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ABSTRACT 

The average cost of natural disasters and damage to the U.S. economy has increased each 

year from approximately $35 billion in 1980 to $300 billion in 2017. This increase in the cost of 

natural disasters could be due to an increase in the strength and frequency of natural disasters 

and/or growth in the U.S. economy. This thesis forecasts the cost of natural disasters by fitting 

probability distributions to the historical cost of billion-dollar disasters. This thesis models the cost 

of natural disasters based on all weather-related natural disasters that cost more than $1 billion 

since 1980 and based only on those natural disasters that cost more than $1 billion that occurred 

in the past 20 years. Using the data from 1980 to 2018, the model forecasts the annual expected 

cost to be $52 billion. However, if only the recent disaster data is used to fit the model, the expected 

annual cost $91 billion. 
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CHAPTER 1.    INTRODUCTION 

The United States has sustained nearly 250 weather and climate disasters from 1980 to 

2018 with a cost of $1 billion or more. The total cost of all the billion-dollar natural disasters in 

these 38 years exceeds $1.7 trillion [1]. The average cost of billion-dollar natural disasters and 

damage to the U.S. economy has increased from $35 billion in 1980 to $300 billion in 2017 in real 

dollars. The frequency of billion-dollar natural disasters has increased by 2.5 times from 1980 to 

2018. Twenty billion-dollar disasters occurred in the United States from 1980 to 1985, and 72 

billion-dollar natural disasters occurred from 2013 to 2018. Table 1 shows the change in the cost 

and number of billion-dollar disasters every decade. The recent disasters from 2013-2018 are 

almost one-third of the total costs of the disaster from 1980 to 2018. 72 out of 244 billion-dollar 

disasters, nearly 30% of the disaster occurred in the recent five years. All of these costs are adjusted 

for inflation using the 2018 Consumer Price Index. See [2] for a good review of previous studies 

that estimate the costs of natural disasters. 

Table 1: Number and cost of billion-dollar disasters 

Time Period Number of Billion-Dollar 
Disasters Cost Percent of Total 

Cost 
1980-1989 28 $172 B 10% 
1990-1999 52 $268 B 16% 
2000-2009 59 $507 B 30% 
2010-2018 105 $755 B 44% 
Last 5 years (2013-2018) 72 $530 B 31% 
Total 244 $1,702 B 100% 

 

The increase in the frequency and costs of billion-dollar disasters could be due to several 

factors: climate change, increasing population, and increasing economic activity. More than 80% 

of the nation's total losses from weather and climate events are caused by weather extremes [1]. 

The real U.S. gross domestic product (GDP) was $6.95 trillion in 1980 and $18.93 trillion in 2018 
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[3]. GDP increased by more than 172% from 1980 to 2018, but the average cost of billion-dollar 

disasters increased by more than 750%. The economic cost of natural disasters in the United States 

has grown faster than the nation's GDP.  

Modeling the historical data of billion-dollar disasters can provide an understanding of the 

past and provide a means to forecast the cost of future disasters. This data could be modeled by 

time series methods, regression analysis, causal analysis, and simulations. 

This thesis uses probabilistic models to forecast billion-dollar disasters in the future. 

Simulating the extreme events with a mathematical model might provide a better understanding of 

the billion-dollar disasters. The billion-dollar weather and climate natural disasters are recorded 

and published by the National Oceanic and Atmospheric Administration (NOAA) [1]. NOAA 

categorizes these disasters into seven types: drought, flood, freeze, severe storm, tropical cyclone, 

wildfire, and winter storm. This thesis model each type of disaster separately and fits a probability 

distribution for the frequency and the cost for each type of disaster. Table 2 depicts the cost and 

percentage impact of the billion-dollar disasters. The costs of disasters are unevenly spread for 

each type of disaster and split into unequal percentages. We simulate each type of disaster and 

combine the simulation of each type of disaster to generate an annual cost of billion-dollar disasters 

in the United States.  

Fitting probability distributions to all the data from 1980 to 2018 assumes that the 

frequency and costs of these disasters have remained constant in the preceding 38 years. Since that 

might be an unrealistic assumption, we also fit probability distributions to only the most recent 

data for each type of disaster (approximately twenty years' worth of data). Over the past 38 years, 

the United States' GDP has also changed over time and went through a number of recessions and 

economic boom [4]. This might have an effect on the cost of disasters. We also model the impact 
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of GDP on costs of natural disasters separately. This thesis presents the simulated results to give a 

broader picture of the risk that the United States can face from natural disasters, which cost more 

than a billion dollars. A probabilistic forecast of billion-dollar disasters' costs provides better 

insights than a deterministic model into the risks. Policymakers can use these types of models to 

develop strategies and allocate resources to prepare for these large-scale disasters. 

Table 2: Cost of each disaster type 

Disaster Type Number Events Cost Percent of Total Cost 
Freeze 9 $30 B 2% 

Tropical Cyclone 42 $935 B 55% 

Winter Storm 17 $49 B 3% 

Drought 26 $248 B 15% 

Wildfire 16 $80 B 5% 

Severe Storm 105 $233 B 14% 

Flooding 29 $126 B 7% 

Total 244 $1,702 B 100% 
 

This thesis is divided into five sections. Chapter 2 identifies the open questions from the 

past work done by many authors. Chapter 3 presents the methodology and the steps taken to model 

the billion-dollar disasters. The analysis includes five models to estimate the cost to the U.S. 

economy. Two of the five models measure the effect of the GDP of the U.S into account. One 

model compares the results to validate the best model. Chapter 4 discusses the outcomes of fitting 

distributions to the data and running the Monte Carlo simulation [5]. The discussion highlights the 

risk of natural disasters expressed in costs to understand the benefits of increasing the country's 

preparedness for natural disasters and enhancing the nation's resilience. 

 



4 
 

 
 

CHAPTER 2.    LITERATURE REVIEW 

 A number of studies have estimated the economic impact of natural disasters. Some of the 

most common models to estimate the economic losses are the Input-Output (I-O) and the 

Computable General Equilibrium (CGE) models [6]. These models consider the economy as a 

collection of a small industry that interacts with each other through intermediate consumption. 

Models are generated to fit the specific scenarios to measure the reduction in the GDP in areas 

impacted by the disruptions to predict the impacts of disasters inter regionally [7]. Some authors 

have even attempted to isolate parts of the state of California [8] and its ripple impact on the rest 

of the U.S. economy. In general, these models identify the direct and indirect losses with an aim 

to account for as many variables as possible [9]–[11]. These models are as good as the assumptions 

of the model to estimate the economic impacts and prone to changes as the new data emerges. Al 

Kazimi and MacKenzie [2] review several I-O and C.G.E. studies of past and potential disasters 

in the United States. 

The National Weather Service (NWS) provides weather-related products and services to 

the public. N.W.S. has maintained a historical database from flood damage across the nation since 

1870. The accuracy of these flood datasets has been tested and shown to be consistent but not 

perfect [12]. These errors in data arise while collecting and estimating the economic impact due to 

various reasons. The error could be a combination of many variables, including incompatibility 

between different sources, human error, change in population, change in wealth or development 

of the area, and extreme weather disasters offsetting the overall results.  In the 1980s, NOAA's 

National Climatic Data Center (NCDC) started tracking U.S. weather and climate events which 

individually cost at least $1 billion in overall damages and costs [13]. The data at NCDC is 

available to the public. The data collected by NCDC relies on the insurance companies and the 
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government agencies. Researchers have identified new approaches to quantify the uncertainty in 

this data source as well [14]. 

The billion-dollar disaster weather data published by NOAA and used in this thesis likely 

underestimate losses by 10-15% [15]. This implies that the cost of the billion-dollar disasters is 

actually more than what is listed. The interdependence of economic activity is difficult to measure. 

The data on losses from natural disasters contains significant amounts of uncertainty [16], and the 

full extent of material losses may not be known until several years after the disaster. The cost of 

some disasters might also be overestimated in the long term. For example, rain from a hurricane 

might be beneficial to the agriculture crops, and the local construction required to replace the old 

facilities could help grow the GDP in the long term following a severe disaster [13]. Smith and 

Matthews [14] construct a confidence interval around the billion-dollar disasters dataset. 

Probability distributions provide the average time period or frequency of disasters. After any 

natural disaster, government agencies, institutions, and insurance companies publish their estimate 

of the cost of the disaster. These estimations use various methodologies and a data collection 

approach. Different types of methodologies lead to different estimations. One study finds that the 

estimation differs by a factor of 2 or more for more than 50% of the flood damages in California 

that cost less than $50 million [12]. As the area or the period of time is extended, the 

underestimation and overestimations errors tend to average out. The errors are significantly less 

for events that cost more than $500 million. The losses from crop damage and flood loss cause the 

major climate extremes loss [17]. Crop yield values have increased almost by 50% from the year 

1980 to 2000; this in turn has increased the GDP of the nation. 

 General conclusions may be difficult to evaluate about the weather phenomena such as 

tornadoes, hail, and thunderstorms because the observational evidence for changes is too broad 
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and scattered across places [18]]. Evidence exists that the frequency of heavy precipitation events 

and the frequencies and intensities of tropical cyclones and hurricanes [19], [20] have increased in 

North America. A probabilistic event attribution framework by Pall [21] concludes that the risk of 

flood occurrence in the U.K. in the year 2000 substantially increased due to anthropogenic 

greenhouse gas emissions. In 1993 in American Midwest, approximately 3.3 million ha of soybean 

and corn fields were flooded, causing a 50% decrease in corn yields in Iowa, Minnesota, and 

Missouri and a 20–30% decrease in three other states [22]. Flood also significantly damaged 

transportation infrastructure. 

There have been a number of disastrous floods in the last two decades. Recent studies on 

past and current changes of precipitation extremes in North America have reported an increasing 

trend in precipitation over the last half-century [20].  A study [23] constructed regression 

relationships between annual flood loss and socio-economic and climate drivers, with a conclusion 

that a 1% increase in average annual precipitation would lead to an increase in annual national 

flood loss of around 6.5%. However, the conclusions are highly dependent on the methodology. 

As the world has also become wealthier during the past decades [24], the costs of natural 

disasters have also increased. The flood losses have greatly increased, mainly driven by the 

expanding assets at risk [25]. However, not all people are equally impacted by the disasters. Low-

income populations are more vulnerable, physically and psychologically, to natural disasters [26], 

and better data is needed to assess the impact of disasters on the population with different socio-

economic statuses. The public perception also changes with the amount of accurate information 

they receive from the trusted weather and climate agencies [27]. Having accurate forecasts benefits 

society in making a range of decisions valuable for their well-being. Even as the scientific 

understanding of the economic consequences of these extreme events improves, higher-quality 



7 
 

 
 

data is required to fully understand their economic costs across years, events, and places [28]. As 

the data become abundant, the mathematical models can further be extended into multi-event 

disaster planning to quantify resilience and improve decision making [29]. Policymakers can use 

these mathematical models to make more effective decisions to mitigate the consequences of 

natural disaster. 

Extreme events continue to take a toll on the nation, threatening the well-being of 

Americans. Quantitative investigations of historical trends provide better results in estimating the 

frequency and losses from natural disasters [30]. The National Research Council report on natural 

disasters recommended risk-based approaches to resilience [31]. However, there is no study using 

a probabilistic approach for tracking the risk of extreme events using the current data [26]. There 

is a need for mathematical models, improved data, and probabilistic approaches in response to 

natural disaster anticipation. 
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CHAPTER 3.    METHOD 

NOAA annually records and publishes natural disasters whose cost exceeds $1 billion. 

Figure 1 shows substantial variation from year to year in the costs of billion-dollar disasters from 

1980 to 2018. As seen in Figure 1, the total cost of all disasters in 2005, 2011, and 2017 are 

significantly higher than in the other years. This is largely due to a few extreme events. The total 

cost of $221 billion dollars in 2005 is largely due to Hurricane Katrina. The high cost in 2011 is 

due to Hurricane Irene. Several droughts, Hurricane Harvey, and Hurricane Maria generated high 

costs in 2017. We initially attempted to fit a probability distribution to this entire data set, but no 

distribution fits well to the observed data or provided good forecasts. 

 
 

Figure 1: Total cost of billion-dollar natural disasters from the year 1980 up to the year 2018 

A better approach than fitting a model to all of the data is to fit separate models for each 

disaster type. Analyzing each type of disaster also provides a better understanding of these billion-

dollar disasters. Modeling each type of disaster separately can make the model more robust to 

changes in the data. Using probabilistic models rather than deterministic models reflects the 

uncertainty that is inherent in forecasting future economic costs from natural disasters.  

We use the billion-dollar disaster data for each type of disaster. We model the distributions 

of each type of billion-dollar natural disaster separately: drought, flood, freeze, severe storm (i.e., 
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tornado, hail, wind damage), tropical cyclone, wildfire, and winter storm. First, we fit a discrete 

distribution to the annual frequency of each type of disaster. This analysis also tests to see if the 

frequency of any of these disasters is correlated. If the frequencies are highly correlated, the model 

will incorporate this correlation. Second, we fit a continuous probability distribution to the cost of 

each type of billion-dollar disaster. We assume the cost for each type of a billion-dollar disaster is 

identically and independently distributed. We use the Akaike information criterion (AIC) [32]  and 

the log-likelihood [5] to assess the goodness of fit and choose a distribution. We also attempt to 

use common distributions across many of the disasters. If a single distribution performs very well 

according to the AIC. and log-likelihood metrics for many different disasters, we attempt to use 

that same distribution for each type of disaster.  

JMP Statistical Software is used to fit a continuous random variable for the cost of each 

type of disaster. We fit the costs for each type of disaster to the following continuous distributions: 

Johnson with a lower bound, sinh-arcsinh (SHASH), lognormal, generalized log, gamma, normal 

mixtures (2 and 3), Weibull, extreme value, exponential, and normal. Five distinct models are 

created, and each model uses a different dataset to analyze the economic impact of these natural 

disasters. 

Model 1 uses all the historical data from 1980 to 2018 to model the costs of natural 

disasters. We start with using all of the data to fit the discrete distribution to the annual frequency. 

This frequency is analyzed and incorporated into the model to generate the number of disasters 

that occur in a year for each of the seven types of disasters separately. The probability distribution 

is fit to the cost of each type of disaster for all the disasters that cost more than $1 billion from 

1980 to 2018. The AIC and log-likelihood values are evaluated, and the best fit of the probability 

distribution is selected for each type of disaster. Monte Carlo simulation is used to generate the 
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frequency of disasters and their costs for all seven disasters. The simulated cost is summed up to 

obtain the total cost of disasters from the events that cost more than a billion-dollar to the U.S. 

economy. 

Model 2 follows the same steps as Model 1 with one crucial difference—Model 2 only uses 

the most recent disaster data as opposed to using all of the data from 1980 to 2018 as in Model 1. 

Figure 2 depicts the number of each billion-dollar disaster by year. The number of billion-dollar 

disasters seems to increase a lot beginning in 2000. In Model 2, we examine each disaster 

separately and identify a year in which the annual frequency of the disaster appears to change. 

After identifying the year in which the annual frequency changes, we follow all of the steps in the 

previous paragraph to fit a probability distribution for the frequency and the cost for each type of 

disaster, but we only use the data from the more recent year through 2018 to fit these distributions. 

 

Figure 2: Frequency of each type of billion-dollar natural disasters from 1980-2018 

One explanation for the growth in billion-dollar disasters and the increase in costs from 

1980-2018 may be the growth of GDP and population in the United States. Accounting for the 

change in wealth and population in the United States within the model may provide a better 
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forecast of the financial costs of natural disasters. Although the costs of natural disasters are 

adjusted for inflation via the 2018 Consumer Price Index, we want to account for GDP as well. 

Model 3 uses the same data for the cost of disasters as Model 1 (years 1980-2018) and divides the 

costs by the corresponding GDP of that year. We use the same steps as Model 1, but the costs of 

disasters are replaced by the ratio of the cost of the disaster to GDP We generate the ratio of cost 

of disasters to the GDP using Monte Carlo simulation and multiply simulated annual costs for each 

disaster and the GDP in 2018 to generate a probabilistic estimate of the cost of natural disasters.  

Model 4 combines the process of Model 2 and Model 3. We use the ratio of the cost of the 

disaster to the corresponding GDP Rather than using all of the data from 1980-2018; we only use 

the recent disaster data similar to Model 2. This creates another dataset with the same number of 

billion-dollar disaster events as Model 2. We follow identical steps to Model 3 to generate the 

annual costs and multiply the annual costs by the GDP in 2018. 

Model 5 follows a similar process as Model 2. Instead of modeling cost after the year 2000, 

in which the annual frequency of the disaster appears to change. We model from 1980 to a year 

prior to the year used in Model 2. We follow all the steps as in Model 2 to fit the distribution to 

frequency and cost for each type of disaster.  

A single trial in the Monte Carlo simulation begins by randomly generating the number of 

billion-dollar disasters that occur in a single year for each of the seven disasters. For each simulated 

disaster, we randomly generate the cost of that disaster from the probability distribution that best 

fits that type of disaster. If the cost of disaster generated in a trial is negative, we generate another 

cost of that disaster from the probability distribution until the cost is positive. The U.S. GDP in 

2018 was $18.93 trillion. As mentioned previously, for Model 3 and Model 4, to convert the ratio 

of data to the GDP back to the costs of disasters, we multiply the costs generated by the model for 



12 
 

 
 

each type of disaster and the GDP in 2018. We calculate the total cost of billion-dollar disasters in 

a single trial by summing the costs of individual disasters. This process is repeated 100,000 times 

to generate a simulated probability distribution of the annual costs of billion-dollar disasters. The 

annual costs for each of the seven types of disasters and the total annual costs from all the disasters 

are analyzed and presented in Chapter 4. 
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CHAPTER 4.    RESULT 

4.1 Fitting Distributions 

This thesis analyzes, fits distributions, and simulates all the billion-dollar natural disasters 

in the U.S. economy from 1980 to 2018. When all the data is included (Models 1 and 3), the annual 

frequencies of drought and wildfire have a correlation equal to 0.43, and the annual frequencies of 

flood and severe storm have a correlation equal to 0.48. These are the only two correlations greater 

than 0.4. It is reasonable that these disasters are correlated because hot and dry weather can lead 

to more droughts and wildfires, and rainy weather can lead to more severe storms and floods. If 

just the recent disasters are analyzed (Models 2 and 4), the correlation between droughts and 

wildfires increases to 0.64, and the correlation between floods and severe storms is 0.37. Four 

models incorporate the correlation between drought and wildfire and between flood and severe 

storm so that the simulated number of disasters for these four types of disasters exhibit these 

correlations. The annual frequency of each of the other three disasters (freeze, tropical cyclone, 

and winter storm) is treated as independent of the frequency of the other types of disasters. 

Table 3 depicts the distribution for the annual frequency for each distribution, the year in 

which data for Model 2 and Model 4 begins (i.e., the year in which the annual frequency changes), 

and the parameters for each distribution for the four models. These parameters are based on the 

data visualized in Figure 2. The Poisson distribution is used to model the number of events for 

freeze, tropical cyclone, winter storm, severe storm, and flood. The parameter 𝜆𝜆 (average number 

of annual events) for the Poisson distribution is given in Table 3 for these disasters. The number 

of droughts or wildfires never exceeded 1 in any given year from 1980 to 2018, and the frequency 

of each of these two disasters is modeled as a Bernoulli random variable with the probability 𝑝𝑝. 

The annual frequency of all the disasters except for freeze increases, and the year in which the 
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annual frequency changes are depicted in Table 3. Since the annual frequency of freeze appears to 

remain constant, we use the data for freeze from 1980 to 2018 in the five models. 

Table 3: Distributions on the annual frequency 

Disaster type Type of distribution Model 1 & 3 
parameter 

Year 
Model 2 

& 4 
begins 

Model 2 
& 4 

parameter 

Freeze Poisson 𝜆𝜆 = 0.23 1980 𝜆𝜆 = 0.23 
Tropical cyclone Poisson 𝜆𝜆 = 1.07 2004 𝜆𝜆 = 1.4 
Winter storm Poisson 𝜆𝜆 = 0.44 2009 𝜆𝜆 = 0.5 

Drought Bernoulli, correlated with 
wildfire 𝑝𝑝 = 0.67 2000 𝑝𝑝 = 0.84 

Wildfire Bernoulli, correlated with 
drought 𝑝𝑝 = 0.41 2000 𝑝𝑝 = 0.68 

Severe storm Poisson, correlated with flood 𝜆𝜆 = 2.7 2006 𝜆𝜆 = 5.85 

Flood Poisson, correlated with severe 
storm 𝜆𝜆 = 0.74 2006 𝜆𝜆 = 1.3 

 
 

Fitted probability distributions are generated using the frequency of the type of disaster for 

each model. Table 4 shows the log-likelihood and AIC for the distributions for the severe storm 

based on JMP. The Johnson distribution (with a lower bound) fits the best to the historical data of 

severe storms among all the other distributions. Figure 3 provides an example of fitting the Johnson 

distribution to the costs of severe storms from 1980-2018. The SHASH distribution's AIC and log-

likelihood values are very similar to that of the Johnson distribution. The two distributions look 

very similar and using either of these two distributions to model the costs of severe storms is 

reasonable. The Johnson distribution perhaps underestimates the likelihood of extreme costs, and 

three severe storms cost more than $9 billion, which the Johnson distribution has trouble capturing. 

Despite this deficiency, the Johnson distribution provides a good fit for every type of disaster 

except for the costs of recent winter storms. We prefer to use the same type of distribution for as 

many disasters as possible, and we select the Johnson distribution to model the cost of each type 
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of disaster except for winter storm in Model 2. The AIC and log-likelihood values for the Johnson 

distribution remain within 10 to the best distribution for each type of disaster in four models, except 

for winter storm and drought. For winter storm, the AIC value of Weibull distribution is 79.5 while 

the AIC value of Johnson distribution is 109.6. The Weibull distribution provides the best fit for 

the recent winter storm cost in Model 2 and Model 4. Table 5 displays the probability distributions 

used for each of the models and disaster type. 

Table 4: Distributions comparison for severe storms, 1980-2018 

Distribution -2*Log-Likelihood AIC 
Johnson 1680 1688 
SHASH 1682 1691 
Lognormal 1735 1739 
Generalized log 1735 1741 
Gamma 1766 1770 
Normal 2 mixture 1762 1772 
Normal 3 mixture 1762 1779 
Weibull 1793 1797 
Extreme value 1793 1797 
Exponential 1828 1830 
Normal 1861 1865 

 

Table 5: Type of probability distributions for each of the four models 

Disaster type Model 1  Model 2 Model 3 Model 4 
Freeze Johnson  Johnson Johnson Johnson  
Tropical cyclone Johnson Johnson Johnson Johnson  
Winter storm Johnson Weibull Johnson Weibull 
Drought Johnson Johnson Johnson Weibull 
Wildfire Johnson Johnson Johnson Johnson 
Severe storm Johnson Johnson Johnson Johnson 
Flood Johnson Johnson Johnson Johnson 
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Figure 3: Fitted Johnson distribution to severe storm dollar value during the period 1980-2018 

 
4.2 Simulating economic costs 

As mentioned, 100,000 simulations are generated for each of the five models. Figure 4 

shows the cumulative probability of the annual costs for each model. According to Model 1, which 

is based on all of the data from 1980 to 2018, the expected cost of all disasters is $52 billion with 

a standard deviation of $95 billion. The median annual cost is about $30 billion. There is a 10% 

chance that the cost of billion-dollar disasters will exceed $100 billion and about a 5% chance that 

the cost will exceed even $150 billion. The vast majority of the simulations result in costs less than 

$80 billion. However, some simulations result in costs of $200, $300, or even $400 billion. As 

seen from Figure 4, the likelihood of costs exceeding $300 billion is very small, however.  Model 

1 suggests that the United States should plan for $20-$100 billion in economic losses from these 

large-scale natural disasters, but the losses could be as large as $200 to $300 billion. 

Model 2, which is based on the most recent data, results in an expected cost of $91 billion 

with a standard deviation of $120 billion. The median annual cost is $56 billion, almost twice the 
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value from Model 1. There is a 10% chance that the economic costs will exceed $175 billion in a 

single year. The annual cost of disasters based on using just the recent data is almost twice the 

annual cost based on using all of the data in Model 1. This increase in cost is due to increased 

frequency of natural disasters and the increase in costs of these billion-dollar disasters over the 

past two decades. Model 2 suggests that the United States should plan for about $40-$175 billion 

in economic costs from billion-dollar natural disasters with losses that could be as large as $300 

or even $400 billion. These extreme costs represented more than 2% of U.S. GDP in 2018. 

Models 3 and 4 simulate the ratio of annual costs to GDP and multiply the resulting cost 

by U.S. GDP in 2019. Model 3, which uses all the data from 1980 to 2018, generates higher annual 

costs than those in Model 1. The median cost of disasters estimated by Model 3 is $40 billion. For 

Model 3, which has a similar dataset of costs of disasters as Model 1 from 1980 to 2018, the 

expected cost is $91 billion, approximately $26 billion higher than Model 1. Model 3 has a standard 

deviation of $220 billion, which is twice the amount of standard deviation from Model 1. The 

probability of exceeding $100 billion is 20%, which is also twice as large as Model 1. As seen 

from Figure 4, Model 3 predicts the costs can exceed even $400 billion. 

Model 4 relies on the same recent data as Model 2 while simulating the ratio of cost to 

GDP. The expected cost generated by Model 4 is approximately $108 billion with a standard 

deviation of $321 billion. The median annual cost is $62 billion. There is a 30% chance that the 

annual cost will exceed $100 billion and a 10% chance the annual cost will exceed $200 billion.  
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Figure 4: Risk curves generated by the four models 

Table 6 presents the simulated annual costs for each of the seven types of disasters. The 

99th percentile is depicted in order to show the very extreme or 1-in-100-year scenario. Since none 

of the disasters are perfectly correlated to each other, as shown in Table 3, the sum of the 99th 

percentile of each type of disaster will not be equal to the 99th percentile of the total cost. The 99th 

percentile of the total costs is calculated separately from the models and presented in Table 6. 

Tropical cyclones are the largest contributor to the total cost of disasters, and they account for 50-

80% of the average total cost in the four models. Model 2 shows a 90% increase in tropical 

cyclones' cost than Model 1, which signifies the substantial economic impact of tropical cyclones 

in recent years. Severe storms occur more frequently than any other disaster, but the total costs 

due to severe storms are much less than tropical cyclones. Recent disaster data depicts that the cost 

and frequency of severe storms are also growing. Winter storm is the least expensive disaster 
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among all the seven types of weather and climate disasters, and the average cost of winter storms 

is always less than 3% of the total average cost for the four models.  

Table 6: Costs in billions of dollars for each type of disaster generated by the four models 

Disaster 
type 

Model 1 Model 2 Model 3 Model 4 

Average 
99-

percent
ile 

Average 
99-

percent
ile 

Average 
99-

percent
ile 

Average 
99-

percent
ile 

Freeze $0.8 B $8 B $0.8 B $8 B $2 B $19 B $2 B $19 B 
Tropical 
cyclone $32 B $399 B $61 B $534 B $37 B $410 B $68 B $579 B 

Winter 
storm $1 B $12 B $1 B $7 B $2 B $20 B $1 B $7 B 

Drought $6 B $53 B $7 B $41 B $11 B $109 B $5 B $15 B 
Wildfire $3 B $34 B $4 B $45 B $13 B $124 B $12 B $142 B 
Severe 
Storm $6 B $22 B $13 B $36 B $8 B $27 B $15 B $43 B 

Flood $3 B $27 B $4 B $27 B $5 B $47 B $5 B $30 B 
Total 
annual 
cost 

$52 B $425 B $91 B $565 B $78 B $548 B $108 B $681 B 

 

Figure 5 shows a relative frequency histogram of the simulated annual costs for all billion-

dollar disasters for the four models. The annual cost generated by the four models is highly skewed 

to the right and unimodal. We create equally spaced bins for the four models, width of each bin 

represents $5 billion. The major proportion of the values falls under $100 billion for the four 

models. Models 3 and 4 show significant right-hand skewness with relatively fat tails and higher 

number of events costing more than $100 billion. Incorporating GDP into the models appears to 

result in larger forecasts of the costs of disasters. 
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5a – Model 1 

 

 
5b – Model 2 

 

 
5c – Model 3 

 

 
5d – Model 4 

Figure 5: Relative frequency histogram of annual costs of disasters by each of the model 

 

Quantile-quantile (Q-Q) plots provide a means to analyze how well the simulated results 

match the data. Figure 6 shows the Q-Q plots for the four models. The actual annual cost from the 

data is plotted on the y-axis versus the simulated annual cost on the x-axis. Figures 6a and 6c show 

the models which use all the data from 1980-2018, whereas in Figures 6b and 6d use the yearly 

data from 2000-2018. Figures 6b-6d demonstrate that their corresponding models may 

overestimate the actual costs since the plotted points are to the right of the 45-degree line. In Figure 

6a, the plotted points lay much more consistently along the 45-degree line. Q-Q plots for Models 
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3 and 4 are calculated by multiplying the ratio by the 2018 GDP Since the Q-Q plots use the data 

from years prior to 2018, multiplying the ratio by the 2018 GDP likely influences these larger 

forecasts from the simulated models. 

 

 
6a – Model 1 

 

 
6b – Model 2 

 

 
6c – Model 3 

 

 
6d – Model 4 

Figure 6: Q-Q probability plot of the annual cost of disaster for each of the models 

4.3 Comparison between 1980-2000 & 2000-2018 

The statistical forecasting of this work is based on the assumption that the cost of each type 

of disaster is independent and identically distributed. This makes the models time independent or 

time stationary. However, the statistical properties of the cost of disasters such as mean, variance, 

and correlations are not constant and have been increasing over time [32]. We compare the results 
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from Model 2 with a new model (Model 5). Model 5 uses the costs and frequency of each type of 

disaster from 1980 to a year prior to the year used in Model 2, as shown in Table 3. The annual 

expected cost generated by Model 5 is approximately $24 billion, with a median of $14 billion and 

a standard deviation of $43 billion. Figure 7 shows the relative frequency histogram of annual 

costs of billion-dollar disasters generated by Model 5. The extreme losses in Model 5 are less 

expensive than Model 2, and Model 5 contains many more disasters less than $30 billion compared 

to Model 2.  

 

Figure 7: Relative frequency histogram of annual costs of disasters from 1980-2000 of Model 5 

Table 7 shows the average expected cost of each type of disaster and 99-percentile values 

for Model 5 and Model 2. The disasters freeze, winter storm, drought, and flood have the same 

average cost in both Models 2 and 5, and the 99-percentile values for these disasters in Model 5 

are either equal to or slightly greater than the 99-percentile values of the same disaster in Model 

2. This suggests that the billion-dollar disasters of freeze, winter storm, drought, and flood have 
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not become more frequent or damaging in the 2000s. The cost of tropical cyclones, wildfires, and 

severe storms are much greater in Model 2 than in Model 5. The average cost of tropical cyclones 

is 7.6 times larger in Model 2 than Model 5 ($61 billion compared to $8 billion); the average cost 

of wildfires is 8 times larger in Model 2 than Model 5 ($4 billion compared to $0.5 billion); and 

the average cost of severe storms is 4.3 times larger in Model 2 than Model 5 ($13 billion compared 

to $3 billion). The 99-percentile costs of these three disasters are substantially greater in Model 2 

than in Model 5. This result suggests that tropical cyclones, wildfires, and severe storms have 

greatly increased in frequency and/or severity in the 2000s.  

Table 7: Cost generated in billions of dollars for each type of disasters by Model 5 

Disaster type Model 5 Model 2 
Average 99-percentile Average 99-percentile 

Freeze $0.8 B $8 B $0.8 B $8 B 
Tropical cyclone $8 B $84 B $61 B $534 B 
Winter storm $1 B $11 B $1 B $7 B 
Drought $7 B $86 B $7 B $41 B 
Wildfire $0.5 B $7 B $4 B $45 B 
Severe Storm $3 B $19 B $13 B $36 B 
Flood $4 B $54 B $4 B $27 B 
Total annual cost $24 B $158 B $91 B $565 B 

 

The total annual cost in Model 2 is greater than the total annual cost in Model, which is 

principally driven by the increase in annual costs due to tropical cyclones and severe storms. The 

average annual cost in Model 2 is 3.8 times larger than that of Model 5 ($91 billion compared to 

$24 billion). The 99-percentile cost of Model 2 is more than $400 billion more than that of 

Model 5. This comparison supports the conclusion that the billion-dollar disasters have gotten 

more frequent and/or more costly since 2000, and the main reason for this increase is due to 

increasing costs from tropical cyclones and severe storms. 
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CHAPTER 5.    DISCUSSION 

There are limited amount of resources and money in the United States to protect against 

and prepare for natural disasters. The mathematical models are one of the best tools available to 

analyze and model natural disasters that can help the policymakers determine where the resources 

and capital should be spent in order to create the biggest effect in reducing the risks from the 

natural disasters and enhance resilience. Managing risks and resources can save American lives 

and reduce cost of damage from disasters. The probabilistic models of the cost of the billion-dollar 

natural disasters are generated in this thesis. These probabilistic models quantified the risks in 

economic value from billion-dollar disaster. The risk analysis models in this thesis have not only 

classified the disasters by frequency and the disasters which can result in most severe economic 

consequences, but also incorporated the inherent uncertainties of the natural disasters. 

Policymakers can use the information provided by the models to determine the ways to effectively 

allocate resources to each type of disaster for protection against and preparing for natural disasters 

based on the probability distribution of the economic costs of the billion-dollar natural disasters. 

Risk analysis models can be used as a guideline to invest in the future generations of the country 

and build a robust economy around the disasters.  

This thesis helps in assessing the likelihood of costs from seven types of billion-dollar 

natural disasters. We forecast the economic consequences of billion-dollar natural disasters using 

Monte Carlo simulation. Five models are designed to evaluate the risk and forecast the costs of 

billion-dollar disasters. Model 1 and Model 2 use the billion-dollar disaster data. Since some of 

the increase in the cost of the billion-dollar disasters is likely due to the growth in the GDP, Model 

3 and Model 4 incorporate GDP into the model.  Model 1 and Model 3 use all the data from 1980 

to 2018, while Model 2 and Model 4 use only the most recent data. Model 5 uses the data from 
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1980 to a year prior to Model 2 as depicted in Table 3 for each type of disaster. The annual 

frequency and cost for each of the seven different types of disaster are modeled separately. These 

separate costs of each type of disaster are combined into a single total annual cost. Monte Carlo 

simulation enables us to incorporate the different uncertainties into a single probabilistic forecast 

of the annual cost of billion-dollar disasters in the United States. 

A large difference in the forecasted costs occurs if all the data is used or only the most 

recent data is used to forecast the risks of billion-dollar disasters. The average annual cost 

according to Model 1 for all disasters from 1980-2018 is $52 billion with a median of $30 billion 

and a standard deviation of $95 billion. The average annual cost for disasters according to Model 

2 is $91 billion, with a median of $56 billion and a standard deviation of $120 billion. Due to 

changes in the frequency and the costs of billion-dollar disasters, the average costs of each type of 

disaster from Model 2 are almost twice as large as the average costs from Model 1. Model 3 and 

Model 4 capture the effect of GDP on the cost of each disaster and subsequently on the total cost. 

Model 3, which has identical data as Model 1 for the costs of disasters, produces an average annual 

cost of $78 billion, which is 50% higher than the average annual cost from Model 1. One of the 

reasons for higher costs from Model 3 as compared to Model 1 is drought. Losses from drought 

were substantially higher during 1980 ($33 billion), 1988 ($44 billion), and 2002 ($13 billion) 

when compared to GDP in those years. Model 4 has the highest expected annual average cost 

($108 billion), median ($62 billion), and the 99th percentile ($681 billion) of all the models. These 

extreme disasters tend to skew distribution towards the right and overestimate the cost. As can be 

seen from the Q-Q plots in Figure 6, Model 3 and Model 4 seem to overestimate the annual costs 

of extreme natural disasters. 
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The first four models demonstrate that tropical cyclones have the most severe impact on 

the U.S. economy. Extreme disasters such as Hurricane Katrina, Hurricane Harvey, and Hurricane 

Maria have each resulted in $93 billion or more in economic costs in the past, which is evident 

from the models. The annual average cost from tropical cyclones is more than $30 billion 

according to Model 1 and more than $60 billion according to Model 2 and contributes 60-70% of 

the annual costs. The cost to the U.S. economy by tropical cyclones is approximately five times 

more than the second most expensive disaster (severe storms) in both Model 1 and Model 2. 

Similarly, tropical cyclones also have the greatest average annual cost in Model 3 ($37 billion) 

and Model 4 ($68 billion). Tropical cyclones also exhibit the largest increase in costs since 2000 

when comparing the results between Models 2 and 5.  

Even though tropical cyclones incur the highest cost to the economy, the most frequent 

billion-dollar disaster is a severe storm in the four models. According to Model 1, Model 2, and 

Model 4, severe storms have the second-highest annual cost from $6-15 billion. Wildfires have the 

second-largest average annual cost in Model 3 at $13 billion, and the average annual cost of severe 

storms is $8 billion in Model 3.  

Droughts contribute the third largest impact according to Model 1, Model 2, and Model 3, 

with an average cost of $6, $7, and $11 billion, respectively. Losses from wildfire ($12 billion) are 

the third-largest contributor to the total average cost according to Model 4. This change in losses 

for wildfire is also noted in Model 3, which might be because of the fewer data points for wildfire 

compared to the severe storm that cost higher than the GDP of that period. 

The five models seem to have some benefits and drawbacks. Models 1 and 3 use all of the 

available historical data, which is generally good practice, especially when the size of the dataset 

is rather limited. However, since the frequency and costs of billion-dollar disasters appear to be 



27 
 

 
 

increasing, only using the most recent data as Models 2 and 4 do seem reasonable. Incorporating 

GDP into the model to account for some of the increase in costs might be appropriate. Still, Models 

3 and 4 do not seem to fit the data very well and may overestimate these natural disasters' costs. 

Model 2 seems to provide a good fit to the historical data and account for the rise in frequency and 

costs due to its ability to incorporate recent disaster cost and frequency changes. 

Previous researchers have mentioned the importance of education and experience on 

disaster preparedness [33], [34]. Educating vulnerable populations about the effect of tropical 

cyclones (most expensive disaster) and severe storms (high-frequency disaster) can significantly 

reduce the economic impact and save American lives. A dollar invested by the federal government 

in disaster mitigation saves six dollars in recovery [35]. The mitigation efforts could be an input 

in the risk analysis models generated in this thesis so as to quantify, forecast and understand the 

outcome of mitigation strategies on the total economic costs of disasters. The valuation of 

economic costs of disasters from the models can be utilized by policymakers to estimate the 

effectiveness of recovery plans. The ability to mathematically quantify different complex natural 

disasters can be used by the policymakers to compare different scenarios at different levels of 

severeness. A rank order system could be generated using appropriate multi-criteria decision 

making methods with different scenarios to support and determine separate mitigation strategies. 

A proactive measure and numerical modeling approach, described in this thesis for highly 

disruptive disasters such as tropical cyclones, severe storms, and drought, can substantially 

mitigate the adverse effects [34]. Disaster risk reduction (DRR) has been shown to mitigate the 

economic impacts of natural disasters [36].  Based on the above models, spending 30-50% on 

tropical cyclones can fast-track the economic recovery. 
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This thesis uses probabilistic models. The models quantify the distribution of possible 

losses and the likelihood of their occurrence. The data collected by NCDC shows some limitations. 

Some natural disaster losses take a longer time to realize to the economy, and it might take months 

or years before receiving accurate information. The models are also limited to natural disasters 

contained in the dataset and do not consider the types of disruptive events such as a pandemic or 

terrorist attack. A future extension of this work could include a model with the number of deaths. 

Quantitative measures can be refined further by incorporating subject matter expertise through 

Bayesian analysis. Ultimately, the strength of these models lies in the ability to incorporate 

complexities and uncertainties of the natural disasters and to help quantify these uncertainties to 

enhance effective decision making. 

These types of models can help policymakers understand the risk of large-scale natural 

disasters and help them be better prepared and create a more resilient nation. This thesis provides 

one way of quantifying and understanding risks in the overall efforts towards building risk 

management strategies. Quantifying and analyzing the costs of these disasters using probabilities 

can inform policymakers about how much they should spend in order to prepare for and hopefully 

reduce the frequency and magnitude of these billion-dollar disasters.  
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