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ABSTRACT 

As one of the corn belt states of the US, Iowa has corn and soybean as the main row 

crops, which are the main source of nitrate leaching. Many agencies such as USEPA focus on the 

hypoxic zone in the Gulf of Mexico caused by nitrate leaching in the croplands of MARB. 

Researchers have utilized quantitative methods such as regression, simulation, and qualitative 

methods to calculate nitrate load. Since machine learning aims to understand the structure of the 

data and fit that data to models to predict future outcomes, it can be a great way to tackle this 

problem because it can predict future outcomes and provide additional insights from the data. 

The time-series dataset used in this study focused on predicting Nitrate yield (kg NO3-N ha-1 

cropland) for 29 watersheds of Iowa, for which the data was collected from 2001 to 2018. The 

objective of this study was to find relationships between the nitrate yield with the independent 

variables from the dataset, which can explain the trend and help understand future nitrate 

leaching in the state of Iowa. The same model can identify potential causes and relationships for 

different datasets from different states. Walk Forward Cross-Validation approach was used for 

this study, which focuses on solving time-series analysis problems. The RRMSE value of the 

trained model for the test year 2018 was 23.68%, with an R2 score of 77.06%. The model 

suggested that the most important features were annual discharge, rain, corn to soybean ratio, 

and other variables. The Partial Dependency Plots (PDP) explain their relationship with the 

target variable, nitrate yield. The relationship from PDP shows an underlying aspect of what 

value ranges contribute to the sudden changes in nitrate yield and how this finding can help 

policymakers and environmental agencies understand the problem further.
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CHAPTER 1.    INTRODUCTION 

Nitrate leaching is a naturally occurring process where nitrate leaves the soil and either 

mixes with surface water or passes through the different soil layers and merges with 

groundwater. Nitrate is an essential component of modern agricultural applications, and it is not 

a problem when it is within the root zone of the crops, but once it leaves there, it becomes an 

environmental pollutant, which goes on to merge with ponds, rivers, and other water bodies, 

ultimately to the ocean. The Mississippi Atchafalaya River Basin (MARB) is one of the largest 

river basins in the world, and 24 states contribute directly or indirectly to the river basin, which 

then leads to the Gulf of Mexico. The nitrate losses of the Midwest crop region and the US Corn 

Belt of the MARB are important factors behind the hypoxic zone in the northern part of the Gulf 

of Mexico. By 2035, The United States Environmental Protection Agency (USEPA) plans to 

reduce the average annual size of the hypoxic zone from ~ 15,000 km2 to ~5,000 km2. 

The nitrate leached in the MARB damages the aquatic ecosystem. It pollutes the drinking 

water as the nitrate levels in ground and surface waters are a vital parameter of groundwater 

pollution. Higher levels of nitrate can be toxic to newborns. The maximum nitrate limit in 

drinking water has been set to 10 mg NO3-N/l by the USEPA. Nitrate leaching is a big issue 

because it pollutes the groundwater and helps eutrophicate phosphate by carrying sulfate and 

immobilizing iron (Smolders et al., 2010). 

Nitrate leaching is a complex process that has many reasons behind it. The introduction 

of synthetic N fertilizer to the US Corn Belt saw a 50-300% increase in crop productivity, 

leading to cropping methods that focus on warm-season annual crops such as maize and soybean 

(Hatfield et al., 2009). Perennial crops have low nitrate loss (Randall et al., 1997), and annual 

crops, on the contrary, have high nitrate losses (David et al., 2010). Part of the reason behind this 
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is the root depth of these crops, as perennial crops have longer roots, which means they can hold 

on to the nitrate more than the annual crops with shallow roots. Another reason behind the 

difference in nitrate loss is that annual crop like maize and soybean has fallow periods. The land 

is no longer cultivated during the fallow periods, and the absence of plant demand leads to higher 

nitrate loss (Martinez-Feria et al., 2018). So fallow periods in conjuncture with excessive Nitrate 

fertilizer have increased the region's Nitrate loss. 

The soil profile is also significant for nitrate leaching, as a coarse profile with less depth 

to the water below would be more susceptible to nitrate leaching. For example, sand is more 

vulnerable to nitrate loss than clay. Weather variables such as temperature and rain affect the 

nitrate leaching tremendously, as a higher amount of rain can drive the nitrate through the soil. 

(Lu et al., 2020) has found that extreme precipitation drives the increase in nitrate load in the 

Gulf of Mexico. Also, the interannual weather variability in conjunction with the cropping 

timeline can be vital. For example, most nitrate leaching occurs during the winter as the annual 

crops like maize and soybean would have been under the fallow period. During the early 

application of N fertilizer in spring and summer, the nitrate can be lost very quickly if there is an 

excess of rain. The annual discharge is the total water being discharged at one location of a 

watershed, which shows the volume rate of water flow being transported through a watershed. 

The value of annual discharge is highly correlated with nitrate yield as higher discharge would 

bring more suspended solids, dissolved chemicals, and biological materials with it. 

  For many decades various national and local governing agencies have been working to 

reduce nitrate loss from cropping systems to ground and surface waters. (Schilling & Wolter, 

2009) used the SWAT model to find the load reduction strategies for the Des Moines River. 

(Dybowski et al., 2020) have created an interactive website that calculates Nitrate leaching load 
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based on various inputs collected from farmers in Poland's puck commune area. (Danalatos et al., 

2022) used the 5-year moving average method and Monte Carlo simulations to measure long-

term trends in nitrate losses for Iowa watersheds and found that the interannual variability in 

weather is strongly responsible for the changes in nitrate yield. (Gentry et al., 2014; McIsaac et 

al., 2016) used regression to calculate nitrate load and understand interannual variation in nitrate 

yield in the rivers of Illinois. 

Ecological predictions such as nitrate leaching can be effectively carried out using 

Machine Learning (ML). With adequate data of good quality, a machine learning model can 

predict future outcomes and provide essential insights that can be useful to solve the underlying 

problems. Time series analysis of the ecological predictions problem is challenging, but a rich 

dataset with various spatial and temporal variables helps learn the model better. (Spijker et al., 

2021) took the ML approach to map N concentration across the Netherlands. (Ransom et al., 

2017) used a hybrid ML approach to predict nitrate concentration in California. Hence, 

forecasting the nitrate leaching in the state of Iowa could provide a valuable understanding of the 

problem and be helpful for decision making. 

There needs to be a balance between the output of the manmade applications to increase 

agricultural benefits vs. the impact on the environment caused by them. The ML model can help 

predict the future outcome of the nitrate yield and help understand the problem better, as it can 

provide more details on how the target variable is related to the independent variables. The 

study's objective was to find the relationships between the target variable, nitrate yield, and the 

independent variables such as weather, discharge, soil, etc. While the Flow Weighted average 

Nitrate Concentration (FWNC) is a crucial variable, government agencies are more interested in 

the nitrate load and insights to reduce the same. Nitrate Yield is defined as nitrate load in corn 
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and soybean planting areas. The feature importance and partial dependency plots can portray a 

clear picture to understand this relationship of how independent variables affect Nitrate yield. 

These variables and their effect on the target variable vary geographically. 

The outcome of this study would be helpful for Iowa and the neighboring states of the 

corn belt region, where the weather and other features share some similarities. The same 

approach with the different datasets can show different outcomes, which would then be helpful 

for that region. Feature importance and partial dependency plots have been used widely in 

ecological prediction problems, giving insight into what variables affect the most to the target 

variable (Shahhosseini et al., 2020; Spijker et al., 2021). USEPA aims to reduce the hypoxic 

zone in the Gulf of Mexico, which is highly dependent on the annual nitrate losses from the 

Midwest crop regions. Therefore, insights from this study can help local and regional agencies to 

monitor the trends of the independent variables and focus their efforts and resources on 

important tasks. 

The remainder of this paper talks about the dataset used for this study and various 

machine learning methodologies. Then, the model performance and insights generated from the 

analysis are discussed, along with challenges and future improvements, and the paper concludes 

with findings. 
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CHAPTER 2.    MATERIALS AND METHODS  

The dataset contains long-term water quality data with NO3-N concentrations and 

monthly Nitrate load measurements which were taken on the first week of the month. The data 

was curated by the Iowa Department of Natural Resources Ambient Water Monitoring Program 

(IDNR 2017-2021). The discharge values were taken from the United States Geological Survey 

stream gauges (sensors that record the measurements, USGS and University of Iowa). Three 

target variables were calculated from this monthly and daily data: annual flow-weighted average 

NO3--N concentration (FWNC; mg NO3-N L-1) and annual NO3-N load (Kg NO3-N   watershed-1 

year-1). Annual load is affected by the size of watersheds, and therefore normalizing it with area 

gives the nitrate yield, which is not dependent on the size of watersheds. FWNC was dropped 

because, while spatial analysis of FWNC gives more information on specific watersheds' 

performance, nitrate yield is used as the target variable because nitrate load has been found as the 

leading cause behind the size of the hypoxic zone in the Gulf of Mexico (Jones et al., 2018; 

Rabalais et al., 2002). The below equation calculates nitrate NO3-N yield (kg NO3-N ha-1 

cropland). Since Corn and Soybean make up most of the cropland area for all watersheds 

throughout the years, the Nitrate yield was calculated with corn and soybean cropland area. 

𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑦𝑖𝑒𝑙𝑑 =
𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑜𝑎𝑑

(𝑐𝑜𝑟𝑛 𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 + 𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎)
100 × 𝑠ⅈ𝑧ⅇ

 

Data Set 

The dataset contains data for 29 watersheds over 18 years and, therefore a total of 522 

observations. The auxiliary data consists of soil parameters, size of the watershed, cropland area, 

discharge, maize and soy yields, and weather variables. Each watershed is different in size and 

has different values of the target variables as well as the independent variables. The FWNC value 
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ranges from 0 to 22 mg NO3-N/l with a mean of 6.8 mg NO3-N/l, and the yield ranges from 0 to 

121.27 kg NO3-N/ha with a mean of 28.32 kg NO3-N/ha. The size of the watershed varies from 

89 to 20,155 km2. The data has been collected from the year 2001 to 2018, out of which the year 

2001 to 2017 has been used to train the model, and the year 2018 has been kept as a holdout data 

to test the model's performance. 

 

Figure 1: Map of 29 watersheds that are analyzed in this study; the yellow dots show the location 

of the sample collection site 

Data Preprocessing 

Data preprocessing is an important task that is performed before training the ML model 

to reduce complexity. There are 69 independent variables and three interrelated target variables 

(FWNC, Annual load, and yield). Figure 2 shows that the yield across all the watersheds has 

increased over time, and a trend seems to be increasing. The year 2012, as seen in figure 2 (b), 
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has extremely low nitrate yield values compared to other years. There was a drought during the 

year 2012, and therefore the Nitrate yield values for all watersheds were considerably low 

compared to other years. Since this case is considered an outlier from the ML model training 

perspective, early model testing presented a high test RRMSE value for 2012. Therefore, the 

year 2012 is removed from the data set. 

 

Figure 2: Nitrate Yield trends during the years 2001-2018, (a) trend line for an increase in Nitrate 

Yield, (b) Watershed wise Nitrate yield per year 

The Weather variables, which consist of radiation, rain, and temperature, are provided 

every month, from which radiation and rain are summed up for the annual value, and 

temperature is taken as an annual mean value throughout the year. The new feature space also 

includes average and summed weather variables corn to soybean planting size, shown below. 

𝑐𝑜𝑟𝑛 𝑡𝑜 𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑐𝑜𝑟𝑛 𝑠𝑖𝑧𝑒

𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑠𝑖𝑧𝑒
 

'Sand' was removed because of the high Pearson correlation with other soil features, as 

high correlation variables similarly affect the target variable. Thus, the dataset has become 

denser than the original dataset. For watershed 3, the years 2008, 2009, and 2010 were missing 
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FWNC and nitrate load values. The missing values were replaced with the mean value for that 

watershed for training the model across the years. After feature selection and feature 

construction, there are only 17 features left that are used to simplify the training set for the model 

to combat the curse of dimensionality, which are as follows: annual discharge, root depth, soil 

profile, maize yields, manure maize, soy yields, croplands, tile drainage, corn to soybean ratio, 

annual radiation , rain, average temperature, bulk density, clay, Ksat, silt, Soil organic matter. 

Walk Forward Cross-Validation 

After data preprocessing, since the data has a form of time series, it does not hold the 

assumption of being independent and identically distributed (IID). Therefore, traditional cross-

validation methods such as K-Fold can no longer be applied for time series analysis. The walk 

forward cross-validation approach described by (Hyndman & Athanasopoulos, n.d.) works well 

on time series analysis. The training data is split into parts that roll forward with time, and each 

particular training set is followed by a validation set which is further ahead in time. This way, the 

model is no longer accessing the future data, unlike traditional splitting techniques in K-fold. 

Two methods were introduced in (Hyndman & Athanasopoulos, n.d.) for walk forward cross-

validation, sliding window, and expanding window cross-validation. The sliding window 

approach consists of the same amount of training set each time that rolls forward, whereas in the 

expanding window approach, the training set size increases after each split. In both approaches, 

the size of the validation set remains constant, which also rolls forward with the training set. 
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Figure 3: Walk Forward Cross-Validation approach. (a) Sliding Window (b) Expanding window 

Machine learning Models 

Tree-based ensemble machine learning models such as Random Forest and LightGBM 

were used as a model in this study as they have been extensively used for solving environmental 

problems (Chaibi et al., 2021; Hengl et al., 2018; Zhong et al., 2021).  

Random Forest 

Bootstrap aggregating or bagging is an ensemble technique that reduces the variance and 

generalizes the model by randomly creating samples of data from the whole dataset with 

replacement and trains multiple models independently. The final prediction is the average of 

these learners (Breiman, 1996). Random Forest is a special case of bagging. Multiple individual 

decision trees are based on random values and the number of predictors taken for split candidates 

in each iteration (Breiman, 2001). Random Forest uses data points that are excluded from the 

bootstrapping procedure (out-of-bag observations) to compute errors and therefore performs 

better than bagging (Cutler et al., 2007). 

Light Gradient Boosting (LightGBM) 

Gradient boosting is another tree-based ensemble method that combines weak learners 

iteratively. With each iteration, the model learns from the errors of the previous model and 

improves. Microsoft proposed LightGBM in 2017; LightGBM is a faster tree-based model, 
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which, unlike other conventional tree-based models, does not grow tree-level wise; instead, it 

grows leaf wise. (Ke et al., 2017) proposed two new ideas for improved speed and performance: 

first is gradient-based one side sampling to select data observations with high gradient and 

exclude the rest, and second, Exclusive Feature Bundling (EFB) to bin mutually exclusive 

features to reduce the dimension of the data which improves the performance and speed of the 

model.  

Random forest and LightGBM are taken as the choice of models because both perform 

well with low data and are easy to understand. Random Forest needs minimal hyperparameter 

tuning and is more robust to overfitting. LightGBM requires more data and needs complex 

hyperparameter tuning. Although both perform well, LightGBM can overperform Random 

Forest with proper tuning and with more data. Grid search method of hyperparameter tuning was 

used under Walk Forward Cross-Validation to reduce the prediction errors such as RRMSE 

discussed below. 

Performance Metrics 

Root Mean Squared Error (RMSE) 

Root mean squared error (RMSE) is defined as the square root of the average squared 

deviation of predictions from actual values (Evaluating Machine Learning Models [Book], n.d.). 

𝑅𝑀𝑆𝐸 = √
𝛴𝑖(𝑦𝑖 − �̂�𝑖)2

𝑛
 

Relative Root Mean Squared Error (RRMSE) 

Relative root means squared error is the RMSE error normalized by the average of actual 

values and is used as a percentage value where lower RRMSE values are favorable. 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
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Mean Absolute Error (MAE) 

 The mean absolute error of a model with respect to a test set is the mean of the absolute 

values of the individual prediction errors over all instances in the test set (Sammut & Webb, 

2010). 

MAE =
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛
 

Coefficient of Determination R2 score 

Coefficient of determination R2 is a statistical measure that tells the proportion of 

variance of the target variable, which is explained by the predictor variables. R2 explains to what 

extent the variance of one or more variables can explain the variable of the target variable, and it 

is a measure of the goodness of fit of a model. It can be defined as below: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

Where RSS is the sum of the square of residuals. 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

𝑇𝑆𝑆 = ∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 

Adjusted R2 is the modified version of R2, which has been adjusted for the number of 

independent variables in the model. Adjusted R2 gives a percentage of variation that is explained 

by the independent variables that affect the target variable, whereas R2 does not accommodate 

that. Therefore, Adjusted R2 penalizes if the model uses more independent variables which do 

not affect the target variable. So for simplifying, the adjusted R2 score is referred to as R2 in this 

study. The formula used is shown below, where n is the number of samples in the data and k is 

the number of independent variables used. 
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𝑅𝑎𝑑𝑗
2 = [

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
] 

Mean Directional Accuracy (MDA) 

Mean Directional Accuracy (MDA) is a measure that calculates the probability that the 

prediction model can identify the future direction of the time series (Cicarelli, 1982). MDA 

coupled with forecast performance metrics such as RRMSE can help compare the performance 

of the model and understand the capture of trends. 

𝑀𝐷𝐴 =

∑ 1𝑠𝑔𝑛(𝑦𝑡−𝑦𝑡−1)==𝑠𝑔𝑛(ŷ𝑡−𝑦𝑡−1)
𝑡

𝑁
 

Where yt and ŷ𝑡 are actual and predicted values respectively at time t, 1 is the indicator 

function, and sgn(·) denotes the sign function. 
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CHAPTER 3.    RESULTS AND DISCUSSION 

Numerical Results 

The feature importance and the partial dependency plots (PDP) are used to understand 

how the various independent variables affect the nitrate yield. The RRMSE value and the 

adjusted R2 value suggest the error and the goodness of fit of the model overall. Table 1 shows 

the results of various scenarios, and the machine learning models were used in two different CV 

methods discussed in the above chapter. 

Table 1: RRMSE and R2 values of Cross-Validation and optimized ML models 

CV method and model used RRMSE % Adjusted R2 % MAE kg NO3-

N/ha 

MDA % 

Expanding window RF 29.65 67.46 9.41 75 

Expanding window LightGBM 23.68 77.06 7.14 89.28 

Sliding window RF 26.71 70.81 8.51 92.85 

Sliding window LightGBM 26.66 70.92 7.58 82.14 

  

Sliding Window CV approach 

The Sliding window cross-validation has a limited (6 years) training set for each fold, and 

it tests on the following one-year validation set. The sliding window approach has similar results 

with RF and LightGBM, with RRMSE values of 26.71% and 26.66%, respectively, and R2 

values of 70.81% and 70.92%, respectively. RF model captures the trend better because the 

MDA value is 92.95%. Both models perform very similarly because the sliding window 

approach does not contain enough data for the ML model to learn, as the trend of the whole time-

series data is lost because of the truncated training set during each CV fold. 
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Expanding Window CV approach 

In contrast to sliding window CV, the expanding window has a training set that increases 

as the cross-validation method continue. Therefore with each fold, the model gets more training 

data. This helps the model to learn underlying trends within the data. RF and lightGBM RRMSE 

values with expanding window are 29.65% and 23.68%, respectively, while the goodness of fit 

measure R2 values were 77.06% and 67.46%. A high value of R2 with LightGBM suggests that 

the model is a good fit for the nitrate yield, and the model can explain the variance within the 

nitrate yield. MDA value of 89.28% suggests that the model can predict the correct direction of 

the trend 89.28% of the time. LightGBM needs more data than RF and can outperform RF with 

extensive hyperparameter tuning. The sliding window is often used when there is high-frequency 

data with hourly and daily data points; expanding window performs well with yearly datasets. 

Therefore, LightGBM with expanding window cross-validation outperforms Random with 

sliding window cross-validation approach. The RRMSE and R2 values show that the model 

explains a significant portion of the variance in the nitrate yield, and the MAE value shows that 

the predictions are close, and the model has a large confidence interval on at least the annual 

level. 

Feature Importance based on Expanding Window approach using LightGBM 

The feature importance shown below, constructed from the LightGBM model, shows 

interesting insights into the problem. 
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Figure 4: Feature importance constructed from LightGBM expanding window cross-validation 

approach 

The x-axis of the graph above has the numerical value, which shows the relative 

importance of the feature or variable compared to other variables. The higher the value, the more 

influential the feature is. In other words, the feature contains more information that explains the 

relationship with the target variable. The first variable is the discharge in liters and the second 

variable is the rain in millimeters. The fundamental reason for these two variables being the most 

important variables for nitrate leaching is that the water carries the nitrate to the ground. The 

more the water content in the soil, the more nitrate will leach. Next is soybean yield, which is the 

amount of soy being produced per acre in bushels. The following variable is the corn to soybean 

ratio, which is the ratio of corn planting area to the soybean planting area. It is important because 

corn and soybean have different characteristics and require different agricultural methods. This 

goes directly with the corn to soybean ratio. The weather variables temperature and radiation, 
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along with maize yield or corn yield, come after that, which affects the nitrate leaching. The 

figure shows the top 10 variables that most affect the nitrate yield. 

Partial Dependency Plots (PDP) of Optimized LightGBM 

The partial dependency plots are constructed based on the feature importance, and they 

show further insights from the model, which are beneficial to understanding nitrate leaching. The 

annual discharge value seems crucial as from the beginning, as annual discharge increases, the 

nitrate yield increases drastically until reaching the value of around 2.0 x 1012 liters, and then it 

stagnates. Rain is another important variable, and the PDP shows that nitrate yield does not vary 

until 800 mm of rain but increases sharply around 860 mm and follows a step relationship where 

it increases and stagnates, and repeats the cycle. The amount of soybean yield also has a step 

relationship with nitrate yield. Nitrate yield increases and decreases with an increase in soybean 

yield. The PDP of nitrate yield and corn to soybean ratio is also descriptive. There are multiple 

steps on which nitrate yield increases sharply with an increase in corn to soybean ratio, 

specifically at 1.2, 1.6, and 1.7. This shows that the corn planting area is more susceptible to 

nitrate leaching compared to the soybean planting area, and since the size of the watershed 

normalizes the nitrate yield, this observation is valid for all watersheds. Average temperature 

affects the nitrate yield, too, with an average temperature below 8 degrees showing very high 

nitrate yield and then behaving like a bell curve. This resonates with the literature that nitrate 

losses are high during winter weather with lower temperature, so annual croplands for corn and 

soybeans are not cultivated and therefore has a fallow period. There is also some nitrate leaching 

during spring and early summer, which results from applying N fertilizer followed by above-

average rain. Maize yield or corn yield affects the nitrate yield similarly to soybean yield and has 

a step relationship with nitrate yield. These findings strongly suggest that weather variables can 

explain the trend in nitrate yield very well. The variables under human control, such as corn to 
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soybean planting area ratio and soy and corn yields, can be optimized to minimize the nitrate 

losses. The effect of corn to soybean planting area ratio on nitrate yield can be a crucial factor in 

tackling the challenges of reducing nitrate leaching as a ratio lower than1.2 with adequate 

weather conditions can significantly drive down the nitrate losses. The annual discharge is 

another variable that can help reduce nitrate losses. These findings can help in decision-making 

for local authorities and agricultural professionals. 

 

Figure 5: Partial Dependency Plots derived from Expanding Window approach using LightGBM 
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The challenges faced with this study can suggest future work. The dataset contains 

scattered daily, and monthly measurements data, but only yearly measurements were used since 

there is no consistency. In the 13 watersheds with monthly measurements from 2001 to 2008, the 

installation of automatic sensors allowed daily measurements from 2012 to 2018; the sensors are 

operated and maintained by the USGS and the University of Iowa. Although these measurements 

were collected on an irregular basis during winter, the collection point freezes and the sensors are 

taken out. Machine learning models require detailed and granular data to perform well. Daily or 

monthly measurements would drastically improve the ML model's performance and reduce 

errors. Yearly measurements lose some of the temporal details from the data, and the model 

cannot learn that part during training. Data granularity is of paramount importance for time series 

analysis in predicting future outcomes. Another important aspect of having detailed data is that 

more complex ML models can be utilized, such as Neural Network models, particularly Long 

Short Term Memory (LSTM) Recurrent Neural Network RNN based models. These models 

require more data. RNN feeds the output back in, and that way, they have a sense of memory by 

which the layers know and learn from the sequential data. There is solid evidence of a 

relationship between various weather variables' values at a particular time of a year, and 

consolidating them together loses the temporal aspect of weather variables as well. Having 

monthly or daily target variables would enable this approach as well. 
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CHAPTER 4.    CONCLUSION 

The nitrate leaching prediction is a complex problem affected by many geographical and 

agricultural aspects. Adverse weather conditions and aggressive use of animal manure, N 

fertilizer, and drainage have exacerbated the problem. This study utilized machine learning 

models to predict future nitrate yield in Iowa and gathered important findings from the analysis 

that showed different relationships between nitrate yield and other independent variables. 

The time-series analysis of the nitrate leaching problem consists of temporal and spatial 

data, which can train machine learning models to predict the future nitrate yield. This study 

utilized two tree-based machine learning models, Random Forest and LightGBM, to predict 

nitrate yield for 2018 and derive insights into the underlying relationship between independent 

variables and nitrate yield. Since time-series data is not independent and identically distributed, 

random splitting and traditional cross-validation methods cannot be used. Instead, a new walk 

forward cross-validation method with two different approaches was used to optimize the model 

trained on data from 29 watersheds from 2001 to 2017. 

The model was tested on the year 2018, and the lowest RRMSE value of 23.68% was 

achieved using LightGBM with expanding window, walk forward cross-validation. The findings 

showed that the annual discharge, the annual rain, corn to soybean planting area ratio, soy and 

corn yield, and average annual temperature affect the nitrate yield the most. The increase in 

annual discharge seems to increase nitrate yield linearly, whereas rain, corn to soybean ratio, 

soybean, and corn yield has a step relationship. Controlling annual discharge and corn to soybean 

planting area ratio can help drive down the nitrate yield. The average annual temperature has a 

distinct relationship with nitrate yield. Temperatures below 8 degrees Celsius show a very high 

amount of nitrate leaching and then increase to 9.5 degrees Celsius before decreasing. This 
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decrease in higher annual average temperature shows that nitrate leaching is low during hot 

weather months. These insights suggest that policymakers and farmers can take steps 

accordingly to minimize the nitrate yield. 

This study is subject to a couple of limitations that can suggest future research directions. 

First, data granularity is very important, and working with annual data points leads to losing the 

interannual aspects of independent variables. The interannual variability in independent variables 

can explain the interannual variability in the target variable nitrate yield (Danalatos et al., 2022). 

Second, more complicated machine learning and deep learning models can be used with denser 

data. Monthly or daily data can help the model deep dive, find the convoluted relationships, and 

show interesting findings. Long Short-Term Memory, RNN based learners, can be used better to 

understand the underlying dependency between the target variables as they feed the output back 

into the model to learn and predict the future better. Third, the year 2012, with drought, was 

removed from training because machine learning models suffer from skewing based on outlier 

data and cannot understand the natural reasoning behind a drought. More complicated models 

can accommodate outliers and will not skew during the training process. 
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APPENDIX: VARIABLES USED IN THE STUDY AND THEIR DESCRIPTION 

Table 2: Variables of the dataset with description 

Name of the variable Description and unit 

Annual_Q_L_L_year Annual discharge rate in Liters 

AvgTemp Annual average temperature in degree Celsius  

BD Bulk Density in g/cm3 

Clay % 

Croplands Amount of cropland of the size of the watershed in % 

corn_to_soybean Ratio of corn plating area to soybean plating area 

ID ID number of watershed 

Ksat micrometers per second 

Maize_Yields bushels/acre 

Manure_Maize kg N per ha 

Rain Annual rain in mm 

Radiation MJ/m2 

Root_Depth cm 

Sand % 

Size Hectors 

Soil_Profile % 

Soy_Yields bushels/acre 

Silt % 

SOM % 
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Table 2 continued 

 

Name of the variable Description and unit 

Tile_Drainage % 

YEAR Year of the datapoint 

Yield Nitrate yield in kg NO3-N/ha 

FWNC Flow weighted nitrate content in mg NO3 - N/l 

Loads Nitrate load in kg 

 


