for EN are when ⇢ = 1 and ⇢ = 0. When ⇢ = 1, EN regression

is reduced to LASSO, which aims to reduce the number of non-zero linear coe�cients to zero in

order to create a sparse model. When ⇢ = 0, EN regression is reduced to ridge regression, which

allows the model to include a group of correlated predictors to remove the limitation of the

number of selected predictors [Chen et al. (2019); Park and Mazer (2018); Wei et al. (2019)]. It is
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shown that as EN is able to select a subset of highly correlated features, it avoids the shortcoming

of high-dimensional feature selection when solely using LASSO or ridge regression methods [Zou

and Hastie (2005)].

2.4.2 Genetic Algorithms

GAs are one of the meta-heuristic search methods that implement a probabilistic, global

search process that emulates the biological evolution of a population, inspired by Darwin’s theory

of evolution [Cheng et al. (2016); Welikala et al. (2015)]. GAs are powerful tools for achieving the

global optimal solution of large-scale problems [Cerrada et al. (2016); Liu et al. (2013)]. The GA

process can be described in these steps:

1. Individual encoding: Each individual is encoded as binary vector of size P , where the entry

bi = 1 states for the predictor pi that is defined for that individual, bi = 0 if the predictor pi

is not included in that particular individual (i = 1, . . . , P ) [Cerrada et al. (2016)].

2. Initial population: Given the binary representation of the individuals, the population is a

binary matrix where its rows are the randomly selected individuals, and the columns are the

available predictors. An initial population with a predefined number of individuals is

generated with a random selection of 0 and 1 for each entry [Cerrada et al. (2016)].

3. Fitness function: the fitness value of each individual in the population is calculated

according to a predefined fitness function [Welikala et al. (2015)]. Individual with the lowest

prediction error and fewer predictors have been selected for next generation.

4. Applying genetic operators to create the next generation.

• Selection: The elite individuals that have been selected based on their fitness value, are

selected as parents to produce children through crossover and mutation processes. In

this study, instead of selecting all parents from the highest qualified individuals, a

random individual will also be added to the parent pool in order to maintain
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generational diversity. Each pair of parents produces some children to create the next

generation, which has the same size as the initial population. To stabilize the size of

each generation, Eq. (2.6) should be satisfied.

#ofBS +#ofRS

2
⇤#ofchildren = initial population size. (2.6)

BS is the best selected individuals, while RS is the randomly selected individuals.

• Crossover: It is a mechanism in which the new generation is created by exchanging

entries between two selected parents from the previous step. A single point crossover

technique has been used in this paper [Liu et al. (2013); Welikala et al. (2015)].

• Mutation: This operation is applied after crossover and determines if an individual

should be mutated in next generation or not and makes sure no predictors have been

removed from GA’s population permanently [Brown and Sumichrast (2005)].

5. Stop criteria: Two stop criteria are widely used in GAs. The first one, used in this study, is

reaching the maximum number of generations. The other one is the lack of fitness function

improvement in two successive generations [Cheng et al. (2016)]. Steps 2 and 3 are

performed iteratively until the stop criterion is met.

2.4.3 Proposed GA-EN feature selection approach

The proposed feature selection method has two layers. In the first layer, GA has been

implemented to reduce the search space to find the best subset of predictors. Thus a small subset

of predictors can be identified to reduce the computational cost and improve prediction accuracy.

In the second layer, EN regularization method is adopted to eliminate those remaining redundant

predictors in the feature space given in the first layer. The reason for choosing EN as the

regressor is that not only the EN makes use of shrinkage to reduce the high-dimensional feature

space, but also it tends to outperform other models in regression problems. Thus, the probability
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of having redundant/irrelevant predictors in the final model would decrease, resulting in a

prediction model without any significant sign of overfitting.

The architecture of the proposed two-layer feature selection method is described in Figure 2.1.

Following pre-processing the data, using k-fold cross-validation technique, data is split into k folds

in which k � 1 folds are considered as the training set and 1 fold as the validation set. yi and ŷi

are the actual value and the predicted value of response variable in the validation set included Nt

observations. This procedure is repeated k times such that each fold will be used once for

validation. Averaging the RMSE over the k trials would provide an estimation of the expected

prediction error (Eq.(5.6)), which is the performance evaluation metric. The main idea behind the

k-fold cross-validation is to minimize any potential bias of random sampling of training and

validation data subset [Oztekin et al. (2018)].

RMSECV =
1

#folds

#foldsX

1

1

Nt

NtX

i=1

p
(yi � ŷi)2 (2.7)

In the first layer of the proposed method, the training set is fed into GA to search for the best

subset of predictors. Throughout the GA search procedure, after building the initial population,

individuals are ranked according to their fitness values and the highest ranked ones are more

likely to be selected in the selection process to create the next generation. The GA runs multiple

times, and each iteration outputted a best subset of predictors. Then, the predictors that have

been repeated frequently in the best subset of predictors in each iteration of GA would be

included in the final subset of predictors. Therefore, the most important predictors can be

identified as those repeated more often in the best subset given by GA. A threshold is considered

to specify how often a predictor should be repeated in the best subset of GA to be included in the

final subset of predictors given in the first layer of the proposed method. The higher this

threshold is defined, the stricter the model in selecting important predictors.

In the second layer, the EN was applied to the new dataset composed of the predictors

selected by the GA to eliminate those redundant predictors which are not eliminated by GA.

Elastic Net is a powerful tool that helps further reduce the number of predictors selected in the
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Figure 2.1: Flowchart for the proposed GA-EN approach

first layer, and, thus, improving the performance of the model. However, as its performance

significantly depends on the hyper-parameters, ↵ and ⇢ , they are required to be tuned through

the training process. Finally, the tuned model is ready to be evaluated on the validation set. It

should be noted that the hyper-parameters tuning is calculated through a k-fold cross-validation

process, as well.

The applied fitness function of GA (FFGA), which incorporates EN as the regression model

evaluates the fitness value associated with each individual based on Eq.(8).

FFGA = wr ⇤ rRMSE + wp ⇤Rp (2.8)

Individuals will be sorted based on their FF value and selected number of individuals with

lowest FF value are considered as the parents for the next generation (the objective function is a

minimization).
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wr and wp in Eq.(8) are the weights of the prediction error and the number of selected

predictors, respectively, which satisfy the following conditions (Eqs.(9-10)).

wr + wp = 1 (2.9)

wr, wp � 0 (2.10)

These weights are determined empirically by considering the importance between rRMSE and

the feature selection intensity. The optimal values of wr and wp aim at minimizing

cross-validation error.

Eq.(11) defines rRMSE based on the RMSECV and the average of response variable, ȳ. This

has been done to scale the prediction error for all datasets with di↵erent range of response

variable. The fraction of selected predictors is defined as Rp in Eq.(12), where fp is a binary

variable that denotes if predictor p is included in a particular individual or not (Eq.(13)).

rRMSE =
RMSECV

y
(2.11)

0  Rp =

P
P

p=1 fp

P
 1 (2.12)

fp 2 {0, 1} (2.13)

2.4.4 Data Description and Pre-processing

Motivated by the importance of the agricultural system in food production, particularly

Maize plants in the US (Figure 2.2), a case study on Maize traits prediction has been carried out

to demonstrate the outperforming of the proposed two-layer feature selection method. In this case

study, the SNPs (Single Nucleotide Polymorphisms) data of Maize parents are collected to predict

their expression level (RNA-seq) information. The US-NAM parents’ data is used in this paper,

which is publically available at NCBI SRA under SRA050451 (shoot apex), and SRA050790 (ear,

tassel, shoot, and root) and at NCBI dbSNP handle PSLAB, batch number 1062224.

This dataset contains the expression level information for about 6000 genes of 27 Maize

parents in addition to about 4 million SNP data associated with those parents. As a biological

pre-processing step to reduce the number of SNPs, the co-Expression quantitative trait loci
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Figure 2.2: Crops production in US

(eQTL) analysis has been conducted to identify the most important SNPs related to each gene.

SNPs importance level is determined by a predefined distance around each gene and those

included in this distance are counted as important SNPs [Kusmec et al. (2017)]. The shorter this

distance is defined, the fewer the number of SNPs would be included. The distance considered for

the eQTL analysis in this study resulted in, on average, 123 SNPs for each gene. This process

reduces the number of SNPs from ⇠4 million to ⇠728000. Moreover, SNPs data are converted to

binary representation. For missing data, a linear regression-based imputation method has been

implemented based on the two nearest SNPs. Thus, a prediction model is defined for each gene

that aims to predict the expression level of Maize parents based on their SNPs information.

All gene datasets contain the same number of observations (27 parents) while the number of

predictors (SNPs) is di↵erent. In order to validate the prediction accuracy improvement of the

proposed model on datasets with di↵erent ratio of the number of predictors to the number of
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observations, ten gene datasets have been selected in a way that a diverse range of this ratio has

been covered.

2.5 Numerical Results and Analysis

The objective of this section is to evaluate the proposed two-layer feature selection method in

terms of reduction in feature space dimension and prediction accuracy. Moreover, tuning the

hyper-parameters in both GA and EN should be carried out before model evaluation since it is

expected to improve the performance of the model.

2.5.1 Performance Metrics

In this paper, due to the continuity of the response variable, relative RMSECV is considered

as the performance evaluation. It is calculated through a 3-fold cross-validation process. 3-fold is

chosen since 27 is dividable by 3, thus each observation will be included in just one fold at a time.

relative RMSECV is calculated by Eq.(2.14).

relative RMSECV =
RMSECV

ȳ
(2.14)

2.5.2 Hyper-parameter Tuning

There are no universal fixed parameters for GA and as they significantly a↵ect the GA

e�ciency, they need to be generally tuned to specific problems. Therefore, GA parameters should

be set in such a way that the highest exploitation is achieved. To do that, GA is required to find

a perfect solution in the early stages of its process. In order to increase the chance of fast

improvement in the GA’s response, the highest possible elitism, limited initial population size,

and quite a high probability of mutation have been applied [Leardi (2000)]. Besides, some random

individuals have been selected in each generation to keep the next generation diverse at the same

time. Additionally, in order to follow the time constraint, the number of generations has to remain

low [Welikala et al. (2015)]. Table 2.1 summarizes the tuned GA parameters applied in this study.
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Table 2.1: Tuned GA Parameters

GA Parameters Values/Method

Initial population size 50
#of generations 10
Population type Bit string

#of BS 19
#of RS 1

#of o↵spring 5
Crossover function single-point
Mutation rate 0.05

Moreover, the weights wr and wp inside the GA
0
s fitness function should be tuned for each

gene dataset, separately. A grid search approach has been designed to select the best weights with

the lowest prediction error. Four di↵erent values are considered for these weights in the grid

search subset to cover all possible scenarios.

Table 2.2: Weights in fitness function

Scenario 1 2 3 4

wr 0.15 0.5 0.85 1
wp 0.85 0.5 0.15 0

Table 5.1 shows the di↵erent scenarios in which the higher the weight, the more emphasis is

imposed on the minimization of the associated term. From scenario 1 to scenario 4, more

emphasis has been imposed on reducing the prediction error than decreasing the number of

selected predictors. The particular scenario with wr = 0, wp = 1 is not considered since the

primary purpose in this study is to improve the prediction accuracy and solely focusing on

minimizing the number of selected predictors would not achieve this goal. The best pair of

weights with lowest relative RMSECV is then selected for each gene dataset and further analyses

are implemented with the selected weights. Figure 2.3 demonstrates the comparison of the

relative RMSEcv among all di↵erent scenarios for each gene dataset.
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Figure 2.3: Relative RMSE for di↵erent scenarios

Following wr and wp, the next significant parameter to be tuned is the Fraction of Selected

Predictors (FSP ). It is a threshold that defines how often a particular predictor should be

included in the best individuals of GA in each iteration, in order to be included in the final subset

of predictors in the first layer of the proposed method. The larger this threshold is, the stricter

the model is in selecting predictors. In this study, GA is repeated five times and each iteration

provided us with the best individual (best subset of predictors) throughout ten generations. To

tune this parameter, three values (0.3, 0.5, and 0.7) have been considered in a similar grid search

approach to select the best FSP in terms of lowest relative RMSECV for each gene dataset. This

grid search subset is designed in a way to incorporate low, medium, and high strictness of the

method. Relative RMSECV results associated with di↵erent FSP in the grid search subset for

each gene dataset is illustrated in Figure 2.4. The best FSP which gives the minimum relative

RMSECV is selected for further analyses.

With FSP , wr, and wp fixed, the EN hyper-parameters (⇢ and ↵) should be tuned within the

second layer of the proposed two-layer feature selection method. The numerical results have been
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Figure 2.4: Relative RMSE for di↵erent FSPs

compiled in Python 3. Thus, EN selects best ↵ from 10 non-zero values considered in sklearn

library provided in Python. These values are set automatically to ensure the range of the values

are from less than one to above one. For this case study, ↵ values are considered within the range

(0.004, 50). Moreover, ⇢ would be selected from the grid search subset of

{0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. These hyper-parameters are tuned via a 3-fold cross-validation process

and the average of the best values regarding each k partitioning, along with the tuned

hyper-parameters of the first layer are listed in Table 2.3.

Table 2.3 also includes Gene Shape Ratio, which defines the ratio of the number of predictors

to the number of observations for each gene dataset. As most of the gene dataset contains, on

average, about 123 predictors (SNPs), their shape ratio belongs to (2, 3) interval. However, it can
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Table 2.3: Tuned hyper-parameters of the proposed method

Gene ID Gene Shape Ratio ↵best ⇢best wr wp FSP CPU time (sec.)

32 1.33 0.017 0.36 0.15 0.85 0.3 377.7
37 9.074 0.457 0.36 0.85 0.15 0.3 610.83
80 2.89 30.05 0.36 0.15 0.85 0.7 420.3
86 3.18 0.435 0.3 0.85 0.15 0.5 450.6
89 2.44 3.38 0.23 0.85 0.15 0.3 421.65
94 7.33 0.21 0.36 0.15 0.85 0.3 651.01
107 3.66 9.74 0.36 1 0 0.3 457.05
178 2.63 3.31 0.43 1 0 0.3 432.7
181 10.62 3.08 0.1 1 0 0.7 611.1
187 2.33 0.56 0.63 1 0 0.5 348.87

be seen in Table 2.3 that datasets whose ratio is out of this range also have been considered in this

paper to validate the performance of the proposed method for datasets with di↵erent shape ratio.

Also, the CPU time of running the GA-EN algorithm for each gene dataset on Windows 10,

Core(TM) i7-4770 CPU with a 3.4 GHz PowerPC processor and 16 GB RAM is provided in

Table 2.3.

2.5.3 Model Validation

The results of our numerical experiments from comparing the proposed two-layer feature

selection method with the following benchmarks are included in this section.

1. EN (embedded method)

2. GA combined with linear regression (wrapper method)

Both benchmarks are considered as single-layer feature selection methods. The first one is an

embedded method, while the second one (GA-Lr) is a wrapper. The reason to choose GA as the

wrapper method benchmark is due to its flexibility among other metaheuristic methods. Linear

regression has been adopted as the GA’s learning algorithm, which does not incorporate any

feature selection, thus GA-Lr will be a wrapper method. Furthermore, Elastic Net has been
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selected as the embedded method benchmark, since it is the generalized form for LASSO and

Ridge regression in the embedded class. With carefully selected hyper-parameters, the

performance of Elastic Net method would represent the state-of-art outcome. Outperforming

these benchmarks, it confirms that the superiority of the model is not only because of GA or EN

separately, but it successfully demonstrates higher prediction accuracy because of the

combination of GA and EN which designs the two-layer feature selection approach. The proposed

model with tuned hyper-parameters has been evaluated through 3-fold cross-validation and the

performance is compared in terms of relative RMSECV .

Figure 2.5 compares the relative RMSECV of the benchmarks with the proposed method.

The results confirm that combining GA with EN that has regularization characteristics inside not

only outperforms the combination of the GA with non-regularized prediction method (wrapper

method) but also it does achieve better performance than applying that regularized prediction

method without GA assistance(embedded method) in predicting the expression level of Maize

parents. The reason behind of the outperforming of GA-EN hybrid method is that not only, the

most parsimonious set of predictors along with the highest level of prediction accuracy are

selected in GA process in the first layer, but also the EN eliminates those insignificant and

redundant predictors that still exist in the selected predictors subset in the second layer, to

improve the prediction accuracy. Moreover, it can be seen in Figure 2.5, for some gene datasets

such as gene 37, 89 and gene 94, the relative RMSECV of GA-Lr method is greater than one

which means that the prediction error associated with the wrapper method is greater than the

average of the response variable. In these cases, the embedded method in the second layer of the

proposed method would be able to ignore redundant/or irrelevant predictors to improve

prediction accuracy.

Table 2.4 demonstrates the number of predictors in the original gene datasets and the number

of predictors that each model selects through cross-validation. Also, the relative RMSECV

associated with each model with their selected predictors are presented in Table 2.4. The

highlighted values show the minimum number of selected predictors and the minimum relative



27

0

20

40

60

80

100

GA-Lr

EN

GA-EN

Gene ID

32 37 80 86 89 94 107 178 181 187

re
la

ti
v

e
 R

M
S

E
 (

*1
0

0
) 

Figure 2.5: Relative RMSE of di↵erent methods

RMSECV for all ten gene datasets. For most gene datasets, GA-EN method demonstrates the

most reduction in number of predictors along with minimum relative RMSECV . In other words,

this method not only reduces the dimension of the data, its complexity, and required storage but

also, it results in smaller prediction error. However, for some datasets such as genes 32 and 86,

GA-Lr selects the smallest subset, but it achieves higher prediction error.

It can importantly be said that the proposed feature selection method improves the

performance of the prediction model by ignoring the irrelevant and useless predictors. An

important task in such a process is to capture necessary information in selecting critical

predictors; otherwise, the performance of the prediction model might be degraded as can be seen

for gene 32 and 86. Although GA-EN selected a bulkier predictor subset compared to others, it

provides lower prediction error for these datasets. In fact, the results presented for other methods
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presented in Table 2.4 indicate that the smallest or largest predictor subset does not guarantee

the best or worst prediction accuracy.

Table 2.4: Result of experiment

Gene ID Method # of original predictors # of final predictors relative RMSECV (%)

32
GA-EN 5 33.79
EN 36 25.66 39.44

GA-Lr 2 40.52

37
GA-EN 73.33 14.25
EN 245 119 15.99

GA-Lr 134 > 100

80
GA-EN 1 34.19
EN 78 40.67 41.95

GA-Lr 24 59.1

86
GA-EN 6 18.05
EN 86 22.67 22.8

GA-Lr 3 19.61

89
GA-EN 8.33 24.78
EN 66 19.33 30.57

GA-Lr 19 > 100

94
GA-EN 67.33 13.56
EN 198 76 16.1

GA-Lr 95 > 100

107
GA-EN 6 22.25
EN 99 70 22.34

GA-Lr 74 29.05

178
GA-EN 28.6 34.75
EN 71 43.67 36.82

GA-Lr 63 35.7

181
GA-EN 36 19.3
EN 287 161.67 20.56

GA-Lr 56 30.12

187
GA-EN 17.3 23.48
EN 63 38.67 25.67

GA-Lr 30 62.4

The comparison of results shows the e↵ectiveness of the two-layer wrapper-embedded method

in improving the prediction accuracy for regression problems. The statistical di↵erences of the

results have been tested via a two-sample t-test. µGA�EN , µEN , and µGA�Lr stand for the

average of relative RMSECV of GA-EN, EN, and GA-Lr, respectively. The first two-sample

t-test, Ho : µGA�EN = µEN vs Ha : µGA�EN < µEN , demonstrates that in significance level of

↵ = 0.1, the average relative RMSECV of GA-EN is less than the average relative RMSECV of

EN which confirms the superiority of the two-layer feature selection method (GA-EN) over the
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embedded method (EN). The second two-sample t-test, Ho : µGA�EN = µGA�Lr vs

Ha : µGA�EN < µGA�Lr, demonstrates that in significance level of ↵ = 0.05, the average

relative RMSECV of GA-EN is less than the average relative RMSECV of GA-Lr, i.e., the

proposed GA-EN method outperforms the GA-Lr method in significance level of ↵ = 0.05.

Through the above study, we can conclude that the combination of EN with GA, including a

modified fitness function in which the smallest subset of predictors with the lowest relative

RMSE has been found, demonstrates higher prediction accuracy in comparison with EN and

GA-EN methods in predicting the expression level of Maize plants. This hypothesis has been

implemented on datasets with di↵erent ratios of the number of predictors to the number of

observations and the results validate the superiority of the proposed model for all datasets.

2.6 Conclusion

This paper proposed a novel two-layer feature selection approach to select the best subset of

salient predictors in order to improve the prediction accuracy of regression problems. It is a

two-layer method, which is a hybrid wrapper-embedded method composed of GA, as the wrapper,

and EN as the embedded method. In the first layer of GA-EN method, GA searches for the

smallest subset of predictors with minimum prediction error. It can reduce the computation time

of finding the best subset of predictors by avoiding the exhaustive search through all possible

subsets. In the second layer, adopting the best subset of predictors outputted from GA, EN has

been applied to eliminate the remaining redundant and irrelevant predictors. The regularization

approach within the EN removes predictors with no significant relationship with the response

variable. Therefore, the main contribution of this paper lies in combining a regularized learning

method with GA to achieve higher prediction accuracy dealing with regression problems.

The proposed two-layer feature selection model has been applied on a real dataset of Maize

genetic data, which has multiple subsets of high-dimesional feature space datasets with di↵erent

numbers of predictors. Based on the numerical results, the two-layer wrapper-embedded (GA-EN)

method that consists of two layers of feature elimination process results in smaller root mean
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square error for all datasets with di↵erent feature space dimension, compared to the embedded

(EN) method and the wrapper (GA-Lr). The outcome of the present study revealed that

combining a wrapper and an embedded feature selection method particularly, GA and EN, would

reduce the dimension of feature space by more than eighty percent on average without negatively

a↵ecting accuracy.

This study is subject to few limitations which suggest future research directions. Firstly, this

model selects the best wr, wp, and FSP from discrete subsets due to insu�cient computational

capacity and time limitation. It can be addressed in future research by letting the model select

the best value of them from the continuous interval of (0, 1), which may improve the prediction

accuracy. Secondly, although GA is more e↵ective than exhaustive search, large number of

evaluations are still required, which leads to high computational cost, especially for large size

problems. To address this issue in the future studies, EN can be adopted as a complementary

method to seed the initial population of GA, i.e., incorporate some individuals in the initial

population of GA that includes the predictors yielded by EN. Thirdly, the proposed method can

be applied on datasets with di↵erent nature from what has been analyzed in this study, in terms

of feature space dimension, type of the response variable, etc. These should be reserved as future

research topics.
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2.8 Appendix: Supplementary Data

In this section, the proposed two-layer feature selection method has been applied on

additional datasets to demonstrate its superiority over other existing feature selection methods.

The additional datasets are based on a regression problem in which the feature space

dimension is higher than the number of observations. This contains genotype and phenotype

information for 2060 specimens of the F2 and F3 generations of an intercross of inbred LG/J and

SM/J mice that were genotyped at 384 polymorphic SNPs, at The Jackson Laboratory. In this

study, individuals without missing data and the 353 SNPs on the 19 autosomal chromosomes have

been considered [Mitteroecker et al. (2016)]. Without loss of generality, two sample of 2060

individuals, which contain 27 individuals in each samples, have been analyzed to predict a specific

phenotype based on their genotype information. Dataset is available on www.coepra.org.

Table 2.5 summarizes the tuned GA parameters applied for these datasets. The procedure is

presented in section 4.2.

http://www.coepra.org/CoEPrA_regr.html
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Table 2.5: Tuned GA Parameters for new datasets

GA Parameters Values/Method

Initial population size 50
#of generations 10
Population type Bit string

#of BS 19
#of RS 1

#of o↵spring 5
Crossover function single-point
Mutation rate 0.05

Optimal values of wr and wp inside the GA
0
s fitness function have been selected through a

grid search approach which considers 4 di↵erent scenarios (Table 5.1). The optimal weights along

with optimal ↵, ⇢, and FSP have been summarized in Table 2.6.

Table 2.6: Tuned hyper-parameters of the proposed method for new datasets

Sample number ↵best ⇢best wr wp FSP CPU time (sec.)

1 0.015 0.23 0.5 0.5 0.3 576.03
2 0.043 0.63 0.85 0.15 0.3 603.35

To demonstrate the superiority of the proposed two-layer model on a new dataset, two

state-of-art feature selection methods that have been adopted in section 4.3 also are considered

here. The performance of the proposed method in terms of relative RMSECV , is compared with

Elastic Net and Genetic Algorithm that adopts Linear Regression as its learning algorithm.

Table 2.7 demonstrates the number of predictors in the original genotype-phenotype datasets

and the number of predictors that each model selects through 3-fold cross-validation. Also the

relative RMSECV associated with each model with their own selected predictors are presented in

Table 2.7. The highlighted values show the minimum number of selected predictors and the

minimum relative RMSECV for two sample datasets. As can be seen in Table 2.7, GA-EN

method demonstrates the most reduction in number of predictors along with minimum relative

RMSECV . In other words, this method not only reduces the dimension of the data but also
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smaller prediction error. The GA-EN improves the prediction accuracy by more than 2% over EN

and 4% over GA-Lr.

Table 2.7: Result of experiment for new datasets

Sample number Method # of original predictors # of final predictors relative RMSECV (%)

1
GA-EN 33.33 19.10
EN 353 50 21.27

GA-Lr 205 24.32

2
GA-EN 17.66 15.17
EN 353 23.66 17.37

GA-Lr 199 19.4
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3.1 Abstract

Recent advances in genomic selection (GS) have demonstrated the importance of not only the

accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead

selection algorithm, for example, has been found to significantly outperform the widely used

truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding

parents that may not necessarily be elite themselves but have the best chance of producing elite

progeny in the future. This paper presents the look ahead trace back algorithm as a new variant

of the look ahead approach, which introduces several improvements to further accelerate genetic

gain especially under imperfect genomic prediction. Perhaps an even more significant contribution

of this paper is the design of opaque simulators for evaluating the performance of GS algorithms.

These simulators are partially observable, explicitly capture both additive and non-additive

genetic e↵ects, and simulate uncertain recombination events more realistically. In contrast, most

existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS

algorithm to exploit certain critical information that may not be possible in actual breeding

programs. Comprehensive computational experiments were carried out using a maize data set to

compare a variety of GS algorithms under four simulators with di↵erent levels of opacity. These

results reveal how di↵erently a same GS algorithm would interact with di↵erent simulators,
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suggesting the need for continued research in the design of more realistic simulators. As long as

GS algorithms continue to be trained in silico rather than in planta, the best way to avoid

disappointing discrepancy between its simulated and actual performances may be to make the

simulator as close to the complex and opaque nature as possible.

3.2 Introduction

Plant breeders have been relying primarily on phenotypic selection (PS) to select the breeding

parents to maximize the genetic gain and increase grain yield [Bhat et al. (2016)]. However,

multiple studies have demonstrated that the current annual global crop yield growth rates are

below the 2.4% growth rate required to meet projected crop demand in 2050 [Ray et al. (2013);

Iizumi et al. (2018)]. Genomic Selection (GS), pioneered by Meuwissen et al. (2001), has been

widely accepted as a game changer in animal and plant breeding [Hickey et al. (2017)]. Contrary

to PS, GS allows breeders to identify superior individuals in the breeding population using

genotypic in addition to phenotypic data.

Rapid development of genotyping and phenotyping technologies alongside deployment of

modern computational capabilities has led to increasingly comprehensive databases and

intelligent algorithms, further enabling the application of GS. Next-generation sequencing has

enabled fast genome-wide marker mapping at low costs, increasing the availability of high-density

marker information that improves model accuracy [Crossa et al. (2014); Bhat et al. (2016)].

Furthermore, high throughput phenotyping has allowed for rapid and accurate collection of

phenotypical data via non-invasive imaging [Singh et al. (2019)]. The use of these novel

phenotyping and genotyping methods has increased the availability of high-quality data sets

required to create accurate GS models [Meuwissen and Goddard (2010)]. Lorenzana and

Bernardo (2009) demonstrated that cumulative response from three cycles of genome wide

biparental GS via best linear unbiased prediction in maize would yield 1.5 times more genetic

gain than that of a PS cycle. He↵ner et al. (2011) found that the overall GS prediction accuracy

for thirteen agronomic traits was 14% higher than that of PS.
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The e↵ectiveness of GS has been found to rely on the accuracy of genomic prediction [He↵ner

et al. (2010)], especially in complex traits due to the predominance of epistatic e↵ects [Crossa

et al. (2014)]. González-Camacho et al. (2018) found ridge regression and Bayesian models to

perform exceptionally well when additive traits are modeled. A study conducted by Crossa et al.

(2014) further corroborated these findings by comparing various linear and nonlinear models

across multiple traits and environmental conditions using maize and wheat data sets. Under

low-density marker conditions, Bayesian Lasso yielded the highest prediction accuracy for

additive traits male and female flowering. However, when high-density markers were used,

reproducing kernel Hilbert space (RKHS) slightly outperformed Bayesian Lasso. This could be

attributed to RKHS’s ability to better capture epistatic interactions under high-density marker

conditions [Crossa et al. (2014)]. More recently, Shikha et al. (2017) conducted a similar study,

where the prediction accuracy of seven di↵erent prediction models was evaluated for multiple

traits in di↵erent environments. Their study found that Bayes B, a linear approach, yielded the

best overall prediction accuracy, closely followed by RKHS. These results suggest that accuracy of

genomic prediction models may be sensitive to trait type (additive or complex), environmental

e↵ects, and marker density.

Although genomic prediction accuracy plays an essential role in achieving genetic gain, few

studies have addressed how improved designs of selection and mating strategies can provide room

for higher and faster genetic gain. Prior to Goddard (2009), truncation selection was used as the

default strategy for selecting breeding parents, as genetic gain was treated as a consequence of

implementing genomic prediction, whose accuracy was found to be positively correlated with

genetic gain [Desta and Ortiz (2014)]. Goddard (2009) used the weighted genomic estimated

breeding values (WGEBV) as a variation of the conventional genomic selection (CGS) approach

by Meuwissen et al. (2001), where rarer alleles were given higher weights to increase their

frequency and the long term response. Daetwyler et al. (2015) suggested to use the optimal

haploid value (OHV) to for selecting breeding parents, focusing on haploid selection to generate

an elite fixed line. Goi↵on et al. (2017) presented optimal population value (OPV), a
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population-based selection strategy, where the merit of a breeding population is evaluated based

on the complementarity of the group rather than the summation of individual parent’s

contributions. More recently, Moeinizade et al. (2019) proposed the look ahead selection (LAS)

approach, which attempts to improve genetic gain by maximizing the probability of producing

elite progeny by a target deadline. LAS has been shown to outperform previous selection and

mating strategies due to its unique capability to anticipate, or look ahead, how decisions made in

the current generation would a↵ect the progeny in the target generation. In Section 3.3.3, we

propose a new approach, the look ahead trace back (LATB) algorithm, to further improve the

performance of LAS in terms of genetic gain, especially with imperfect prediction of allele e↵ects.

Besides selection and mating strategies, another important component that has not received

enough attention in the GS literature is the simulator that we use to evaluate the performance of

selection algorithms. Previously, GS approaches have been tested in transparent simulation

settings, in which full genotype data and additive allele e↵ects are assumed to be known, and no

dominance e↵ect, epistases, or genotype by environmental interactions are explicitly captured.

However, such transparent simulators may not realistically reflect the opaque and complex nature

that we live in, where selection and mating decisions are made based on partially observable

information under uncertainty. To alleviate the discrepancy between simulation and nature, we

propose our design of an opaque simulator in Section 3.3.2, which simulates nature with high

dimensional data of assumed ground truth with multiple sources of uncertainty that are

genetically meaningful, and only a subset of which is observable by the GS algorithms. We

conducted a comprehensive computational experiment in Section 3.4 to test the performances of

four GS algorithms under four di↵erent variants of simulators, which produced insightful results.

3.3 Materials and Methods

Numerous decisions must be made, by either experienced breeders or automated tools, in

multiple stages of a breeding program under a great deal of uncertainty. The e↵ectiveness of these

decisions has overarching and long-lasting implications to the success of the breeding program.
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Historically, breeders have accumulated wisdom from decades or centuries of trial-and-error in

breeding practices. In the era of data-driven molecular breeding, more emerging tools such as

high performance computing resources and sophisticated algorithms are becoming accessible to

help breeders accelerate genetic gains. However, the time-consuming, resource-intensive, and

high-risk nature of the breeding process makes it prohibitive to design, validate, and train the

algorithms directly during the actual breeding process. Therefore, an in silico “simulator” that

mimics nature reasonably well becomes critical for training and evaluating the “optimizer” in GS

research, as illustrated in Figure 3.1. The optimizer determines the crosses to make based on

historical genotype and phenotype data, nature determines the next generation genotype as a

result of the crosses and produces the next generation phenotype as a result of the genotype and

environment interactions, and the simulator attempts to mimic how nature works. In the

following subsections, we propose a new design of simulator and a new algorithm as the optimizer.

Real World

Simulation

Gt

P t
Optimizer Nature

Gt+1

P t+1

t t+ 1

Gt

P t
Optimizer Simulator

Gt+1

P t+1

t t+ 1

Figure 3.1: Roles of simulator and optimizer in genomic selection.
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3.3.1 Transparent Simulator

In conventionally used simulators [Daetwyler et al. (2015); Goi↵on et al. (2017); Moeinizade

et al. (2019)], almost all information is known to the optimizer, so we refer to these as transparent

simulators. To make such a simulator, historical genotype (G0 2 Bn
0
,p,2) and phenotype

(P 0 2 Qn
0
) data are used to estimate the allele e↵ect vector � 2 QP for a linear model P 0 = G

0
�

[González-Camacho et al. (2018); Crossa et al. (2014); Zhang et al. (2010); Karaman et al.

(2016)], and the trained parameter � is then used in the simulator. Here, n0 is the number of

individuals in the initial population, p is the number of markers, and the third dimension in G
0

represents the two chromosomes in a diploid species. Oftentimes parameter � is also passed along

to the optimizer as known information [Daetwyler et al. (2015); Goi↵on et al. (2017); Moeinizade

et al. (2019)]. Function h(Gt|r, S) simulates the creation of the (t+ 1)st generation genotype from

the tth generation according to the Reproduce function from Han et al. (2017), with

r 2 [0, 0.5]p�1 being the recombination frequencies vector and S denoting the selection decision

from an optimizer, which specifies the breeding parents selected from G
t.

3.3.2 Opaque Simulator

G
0

P
0

Estimate r

Fit P 0 = G
0
�

r,�

Transparent Simulator

G
t+1 = h(Gt|r, S)

P
t = G

t
�

G
0

P
0

Estimate G, r, r,↵,�, �, X

Fit P 0 = f(G
0
)

G, r,↵,�, �, X

Opaque Simulator

[Gt+1
, G

t+1
] = H(G

t|r, S)

P
t = f(G

t
)

Figure 3.2: Designs of transparent (left) and opaque (right) simulators.
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The proposed simulator attempts to serves as a more realistic representation of nature. We

call it an opaque simulator because only partial information is observable to the optimizer. Figure

3.2 illustrates the di↵erences between a transparent and an opaque simulator. Details of an

opaque simulator are described as follows.

• The opaque simulator treats the observed genotype data as samples at a subset of marker

loci, denoted as P, of an assumed whole genome loci, denoted as P. The assumed whole

genome is constructed by augmenting the observed genotype data of the initial generation,

G
0 2 Bn

0
,p,2, to a much higher-dimensional space. The resulting genotype, G

0 2 Bn
0
,p,2,

contains G0 at the marker loci, i.e., G
0
:,P,: = G

0. The whole genome will be used throughout

the breeding process inside the opaque simulator, which will evolve over time as a result of

recombination, whereas only the genotype at the marker loci P is observable to the

optimizer in each generation.

• We construct the recombination frequencies vector r 2 [0, 0.5]p�1 for the assumed whole

genome based on the estimated recombination frequencies vector r 2 [0, 0.5]p�1 at the

marker loci P. Suppose two adjacent loci i, i+ 1 2 P correspond to two non-adjacent loci

j, j + k 2 P separated by k � 1 other loci in between. Given ri, the recombination frequency

between loci i and i+ 1, the recombination frequencies rj , rj+1, ..., rj+k�1 must satisfy the

following equations:

wj,1 = 1 (3.1)

wj,2 = 0 (3.2)

wl,2 = wl�1,1(1� rl�1) + wl�1,2rl�1, 8l 2 {j + 1, ..., k} (3.3)

ri = wk,2. (3.4)

Mathematically, these equations ensure that the probability of a recombination between two

adjacent marker loci i and i+ 1 is the same as the probability of a recombination between

two non-adjacent marker loci j and j + k. Intuitively, using the same water pipe model

proposed in Han et al. (2017), the two aforementioned probabilities are analogous to the
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amounts of water coming out of the left and right plumbing systems in Figure 3.3 when a

unit amount of water is poured into the valve wj,1. In Equation (3.4), wj,c is the amount of

water that comes out of valve c of level j. The recombination frequency ri is equal to wk,2

because it is the amount of water that comes out from the last layer of valve at column 2

when one unit of water was poured into the first layer of valve at column 1 after k layers of

redistribution (recombination).

ri

rj

rj+1

...

rj+k�2

rj+k�1

Figure 3.3: Illustration of relationship between recombination frequencies ri and rj , ..., rj+k�1 using
a water pipe model from Han et al. (2017).

• Similar with function h(Gt|r, S), function H(G
t|r, S) simulates the creation of the (t+ 1)st

generation genotype G
t+1

from the tth generation according to the Reproduce function from

Han et al. (2017), with r being the recombination frequencies vector and S denoting the

selection decision from an optimizer, which defines the breeding parents selected from G
t.
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• Phenotype P
t that corresponds to genotype G

t is determined as follows:

P
t

i = f(G
t

i) =
X

j

�j(G
t

i,1,j +G
t

i,2,j) (3.5)

+
X

j

↵jI(G
t

i,1,j 6= G
t

i,2,j) (3.6)

+
X

k

�k

Y

j,m

I(G
t

i,m,j +Xm,j,k 6= 1) (3.7)

+✏i, 8i. (3.8)

Here, �j in equation (3.5) is the additive e↵ect of gene j in the assumed whole genome; ↵j

in Equation (3.6) is the dominance e↵ect at locus j; �k in Equation (3.7) is the epistatic

e↵ect of interaction k; matrix X 2 {0, 0.5, 1}p⇥2⇥K defines the membership of genes that are

involved in the interactions, with Xm,j,k = 1 indicating that gene (m, j) = 1 is necessary to

trigger interaction k, Xm,j,k = 0 indicating that gene (m, j) = 0 is necessary to trigger

interaction k, and Xm,j,k = 0.5 indicating that gene (m, j) is not involved in the interaction

k; and ✏i is a random noise, representing environmental e↵ects and other e↵ects not

accounted for in the model. Equation (3.6) means that dominance e↵ect at locus j is

triggered if and only if ↵j is non-zero and the two alleles are heterozygous. The indicator

function I(G
t

i,m,j +Xm,j,k 6= 1) in Equation (3.7) means that epistatic e↵ect k is triggered if

and only if the genotype Gi,m,j = Xm,j,k for all genes i that are involved in the e↵ect k.

Equations (3.5)-(3.8) are essentially overfitting the observed relationship between genotype

G
0 and phenotype P

0 to integrate the dominance and epistatic e↵ects. As a result, there

may exist infinitely many solutions to satisfy Equations (3.5)-(3.8) with P
0 = f(G

0
), and

any one could be used as an opaque simulator as long as the parameters are within a

reasonable range. This is because the purpose of an opaque simulator is to reveal how an

optimizer might interact with an opaque nature and not to predict how nature will act.
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3.3.3 The LATB Optimizer

The “optimizer” in Figure 3.1 has two main tasks: prediction and selection. Previous research

e↵ort in GS has disproportionately focused on genomic prediction with truncation selection being

the default selection strategy.

In recent years, a series of algorithms have been proposed for making more strategic selection

decisions. These previous algorithms such as CGS, WGEBV, OHV, OPV, and LAS were designed

and tested for transparent simulators, and their performance under an opaque simulator has not

been tested. A major challenges is the fact that the estimated additive allele e↵ects may no

longer be consistent with the true relationship between genotype and phenotype, which is

assumed to be non-additive, unknown, partially observable, and noisy under an opaque simulator.

These recent algorithms achieved improved genetic gains by strategically combining favorable

alleles and removing unfavorable ones; when the accuracy of the estimated allele e↵ects becomes

questionable, so does the superiority of these algorithms.

In this section, we present the LATB algorithm as a new optimizer for GS under opaque

simulators. This algorithm consists of four major steps, which are illustrated in Figure 3.4 and

described as follows.

Step 1: Genomic prediction

Conventionally, genomic prediction is to estimate an allele e↵ect vector � based on genotype

data G and phenotype data P to fit a linear relationship P = G�. In the LATB algorithm,

instead of estimating only one �, we use di↵erent algorithms or di↵erent hyper-parameters of a

same algorithm to produce a number of allele e↵ect vectors �s
, 8s 2 S. The purpose is to reduce

the chance for the selections to be biased by arbitrary choices in genomic prediction methods

rather than statistically significant allele e↵ects. We refer to these vectors as di↵erent scenarios.

Intuitively, a larger number of scenarios is more likely to enclose the truth.

Step 2: Candidate crosses

A large pool of candidate crosses is created, which can be random crosses of high potential

individuals (based on phenotype, genotype, or pedigree). To ensure the quality of the selection,
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Figure 3.4: Illustration of how the LATB optimizer interacts with nature or a simulator.

the candidate pool should be large enough to include a variety of crosses subject to computational

constraints on time and storage capacity.

Step 3: Look ahead prediction

Progeny from the candidate crosses are simulated and estimated using all scenarios of the

allele e↵ect vectors, and then the top performers are randomly mated with each other to produce

the next generation; this process iterates until the final generation T . The purpose of this step is

to look ahead the consequences of the candidate crosses, and the multiple allele e↵ect vectors are

used to provide a more robust performance assessment, i.e., an individual whose performance is
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sensitive to � is less robust and may be less preferable than another that performs reasonably well

under all scenarios.

In essence, this step uses observed genotype G and estimated linear function P = G�̂ (as

opposed to the assumed true genotype G and phenotype function P = f(G), which is

unbeknownst to the optimizer) to look ahead, or anticipate, the consequences of the candidate

crosses in order to identify the optimal set of crosses.

Step 4: Trace back selection

We trace all individuals in the final generation of step 3 back to their ancestors in the

candidate pool. Let M denote the binary relationship matrix between candidate crosses and these

individuals, with Mc,i = 1 indicating that individual i is an o↵spring of cross c and Mc,i = 0

otherwise. Let P̂ T
i

denote the estimated phenotype of individual i in the final generation T of

step 3. Then the selection problem can be formulated as the following integer linear program.

max
x,y

P
i

P̂
T

i
yi (3.9)

s. t.
P
c

xc = s (3.10)

yi � xc +Mc,i  1 8i, c (3.11)

xc, yi binary 8i, c. (3.12)

The objective function (4.4) is to maximize the phenotypic performance of the individuals that

could be produced. Decision variable yi = 1 indicates that individual i can be produced (because

all its ancestors in the candidate pool have been selected) and yi = 0 otherwise. Constraint (4.5)

means that no more than s crosses can be made. Decision variable xc = 1 indicates that cross c is

made and xc = 0 otherwise. Since only a subset of the candidate crosses will be made, not all

individuals from step 3 could be produced. Constraint (4.6) specifies the relationship among xc,

yi, and Mc,i: individual i could not be produced unless all of its founding crosses were made.
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3.4 Computational experiments

3.4.1 Simulator settings

We used a dataset that consists of phase single nucleotide polymorphisms (SNPs) and

simulated phenotype data for 369 maize inbred lines of shoot apical meristem population from

ISU (2020). In each simulation, 200 individuals were randomly selected from the 369 inbred lines

to form an initial population. The purpose is to test the performance of GS algorithms using

di↵erent initial breeding materials. The duration of the breeding process is set to be T = 10

generations. In each generation, updated genotype and phenotype data will be provided to the

optimizer, which will then select 10 crosses from the current population. The simulator will

simulate the creation of 20 progeny from each cross so that a constant population size of 200 is

maintained throughout the breeding process. We conducted 500 independent simulations in order

to account for the uncertainty in initial breeding materials and in the breeding process. For fair

comparison, the same set of 500 random initial populations were used for all simulator-optimizer

combinations in our experiments. We designed four versions of simulators to compare the

performances of di↵erent optimizers. Each simulator represents a possibility of nature, with S1

being the most transparent and S4 the most opaque. In all simulators, the environmental e↵ects

are assumed to follow a normal distribution with zero mean and a standard deviation

approximately 2% of the mean phenotype of the initial 369-line dataset.

• Simulator S1: Transparent simulator with known allele e↵ects. The whole genome

consists of 1,000 genes, all of which are assumed to have their additive e↵ects to the

phenotype, but no dominance or epistatic e↵ects are assumed to exist. The optimizer is

assumed to have perfect knowledge of the additive allele e↵ects. This simulator represents a

nature in which a su�ciently large number of genetic markers are used, little to no

dominance e↵ects or epistatic e↵ects exist, and the accuracy of genomic prediction

algorithm is perfect.
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• Simulator S2: Transparent simulator with unknown allele e↵ects. The whole

genome consists of 1,000 genes, all of which are assumed to have their additive e↵ects to the

phenotype, but no dominance or epistatic e↵ects are assumed to exist. These allele e↵ects

are unknown to the optimizer, so the genomic prediction algorithm is used to estimate

them, whose accuracy depends on both the e↵ectiveness of the algorithm and the magnitude

of environmental e↵ects. This simulator represents a nature in which a su�ciently large

number of genetic markers are used, little to no dominance e↵ects or epistatic e↵ects exist,

and the accuracy of genomic prediction algorithm is imperfect and sensitive to noisy

environmental e↵ects.

• Simulator S3: Opaque simulator with additive e↵ects. The whole genome consists of

100,000 genes, all of which are assumed to have their additive e↵ects to the phenotype,

which are unknown to the optimizer. No dominance or epistatic e↵ects are assumed to exist.

Only 1,000 genetic markers are used to acquire the genotype information, and a genomic

prediction algorithm is used to estimate the additive e↵ects at these markers. This

simulator represents a nature in which an insu�cient number of genetic markers are used,

little to no dominance e↵ects or epistatic e↵ects exist, and the accuracy of genomic

prediction algorithm is sensitive to noisy environmental e↵ects.

• Simulator S4: Opaque simulator with additive and non-additive e↵ects. The

whole genome consists of 100,000 genes, all of which are assumed to have their additive

e↵ects to the phenotype; moreover, heterozygosity at 20 loci will trigger dominance e↵ects,

and there are 10 epistatic e↵ects, each involving alleles at a few loci. None of these e↵ects

are unknown to the optimizer. Only 1,000 genetic markers are used to acquire the genotype

information, and a genomic prediction algorithm is used to estimate the additive e↵ects at

these markers. This simulator represents a nature in which an insu�cient number of genetic

markers are used, considerable dominance e↵ects and epistatic e↵ects exist, and the

accuracy of genomic prediction algorithm is sensitive to non-additive genetic e↵ects and

noisy environmental e↵ects.
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The coe�cients for additive (� or �), dominance (↵), and epistatic (�) e↵ects were determined

to satisfy two constraints: (1) � and � are non-negative vectors with
P

i2P �i =
P

i2P �i = 50 and

(2) the resulting phenotype values (including additive, non-additive, and environmental e↵ects)

for the initial population of 369 lines are approximately the same under all simulators.

Dominance e↵ects ↵ and epistatic e↵ects � may take positive or negative values. The total

additive e↵ects in all four simulators add up to 100, which is the theoretical upper bound for

simulators S1, S2, and S3; S4 may have a higher theoretical upper bound due to dominance and

epistatic e↵ects. The breakdown of phenotype of 369 lines in the initial population under four

simulators are summarized in Table 3.1. Figure 3.5 shows the three � vectors in transparent

simulators S1 and S2 (top), opaque simulator S3 (middle), and opaque simulator S4 (bottom).

Figure 3.6 shows the recombination frequency vector r for the transparent simulators S1 and S2

and r for the opaque simulators S3 and S4, which satisfy Equations (3.1)-(3.4).

Table 3.1: Breakdown of phenotype of 369 lines in the initial population under four simulators.

S1 S2 S3 S4

Additive 45.1± 4.0 45.1± 4.0 44.8± 3.4 45.5± 2.0
Dominance 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.2± 2.7
Epistatic 0.0± 0.0 0.0± 0.0 0.0± 0.0 �0.8± 0.9

Environmental 0.0± 1.0 0.0± 1.0 0.0± 1.0 0.0± 1.0

Phenotype 45.0± 4.2 45.0± 4.1 44.9± 3.5 44.9± 3.4

3.4.2 Optimizer settings

3.4.2.1 Genomic prediction

Genomic prediction is unnecessary under simulator S1, since true allele e↵ects are assumed to

be known. Under simulators S2, S3, and S4, we use ridge regression [Hoerl and Hoerl (1962);

Hoerl and Kennard (1970)] for estimating the allele e↵ect vector � for all optimizers so that the

di↵erent outcomes can be attributed to the selection algorithms rather than the accuracy of
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� under transparent simulators S1 and S2

� under opaque simulator S3

� under opaque simulator S4

Figure 3.5: Assumed ground truth additive e↵ects in the four simulators.

genomic prediction. Ridge regression estimates the allele e↵ect vector as

�̂
⇤
k = [G>

G+ kIp]
�1

G
>
P,

where Ip is the p⇥ p identity matrix and k 2 [0, 1] is a parameter for balancing bias and variance.

It is well known that [Marquaridt (1970)] the variance of �̂⇤
k
is a monotonically decreasing

function of k, which becomes zero when k = 0 and the model reduces to the least square

estimator. It has also been proven [Hoerl and Kennard (1970)] that the minimal mean square

error is achieved for a positive k, which is less than that of the least square error estimator.

In our experiments, we calculated 10 scenarios of �̂⇤
k
with ten di↵erent k values from 0 and 1.

All of these �̂
⇤
k
vectors were provided to the LATB optimizer, whereas only the one with the

minimal mean square error was used in CGS and LAS optimizers.
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r under transparent simulators S1 and S2

r under opaque simulators S3 and S4

Figure 3.6: Assumed ground truth recombination frequencies in the four simulators.

3.4.2.2 PS optimizer

Selection decisions are based on the phenotypic performance. In each generation, 20

individuals with the highest phenotypes are selected and randomly mated to make 10 crosses,

each producing 20 progeny.

3.4.2.3 CGS optimizer

Selection decisions are based on the genomic estimated breeding values (GEBVs), which are

calculated using the � vector from ridge regression as GEBVi =
P

j
�j(Gi,1,j +Gi,2,j). Similar

with the PS optimizer, in each generation, 20 individuals with the highest GEBVs are selected

and randomly mated to make 10 crosses, each producing 20 progeny.
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3.4.2.4 LAS optimizer

The same LAS algorithm from [Moeinizade et al. (2019)] was used in the experiment. In each

generation, the algorithm anticipates the performance of progeny in the final generation and then

searches for the best 10 crosses to make, each producing 20 progeny.

3.4.2.5 LATB optimizer

The same LATB algorithm from Section 3.3.3 was used in the experiment. In each generation,

the algorithm selects the best 10 crosses, each producing 20 progeny.

3.4.3 Results

Figure 3.7 shows the genetic gain of four optimizers under four simulators, averaged over 500

independent simulations. We define genetic gain for generation t as the di↵erence between the

average phenotype of the population in generation t and that for the initial generation.

S1 S2 S3 S4

Figure 3.7: Genetic gains over ten generation, averaged over 500 independent simulation repetitions.
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S1 S2 S3 S4

Figure 3.8: Genetic diversity over ten generation, averaged over 500 independent simulation repe-
titions.

Figure 3.8 shows the genetic diversity of four optimizers under four simulators, averaged over

500 independent simulations. We define genetic diversity as the average frequency of rare alleles

over all genetic markers. If G 2 Bn,p,2 denotes the genotype of a population, then its genetic

diversity is given by

X

i

1

n
min

8
<

:
X

j

X

c

Gi,j,c

2p
, 1�

X

j

X

c

Gi,j,c

2p

9
=

; ,

where
P
j

P
c

Gi,j,c

2p
is the frequency of the allele coded as “1” at locus i, which may or may not be

rarer than the variation coded as “0”; the min operator finds the frequency of the rare allele at

locus i; the average of such values for all genetic markers gives the genetic diversity.
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3.5 Discussions

3.5.1 Performance of four optimizers under four simulators

• PS optimizer

– S1 simulator: The average genetic gain makes a big leap from the initial generation

of inbred lines to F1. After that, a steady increase of genetic gains is maintained

throughout subsequent generations, which are all hybrids. The genetic diversity falls

gradually throughout the breeding process after bigger drops in the first couple of

generations.

– S2 simulator: The performances under S1 and S2 simulators are the same, since the

knowledge of allele e↵ects is not used by the PS optimizer.

– S3 simulator: The increase in average genetic gain is dramatically slower than that

under the S1 and S2 simulators, which is due to the more infinitesimal assumptions of

the ground truth. Recombination events at the background genes partially o↵set and

smooth out changes at the foreground markers. The loss of genetic diversity is also

slower than that under the S1 and S2 simulators, but to a much less extent compared

with the genetic gain, since genetic diversity is defined for the foreground markers only.

– S4 simulator: The performances in both genetic gain and genetic diversity lie

between S3 and S1/S2 simulators. This is intuitive because the dominance and

epistatic e↵ects would make the model less infinitesimal than S3.

• CGS optimizer

– S1 simulator: The average genetic gain outperforms that of the PS optimizer

throughout the breeding process. This is because CGS is able to use the knowledge of

the true allele e↵ects to filter out the noisy environmental e↵ects and select the

individuals with the highest genetic values. As a result of the more accurate selection,
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the average genetic diversity is lost at an increasingly larger pace than the PS

optimizer.

– S2 simulator: CGS still outdoes PS in terms of both increasing genetic gain and

losing genetic diversity over time, but to a reduced extent. This is because the

optimizer no longer knows the true allele e↵ects and has to use estimated e↵ects to

select crosses, which are inevitably less e↵ective than those under the S1 simulator.

– S3 simulator: Compared with PS, the average genetic gain follows almost the same

trajectory before a slightly stronger finish in the tenth generation, but the average

genetic diversity is lost noticeably faster. The estimated genetic e↵ects of the partially

observable genome was apparently not e↵ective enough to filter out the random

environmental e↵ects, yet the side e↵ect of selecting parents with similarly high genetic

values still manages to manifest its erosion of genetic diversity over time.

– S4 simulator: The assumed existence of non-additive e↵ects makes it even harder to

estimate the true genetic values of individuals. As a result, CGS leads to a slightly

lower average genetic gain in the final generation than that of PS. Estimated allele

e↵ects appear to be more helpful for selecting genetically similar parents than

outstanding ones, since the average genetic diversity is lost noticeably faster than that

of PS.

• LAS optimizer

– S1 simulator: LAS achieved a significantly higher genetic gain in the final generation

than CGS while maintaining a significantly higher genetic diversity than PS. These

observations are consistent with results in Moeinizade et al. (2019) using an S1 type of

simulator. LAS was designed to maximize genetic gain at a specific deadline without

performance requirements in intermediate generations; genetic diversity was

maintained as a consequence of this long-term genetic gain oriented selection strategy.
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– S2 simulator: Using imperfect estimation of allele e↵ects, LAS barely outperforms

CGS in terms of genetic gain. The reason of this disappointment is what made LAS

outstanding under S1 simulator in the first place, which is its strategy to patiently

accumulate favorable alleles from a diverse population of parents, some of which may

be otherwise undesirable. When the allele e↵ects turn out to be inaccurate, expected

contributions of some crosses to genetic gains may fail to materialize. On the other

hand, inaccurate and changing allele e↵ect estimates lead to more diversified selections

and a higher level of genetic diversity than under the S1 simulator.

– S3 simulator: LAS fails to outperform CGS in genetic gain, due to not only unreliable

estimate of allele e↵ects but also the e↵ects of 99 background genes for every 1

observable genetic marker. Genetic diversity is still significantly higher than that of PS.

– S4 simulator: LAS shows a surprising superiority over CGS and PS, which is

comparable with that under the S1 simulator in terms of genetic gain and even more so

in genetic diversity. LAS benefits from the assumed existence of genetic interactions,

which creates stronger signals of dominance and epistatic e↵ects at isolated loci for the

genomic prediction algorithm to pick up, enabling LAS to exhibit its strength in

accumulating desirable alleles over time. In contrast, these signals may not be as

helpful to CGS, because it aggregates the estimated genetic value at the individual

level rather than marker level.

• LATB optimizer

– S1 simulator: LATB outperforms LAS in terms of average genetic gain, but it also

loses genetic diversity at a higher pace than all other optimizers. This is due to the

selection strategy of LATB that reflects the breeding process model closely than LAS.

We will discuss more di↵erences between LAS and LATB in Section 3.5.2.
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– S2 simulator: LATB is still accumulating genetic gain and losing genetic diversity

faster than all other optimizers, but to a discounted extent due to imperfect allele

e↵ect estimates.

– S3 simulator: LATB widens its superiority over other optimizers percentage wise.

Since LATB was designed with unreliable allele e↵ects in mind, it makes crosses that

are less sensitive to the accuracy of genomic prediction, which explains its

improvement over LAS. The decline in genetic diversity over time is only slightly faster

than that of CGS.

– S4 simulator: Similar statements can be made as under the S3 simulator. However, a

noteworthy exception is that LAS outperforms LATB in the final two generations.

Since LATB uses estimated allele e↵ects more conservatively, it does not benefit as

much as LAS from the amplified signals of dominance and epistatic e↵ects.

3.5.2 Di↵erences between LATB and LAS

First, when anticipating the consequences of crosses in the target generation, LAS assumes

that all progeny will be randomly crossed with each other throughout the entire breeding process,

whereas LATB explicitly expects that only the top performing progeny will be crossed with each

other to produce the next generation. As a result, it is much more convenient to find the optimal

set of crosses out of an enormous solution space to maximize the performance of the final

generation under the LAS model, whereas the LATB model can only optimize within a relatively

small subset of candidate crosses to achieve a comparable computational speed.

Second, LATB explicitly considers multiple estimates of allele e↵ects using di↵erent prediction

algorithms or parameters, which makes it less sensitive than LAS to the accuracy of the genomic

prediction algorithm.

Third, the computational e�ciency of LAS relies heavily on the built-in assumption of purely

additive allele e↵ects. In contrast, LATB will be compatible with more sophisticated genomic

prediction algorithms that estimate both additive and non-additive allele e↵ects, such as deep



59

learning models [Bellot et al. (2018)] and the recent algorithm for detecting epistatic e↵ects

[Ansarifar and Wang (2019)].

Fourth, computational experiment results suggest that LATB is more e↵ective in increasing

genetic gain, especially in early generations, whereas LAS maintains a higher level of genetic

diversity.

3.5.3 Relative importance of prediction accuracy vs. selection strategy

Performances of CGS, LAS, and LATB with respect to PS are compared in Table 3.2 in terms

of average genetic gain and genetic diversity in the final generation. These results suggest that

selection strategy makes a greater di↵erence than the accuracy of genomic prediction in GS.

Table 3.2: Performance comparison against PS in the final generation.

Genetic Gain Genetic Diversity
S1 S2 S3 S4 S1 S2 S3 S4

PS 0% 0% 0% 0% 0% 0% 0% 0%
CGS 2% 3% 2% –1% –19% –6% –9% –10%
LAS 12% 6% 3% 10% 15% 31% 33% 33%
LATB 13% 9% 9% 7% –45% –31% –12% –15%

In terms of genetic gain, LAS has a much more impressive performance under S1 and S4 than

under S2 and S3 simulators. In contrast, LATB is more robust: it outperforms PS by at least 7%

even with imperfect genomic prediction and under the most opaque simulator. In terms of genetic

diversity, LAS is the absolute winner whereas LATB makes the most compromise for genetic gain.

3.6 Conclusion

We have presented the look ahead trace back algorithm as a new selection strategy for GS and

compared its performance with other state-of-the-art approaches under multiple transparent and

opaque simulators. This study made three major contributions.
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First, we proposed two designs of simulators for GS, transparent and opaque simulators,

which represent di↵erent possibilities of nature. Most previous studies have used transparent

simulators, assuming full knowledge of genotype information and purely additive allele e↵ects.

The opaque simulators were designed to capture more realistic and complex properties of nature

by including partially observable genotype and non-additive genetic e↵ects.

Second, we presented the LATB algorithm as a new optimizer for making GS decisions. This

algorithm attempts to improve upon the LAS algorithm by anticipating the elimination of

non-elite lines in each generations and by considering imperfect prediction of allele e↵ects.

Third, we revealed the performances of four optimizers under four di↵erent simulators in

comprehensive computational experiments. We not only demonstrated how di↵erently an

optimizer may behave under di↵erent simulators but also provided our interpretation for such

behaviors. These results highlighted the importance of designing not only e�cient optimizers for

GS but also realistic simulators for training and evaluating the optimizers.

Our study is not without its limitations. For example, the design of the opaque simulator may

not include all complex properties of nature. The environmental e↵ects were simply assumed to

follow a normal distribution and no genotype by environment interactions were explicitly

incorporated. Moreover, we found it hard to determine which of the four simulators is the closest

to the nature that we live in. Ultimate validation of a simulator’s fidelity or an optimizer’s

performance requires actual experiments in nature, yet our computational results shed light on

the robustness and vulnerability of di↵erent optimizers under di↵erent possibilities of nature.

Future studies should design more realistic simulators and use them to design and test more

selection algorithms. Of particular interest to us is the combination of non-additive genomic

prediction algorithms (such as machine learning based approaches) and the LATB algorithm.
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4.1 Abstract

Selecting for multiple traits as opposed to a single trait has become increasingly important in

genomic selection. As one of the most popular approaches to multi-trait genomic selection

(MTGS), index selection uses a weighted average of all traits as a single breeding objective.

Although intuitive and e↵ective, index selection is not only numerically sensitive but also

structurally incapable of finding certain optimal breeding parents. This paper proposes a new

selection method for MTGS, the L-shaped selection, which addresses the limitations of index

selection by normalizing the trait values and using an L-shaped objective function to find optimal

breeding parents. This algorithm has been proven to be able to find any Pareto optimal solution

with appropriate weights. Two performance metrics have also been defined to quantify MTGS

algorithms with respect to their ability to accelerate genetic gain and preserve genetic diversity.

Computational experiments were conducted to demonstrate the improved performance of

L-shaped selection over index selection.

4.2 Introduction

The e↵ectiveness of genomic selection (GS) in accelerating genetic gain in plant and animal

breeding programs [Meuwissen and Goddard (2010); Jannink et al. (2010); Rutkoski et al. (2016);
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Desta and Ortiz (2014)] has motivated breeders to apply the technique for multiple traits,

including yield, quality, and tolerance to biotic and abiotic stresses [Jia and Jannink (2012)].

Breeders are more likely to invest in genomic selection programs that are capable of improving

multiple traits of a crop rather than a single trait throughout the generations [Bernardo (2002);

Lynch et al. (1998)].

Existing approaches for multi-trait genomic selection (MTGS) include tandem selection,

independent culling selection, and index selection. Tandem selection treats MTGS as the

aggregation of multiple single-trait GS programs and selects for the traits sequentially [Burgess

and West (1993)]. Independent culling selection sets a minimum threshold (i.e., culling levels) for

each trait and only selects individuals that exceed the culling levels for all traits [Lorenzana and

Bernardo (2009)]. Index selection converts MTGS to a single trait GS by using a linear

combination of individual traits weighted by their importance as the breeding objective [Hazel

and Lush (1942); Hazel (1943); Williams (1962)]. Recently, (Moeinizade et al., 2020) proposed a

new algorithm for MTGS that maximizes one trait subject to the constraints that another trait

falls within a desirable range.

Index selection has heretofore been a commonly used approach to MTGS due to its capability

to select for multiple traits simultaneously and its flexibility to assign di↵erent weights according

to the relative importance of the traits. In contrast, tandem selection can only select for one trait

at a time, and independent culling selection may eliminate an otherwise high-performing

individual due to its minor shortcoming in one trait [Lorenzana and Bernardo (2009)]. Index

selection overcomes such limitations by taking an importance-weighted linear combination of all

traits, giving breeders a wide range of trade-o↵ options among the traits to choose from.

However, index selection also su↵ers from its own limitations, i.e., its numerical sensitivity

and inability to find certain optimal selections. In this study, we propose a new approach to

MTGS, which uses an L-shaped objective function (as opposed to the linear objective function

used in index selection) to select optimal breeding parents that strike a balance among multiple

traits with respect to their relative importance. This algorithm not only overcomes the two
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limitations of index selection but also demonstrates superior performance with respect to both

accelerating genetic gain and preserving genetic diversity.

The rest of the paper is organized as follows. In section 4.3, we formally formulate MTGS as a

multi-objective optimization problem, introduce the L-shaped selection algorithm, and present the

mathematical properties that allow it to overcome the limitations of index selection. Moreover,

we define two metrics for assessing the performances of MTGS algorithms in terms of accelerating

genetic gain and preserving genetic diversity. In section 4.4, we describe the computational

experiments that we conducted to compare index selection and L-shaped selection methods.

Finally, concluding remarks are made and future research directions are discussed in section 5.6.

4.3 Methods and Materials

Consider a breeding project that starts with an initial population of plant or animal

individuals. A number of crosses are made in each generation to produce a new population of

progeny in the next generation until a pre-defined deadline for the project. Suppose there are

multiple traits that the breeders aim to improve through the breeding process. Under the

following three simplifying assumptions, the focus of our study is to select the right individuals to

make the right crosses in order to optimize all traits at the end of the breeding project.

Assumption 1 There is adequate and reliable genetic data, including genotype and

recombination frequencies.

Assumption 2 All traits are largely determined by additive e↵ects with negligible dominance or

epistatic e↵ects.

Assumption 3 Allele e↵ects for all traits have been estimated su�ciently accurately and

constant over the breeding process.
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4.3.1 Problem definition

The objective of MTGS is to select a subset of breeding parents from a group of candidate

individuals based on their genotype and estimated allele e↵ects in order to maximize genetic gains

with respect to multiple traits over a number of breeding generations. The following

nomenclature will be used in this paper.

I set of candidate individuals of plants or animals for selection

J set of loci

K set of traits

Gi,j genotype of individual i 2 I at locus j 2 J

�j,k e↵ect of allele j 2 J on trait k 2 K

vi,k genetic value of individual i 2 I on trait k 2 K: vi,k =
P
j

Gi,j�j,k

wk weight parameter that indicates the relative importance of trait k 2 K

xi binary variable indicating whether individual i 2 I is selected (xi = 1) or not (xi = 0)

S number of breeding parents to be selected

Without loss of generality, we assume that maximization (rather than minimization) is the

direction of improvements for all traits. For a trait k that needs to be minimized, we can replace

vi,k with �vi,k for all i 2 I in a maximization model, which is equivalent to minimizing trait k.

For traits whose values need to be contained within a desirable range, we can maximize the

percentage of individuals in a population whose trait values fall within such a range.

With the above definitions and assumptions, the MTGS can be formulated as the following

multi-objective optimization model:

max
x

P
i

xivi,k 8k 2 K (4.1)

s. t.
P
i

xi = S (4.2)

xi 2 {0, 1} 8i. (4.3)
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Here, the objective function (4.1) is the maximization of all traits of selected individuals.

Constraint (4.2) requires that exactly S individuals be selected. Constraint (4.3) defines xi as a

binary variable for all i 2 I.

In multi-objective optimization, a feasible solution is called Pareto optimal if it is not

dominated by any other feasible solution. Solution x̂ dominates x̃ if x̂ is no worse than x̃ in any

trait and better in at least one:

X

i

x̂ivi,k �
X

i

x̃ivi,k, 8k 2 K and
X

i

x̂ivi,k >

X

i

x̃ivi,k, 9k 2 K.

Moreover, the ultimate goal of solving a multi-objective optimization problem is to find not a

single Pareto optimal solution but all Pareto optimal solutions that represent the range of

possible trade-o↵s among di↵erent traits, referred to as the Pareto frontier.

4.3.2 Index selection

As a widely used selection approach for MTGS, index selection solves a single objective

optimization model that maximizes the weighted average of all traits:

max
x

P
k

wk

P
i

xivi,k (4.4)

s. t.
P
i

xi = S (4.5)

xi 2 {0, 1} 8i. (4.6)

Here, the objective function (4.4) is the weighted average genetic value of all traits. When

di↵erent weight parameters are used, index selection essentially searches for the convex e�cient

frontier, which is the subset of Pareto optimal solutions that are on the convex hull of the feasible

region.

The following proposition shows that, when strictly positive weights are used for all traits, the

optimal solution to index selection must be Pareto optimal to MTGS.

Proposition 1. If solution x̂ is optimal to (4.4)-(4.6) for some wk > 0, 8k 2 K, then x̂ is Pareto

optimal to (4.1)-(4.3).
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Proof. Suppose x̂ is not Pareto optimal to (4.1)-(4.3). Then there exists a solution x̃ that

dominates x̂:

X

i

x̃ivi,k �
X

i

x̂ivi,k, 8k 2 K and
X

i

x̃ivi,k >

X

i

x̂ivi,k, 9k 2 K.

Since wk > 0, 8k 2 K, we have

X

k

wk

X

i

x̃ivi,k >

X

k

wk

X

i

x̂ivi,k.

This contradicts the assumption that x̂ is optimal to (4.4)-(4.6). Therefore x̂ must be Pareto

optimal to (4.1)-(4.3).

4.3.3 Two limitations of index selection

Despite the e↵ectiveness of index selection in finding Pareto optimal solutions to MTGS, it

su↵ers from two major limitations. First, numerical solutions to (4.4)-(4.6) may be sensitive to

the units being used for the genetic e↵ects of di↵erent traits. For example, when we try to

maximize both plant height and grain yield with their respective weights, di↵erent solutions may

result from simply changing the units used to measure the two traits from inches and bushels per

acre to meters and tonnes per hectare.

The second limitation is the inability to discover all Pareto optimal solutions by using

di↵erent values of weight parameters wk due to the convexity of the objective function (4.4) and

the potential non-convexity of the set of Pareto optimal solutions. To illustrate this point,

consider the following example.

Example 1. Suppose two individuals are to be selected from four to make a cross, then there are

six candidate crosses. The genetic values of the four individuals and six crosses for two important

traits are summarized in Tables 4.1 and 4.2. All six crosses are Pareto optimal since none of

them is dominated by another. However, as shown in Figure 4.1, the index selection model

(4.4)-(4.6) can only find three crosses (c1, c5, and c6) that are on the e�cient frontier of the six

crosses in the v1-v2 space. The other three will never be selected no matter what non-negative

weights w1 and w2 are used because they are dominated by the line segment between c1 and c5.
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Table 4.1: Genetic values of two traits for four individuals.

individual vi,k=1 vi,k=2

i1 0.05 0.33
i2 0.22 0.22
i3 0.30 0.15
i4 0.44 0.06

Table 4.2: Genetic values of two traits for six crosses.

cross individuals
P
i2c

vi,k=1
P
i2c

vi,k=2

c1 (i1, i2) 0.27 0.55
c2 (i1, i3) 0.35 0.48
c3 (i1, i4) 0.49 0.39
c4 (i2, i3) 0.52 0.37
c5 (i2, i4) 0.66 0.28
c6 (i3, i4) 0.74 0.21

4.3.4 L-shaped selection

The proposed L-shaped selection for MTGS can be formulated as the following optimization

model:

max
x

min
k

P
i

xiṽi,k

wk

(4.7)

s. t.
P
i

xi = S (4.8)

xi 2 {0, 1} 8i. (4.9)

Here, ṽi,k =
vi,k � vk

vk � vk

is the normalized genetic value that falls within the range of (0, 1),

where vk and vk are the lower and upper bounds of trait k, which can be obtained, respectively,

as vk = min
i

(vi,k � ✏), 8i 2 Ĩ and vk = max
i

(vi,k + ✏), 8i 2 Ĩ for a large set of individuals Ĩ; here ✏

is a small positive value to ensure that the normalized genetic value falls within (0, 1) and not on

the boundaries.
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Figure 4.1: The left subfigure shows the six possible crosses in the v1-v2 space and the e�cient
frontier that index selection is able to find. The right subfigure shows that only c1, c5, and c6 could
be found to be Pareto optimal using index selection with di↵erent weights w1 and w2.

This new formulation was designed to address the two limitations discussed in section 4.3.3.

The normalized genetic e↵ect ṽi,k is independent of the measurement units being used, thus

allowing the model to strike a balance among multiple traits in more meaningful terms. The

following proposition demonstrates how model (4.7)-(4.9) addresses the second limitation.

Proposition 2. If solution x̂ is Pareto optimal to (4.1)-(4.3), then there exist wk > 0, 8k 2 K

such that x̂ is optimal to (4.7)-(4.9).

Proof. We claim that wk :=
P
i

x̂iṽi,k > 0, 8k 2 K are such that x̂ is optimal to (4.7)-(4.9).

Suppose not, then there exists a solution x̃ such that

min
k

P
i

x̃iṽi,k

wk

> min
k

P
i

x̂iṽi,k

wk

= 1.

This means

X

i

x̃iṽi,k � wk =
X

i

x̂iṽi,k, 8k 2 K and
X

i

x̃iṽi,k > wk =
X

i

x̂iṽi,k, 9k 2 K.
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Since
P
i

x̃i = S =
P
i

x̂i, we have

X

i

x̃ivi,k �
X

i

x̂ivi,k, 8k 2 K and
X

i

x̃ivi,k >

X

i

x̂ivi,k, 9k 2 K.

This contradicts the assumption that x̂ is Pareto optimal to (4.1)-(4.3). Therefore x̂ must be

optimal to (4.7)-(4.9) with wk :=
P
i

x̂iṽi,k � 0, 8k 2 K.

Proposition 2 is a guarantee that L-shaped selection is able to find any Pareto optimal

solution to MTGS with appropriate weight parameters. To illustrate this desirable property,

which index selection does not have, we solved Example 1 using L-shaped selection, and results

are shown in Figure 4.2. The left subfigure illustrates that, in the case of k = 2, model (4.7)-(4.9)

is trying to slide an L-shaped objective function (hence the name) along the direction from the

origin towards (w1, w2) to the maximal extent while touching at least one solution with the

L-shaped curve. The right subfigure shows the di↵erent Pareto optimal solutions that can be

found using di↵erent combinations of weight parameters w1 and w2.

4.3.5 Performance measures of MTGS algorithms

In this section, we define two measures, namely Pareto optimality gap and diversity, to

evaluate the performance of MTGS algorithms. The motivation is to assess the capability of an

algorithm to produce progeny through the breeding process that are not only Pareto optimal but

also representative of diverse trade-o↵s among di↵erent traits.

Suppose an MTGS algorithm was used in a number of breeding projects, each with a di↵erent

sets of weight parameters. Let I0 denote the set of individuals produced in the final generation of

all breeding projects combined, and let I1 denote a superset of I0, possibly also including

individuals produced from all other competing algorithms. For any set of individuals Î, we define

P(Î) as the Pareto optimal subset of Î:

P(Î) =
(
i : i 2 argmax

i2Î

X

k2K
wkvi,k, 9wk > 0, 8k 2 K

)
.

The two performance measures are defined as follows:
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Figure 4.2: The left subfigure shows the six candidate solutions in the v1-v2 space and how L-
shaped selection uses an L-shaped objective function to search for Pareto optimal solutions. As
an example, c3 is found to be optimal with equal weights on the two traits, since it allows the
magenta-colored and L-shaped objective function to slide the furthest away from the origin towards
the direction (v1 = w1 = 0.5, v2 = w2 = 0.5). Moreover, c3 is optimal for all weights inside the
shaded (unbounded) triangle, the two edges of which cross the vertices of two L-shaped objective
functions with one crossing c2 and c3 and the other crossing c3 and c4. The right subfigure shows
that all six candidate solutions can be found to be Pareto optimal using L-shaped selection with
di↵erent weights w1 and w2. The six candidate solutions are also plotted in the right subfigure in
the w1-w2 space to illustrate how di↵erent regions of weights are determined.

• Pareto optimality gap of P(I0) against P(I1) is defined as

X

i2P(I0)

min
i02P(I1)

min
k2K

wi,k(vi0,k � vi,k)+,

which measures the extent to which set P(I0) is dominated by P(I1). The term

(vi0,k � vi,k)+ := max{vi0,k � vi,k, 0} detects any positive gap between individuals i0 2 P(I1)

and i 2 P(I0) on trait k. Then, the term min
k2K

wi,k(vi0,k � vi,k)+ identifies the smallest

weighted gap across all traits in order to determine the extent to which individual i is

dominated by i
0. Next, the term min

i02P(I1)
min
k2K

wi,k(vi0,k � vi,k)+ identifies the individual i0
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that dominates i by the least amount. This term is the Pareto optimality gap between

individual i and P(I1), and the summation of which over all individuals in P(I0) gives the

Pareto optimality gap of the set P(I0) against P(I1).

The Pareto optimality gap can be considered as the minimal amount of trait improvements

in I0 necessary to break the dominance of P(I1) over any individual in P(I0). A

noteworthy observation here is that the Pareto optimality gap between i 2 P(I0) and

i
0 2 P(I1) is zero if vi0,k0 = vi,k0 for one trait k0 and vi0,k > vi,k for all others k 2 P\k0. This

may be counter-intuitive but is also defensible because, although i is dominated by i
0, it

takes an arbitrarily small positive improvement in individual i on trait k0 to break the

dominance.

• Diversity of P(I0) is defined as

X

k2K

2

4 wk

|P(I0)|

s X

i2P(I0)

X

i02P(I0)

(vi,k � vi0,k)2

3

5 ,

which measures the weighted average Euclidean distance of all Pareto optimal solutions

within set P(I0).

An ideal MTGS algorithm should be able to produce progeny with a small Pareto optimality

gap (not being dominated by progeny produced from competing algorithms) and a large diversity

(o↵ering di↵erent trade-o↵ options in traits).

4.4 Computational Experiments

We compared the performances of index selection and L-shaped selection with computational

experiments using a maize data set considering two traits: plant height and ear diameter. No

restrict assumptions are required in terms of the correlation between traits, i.e., they could be

correlated, partially correlated or not correlated. Moreover, it should be mentioned that, as the

purpose of recently published MT-LAS method Moeinizade et al. (2020) was di↵erent from this

study, it has not been selected as a benchmark. MT-LAS is applicable when breeders are
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interested in maximizing one trait and keeping the other trait in a desired range, however, in this

paper, we aim at maximizing both traits.

4.4.1 Data Set

We used 200 maize inbred lines of 369 shoot apical meristem population distributed across the

10 chromosomes [ISU (2020)]. We extracted 1000 single nucleotide polymorphism (SNPs) out of

the total of 1.4 million SNPs that were collected using genome-wide association study used by

(Leibo↵ et al., 2015), merged with additional SNPs genotyped using tGBS [Schnable et al.

(2013)], and those which were phased using Beagle [Browning and Browning (2009)].

Recombination rates in this population were estimated using the genetic map developed from the

maize nested association mapping population. Genetic e↵ects of the two traits were extracted

from [Bernardo and Yu (2007)].

4.4.2 Breeding process

In each simulation of the breeding process, 200 individuals were randomly selected from the

369 inbred lines to form an initial population. In each of the subsequent generations, two

individuals were selected using either index selection or L-shaped selection to produce 200

progeny in the next generation. The genetic values vi,k of all 200 individuals i for the two traits k

in the fifth generation were used for performance analyses. Nine groups of this breeding process

were simulated, each for a di↵erent set of weight parameters w1 2 {0.1, 0.2, ..., 0.9} and

w2 = 1� w1 with ten independent repetitions. The designed computational experiment platfrom

is available on this GitHub repository link.

4.4.3 Results and Discussions

We compared the performances of index selection and L-shaped selection with respect to

normalized plant heights and ear diameters of progeny in the final generation (T = 5), with both

traits to be maximized. Figure 4.3 shows the aggregated results of 90 experiments (9 weights by

https://github.com/amini-ISU/Multi-trait-GS.git
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10 repetitions) using two algorithms; only those progeny that were Pareto optimal within each

experiment were plotted. The x-axis and y-axis represent the normalized plant height and

normalized ear diameter, respectively. It can be seen that L-shaped selection resulted in

better-performing progeny in terms of both genetic gain and diversity.
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Figure 4.3: Performance of progeny in the final generation for index selection (left) and L-shaped
selection (right).

The optimal Pareto frontier of Figure 4.3 is shown in Figure 4.4. It can be seen that, for all

di↵erent sets of weight parameters w1 2 {0.1, 0.2, ..., 0.9} and w2 = 1� w1, L-shaped selection

outperforms index selection, since the optimal Pareto frontier for L-shaped selection not only

dominates that for index selection but also is more diverse.

Table 4.3 shows the Pareto optimality gap and diversity of all progeny in the final generation.

The Pareto optimality gap assesses the capability of a selection method in resulting in Pareto

optimal progeny; the lower the gap, the more Pareto optimal the progeny. We assessed the Pareto
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Figure 4.4: Pareto frontiers of progeny in the final generation for index selection and L-shaped
selection.

optimality gap of index selection and L-shaped selection against the combined sets of progeny

from the two approaches. As can be seen in Table 4.3, the Pareto optimality gap for L-shaped

selection is zero, meaning that none of its Pareto optimal progeny was dominated by those from

index selection. In contrast, index selection had a Pareto optimality gap of 0.2916, meaning that

the Pareto optimal progeny from index selection was on average dominated by 0.2916 by those

from L-shaped selection. The table also shows that progeny in the final generation produced

using L-shaped selection were more diverse than those using index selection, in terms of

representing di↵erent trade-o↵s between the two traits. These observations were consistent with

results from Figure 4.3.

Table 4.3: Pareto optimality gap and diversity of index selection and L-shaped selection.

Method
Metric

Pareto optimality gap Diversity

Index selection 0.2916 0.1933

L-shaped selection 0 0.2582
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4.5 Conclusion

We presented the L-shaped selection for multi-trait genomic selection and demonstrated its

improvements over the commonly used index selection in the capability to produce elite progeny

with better genetic traits and higher diversity. Motivated by two limitations of index selection,

the new approach made two major contributions to MTGS. First, L-shaped selection is robust

against di↵erent measurement units used for multiple traits. Second, L-shaped selection

guarantees to find all Pareto optimal solutions with appropriate weight parameters. Moreover, we

introduced two metrics to quantify the capability of MTGS algorithms in accelerating genetic

gain and preserving genetic diversity.

Besides theoretical contributions, L-shaped selection also outperformed index selection in

computational experiments using a maize data set. The results demonstrate that L-shaped

selection outperforms index selection in producing better-performing and more diverse

population, considering plant height and ear diameter as two traits. However, the proposed

L-shaped selection method is applicable to any breeding problem as long as appropriate genetic

phenotypic data are available.

This study is not without limitations that could be addressed in follow-up research studies.

Firstly, one can integrate the objective function in the L-shaped selection formulation in more

sophisticated algorithms for genomic selection [Gorjanc et al. (2018); De Beukelaer et al. (2017);

Goi↵on et al. (2017); Moeinizade et al. (2020)] rather than a straightforward truncation selection

as used in this study. Secondly, although we have considered only two traits in our study, the

method applies to an arbitrarily large number of traits. A comprehensive case study with

appropriate data from a large number of traits would be of interest for a future research project.

Finally, it would be more realistic to consider dominance, epistatic, and environmental e↵ects in

calculating genetic trait values of individuals [Amini et al. (2021)], however, only additive e↵ects

have been considered in this study.
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CHAPTER 5. APPLICATION OF THE TWO-LAYER
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Modified from a manuscript to be submitted to Machine Learning with Applications journal

5.1 Abstract

Breeders and crop scientists aim to improve the genetic gain, i.e., increasing the rate of

genetic improvement, within a breeding population over time. The performance of a Genomic

Selection (GS) algorithm is a↵ected by multiple factors, such as, the performance of the genomic

prediction methods, breeding parent selection strategy and, the evaluation platform. This paper

aims at improving the genetic gain via incorporating a two-layer feature selection (FS) method in

the breeding process. This two-layer FS method is a pre-processing wrapper-embedded FS

method to enhance the prediction performance which ultimately improve the genetic gain. In

addition, this paper proposed a comprehensive platform where the performances of several GS

and genomic prediction algorithms can be tested. The proposed method and evaluation platform

has been validated with a real Maize data set demonstrated that incorporating the proposed FS

method in GS algorithms creates better-performing progeny throughout the generations.

Moreover, the results confirm the superiority of incorporating two-layer FS method GS algorithms

within multiple scenarios. The scenarios are built on the combination of di↵erent GS optimizer

with di↵erent prediction methods within di↵erent nature simulators.
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5.2 Introduction

Plant breeding relies on selection of parents over a number of generations to improve the crop

performance. In the conventional breeding approach, elite parents are selected based on their

trait/phenotype. This process requires a long period to achieve desired crop variety and it is less

e↵ective for some complex traits with low heritability Tuberosa (2012); Bhat et al. (2016). To

address these challenges, Meuwissen et al. (2001) developed a new strategy called Genomic

Selection (GS) in which breeding parent selection was based on marker/genotypic profile instead

of the phenotype of individuals. The prediction model of GS integrates the genotypic and

phenotypic data that further were used to estimate the GEBV for all breeding individuals from

their genotypic data [Poland et al. (2012)]. GS o↵ers number of merits over PS by reducing the

breeding plant selection, increasing the e�ciency of breeding process, and yield grain per unit of

time and being environmentally insensitive [Rutkoski et al. (2011); Desta and Ortiz (2014);

Goddard and Hayes (2007); He↵ner et al. (2009); Jannink et al. (2010)]. The e↵ectiveness of GS

has been found to rely on the selection and mating strategy, and the accuracy of genomic

prediction [He↵ner et al. (2010)].

It is shown that an improved selection and mating strategy can provide room for higher and

faster genetic gain. Several selection and mating strategies have been proposed to improve the

crops genetic gain, such as conventional genomic selection Meuwissen et al. (2001), optimal

haploid value (OHV) Daetwyler et al. (2015), and optimal population value (OPV) Goi↵on et al.

(2017). Furthermore, Moeinizade et al. (2019) proposed the look ahead selection (LAS) approach,

which attempts to improve genetic gain by maximizing the probability of producing elite progeny

by a target deadline. More recently Amini et al. (2021) proposed the look ahead trace back

(LATB) algorithm, to further improve the performance of LAS in terms of genetic gain, especially

with imperfect prediction of allele e↵ects. In this paper, LAS, and LATB have been selected as

the representatives of best-performing genomic selection algorithms.

Genomic Prediction (GP) used in GS is particularly well-suited for the prediction of

quantitative traits controlled by many small-e↵ect alleles Ribaut and Ragot (2007). It has been
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used to identify highly parametric structures for modeling relationships between phenotypes and

e↵ects of hundreds or thousands of molecular markers [Meuwissen et al. (2001);

González-Camacho et al. (2018)]. Several linear and nonlinear prediction methods have been

adopted in the GS algorithms to improve the marker e↵ects estimation accuracy. In this paper,

the most common methods from both linear and nonlinear classes are selected to be used in the

computational experiment. Ridge Regression from linear and Random Forest from nonlinear

prediction method categories are adopted in this paper USAI et al. (2009); González-Recio and

Forni (2011); Spindel et al. (2015).

A major challenge in using GP is relatively large number of markers (p) in comparison with

limited number of phenotyped individuals [Meuwissen et al. (2001)]. This means that the datasets

are underdetermined (also known as the p >> n problem) and prone to overfitting due to the

curse of dimensionality Whalen et al. (2020). Feature Selection (FS) has been introduced as a

subdiscipline method in dimensionality reduction class to address the raised issue Whalen et al.

(2020). The goal of FS method is to achieve the smallest, most powerful subset of features to not

only reduce the computation time but also improve the prediction accuracy Huang and Wang

(2006); Lin et al. (2015). It can be observed that the performance of a FS mechanism can be

improved if it is carefully combined with another FS method. A hybrid FS method will further

reduce the feature space and facilitate the design of a more e�cient and accurate prediction

model. Therefore, we have adopted the two-layer wrapper-embedded feature selection method

capable of reducing the feature space while maintaining/improving the prediction accuracy in GP

Amini and Hu (2021).

The contributions of this study can be summarized as follows. Firstly, it was the first time

that a wrapper-embedded two-layer FS method has been integrated in the GS breeding cycles to

improve the e�ciency of GS algorithms. Secondly, a comprehensive comparison framework is

designed in which the performance of multiple GS algorithms along with di↵erent prediction

methods under di↵erent nature simulators in presence or absence of a FS method can be

analyzed. Thirdly, despite most of the previous research that focused on the e↵ectiveness of
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incorporating a FS method on the prediction accuracy, we analyzed the FS e↵ects on the genetic

gain improvement.

The rest of the paper is organized as follows. Section 5.3 provides background on the

mathematical model of the adopted two-layer FS method along with a brief description on

benchmark prediction models, GS optimizers and nature simulators. Section 5.4 describes the

case study and the simulation experiment settings. In section 5.5, the performance of di↵erent GS

optimizers have been compared within several scenarios described in this section as well. Finally,

section 5.6 concludes this study and suggests future research directions.

5.3 Materials and Methods

The ultimate breeding goal is assisting breeders to accelerate the crops genetic gain. However,

due the time-consuming nature of the actual breeding process, a simulation platform can be

designed to analyze the GS algorithms before application on the crop fields. Figure 5.1

demonstrate the proposed simulation and decision making platform inspired by Amini et al.

(2021). In the designed simulation platform, the GS optimizer determines the crosses to make

based on historical genotype (Gt) and phenotype data (P t), in which a GP method is essential in

the breeding parent selection. Additionally, we have included the two-layer FS method as a

pre-process step to the GP methods to improve their performances. Then, nature determines the

next generation genotype (Gt+1) as a result of the crosses and produces the next generation

phenotype (P t+1) as a result of the genotype and environment interactions, and the nature

simulator attempts to mimic how nature works. In the following subsections, brief descriptions of

each of the components of the simulation framework shown in figure 5.1, are discussed.

5.3.1 GS Optimizer

The word ”optimizer” here refers to the selection approach each GS algorithm used to select

elite breeding in each generation to construct the next generation. To illustrate the proposed

method, two state-of-art GS optimizers, LAS and LATB, have been selected to be analyzed in
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Figure 5.1: The proposed decision making platform

this paper. They have been selected due their outperformance in terms of genetic gain and

genetic diversity in long-term horizon. Descriptions and summaries of both GS optimizers have

been included below.

• Look Ahead Selection (LAS)

LAS uses a heuristic model to maximize the expected GEBV of the best o↵spring in the

terminal generation given a limited amount of resources. One of the contributions of LAS

was to incorporate time and budget limitation in GS algorithms. It is highly sensitive to the

final generation or the deadline of the breeding cycle and attempts to improve the genetic

gain in the final generation of the breeding cycle while maintain genetic gain over early

generations as well. LAS assumes that all progeny will be randomly crossed with each other

throughout the entire breeding process and selects the best crosses out of the solution space

to maximize the genetic gain in the final generation. Moreover, LAS is built on the
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assumption of the existence of only additive e↵ects while other non-additive e↵ects have

been seen in plants genetic decomposition Moeinizade et al. (2019).

• Look Ahead Trace Back (LATB) Selection

LATB method proposed by (Amini et al., 2021) addressed the e�ciency and compatibility

challenges of LAS while maintaining its benefits. Similar to LAS, LATB also looks at the

final generation determined by the breeders, then it simulates the breeding process toward

the final generation, finds the best-performing progeny and traces back their ancestors in

the current generation and declares them as the breeding parents. In the simulation process,

it makes the pooling crosses only with well-performing parents, so it is more e�cient than

LAS. It is also compatible with more complex genomic prediction models in which,

non-additive e↵ects can be captured.

5.3.2 Genomic Prediction

As discussed earlier, each GS optimizer includes a genomics prediction method to predict the

phenotype which further will be used for breeding parent selection by GS optimizer. Multiple

linear and nonlinear prediction models can be adopted in the simulated breeding process,

however, as the purpose of this study is to assess the performance of the GS optimizers with and

without using the two-layer feature selection method, we selected two of the most popular

methods, namely, Ridge Regression from the linear class and Random Forest from nonlinear class

of prediction models. Brief descriptions of each of these prediction methods are included below.

• Linear - Ridge Regression

Ridge Regression (RR) used to estimate the allele e↵ect vector � to further predict

individuals’ phenotypes Hoerl and Hoerl (1962); Hoerl and Kennard (1970). Ridge

Regression estimates the allele e↵ect vector through Eq.(5.1).

�̂
⇤
k = [G>

G+ kIp]
�1

G
>
P (5.1)
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where Ip is the p⇥ p identity matrix, k 2 [0, 1] is a parameter for balancing bias and

variance, G, and P represent the Genotype and phenotype information, respectively.

• Nonlinear - Random Forest

Random Forest is an ensemble machine learning method that combines multiple decision

trees which can generally reduce the variance of decision trees. As decision trees are

computationally expensive and prone to overfitting, and tend to find local optima because

they cannot go back after they have made a split, we turn to Random Forest which shows

the power of combining many tree into one model. A Random Forest is a meta-estimator

(i.e. it combines the result of multiple predictions) which aggregates many decision trees,

with some helpful modifications as below:

– The number of features that can be split on at each node is limited to a percentage of

the total (which is known as a hyper-parameter in Random Forest). This ensures that

the ensemble model does not rely too heavily on any individual feature, and makes

appropriate use of all predictive features.

– Each tree draws a random sample from the original data set when generating its splits,

adding a further element of randomness that prevents overfitting.

The above modifications can prevent the trees from being too highly correlated. Now the

ensemble prediction is calculated by averaging the predictions of the all trees producing the

final prediction Hastie et al. (2009).

P̂i

final

=

P
t2T P̂

t
i

T
(5.2)

In Eq.(5.2), T is the number of trees in the Random Forest. P̂ t

i
is the predicted phenotype

associated with individual i, predicted by tree t. P̂i

final

is the predicted value of sample i

predicted by Random Forest.
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5.3.3 Feature Selection

Reducing the feature space in high-dimensional data set such as genotype data will improve

the prediction accuracy of genomic prediction. Therefore, in this paper, a two-layer

wrapper-embedded method is incorporated in the simulation platform to improve the prediction

accuracy of GP and further accelerate the genetic gain of GS algorithms. The adopted two-layer

FS method consists of two layer, in the first layer, a Genetic Algorithm (GA) as a wrapper FS

method has been adopted to come up with a subset of the informative SNP markers to predict

the phenotype of individuals Cerrada et al. (2016); Liu et al. (2013). However, due to relatively

large number SNP markers to number of individuals, a single wrapper method will not eliminate

all irrelevant SNP marker. Therefore, a second layer is added to the first layer, in which an

embedded method, namely Elastic Net (EN) is adopted to eliminate those remaining less

informative SNP markers in the features space given in the first layer Park and Mazer (2018); Zou

and Hastie (2005). Thus, the probability of having redundant/irrelevant SNP markers in the final

FS model would decrease, preventing the prediction model to over fit. Fitness function in GA

plays an important role since the individuals are evaluated based on it. The fitness function of the

proposed FS method is defined as Eq.(5.3).

FFGA = wr ⇤ rRMSE + wp ⇤Rp (5.3)

wr and wp in Eq.(5.3) are the weights of the prediction error and the number of selected

features, respectively, which satisfy the following conditions (Eqs.(2-3)).

wr + wp = 1 (5.4)

wr, wp � 0 (5.5)

rRMSE is defined by the prediction error (RMSE) of the model divided by the average of

response variable to demonstrate the error percentage. It is shown in Eq.(5.6).

rRMSE =
RMSE

y
(5.6)
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However, considering rRMSE as the only performance metric of the prediction accuracy could

be misleading. Therefore, it should be considered along with rfit and bias-variance test.

The fraction of selected features is defined as Rp in Eq.(5.3), where fp is a binary variable

that denotes if feature p is included in a particular individual or not (Eq. 5.7).

0  Rp =

P
P

p=1 fp

P
 1, fp 2 {0, 1} (5.7)

More details on this method can be found in Amini and Hu (2021).

5.3.4 Nature Simulators

The motivation behind considering a nature simulator is the fact that breeding process that is

time-consuming, resource-intensive, and high-risk. So, it is challenging to design, validate, and

train the algorithms directly during the actual breeding process Li et al. (2012); Moeinizade et al.

(2020). Therefore, a nature simulator that mimics nature reasonably well becomes critical for

training and evaluating the GS optimizers. In this study, we have analyzed two nature simulators,

as transparent and opaques simulators described as below.

• The first one is the conventional transparent simulators used in GS algorithms Daetwyler

et al. (2015); Goi↵on et al. (2017); Moeinizade et al. (2019) in which almost all information

is known to the optimizer meaning that the phenotype of individuals are predicted based on

all genotype information assumed to be available.

• Second of all, however, all genotypic information may not be accessible in nature, so to have

a more realistic representation of nature, we used an opaque simulator in which only partial

information is observable to the simulator. The purpose of using an opaque simulator is to

reveal how an optimizer might interact with an opaque nature rather than predict how

nature will act. More details on this type of simulators are described in Amini et al. (2021).
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5.4 Computational Experiments

We used a data set that consists of around 1.4 million SNPs (single nucleotide polymorphism)

from the 369 maize inbred lines of shoot apical meristem (SAM) population distributed across the

10 maize chromosomes ISU (2020). In this paper, we extracted about 100,000 SNPs from this

data set and simulated their phenotype by combining genetic and environmental e↵ects. In each

generation, 200 individuals were produced based on the specific GS method and the reproduction

algorithm Goi↵on et al. (2017). In the first generation 200 randomly selected individuals out of

369 inbred lines has been chosen. The purpose is to test the performance of GS algorithms using

di↵erent initial breeding materials. The duration of the breeding process is set to be T = 10

generations. In each generation, updated genotype and phenotype data will be provided to the

optimizer, which will then select 10 crosses from the current population. Then, 20 progeny from

each cross has been made, so that a constant population size of 200 is maintained throughout the

breeding process.

As for the opaque simulator, out of 100,000 genes, only 1000 genetic markers are used as the

genotype information to be fed in the prediction model to estimate the phenotype or the additive

e↵ects. This simulator represents a nature in which an insu�cient number of genetic markers are

used, and little to no dominance e↵ects or epistatic e↵ects exist.

Moreover, in this study, as we have tuned the hyper-parameters of the adopted prediction

methods, separately for each GS optimizer in each generation and adopted the best one for further

calculation. The hyper-parameters associated with each prediction model are described as follows.

• Ridge Regression: It is well known that the variance of �̂⇤
k
in Eq.(5.1) is a monotonically

decreasing function of k, which becomes zero when k = 0 and the model reduces to the least

square estimator Marquaridt (1970). In our experiments, we tuned k using a grid search

within the {0, 0.1, 0.2, ..., 1} range.

• Random Forest: Although random forest as an ensemble model is less sensitive to the

parameter changing, considering its large number of hyper-parameters, in this study, three
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more important hyper-parameters of the random forest were tuned using a random search

approach. Those are during each split: Number of trees, maximum depth of each tree, and

maximum number of features considered in each split.

Moreover, the parameters of the adopted two-layer feature selection require to be tuned in the

breeding process, for each GS optimizer in each generation. As for the first layer, there are no

universal fixed parameters for GA and as they significantly a↵ect the GA e�ciency, they need to

be generally tuned to specific problems. However, some of the GA parameters such as, initial

population size and mutation rate have been tuned in this paper, limited computational capacity

does not allow to expand the search grid to find the global optimal parameters. Therefore, a

discrete range of search space has been defined for these two parameters and the best set were

selected to be adopted in the final model. Furthermore, wr and wp in Eq. 5.3 also have been

tuned using a discrete grid search from [0, 1]. The grid search space is defined in Table 5.1.

Table 5.1: Weights in fitness function

wr 0.15 0.5 0.85 1
wp 0.85 0.5 0.15 0

As for the second layer, the degree to which model complexity is penalized in Elastic Net is

controlled by weighting terms ↵ and ⇢. As the outcome of the Elastic Net is a↵ected by ↵ and ⇢,

tuning them should be done within the learning process Chen et al. (2019); Park and Mazer

(2018); Wei et al. (2019). In this paper, both of these parameters have been tuned in their

feasible region, for ↵ > 0, and for 0  ⇢  1.

5.5 Results and Discussions

In this section, we analyzed the performances of LAS and LATB optimizers as the two

best-performing GS methods, within several scenarios as follows. In the following figures, 5.2 -

5.5, the x-axis and y-axis demonstrate the generation number and the average genetic gain,

respectively. The other abbreviations used in these figures are as follows: RR: Ridge Regression,
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RF: Random Forest, WOF: Without using Feature Selection, WF: With Feature selection.

Moreover, the left component of each figure incorporates Ridge Regression as the prediction

method in the breeding process and the right one use Random Forest. Therefore, the nature

simulator, the GS optimizer and the prediction method are constant in each sub figures and the

status of feature selection method is the only parameter changing.

Scenario 1: LAS performance in transparent simulator

In this scenario, the e↵ect of using the two-layer feature selection method on the performance

of LAS has been analyzed using di↵erent prediction methods within a transparent simulator. As

can be seen in figure 5.2, LAS achieves higher genetic gain throughout the whole breeding process

when the two-layer feature selection method is incorporated in all generation, regardless of the

adopted prediction method. Furthermore, a fair comparison can be made on the performance of

the prediction methods under similar circumstances. Comparing the the right and left sub figures

of figure 5.2, the overall rate of improving genetic gain is higher with Random Forest as the GP

method, e.g., it creates better-performing progeny in the final generation.(Refer to figure 5.6 in

the Supplementary Data section for a comprehensive performance comparison.)

(a) (b)

Figure 5.2: Average genetic gain of LAS optimizer in transparent simulator using Ridge Re-
gression (left), and Random Forest (right)
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Scenario 2: LAS performance in opaque simulator

In this scenario, the adopted nature simulator has been changed to an opaque simulator, i.e.,

the e↵ect of using the two-layer feature selection method on the performance of LAS has been

analyzed using di↵erent prediction methods within an opaque simulator. Figure 5.3 demonstrates

that, LAS achieves higher genetic gain in almost all generation using the two-layer feature

selection method with both linear and nonlinear adopted prediction methods. Moreover, as the

simulated breeding process proceeds to the end, the outperformance of adopting the two-layer FS

method becomes more visible. Furthermore, a fair comparison can be made on the performance of

the prediction methods under similar circumstances. Refer to figure 5.7 in the Supplementary

Data section for analyzing the di↵erences of prediction methods performances as well.

(a) (b)

Figure 5.3: Average genetic gain of LAS optimizer in opaque simulator using Ridge Regression
(left), and Random Forest (right)

Scenario 3: LATB performance in transparent simulator

In this scenario, analyses have been conducted on LATB GS optimizer, i.e., the two-layer

feature selection method is adopted within a transparent simulator to improve the performance of

LATB in terms of the genetic gain. As can be seen in figure 5.4, using the two-layer FS method,

LATB is capable of creating better-performing population throughout the breeding process when

the two-layer feature selection method is incorporated regardless of the adopted prediction



94

method. However, a fair comparison can be made on the performance of the prediction methods

under similar circumstances. (Refer to figure 5.8 in the Supplementary Data section for a

comprehensive performance comparison.)

(a) (b)

Figure 5.4: Average genetic gain of LATB optimizer in transparent simulator using Ridge
Regression (left), and Random Forest (right)

Scenario 4: LATB performance in opaque simulator

In this scenario, the adopted nature simulator has been changed to an opaque simulator, i.e.,

the e↵ect of using the two-layer feature selection method on the performance of LATB has been

analyzed using di↵erent prediction methods within an opaque simulator. Figure 5.5 demonstrates

that, LATB achieves higher genetic gain in almost all generations using the two-layer FS method

with both linear and nonlinear prediction methods. Moreover, as the simulated breeding process

proceeds to the end, the outperformance of adopting the two-layer FS method becomes more

visible. Furthermore, a fair comparison can be made on the performance of the prediction

methods under similar circumstances. Refer to figure 5.9 in the Supplementary Data section for

analyzing the di↵erences of prediction methods performances as well.

As the breeders perspective, the GS algorithm with higher genetic gain is preferable and

based on the results, integrating Random Forest as the GP method along with the two-layer FS

method within the LATB GS optimizer creates better-performing population. Moreover, the
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benefit of the proposed comprehensive is not limited to select the best GS algorithm. It is capable

of identifying the best GS algorithms considering the breeders feasible options and constraints.

For instance, if a breeder considers one generation in the breeding cycle and uses LATB within

and opaque simulator, Random Forest without using the FS method and Ridge Regression with

the FS method would be the best options (Figure 5.9).

(a) (b)

Figure 5.5: Average genetic gain of LATB optimizer in opaque simulator using Ridge Regression
(left), and Random Forest (right)

As a statistical point of view, it is important to quantitatively assess the e↵ectiveness of the

two-layer FS method on improving the genetic gain of GS algorithms. Therefore, a two-sample

t-test has been designed in which, Ho : µWF = µWOF vs Ha : µWF > µWOF , with significance

level of ↵ = 0.05. µWF and µWOF stand for the average genetic gain in last generation with

incorporating the two-layer FS method in the GS algorithms and not incorporating it,

respectively. Table 5.2 summarizes the statistical di↵erences between including and non including

the two-layer FS method in GS algorithms in the last generation (T = 10). Based on the p-value

resulted from the t-test, we can see that for all the GS optimizers and prediction methods within

the both transparent and opaque breeding simulators, adopting the two-layer FS method within

the GS algorithms is significantly e↵ective on improving the performance of GS optimizers.
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Table 5.2: Statistical di↵erences of using two-layer FS method within the GS algorithms

GS Optimizer Simulator Prediction Method p-value

Transparent
RR 0.042 < ↵ = 0.05

LAS
RF 0.035 < ↵ = 0.05

Opaque
RR 0.032 < ↵ = 0.05
RF 0.0315 < ↵ = 0.05

Transparent
RR 0.045 < ↵ = 0.05

LATB
RF 0.03 < ↵ = 0.05

Opaque
RR 0.029 < ↵ = 0.05
RF 0.02 < ↵ = 0.05

5.6 Conclusions

In this paper, we analyzed the e↵ectiveness of adopting the two-layer wrapper-embedded

feature selection method as a pre-processing step in the Genomic Selection algorithms to produce

elite progeny, i.e., progeny with better genetic gain. The main motivation of this study was to

decrease the feature space dimension of the genetic data to maintain the prediction accuracy in

phenotype prediction while eliminating irrelevant and non-informative genetic data. This will

further result in a better-performing population through several generations of the breeding

process.

Moreover, the performance of the proposed two-layer feature selection method has been tested

on two of the best-performing Genomic Selection optimizers such as, LAS and LATB, using linear

and nonlinear prediction methods, within the transparent and opaque simulators. The results of

the computational experiments on a Maize data set demonstrate that regardless of the type GS

optimizer, prediction method, and the nature simulators, adopting the two-layer feature selection

method within the GS algorithms produce better-performing progeny compare to not including it

the algorithm. Furthermore, a two-test sample test confirms the significant outperformance of

two-layer feature selection method in improving the genetic gain in long term.

This study is subject to a few limitations which suggest future research directions. Firstly, we

have adopted a random search approach to tune the multiple hyper-parameters of the prediction
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and FS method due to computational capacity limitation. Therefore, more complex approaches

such as grid search over a wide range possible hyper-parameters could be addressed in the future

studies that may improve the prediction accuracy and genetic gain. Secondly, although the

e↵ectiveness of the two-layer FS method on improving the crops genetic gain has been discussed

in this paper, the e↵ect of using the two-layer FS method on population genetic diversity should

be addressed in the future studies. Finally, including other GS optimizers, such as conventional

genomic selection in the comparison platform would confirm the capability of the two-layer FS

method for optimizers without look ahead characteristics.
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González-Camacho, J. M., Ornella, L., Pérez-Rodŕıguez, P., Gianola, D., Dreisigacker, S., and
Crossa, J. (2018). Applications of machine learning methods to genomic selection in breeding
wheat for rust resistance. The Plant Genome, 11(2).
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5.8 Appendix: Supplementary Data

In figures 5.6 - 5.9, the performances of genomic prediction method can be compared in

similar circumstances.

Figure 5.6: Average genetic gain using LAS optimizer in the transparent simulator
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Figure 5.7: Average genetic gain using LAS optimizer in the opaque simulator

Figure 5.8: Average genetic gain using LATB optimizer in transparent simulator
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Figure 5.9: Average genetic gain using LATB optimizer in opaque simulator
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CHAPTER 6. GENERAL CONCLUSION

This dissertation aims to address decision making challenges that breeders and analysts are

facing, such as dealing with high-dimensional genetic data, producing better-performing

population and creating a simulation platform to imitate the actual breeding process. They have

been addressed via utilizing data analytics and optimization-based simulation approaches. The

primary part of a breeding process is the breeding parents’ selection in each generation, in a way

that better-performing progeny could be produced in future generations. Genomic Selection

algorithms have been designed to address this issue by focusing on improving the genetic gain and

genetic diversity of crops throughout the generations. However, genomic selection approaches are

influenced by multiple factors, such as the prediction accuracy in phenotype prediction, selection

and mating strategy to maintain the population diversity while improving the genetic gain,

considering single or multiple-traits at the same time. In this dissertation, we demonstrate how

these factors a↵ect the performance of genomic selection algorithm and develop optimization and

machine learning techniques to enhance the crops genetic gain while maintaining genomic

diversity.

The first paper developed a novel two-layer feature selection to address the curse of

dimensionality problem in data set with high-dimensional feature space. This issue results in

overfitting the prediction methods and significant cost on storing such data sets on huge

databases. Therefore, feature selection (FS) methods should be adopted to select the best subset

of salient features. Thus, in this paper, we combined a wrapper and an embedded FS method and

propose a two-layer wrapper-embedded FS method for the first time. The first layer of this

method incorporates Genetic Algorithm (GA) as the wrapper and Elastic Net (EN) as the

embedded method and originally designed for regression problems. The main contribution of this

study lies on the fitness function of the GA in the first layer of the proposed FS method that
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integrates the rate of feature space reduction and prediction accuracy improvement,

simultaneously and the user can determine the importance of each component using the relative

weights that associated with them. Considering this fitness function, the two-layer FS method

attempts to eliminate irrelevant and non-informative features while maintaining the prediction

accuracy. This method has been compared with state-of-art FS method particularly on the

diverse real genetic Maize inbred lines and the results demonstrated the outperformance of the

proposed FS method both in terms of rate of feature space dimension reduction and prediction

accuracy improvement.

The second paper introduced a new genomic selection (GS) algorithm built on a previous GS

method, Look Ahead Selection (LAS), that aims at maximizing the expected GEBV of the best

o↵spring in the terminal generation. However, in this study, we extended it to a new method

called, Look Ahead Trace Back (LATB) algorithm in which the breeding parents of each

generation are selected based on their performances in the final generation. This method creates a

large pool of candidate crosses in each generation and simulates the breeding process upon each

subset of them, then it identifies the elite progeny in the final generation and traces back to its

ancestors in the current generation. In this case, a specific pair of parents may not be selected in

the previous GS algorithms as the breeding parents since it does not perform well in the current

generation. However, due the long-term perspective of LATB, it may select those parents if they

were able to produce high-performing population in the final generation of the breeding process.

Moreover, a new class of simulator, called opaque simulators, are designed in this paper in which

the breeding processes are simulated on. These opaque simulators have the advantages of

simulating the breeding process not knowing all genetic information of the population, while in

previous transparent simulators, all the genetic data was observable to the simulator. The opaque

simulators account for the nature uncertainty, thus the simulation result would be more robust in

comparison with using transparent simulators.

The third paper developed the L-shaped selection method to improve the genetic gain in

multi-trait genomic selection, when breeders are interested in improving multiple traits of a crop
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rather than a single trait throughout the generations. Both contributions of this paper lie on the

limitations of the common index selection that is being widely used in for multi-trait genetic

improvements. The first contribution addresses the di↵erent traits measurement units that was

ignored in the index selection. The L-shaped selection make the traits unit less via normalizing all

desired traits to fall in same range, therefore, none of the traits are privileged because of their

units. The only parameters that defines the relative importance of traits are the non-zero weights

associated with each trait. The second contribution motivated by the convexity of the objective

function of index selection, is a modified objective function in L-shaped selection method that is

no longer essentially convex. This non-convexity enables the proposed method to capture all of

the Pareto optimal solution, i.e., the elite individuals to be selected as the breeding parents. The

L-shaped selection method has been compared with index selection using two traits with di↵erent

measured units and multiple weight set alternatives for both traits. The results demonstrate the

outperformance of the L-shaped selection in terms of genetic gain and diversity of the population

in the final generation of the breeding process.

Finally, the last paper integrated the two-layer FS model proposed in the first paper, into

multiple GS algorithms within the two di↵erent nature simulators. In this paper, we designed a

comprehensive comparison platform that aims that analyzing the performance of adopting the

two-layer FS method in terms of improving the genetic gain in di↵erent GS algorithm under

di↵erent circumstances, such as di↵erent prediction methods and simulation platforms. Due to

the computational capacity, we have selected the two best-performing GS algorithms, namely,

LAS and LATB, and two commonly-used prediction methods in the genetic fields, namely, Ridge

Regression from linear class, and Random Forest from non-linear class to assess the two-layer FS

method in di↵erent situations. The performance of all combinations of mentioned GS algorithms

and prediction methods with and without incorporating the FS method have been analyzed under

transparent and opaque simulators, separately. The results on a real Maize inbred lines data set

demonstrate that embedding the two-layer FS method, breeders are capable of producing
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better-performing progeny not only in the final generation of the breeding process, but also in

almost all mid-generations.

This dissertation is subject to some limitations which suggest future research directions. First,

in the look ahead trace back selection, we assumed that there are no G⇥ E e↵ects attributed to

the individuals’ traits that can be included in the future studies. Second, although we introduced

multiple versions of the opaque simulators to mimic the nature and ensure the robustness of the

results, ultimate validation is required to identify the closest simulator to the nature. Third,

whenever we tuned the hyper-parameters within the FS or GS algorithms, due to the

computational limitation, a grid search within a constrained range of possible values were

conducted. However, as the performance of these methods are influenced by their parameters, a

more comprehensive search/tuning algorithm can be addressed in future research to further

improve the performances of FS and GS methods. Finally, however, the L-shaped selection

method for multi-trait genomic selection, it has been tested considering maximum of two/three

positively correlated traits. Future simulations considering more traits negatively correlated are

required to demonstrate the applicability of the proposed method on more realistic and

sophisticated cases.
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