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ABSTRACT 

This dissertation will present two methods of how 3D point cloud data can be used to 

significantly advance two important operations within the metalcasting process. The first is the 

inspection of the casting surface, and the other is an automation method to replace the current 

reliance on manual grinding.   

Currently, surface roughness inspection is performed manually by an operator who 

compares the surface of a casting with comparators and determines if they are acceptable based 

on the casting design specifications. The comparators are pictures or physical replicas of 

representative casting surfaces. As the inspection process is manual, it is very subjective. The 

low repeatability and reproducibility of the inspection process cause communication problems 

between foundries and customers as well as within the foundry. This could cause unacceptable 

castings to be sent to customers, customers falsely identifying acceptable castings as 

unacceptable, and excessive rework iterations. 

The dissertation will present an objective method to inspect castings repeatably and 

reliably. The method will use 3D scan data in the form of point clouds. The point clouds will be 

used to determine the underlying geometry of castings and then use the distance between point 

clouds and the mesh representing the underlying geometry to calculate the surface roughness.  

The second operation covered in this dissertation is grinding of casting surfaces in 

foundries. Much of the steel casting industry is made up of companies that produce a high mix in 

low production quantities. This environment precludes currently available automation solutions. 

Hence there is a heavy reliance on manual grinding. Manual grinding is one of the operations in 

foundries that has the most ergonomic issues as well as most safety incidents. Currently, the 

automation of grinding operations is mainly done through fixed automation, where the robot 
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performs the same operation for every part. This requires expensive fixturing for repeatable 

orientation and programming for every new part. Large production quantities are required to 

justify the fixturing and process planning tasks.   

This dissertation will present a semiautomatic grinding solution. In this method, the 

operator identifies the excess material that needs to be ground and marks it with colored markers 

on the casting. The casting is then placed in a robotic cell that only requires the casting to be 

secured and but not the need for exact fixturing. A 3D scanner with a color camera is used to 

scan the casting, identify the markings, and segment the surface based on the markings. A 

removal strategy is automatically determined and executed. 

Overall this dissertation will present two methods to utilize 3D information to improve 

foundry operations.  
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CHAPTER 1.    GENERAL INTRODUCTION 

1.1. Introduction 

After a casting is poured, solidified, and shaken out of its mold, excess material on the 

casting needs to be removed. This includes contacts where the risering and gating system was 

attached. The removed material could be both expected, like the gating system's contacts, and 

unexpected, such as abnormalities on the surface. Most of the riser and gate material is usually 

cut or knocked off. However, about 6 mm (1/4 in) of the contact remains on the casting surface, 

but this value is not consistent among castings. The remaining excess material is often removed 

through grinding. Depending on factors, such as casting geometry and production volume, the 

excess material may be removed through manual grinding by an operator, which is most 

common, or in an automated cell by a robot. After being ground, the casting may go through 

further processing steps such as machining to fulfill drawing requirements before it goes through 

inspection.   

Castings are typically inspected to ensure that the casting's surface meets the customer's 

requirements before a casting is delivered to the customers. This casting surface inspection is 

commonly performed via visual inspection. It determines if the overall surface roughness and the 

abnormalities are acceptable. Abnormalities include issues such as fusion, porosity, removal 

marks, and inclusions. The surface specifications are usually set based on comparators, which are 

either pictures, metal, or plastic replicas of castings with varying surfaces. Commonly these 

comparators are ranked from smoothest/best surface to roughest/worst. Some comparators only 

assess surface roughness, while others also asses other typical casting surface characteristics or 

abnormalities such as inclusions or gas porosity. The operator then determines if the surface is 

better or equal to the specified comparator for a given casting surface.  
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The subjectiveness of the inspection creates problems for casting producers and 

customers [1]. Customers will typically call out the required surface characteristics in the 

engineering drawings. Once the casting is produced in the foundry, the inspector will determine 

if it fulfills this requirement through visual inspection. After the casting is delivered to the 

customer, they may perform their own inspection. Because of the subjective inspection, these 

two inspections may not align, causing the product to be declined and making rework necessary. 

Thus the first research question guiding this research is: How can the surface of metal castings be 

characterized quantitatively, reliably, and with adequate scale using digital surface data? 

This dissertation will introduce a digital method for objective surface roughness 

determination. This method will utilize a 3D scan of a flat area on the casting to calculate an 

objective roughness value for the scanned surface.  

Since many foundries have their own 3D scanners and are using them for dimensional 

measurements, it would be beneficial to use these 3D scans for the roughness determination 

instead of a separate inspection step. Thus the second research question guiding this research is: 

How can the surface of metal castings be characterized quantitatively, reliably, and with 

adequate scale using digital surface data from the entire 3-dimensional shape? 

This dissertation will introduce a method to objectively determine casting's surface 

roughness utilizing 3D scans of casting already performed at foundries.   

The knowledge gained by working with 3D scan data to create a method for determining 

roughness values and identifying abnormalities from point clouds can also be utilized to improve 

the manual removal of excess material on castings, by using 3D scan data to determine the 

location and extend of excess material on castings. This information can then be used to plan a 

path for a robot to remove the material.  
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Currently, the excess material is commonly removed through manual grinding. Manual 

grinding is hard work with ergonomic challenges [2] and one of the operations with the most 

safety incidents in foundries [3]. Further, in times of low unemployment, foundries experienced 

high labor turnover rates. All these are reasons to automate the grinding process. For fixed 

automation, the robot's path plan is determined once and can then be used for all castings of the 

same kind. To accommodate this automation strategy, an accurate location of the casting in the 

robotic cell is required, which is often achieved with fixturing. The cost of the programming and 

the fixture is then amortized over the number of castings produced with that program and fixture. 

If the number of castings is high, it will not increase each castings cost, but for job shops, this 

will be too expensive. Also, the program's creation may take longer than manual removal, 

especially if the foundry does not perform its own robotics programming. 

Further, since not all areas where material needs to be removed can be known when 

predetermining the robot's path plan in fixed automation, manual operations still may be 

necessary to remove material in these previously unknown areas. Besides, the amount of material 

that needs to be removed in one location may vary, for example, because of manual gating 

system cut off. This fixed removal process could compensate for this by planning to remove 

more material than necessary. This results in air cutting, which causes longer cycle times and 

increases the automation solution's cost. Overall automated removal process on castings is a 

challenge, especially in job shops with low production volumes.  

The final guiding research question is: How can excess material be removed to blend a 

surface to the surrounding surface automatically for castings from high variety, low volume 

production using minimal operator input? 
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This dissertation will introduce an adaptive automation method that relies on an operator 

marking the areas where material needs to be removed on the castings. It will analyze the point 

cloud data and color information gathered by a 3D sensor to detect the markings, determine the 

size of the abnormality and shape of the surface around it, as well as determine a path plan for 

removing the material. 

 

1.2. Dissertation Organization 

Chapter 1 introduces the casting surface inspection and material removal problem. 

Chapter 2 provides a literature review of both issues and clarifies the motivation. Chapter 3 

introduces a proposed solution to the objective casting surface inspection problem. Chapter 4 

improves upon the proposed solution of the previous chapter to make the objective method more 

accessible and useable to foundries. Chapter 5 presents a novel way to utilize point cloud data to 

segment a surface based on marking, determine the desired surface, similarly to the underlying 

geometry detection in Chapters 3 and 4, and remove surface abnormalities. Chapter 6 is 

providing a conclusion and evaluates the potential for future work.  

 

References 

[1] M. M. Stallard (Voelker), C. A. MacKenzie, and F. E. Peters, “A probabilistic model to 

estimate visual inspection error for metalcastings given different training and judgment 

types, environmental and human factors, and percent of defects,” J. Manuf. Syst., vol. 48, 

no. July, pp. 97–106, 2018, doi: 10.1016/j.jmsy.2018.07.002. 

[2] F. Peters and P. Patterson, “Ergonomic Improvements for Foundries,” Iowa State 

University, Ames, IA, Jun. 2002. doi: 10.2172/796904. 

[3] R. Moore, “Steel Foundry Safety Benchmark Study,” in 2019 Technical & Operating 

Conference, Steel Founders’ Society of America, Chicago, IL, 2019. 
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CHAPTER 2.    LITERATURE REVIEW 

The first part of this literature review will introduce current visual inspection standards 

for castings, studies evaluating visual inspection, and objective alternatives to visual inspection 

because this dissertation will introduce a new method to evaluate the surface roughness of 

castings. The second part of the literature review will discuss the current methods for material 

removal on castings for high and low production volumes, because of the material removal 

method for low production volumes introduced in this dissertation.  

 

2.1. Inspection 

The surface characteristics of castings are some of the quality indicators which are 

identified by inspectors in foundries, and often done via visual inspection. For castings, 

comparator plates or pictures are utilized to determine the surface roughness of castings as well 

as the level and kind of abnormalities present on the surface. Some examples of those 

comparators are the GAR-C9 comparators [1], the MSS SP-55 Visual Method [2], the ACI 

Surface Indicator Scale [3], and the SCRATA comparator plates. The latter one being referenced 

by one of the most common surface standards in the USA, ASTM A802 [4].  

The GAR-C9 comparator (Figure 2-1) has nine surface roughness levels from 20 to 900 

RMS Microinches. How these RMS values were determined is unclear. Out of the four 

comparators, this comparator has the highest resolution with nine different roughness levels. 

However, it does not contain any definitions of other surface characteristics such as porosity or 

cutting marks.  
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Figure 2-1: GAR C-9 

The ACI Surface Indicator Scale has four different levels of surface roughness ranging 

from SIS-1 to SIS-4 (Figure 2-2). The SIS levels have RMS Microinch equivalents, as seen in 

Table 2-1. 

 

Figure 2-2: ACI Surface Indicator Scale 

Table 2-1 Corresponding SIS numbers and RMS average deviations [3] 

RMS Microinches SIS Number 

200 1 

350 2 

500 3 

900 4 
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Unlike the GAR-C9 comparator, the ACI Surface Indicator Scale considers not only 

surface roughness but also other irregularities. The ACI comparators do not differentiate between 

the type of irregularities. Instead, the height, area, and number of occurrences are considered. In 

addition to the four different surface roughness levels, the comparator has 15 different grades or 

irregularities. These irregularities are differentiated by their permissible height and depth. Table 

2-2 shows the 15 different grades with their permissible heights and depths. Each SIS level has 

four or fewer grades associated with them. Grade 5, for example, would mean surface roughness 

of SIS-2 and irregularities smaller or equal to 1/32 inch. Starting with SIS number 3, 

irregularities are sometimes allowed to be deeper than high.  

Table 2-2 ACI Surface grade Limits [3] 

  Irregularities Permissible – 

Inch 

Grade SIS No. Depth Height 

I 1 None None 

II 1 1/64 1/64 

III 1 1/32 1/32 

IV 2 1/64 1/64 

V 2 1/32 1/32 

VI 2 3/64 3/64 

VII 2 1/16 1/16 

VIII 3 1/32 1/64 

IX 3 1/16 1/32 

X 3 1/16 1/16 

XI 3 1/8 1/16 

XII 4 1/16 1/32 

XIII 4 1/8 1/16 

XIV 4 1/8 1/8 

XV 4 ¼ 1/8 

 

 

The standard further specifies the number of irregularities allowed for different surface 

grades and irregularities sizes. Irregularities are considered individual irregularities when they 

are separated by more than four times their minimum dimension.  
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The ASTM A802 references the SCRATA plates (Figure 2-3), and unlike ACI, which 

does not differentiate between different types of abnormalities, ASTM A802 differentiates 

between nine different surface characteristics, one of which is surface texture, as seen in Table 

2-3. Four different levels of surface texture are referenced: SCRATA A1 - A4; an A5 plate exists 

as well but is not referenced by ASTM, likely because the roughness is beyond what is 

acceptable. The SCRATA A4 surface itself is a lot rougher than any surface on GAR C9 and 

ACI. Further, the difference between the different surface levels seems larger between the 

SCRATA A levels than for GAR C9 and ACI, making it less challenging for an objective 

method to differentiate between the roughness levels. The actual size of the SCRATA plates (3.8 

x 5.8 in) is also a lot larger than the ACI (1.1 x 2.1 in) or GAR-C9 (0.4 x 1.5 in) surfaces.  

Table 2-3 Visual Inspection Acceptance Criteria [4] 

Surface Feature Level 1 Level 2 Level 3 Level 4 

Surface texture A1 A2 A3 A4 

Nonmetallic inclusions B1 B2 B4 B5 

Gas porosity C2 C1 C3 C4 

Fusion discontinuities  D1 D2 D5 

Expansion discontinuities   E3 E5 

Inserts   F1 F3 

Metal removal marks     

  Thermal G1 G2 G3 G5 

  Mechanical H1 H3 H4 H5 

  Welds J1 J2 J3 J5 

 

The MSS SP-55 Visual Method does not have physical comparators like GAR-C9, ACI, 

or SCRATA but works instead with images of acceptable and unacceptable surfaces. Further, it 

does consider not only surface roughness but also abnormalities. Overall it differentiates for 12 

different types of surface characteristics between acceptable and unacceptable surfaces. Thus 

unlike the other three comparators, it does not differentiate between multiple different levels for 

each characteristic. Instead, it is a binary decision. The 12 different characteristics are hot tear 
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and cracks, shrinkage, sand inclusion, gas porosity, veining, rat tails, cutting marks, scabs, 

chaplets, weld repair areas, surface roughness, and wrinkles, laps, folds, and cold shuts. This 

visual method also has SCRATA equivalents for some of the criteria. This means that for some 

MSS SP-55 criteria, one can use a physical SCRATA comparator to determine if a surface is 

acceptable. For example, for surface roughness acceptance criteria of MSS SP-55, the SCRATA 

A3 or better are considered equivalent and acceptable. 

 

Figure 2-3: Various SCRATA comparators. First row left to right: A1, A2, A3, A4. Second row left to right: B4, C3, 

D5, E3 

Visual inspection is rather subjective, which can lead to errors. Thus multiple studies 

have investigated the effectiveness of visual inspection. One study [5] explained the risks 

involved in visual inspection. The author describes two types of errors that can occur during the 
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visual inspection, bad parts can be missed, and good parts can be rejected. Both lead to costs. 

When a bad part is missed during the inspection, the error is considered customer risk, and when 

a good part is rejected, the error is considered producer risk. In both cases, the producer will pay 

for the mistake. In the former, it will be indirect, but in the latter, the producer will pay directly 

through unnecessary rework or scrap. Overall the results for the final inspection of aluminum 

castings at the author's facility found an average of 82% effectiveness, ranging from 69% to 92% 

effective. The author states that with a visual standard, about 80% effectiveness can be expected, 

further suggests that with improved training and procedures, 96% may be reached. However, the 

author concludes that without removing the human from the equation, it will not be possible to 

get any better.  

Another study [6] focused more on the visual inspection of anomalous areas on castings. 

The study worked on a method to enable the measure of repeatability and reproducibility error 

for visual inspection of anomalous areas on castings. Repeatability error is the inspection 

variation for the same part and operator over multiple trials. Reproducibility error, on the other 

hand, is the inspection variation for the same part and multiple operators. The method identifies 

anomalous areas with circular markers. Through multiple trails and operators, master clusters are 

generated, showing all areas in which markers were placed. These master clusters are used for 

repeatability and reproducibility calculations to determine how well the same defect regions are 

identified, and the results are reported in terms of percent match for these master clusters. Part of 

this study was a gage R&R study at three different foundries. The average repeatability for the 

three foundries was only a 64% master cluster match, whereas the reproducibility, on average, 

showed that two operators only agreed 45% of the time.  
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Both of the previous two studies show that there is a significant amount of error possible 

during the visual inspection of casting surfaces. One study [7] worked on improving visual 

inspection because of the high potential for error. The study presented a test (Matching Familiar 

Figures Test), which could help foundries determine how much potential an applicant has to 

become an inspector. Further, they showed that rastering training would improve the inspection 

results. Rastering is a strategic way to inspect the whole part surface and thus make it less likely 

to miss abnormal areas.  

The subjectiveness of the visual inspection causes issues like low repeatability and 

reproducibility. Objective methods for surface characterization exist but are not suited for the 

classification of casting surfaces. Contact methods like stylus profilometer are very common [8] 

to determine the surface roughness of machined surfaces. The stylus is pulled over a short 

section of the part while the deflection is recorded. This generates a two-dimensional view of a 

small part section. Based on these results, surface roughness values like Ra, the arithmetic mean, 

can be determined. This method has a couple of disadvantages [9]; it is time-consuming to use 

on big surface areas, limited in the measuring amplitude, and results depend on the measuring 

direction. On the other hand, it has high accuracy and thus can be used to differentiate even very 

smooth surfaces. Further, the method is beneficial for machined surfaces because of the regular 

surface structure. One is able to select a very small area on the machined surface, which would 

be representative of the whole surface. For castings, this is not a valid assumption because 

casting surfaces have a random surface structure.  

Non-contact methods, in general, are able to acquire a much higher number of data points 

in a bigger area, but their accuracy is usually lower than for contact methods. A 3D equivalent 

for the popular 2D parameter Ra is the Sa parameter for the average roughness. It is the 3D 
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equivalent because the calculation is very similar, but the results of Sa and Ra measured on the 

same surface may still differ considerably. One study [10] found that differences as high as 52% 

can be found for the same surface if only one Ra profile is compared to the Sa measurement. This 

error can be reduced by averaging multiple Ra profiles and avoiding profile directions parallel to 

the main feature direction.  

The Sa , arithmetic mean height, surface roughness parameter is commonly available for 

roughness determinations on microscopes with focus variation where typically only an area of 3 

by 3 mm is inspected [11]. This is an alternative to a profilometer for machined surfaces, but not 

very useable for casting surfaces because of the small area covered.  

Objective methods for the casting surface classification have been proposed, which look 

at larger areas [12]. The method developed in the study considers both abnormalities and the 

underlying geometry of the surface. It uses point clouds commonly gathered by a non-contact 

measuring device. Point clouds are a list of points in the three-dimensional space and are also 

used to calculate parameters such as the earlier mentioned Sa. The method specifies a surface 

based on three parameters: the baseline roughness, the maximum abnormality level, and the 

maximum abnormal percentage of the inspected surface. For this specification, the method can 

evaluate if a surface meets or does not meet the specification.  

This dissertation will address the shortcomings of the current methods and provide a 

digital method to determine surface roughness objectively while considering abnormalities, the 

underlying geometry, and the spatial relationships of the points in the point cloud.  

 

2.2. Material Removal 

Material removal processes on castings are common. After the casting is removed from 

its mold and undergone an initial blast cleaning, most excess material is removed. This metal 
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includes the risering and gating system inherent to the process as well as potentially excess 

material at the parting line. This is done via sawing, torch cutting, arc air, water jet cutting, or 

breaking. To not damage the surface of the casting, the removal process usually leaves up to 

6 mm of material above the desired surface. The rest of the material is commonly removed by 

grinding. For very accessible areas and when much material needs to be removed, grinders with 

a large grinding wheel diameter are used and mounted in a way that supports most of their 

weight but lets the operator move the grinder around (swing frame grinder). For less accessible 

areas, when it is impractical to move the casting into position or when less material needs to be 

removed, handheld grinders are commonly used by the operators.  

Robots can be used to perform this grinding task. Depending on the size of the casting 

that needs to be ground, either the robot may hold the casting and move it to the grinder, or the 

robot holds the grinder and moves it to the casting to grind [13]. In general, for low production 

volumes, robotic grinding is difficult to achieve because programming is necessary for every part 

number change unless parametric programming was utilized, which is restricted to parts of the 

same product family. The U.S. steel casting industry produces over 1 million tons of castings 

each year [14]. However, the majority of this production is for short lot sizes that cannot support 

the use of currently available automation systems. New products have been developed to reduce 

the time it takes to program robot paths. Robot producers started to add touchpads to their robots 

for easier programming, and third parties like Sisu offer smart pendants that enable programming 

with a panel and handheld controller [15]. Especially the latter is focused on smaller companies 

by reducing the cost of training and external programmers for robotic automation. However, for 

complex path plans, these are only of limited use. Another way to avoid expensive programming 

is by having a human control the robot during the grinding operation. This can either be done 
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directly by guiding the robot by hand [16] or controlling the robot with a controller from outside 

of the cell [17]. For both applications, the operator can be relieved from most of the grinding 

forces.  

This is important because manual grinding is very strenuous work. Constant pressure has 

to be exerted on the grinder to remove material while moving around the casting, often in non-

ergonomic positions. The grinding can have negative impacts on the operators and productivity.  

An industry survey done for a report [18] indicated that hand grinding is the job in steel 

foundries with the most ergonomic issues. It was further determined that the ergonomic problems 

are difficult to solve. The report identified multiple possible solutions, such as avoiding 

unnecessary grinding tasks and the usage of swing grinders to assist the operator with the force 

application. Two other studies modeled hand grinding tasks to evaluate the ergonomics, and both 

identified the working height as an important factor in improving ergonomics [19][20].  

Furthermore, surface finishing operations in foundries, which grinding is part of, is the second-

highest cause of workplace injuries in foundries right after melting [21].  

These health-related issues are one of the reasons for increased interest in automating 

grinding tasks in foundries. Other reasons include price pressures through global competition, 

low retention rates, and high labor turnover. The latter two are negatively affected by the arduous 

work and low unemployment rates in recent years. Overall this has been restricting the optimal 

operation of foundries [22].  

Automation would be able to help with these issues, but automation for castings is harder 

than for machined parts. The higher dimensional variability makes it difficult to fixture 

workpieces and use the same machine code because of the differing amount of material that 

needs to be removed and a geometry that does not closely match the CAD file. For low variety 
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and high volume production, these problems are manageable but may cause some inefficiencies, 

like air cutting because of the unknown amount of material left. Furthermore, for high production 

volumes, the cost of the fixture to orient the part repeatedly and of the robot programming can be 

spread out over the number of parts. Thus, robotics can be found in low variety, high volume 

productions.  

Visits of 3 foundries members of the Steel Founders’ Society of America that employ 

robotic automation in their foundries have nonetheless shown that there is some isolated use by 

some smaller foundries of robotic grinders. One such foundry utilizes parametric programming 

to save programming costs. They have parts that have the same geometry but different scales. 

That way, the general program can stay the same; only some sizes need to be changed. Further, 

the surfaces where the material is removed are restricted to flat, conical, and cylindrical surfaces, 

which simplifies the path plans. Because the amount of material remaining is unknown, a lot of 

the processing time is air cutting. The robot was not required to be as economical as a human 

because the project was still in its development stage and because the labor shortage was 

significant. Another larger foundry used robotic grinding on some high-volume parts. On these 

parts, a flat area was ground to the desired dimension. Since the robot picked up the part and 

moved it to a stationary grinder, the solution required compatible tooling to pick up each part. To 

switch to a new part number changes in the automation code and new tooling may be required.  

The lower precision of the casting process causes issues for robotic grinding because of 

many unknowns but is also advantageous because, in many areas of the casting, only relatively 

low precision is required making automation easier. Much robotic surface finishing research 

focuses on robotic blending or polishing [23]–[27]. For these operations, the focus lies on 

removing an even amount of material instead of targeted material removal in specific areas. For 
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these blending and polishing operations, a type of force control is often used to maintain contact 

to an unknown surface and remove an even amount of material. Some previous work [28] 

focused on automatically remove excess material on castings included a prototype system using 

a gantry with a small rotary tool. An operator would identify the work area by positioning a 

contact probe in multiple locations. The system would then decide on locations on which it 

would sample the surface. These sample points were then used to generate a path plan for the 

rotary tool. Overall, the method was restricted by its size as well as the possible orientations of 

the rotary tool.  

In this dissertation, a method for grinding automation in a low production environment is 

presented and will address these challenges.  
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Abstract 

Casting surface specifications are set based on aesthetics, functionality, or a combination 

of both. To classify casting surfaces, visual inspections are performed by an operator who 

compares the casting surface to pictures or comparator plates (e.g., metal, plastic) that represent a 

certain roughness level. This inspection process is highly subjective, and disagreements arise on 

the acceptance of a casting between the casting producer and buyer. To minimize these 

disagreements and use developments in 3D scanning, this study aims to develop a digital surface 

characterization method. The method developed and implemented in this study utilizes underlying 

geometry estimation, abnormality detection, and a new roughness characterization formula based 

on a variogram to determine a surface roughness value. Tests were done to compare the new 

roughness characterization formula with existing quantification methods (i.e., Sa, Sq) and to 

compare the results of the method with human operators. The tests indicated that the variogram 

roughness was able to differentiate between the roughness levels of the current surface roughness 

standards GAR-C9 and SCRATA. In addition, the results are repeatable as well as reproducible 

and agree with operator judgment based on a ranking comparison between the operator and the 

digital method. Overall, the digital surface roughness method has the potential to improve the 



20 

 

communication between casting suppliers and designers and make the surface roughness 

classification more reliable and repeatable. 

Keywords: variogram roughness, surface roughness, abnormalities, metalcasting 

 

3.1 Statement of Authorship 

This chapter was authored by Daniel W. Schimpf and Frank E. Peters. Daniel W. Schimpf 

conceptualized, reviewed the literature, designed, implemented, and tested the variogram 

roughness method under the supervision of Frank E. Peters. Finally, the manuscript was drafted 

by Daniel W. Schimpf and revised by Daniel W. Schimpf and Frank E. Peters. 

 

3.2  Introduction 

During the design process of castings, the casting surface is assigned a surface 

specification, including surface roughness. Once the casting is produced, typically, a human 

operator determines if a surface is within specifications by comparing the casting surface with 

comparators which are referred to in the standard. These comparators can be images or 

comparator plates made from plastic or metal. During an inspection process, the inspector 

compares the plate or photograph with the inspection surface to determine if the inspection 

surface is better than the required criteria. When using reference images, only the eyesight of the 

inspector is utilized to compare the surfaces. Some examples of these would be the ACI Surface 

Indicator Scale [1] and the MSS SP-55 Visual Method. [2] In the case of physical comparator 

plates, the inspector has the option to use both vision and tactile sense to compare inspection and 

reference surface. One of the popular standards in the USA is ASTM A802, [3] which references 

the plastic comparator plates provided by SCRATA, see Figure 3-1. The SCRATA comparator 

plates do not only classify surface roughness but also other surface characteristics like inclusions, 
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gas porosity, discontinuities (fusion and expansion), or removal marks (thermal, mechanical, and 

welds). Most of these categories have four different levels ranging from smooth to rough, little to 

many inclusions, or shallow to deep removal marks. One of the disadvantages of the SCRATA 

plates is the lower resolution, meaning the difference between two adjacent surface roughness 

levels is higher (this will be demonstrated in the result section Figure 3-12), with usually only 

four levels of surface roughness in comparison with the GAR Microfinish Comparator C9 

(Figure 3-2) which has nine. The GAR Microfinish Comparator C9 plate states the roughness in 

the form of root mean square (RMS) from 20 to 900 microinches, but it is not clear how these 

values were obtained, as the authors have had difficulty replicating these numerical values. 

Figure 3-3 shows the results of 5 profilometer measurements on each of the nine roughness 

levels on the GAR-C9 comparator. The figure shows that the reported RMS value and the 

measured RMS values do not match up. The measured results are almost always higher than the 

roughness level specification. For roughness levels 720 and 900, some measurements had to be 

repeated because the variation of the surface was higher than the profilometer was capable of 

measuring. This means the true roughness of the 720 and 900 roughness levels is probably even 

higher than the reported results. The GAR-C9 comparator also does not have any anomaly 

definitions, such as porosity. [4] 
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Figure 3-1 A1 through A4 SCRATA plates (left to right). 

 

 

Figure 3-2 GAR microfinish comparator C9. 



23 

 

 

Figure 3-3 Results of 5 profilometer measurements on each roughness level of the GAR-C9 plate. 

 

 Utilizing reference images and comparator plates is subjective because different 

operators may arrive at different classifications. This may cause problems for producers if the 

casting buyer’s inspector classifies the surface as rougher than the producer inspector. Much 

research has been done to address visual inspection errors and their causes. One such study [5] 

was conducted to determine the effectiveness of visual inspection using a visual comparative 

method, the MSS SP-55. It was found that the effectiveness of inspectors during the final visual 

inspection of aluminum castings ranged from 69 to 92%, with an average of about 82%. The 

study concluded that with visual standards like the MSS SP-55, effectiveness could only be as 

high as approximately 80%. A similar study [6] dealt with visual inspection error, and its 
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measurement specifically looked at abnormalities on casting surfaces, which can also be 

classified using surface comparison specimens. The gage repeatability and reproducibility study 

looked at three different foundries with two inspectors and concluded that average 

reproducibility (within inspector deviation) was 45% matching of results, and the average 

repeatability (between inspectors) was 64% match. Both of these studies show that the 

classification of surface properties (roughness, abnormalities, etc.) by a human operator is 

subject to significant error. Another study [7] looked into some methods to improve the visual 

inspection process. The study showed that the inspection outcome could be improved by training 

operators to use systematic and thorough search patterns (rastering training).  

These studies demonstrate the need for an improvement in the casting surface 

characterization. Training human operators to improve their repeatability and reproducibility is 

not enough, because one will never be able to overcome the subjectiveness inherent in the 

process. One way to improve the reliability of surface roughness characterizations would be to 

develop an objective digital method to classify casting surfaces. An automated visual inspection 

process for surface roughness would be problematic as it would need to rely on color or shading 

information. The inspection would be based on the assumption that deeper groves create darker 

shadows, but these darker shadows would be hard to differentiate from color changes of the 

surface itself. Thus, two surfaces with the same surface roughness but with one having a color 

pattern on its surface would likely get different roughness results.  

Using 3D methods for measurement purposes is not a new idea. In the machining 

industry, objective methods to classify surface roughness are widely used. Some of these are 

contact methods like a stylus profilometer, but these methods are often time-consuming, limited 

in their measuring amplitude, mostly line sampling, and may not be able to detect undulations 
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[8][9] that exist on sand castings. Contact methods are widely used on machined surfaces where 

the surface often has a cyclic character and generally a lower surface roughness than castings. On 

the other hand, non-contact methods are able to acquire a large number of three-dimensional 

surface points in a short time. One popular roughness parameter calculated from 3D data is Sa 

(average roughness), which is essentially the 3D equivalent of the 2D roughness parameter Ra. 

When only one Ra profile is compared with the Sa parameter for the same surface, differences as 

high as 52% have been reported [10]. This difference can be reduced by averaging multiple Ra 

profiles and further reduced by removing profiles parallel to the main feature direction. One 

disadvantage of currently common areal surface characterization is the small area inspected. The 

Sa parameter, for example, is used in combination with microscopes where the area covered is 

typically less than 3 by 3 mm [11]. For machined surfaces, this small area may be representable 

for the whole surface, but this is most often not the case for casting surfaces.  

Voelker proposed a method for casting characterization that considers the underlying 

geometry of the surface and possible abnormalities, but spatial information of the points in space 

was ignored. Voelker utilized a point cloud, which can be acquired with a variety of methods 

(e.g., time-of-flight, triangulation, structured light), to determine if a surface is as good as a set 

specification or better. For that, the designer had to define three values: a baseline roughness, an 

abnormality level, and an abnormality percentage. However, a weakness of this method was the 

inability to determine a roughness value for a specific surface. [12]  

Considering the low reliability of the current visual inspection methods and that current 

digital methods do not consider spatial relations of 3D data, improvements for the casting surface 

roughness classification are necessary. The goal of this paper is to propose a method that is able 

to produce reliable and objective surface classifications, which include measured surface 
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roughness values and abnormality parameters. The method proposed in this paper will consider 

the spatial information of the points, as well as the underlying geometry and abnormalities, to 

determine the surface roughness value. 

 

3.3  Methods 

The proposed digital method ‘variogram roughness’ (SVR) uses point cloud data, which 

includes the x, y, and z coordinates of each point. The method of acquisition is irrelevant because 

the roughness method only needs x, y, z data points, which can be acquired in a variety of ways, 

but a non-contact method is able to record ample points rapidly and is thus preferred. Ultimately, 

the accuracy of the final results is depended on the accuracy of the recorded points, which are 

used as input for the method. The proposed method will objectively quantify casting surface 

roughness. To do this, we focused on three properties that need to be considered: spatial 

information, underlying geometry, and abnormalities on the surface.  

3.3.1 Spatial Information 

Casting surfaces have a random, irregular pattern, whereas machined surfaces often have 

a cyclic character. This is why it is more important for castings to consider 3D areas instead of 

just relying on 2D line samples and to consider the spatial relation of the sample points. Spatial 

information means considering not only the height of a point (commonly z coordinate) but also 

its x and y position. Equations 1 and 2 represent the roughness average (Sa), and the root mean 

square (Sq). [13] Both equations only consider the z values of the points recorded without 

considering the x and y values. Therefore, any surface that has points with the same z values 

produces the same Sa and Sq values no matter how these points are distributed on an x–y plane. 

Overall, calculating the Sa or Sq value only utilizes 33% of the information acquired during a 

surface scan. 
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The method presented here considers the x and y coordinates as well as the z coordinate. 

The final result is derived from a variogram. Previous applications of variograms include the 

characterization of soil surface roughness. [14–16] Equation 3 shows that a variogram calculates 

one-half of the mean of the squared height differences for points at a specified distance. 

𝛾(𝑙): =  
1

2𝑁
∑[𝑧(𝑥) − 𝑧(𝑥 + 𝑙)]2

𝑥

 (3) 

To create a variogram, the calculation of the semivariance 𝛾 has to be done for all lag 

distances l that one wants to visualize. The number of pairs considered is N, and z(x) is the 

height at point x. The variogram itself often looks similar to the square root function. Variograms 

consider spatial information through distance calculations based on x and y values to determine 

the height differences for a distance bucket. Because roughness values are usually measured in 

mm and not mm2, the square root of everything on the right side of Eqn. 3 is calculated. Some 

changes were also made to accommodate the approximate (non-continuous) calculation and 

arrived at Eqn. 4. 
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2
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where N(d) is the number of pairs for the distance d which has a negative tolerance s 

(step size) and v(d) is the value on the variogram for distance d. Distance d is the Euclidian 

distance on the x–y plane. Several methods were tested to determine a single quantitative value 

from a variogram. In one of the study’s characterizing soil surfaces, the correlation length was 

used to classify surfaces and was determined by finding the point of intersection of two lines. 

[14] One line is tangent to the beginning of the variogram and the other tangent to the end of the 

variogram. The y value of the point of intersection is then used to classify the surface. The 

implementation of this metric can be seen in Figure 3-4. The linear dashed lines are tangent to 

the variogram at the beginning and end. Their intersection (1.3, 0.08) marks where the 

correlation length is determined. This correlation length was tested for casting surfaces, but it 

was decided to be not as effective because of its sensitivity to outliers, specific variogram forms, 

and boundary effects. The method that seems to be most promising calculates the average of 

distance buckets in the range of the evaluation length, of which 0–5 mm seemed to be the most 

promising (Eqn. 5).  

𝑆𝑉𝑅(𝑒) =  
∑ 𝑣𝑁(𝑏)

𝑁(𝑏)
 (5) 

where N(b) is the number of distance buckets b within the evaluation length e, v is the 

result of Eqn. 4 for each bucket, and SVR is the variogram roughness. The result of this method 

is then able to represent the surface roughness of a specific surface. The vertical solid line in 
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Figure 3-4 marks the evaluation length, while the horizontal solid line marks the variogram 

roughness.  

 

3.3.2 Underlying Geometry 

Surface characterization includes several parameters, including roughness and waviness. 

Roughness is made up of high-frequency components, whereas waviness is made of medium 

frequency components. [17] When calculating the surface roughness of a profile, the waviness is 

filtered from the recorded data, and only the roughness profile is used to calculate the surface 

roughness parameters such as Ra or Rq.  

 

Figure 3-4 Variogram with correlation length and variogram roughness (0-3 mm). 

 

The differentiation between roughness and waviness in two dimensions can be achieved 

by high and low pass filtering, but this is not easily translatable to three dimensions. What is 



30 

 

known as waviness in two dimensions is referred to as underlying geometry in three dimensions. 

The determination of underlying geometry for castings is more complicated than for machined 

surfaces because of the inherent dimensional variability. For example, surfaces designed as 

planes will have some curvature after the casting process because of mold wall movement and 

differences in shrinkage. Thus, whereas the CAD file may be used to establish the underlying 

geometry on a machined part, it cannot be used to estimate the underlying geometry of a casting 

surface. A method is needed to estimate the underlying geometry, which then can be used to 

calculate a roughness value.  

The method chosen to determine the underlying geometry for this study is utilizing a grid 

of planes, which have sides equal to the sides of the surrounding planes. Figure 3-5 shows how 

this method works. In the first step of the method, a grid size is set; it was set to 5 mm in both x 

and y directions. Next, the first set of z values is calculated by determining the mean of the 

points in the area. Following this, quadratic polynomial functions are then fitted to the points in x 

and y directions. Subsequently, the functions are used to update the z value of the grid. For every 

x, y coordinate, the polynomial functions in x and y directions are multiplied by 0.25 and then 

added to the former z value multiplied by 0.5. By giving the polynomial function and the old z 

values 50% of the weight, the influence of abnormalities on the grid and the effect on the grid 

when the quadratic polynomial functions do not resemble the underlying surface can be reduced. 

The grid is then used to define small rectangular surface patches, as in B in Figure 3-5. For every 

point, the closest surface patch is determined, and then, the distance from the point to surface is 

calculated. This calculated distance is used as the z value for the updated point cloud. Figure 3-5 

shows the steps of the process starting with a curved point cloud. From this point cloud, the 

underlying geometry is estimated and used to determine the z values of the points. The color of 
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the points in the point cloud in Figure 3-5 is determined by their difference to the mean z value 

of the point cloud. Small differences have a green color, higher differences a red color.  

This method worked on surfaces that did not contain very complex geometries. For 

complex shapes, combining the general geometry information from a CAD file and then 

adjusting it based on this method may produce better results. 

 

 

 

Figure 3-5 Underlying geometry and distance adjustment. 
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3.3.3 Abnormalities 

In this project, surface deviations that deviate from the general surface roughness but are 

not large enough to be considered underlying geometry are considered an abnormality. On 

casting surfaces, this includes but is not limited to nonmetallic inclusions, gas porosity, 

solidification discontinuities, sand expansion discontinuities, and metal inserts. These 

abnormalities are an important part of a surface classification, but deciding if abnormalities on a 

surface are acceptable is not intuitive. For example, it is not clear if many small abnormalities are 

equivalent to a single large one of the same surface area. This discrepancy often occurs when a 

SCRATA plate is applied, which contains abnormalities (such as the E or B plates). 

Abnormalities affect the life of castings and their fatigue properties. Thus, they may be another 

important surface quality characteristic. The ability to more accurately quantify the abnormalities 

being developed by this method will help better develop the relationship between the surface and 

properties.  

To determine abnormalities on a surface, some parameters have to be defined, including 

the allowed surface roughness and how much bigger (a multiplier) than the surface roughness a 

point has to be considered abnormal. A height or depth limit could be used, but it has the 

disadvantage that it does not relate back to the particular surface roughness. At the beginning of 

the abnormality detection, the point cloud is converted into a grayscale image (first image Figure 

3-6). This is done by laying a grid over the point cloud. Each square in the grid resembles one of 

the pixels in the grayscale image. The average z value determines the color of the pixel in the 

corresponding grid square. Depending on the resolution of the scan, some grid squares may not 

have any points. These points show up as white in the grayscale image and are also recorded 

(missing pixels). The missing pixels are shown in the second picture in Figure 3-6. Small clusters 

of missing pixels are removed and then dilated. The resulting image is then used to determine 
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areas in which no abnormality detection can take place because of limited information. 

Following this, the holes in the grayscale image are filled through interpolation. The grayscale 

image is then thresholded. For this, the surface roughness and the multiplier are used to 

determine how far points must be away from the underlying geometry to be considered 

abnormalities. Good results were achieved with multiplier values 2 or 3. In this step, it can be 

decided if recessive, protruding structures or both should be considered abnormalities. The sixth 

picture in Figure 3-6 shows this in which white areas are abnormal areas. Small clusters of white 

points are filled in black because they could be considered surface roughness. Following this, all 

white pixels are dilated and black holes within white areas are turned white as well. The eighth 

picture in Figure 3-6 shows the found abnormalities overlaid in red over the grayscale image. 

The results will include the position of the abnormalities, a point cloud in which these 

abnormalities were removed (Figure 3-7) and the abnormality percentage which is determined 

through the ratio of abnormality surface area over the total surface area.  

A variation of the abnormality detection method in which the allowed surface roughness 

does not need to be known was also developed and tested. In this variation, in an iterative 

process, the underlying geometry was determined, point cloud updated, surface roughness 

calculated, and then based on the calculated roughness and multiplier, the abnormalities were 

determined. The abnormalities were then removed from the point cloud, and the next iteration 

starts. If abnormalities were detected, the next iteration would likely have a lower surface 

roughness leading to the next most abnormal points to be removed. However, if the surface 

roughness did not approach a roughness value higher than zero, all points may be considered 

abnormalities at the end. Overall, this variation was only sometimes able to produce good results 

when a low number of iterations were performed.  
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Figure 3-6 Abnormality detection based on image analysis. 

 

Figure 3-7 SCRATA E3 point cloud before (top) and after (bottom) abnormality removal. 
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Removing abnormal points from the point cloud is important for the surface roughness 

calculation for two reasons. First, when determining the surface roughness of a surface with 

abnormalities present, these abnormalities should not influence the roughness value. Second, the 

abnormalities on the surface skew the underlying geometry determination, and a worse fit of the 

underlying geometry causes higher roughness values. Overall, large abnormalities have a greater 

influence on the determination of the underlying geometry. Thus, excluding them from the 

abnormal points from the point cloud before determining the underlying geometry improves the 

fit of the underlying geometry. 

 

3.4 Combining Underlying Geometry, Abnormalities, and Variogram Roughness 

This section integrates the pieces described above for a cohesive surface characterization 

method. The method starts with the acquisition of a point cloud (Figure 3-8). This can be done 

using, for example, a structured light sensor, laser scanner, or stereo system. This method only 

uses a patch of the surface, so the patch of a desired size needs to be excised from the larger 

point cloud. Once the point cloud for just the patch is secured, the cloud is opened with the 

developed application. The user has the option of changing parameters used in the surface 

characterization, such as the downsampling value, the evaluation length for the roughness 

calculation, the grid size for the underlying geometry detection, the expected surface roughness, 

the abnormality multiplier, and if protruding and recessing abnormalities should be considered. 

This calculation will start by creating a grid of points. These points are the basis of the mesh, 

which represents the underlying geometry. Based on this underlying geometry, the z values of 

the point cloud are updated by calculating the distance for each point from the grid. The updated 

grid is then used to calculate the surface roughness. Based on expected surface roughness and the 
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multiplier, the abnormalities in the point cloud are determined. Next, the abnormalities are 

removed from the point cloud. The grid is updated and used to calculate the new z values of the 

point cloud and finally, a new roughness value.  

 

 

Figure 3-8 Process pipeline. 

 

The chosen parameters influence the determined surface roughness. Picking a smaller 

grid size will lower the surface roughness because overfitting will likely occur. Similarly, when 

reducing the evaluation length of the variogram, the surface roughness value will get smaller. 

This is the case because if only a very small radius around a point is inspected the variations will 

be small. Reducing the step size of the variogram will also reduce the surface roughness value. 

The step size of the variogram determines the width of the bucket during the variogram 

calculation and since there are more points at a higher distance, they will have a bigger effect on 

the value for each bucket. 
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3.5  Results 

This section presents the results of a series of evaluations that have been performed to 

validate the method. These studies were conducted in the laboratory as well as at casting 

producers.  

The first study focuses on analyzing the results of the variogram without abnormality 

removal or underlying geometry detection and comparing them with other popular roughness 

values. This also shows the difference between a roughness value that considers spatial 

information and one that does not.  

For this study, four test point clouds were created that have very similar root mean square 

height values. All point clouds have the same amount of points that were spread over the same 

x–y grid. The four created surfaces, shown in Figure 3-9 were: 

1. A cloud with randomly distributed z values. 

2. A cloud with a zigzag pattern (z values increase and decrease linear in y direction 

but stay constant in the x direction). 

3. A cloud with points on two planes on different levels (levels have different z 

values). 

4. A cloud with points on a plane that has a slope (z values increase linearly in y 

direction but stay constant in the x direction). 

These point clouds were used as input for the surface roughness calculation, and the 

values Sa, Sq as well as multiple variogram roughness values with different evaluation lengths 

were determined (see Figure 3-11). Underlying surface detection and abnormality detection were 

not active.  
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The results of the test point cloud in the form of pictures of the variograms are presented 

in Figure 3-10. When looking at the variogram from the random point cloud, one can see that the 

mean difference between two points for all distances is about the same. This is expected since 

points for all distances are random. If one looks at the variogram of the zigzag point cloud one is 

able to see this zigzag in the variogram as well. For higher distances, this zigzag correlation 

becomes less visible and that is because for longer distances, more points influence the 

variogram roughness. The third variogram shows the result for the bi-level example and the 

fourth the sloped point cloud example. For both point clouds, it is valid that the higher the 

distance between two points the higher is the distance variation between them. For the bi-level 

point cloud, there is a drop off in the slope of the variogram at about 5 mm and that is because 

the point cloud has an x and y size of 10 mm. Figure 3-11 also shows the influence of the 

evaluation lengths for the variogram roughness. The evaluation length is the range of variogram 

points that are averaged to determine the variogram roughness. A lower evaluation length causes 

a smaller roughness value. The sensitivity seems to increase with a higher variogram roughness 

value.  

The results in Figure 3-11 show that the Sa and Sq values are not able to differentiate 

between these test clouds very well, whereas the variogram roughness values are able to 

differentiate between these surfaces. One can notice that the Sq value and the variogram 

roughness value are the same for the ‘random’ point cloud. This is the case because these values 

are based on the root mean square and in the random cloud, no information is stored in the x, y 

coordinates. The Sa value is different because the square root of the squared z values is not 

taken. The difference between the non-spatial values and spatial values becomes bigger when 

one goes from the ‘zigzag’ point cloud, to ‘levels’ and finally to the ‘slope’ point cloud. 
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Furthermore, with decreasing evaluation length, the difference between nonspatial and spatial 

values increases.  

 

 

Figure 3-9 Created test point clouds. 

 

Figure 3-10 Variogram for test point clouds. 
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Figure 3-11 Results for test point clouds. 

 

To be able to determine if the variogram roughness value is able to classify casting 

surfaces satisfactorily, the new method was used to calculate the roughness values of SCRATA 

and GAR-C9 plates, which are the current standards in surface roughness determination of 

castings. To create the boxplots in Figure 3-12, eight scans of every surface were taken, and the 

variogram roughness for an evaluation length of 0–5 mm was calculated. The abnormality 

detection was not active. One is able to see that the rougher surfaces cause a higher variogram 

roughness value. For these analyzed surfaces, there was also no overlap of the boxplot antennas 

for the different surface roughness. This means that a threshold value can be determined to 

differentiate the levels of surface roughness. For instance, a threshold value for the SCRATA A2 

plate could be placed at 0.048 mm and 0.063 mm. Based on these threshold values, surfaces can 

be matched with a SCRATA roughness level. For example, if a surface has a roughness value of 

0.04 mm, it would be considered A1, for 0.055 mm A2. It also shows that the method with the 
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specific scanner is repeatable enough to differentiate between the roughness levels. Because of 

the accuracy of the scanner [FARO Edge and ScanArm: 3D measuring arm: ±41 µm, laser line 

probe: ±35 µm)[18]], the smoothest GAR-C9 surface that was analyzed was the 200 microinch 

RMS. Smoother surfaces were too smooth to be able to differentiate in between based on the 

laser scan data. If data from a 3D scanner with higher accuracy is available, the method should 

be able to differentiate between the lower GAR-C9 roughness levels.  

 

Figure 3-12 Variogram results for SCRATA A1-A4, GAR-C9. 

 

To further analyze if this method would solve the objectivity issues of the surface 

inspection process, a gage repeatability & reproducibility (Gage R&R) study was performed. For 

this, four operators scanned each of the four SCRATA A plates three times. From these scans, 

the surface roughness value was calculated. The roughness value averages for each plate and 

operator are presented in Figure 3-13. It shows that the roughness value can distinguish between 

the four different surfaces, A1–A4. Table 3-1 presents the key values repeatability, 

reproducibility, and their combination.  
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Figure 3-13 Gage R&R results, each bar represents the mean of four results. 

Table 3-1 Gage R&R Results 

Gage R&R Category Error (%) 

Repeatability (Equipment) 9 

Reproducibility (Operator) 10 

Repeatability & Reproducibility 13 

 

To further investigate if the method produces results that agree with the current standard, 

a ranking comparison test was performed. Since this is a new method to classify surface 

roughness, and there is not an established digital method, one cannot just compare the values of 

the new method with the values of an established method. The current standard is the 
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classification through visual inspection by operators. Human operators are not perfect at 

determining the surface roughness of a casting, but if the method should be used in the industry, 

it has to agree in some ways with the human results on surface roughness. It was assumed that 

human operators should be good at a pairwise comparison between plates and thus should be 

able to order plates from lowest to highest surface roughness. Nineteen replicas of real casting 

surfaces were used, and four operators ranked them. Some of these plates had abnormalities on 

them, which were marked, and the operators were told to not consider them in their surface 

roughness rankings. The replicas were laser scanned, the abnormalities that the humans were told 

to ignore were digitally removed, the surface variogram roughness values were calculated, and 

were ranked by the variogram roughness values. Figures 3-14 and 3-15 present the results. 

Figure 3-14 shows that for some replicas (e.g., replica 11), the consensus between operator and 

program is good. For other replicas, such as replica 16, one operator gives it the ranking 3 and 

another ranking 12. From Figure 3-15, one can conclude that there is some overall consensus. 

We checked for a correlation between the mean operator ranking and the digital method 

(program) with the Spearman’s rank-order correlation. The test concluded that there is a highly 

significant correlation (rs = 0.76, P < 0.001). The agreement between the variogram roughness 

values and the operator means supports that the method is working similar to an operator. This 

experiment also showed the disagreement of the operators. Often when there was disagreement 

between the operator and the methodology, there were abnormalities that the operators were 

supposed to exclude but likely subconsciously considered in their evaluation.  
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Figure 3-14 Rank comparison: ranker versus rank. 

 

Figure 3-15 Ranking comparison: plate number versus rank. 
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The method was also tested on casting surface patches at three different foundries. At 

these foundries, surface area pairs were scanned in which one was considered acceptable (no 

further surface grinding required) and one that was not acceptable (grinding required to improve 

the surface) based on surface condition. The results showed that the method usually detected a 

higher surface roughness for the areas considered not acceptable. However, there were some 

exceptions for which the possible cause was analyzed. In some instances, the non-acceptable 

surfaces seemed to have been classified as unacceptable because of abnormalities and not 

because of high surface roughness. On other occasions, the geometry seemed to have caused 

higher roughness values for the acceptable patch.  

To enable the usage of this roughness determination method in the industry, the effects of 

different scanning equipment have to be analyzed. Four different 3D scanners have been used to 

acquire 3D data of the SCRATA A plates for the roughness calculation. The preliminary results 

have shown that different scanners resulted in different standard deviations for multiple scans of 

the same plate. This could be explained by different accuracy or smoothing operations during 

acquisition. Overall, three out of four scanners have been able to differentiate between all 

SCRATA A1–A4 surface roughness levels. For the scanner that was not able to differentiate 

between all roughness levels, it is suspected that the accuracy of the scanner may not have been 

sufficient, because using the scan data it can be differentiated between SCRATA levels A2, A3, 

and A4. The results for the A1 level were slightly higher than A2. Furthermore, the SVR values 

for the roughness levels differ depending on the scanner. This is a problem if multiple different 

scanners are used for the surface roughness characterization. The investigation on the cause of 

these differences is still ongoing. It may be caused by different accuracies of the scanners 

because scanners with a higher noise level would cause the surface roughness to increase or it 
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may be caused by the settings used during the acquisition, some scanners may filter outliers from 

their scans. 

 

3.6  Discussion 

Overall, the new method showed promising results in the objective surface classification. 

Laboratory tests showed its advantages to current digital surface roughness standards which it 

was able to outperform in differentiating between surfaces. That it was able to differentiate 

between current comparator plate specifications, means that it can potentially be used to classify 

surfaces similar to today’s specifications. It also showed improvements in the area of 

repeatability and reproducibility in comparison with the current standard visual inspection, which 

will be able to improve communication and reduce the disagreement between producer and 

designer. Furthermore, it showed that the correlation between the mean result of four inspectors 

and the objective method is highly significant. This indicates agreement with today’s standard, a 

human inspector. During this research, a MATLAB application was developed, which is able to 

calculate the surface roughness automatically.  

The results also showed the importance of the underlying geometry detection. A bad fit 

of the determined underlying geometry can cause higher roughness values as well as decrease the 

accuracy of the abnormality detection.  

Future work will include further testing in the industry and the following optimization of 

the standard parameters where necessary. Also, the investigation on how different 3D scanners 

and their scanning settings affect the calculated surface roughness values will be continued. The 

knowledge gained from this will go into developing an application that will utilize the scans of 

castings already performed in foundries today. 
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Abstract 

Casting surface specifications are commonly inspected via visual inspection. Since visual 

inspection is subjective, the results are not very reliable. Objective methods that could replace 

visual inspection for simple surface patches and thus increased the reliability of the inspection 

process have been introduced. This paper continued the work on the variogram roughness 

method and adopted the method to produce reliable results for 3D scans of complete castings. 

This enables foundries to utilize existing 3D scanners used for dimensional inspection for surface 

roughness inspection of their castings and potentially using the same dataset for both needs. This 

paper will describe the function of this method and how it was adopted to whole castings. Tests 

will also be performed to validate the method in 3D. To accomplish this, the results from the 

validated method for flat surfaces were used to determine the surface roughness of flat surface 

patches on a cube. The cubes were created from plastic copies of the SCRATA comparators. The 

results showed that comparable results to the previous method were possible. The highest 

deviations were seen for rough surfaces. Further, the method can also be used as an input for 

automated surface finishing.  
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4.1. Statement of Authorship 

This chapter was authored by Daniel W. Schimpf and Frank E. Peters. Daniel W. 

Schimpf conceptualized, reviewed the literature, designed, implemented, and tested the 

variogram roughness method under the supervision of Frank E. Peters. Finally, the manuscript 

was drafted by Daniel W. Schimpf and revised by Daniel W. Schimpf and Frank E. Peters. 

 

4.2.Introduction 

Surfaces of castings have specifications that determine what surface roughness or 

abnormalities are acceptable. The inspection taking place to evaluate this specification is 

typically a visual inspection. A human inspector compares the casting surface visually with 

surface comparator plates or pictures and determines if a surface is better than the required 

specification. One common example of the surface comparator plates in the US are the SCRATA 

plates, which are incorporated in ASTM A802[1]. These specify different levels of surface 

roughness (as seen in Figure 4-1) as well as other surface quality characteristics (such as gas 

porosity, inclusions, removal marks (welds, mechanical, and thermal), or discontinuities (fusion 

and expansion)).  

 

Figure 4-1 SCRATA A plates sorted from smoothest to roughest with dimensions (left to right; A1 - A4) 
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Multiple studies looked at the visual inspection of surfaces. One of these studies stated 

that visual standards could achieve effectiveness only as high as 80% [2]. Another study looked 

at the repeatability and reproducibility of the inspection method in a Gage R&R study. The 

method identified master clusters, which combines the identified areas from multiple trials, and 

used these clusters to identify master cluster match for repeatability and reproducibility. The 

results were 64% master cluster match for average repeatability and 45% master cluster match 

for average reproducibility [3]. Both of these studies showed that visual inspection could cause 

misclassification of surfaces. These misclassifications are a problem for the industry because if 

the inspector of the foundry and the inspector of the customer do not agree on the classifications 

of a surface, rework may have to take place, causing higher costs and later delivery. One study 

[4] provides insight into the extent of these costs and states that quality costs are in the range of 

5% to 25% of the total sales value. Over 70% of these quality costs are caused by external and 

internal failure. Examples of external failure are delivering non-conforming products, and 

examples of internal failure are rework, re-inspection, and scrap cost.  

Objective methods to classify surfaces exist and could be a solution to that problem. 

Contact measurements are one such solution, but they are time-consuming and usually only 

sample small surface areas [5][6]. Other options include 3D measurements using optical devices, 

such as laser scanners. The laser scanners return point clouds, which are a list of x,y,z data points 

that were sampled on a surface. Point clouds can then be assessed based on different methods. A 

common parameter for the surface classification of 3D data is Sa, which is the 3D version of Ra, 

the arithmetic mean, a popular parameter for machined surfaces. This, however, does not mean 

that Sa values can be easily compared with Ra values. Studies have reported differences as high 

as 52% between the two, depending on the surface structure and the measuring direction [7].  
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Further, Ra and Sa do not consider the spatial relationship of the points, abnormalities, or 

underlying geometry. The Voelker Surface Ratio (VSR) method [8] does consider the underlying 

geometry and possible abnormalities but does not consider the spatial relationships of the points. 

The underlying geometry is surface variations caused by the part geometry. It is a surface 

variation on a larger scale than surface roughness and should not be included in the roughness 

calculation.  The points' spatial relationship is important because, for roughness evaluations, only 

the differences of points in close proximity are important. Further, the VSR method is able to 

determine if a surface fulfills or does not fulfill a certain surface specification.  

To solve these problems and shortcomings, the variogram roughness method [9] was 

developed by the authors of this paper. This method considers the underlying geometry of the 

casting, the spatial information of the points, and also abnormalities. The method was shown to 

have a repeatability error of 9% and a reproducibility error of 10%, which is an improvement in 

comparison to the visual inspection. The method was further validated by showing its capability 

of differentiating between different surface roughness comparator plates such as the SCRATA A 

and GAR-C9 plates. It was also tested at multiple foundries to determine if the method is able to 

differentiate between acceptable and unacceptable surfaces based on the foundries' definition.  

The limitation of the variogram roughness method was that it only worked for surfaces 

with simple geometry. The idea was that a representative surface patch with simple geometry 

was selected from a whole casting and then analyzed. The authors originally intended for the 

variogram roughness method to be implemented on a handheld device and used to classify 

surfaces. Conversations with multiple foundries resulted in the knowledge that many foundries 

already have 3D scanners to check the dimensions of their castings. Many of these 3D scanners 

also had similar accuracies as the 3D scanner used by the authors and thus should be able to be 
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used to determine surface roughness values based on the variogram roughness method. This 

paper will present a version of the variogram roughness method, which can use scans of 

complete castings as an input for the surface roughness analysis.   

 

4.3. Methods 

The first part of this section will give an overview of the variogram roughness method 

from [9]. The variogram roughness method considers three main things: the spatial relationship 

of points, the underlying geometry, and surface abnormalities.  

Methods like the three-dimensional arithmetic mean, Sa, do not consider the spatial 

relationship of points, which means that if one has a list of points with z values, it does not 

matter how they are spread over the surface; the Sa roughness value will always be the same. 

The variogram roughness method does consider the spatial relationship since it is based on a 

variogram. A variogram plots the height differences between points for different distances that 

they are apart. The variogram method calculates a variogram for a surface patch and then takes 

the average of the variogram for an evaluation length to determine one roughness value. This 

method has been shown to determine differing roughness values for surfaces with the same z 

values but arranged differently in space. [9] 

The underlying geometry needs to be considered for roughness calculations of castings, 

especially because castings deviate more from the shapes specified in the design than machined 

surfaces. If the underlying geometry is not considered, then the deviations for the surface 

roughness calculation will be determined from a mean plane, and the geometry of the part will 

have a big influence on the calculated surface roughness value. For two parts with the same 

theoretical surface roughness, the one with more complex geometry will generate higher surface 

roughness values because the deviations from the mean plane will be higher since a plane does 
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not describe complex geometries well, and thus result in higher surface roughness values. The 

underlying geometry is similar to the waviness, which is removed from profilometer 

measurements through frequency filters. In the variogram roughness method, the underlying 

geometry is considered by creating a surface mesh that resembles the underlying geometry. For 

each point in the point cloud, the closest surface patch is determined, and the distance from the 

point to mesh is calculated. These values are then used as the new z-values for the roughness 

calculation. 

Abnormalities are surface structures that are not considered underlying geometry but are 

sometimes considered as part surface roughness. Some examples of what may be considered 

abnormalities are removal marks, gas porosity, and inclusions. The SCRATA comparator plates, 

for example, specify these types of surface characteristics, but they do not answer the question if 

one big abnormality is worse than many small ones. Because abnormalities can be considered as 

apart from the surface roughness, they need to be identified and removed from the calculations 

for an accurate surface roughness calculation. Further, since the abnormalities are not considered 

underlying geometry, it is important that they are not used for the underlying geometry detection. 

Not doing so would cause the underlying geometry to be skewed towards the abnormality 

because the underlying geometry would try to follow the abnormality, which in turn would cause 

higher roughness values for the surface around the abnormalities. Abnormalities are determined 

based on their deviation from the underlying geometry. They are widened and next filtered by 

size to remove small outliers. Abnormalities are removed from the surface before the final 

surface roughness calculation.  

For the present study, changes had to be made to all the parts of the previous method to 

enable foundries to analyze complete castings and not just representative surface patches. Figure 
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4-2 shows an overview of the new method. In the beginning, a 3D scan of a part will be 

performed by an operator. An operator then starts the program, and all following steps will be 

automatic. The resulting point cloud will be downsampled, and its edges will be detected and 

removed from the point cloud. This is done because the underlying geometry detection does not 

work very well around edges and produces errors. After the edges are removed, clusters are 

extracted. For each cluster, the underlying geometry (in the form of a mesh) is estimated, and 

then the point to mesh distances are determined. Once the point to mesh distances for all clusters 

are calculated, the distances are used to determine the variogram roughness of the scanned 

surface. In the last step, abnormalities are detected based on threshold values and the local 

roughness value.  

 

Figure 4-2: Method overview 

As seen above, the first step is to acquire a point cloud of a casting. To achieve this, the casting 

is scanned by a laser scanner or other 3D sensor. Sparse point clouds will reduce the accuracy of 
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the surface roughness calculations, so a more dense cloud is captured, which is later 

downsampled. Figure 4-3 shows a picture of a casting and a 3D scan of that casting.  

 

Figure 4-3: Picture of a sample casting (a) and scanned point cloud colored from blue to red based on the z-value (b) 

 

For the implementation of the surface roughness method, the Point Cloud Library (PCL) 

and the Computational Geometry Algorithms Library (CGAL) were used. As the names may 

suggest, the PCL contains many algorithms for the manipulation and analysis of points clouds 

[10], and CGAL focuses more on geometry and surfaces [11]. The new method follows 

Algorithm 1, seen below. The following will describe each step in the algorithm. 

In the beginning, the dense input point cloud is downsampled with a voxel grid filter. The 

voxel splits space into many voxels, which are small volumetric cubes. For each voxel, all points 

within the voxel have approximated by the centroid. For this application, the point cloud was 

downsampled with a voxel edge length of 0.2 mm. After the point cloud is downsampled, the 

edges of the geometry are determined. This is done because, without removal of the edges, 

especially around the corners, the points are further away from the mesh, as seen in Figure 4-4. 

This shows that the underlying geometry detection is not very accurate around the corners. It  

(a) (b) 
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Algorithm 1 Surface Roughness Determination Algorithm 

1: procedure SURFACE ROUGHNESS DETERMINATION 

2: Downsample point cloud 

3: Determine & delete edges 

4:  Extract Clusters 

5: for all the Clusters do   

6:  Optional: Grid filter point cloud 

7:  Downsample mesh source point cloud 

8:  Calculate normals of mesh point cloud 

9:  Orient normals 

10:  Orient normals away from point cloud center 

11:  Delaunay-based surface reconstruction 

12:  Dense isotropic remeshing 

13:  Distance calculation between mesh and point cloud 

14:  Remove points on mesh corners 

15:  Calculate Variogram Roughness 

16: end for 

17: Combine Variogram roughness results of Clusters 

18: Determine Abnormalities 

19: end procedure 

 

 

Figure 4-4 Surface mesh representing the underlying geometry (a) and colored point cloud based on the distance to 

the mesh (b). Green close to the mesh; blue and red far from the mesh; red outside of the mesh, blue on the inside 

 

smoothes the sharp edges and thus results in higher distances between points and the mesh 

around the edges. For an accurate surface roughness calculation, accurate point to underlying 

(a) (b) 
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geometry distances are necessary. Therefore, the points around the edges need to be avoided for 

the roughness calculation. 

To be able to avoid these inaccuracies, one needs to identify what points are around the 

edges. The Canny edge detection algorithm [12] is a widely used method to identify edges in 

images. An implementation of the Canny edge detection for PCL exists [13] as long as the point 

cloud is organized and contains color information. An organized point cloud stores each point in 

a matrix similar to an image and is often the result of a 3D sensor like the Kinect. The point 

clouds used as an input for this application are mostly unorganized point clouds. Thus, instead of 

a canny edge detection algorithm, an algorithm for unorganized point clouds was used. This 

algorithm utilizes the eigenvalues of the covariance matrix based on the k-nearest neighbors to 

detect sharp edges [14]. Since the point cloud distribution is not necessarily consistent, the 

algorithm was slightly altered to use a radius search instead of a k-nearest neighbor search. The 

results of this edge detection can be seen in Figure 4-5. The grey points are points that are 

considered edge points and all other points are yellow and can be used for the surface roughness 

calculation.  

 

Figure 4-5 Edge points colored grey, and all others colored yellow 



59 

 

 

Once the edges are determined, they are removed from the point cloud. As can be seen in 

Figure 4-5, the edges split the point cloud into multiple smaller areas. Thus, the point cloud is 

next separated into multiple clusters, which all fulfill a separation (d = 10 mm) and minimum 

size (n = 5000) criteria. Next, for each cluster, a couple of calculations take place. Since the 

variogram roughness method is sensitive to noise, optionally grid filtering can be performed. 

This grid filter can remove more noise from the point cloud data than the voxel grid filter with 

voxels of equal edge lengths. This grid filter aligns the cluster with the best fitting plane and then 

utilizes a voxel grid filter where the x and y edges are equal to the downsampling value while the 

z value is much higher. This way, all points within one x-y grid are combined to one point. This 

filter works well as long as the point cloud clusters size in the two main dimensions (x & y) is 

much larger than in the third dimension (z).  

Next, a point cloud for the mesh is downsampled even more for the upcoming meshing. 

The point cloud's normals are then calculated and oriented in the following step utilizing the 

orient normals method from CGAL [15]. Utilizing a greedy Delaunay-based surface 

reconstruction algorithm [16], a dense mesh is created of the point cloud with oriented normals. 

This densely meshed surface is remeshed to create a uniform mesh surface with a goal edge 

length of 5 mm. The remeshing is performed by utilizing the isotropic remeshing algorithm 

[17][18] implemented in CGAL. The reconstructed surface will be considered the underlying 

geometry of the casting and represented as a mesh. In the next step, for each point the closest 

point on the mesh and the distance to the closest point on the mesh is calculated. This is one of 

the computationally most expensive operations. The mesh may not cover all points in the point 

cloud, resulting in high distance results for these points. Thus, these points are removed from the 

point cloud.  
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To be able to determine the variogram surface roughness value, both the distance from 

point to underlying geometry and distance from point to point are important. The distance from 

point to underlying geometry was previously determined. The points for the point to point 

distance will be the corresponding closest points on the mesh determined in the previous step. 

The distance from point to point is necessary to consider the spatial relationships. The variogram, 

which is used for this method, plots the height difference between points for different distances. 

If the points are closer together, the height difference is usually lower. There are two common 

ways the distance between the points can be determined. The easier of the two methods is just 

determining the cartesian distance between the two points. To calculate the cartesian distance, 

only the location of both points is necessary. The second method is using the shortest distance 

along the mesh to connect the two points. This is more accurate for our purpose because, for the 

relationship between the points, the surface distance has more meaning than the cartesian 

distance.  

Both methods were implemented for the variogram roughness calculation. The surface 

distance measurement is the more accurate one, but on a computer with a six-core processor 

(i7-8850H), the calculations took over an hour for the example part and are thus too long to be 

feasible in practice. The calculation of the surface distance is that much more computationally 

expensive than the cartesian distance because a search algorithm has to determine the closest 

path between the two points on the surface. The point clouds for the surface roughness 

calculation can quickly have millions of points. For each one of those points, the distance to 

thousands of points has to be calculated. Thus, the computational time for this distance 

calculation is high. 
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In practice, the cartesian distance will be used to evaluate the distance between two 

points on the surface. The biggest inaccuracies for the cartesian distance calculation occur 

around edges. By not using edge points for the roughness calculation, the cartesian distance is a 

good compromise between calculation time and accuracy. 

Once the distances between points on the surface as well as the point to surface distances 

are determined, the variogram roughness value can be calculated for each point. These variogram 

roughness values can color the point cloud and present the local roughness on the point cloud. 

One can see examples of this in the result section. This can help identify areas on the surface of 

different roughness. After the variogram roughness values for all clusters are calculated, they are 

combined to determine the scanned surface's final roughness value without its edges.  

The described method would provide one overall roughness value, but a casting might 

have a variety of different surface roughness's spread over the surface. Further, the underlying 

geometry detection is not perfect; thus, more accurate values will likely be achieved if analyzing 

a simple surface like a plane. For both cases, it may be advantageous to cut out a smaller section 

and determine the smaller section's surface roughness.  

After the local roughness values were determined, the information can be used to 

determine abnormalities on its surfaces. This can be done by comparing the local surface 

roughness values with the overall roughness value. If, for example, a local surface roughness is 

twice as large as the final roughness value, it could be considered abnormal. The method 

differentiates between abnormalities where material is in excess or missing by utilizing the 

relationship between the oriented normal vectors and the center of the point cloud.  
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4.4. Results 

The SCRATA comparator plates were used to validate the implementation of the method 

to analyze three-dimensional castings rather than just flat surfaces. Rubber molds (3 x 3 in) of 

the SCRATA plate sections were used to create plastic copies of the SCRATA plate sections, 

Figure 4-6. These squares are used to create epoxy copies of the SCRATA plate molds. 

 

 

Figure 4-6 Rubber molds of SCRATA A1-A4 comparators 

 

Five of the plastic copies are assembled to create a three-dimensional cube where all 

sides are one of the four SCRATA surface roughness levels (A1, A2, A3, and A4); see Figure 

4-7 & Figure 4-8. The cubes will have discontinuities/gaps around the corners, but the edge 

points are not used for the roughness calculation and therefore, should not impact the results. 

Since only a square section of the SCRATA plates is used, and inaccuracies in the copies exist, 

the roughness results are not expected to be exactly the same as for a SCRATA plate but similar. 
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Figure 4-7: 5 SCRATA A3 copies (a) and SCRATA A3 cube (b) 

 

Figure 4-8: SCRATA cubes A1- through A4 

 

To determine if the old validated method and the new method are able to produce similar 

results, the SCRATA cubes were scanned. These scans were gathered with two different 3D 

scanners, one of which had very dense but nosier results. In contrast, the other scanner's results 

were defined by low noise but a sparse point cloud with a non-uniform point distribution similar 

to a meshed surface. For the first part of the test, each scan of a SCRATA cube was cut into five 

smaller scans. Each smaller scan is one side of the cube. These 20 scans were then analyzed 

using the old MATLAB method and the new method implemented in C++. For all following 

tests for both methods, the point clouds were downsampled to 0.2 mm, and an evaluation length 

of 5 mm was used for the variogram roughness calculation. Further, for the underlying geometry 

detection, a surface patch size of 5 mm was chosen. For the old method, this means a grid size of 

(a) (b) 
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5 x 5 mm, and for the new method, a goal edge length of 5 mm for the triangles. This test is 

supposed to investigate the variation between the results if both methods receive the same input. 

The results can be seen in Figure 4-9 (a), where A1-1 through A1-5 are scans of the five sides of 

the SCRATA cube A1. For each scan, two results are displayed. The filled circle represents the 

new method, while the unfilled circle represents the old method. One can see that the results are 

very similar. Most of the time, the old method produces slightly rougher results. (b) presents the 

deviation between the old and new method. A positive deviation corresponds to the result of the 

old method being larger. (b) further shows that the deviations all are smaller than 0.008 mm, all 

except one even smaller than 0.005 mm.  

 

Figure 4-9: Roughness results for the sides of SCRATA cubes analyzed separately (Low Noise & Sparse) 

 

Figure 4-10 presents the same data as Figure 4-9 but for the scans with the dense but 

rather noisy data. One can see that the differences between the old and new method are larger in 

this case. Since the point cloud is noisy, the new method utilizes the grid filter. One can see that 

the variations are larger than for the point cloud with low noise. The maximum deviation is now 

closer to 0.013 mm.  

 

(a) (b) 
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Figure 4-10: Roughness results for the sides of SCRATA cubes analyzed separately (Noisy & Dense) 

 

While Figure 4-9 showed the results of the SCRATA cube sides analyzed individually for 

both methods, Figure 4-11 (b) shows results where a scan of the whole cube was used as an input 

for the new method. The boxplots in Figure 4-11 (a) present the results of the four different 

SCRATA cubes where the five sides are analyzed separately by the old method. The new method 

uses the whole scan and then removes the edges automatically, while for the old method, the 

edges are removed manually so that they can be analyzed separately. Since the input will differ, 

some variation is to be expected. Comparing (a) and (b), one can see that the results are similar, 

but especially the results for the SCRATA A4 cube are different. This can be explained by issues 

in the edge detection. The edge detection uses the curvature in an area to find edges. While this 

works very well for A1-A3 surfaces, A4 surfaces themselves have high curvature, which causes 

the new method to classify part of the A4 surface as edges and not use them for the roughness 

calculation. Since the areas with high curvature are also areas where more considerable height 

differences between points are to be expected, this overall reduces the roughness reported by the 

new method for the SCRATA A4 cubes. 

 

(a) 

 

(b) 
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Figure 4-11: Low Noise & Sparse: Roughness result comparison between the old (a) (five results for each roughness 

level) and new (b) method (one results for each roughness level)  

 

Again Figure 4-12 shows the same data as Figure 4-11, but for the scans with the dense 

and noisy data. Comparing the results, the variation between the five sides of the cubes is a little 

higher for the noisy data, and the results for the lowest roughness level A1 are higher in general.  

 

  

Figure 4-12: Noisy & Dense: Roughness result comparison between the old (a) (five results for each roughness 

level) and new (b) method (one results for each roughness level)  

 

(a) 

 

(b) 

 

(a) 

 

(b) 
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In the results presented above, the cubes' edges were removed either manually or with 

automatic edge detection. Figure 4-13, on the other hand, shows the roughness results achieved 

by the new method without removing the edges to check what kind of error is introduced if the 

edges are not removed. (a) presents the results for the scans with low noise but sparse data while 

(b) shows the results of noisy but dense data. The results are not close to the old method results, 

as seen in Figure 4-11, which shows that the edge removal is necessary because of the meshing 

operation's inaccuracies.  

 

 

Figure 4-13: Roughness result without edge removal Low Noise & Sparse (a) and Noisy & Dense (b) 

 

Similar to how scans are compared to CAD files for dimensional analysis, the point 

clouds can be colored based on the local variogram value to visualize roughness variation of the 

surface. This can be useful to identify areas in which subsequent finishing operations like 

grinding are necessary. Figure 4-14 presents the variogram colored point clouds for the 

SCRATA A1 through A4 cubes. The coloring scheme can be seen in Table 4-1 and is based on 

previous results acquired with the old method.  

 

(a) 

 

(b) 
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Table 4-1 Variogram color scheme. Between values, colors are interpolated 

Local Variogram 

Roughness Value 

Color SCRATA 

Equivalent 

0 mm White - 

0.04 mm Blue A1 

0.055 mm Green A2 

0.072 mm Yellow A3 

0.13 mm Red A4 

0.2 mm Black - 

   

  

From Figure 4-14, one can see the differences between the roughness levels. While A1 

and A4 are very different, the color differences between A2 and A3 are much smaller. This 

matches the roughness results shown in the previous figures. 

 

Figure 4-14: Variogram colored SCRATA A1 (a) through A4 (d) cubes (Low Noise & Sparse) 

Figure 4-15 shows an example where a cube where the sides do not have the same 

surface roughness. One can see a clear difference between the three facing sides. Utilizing Figure 

4-14 or Table 4-1, one can determine that the left side's surface roughness is close to A1, while 

the top's surface roughness is close to A3 and the right side's surface roughness is close to A4.  

(a) (b) 

 

(c) 

 
(d) 
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Figure 4-15: Variogram colored cube with different sides. Left-facing side A1; right-facing side A4; top A3 

 

The method also includes an abnormality detection that, similarly to the point cloud's 

variogram coloring, can assist in identifying abnormalities on the casting. In this case, 

abnormalities are defined as having two times the variogram roughness than the average 

variogram roughness of the casting. Excess material is marked in red while missing material is 

marked in blue. Figure 4-16 shows an example of abnormality detection on the SCRATA cubes. 

Since they do not have any big abnormal areas, only small spots are marked.  

 

Figure 4-16: Detected abnormalities on SCRATA A1 (a) through A4 (d) cubes (Low Noise & Sparse) 

 

4.5.Discussion 

The tests showed that the method is able to produce comparable results for SCRATA A1-

A3 cubes. The roughness results for the SCRATA A4 cube were comparable if the edges were 

(a) 

 

(b) 

 

(c) 

 

(d) 
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removed manually. However, the automatic edge removal currently removed too much of the 

surface for A4 surfaces, which leads to lower roughness results than the previous method. 

Overall, this should be acceptable because castings with surfaces as rough as the SCRATA A4 

plate are not very common. Nonetheless, one way around this would be to compare the scanned 

surface data with the castings CAD model. While this presents other issues as the casting does 

not match the CAD model perfectly, the variogram roughness method may be able to filter out 

the deviations between the CAD and actual casting geometry and still produce good roughness 

results.  

This method's limitations further include that the method does not evaluate the whole 

casting since the edge surfaces are not evaluated. For most castings, this should nonetheless 

enable a roughness evaluation of most surface areas.  

The roughness results from the two different inputs, one noisy and dense, the other sparse 

but less noisy, showed the importance of good scan data. Overall the scan data with less noise 

was able to produce more consistent results. The method's ideal input data would be a dense 

point cloud, with uniform point distribution and low noise. The low noise scan data available to 

us did not have a uniform point distribution because of the smoothing taking place in the 

scanner's software.   

Tests have also been performed with underlying geometry detection based on Bezier 

curves, but the results were, in general, worse than the underlying geometry detection presented 

above. Nonetheless, it would be advantageous to test more methods for the underlying geometry 

estimation and their influence on roughness results.  

Overall this surface roughness measurement method should make the technique more 

accessible for foundries since now scans of whole castings can be analyzed. It should be possible 
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for the foundries to include the method to the geometric analysis of castings already taking place 

utilizing the same 3D scan. The method could also be used to identify areas on surfaces where a 

subsequent automatic finishing operation reduces the surface roughness or removes 

abnormalities.  
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Abstract 

Most casting processes are near net shape, meaning that the initial component shape and 

size are close to the finished product, but post-processing is necessary. This includes the removal 

of parts of the gating system or abnormalities. Most of the gating system is usually cut or broken 

off, but often around 6 mm (0.25 in) remain. A common method of removal is manual hand 

grinding, which is arduous work and has been connected to some health issues. These issues 

have only been made worse by recent labor shortages, and the need for automation of the manual 

grinding process is only increasing. In low variety, high volume environments, automated 

solutions are already deployed because the programming and fixture cost can be distributed over 

a large number of castings. Since this is not the case for high variety, low volume foundries, they 

need a more flexible solution. This paper presents a sectioning method for automatic path 

planning, which uses drawn boundaries to determine areas that need to be ground and thus 

enabling high flexibility. By utilizing ROS and MoveIt, the method is highly transferable to a 

variety of robots and 3D sensors and so making it accessible to many foundries. The method was 

tested on three test surfaces, showing that it is able to remove excess material based on drawn 

boundaries automatically.    
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5.1 Statement of Authorship 

This chapter was authored by Daniel W. Schimpf, Matt C. Frank, and Frank E. Peters. 

Daniel W. Schimpf conceptualized, reviewed the literature, designed, implemented, and tested 

the segmentation method under the supervision of Matt C. Frank and Frank E. Peters. Finally, 

the manuscript was drafted by Daniel W. Schimpf and revised by Daniel W. Schimpf, Matt C. 

Frank, and Frank E. Peters.  

 

5.2 Introduction 

Grinding is an important part of the casting process. After the metal solidifies, the 

solidified geometry is not the final desired geometry but includes additional geometry that is 

necessary for the casting process, like gating systems. Usually, most of the material is removed 

by cutting off the gating system at around 6 mm (0.25 in) from the surface (Figure 5-1). The rest 

of the material is commonly removed by grinding. While fully automated grinding and finishing 

cells are common for cast iron and aluminum castings, the steel casting industry has a wide 

variety of short-run production parts. 

  

 

  Figure 5-1 Examples of castings with excess material at the riser contacts on both flat surfaces (a) & (b) and on a 

curved surface (c) 

 

(a) 

 
(b) 

 

(c) 
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This grinding is commonly done by an operator with a handheld grinder or a mounted 

grinder, which is guided by the operator like a swing frame grinder. For small castings, 

stationary grinders are used, and the casting is pushed against the grinder by the operator (Figure 

5-2). Commercial products exist to handle grinding very large castings. Some have grinders on 

industrial robots, which are controlled by the operator from outside the cell [1]. All of these 

approaches make use of the operator's skill and flexibility to determine where and how much 

material needs to be removed, which changes from casting to casting. The changes are caused by 

variation of the casting itself (the parting line may be more or less pronounced, abnormalities 

may be present or not), or variation in the previous process, which removes most of the gating 

system (e.g., torch, water jet, arc air, knock-off hammer). The short lot size also does not support 

dedicated fixturing; hence the orientation of the casting is not known a priori.  

  

   

Figure 5-2 Examples of manual grinding in foundries: (a) Hand grinder, (b) Stationary grinder 

 

(a) (b) 



77 

 

The grinding work is very strenuous, especially if a hand grinder is used. Workers bend 

over and move around the casting to remove the excess material while keeping high pressure on 

the grinder. An industry survey and report [2] indicated that hand grinding is the job in steel 

foundries with the most ergonomic issues, and there were limited solutions. The report identified 

multiple possible solutions, such as avoiding unnecessary grinding tasks and the use of swing 

grinders to assist the operator with the force application. Two other studies modeled hand 

grinding tasks to evaluate the ergonomics, and both identified the working height as an important 

factor in improving ergonomics [3][4]. Further grinding was the second-highest cause for 

workplace injury at foundries with 16%, immediately following melting, which caused a little 

over 16% of workplace injuries. These safety incidents come with a high cost (on average, 

$40,000 in workmen's compensation) [5]. 

Besides the safety-related issue, there are additional economic justifications for an 

automated grinding process. The steel foundry industry in the United States has an ongoing 

problem of high labor turnover and low retention rates. The reasons for this are the low 

unemployment rate in recent years, the arduous nature of the work, and the greater danger than in 

other jobs. The number of available workers has been restricting the successful operation of 

foundries [6]. In 2002 china surpassed the USA as the largest producer of foundry products [6], 

and by 2012, China had four times the market share in comparison to the USA [7]. Reasons for 

the foreign production of castings, for example for steel valve castings, were the same quality as 

American casting at consistently lower prices. By 2017 roughly 40% of the foundry industry's 

production was lost to imports [8]. To address the challenges of increasing price pressure and 

workforce issues, the demand for automation in the steel casting industry is increasing. For 

foundries with longer production parts, as in the cast iron and aluminum castings, the 
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implementation of automation is more feasible due to economies of scale. For smaller steel 

casting companies, especially ones that are situated in a high variety, low volume environment, 

automation solutions are often more expensive than manual labor costs. 

The material removal process on castings can be characterized by the following 

unknowns:  

• The orientation of the part  

• The locations where material needs to be removed  

• The desired surface after the grinding 

• The volume of material that needs to be removed 

These unknowns are part of the reason why the material removal process on castings is 

challenging to automate. There are few isolated examples of foundries implementing robotic 

grinding for high variety, low volume productions. These foundries have utilized parametric 

programming for castings of the same product families. These product families had very similar 

shapes but different dimensions. This made it easier to amortize the programming costs across 

multiple castings within a product family. In addition, because the amount of material that 

needed to be removed was unknown, significant air cutting took place, increasing the cycle 

times. The foundries did not require the robot to be as economical as a human because of the 

safety and labor advantages.   

However, there are characteristics of material removal, which are advantageous for 

automation. The tolerances that the grinding operation needs to meet are the same as that of the 

casting, which is a much different operation than precision grinding used on machined 

components.   
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The final results achieved will be affected by the robot control strategy. Simple motion 

control only controls the position and velocity of the robot. This can cause issues if the robot has 

to be in contact with the surface because the knowledge about the environment is likely not 

perfect. In this situation of constrained motion, a simple control to only position and velocity 

may lead to the following errors. High contact forces could lead to a deviation from the planned 

trajectory as well as emergency stops of the robot or damage on the tool or the surface. 

Compliant behavior is able to help avoid these issues. This can either be achieved passively by 

adding a compliant mechanical component between tool and robot or actively by utilizing direct 

force control.[9]  

A study [10] stated that passive compliance has some advantages over active compliance 

since it guarantees overall stability, is relatively inexpensive, and has a fast response rate. The 

extent of the last two advantages has likely reduced in the last two decades with decreased sensor 

prices and faster computers. A hybrid position/force control of a robot enables the application of 

a constant force while tracking a surface, for example, in polishing applications [11]. A grinding 

application that utilizes hybrid position/force control as well as impedance joint control to create 

a compliant wrist was able to produce low impact forces and acceptable performance for force 

and position tracking [12]. Other robotic surface finishing operations also use force control 

methods [13]–[15].  

 Previous work developed a prototype system that included a gantry with a small 

rotary tool, where an operator identified a work area by moving a probe with a joystick and 

selected the desired geometry [16]. This method was restricted in the orientation and geometry of 

the workpiece as well as size, something that the method introduced in this paper will address. 

The goal of the proposed method is to create a material removal process that will work with a 
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variety of industrial robots, casting shapes, and orientations. The process will not be fully 

automatic because it will rely on a human operator to mark areas on the casting surface for 

removal. Automated identification of the areas to be ground is not practical, given the low 

volume of parts and the unknowns that exist on each casting that were discussed above.   

  

5.3 Methods 

The long-term goal is to make grinding automation feasible for high variety, low volume 

casting producers. The method will remove material in areas specified by the user and blend the 

surface to the surrounding surface. These areas will often be where the gating and risering 

system was connected to the casting and has been since cut off, often within 6 mm (0.25 in) of 

the surface. Since it is mostly a task for aesthetics, the precision requirements are relatively low. 

Figure 5-3 provides an overview of the step-by-step process of scanning, planning, and 

automated grinding process. After the risering and gating were cut off, an operator is required to 

draw boundaries around areas for removal. The intent is that this would be done with markers or 

paint. A second outer boundary will also be marked on the casting and identifies the area whose 

surface will be used to determine the desired geometry in the area to be ground. Once the areas 

are marked, the casting can be moved to a robotic cell, where a 3D scanner with an integrated 

color sensor will scan the casting and detect the markings. The marked boundaries will be used 

to segment the point cloud into desired and undesired geometry, as well as estimating the desired 

geometry underneath the undesired geometry. After the desired surface is determined, a path 

plan for the robot is generated. Utilizing position and velocity control, this path plan is executed. 

The grinder will remove the excess material layer by layer, while sensors will provide feedback 

for the position and velocity control. Once the grinding is done, the robot will move away, and 
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the part will be finished. The following section will provide an overview of the setup and 

methods.    

 

Figure 5-3: Overview of the material removal process. Grey boxes are manual operations, and white are automatic. 

 

5.3.1 Setup  

The setup is separated into the physical and virtual setup. Both will be introduced in the 

next two chapters.  

5.3.1.1 Physical Setup  

In the robotic cell, a collaborative robot (Universal Robot 10e) was used during the early 

development stage. This robot has a payload of 10 kg and also a force sensor integrated into the 

flange. While this payload is too small for an industrial application, it is sufficient to demonstrate 

feasibility and robust enough to test the methodology. The robot is mounted in a cell to protect 

the surroundings and workers from grinding debris. A variable speed angle grinder is mounted to 

the robot flange; the grinder was converted to accommodate a 101 x 25 mm (4 x 1 in) grinding 
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wheel and is activated by the controller via a relay during operation. There is a need for a sensor 

that can collect a depth map as well as color information across that map. For initial testing, an 

Intel Realsense 435 was attached to the robot arm (Figure 5-4).   

 

 

Figure 5-4 UR 10e with the mounted angle grinder and 3D sensor 

 

A passive compliance module will be developed for the end of arm tooling to attach the 

grinding wheel, with a goal to protect from errors caused by inaccurate path plans, unreliable 

data, and/or unexpected anomalies outside of the scanning range.  This compliance module will 

cause a contraction along one axis if the forces on the grinder exceed a threshold (Figure 5-5). 

The robot's path plan is created based on information from the 3D sensor, which can be flawed. 

In addition to the sensor's inaccuracy, further inaccuracies or missing information can be caused 

by reflective surfaces or the influence of external light. The compliance device will reduce the 

forces exerted on the grinding wheel and protect it from causing emergency stops or even  

shattering of the wheel. Because of the incremental removal of material, the compliance 
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compression stroke needs to account for both the grinding depth and the inaccuracies of the 3D 

sensor. The compliance module also contains a position sensor that will record the contraction of 

the compliance module.  

 

Figure 5-5: Passive compliance mount (grey) for the grinder (green). The movement of contraction is up. 

 

The castings with excess material will be placed in the robotic cell. While the orientation 

can be chosen freely as long as the robot can access the area, it is imperative that the part does 

not move once the 3D scan has been captured. Heavy parts may be placed in the cell without any 

workholding, but lighter parts likely need to be held in place to avoid movement during the 

grinding operation. The need for the workholding only to secure the casting and not accurately 

locate it is a significant advantage of this approach. 

 

(b) 

 
(a) 
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5.3.1.2 Virtual Setup: Robot-Operating-System (ROS) & MoveIt 

The proposed method uses the Robot-Operating-System (ROS)[17] and the MoveIt 

motion planning framework [18]. ROS is an open-source system that was developed for code 

reuse across robots of different manufacturers. The code-reuse will allow our method to be used 

independently of the hardware used and thus make it easier to transfer it to different setups. 

MoveIt is an open-source framework for motion planning with integrated collision detection and 

will enable the determination of whether a collision occurs for a given robot in a given position 

and environment.  

Within ROS and MoveIt, a virtual setup of our robot and its environment was created. 

The virtual setup consists of the four walls, ground & ceiling, as well as 3D models of the robot, 

3D sensor, and grinder. For the robot, grinder, and 3D sensor, both a visual and a collision mesh 

exist. The collision mesh is a simplified version of the visual mesh and reduces the number of 

facets.  

5.3.2 Segmentation and Removal Method 

The ultimate goal is for the automation system to identify what needs to be ground and 

not rely on an operator. However, in the high variety, low volume environment characteristic of 

the steel casting industry, this is not feasible in at least the short or medium term. This is 

especially not reasonable as a first step because it would have a high error rate resulting in 

removing material where it is not necessary or not removing enough material. The most 

challenging component in this totally automated system was assessed to be the decision-maker, 

which decides in which areas material needs to be removed. This component is also one that 

does not require much time and is not physically demanding. Given the combination of the 

difficulty to automate, the risk of error, and the low time requirement, it was decided to rely on 
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the operator. The operator could communicate this decision in multiple ways. It was considered 

tasking the operator with marking the areas where material needs to be removed on a 3D scan of 

the casting but has a couple of disadvantages: computation centers must be accessible, finding 

abnormalities solely in the 3D scan is often hard so the information would have to be transferred 

from the real casting to the 3D scan of the casting and the marking process is likely more time-

consuming on the 3D scan. Having the operator communicate with the system by just making 

marks on the casting is a low-cost method that can be made quickly, anywhere in the foundry.   

Section 5.3.2.1 will explain that two boundaries are used to enable the segmentation of 

scan data. It will cover the test plates used to evaluate the method and discuss the steps required 

to segment the scan and determine the desired surface under the excess material. Section 5.2.3.2 

will present how multiple parallel surfaces are created to enable layerwise removal of the 

material. This information is then used to determine a path plan for the robot to remove the 

excess material. Section 5.3.2.3 will present the execution of the path plan and how collisions are 

avoided.  

 

5.3.2.1 Segmentation of Point Cloud 

This chapter will introduce steps 2 through 4 from Figure 5-3. It will introduce what 

markings are necessary to enable automatic segmentation, how the segmentation is performed 

and how the desired surface underneath the excess material is determined.  

To enable the automatic removal of excess material, the surface is segmented based on 

boundaries marked by operators. Figure 5-6 shows an example of how these boundaries can be 

used to segment surfaces. The example shows two boundaries, an inner and outer boundary. 

Everything within the inner boundary will be considered abnormal (orange and green area in 

Figure 5-6), and everything outside of the inner boundary but within the outer boundary will be 
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considered the desired surface (blue area in Figure 5-6). Thus the interference geometry will not 

be used to interpolate the surface underneath the riser contact. If the example surface is a 

cylindrical surface with a rectangular extrusion (interference geometry) on this surface, then 

including the rectangle in the interpolation surface would cause the skewing of the following 

interpolation because both the extruded rectangle and the cylindrical surface would be used for 

the interpolation.  

 

Figure 5-6 Anomaly and interpolation boundary 

 

Figure 5-7 (a) displays an example of what this could look like on a casting. The figure 

shows a cylindrical casting with a flat surface on the top. On that flat surface, a couple of riser 

contacts remain that need to be removed. To remove one of these two, boundaries were drawn 

around it. The boundaries mark the abnormal area, which includes the riser entirely, and the 

desired surface, which is the flat surrounding surface. A second example is a casting with two 
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boundaries drawn in red (b). Like in (a), the inner boundary marks the excess material on the 

casting, while the outer boundary marks the interpolation surface. 

 

Figure 5-7: (a) Example of casting with risers that need to be removed on a flat surface. Around one riser, red 

boundaries are drawn to enable the segmentation of the surface. (b) Example of casting with excess material and 

drawn boundaries.  

 

To test the method, three test plates (Figure 5-8) were designed and created to represent 

potential casting surfaces. The test plates include simple surface geometries: flat, cylindrical, and 

spherical. Each of the test plates has undesired geometry, an extruded 'I' on the flat surface, an 

extruded rectangle with a circle in the middle on the cylindrical surface, and freeform geometry 

on the spherical surface. The test plates are made of plastic but can nonetheless be used to 

evaluate the success of the method. To enable switching to harder materials, a stronger robot and 

grinder may be necessary.   

In Figure 5-8, one can see the test surfaces, with boundaries and captured by the 3D 

sensor. For the flat and cylindrical interpolation surface, the boundary was drawn at the edge of 

(a) (b) 
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the plates, and the anomaly boundary was drawn closely around the undesired geometry. In the 

case of the round surface, the interpolation boundary was drawn at the intersection of the flat and 

round surface. If the flat surface was included within the interpolation boundary, the system 

would use this information to determine, erroneously, what the final desired surface was.  

 

Figure 5-8: Three test surfaces with markings applied: spherical with freeform abnormalities (left), cylindrical with 

square abnormality (middle), and flat with ‘I’-shaped abnormality (right) 

 

When the application is started, the robot will move into a previously specified safe 

position to take multiple 3D scans of the object. These multiple 3D scans will be merged into a 

single point cloud. The advantage of combining multiple scans is generating a denser point 

cloud, which can be downsampled by averaging points within a voxel, which is a volumetric 

cube in space. The implementation utilized the Point Cloud Library [19] for the point cloud 

manipulation.  

Once the point cloud was recorded and downsampled, the points in the point cloud need 

to be segmented. To segment the point cloud, the boundaries first need to be found by 

thresholding the point cloud based on their color values. The point cloud contains for each point 

the x,y,z coordinate, and its r,g,b values. Each color red (R), green (G), and blue (B) is saved as 

an integer value from 0 to 255. A really strong red for example would be R = 255, G = 0 and B = 
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0. In this color space, it is not as easy to select specific colors while allowing different 

brightness. That is why the colors were converted to the HSV color space. Instead of describing 

each color by the intensity of each main color (red, green, and blue), the HSV color space 

specifies hue, saturation, and value. The hue describes the type of color (e.g., red, yellow, green, 

blue) and commonly ranges from 0-360, representing the 360 degrees of a color circle. 

Saturation and value range from 0 to 1 and represent the tint and mixture with black and white 

for each color. The advantage of the HSV color space for this application is that it is less 

dependent on the brightness differences of the colors. This is important because, in the robotic 

cell, the brightness may vary. Thresholding for both color spaces RGB and HSV were 

implemented, but HSV thresholding was more reliable.  

The RGB values are converted to HSV based on the algorithm seen below (1)-(6) [20]. 

Often RGB values are in the range of [0-255]; if so they are divided by 255 in the first step, as 

shown in (1).  

 

𝑟′ =
𝑅

255
    𝑔′ =

𝐺

255
    𝑏′ =

𝐵

255
   (1) 

𝑀𝑎𝑥 = 𝑚𝑎𝑥 (𝑟′ ,  𝑔′, 𝑏′);  𝑀𝑖𝑛 = 𝑚𝑖𝑛 (𝑟′
′
′ ,  𝑔′, 𝑏′);   delta = Max - Min (2) 

𝑉 = 𝑀𝑎𝑥  (3) 

𝑆 = {
0, 𝑀𝑎𝑥 = 0

𝑑𝑒𝑙𝑡𝑎

𝑀𝑎𝑥
, 𝑀𝑎𝑥 ≠ 0

  (4) 
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ℎ′ =

{
 
 
 

 
 
 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,             𝑆 = 0 

60 ×
𝑔′ − 𝑏′
𝑑𝑒𝑙𝑡𝑎

 ,                𝑟′ = 𝑀𝑎𝑥

60 × (
𝑏′ − 𝑟′

𝑑𝑒𝑙𝑡𝑎
+ 2),          𝑔′ = 𝑀𝑎𝑥

60 × (
𝑟′ − 𝑔′

𝑑𝑒𝑙𝑡𝑎
+ 4) ,         𝑏′ = 𝑀𝑎𝑥

 
(5) 

𝐻 = {
ℎ′ + 360, ℎ′ < 0

ℎ′, ℎ′ ≥ 0
  (6) 

 

Based on the color space, the appropriate thresholds have to be chosen. Since the 

environment will vary, the user will need to determine the best threshold values for the specific 

application.   

In Figure 5-9, one can see the original point cloud before thresholding (a) and the point 

cloud after thresholding (b), with the found boundaries marked in red. One can see that the 

boundaries are not perfect, but small gaps between sections of the boundary lines are acceptable.  

In the next step, the found boundary points are grouped based on the vicinity. In general, 

the vicinity threshold has to be smaller than the minimum distance between the outer and inner 

boundaries; otherwise, the outer and inner boundary may be grouped as a single boundary. Also, 

the vicinity threshold has to be bigger than the gaps in the detected boundary; else, a single 

boundary may be grouped as multiple boundaries and not a single one. Once there are groups of 

points, each group representing a specific boundary, the groups corresponding to inner and outer 

boundaries have to be paired up. This is done by checking if any boundary is contained within 

another boundary, which means that all points of the inner boundary are within the outer 

boundary. These paired groups are then used to determine which areas are abnormal and which 

are good. For each group of points, the points are sorted, and boundary polygons are created. The 
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Figure 5-9: Point cloud recorded (a) and detected boundaries in red (b); the black stripe on the right of the yellow 

surface is an area where no points were returned from the 3D sensor. 

 

polygons can then be used to evaluate if points are lying within or outside of them. This is 

marking all points in the scene that are within the inner boundary as abnormal. In the next step, 

all points within the outer boundary, but not within the inner boundary, are determined to be part 

of the good surface, which is used for the interpolation. In Figure 5-10 (a), one can see the points 

that were determined to be part of the boundaries. These points were then grouped into two 

groups: the outer and inner boundary. Figure 5-10 (b) shows the segmentation of the point cloud. 

The blue points were found to be the abnormal surface to be ground, and the green points 

comprise the good surface used for the interpolation.  

Following the point cloud segmentation, the desired surface points are matched with 

three geometric models to determine the best path plan strategy, such as grinding direction. The 

(a) 

 

(b) 
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three geometric models are flat, cylindrical, and spherical. For each model, the coefficients are 

returned as well as the number of points that are considered inliers. These inliers are points that 

are within a distance threshold to the model. The model with the most inliers is considered the 

best match.  

 

 

Figure 5-10: Determined boundaries (a) and Segmented point cloud: blue (undesired geometry) and green 

(interpolation surface) (b) 

 

Next, the points determined to be part of the good surface can be used to interpolate the 

desired surface. During the interpolation, the points are smoothed with moving least squares, 

holes are filled, and then the point cloud is smoothed again. The hole filling is assisted by the 

knowledge of the best fitting model. For the cylindrical surface, instead of filling the hole based 

on the surrounding points, it is filled by considering neighbors along multiple crosssections 

parallel to the cylinder axis.  

Figure 5-11 (a) is the segmented point cloud, which contains the points within the outer 

but not within the inner boundary. This point cloud is then smoothed and interpolated through 

(a) (b) 
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the moving least squares method to produce the desired surface and will be the basis for our path 

planning (Figure 5-11(b)).  

 

Figure 5-11: The desired surface based on the segmented point cloud (a) is smoothed and interpolated to determine 

the desired geometry around and below the excess material (b) 

 

Figure 5-12 presents a summarizing overview of this section. An operator has to mark 

two boundaries on a casting (a), an inner that defines the abnormal area and an outer which 

determines the interpolation boundary. These boundaries were drawn on three test plates (b). The 

test plates are then scanned, color thresholded, and segmented (c). The segmented point cloud is 

then used to estimate the desired surface under the excess material based on the good area that 

surrounds the abnormal area (d).   

(a) 

(b) 
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Figure 5-12: Overview of the segmentation: (a) boundaries, (b) test plates, (c) segmentation of point cloud, (d) 

determination of the desired surface.  

 

Algorithm 1 summarizes the steps taken to segment the point cloud, starting with the 

color thresholding, followed by segmentation of the point cloud into desired and undesired 

geometry, and finishing with interpolating the desired surface to estimate the desired surface 

below the excess material.  

Algorithm 1 Point Cloud Segmentation 

1: procedure Analyze Point Cloud 

2: Gather and combine 3D scans 

3: Color thresholding to extract markings 

4:  Extract clusters 

5: Sort points to create boundary polygon  

6: Find inner and outer boundary pairs 

7: Segment original point cloud based on polygon pairs (leftover, desired-surface & 

abnormality point cloud) 

8: Identify the best matching geometric model (plane, cylinder, sphere) for the desired-

surface and extract model coefficients 

9: Smooth desired-surface point cloud with moving least squares 

10: Fill holes based on surrounding points averages 

11: Smooth filled in point cloud with moving least squares 

12: Report leftover, desired-surface & abnormal point cloud as well as model coefficients 

13: end procedure 
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5.3.2.2 Determination of Path Plan 

This chapter will present how a multi-level path plan is created based on the information 

gathered in the previous chapter. The desired geometry and excess material are used to create 

multiple parallel surfaces to remove the excess material layer by layer. Once these parallel 

surfaces points are sampled along intersecting planes and approach and retreat positions are 

added to create a path plan for the robot.  

Now that the desired surface is established, the normal vector for each point in the point 

cloud is calculated. The normal vectors will be used to determine the pose of the robot and 

enable users to create different desired surface levels for our path planning. The normal vectors 

are calculated for each point by estimating a plane from the points in the proximity, and the 

normal vector of that plane is defined as the normal vector of the point. Next, offset surfaces 

based on the grinding depth can be created. These offset surfaces are needed because the excess 

material will not be removed in a single pass but incrementally. Figure 5-13 shows the grinding 

wheel during the grinding process and the incremental removal of material. It shows that to 

remove the excess material (from the original surface to the final layer), multiple layers are 

removed incrementally.   

The offset surfaces are created by iterating through the point cloud, and each point is 

offset by the product of the normalized normal vector and the chosen grinding depth. Figure 5-14 

(a) shows the abnormal surface. The color spectrum is based on the height of the points and the 

desired surface in white. Figure 5-14 (b) shows, in addition to the abnormal and desired surface, 

multiple offset desired surfaces. These offset desired surfaces were created as described above 

and are needed since all the excess material is not removed in one pass; instead, it is removed 

incrementally, one layer after the other.  

 



96 

 

 

Figure 5-13: Incremental/Layerwise removal of excess material.  

 

Figure 5-14: Side view of an abnormal surface (rainbow-colored) with the desired surface (white) (a). To remove 

the excess material, grinding on multiple layers is necessary. (b) displays multiple desired offset surfaces (white) 

with the desired (white) and abnormal surface (rainbow-colored) 

 

The number of desired offset surfaces should not be chosen arbitrarily, but for an 

efficient operation, it should be determined based on the height of the abnormal surface. This can 

be done by creating an offset surface and checking if abnormal points are above. If so, a new 

offset surface is created. This continues until no abnormal points are above the offset surface. 

(a) 

(b) 
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The offset surface before that final offset surface, with no points above, will be the first layer for 

the incremental removal of material. For a given point of the abnormal point cloud, the closest 

surface patch of the offset desired surface is found. Utilizing the direction of the normal vector 

from the surface patch to the abnormal point, it can be determined if the abnormal point is above 

or below the surface patch. Figure 5-15 shows an example of points that were determined to be 

above and below for a given layer. 

 

Figure 5-15: Curved test plate (a), desired surface layer (white), and excess material (green and red) (b) & (c). 

Excess material points above desired surface layer are colored red. That excess material needs to be considered in 

the removal strategy to create that surface layer.  

  

The information on what points are above the offset surface is not only used to determine 

the number of grinding layers necessary but also to determine the section of the offset surface 

where grinding will be necessary. This is done by utilizing the location of all points that are 

above the offset surface and determining the convex hull that encompasses all these points. Next, 

the edges of the encompassing convex hull are moved the approach distance A away to make 

sure grinding happens only during forward feed motion and not during down movements. 

(a) 

 

(b) 

 

(c) 
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Equation (1) (based on [21]) shows how the approach distance A is calculated d is the depth of 

cut, and D is the diameter of the grinding wheel.  

 

𝐴 =  √𝑑(𝐷 − 𝑑) (7) 

  

Overall, air cutting can be avoided by both reducing the size of each surface level and 

determining the correct number of surface levels.  

The path plan is created by sampling points on the surface of each surface layer. The type 

of sampling depends on the type of surface, which was determined in a previous step. If the 

desired surface type is flat, sampling on parallel planes is performed. Similarly, if the desired 

surface type is cylindrical, the sampling is performed on parallel planes, but these planes are 

perpendicular to the axis of the cylinder. Finally, if the desired surface type is spherical, a radial 

toolpath is created. The number of radial toolpaths is dependent on the crosssection of the 

abnormal area to ensure coverage of the whole area. 

The path plan for the robot is a list of x,y,z point that the tool center point (TCP) of the 

robot has to follow, orientations that restrict the grinding wheel to be normal to the surface, and 

binary information determining if it is rapid move or not. To determine the orientation for a 

specific point, the normal vector of that point was used, which restricts the movement around the 

first two axes, and the machining direction sets the rotation around the third axis. There are 

multiple different ways to describe the orientation in 3D. In this application, the rotation about 

the three axes is used to determine a quaternion for each point.  

The path plan starts with the highest layer. At the starting and endpoint of that layer, a 

starting and end position was added above the surface. These are the points the robot can traverse 
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to at rapid speeds. At the end of every straight path, when the robot moves over to the next 

straight path, points were added above the endpoints to make the robot move up, over to the next 

path, and back down into the material. Once one layer of the surface is done, the robot will move 

to the end position above the surface and then move to the start position of the next lower level, 

which is also above the surface. An example of such a trajectory can be seen in Figure 5-16. The 

green lines are the normal vectors originating at the goal points in the trajectory. Each goal point 

has an x,y,z coordinate, and orientation associated with them. The blue lines are the trajectories 

in between each goal point and are straight trajectories.  

 

Figure 5-16: Example of a path plan for a planar surface with two layers. Green is the normal vector of that point, 

which determines the orientation of the robot, and blue is the path from point to point, which the TCP will follow. 

Figure 5-17 presents a summarizing overview of this section. In the beginning, the 

interpolated surface is offset multiple times to enable incremental removal (a). For each offset 

surface, the excess material above the surface is determined to determine how many layers are 

needed and in what areas material needs to be removed (b). Finally, points are sampled on the 

surfaces, approach and retreat positions are added to create the path plan for the robot.  
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Figure 5-17: Determination of path plan: (a) Creation layers for incremental removal, (b) Determination of what 

points are above and below, (c) final path plan with approach and retreat positions  

 

Algorithm 2 summarizes the steps taken to generate the path plan. In a loop, multiple 

offset surfaces are created by utilizing normal vectors until all the excess material is covered. All 

the excess material is covered if no abnormal points are above the offset surface. Next, the path 

plan is created by sampling points along lines on the different surface layers as well as adding 

approach and retreat positions for the robot.  

 

Algorithm 2 Path Plan Determination 

1: procedure Path Plan Determination 

2: Receive desired-surface & abnormality point cloud as well as model coefficients 

3: while abnormal points above desired surface layer do 

4:   if  1st loop do 

5:   Segment desired-surface based on abnormality point cloud creating 

  the first desired surface layer 

6:  end if 

7:  Estimate normals of the desired surface layer  

8:  Move desired surface layer stepsize length in the normal direction 

9:  Determine if abnormal points are above the desired surface layer 

10: end while 

11: for number of desired surface layers do 

12:  Estimate normals of desired surface layer 

13:  Sample points along parallel lines for planar and cylindrical geometries, along 

 radial lines for spherical and add to path plan 

14:  Add approach and retreat positions to path plan 

15: end for 

16: Report path plan 

17: end procedure 

 



101 

 

5.3.2.3  Execution of Path Plan 

This section will present how the robotic path plan, created in the previous section, is 

executed. The path plan is split into multiple fast and slow trajectories, which will be sent to the 

robot individually. Each trajectory is evaluated for potential collisions. During the grinding 

operation, sensors are monitored to adjust the feed rate or repeat layers.  

The robotic application starts with moving the robot in position over the part to perform a 

3D scan. This 3D scan is used to segment the point cloud and determine the desired surface 

underneath the excess material (Chapter 5.3.2.1). This information is then used to create a 

multilayer path plan to remove the excess material incrementally(Chapter 5.3.2.2).  

After a path plan with goal points, orientations and velocities is generated, it is 

transformed to the robot's coordinate system. Then it is split into multiple fast and slow 

trajectories. The path plan is split into smaller trajectories so that for each trajectory, a different 

feed rate can be set. For moves where the grinder is in contact with the surface, the velocity will 

be reduced, while all other movements can be faster.  

The orientation of the grinder is determined by the normal vector associated with each 

path plan point as well as the direction of travel for each trajectory. The trajectories are sent to 

the MoveIt motion planner individually, which determines the angles of the robotic joints along 

the way and determines if it is possible to execute this path plan without colliding with any of the 

collision geometry. There are two different types of collision geometry. The static collision 

environment contains components such as the robot cell and the robot with all its attachments. 

The nonstatic collision environment consists of an octomap which is created from the leftover 

point cloud. This leftover point cloud is the data gathered by the 3D sensor with all points 

outside of the outer boundary. Figure 5-18 visualizes the octomap representing the nonstatic 

collision environment. The octomap are the cubes colored from light blue to purple.  
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Figure 5-18: Visualized path plan with static and nonstatic collision environment.  

 

If no solution without collision is found, the path plan is not executed. Common reasons for a 

path plan to fail are collisions between the robot and itself or the surrounding collision objects.  

When the robot moves in position above the part before the grinder comes in contact with 

the surface, the grinder and durst removal system is turned on by using one of the robot 

controllers' I/O ports. During the execution of a trajectory where the grinder comes in contact 

with the surface, the robot's position error as reported by the robot, the forces gathered by the 

force sensor, and the compression of the compliance module as measured by the position sensor 

are recorded. When a surface layer is finished, the position errors, forces, and compression are 

compared with threshold values. If the measured values are greater than the threshold values, this 

would indicate that less material than required to achieve the intermediate was removed. This 

will cause the layer to be repeated and enable the robot to follow the desired path more closely. 

During the trajectory execution, the compliance module's compression is monitored and 
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regulated via proportional control (based on [22]) of the robot's velocity. To achieve this, the 

speed scaling function of the robot is utilized. The speed scaling value can range from zero (the 

robot's velocity is zero, the robot is stopped) to one (the robot moves with set maximum 

velocity). 

 

𝑃𝑜𝑢𝑡 = 𝐾𝑝(𝐶𝐷 − 𝐶𝐴) + 𝑃𝑖𝑛  (8) 

  

𝑃𝑜𝑢𝑡 is the new speed scaling value which will be sent to the robot while 𝑃𝑖𝑛 is the 

previous speed scaling value. 𝐶𝐷 is the setpoint, the desired compression, while 𝐶𝐴 is the process 

variable, the actual compression. 𝐾𝑝 is the proportional gain and determines the extent of the 

response for a given difference between desired and actual compression. Since the speed scaling 

value that the robot accepts has to be between zero and one, 𝑃𝑜𝑢𝑡 is also bounded to be between 

zero and one. If the compression is higher than desired, the regulations effect will slow the 

robot's motion until the compression reaches its setpoint or the limit zero is reached. The reduced 

speed will decrease the grinding forces causing a lower depression. Once the depression is less 

than desired, the speed will increase again up to its max or when the depression increases again.  

During the path plan execution, a constant force during the grinding is not attempted as 

may be the case for many polishing or blending operations [23]. Instead, the robot follows the 

predetermined path plan to alter the shape of the part. The execution of the path plan may be 

terminated by an operator at any time, by stoping the program or pushing the emergency stop.  

Algorithm 3 summarizes the steps necessary for the execution of the robotic grinding. 

The robot will first move into position over the part to scan the part. After the path plan is 

determined, it is transformed to the robot's coordinate system along with the points outside of the 
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outer segmentation boundary. The path plan is then split into multiple smaller fast and slow 

trajectories. Next, the orientation of the grinder is determined, the robot moves over the part, and 

the grinder, as well as the dust removal system, is started. Now the execution of the trajectory 

starts in a loop. Within each loop, the grinder's orientation is determined, trajectory points are 

sent to MoveIt, and the robot path is computed. If the trajectory is collision-free, the trajectory's 

velocity is set as desired with Iterative Parabolic Time Parameterization. This sets appropriate 

goal times for each point. Next, the trajectory is executed, and the forces, position error, and 

contraction are recorded. Based on the contraction, the execution speed is adjusted during the 

execution. Once a trajectory is done, the loop moves to the next trajectory. At the beginning of 

each loop, if a layer was finished and the thresholds for position error and forces are exceeded, 

the previous layer is repeated. This means that the first trajectory of the previous layer is set as 

the next trajectory. Once all layers are finished, the robot moves away from the part, and the 

program ends.  

Finally, Figure 5-19 summarizes the process flow of this robotics application. The shapes 

of the process flow have two different colors to differentiate between human tasks and automatic 

processes. One can see that the human is mostly needed at the beginning and end of the 

operation. At the beginning to perform the setup, including drawing markings and clamping the 

casting. After the casting was scanned and a strategy to remove the excess material was 

determined, the operator determines if the path plan is acceptable. This is a precaution to ensure 

correct execution. In the future, this step may be avoided when the confidence in the automatic 

removal strategy increases. 

Furthermore, during the whole execution of the application, the user has the option to 

terminate it at any time. In the end, the worker needs to remove the casting from the grinding 
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cell. Finally, the post grinding inspection is currently manually, but since the robotic cell has a 

3D scanner, this may be automated in the future. 

 

Algorithm 3 Robotic Grinding 

1: procedure Robotic Grinding 

2: Move the robot to the scanning position 

3: Start Point Cloud Segmentation and wait for results 

4:  Start Path Plan Determination and wait for results 

5: Transform path plan to robot coordinate system 

6: Transform leftover point cloud to robot coordinate system and convert to octomap for 

nonstatic collision avoidance 

7: Split path plan into many smaller fast and slow trajectories 

8: Determine grinder orientation for the first movement 

9: Move the robot to position over part 

10: Turn on grinder and dust removal system 

11: for number of trajectories do 

12:  if trajectory is part of a new layer do 

13:   Check if forces and position error from the previous layer are 

acceptable 

14:   if forces, position error or contraction above threshold do 

15:    Repeat previous layer 

16:   end if 

17:  end if 

18:  Determine orientation of grinder 

19:  Add points trajectory points with orientations to robot trajectory 

20:  Compute & test trajectory 

21:  if trajectory is collision-free do 

22:   Use Iterative Parabolic Time Parameterization to adjust the speed for 

  slow and fast movements 

23:   Execute robot path 

24:   while trajectory is executing do 

25:    Record max position error, forces & contraction 

26:    Adjust robot velocity based on contraction value 

27:   end while 

28:  end if 

29: end for 

30: Turn off grinder and dust removal system 

31: end procedure 
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Figure 5-19: Detailed application process flow. Grey shapes represent tasks performed by operators. 

5.4 Results  

To evaluate the proposed method's effectiveness, tests were run on three different plastic 

surfaces. To enable this, the boundaries were drawn on the test plates by an operator. The 

operator then secured the parts in the robotic cell and executed the program. Once a path plan 

was determined, the operator confirmed the start of the material removal. The tests were 

performed without the grinder holder with compliance and thus without the velocity control, but 

should nonetheless indicate if the segmentation method enables the automatic removal of excess 

material. The grinder holder with compliance will become more important during tests with 

harder materials. These test surfaces had a variety of geometries. Figure 5-20 through Figure 

5-22 present the results from testing the application on three different sample plates with 

different geometry. In (a) and (c), a scan from the before and after grinding is compared with the 

CAD model. One is able to see that the scan before the grinding (not considering the 

abnormality) deviates from the CAD model.  



107 

 

Figure 5-20 presents the results on the flat sample plate. The flat sample plate with its 

abnormality before its ground can be seen in (a) and (b). Figure 5-20 (c) and (d) both show the 

plate after it has been ground. One can see that the abnormality was removed completely, but a 

little more material than necessary has been removed. The maximum deviation was around 

3 mm. In comparison, the accuracy of the 3D sensor (Intel RealSense D435) used to plan the 

grinding operation is ≤ 2% up to a two meter distance [24]. The test plates were scanned from a  

distance of 25 cm resulting in an accuracy of ≤ 5 mm. This means the maximum deviation in the 

test was smaller than the maximum deviation from the scanner for this distance. Thus, a large 

part of the deviation may be the result of the accuracy of the 3D sensor. 

 

 

Figure 5-20: Results flat plate: (a) Deviations before removal (-2.5 (blue) – 6.8 mm (red)), (b) Picture before 

removal, (c) Deviations after Removal (-3.7 (blue) – 1 mm (red)), (d) Picture after removal  

(a) (b) 

(d) (c) 
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Figure 5-21 (a) and (b) show a cylindrical plate with its abnormality, while (c) and (d) 

show the test plate after the grinding took place. One can see that the abnormality was not 

completely removed, but the vast majority of it was. The maximum deviations are around 1 mm 

in both the positive and negative direction. One can also see that some over- and under-grinding 

is taking place.   

 

 

Figure 5-21: Results cylindrical plate: (a) Deviations before removal (-2.4 (blue) – 8.7 mm (red)), (b) Picture before 

removal, (c) Deviations after Removal (-1.1 (blue) – 1.5 mm (red)), (d) Picture after removal  

 

Similarly, Figure 5-22 (a) and (b) present the spherical plate with abnormalities before it 

is ground in the robotic cell. Figure 5-22 (c) and (d) show the results after the grinding operation 

took place. From (c), one can see that the abnormalities were removed completely, but a little 

over-grinding took place as well. The maximum deviation was around 3 mm, not considering the 

porosity.   

(d) 

(a) 

(c) 

(b) 
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Figure 5-22: Results spherical plate: (a) Deviations before removal (-1.4 (blue) – 6.3 mm (red)), (b) Picture before 

removal, (c) Deviations after Removal (-3.9 (blue) – 0.7 mm (red)), (d) Picture after removal  

 

Overall the majority of the abnormality volume was removed during the tests. The 

deviations are within the range of the scanner accuracy. The shape of the new surfaces matches 

the shape of the surrounding surfaces. The transitions between the ground and original surface 

can still be improved, especially in the areas where the edge of the grinding wheel created the 

transition.  

5.5 Discussion 

While there is much research on robotic blending applications, this research focused on a 

segmentation method for targeted material removal to remove excess material on castings. The 

segmentation method can not only be used for robotic grinding but can also be used as a basis for 

the automatic path planning of other operations, such as robotic welding or arc air.  

(d) 

 

(a) 

 

(c) 

 

(b) 
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The results showed that the excess material could be identified automatically by using  

markings on the casting and then automatically execute a removal operation. However, results 

also showed that while the final surface accuracy is better than the 3D sensor, which is about 

5 mm, the surface blending in the transition areas still needs to be improved. Overall, the radial 

toolpath transitions seem to be best because the circumference of the grinding wheel softened the 

transition area between the original surface and ground surface. One way of further improving 

the transitions would be by utilizing a more precise sensor. In addition, to further improve the 

material removal process results, methods from robotic blending applications may be applied 

[23]. A blending operation could take place within the outer boundary. A grinding tool better 

suited for blending could also be used but would require a tool change.  

A current limitation of the method is that it is currently only implemented for roughly 

convex boundary markings. This is caused by the way the points are sorted for the polygon 

construction for the point cloud segmentation. The method further currently uses only a 3D scan 

from a single position, thus limiting the surfaces which can be ground. In the future, this is 

planned to be extended by multiple scans on a sphere around the casting. In addition, the current 

velocity control is not robot agnostic since not all robot controllers allow such control.  

Because of the labor shortages and the high competitiveness of foreign markets, it is 

more important than ever for smaller shops to be able to use automation in their foundries. The 

proposed method would increase the financial feasibility of robotic solutions. We expect it to 

decrease the amount of manual grinding necessary in foundries. In addition, technology adoption 

often increases a companies reputation, whereas "low technology" companies are often viewed 

with disdain [25]. The increased use of automation in foundries may thus be able to increase the 
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attractiveness of the foundry for new talent, thus potentially lessening labor shortage problems 

further.  

Overall, the tests showed that boundaries drawn by operators, their detection with a 3D 

scanner, and following segmentation can be used to automatically remove excess material with a 

grinding robot. Future work will include tests with different robots and 3D cameras to validate 

the robot and 3D scanner independence and develop a scanning strategy to enable grinding of 

more surfaces.  
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CHAPTER 6.    GENERAL CONCLUSION 

6.1 Conclusion 

Visual inspection, the current method for surface roughness determination, has been 

shown to be unreliable because of its low reproducibility and repeatability. The poor 

reproducibility causes issues in the communication between foundry and customers. The in this 

dissertation introduced variogram method was developed to address this problem. It uses point 

cloud data as objective input to determine roughness values and highlight abnormalities. Many 

foundries are already gathering these points clouds for dimensional measurements. The method 

uses an underlying geometry estimation to filter the underlying geometry from the roughness 

calculation. The variogram is used to consider the spatial relationship between points on the 

surface. For complex geometries, edge detection identified the edge points and removed them 

from the roughness calculation. This is done because the underlying geometry detection is 

inaccurate around edges. The method is agnostic of the measurement device. Important is that 

accurate and dense point cloud data is used as the input. The method has been shown to be able 

to differentiate between common roughness comparators in the steel casting industry.  

The second problem addressed in this dissertation a material removal method for 

castings. The material removal for low-volume products prevalent in the steel casting industry is 

widely performed through unergonomic hand grinding. This dissertation introduces a grinding 

method that utilizes a grinder and a 3D-RGB sensor mounted on a robot. By utilizing ROS, the 

method is robot and sensor agnostic so that sensors and robots can be switched without much 

effort. The method requires markings on the casting, which are captured by the 3D-RGB sensor 

and later identified and interpreted in the point cloud. Based on the markings, the desired surface 

and the excess material are identified. Both are used to determine a path plan for the material 
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removal process. Before executing the path plan, the path plan is checked to be collision-free for 

both static and non-static collision environments. For the material removal of different castings, 

no code has to be changed. A worker has to place a casting, with boundaries marked, securely in 

the robotic work cell and execute the program. Once the path plan was determined, the operator 

can allow the execution of the path plan. After the material was removed, the part can be 

removed from the work cell and inspected by the operator. The method has shown to be able to 

remove material from previous unknown surfaces without the need for programming, only 

requiring marking of the surface to identify the excess material.  

 

6.2 Future work 

Many further research opportunities exist for both the inspection and finishing projects.  

1) Investigate if it is possible to utilize the CAD to scan distance calculations done 

by geometric inspection software as an input for the variogram roughness method. 

This could reduce the need to remove the edges of a part before the roughness 

calculation. 

2) Investigate other surface reconstruction methods for the underlying geometry 

detection.  

3) Perform further tests of the variogram method in foundries and on different 

scanners.   

4) Automatic grinding wheel diameter update to account for wear on the grinding 

wheel. 

5) Test grinding method on metal surfaces. 

6) Test grinding method with an industrial robot and more accurate 3D sensor.  
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7) Design and implement a method to find markings on casting surfaces and handle 

occlusion.  

8) Implement post grinding inspection, potentially including a roughness 

determination, with a feedback loop.  


