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ABSTRACT

This dissertation is devoted to using machine learning and optimization algorithms to develop

explainable machine learning and decision-making models and their applications in agriculture. This

dissertation consists of four journal papers. The �rst three papers focus on formulating explainable

machine learning, and the last one is about the decision-making model for the planting scheduling.

The �rst paper proposes three new algorithms for multi-e�ect and multi-way epistases detection.

Epistases refer to the phenomenon of genetic interactions that plays a signi�cant role in many scien-

ti�c discoveries such as the breeding process, case-and-control studies, and genome-wide association

studies. Deciphering the exact genetic interactions is challenging because of the combinatorial na-

ture of the problem. These three models are developed to detect the interaction between a binary

representation of the genetic information so that one guaranteeing global optimality and the other

two being local optimization-oriented heuristics. The computational performance of the proposed

models were compared with several state-of-the-art methods using a yeast data set.

In the second paper, a new explainable machine learning model named the interaction regression

model is developed for crop yield prediction. Crop yield prediction is a challenging issue because of

multitudinous variables, including genotype, environment, management, and complex interactions

that a�ect crop yield performance explicitly or implicitly. We integrate the power of optimization,

machine learning, and agronomic insight to develop this explainable model with three salient prop-

erties. First, by outperforming state-of-the-art predictive models, the proposed model achieves an

error prediction of 8% or less in three Midwest states (Illinois, Indiana, and Iowa) in the US Corn

Belt for both corn and soybean yield prediction. Second, it detects the environment by management

interactions for corn and soybean that are insightful agronomically. Third, this model can quantify

and break down the yield into contributions from weather, soil, management, and their interactions

that allow agronomists to analyze the favorable and unfavorable yield factors.
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The third paper develops a new predictive framework that integrates random forest and an

optimization-based model for G × E interaction detection to predict crosses' yield performance. In

the plant breeding process, the yield performance plays a signi�cant role in selecting more productive

and adaptable parents to the changing environments. The proposed framework integrates a random

forest with a combinatorial optimization-based interaction-detection model and attempts to combine

their strengths. This model consists of three main components; a random forest model that captures

complex non-linear relationships between input and output variables, an interaction detection model

that captures interactions among hybrid, location, and weather variables, and another random forest

model that utilizes the interactions to augment the prediction performance of the �rst random forest

model. This model won the �rst place in the 2020 Syngenta crop challenge in analytics.

The fourth paper concerns the planting time scheduling problem of di�erent population seeds in

the year-round breeding process so that there is a consistent harvest quantity. Although developing

the breeding process and producing higher-quality crops ensures global food availability and security,

they raise new logistical and productivity challenges for seed industries in the year-round breeding

process due to the storage limitation. 2021 Syngenta crop challenge in analytics was launched to

challenge participants to design an optimization model for the planting time scheduling of several

population seeds so that weekly harvest quantity would be consistent at the lowest possible capac-

ity. We address this problem with uncertainty weather information by developing a new hybrid

framework that combines the weather time series model and optimization model to schedule the

planting time. Comparison with actual planting time scheduling reveals that the developed models

scheduled the seed population's planting time at the fewest number of weeks with a more consistent

weekly harvest quantity.
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CHAPTER 1. GENERAL INTRODUCTION

Feeding the rapidly growing population is one of the most critical challenges that agricultural sys-

tems face, especially because of the continuously changing climate [7]. A wide range of agricultural

food production topics has been investigated to improve food production and security, including

optimization of planting regime, sustainable farming practices, traits introgression, and modeling

of plant physiology and ecology. Among these topics, developing a decision-making framework for

a farming system based on crop yield prediction has received special attention among industry

players, researchers, and academic actors. Hence, this dissertation focuses on integrating machine

learning and optimization algorithms to develop explainable machine learning and decision-making

models for agricultural applications. This dissertation is developed in the form of four journal pa-

pers. In the �rst paper, we design three new algorithms to detect interactions between variables

with respect to minimize the prediction error. These interactions shed light on prediction problems

by providing biological insights. In the second paper, the interaction regression model is developed

to predict crop yield by combining the power of machine learning, optimization, and insights. In

the next paper, we address the hybrids' yield performance prediction by combining a random forest

with a combinatorial optimization-based interaction-detection model. The last paper optimizes the

scheduling planting time of di�erent population seeds in the year-round breeding process. These

studies are introduced in more detail in the remainder of this chapter.

In the �rst paper, we design three new algorithms to detect multi-e�ect and multi-way epistases

detection. Epistasis detection, the deciphering of genetic interactions, is key in many scienti�c dis-

coveries such as understanding the relationship between genotype and phenotype, curing genetic

diseases, and accelerating genetic adaptation of crops to changing environments. Epistasis detec-

tion's concept can be used for other purposes such as recommender systems, yield prediction that

shows the importance of research challenges. Detecting exact combinations of genes that trigger the
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interactions is known as one of the most mysterious yet essential research challenges in genetics due

to the problem's combinatorial nature. Many methods only focus on two-way interactions when two

genes or features trigger the interactions. Some of the most e�ective methods used machine learning,

speci�cally factorization machines [16] and random forest [13, 15, 8] to detect high-order interac-

tions. On the other hand, many studies have been developed for special case-and-control studies

(classi�cation problem) [9, 10, 5] and there are a few papers that applied interactions concept in

regression problems [14].

We designed three new algorithms for multi-e�ect and multi-way epistases detection to guarantee

global optimality and the other two being local optimization-oriented heuristics. They have three

salient features. First, these algorithms minimize the root mean square error (RMSE) such that they

guarantee to �nd either global or local optimal solutions. Second, the algorithms are less prone to

over�tting problem because of their sparsity of modeling structure. Third, the maximally tolerable

computation time option allows users to terminate the algorithm at a prede�ned deadline. These

features specify the tradeo� between speed and quality of the solution. We cast the multi-e�ect

and multi-way epistases detection problem as mixed-integer quadratic programming for the �rst

approach. Because the �rst model has a combinatorial and nonlinear nature, we propose a local

search algorithm as a more computationally tractable algorithm for solving the �rst formulation. For

the third algorithm, we develop a heuristic algorithm that minimizes the validation RMSE rather

than the training RMSE, making it less prone to over�tting. Also, this algorithm explores multiple

local optima and avoid brute force enumeration within local neighborhoods. The computational

performance of the proposed models was compared with several state-of-the-art methods using a

yeast data set. Moreover, the results show that searching for global optimal interactions is extremely

time-consuming. The heuristic algorithm is more e�ective and e�cient in detecting close-to-optimal

interactions.

In the second paper, the interaction regression model as a new explainable machine learning

model is proposed to predict crop yield prediction. Crop yield prediction is a fundamental re-

search question in plant biology in addressing food security, particularly by global climate change.
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Agricultural sectors can optimize their economic and management decisions by understanding how

genotype (G), environment (E), management (M), and their interactions (G×E×M) e�ect crop yield

[2, 6, 4, 3]. This paper proposes a new explainable model by combining the power of optimization,

machine learning, and agronomic insight. The core of this model is an optimization algorithm that

detects the most revealing E and M features in yield prediction and their most pronounced inter-

actions which are insightful agronomically. The iterative mechanism in the proposed model tries to

select a subset of E and M features for crop yield prediction that are spatially and temporally robust

and �nd the interactions between them. The robustness means that they should be consistently

predictive of crop yield across all counties in all years. Moreover, the model can quantify and break

down the yield into contributions from weather, soil, management, and their interactions because a

multiple linear regression of these features and interactions shaped the prediction of the crop yield

performances. These break down of features and their interactions allows agronomists to analyze

the favorable and unfavorable yield factors.

To test the performance of the model, we consider a comprehensive case study of corn and

soybean yield prediction in 293 counties of Illinois, Indiana, and Iowa from 2015 to 2018. We

also compare the proposed model with eight other machine learning models to predict corn and

soybean yield. It achieves an error prediction of 8% or less in three states in the US Corn Belt

for both corn and soybean yield prediction by outperforming other machine learning models. The

interaction regression model produces explainable insights, in particular interactions and total yield

into contributions from weather, soil, management, and their interactions. Additionally, we evaluate

our model's performance in terms of both temporal and spatial extrapolation by training the model

using historical data from two states up to 2017 and applying it to predict corn yield in a third

state for 2018. The result shows that it achieves an average error prediction of less than 10%.

In the third paper, we develop a new predictive model for predicting new hybrids' yield perfor-

mance based on historical data of other combinations. One of the most challenging plant breeding

process issues is selecting breeding parents for crosses [1]. Hence, breeders make the various hybrids

with high-yield parents and plant them in multiple locations and weather to measure the hybrids'
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yield performance. Then, they select the best-breeding parents for crosses. But empirical breed-

ing processes, including selecting, mating, planting, and evaluating biparental combinations, are

expensive, labor-intensive, and time-consuming. Therefore, plant breeders have developed decision

making frameworks over arti�cial intelligence methods used for performance prediction and selec-

tion of promising breeding parents for hybridization. In 2020, Syngenta designed a new agronomic

question to challenge participants by developing a predictive approach to predict the yield perfor-

mance of inbred-tester combinations based on historical data of other hybrids. Syngenta released a

dataset that included the historical yield performance of 294,128 corn hybrids through the crossing

of 593 unique inbreds and 496 unique testers across multiple locations between 2016 and 2018. To

address this challenge, we integrate the power of optimization and machine learning to develop this

explainable model that can decipher G × E interaction. A new predictive framework with three

components integrates random forest and a combinatorial optimization-based interaction-detection

model to predict crosses' yield performance.

The �rst component of the model is a random forest model that tries to predict crosses' yield

performance by constructing a multitude of trees. The random forest model has the capability to

captures complex nonlinear relationships between input and output variables. Although the random

forest can capture the interaction between hybrid, location, and weather variables, this model is

ine�ective in deciphering speci�c features interactions that have the most signi�cant interactions

because of its sampling method. Hence, we use an interaction detection model as the second compo-

nent to augment the random forest's performance by strategically searching for G × E interactions.

An optimization-based interaction detection model has the capability to capture interactions among

hybrid, location, and weather variables. The detected G × E for this model has a linear relationship

to crosses' yield performance. Therefore, the interaction detection model cannot �nd more complex

nonlinear functions of interactions. To �t the nonlinear function on interactions, we use another

random forest model as the third component to use the detected interactions from the second com-

ponent to predict the �rst random forest's residual error. The third model augments the prediction

performance of the �rst random forest model. Our computational results reveal that the proposed
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model achieves a relative root-mean-square-error (RMSE) of 0.0869 for the validation data by out-

performing other state-of-the-art models such as factorization machine, random forest, and extreme

gradient boosting tree. The model can �nd G × E interactions that are potentially biologically

insightful. This model won the �rst place in the 2020 Syngenta crop challenge in analytics.

In the fourth paper, we develop the optimization model for scheduling the planting time of

di�erent population seeds in the year-round breeding process. Recently, seed industries have been

applied a wide range of analyses on farming systems, including optimization of farming systems,

breeding processes, and operational processes to improve agriculture's productivity and sustainabil-

ity. Although these data-driven strategies address global food availability and sustainability, they

intensify logistical and productivity issues because of limited storage capacity and erratic weekly

harvest quantities [12, 11]. On the other hand, optimizing management practices, including schedul-

ing, irrigation, fertilizing, tilling, and harvesting, plays a signi�cant role in addressing these new

challenges. Hence, this decision-making framework must consider logistic and storage limitations,

seed production processes, and environmental uncertainty during the year-round breeding process

to lead to a reasonable and robust solution for the farming system.

The 2021 Syngenta crop challenge in analytics was designed to challenge participants to develop

a decision-making framework for the planting time scheduling of several population seeds to ensure

when crops are harvested, facilities are not over capacity and there is a consistent weekly harvest

quantity. They released a dataset that contained the historical weather information (growing degree

units) from 2009 to 2019 and 2569 population seeds information, including their planting site, plant-

ing windows, the required number of growing degree units in Celsius needed for the harvest, and

harvest quantity. For this challenge, there are two cases. In the �rst cases, we know the capacities.

This challenge's objective function for this case is to optimize the population seed's planting time by

harvesting at fewer numbers of the week, having consistent weekly harvest quantity, and satisfying

capacity limitation constraint. There is no capacity limitation in another case, and the objective

is to optimize the population seed's planting time with consistent weekly harvest quantity at the

lowest possible capacity. To address this challenge, we designed a new hybrid model consists of a
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weather time series model and a mathematical programming model to schedule the seed popula-

tions' planting time in the year-round breeding process under weather uncertainty. To predict the

weather in the future, we construct a deep recurrent neural network. The uncertainty of forecasted

weather is model using a Gaussian process model on top of the time-series model. We create several

weather scenarios by sampling from the Gaussian distribution via Monte Carlo rollouts. Then, the

proposed optimization model schedules the seed population's planting time at the fewest number of

weeks by maximizing weekly harvest quantity consistency under all weather scenarios. The daily

benchmark of weather prediction performance of the proposed deep recurrent neural network and

other deep learning models for test years (2015-2019) illustrates that the proposed time-series model

outperformed other machine learning models for all test years. Moreover, the modeling uncertainty

of forecasted weather creates the weather scenarios into the future with meaningful trajectories.

The optimization model at case one reduces the required capacity by 69% at site 0 and 48% at site

1 compared to the original planting time at the fewer harvesting weeks. For case two, we determine

the minimum required capacities by decreasing the capacity by 69% at site 0 and by 51% at site

1. Then, the mathematical programming model schedules the planting times of seed populations at

the lower harvesting weeks.
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CHAPTER 2. NEW ALGORITHMS FOR DETECTING MULTI-EFFECT

AND MULTI-WAY EPISTATIC INTERACTIONS

A paper accepted by Bioinformatics

Javad Ansarifar and Lizhi Wang

2.1 Abstract

Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scienti�c

discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to

decipher the exact combinations of genes that trigger the epistatic e�ects. Many existing methods

only focus on two-way interactions. Some of the most e�ective methods used machine learning

techniques, but many were designed for special case-and-control studies or su�er from over�tting.

We propose three new algorithms for multi-e�ect and multi-way epistases detection, with one guar-

anteeing global optimality and the other two being local optimization oriented heuristics. The

computational performance of the proposed heuristic algorithm was compared with several state-

of-the-art methods using a yeast data set. Results suggested that searching for the global optimal

solution could be extremely time consuming, but the proposed heuristic algorithm was much more

e�ective and e�cient than others at �nding a close-to-optimal solution. Moreover, it was able

to provide biological insight on the exact con�gurations of epistases, besides achieving a higher

prediction accuracy than the state-of-the-art methods.

2.2 Introduction

Detecting epistatic interactions remains one of the most mysterious yet important research

challenges in genetics, which holds the key to many scienti�c discoveries such as understanding

the relationship between genotype and phenotype, curing genetic diseases, and accelerating genetic
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adaptation of crops to changing environments. For example, Combarros et al. [3] and Gusareva et

al. [9] used genome-wide association studies to analyze epistases for Alzheimer's disease; ; Ritchie

et al. [21] identi�ed three signi�cant genes in sporadic breast cancer; Taylor and Ehrenreich [28]

detected and identi�ed signi�cant genes that contribute to a complex trait in yeast.

Numerous approaches have been proposed to decipher epistatic interactions, most of which

used genetic algorithms or machine learning methods. For example, Guan et al. [8] developed an

ant colony optimization algorithm for epistasis detection; ; Rekaya and Robbins [20] and Sapin

et al. [23] integrated ant colony optimization algorithm with logistic regression and decision tree

and contingency table models. Machine learning based methods include support vector machine

[2, 17, 25, 5, 40], neural networks [16, 22, 11], Bayesian networks [42, 27, 10], nonparametric Bayesian

[43], factorization machines [39], random forest [29, 37, 12, 24, 15], among others [32, 33, 14, 35].

Reviews of machine learning approaches can be found in Upstill-Goddard et al. [30] and Koo et al.

[13].

Despite signi�cant previous work, the scienti�c community is still in need of more advanced

approaches to decipher the epistatic e�ects hidden in many forms of datasets [18]. Most previous

approaches could only detect two-way rather than multi-way interactions [4, 19, 6, 38, 7, 31, 41, 26,

36]. Many machine learning based approaches were classi�cation algorithms designed for case-and-

control studies with disease datasets, and not applicable to continuous phenotypes [16, 22, 11].

We propose new algorithms for detecting multi-e�ect and multi-way epistatic interactions, which

have three features. First, these algorithms use the root mean square error (RMSE) as the objective

function for minimization and guarantee to �nd either global or local optimal solutions. Second, due

to the sparsity of modeling structure, the algorithms are less prone to over�tting than some machine

learning approaches. Third, maximally tolerable computation time was explicitly considered in the

algorithm design, which allows the user to specify the tradeo� between speed and quality of the

solution.

The rest of this paper is organized as follows. In Section 2.3, we cast the multi-e�ect multi-

way epistatic interactions detection problem as an optimization model. Section 2.4 presents three
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algorithms for solving the aforementioned problem, with the �rst one being global optimality ori-

ented and the last two being heuristic. In Section 2.5, we compared the proposed algorithms with

state-of-the-art approaches such as a neural network and the Multi-way Interacting Regression via

Factorization Machines (MiFM) algorithm [39] in a case study using a yeast dataset. Concluding

remarks are made in Section 2.6.

2.3 Problem De�nition

Nature yX

X ŷZ(X,α) Linear Regression

α

X̃ = [1, X, Z]

Figure 2.1 Epistases as a descriptive model of nature.

We propose an optimization model that attempts to describe how genotype (X ∈ Bn×p) mani-

fests its additive e�ects and epistatic interactions towards the phenotype (y ∈ Rn×1), where n is the

number of individuals and p the number of genes. As illustrated in Figure 3.1, matrix α is part of

the ground truth that de�nes the epistases, which the model is trying to discovery. The dimension

of matrix α is K × p, where K is the number of epistatic e�ects. Each row in matrix α de�nes one

epistatic e�ect and each column corresponds to one gene. Elements in α can take three possible

values: if αk,j = 0, then epistasis k requires that gene j be 0 (Xi,j = 0) for any individual i to

receive this e�ect; if αk,j = 1, then epistasis k requires that gene j be 1 (Xi,j = 1) for any individual

i to receive this e�ect; if αk,j = 0.5, then gene j is not involved in epistasis k. In Figure 3.1, matrix

Z is also part of the ground truth, indicating whether or not the individuals receive the epistatic

e�ects, which the model is trying to discovery. The dimension of the binary matrix Z is n×K, with

each row corresponding to one individual and each column corresponding to one epistatic e�ect. If
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Zi,k = 1, then individual i receives the epistatic e�ect k, and vice versa. The relationship among

X, α, and Z can be described as

Zi,k =

p∏
j=1

I(Xi,j + αk,j 6= 1),

where, I(·) is the indicator function that is equal to 1 if the statement inside the parentheses is true

and 0 otherwise.

The phenotype y is then determined with a multiple linear regression model y = β̃X̃ + ε, where

X̃ = [1, X, Z] and β̃ = [β0, β, b] includes coe�cients for the intercept (β0), additive e�ects (β), and

epistatic e�ects (b). More specially, the epistases model can be formulated as

yi = β0 +

p∑
j=1

Xi,jβj +

K∑
k=1

bkZi,k + εi, ∀i ∈ {1, ..., n}. (2.1)

For a given training dataset (XT ∈ BnT×p, yT ∈ RnT×1) and a validation dataset (XV ∈

BnV×p, yV ∈ RnV×1), the objective of the epistases detection problem is to decipher α, and subse-

quently Z, β0, β, and b so that the validation RMSE is minimized. We cast the epistases detection

problem as the following optimization model.

min ζ =
√

1
nV

∑nV

i=1

(
yVi − ŷVi

)2 (2.2)

s. t. ŷVi = β0 +
p∑
j=1

XV
i,jβj +

K∑
k=1

bkZ
V

i,k ∀i ∈ {1, ..., nV} (2.3)
β0

β

b

 =

[(
X̃T

)>
X̃T

]−1 (
X̃T

)>
yT (2.4)

X̃T =
[
1, XT, ZT

]
(2.5)

ZV

i,k =
p∏
j=1

I(XV
i,j + αk,j 6= 1) ∀i ∈ {1, ..., nV},∀k ∈ {1, ...,K} (2.6)

ZT

i,k =
p∏
j=1

I(XT
i,j + αk,j 6= 1) ∀i ∈ {1, ..., nT},∀k ∈ {1, ...,K}. (2.7)

In the rest of the paper, we will use ζ(XT, yT, α,XV, yV) to denote the RMSE of a given α, which

may or may not be an optimal solution to (3.3)-(2.7).
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High yield High yield
allele allele

Low yield Low yield
allele allele

Drought
tolerant
allele

Drought
intolerant
allele

Dry environment Wet environment

X1 1 1 0 X2 0 1 0

X3 1 0 0 X4 0 0 0

X5 1 1 1 X6 0 1 1

X7 1 0 1 X8 0 0 1

Given

X =



1 1 0

0 1 0

1 0 0

0 0 0

1 1 1

0 1 1

1 0 1

0 0 1



, y =



6

2

4

0

10

5

10

5



Find

Z =



0 0

0 0

1 0

1 0

0 1

0 0

0 1

0 0



β0 = 2

β =

[
4 0 3

]

α =

0.5 0 0

1 0.5 1


b1 = −2

b2 = 1

Figure 2.2 An illustrative example of epistatic interactions.

To illustrate the problem de�nition, consider the example in Figure 2.2, in which eight individuals

(n = 8) of apple trees bear di�erent numbers of fruits as a result of three genes (p = 3): high/low

yield, drought tolerance/intolerance, and wet/dry environment (treated as a special gene). The

ground truth, which needs to be deciphered from the observable dataX and y, includes the following.
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Each tree has two apples as a base case (β0 = 2). A high yield allele gives an extra 4 apples (β1 = 4),

a drought tolerant allele does not have a direct e�ect on the yield (β2 = 0), and a wet environment

gives an extra 3 apples (β3 = 3). On top of these additive e�ects, there are two epistatic e�ects,

each a�ecting two individuals: if a tree has drought intolerant allele (α1,2 = 0) and grows in the dry

environment (α1,3 = 0), then it loses two apples (b1 = −2); if a tree has high yield allele (α2,1 = 1)

and grows in the wet environment (α2,3 = 1), then it gains one extra apple (b2 = 1). Apple tree i

receives e�ect k (Zi,k = 1) if and only if Xi,j +αk,j 6= 1, or equivalently Xi,j = αk,j , for each gene j.

2.4 Methods

In this section, we propose three approaches to detecting multi-e�ect and multi-way epistases,

including a mixed integer quadratic programming (MIQP) based model that can be solved by

existing algorithms and solvers to global optimality and two local optimality oriented heuristics.

2.4.1 MIQP Model

When the objective is to minimize the RMSE for the training set, we formulate the epistases

detection problem as the following MIQP, which is a special case of model (3.3)-(2.7) when the

validation set is the same as the training set. This model is an extension of the mixed integer linear

programming model presented in Wang and Mehr [34] by directly minimizing the mean square error

and detecting multiple epistatic e�ects.
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min 1
n

∑n
i=1 (yi − ŷi)2 (2.8)

s. t. ŷi = β0 +
∑p

j=1Xi,jβj +
∑K

k=1wi,k ∀i ∈ {1, ..., n} (2.9)

bkZi,k ≤ wi,k ≤ bkZi,k ∀i ∈ {1, ..., n}, k ∈ {1, ...,K}(2.10)

wi,k ≤ bk − bk(1− Zi,k) ∀i ∈ {1, ..., n}, k ∈ {1, ...,K}(2.11)

wi,k ≥ bk − bk(1− Zi,k) ∀i ∈ {1, ..., n}, k ∈ {1, ...,K}(2.12)

λk,j + µk,j ≤ 1 ∀j ∈ {1, ..., p}, k ∈ {1, ...,K}(2.13)∑p
j=1Xi,j (λk,j − µk,j) ≥ −p (1− Zi,k) +

∑p
j=1 λk,j ∀i ∈ {1, ..., n}, k ∈ {1, ...,K}(2.14)

∑p
j=1Xi,j (λk,j − µk,j) ≤

∑p
j=1 λk,j − 1 + pZi,k ∀i ∈ {1, ..., n}, k ∈ {1, ...,K} (2.15)∑p

j=1 (λk,j + µk,j) ≤ Ck ∀k ∈ {1, ...,K} (2.16)

λk,j , µk,j , Zi,k ∈ {0, 1};β0, βj , bk free ∀i ∈ {1, ..., n}, j ∈ {1, ..., p}

, k ∈ {1, ...,K}. (2.17)

The objective function (2.8) minimizes the mean square error, which is the square of RMSE,

which is equivalent to minimizing RMSE and is solvable by many quadratic program solvers. In order

to linearize the non-convex quadratic term b · Z in (3.4), we replaced it with an auxiliary variable

w. Constraints (2.10)-(2.12) are a commonly used modeling technique to linearize the product of

a continous variable and a binary variable, where b and b are assumed to be the lower and upper

bounds of b. Two new variables λ and µ are introduced to represent α, where λk,j = I(αk,j = 1)

and µk,j = I(αk,j = 0) for all j ∈ {1, ..., p}, k ∈ {1, ...,K}. Matrices λ and µ are an alternative

de�nition of the epistases. The dimensions of λ and µ are both K× p, with each row corresponding

to one epistatic e�ect and each column corresponding to one gene. For each j and k, if αk,j = 0.5,

then λk,j = 0 and µk,j = 0; if αk,j = 1, then λk,j = 1 and µk,j = 0; if αk,j = 0, then λk,j = 0 and

µk,j = 1. Constraint (2.13) imposes the obvious logical requirement for λ and µ. Constraint (2.14)

enforces that Zi,k = 1 when individual i receives epistasis k and constraint (2.15) does similar for
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the other case. Constraint (2.16) sets an upper bound to the complexity of each epistasis, which

can be determined based on the statistical power of the sample size n. Supports and types of all

decision variables are given in constraint (2.17).

2.4.2 Local search algorithm

Due to the combinatorial and nonlinear nature of model (2.8)-(2.17), solving it to global opti-

mality using existing algorithms and solvers is expected to be time consuming. In this section, we

present a more computationally tractable algorithm for solving the MIQP model (2.8)-(2.17) at the

price of having a local optimal (and not necessarily global optimal) solution. This algorithm is an

extension of the local search algorithm in Wang and Mehr [34], which was designed for detecting

only one epistatic e�ect. The algorithm is de�ned as follows and illustrated in Figure 2.3.

step 0 step 1 Check Finsih

C(1,2)

C(3)

Figure 2.3 The local search algorithm diagram

We provide additional remarks of the algorithm as follows.

� The hyperparameter C should be appropriately determined according to the dimension of the

training dataset. On average, to observe an individual with an epistasis of complexity C, it

requires 2C samples of training data. Similarly, hyperparameter D should re�ect the compu-

tation time requirement. Any increase in D will greatly expand the space of the neighborhood

and thus the computation time. When D = p, then the algorithm reduces to global search

through enumeration.

� In Step 1 and the check point, the search space A(k, d) is de�ned for the kth epistasis within

the d-hop neighborhood, which is adaptively expanded or shrunk depending on the search

outcome. The rule is to always search the smallest neighborhood for a potentially better
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solution to improve any of the K epistases, and to expand to a broader neighborhood only if

a better solution was con�rmed to not exist in the previous neighborhood.

� We can combine the MIQP approach and the local search algorithm by obtaining an integer

feasible (and not necessarily optimal) solution to model (2.8)-(2.17) and then use it as the

initial incumbent solution in Step 1. The rationale for this combination is that existing branch

and bound algorithms may be able to �nd a close-to-optimal solution to (2.8)-(2.17) relatively

quickly but take a long time to identify and con�rm the global optimal solution. If we use the

local search algorithm to re�ne a feasible solution, then its local optimum may turn out to be

the global optimal one.
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Algorithm 1 Local search algorithm
1: Input: Training data (X ∈ Bn×p, y ∈ Rn×1).

2: Output: A local optimal solution α∗ ∈ {0, 0.5, 1}K×p to model (2.8)-(2.17).

3: Hyperparameters: Complexity parameter C and maximal depth D.

4: Step 0: Initialize the incumbent solution α∗ = 0.5K×p. Set k = 1, d = 1, and matrixO = 0K×D.

5: Step 1: Identify the d-hop neighborhood of α∗k,: as follows, where α
∗
k,: denotes the kth row of

matrix α∗ and ‖ · ‖0 is the L0 norm that is equal to the total number of nonzero elements.

A(k, d) = { α ∈ {0, 0.5, 1}K×p : αi,: = α∗i,:,∀i 6= k; ‖αk,: − α∗k,:‖0 ≤ d;

p∑
j=1

2|αk,j − 0.5| ≤ C}.

6: Evaluate ζ(X, y, α,X, y) for all α ∈ A(k, d) and let α̃ denote the best solution α̃ =

arg min
α∈A(k,d)

ζ(X, y, α,X, y).

7: Check point

8: if ζ(X, y, α̃,X, y) < ζ(X, y, α∗, X, y) then

9: C(1): Update α∗ ← α̃, reset d = 1 and O = 0K×D, and go to Step 1.

10: else if
∑

d

∑
k Ok,d ≤ K ·D − 2 then

11: C(2): Set O(k, d) = 1, reset (k, d) as arg mink,d{d : O(k, d) = 0}, and go to Step 1.

12: else

13: C(3): Finish.

14: end if

2.4.3 Heuristic Algorithm

We present another algorithm for solving the epistases detection problem (3.3)-(2.7), which com-

plements the two approaches in Sections 2.4.1 and 2.4.2 with several features. First, it minimizes

the validation RMSE rather than the training RMSE, making it less prone to over�tting. Second,

it attempts to explore multiple local optima and avoid brute force enumeration within local neigh-

borhoods. Third, it adjusts the search strategy in response to the maximally tolerated computation
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times, allowing the user to make a tradeo� between speed and solution quality. The algorithm is

de�ned in Algorithm 2 and diagrammed in Figure 2.4.

step 0 step 1 step 2 step 3 Check Finsih
C(5)

C(1,2)

C(3,4)

Figure 2.4 The heuristic algorithm diagram

We provide additional remarks of the algorithm as follows.

� One of the hyperparameters is the selection intensity θt for each iteration t, which is the number

of �high quality� genes that are considered to be more likely to be involved in epistases. When

the computation time limit is low, smaller values of θ should be used to improve the chance of

�nding a local optimal solution at the price of potentially eliminating important genes from

the search space.

� In Step 0, set A2 is created as a set of random epistases with a complexity of 2. Then matrix

A represents a random subset of these epistases, which will be used in Step 1 to select high

quality genes.

� In Step 1, the subset of high quality genes, P, was selected based on the frequency of genes

that are involved in epistases in A that result in the lowest training RMSE values.

� An alternative approach to the third bullet in Step 1 is to replace the RMSE calculation with

a much faster calculation of correlations between ZT and regression residual |ŷT − yT|. Here,

ZT can be calculated using matrix A and Constraint (2.7), and ŷT using Constraint (3.4) with

training data rather than validation data. Then set P can be determined as the top θt genes

whose corresponding ZT columns have the highest correlations with the regression residual.
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Algorithm 2 Heuristic algorithm

1: Input: Training data (XT ∈ BnT×p, yT ∈ RnT×1) and validation data (XV ∈ BnV×p, yV ∈
RnV×1).

2: Output: A local optimal solution α∗ ∈ {0, 0.5, 1}K×p to model (3.3)-(2.7).
3: Hyperparameters: Complexity C, maximal depth D, maximally tolerated computation time
Tmax, sample size S, and selection intensity θt, ∀t ∈ {1, 2, ...}.

4: Step 0: Initialize the incumbent solution α∗ = 0.51×p, set t = 0 and K = 1, and de�ne A2 as
A2 =

{
α ∈ {0, 0.5, 1}1×p :

∑p
j=1 |αj − 0.5| = 1

}
. Create an arbitrary matrix A ∈ {0, 0.5, 1}S×p

with each row being from the set A2: Ai,: ∈ A2,∀i ∈ {1, ..., S}.
5: Step 1: Update t← t+1, identify set P that satis�es all of the requirements P ⊆ {1, ..., p}, |P| =
θt, ζ(XT, yT, Ai,:, X

T, yT) ≤ ζ(XT, yT, Aj,:, X
T, yT) for any i and j such that maxl∈P |Ai,l −

0.5| = 0.5 and maxl∈P |Aj,l − 0.5| = 0. Then go to Step 2.

6: Step 2: Initialize the current solution as α̂i,j =

{
α∗i,j , if i ≤ K − 1

0.5, otherwise.
,∀i ∈ {1, ...,K}, j ∈

{1, ..., p}. Set d = 1, and go to step 3.
7: Step 3: Identify the d-hop neighborhood of α̂ as follows.

A1(K, d) = { α ∈ {0, 0.5, 1}K×p : αi,: = α̂i,:,∀i ∈ {1, ...,K − 1}; ‖αK,: − α̂K,:‖0 ≤ d∑
j∈P

2|αK,j − 0.5| ≤ C;αK,j = 0.5, ∀j ∈ {1, ..., p}\P}

8: Evaluate ζ(XT, yT, α,XT, yT) for all α ∈ A1(K, d) and let αd denote the best solution: αd =

arg min
α∈A1(K,d)

ζ(XT, yT, α,XT, yT).

9: Check point

10: if ζ(XT, yT, αd, XT, yT) < ζ(XT, yT, α̂,XT, yT) then

11: C(1): Update α̂← αd, reset d = 1, and go to Step 3.
12: else if d 6= D then

13: C(2): Set d← d+ 1 and go to Step 3.
14: else

15: if ζ(XT, yT, α̂,XV, yV) < ζ(XT, yT, α∗, XV, yV) then

16: C(3): Update α∗ ← α̂, reset d = 1, K ← K + 1, and go to Step 1.
17: else if Tmax has not been exceeded then
18: C(4): Update K ← K − 1, and �nd the least e�ective epistatic e�ect k̃ =

arg max
k∈{1,...,K}

{ζ(XT, yT, α∗k,:, X
T, yT)}. Update α∗ as α∗ ← α∗\α∗

k̃,:
, reset d = 1, and go to

Step 1.
19: else

20: C(5): Finish.
21: end if

22: end if
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� Step 2, Step 3, and check point with C(1,2) in the heuristic algorithm are similar with Step

0, Step 1, and check point with C(1,2) in the local search algorithm, but only one epistatic

e�ect involving high quality genes within set P are under consideration.

� Condition C(3) will trigger the algorithm to search for another epistatic e�ect. Under condition

C(4), when the recently added epistasis failed to improve the RMSE for the validation data,

the algorithm will identify the least useful epistasis and then try to replace it a new one.

� Although time limit is only checked in C(4) of the heuristic algorithm, it can also be checked

in other places of the algorithm to enforce termination by the deadline.

2.5 Case Study

We conducted a case study to compare the performances of the proposed algorithms and those

from the literature, which are summarized as follows.

� The MIQP model, from Section 2.4.1, solved using CPLEX 12.

� The local search algorithm, from Section 2.4.2, a straightforward extension of the algorithm

from Wang and Mehr [34].

� The heuristic algorithm, from Section 2.4.3.

� The linear regression algorithm, which represents a special case of Equation (4.1) with bk =

0, ∀k and serves as a comparison benchmark.

� A neural network model, which is able to approximate almost any nonlinear input-output

relationship and commonly used to approximate complex relationships between response and

explanatory variables.

� The MiFM from Yurochkin et al. [39], which is a Bayesian regression method using a factor-

ization mechanism for representing the regression coe�cients of interactions.
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2.5.1 Data

We used the yeast data set from Bloom et al. [1], which contained n =4,390 individuals and

p =28,220 genes, represented by single nucleotide polymorphism (SNPs). In order to have access to

the ground truth of epistases, we simulated phenotype data using the following parameters.

� β0: Uniform distribution U(0, 30)

� β: Uniform distribution U(0, 30)

� b: Uniform distribution U(15, 30)

� ε: Normal distribution N (0, σ2)

2.5.2 Design of experiments

We designed computational experiments to test the sensitivity of the six algorithms listed at the

beginning of Section 2.5 with respect to multiple parameters, which are summarized in Table 2.1.

A full factorial of 5,280 combinations of these parameter values were tested. For each combination,

p genes were randomly selected from the 28,220 in the original dataset, additive e�ects of these

genes were randomly created using the parameter settings in Section 2.5.1 with the speci�ed σ, K

epistatic e�ects were randomly created, each with a random complexity up to C, and Tmax was

used as the computation deadline.

Table 2.1 Parameters for the sensitivity analysis

Parameter Description Values

p Number of genes (50, 100, 150, 200)

K Number of epistatic e�ects (1, 2, 3, 4, 5)

C Maximal epistisis complexity (2, 3, 4, 5)

Tmax Computation deadline (10, 110, . . . , 1010)

σ Standard deviation of random error (0, 1, 2, 3, 4, 5)
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The Matlab Neural Network Toolbox was used to create neural networks with 2 or 3 hidden

layers and each containing between 10 and 20 neurons. Di�erent structures were tested for each

combination of parameters and the best performance was recorded for comparison. The Python

implementation of the MiFM algorithm by Yurochkin et al. [39] was used with some modi�cation in

our case study. The entire data set was divided into training (56%), validation (24%), and test (20%)

sets. Improving incumbent solutions from all algorithms were recorded iteratively. The experiment

was executed on several computers with identical con�gurations, each having a 3.70 GHz CPU and

16 GB memory. The total computation time for these experiments was approximately 156 CPU

days. Results of the experiment are shown in Figures 2.5-2.9.

2.5.3 Results

Figures 2.5-2.9 compare the computational performance of the six algorithms with respect to

RMSEs on training and test data sets. We make the following observations.

� Figure 2.5 reveals the performance of the algorithms under di�erent computational deadlines.

The heuristic algorithm took two to three minutes to achieve its best performance, which was

fairly close to the ground truth. The neural network achieved its best performance even faster,

but it su�ered from over�tting, lower prediction accuracy, and high variability in prediction

accuracy. The linear regression and MIQP algorithms demonstrated the same performance in

this �gure (and others) within a computational deadline of 1,010 seconds, but their long-term

performances could be dramatically di�erent. Linear regression was more computationally

tractable than all other algorithms under comparison, and it showed no sensitivity with respect

to the computational deadline, but its prediction accuracy was the lowest. On the other hand,

MIQP would eventually �nd the global optimal solution, but it could take extremely long time.

For the �rst 1,010 seconds, the performance of MIQP was the same as linear regression, since

MIQP used the linear relaxation solution (same as linear regression) as the initial incumbent

solution, which could take longer than 1,010 seconds to be updated. Local search and MiFM

algorithms demonstrated similar performances, which slowly improved over time and might
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keep improving after 1,010 seconds. Their prediction accuracies were comparable with neural

network but with less variability.

� Figure 2.6 indicates the performance of the algorithms with respect to the number of genes,

p. The heuristic algorithm had low prediction errors and was insensitive to p. This was

due to Step 1 of the algorithm, in which high quality genes were identi�ed and used to

detect epistases. In contrast, the local search and MiFM algorithms considered all genes,

which became increasingly time consuming for larger p. As such, their prediction errors were

relatively small for lower p but deteriorated quickly as p increased. Neural network worked

almost as well as the heuristic algorithm for lower p but was also prone to over�tting and

sensitive to p. It also had higher variability in prediction accuracy than other algorithms.

� Figure 2.7 compares the sensitive of di�erent algorithms to the number of epistatic e�ects,

K. The heuristic algorithm had low prediction errors and was insensitive to K, which was

because it was designed to take advantage of the special structure being assumed in model

(3.3)-(2.7). All other algorithms demonstrated large sensitivity to K, since larger K makes the

input-output relationship more complex and harder to predict. In particular, neural network

had a much more variable prediction error than other algorithms, and its over�tting issue was

also more visible than others.

� Figure 2.8 demonstrates how all algorithms were insensitive to the maximal complexity, C, of

the epistases. The heuristic algorithm had much lower prediction errors than others. The per-

formances of linear regression / MIQP, local search, and MiFM algorithms improved for more

complex epistases. A similar phenomenon was also observed in [34], and the interpretation

was that more complex epistases would be rarer, a�ecting fewer individuals in the population,

allowing less sophisticated models to better represent the entire population. On the other

hand, neural network had a complex modeling structure and did not demonstrate improved

prediction accuracy for higher C.
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� Figure 2.9 shows the greatest contrast between the heuristic algorithm and others with respect

to the standard deviation of the random error, σ. Since the performance of the heuristic

algorithm is close to the ground truth, most of the non-random variability in the phenotype

was explained, and prediction errors were almost completely caused by σ. In contrast, all other

algorithms demonstrated much larger variability in prediction errors, with neural network

being even more so than others.

As another way to demonstrate the e�ectiveness of the heuristic algorithm, Table 2.2 shows

the numbers of true epistatic e�ects (K) versus numbers of correctly deciphered ones. Overall, the

heuristic algorithm was able to correctly (correct number of e�ects with exact combinations of genes

for each epistasis) decipher all epistatic e�ects in 4,003 out of the 5,280 instances simulated ground

truth, which was a 75.81% success rate. If success was more loosely de�ned as achieving an RMSE

within 0.01 of the ground truth, then the heuristic algorithm had a 88.20% success rate.

Table 2.2 The number of true epistatic e�ects (K) versus the number of correctly deci-
phered ones (K ′) .

K ′ = 0 K ′ = 1 K ′ = 2 K ′ = 3 K ′ = 4 K ′ = 5

K = 1 70 986 0 0 0 0
K = 2 17 134 905 0 0 0
K = 3 8 50 202 796 0 0
K = 4 8 32 83 240 693 0
K = 5 12 24 45 122 230 623
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Figure 2.5 Comparing algorithm in terms of computation deadline (Tmax)
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Figure 2.6 Comparing algorithm in terms of the number of genes (p)
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Figure 2.7 Comparing algorithm in terms of the number of epistatic e�ects (K)
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Figure 2.8 Comparing algorithm in terms of maximal complexity (C)
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Figure 2.9 Comparing algorithm in terms of standard deviation of random error (σ)



31

2.6 Conclusion

The contribution of this paper was to propose three approaches for detecting multi-e�ect and

multi-way epistatic interactions. The �rst approach was to cast the problem as an MIQP model,

which can be solved to global optimality using existing algorithms and solvers. The second approach

was a local search algorithm that can e�ciently �nd local optimal solutions to the MIQP. The third

algorithm was a heuristic algorithm that applies additional search strategies depending on the

maximally tolerated computation time.

E�ectiveness of the proposed approaches, especially the heuristic algorithm, was tested in a

case study using realistic data sets. Computational results suggested that the heuristic algorithm

was able to �nd optimal or close to optimal solutions very quickly, outperforming neural network

models, linear regression/MIQP, local search, and MiFM algorithms in terms of both speed and

solution quality. Due to its robustness against multiple parameters and lack of over�tting, this

algorithm is expected to be able to provide biologically veri�able interpretations of epistases for

scienti�c discoveries.

Future research should focus on two directions. One is to further improve the e�ciency of the

algorithm so that it can be applied to more genetic data sets with larger numbers of genetic mark-

ers. The other is to extend to other cases, such as case-control studies or non-binary explanatory

variables.
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CHAPTER 3. AN EXPLAINABLE MODEL FOR CROP YIELD

PREDICTION

A paper submitted to Scienti�c Reports

Javad Ansarifar, Lizhi Wang, and Sotirios Archontoulis

3.1 Abstract

Crop yield prediction is crucial for global food security yet notoriously challenging due to mul-

titudinous factors that jointly determine the yield, including genotype, environment, management,

and their complex interactions. Integrating the power of optimization, machine learning, and agro-

nomic insight, we present an explainable model referred to as the interaction regression model for

crop yield prediction, which has three salient properties. First, it achieved a relative root mean

square error of 8% or less in three Midwest states (Illinois, Indiana, and Iowa) in the US for both

corn and soybean yield prediction, outperforming state-of-the-art machine learning algorithms. Sec-

ond, it identi�ed about a dozen environment by management interactions for corn and soybean yield,

some of which are consistent with conventional agronomic wisdom whereas others challenge such

wisdom and require additional analysis or experiment to prove or disprove. Third, it quantitatively

dissected crop yield into contributions from weather, soil, management, and their interactions, al-

lowing agronomists to pinpoint the factors that favorably or unfavorably a�ect the yield of a given

location under a given weather and management scenario. The most signi�cant contribution of the

proposed prediction model is its capability to produce accurate prediction and explainable insights

simultaneously. This was achieved by training the algorithm to select features and interactions that

are spatially and temporally robust in order to balance prediction accuracy for the training data

and generalizability to the test data.
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3.2 Introduction

Predicting crop yield is crucial to addressing emerging challenges in food security, particularly

in an era of global climate change. Accurate yield predictions not only help farmers make informed

economic and management decisions but also support famine prevention e�orts. Underlying crop

yield prediction is a fundamental research question in plant biology, which is to understand how

plant phenotype is determined by genotype (G), environment (E), management (M), and their

interactions (G×E×M) [15, 20, 32, 24, 3, 17]. State-of-the-art crop yield prediction methods fall

into three main categories: linear models, machine learning models, and crop models, which have

complementary strengths and limitations. Linear models are explainable by quantifying the additive

e�ect of each variable, but they often struggle to achieve high prediction accuracy due to the inability

to capture the intrinsically nonlinear interactions among G, E, and M variables.

Machine learning models have been successfully used for crop yield prediction, including step-

wise multiple linear regression [19], random forest [33], neural networks [40, 34, 16], convolutional

neural networks [51], recurrent neural networks [63], weighted histograms regression [41], ensembles

methods [58, 57], interaction based model [5], and association rule mining and decision tree [50].

Most of these studies were based on environmental and managerial variables only, due to lack of

publicly available genotype data at the state or national scale. Some studies [50, 28, 8, 27] explored

the relationship between genotype and grain yield from regional yield trials from a plant breed-

ing perspective, which would be hard to scale up to statewide or nationwide predictions. Many

machine learning algorithms are scalable to large datasets and have reasonably high prediction ac-

curacy. However, due to the black-box nature of these models, prediction accuracy is sensitive to

model structure and parameter calibration, and it can prove di�cult to explain why predictions are

accurate or inaccurate.

Crop models are another type of nonlinear models, including APSIM [35], DSSAT [9], FASSET

[10], RZWQM [2], SWAP/WOFOST [21], and SOYGRO [42], which build upon the physiological

understanding of plant and soil processes to develop biologically meaningful non-linear equations

to predict crop yield and other phenotypes. These models provide explicit (albeit complex) ex-
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planations of the interactions between traits and environmental conditions in di�erent phases of

the crop growth cycle. They also o�er biological insights into causes of phenotypic variation [31].

Nevertheless, the collection of trait measurement data and calibration of model coe�cients can be

labor intensive and time consuming [11, 38, 47], computation speed could be low [58], and prediction

accuracy may not be as high as some machine learning algorithms.

We propose a novel model, the interaction regression model, for crop yield prediction, which

attempts to combine the strengths and avoid the limitations of the aforementioned approaches. At

the core of this model lies a combinatorial optimization algorithm, which not only selects the most

revealing E and M features but also detects their most pronounced interactions; the contributions of

these features and interactions to the crop yield are then quanti�ed with a multiple linear regression.

To ensure the explainability of the results, we trained our algorithm to �nd features and interactions

that are spatially and temporally robust, which means that they should be consistently predictive

of crop yield across all counties in all years. As such, results from this model have the potential

to propose biologically and agronomically insightful hypotheses on E×M interactions that can be

validated experimentally. A similar concept of robust inference model in spatial-temporal models

was presented in Santos and Erniel [52]. A measure of robustness was proposed in Nogueira et

al. [44], which was based on the number of overlapping features selected using di�erent subsets

of training data. In our approach, the robustness measure is de�ned as the average prediction

performance in multiple validation datasets at di�erent temporal and spatial spectra. As such, our

robustness de�nition allowed the algorithm to strike a balance between prediction accuracy and

generalizability.

The proposed model has demonstrated notable performance in a comprehensive case study,

in which it was compared with eight other machine learning models to predict corn and soybean

yield in 293 counties of the states of Illinois, Indiana, and Iowa from 2015 to 2018. The proposed

model not only achieved a less than 8% relative root mean square error (RRMSE) for both corn

and soybean in all three states, outperforming all other machine learning models in the case study,

but also produced explainable insights. In particular, our model identi�ed 11 G×E interactions for
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corn and 12 for soybean, and also dissected the total yield into contributions from weather, soil,

management, and their interactions. To test the generalizability of the model in terms of both

temporal and spatial extrapolation, we trained the model using historical data from two states up

to 2017 and applied it to predict corn yield in a third state for 2018, and the resulting average

RRMSE was less than 10%.

3.3 Methods

Let X denote the set of explanatory (including genotype, environment, and management) vari-

ables and y the crop yield of a given county for a given year. We propose the interaction regression

model to describe the relationship between X and y as follows.

ŷi = β0 +
∑
j∈P

Xi,jβj +
∑
m∈M

bmZi,m, ∀i ∈ N , (3.1)

where,

� N is the set of sample observations (one sample per county per year),

� P is the set of explanatory variables,

� M is the set of interactions,

� ŷi is predicted crop yield of sample i,

� β0 is the intercept of crop yield,

� βj is the additive e�ect of variable j,

� Xi,j is the explanatory variable j of sample i,

� bm is the e�ect of interaction m, and

� Zi,m is the interaction variable m of sample i.
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Key to equation (4.1) is to decipher the interaction matrix Z from explanatory variables. We use a

kernel-based approach to represent the interactions as

Zi,m =
∑
k∈K

δm,kKk(Xi),

where,

� Kk(·) is the type k kernel function,

� K is the set of kernel functions that we use to describe nonlinear relationships between ex-

planatory variables and crop yield, and

� δm,k is a binary variable indicating whether interaction m is best described by the type k

kernel (δm,k = 1) or not (δm,k = 0).

In order to solve Equation (4.1), we propose an approach that consists of three major steps:

data pre-processing, robust feature and interaction selection, and linear regression, as illustrated in

Figure 3.1. Key elements of the three steps are summarized as follows.

3.3.1 Step 1: Data Pre-processing.

We collected weather data from the Iowa Environmental Mesonet [22], soil data from the Grid-

ded Soil Survey Geographic Database [18], and management and yield performance data from the

National Agricultural Statistics Service [55] for all 293 counties of the states of Illinois, Indiana, and

Iowa from 1990 to 2018. Weather variables include precipitation (Prcp, mm), solar radiation (Srad,

MJ/m2), maximum temperature (Tmax, C◦), and minimum temperature (Tmin, C◦) from weeks 13

(late March) to 52 (late December). Soil variables include dry bulk density (BDdry, g cm−3), clay

percentage (clay, %), soil pH (pH), drained upper limit (dul, mm.mm−1), soil saturated hydraulic

conductivity (ksat, mm/day), drained lower limit (ll, mm.mm−1), organic matter (om, %), sand

percentage (sand, %), and saturated volumetric water content (sat, mm.mm−1) at nine di�erent

depths of soil: 0-5, 5-10, 10-15, 15-30, 30-45, 45-60, 60-80, 80-100, and 100-120 cm. Management

variables include acres planted at the county-level, weekly cumulative percentage of planted and
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harvested acreages. We also created additional variables using the weather and management data

based on agronomic insight to help enhance the performance of the model, such as growing degree

days, number of rainy days, and heat units. Due to the lack of publicly available genotype data, we

extracted two new variables using additional data from the National Agricultural Statistics Service

[55] to account for the trend of genetic improvements [20]: (1) trend of historical yields and (2)

trend of population density for corn and pod count for soybean. These two variables were put in

the category of management variables. All variables were normalized to the [0, 1] interval.

ŷ = βWW + βSS + βMM + βII

Figure 3.1 Illustration of the proposed explainable crop yield prediction model. Step 1 is

data pre-processing. In step 2, Algorithms 1 and 2 select robust features and

interactions, which are then used in step 3 to predict the crop yield with a

multiple linear regression model. Here, ŷ is the predicted yield, βW, βS, and βM

are, respectively, the additive e�ects of weather, soil, and management features,

whereas βI is the e�ect of E×M interactions.
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3.3.2 Step 2: Robust Feature and Interaction Selection.

To avoid over�tting, we selected a subset of all explanatory variables (features) to predict crop

yield. We applied elastic net regularization model to select a set of high-quality features for each

category of weather, soil, and management, and then we used forward and backward stepwise se-

lection to identify features and interaction that are spatially and temporally robust across di�erent

counties over di�erent years. These robust features and interactions were selected using a similar

algorithm from our previous study[6], which was modi�ed to iterate between exploring new interac-

tions and cross-validating their performances. Such process continues until a set of robust features

and interactions has been discovered that lead to good prediction accuracy on the training data and

generalizability on the validation data. The way interactions were represented in our model di�ers

from the classical factorial interaction. However, they are also similar in the sense that our algo-

rithm explores all possible factorial combinations to identify the most e�ect interactions to include

in the model.

3.3.3 Step 3: Linear Regression.

The last step of the prediction model is a multiple linear regression, which attributes crop yield

to additive contributions from weather, soil, management, and their interactions. As such, this

prediction model combines the strengths of explainability of linear regression, prediction accuracy

of machine learning, and agronomic insights of crop models.

More details about the kernel functions in Equation (4.1) and the algorithm for solving it are

provided in Appendix 1.

3.4 Prediction Results

3.4.1 Prediction Accuracy Comparison with Other Machine Learning Models.

We compared the performance of the proposed algorithm with that of eight other machine

learning algorithms from the literature: linear regression was implemented in R; stepwise regression



44

was implemented in R using the MASS package [48]; LASSO, ridge, and elastic net were implemented

in R using the glmnet package [26]; random forest was implemented in R using the ranger package

[62]; extreme gradient boosting (XGBoost) was implemented in R using the xgboost package [14];

and neural network was implemented in Python using the Sklearn package [46]. We fed all original

explanatory variables as input to these eight algorithms. The linear regression algorithm uses all

features without interaction selection; stepwise regression, Lasso regression, ridge regression, and

elastic net have their default feature selection settings in the software packages without interaction

selection; random forecast, xgboost, and neural network use di�erent modeling structures for feature

and interaction selection. As such, the di�erent performances of these algorithms can be attributed

to how they select features and interactions from the same set of explanatory data.

All nine algorithms were deployed to predict both corn and soybean yields in the states of

Illinois, Indiana, and Iowa from 2015 to 2018. To predict yield for the test year t, the training data

included all the explanatory (weather, soil, and management) and response (crop yield) data from

1990 to year t − 1. A 10-fold CV over training and validation partitions was applied to tune the

hyperparameters using a grid search approach. Prediction errors for two crops over four test years

using nine algorithms are summarized in Table 3.1. More comparison in terms of the relative RMSE

(RRMSE), the relative squared error (RSE), the mean absolute error (MAE), the relative absolute

error (RAE), and the coe�cient of determination (R2) of nine models are reported in Appendix 2.

These results suggested that the proposed model outperformed other models for all test years for

both corn and soybean in all evaluation criteria. The test root mean square errors (RMSE) are also

lower than what has been reported in the literature [63, 41, 50, 58]. In terms of the computation

time, the proposed approach took approximately two hour for each test year, which was comparable

with the neural network model.
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Table 3.1 RMSE (in t/ha) of nine algorithms for corn and soybean yield prediction over

four test years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 1.39 1.33 1.19 0.96 0.52 0.48 0.42 0.43

Stepwise Regression 1.37 1.13 1.16 0.97 0.42 0.34 0.35 0.36

Lasso Regression 1.41 1.31 1.21 0.92 0.42 0.42 0.31 0.31

Ridge Regression 1.32 1.29 0.99 0.95 0.41 0.43 0.34 0.32

Elastic Net 1.25 1.26 1.03 0.93 0.40 0.40 0.32 0.33

Random Forest 1.30 1.20 1.06 0.94 0.34 0.37 0.28 0.39

XGBoost 1.50 1.37 1.24 1.08 0.43 0.46 0.40 0.44

Neural Network 1.24 0.82 0.95 0.93 0.40 0.37 0.31 0.40

Interaction Regression 1.02 0.81 0.90 0.81 0.29 0.27 0.23 0.27

3.4.2 Prediction Performance with Known Weather After Growing Season.

Figure 3.2 illustrates the prediction performance of the proposed model after the end of the

growing season when all the weather data have been observed. These results indicate that the

proposed model has an RRMSE lower than 8% in all three states (and most of the counties) over

multiple years for both corn and soybean. In reference, prediction accuracy of other recent studies

ranged from 7.6% mean absolute percentage error for corn using deep neural networks [37] to 16.7%

RRMSE for corn using random forest [33]. According to the comparative table in Shahhosseini et

al. (2020)[56], the RRMSE of the crop model was around 14-20%.
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Figure 3.2 RRMSE for corn and soybean yield prediction from 2015 to 2018.

3.4.3 Prediction Performance with Updating Weather During Growing Season.

Crop yield prediction during the growing season is informative for farmers to make economic or

management decisions, but it is also very challenging due to weather uncertainty. Our model was

able to provide weekly predictions by integrating continuously updated weather data with future

weather scenarios. The prediction accuracy is expected to improve over time as more actual weather

observations become available to replace weather predictions. Our previous work using a crop model

suggested that weather uncertainty decreased by 60% by mid July in Iowa for both corn and soybean

[7].
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Figure 3.3 State-level predictions of corn and soybean during the growing season for three

states in 2018. USDA predictions were released in August, September, and

October. Our model provided weekly predictions based on observed weather

information; prediction intervals were constructed using historical weather sce-

narios for yet-to-be-observed weather.
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Figure 3.3 shows the predictions of corn and soybean yield during the growing season of 2018

in the three states, updated weekly to incorporate new weather data. The dashed red curve is the

median prediction, and the pink interval is de�ned by the �rst and third quantiles under multiple

weather scenarios, constructed using historical weather data. The dotted blue curves are USDA

predictions, which were released in August, September, and October of 2018 at the state level.

The solid black line indicates the actual state average yield, which was announced by USDA in

February 2019. Compared with the USDA predictions, results from he proposed model have three

advantages: (1) interval predictions throughout growing season with weekly updates, (2) county

level (as opposed to state level) predictions, and (3) higher accuracy. The pattern of increased yield

prediction from April to July was caused by weather and planting time in 2018, and it varied across

di�erent counties. Our prediction continues to update until the end of December, which is more

than two months after the end of the growing season. This is because the model is able to capture

factors that a�ect crop yield from crop maturity to harvest, such as adverse weather conditions

during harvesting.

3.4.4 Temporal and Spatial Extrapolation Performance.

To show the performance of our model in the temporal and spatial extrapolation of yield, the

prediction performance of the proposed Interaction-Regression model for corn and soybean in unseen

counties at the test year 2018 are reported in Table 3.2. We created four datasets by removing the

historical dataset of some counties from the training and validation sets. For the �rst three datasets,

we removed data for Illinois (IL), Indiana (IN), and Iowa (IA), respectively; for the last dataset, we

randomly picked 100 out of the 293 counties and removed all their data from training and validation

sets. After training the model for each dataset, we used the learned model to predict crop yield

of the unseen counties in the year 2018. The results suggest that the proposed approach has a

satisfactory prediction performance in both temporal and spatial extrapolation.
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Table 3.2 RMSE in t/ha (and RRMSE in %) of the interaction regression model for the

extrapolation of crop yield for unseen counties at the year 2018. Each row shows

the dataset by removing all historical information of counties. First test set refers

to the prediction of counties with historical datasets in training and validation

set at the test year 2018 (temporal extrapolation). Second test set refers to the

prediction of unseen counties with no historical dataset in training and validation

set at the test year 2018 (temporal and spatial extrapolation).

Crop
Training and

validation sets
Test set

Training RMSE

(RRMSE)

Validation RMSE

(RRMSE)

Test RMSE

(RRMSE)

Corn

IA and IN
IA and IN

0.56 (6.19%) 1.20 (10.3%)
1.52 (12.82%)

IL 0.83 (6.67%)

IA and IL
IA and IL

0.60 (6.61%) 0.82 (6.80%)
1.15 (9.37%)

IN 0.79 (6.79%)

IL and IN
IL and IN

0.59 (6.75%) 0.66 (5.93%)
0.71 (5.90%)

IA 1.08 (8.98%)

193 random

counties

193 random

counties

0.62 (6.85%) 0.68 (5.89%)

0.75 (6.23%)

The other

100 counties
0.75 (6.30%)

Soybean

IA and IN
IA and IN

0.19 (6.51%) 0.20 (5.42%)
0.30 (7.86%)

IL 0.37 (8.94%)

IA and IL
IA and IL

0.19 (6.54%) 0.18 (4.81%)
0.30 (7.55%)

IN 0.64 (16.77%)

IL and IN
IL and IN

0.20 (6.87%) 0.18 (4.97%)
0.24 (6.09%)

IA 0.85 (22.47%)

193 random

counties

193 random

counties

0.20 (6.95%) 0.18 (4.96%)

0.30 (7.71%)

The other

100 counties
0.29 (7.39%)



50

3.5 Explainable Insights

The proposed model was able to provide not only accurate predictions but also explainable

insights, which could help farmers, breeders, and agronomists better understand the complex and

interactive relationship among environment and management.

3.5.1 Additive and Interactive E�ects.

Our model selected 202 robust features and 11 two-way interactions to predict the corn yield.

Out of the 202 features, 155 were for weather, 37 for soil, and 10 for management. In reference, the

total number of variables is 613 (including 440 for weather, 90 for soil, 83 for management), thus the

total number of possible two-way interactions is 6132 = 375, 769 (quadratic e�ects are considered

self-interactions [4, 39]). These features and interactions were carefully selected to balance prediction

accuracy with spatial and temporal consistency. As such, the same set of features and interactions

apply to all counties in the three states for all years between 2015 and 2018. Similarly, our model

selected 160 robust features (including 91 for weather, 59 for soil, and 10 for management) and 12

two-way interactions to predict the soybean yield. The contributions of the selected features and

interactions for corn and soybean are visualized in Figure 3.4 in two circular graphs, in which the

curves inside the inner circle indicate the variables involved in the two-way interactions, the bars in

the �rst layer around the circle represent the e�ects of the interactions, and the bars in the second

layer show the additive e�ects of the features. Positive and negative e�ects are illustrated with red

and blue colors, respectively. A close-up view of the interactions are shown in Figure 3.5, in which

all 11 interactions for corn and 12 for soybean are numbered.
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Corn Soybean

Figure 3.4 Additive and interactive e�ects for corn (left) and soybean (right). Curves inside

the inner circle connect the two variables involved in the two-way interactions.

The �rst layer outside the circle shows the e�ects of the interactions, and the

second layer shows the additive e�ects of the variables. Positive and negative

e�ects are illustrated with red and blue bars, respectively.
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Figure 3.5 Interactions for corn (left) and soybean (right) that were discovered by the pro-

posed model. Curves inside the inner circle connect the two variables involved

in the interactions. The �rst layer outside the circle shows the positive (red) or

negative (blue) e�ects of the interactions.

We explain the contributions of weather (βWW ), soil (βSS), management (βMM), and their

interactions (βII) in all counties in 2015 and 2018 as violin plots in Figure 3.6. These results

identi�ed several high-impact features, including temperature, precipitation, soil organic matter,

drained upper limit of soil, planting time, and yield trend. It was also revealed that weather

conditions in earlier weeks of the growing season have more in�uences on yield than later ones, and

that late planting time is associated with lower yield performance. These �ndings are consistent

with results from �eld experimental studies [7, 36, 12, 23, 49, 45, 43].
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Figure 3.6 Violin plots of estimated contributions of weather (�rst row), soil (second row),

management (third row) and interaction (fourth row) variables on corn and

soybean yield in 2015 (left) and 2018 (right). Each dot on a violin plot represents

a county level observation.
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3.5.2 Insightful Interactions.

Figure 3.7 illustrates three of the interactions for corn using partial dependence plots, which is

a popular way to show the marginal e�ect that one or two features have on the predicted outcome

of a machine learning model.

� Two-way interaction ¹ for corn: the combination of low solar radiation and high maximum

temperature during the late grain �lling period negatively a�ects corn yields. This is consistent

with agronomic intuition, as low solar radiation limits the energy for photosynthesis, and high

maximum temperatures are associated with additional yield losses through tissue respiration

and increased evapotranspiration stress.

� Self interaction ½ for corn: average yield drops from 9.455 to 9.15 t/ha as the number of cold

days in the week of April 2 increases from 0 to 4. This is insightful because the soil organic

matter mineralization and soil water evaporation will slow down in low temperature, leading

to delayed �eld operations due to reduced production of nitrogen and wetter soil surface. The

upward trend of yield as the number of cold days increases from 4 to 7 days is counter-intuitive

biologically, but it may reveal an important agronomic insight: when the low temperatures

last long enough, farmers may start to take actions (e.g., more fertilization and irrigation) to

o�set its negative impact on corn yield.

� Self interaction ¾ for corn: completing planting by May 14 is ideal for the yield, and leaving

50% of planting un�nished by May 20 may reduce the yield by 1.25 t/ha. This is consistent

with the well-known bene�t of early planting [12]. It was also validated in 2019, when the

weather-caused delay in planting in IL and IN led to decreased yields [55].
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Figure 3.7 Partial dependence plots of interactions ¹ (left), ½ (center), and ¾ (right) for

corn.

Figure 3.8 illustrates two of the interactions for soybean using partial dependence plots.

� Self interaction ¸ for soybean: lower temperature, even near freezing, in mid- to late-October

is favorable for soybean yield.

� Two-way interaction º for soybean: high precipitation in mid July makes the yield sensitive

to night temperature in late August; warmer nights may lead to a 0.45 t/ha higher yield than

cooler nights. It has been reported that higher temperature will negatively impact soybean

yield [61, 64]; our results further suggest that precipitation may also a�ect the extent of such

impact. A possible interpretation is that higher temperature decelerates leaf senescence and

increases remobilization of nitrogen and dry matter from vegetative tissues to grains, and such

process may be more sensitive to temperature at a higher level of soil moisture.
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Figure 3.8 Partial dependence of interactions ¸ (left) and º (right) for soybean.

3.5.3 Dissection of Crop Yield.

Breakdowns of observed yields in three states from 2015 to 2018 to contributions of weather

(βWW ), soil (βSS), management (βMM), and their interactions (βII) are shown in Figures 3.9

and 3.10 for corn and soybean, respectively. These contributions di�er by county and change over

time. In 2015, weather was the deciding variable for the yield, whereas interactions played a more

important role in 2018. Due to the relatively static nature and lack of dramatic changes across

the three Midwest states, soil variables demonstrated a lower e�ect on crop yield than the dynamic

weather, management, and their interactions [47, 65].
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Figure 3.9 Breakdown of observed corn yield in three states from 2015 to 2018 to contribu-

tions of weather (βWW ), soil (βSS), management (βMM), and their interactions

(βII).
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Figure 3.10 Breakdown of observed soybean yield in three states from 2015 to 2018 to

contributions of weather (βWW ), soil (βSS), management (βMM), and their

interactions (βII).
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3.6 Conclusion

We proposed an explainable model for crop yield prediction, which made three major contribu-

tions. First, it outperformed state-of-the-art machine learning algorithms with respect to prediction

accuracy in a comprehensive case study, which used historical data of three Midwest states from

1990 to 2018. Second, it was able to identify about a dozen E×M interactions for corn and soy-

bean yield, which are spatially and temporally robust and can be used to form counter-intuitive,

insightful, and testable hypotheses. Third, it was able to explain the contributions of weather, soil,

management, and their interactions to crop yield. Achieving these three contributions simultane-

ous is particularly signi�cant, since no other crop yield prediction algorithms have been able to

satisfactorily address both prediction accuracy and explainability.

The proposed model and computational experiments are not without limitations. For example,

the robust feature and interaction selection algorithms were heuristic in nature, which can �nd

high quality solutions e�ciently but do not guarantee global optimality. The performance of the

algorithm may be further improved by applying more advanced techniques for hyperparameter

tuning [13]. Due to lack of publicly available information on genotype and management, the G, W,

S, and M data used in our case study may be disproportional to their true contributions to crop

yield. However, the proposed modeling approach was designed for both discrete and continuous

explanatory variables and capable of analyzing all G, W, S, and M variables and their interactions.

Future research should explore the possibility of including additional data (such as high-dimensional

genotype data, plant traits, detailed management strategies, and satellite images) to further improve

prediction accuracy and make more biologically and agronomically insightful discoveries.
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3.8 Appendix 1: Details of Prediction Model

The prediction model can be formulated in Equation (3.2) as follows:

ŷi = β0 +
∑
j∈P

Xi,jβj +
∑
m∈M

bmZi,m, ∀i ∈ N . (3.2)

Key to model element in Equation (3.2) is to decipher the interaction matrix Z from the input

data. In this paper, we use a kernel-based approach to represent the interactions as

Zi,m =
∑
k∈K

δm,kKk(ri,m(Xi, αm)),



67

where vector αm ∈ {0, 0.5, 1}|P| indicates variables that trigger the interaction m; ri,m de�nes

relative di�erence between involved variables in interactions m of county i; K(·) is the kernel

function; and where δm,k is a binary variable indicating whether interaction m is best described by

the type k kernel (δm,k = 1) or not (δm,k = 0). The proposed model specify the best type of kernel

by satisfying the constraint
∑
k∈K

δm,k = 1. Vector αm speci�es which variables trigger interaction m

by assigning one value among three options {0, 0.5, 1} to P variables. If αm,j = 0.5, then variable

j is not involved in interaction m. If αm,j 6= 0, then variable j trigger interaction m. We de�ne the

interactions such that, the proposed model is able to capture the non-linear self-e�ects of variables

(self-interaction) as well as two-way interactions between variables on yield. Therefore, ri,m of two-

way interaction between two variables j and l (
∑
j∈P
|αm,j − 0.5| = 1, αm,j 6= 0.5, αm,l 6= 0.5, j < l) is

de�ned as

ri,m(Xi,:, αm) = (2αm,j − 1)(Xi,j + αm,j − 1) + (2αm,l − 1)(−Xi,l − αm,l + 1)

where the ri,m of self interaction of variable j (
∑
j∈P
|αm,j − 0.5| = 0.5, αm,j 6= 0.5) is de�ned as

ri,m(Xi,:, αm) = (2αm,j − 1)(Xi,j + αm,j − 1)

In this research, kernel function K(·) has six possible variants:

Kk(ri,m) =



Linear kernel: r2i,m k = 1

Squared exponential kernel: σ2f exp

(
−1

2

r2i,m
σ2l

)
k = 2

Exponential kernel: σ2f exp

(
−ri,m
σ2l

)
k = 3

Matern 3/2: σ2f

(
1 +

√
3ri,m
σl

)
exp

(
−
√

3ri,m
σl

)
k = 4

Matern 5/2: σ2f

(
1 +

√
5ri,m
σl

+

√
5r2i,m
σ2l

)
exp

(
−
√

5ri,m
σl

)
k = 5

Rational quadratic kernel: σ2f

(
1 +

r2i,m
2θσ2l

)−θ
k = 6

.
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Kernel function has three positive-valued parameters: σf , σl, and θ, which are signal standard

deviation, characteristic length scale, and scale-mixture parameters, respectively. The non-linearity

of yield in relation to the predictors comes from the kernel function that each interaction has.

3.8.1 Step 1: Data Preprocessing.

We collected weather, soil, management, and yield performance data from publicly available

sources for all counties of the states of Illinois, Indiana, and Iowa from 1990 to 2018.

� Weather data were collected from the Iowa Environmental Mesonet [22], which included four

daily surface weather parameters at 1 km2 spatial resolution: precipitation (Prcp, mm), solar

radiation (Srad, MJ/m2), maximum temperature (Tmax, C◦), and minimum temperature

(Tmin, C◦). Weather data from January to March were excluded, and only weeks 13 (late

March) to 52 (late December) data were used in the model.

� Soil data were acquired from the Gridded Soil Survey Geographic Database [18], which in-

cluded ten parameters at 1 km2 spatial resolution: dry bulk density (BDdry, g cm−3), clay

percentage (clay, %), soil pH (pH), drained upper limit (dul, mm.mm−1), soil saturated hy-

draulic conductivity (ksat, mm/day), drained lower limit (ll, mm.mm−1), organic matter (om,

%), sand percentage (sand, %), and saturated volumetric water content (sat, mm.mm−1). All

of these ten parameters were available at nine di�erent depths of soil: 0-5, 5-10, 10-15, 15-30,

30-45, 45-60, 60-80, 80-100, and 100-120 cm.

� Management data were acquired from the National Agricultural Statistics Service [55], which

included acres planted at the county-level, the weekly cumulative percentage of planting pro-

cess and harvested �elds at the state-level. More management data, including the weekly

cumulative percentage of silking and emerging processes for corn and the weekly cumulative

percentage of blooming and emerging processes for soybean, were collected from the National

Agricultural Statistics Service [55]. However, we found that these management variables did

not improve the prediction accuracy, since Algorithm 1 did not select them as robust features,



69

which is probably because management data are for the state level, whereas yield prediction

is at the county level. Due to the lack of publicly available genotype data, we constructed two

new features, i.e., the trend of historical yields and trend of population density for corn and

pod count for soybean from the National Agricultural Statistics Service [55] to represent the

trend of genetic improvements. We combined these features with management data.

� Yield performance data were also acquired from the National Agricultural Statistics Service

[55], which included observed average yield performance between 1990 and 2018 for corn and

soybean for all 293 counties in the states of Illinois, Indiana, and Iowa.

We also estimated additional features using the weather and management data based on agro-

nomic insight to help enhance the performance of the model. The following weather variables were

calculated from the raw weather data and added to the dataset:

� Growing degree days (Gdd, C◦), which is max{0,mean(Tmax,Tmin)− 10}, which is a largely

used by agronomists and faster to track crop development [1].

� Number of rainy days (Rdays), which de�ned as the number of days with rain above 5 mm

and below 24 mm in a week [60, 25].

� Number of extreme rainy days (Exrain), which is the number of days with rain above 24 mm

in a week [47].

� Number of heat days (Hdays), which is the number of days with Tmax above 34 C◦ in a week

[30, 54, 53].

� Number of cold days (Codays), which is the number of days with Tmin below 5 C◦ in a week

[60, 25].

� Number of cloudy days (Cldays), which is the number of days with solar radiation below 10

MJ/m2 in a week [60, 25].

� Heat units (Hunits), which are the summation of max{0,Tmax− 34} of a week [30, 54, 53].
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3.8.2 Step 2: Robust Feature and Interaction Selection.

To avoid over�tting, we selected a subset of all explanatory variables (features) to predict crop

yield, so that in Equation (4.1) we have βi = 0 for all variables that are not selected. We also required

the selected features to be spatially and temporally robust across di�erent counties over di�erent

years. The performance of our feature selection algorithm was evaluated using a time-wise F -fold

(4-fold in our case study) cross validation, as shown in Figure 3.11. Each fold f ∈ {1, ..., F} = F is

corresponding to a particular test year for prediction. For each fold, we considered the partition of

data related to two previous years from a test year as the validation set and dataset corresponding

to the rest of the years to 1990 as a training set. We denote indices set NTr

f , NV

f , NTe

f for training,

validation, and test datasets for each fold f ∈ F .

Figure 3.11 Partition of training, validation, and test datasets for cross-validation.

We cast the prediction problem as the following optimization model. The objective function

(3.3) is our de�nition of the robustness measure. For any prediction ŷ and parameters α and δ,

ζV
CV

(ŷ) measures the average RMSE for all F folds of validation datasets. This de�nition captures

temporal and spatial robustness by ensuring, respectively, that the same set of features P is used

for di�erent test years and that the same set of βf is used for all counties in the same fold.
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min ζV
CV

= 1
|F|

∑
f∈F

√
1
|NV

f |
∑
i∈NV

f

(yi − ŷi)2 (3.3)

s. t. ŷi = βf0 +
∑
j∈P

Xi,jβ
f
j +

∑
m∈M

bfmZi,m i ∈ {NTr

f ,NV

f }, f ∈ F (3.4)
βf0

βf

bf

 =

[(
X̃f
)>

X̃f

]−1
(X̃f )>y f ∈ F (3.5)

X̃f
i,: = [1, Xi,:, Zi,:] i ∈ NTr

f , f ∈ F (3.6)

Zi,m =
∑
k∈K

δm,kKk(ri,m(Xi, αm)) ∀i ∈ Nf ,m ∈M (3.7)∑
k∈K

δm,k = 1 ∀m ∈M (3.8)

Model (3.3)-(3.8) cannot be solved exactly as a mathematical programming model due to its

complex constraints, thus we designed two new algorithms in Step 2 to solve it heuristically, as

illustrated in Figure 3.12. First, the elastic net regularization model[66] is applied to select a set

of high-quality features for each fold and each category of soil, weather, and management features.

Using the common features of all folds as a starting point, Algorithm 1 and Algorithm 2 are itera-

tively deployed to �nd a set of robust features and interactions. Algorithm 1 attempts to improve

the robustness measure (3.3) using a stepwise linear regression approach [59, 29] in both backward

and forward directions. Algorithm 2 detects interactions among the features identi�ed by Algorithm

1. The interaction of these two algorithms was designed to maximize the robustness measure by

balancing validation RMSE and training RMSE. These two algorithms iterate until the termination

condition is met, when a set of features and interactions have been found that are temporally and

spatially robust. Details of Algorithms 1 and 2 are explained as follows.
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Figure 3.12 Diagram of step 2. First, the elastic net regularization model is used to select

features from each of the folds and use their common features as a starting

point for robust features. Then, Algorithm 1 tries to improve the robustness

measure (3.3) using a stepwise linear regression approach in both backward

and forward directions, and Algorithm 2 explores potentially signi�cant inter-

actions among these features. The �nal output of step 2 is a set of features

and interactions that are temporally and spatially robust.
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Algorithm 3 Robust feature and interaction selection algorithm

1: Input: Dataset (X ∈ [B,R]|N |×|P|, y ∈ R|N |×1), high-quality features PSf , P
W
f , and PMf for

each fold f ∈ F .

2: Output: Robust feature set P∗ and interactions α∗ ∈ {0, 0.5, 1}|M|×|P∗| and their kernel func-

tion variable δ∗ ∈ B|M|×|K|.

3: Initialize robust features set P∗ = ∩f∈F (PSf ∪PWf ∪PMf ) and empty sets ja and jr as candidate

features for adding and removing, respectively.

4: Apply Interaction(XN ,P∗ , yN) algorithm to get α, δ, ζTr
CV
, ζV
CV

. Initialize α∗ = α, δ∗ =

δ, ζTr∗
CV

= ζTr
CV
, ζV∗
CV

= ζV
CV

.

5: for each j /∈ P∗ do

6: Apply Interaction(XN ,P∗∪j , yN) algorithm to get α, δ, ζTr
CV
, ζV
CV
.

7: if ζV
CV

< ζV∗
CV

then

8: Update α∗ ← α, δ∗ ← δ, ζTr∗
CV
← ζTr

CV
, ζV∗
CV
← ζV

CV
, and ja ← j.

9: end if

10: end for

11: for each j ∈ P∗ do

12: Apply Interaction(XN ,(P∗∪ja)\j , yN) algorithm to get α, δ, ζTr
CV
, ζV
CV

.

13: if ζV
CV

< ζV∗
CV

then

14: Update α∗ ← α, δ∗ ← δ, ζTr∗
CV
← ζTr

CV
, ζV∗
CV
← ζV

CV
, and jr ← j.

15: end if

16: end for

17: if P∗ = (P∗ ∪ ja) \ jr then

18: C(1): Finish.

19: else

20: C(2): Update P∗ ← (P∗ ∪ ja) \ jr; reset ja and jr sets as empty sets, and go to line 5.

21: end if
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Algorithm 4 Interaction algorithm

1: Input: Dataset (X ∈ [B,R]|N |×|P̂|, y ∈ R|N |×1), training set NTr

f and validation set NV

f for

each fold f ∈ F .

2: Output: α∗ ∈ {0, 0.5, 1}M×|P̂|, δ∗ ∈ BM×|K|, ζTr
CV
, ζV
CV

as local optimal interactions, their kernel

function variable, CV training RMSE, and CV validation RMSE, respectively.

3: Initialize the incumbent solution α∗ = 0.51×|P̂|, δ∗ = 01×|K|, and M = 1. Then, go to Step 1.

4: Initialize the current solution as α̂i,j =


α∗m,j , if m ≤M − 1

0.5, otherwise.
, ∀m ∈ {1, ...,M}, j ∈ P̂.

5: Identify the 2-hop neighborhood of α̂ as follows.

A(M) = {α ∈ {0, 0.5, 1}M×|P̂| : ‖αi,: − α̂i,:‖0 ≤ 2,∀i ∈ {1, ...,M};∑
j∈P̂ |αi,j − 0.5| ≤ 1,∀i ∈ {1, ...,M}}

6: Evaluate ζTr
CV

= ζ(X, y,NTr

f ,NTr

f , α, δ) for all α ∈ A(M). Let ᾱ and δ̄ be optimal solutions:

{ᾱ, δ̄} = arg min
α∈A(M)

ζ(X, y,NTr

f ,NTr

f , α, δ).

7: if ζ(X, y,NTr

f ,NV

f , ᾱ, δ̄) < ζ(X, y,NTr

f ,NV

f , α
∗, δ∗) then

8: C(1): Update α∗ ← ᾱ and δ∗ ← δ̄; reset M ←M + 1, and go to line 4.

9: else

10: C(2): Finish.

11: end if

The objective of Algorithm 1 is to identify a set of robust features to minimize ζTr
CV

, which is the

average of training RMSEs. In line 3, the common features of di�erent folds are used as the starting

point for the set of robust features. In the two �for� loops, new features are added or removed using

a stepwise linear regression approach to further improve the robustness measure ζTr
CV

.

The objective of Algorithm 2 is to detect interactions among the features from Algorithm 1 to

optimize the robustness measure ζTr
CV

. It explores the 2-hop neighborhood of interactions space with

all combinations of the kernel functions to optimize the robustness measure. This is an extended

version of the algorithm in Ansarifar and Wang (2019) [6] by including not only discrete (genetic)
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variables but also continues (environment and management) features. This is achieved by normal-

izing all continues variables to the [0, 1] internal and then using the six kernel functions to capture

the potential nonlinear relationship between pairs of features.

3.8.3 Step 3: Linear Regression.

The interaction matrix Z augments the input dataset X with additional features, which helps �t

the crop yield with a multiple linear regression model. As such, the model �rst deploys a powerful

optimization engine to identify complex interactions, and then delivers explainable prediction results

that can attribute crop yield to additive and interactive contributions of individual explanatory

variables.

3.9 Appendix 2: Additional Results

Prediction performance of the proposed prediction algorithm for corn and soybean in three states

over four test years is reported in Table 3.3.

All nine algorithms were deployed to predict both corn and soybean yields in the states of Illinois,

Indiana, and Iowa from 2015 to 2018. To predict yield for the test year t, the training data included

all the explanatory (weather, soil, and management) and response (crop yield) data from 1990 to

year t− 1. Cross validation was used to tune hyperparameters for all algorithms. Prediction errors

for two crops over four test years using nine algorithms are summarized in Table 3.1. Prediction

comparisons in terms of the relative RMSE (RRMSE), the relative squared error (RSE), the mean

absolute error (MAE), the relative absolute error (RAE), and the coe�cient of determination (R2)

of nine models are reported in Tables 3.4-3.8, respectively.
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Table 3.3 RMSE in t/ha (and RRMSE in %) of the interaction regression model for corn

and soybean in three states over four test years.

Crop Dataset
Test Year

2015 2016 2017 2018

Corn

Train 0.61 (6.97%) 0.62 (6.99%) 0.62 (6.95%) 0.63 (6.99%)

Validation 1.67 (15.01%) 1.01 (9.08%) 0.92 (8.30%) 0.89 (7.63%)

Test (3 states) 1.02 (9.60%) 0.81 (7.06%) 0.90 (7.66%) 0.81 (6.73%)

Test (Illinois) 0.99 (9.29%) 0.88 (7.72%) 0.99 (8.31%) 0.85 (6.80%)

Test (Indiana) 1.37 (14.33%) 0.75 (7.18%) 0.88 (7.97%) 0.66 (5.68%)

Test (Iowa) 0.59 (5.04%) 0.79 (6.29%) 0.82 (6.67%) 0.89 (7.45%)

Soybean

Train 0.21 (7.26%) 0.21 (7.26%) 0.21 (7.22%) 0.21 (7.16%)

Validation 0.27 (8.06%) 0.30 (8.58%) 0.28 (7.75%) 0.26 (7.05%)

Test (3 states) 0.29 (8.16%) 0.27 (7.18%) 0.23 (6.31%) 0.27 (6.97%)

Test (Illinois) 0.30 (8.38%) 0.28 (7.30%) 0.20 (5.54%) 0.29 (6.94%)

Test (Indiana) 0.30 (8.95%) 0.30 (8.18%) 0.22 (6.36%) 0.22 (5.94%)

Test (Iowa) 0.27 (7.24%) 0.24 (6.10%) 0.26 (6.98%) 0.29 (7.83%)
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Table 3.4 RRMSE (in %) of nine algorithms for corn and soybean yield prediction over

four test years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 13.05 11.57 10.13 8.01 14.51 12.53 11.50 10.88

Stepwise Regression 12.86 9.87 9.87 8.05 11.78 8.93 9.68 9.33

Lasso Regression 13.15 11.40 10.25 7.64 11.84 10.89 8.51 8.00

Ridge Regression 12.36 11.22 8.39 7.87 11.46 11.20 9.28 8.21

Elastic Net 11.71 10.96 8.77 7.69 11.32 10.41 8.82 8.57

Random Forest 12.16 10.45 9.03 7.81 9.64 9.66 7.64 10.03

XGBoost 14.06 11.93 10.58 8.99 12.05 11.94 10.89 11.14

Neural Network 11.56 7.12 8.05 7.74 11.28 9.73 8.58 10.10

Interaction Regression 9.60 7.06 7.66 6.73 8.16 7.18 6.31 6.97
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Table 3.5 RSE of nine algorithms for corn and soybean yield prediction over four test years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 0.86 0.61 0.62 0.49 1.72 1.60 1.10 0.76

Stepwise Regression 0.84 0.44 0.59 0.49 1.13 0.81 0.78 0.56

Lasso Regression 0.88 0.59 0.64 0.44 1.14 1.20 0.60 0.41

Ridge Regression 0.77 0.57 0.43 0.47 1.07 1.27 0.71 0.43

Elastic Net 0.69 0.54 0.46 0.45 1.04 1.10 0.65 0.47

Random Forest 0.75 0.50 0.49 0.46 0.76 0.95 0.48 0.64

XGBoost 1.00 0.65 0.68 0.61 1.18 1.45 0.99 0.79

Neural Network 0.68 0.23 0.39 0.45 1.04 0.96 0.61 0.65

Interaction Regression 0.46 0.22 0.35 0.34 0.54 0.52 0.33 0.31



79

Table 3.6 MAE (in t/ha) of nine algorithms for corn and soybean yield prediction over

four test years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 1.06 1.07 0.95 0.78 0.42 0.39 0.34 0.34

Stepwise Regression 1.11 0.91 0.94 0.79 0.34 0.28 0.28 0.29

Lasso Regression 1.08 1.06 0.96 0.74 0.34 0.33 0.24 0.25

Ridge Regression 1.05 1.06 0.76 0.77 0.32 0.35 0.27 0.25

Elastic Net 0.95 1.02 0.79 0.74 0.32 0.33 0.25 0.26

Random Forest 0.98 0.95 0.84 0.76 0.28 0.29 0.22 0.31

XGBoost 1.20 1.09 0.98 0.85 0.34 0.37 0.33 0.36

Neural Network 1.01 0.66 0.72 0.73 0.32 0.30 0.25 0.32

Interaction Regression 0.74 0.66 0.69 0.65 0.23 0.22 0.17 0.22
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Table 3.7 RAE of nine algorithms for corn and soybean yield prediction over four test

years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 0.86 0.75 0.78 0.68 1.28 1.34 1.03 0.88

Stepwise Regression 0.90 0.64 0.77 0.70 1.05 0.96 0.87 0.74

Lasso Regression 0.87 0.75 0.79 0.65 1.05 1.15 0.75 0.66

Ridge Regression 0.85 0.74 0.62 0.68 0.98 1.21 0.81 0.64

Elastic Net 0.77 0.72 0.65 0.65 0.97 1.13 0.77 0.67

Random Forest 0.80 0.67 0.68 0.67 0.85 1.01 0.67 0.81

XGBoost 0.97 0.77 0.80 0.75 1.05 1.27 1.00 0.93

Neural Network 0.82 0.46 0.59 0.65 0.97 1.03 0.77 0.83

Interaction Regression 0.60 0.46 0.56 0.58 0.71 0.76 0.53 0.56
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Table 3.8 R2 of nine algorithms for corn and soybean yield prediction over four test years.

Model

Corn Test Year Soybean Test Year

2015 2016 2017 2018 2015 2016 2017 2018

Linear Regression 0.13 0.38 0.37 0.50 -0.72 -0.60 -0.10 0.23

Stepwise Regression 0.15 0.55 0.40 0.50 -0.13 0.18 0.21 0.43

Lasso Regression 0.11 0.40 0.35 0.55 -0.14 -0.20 0.39 0.58

Ridge Regression 0.22 0.42 0.56 0.52 -0.07 -0.27 0.28 0.56

Elastic Net 0.30 0.45 0.53 0.54 -0.04 -0.10 0.34 0.52

Random Forest 0.24 0.49 0.50 0.53 0.23 0.04 0.51 0.35

XGBoost -0.01 0.34 0.31 0.38 -0.18 -0.45 0.01 0.20

Neural Network 0.31 0.76 0.60 0.54 -0.04 0.03 0.38 0.34

Interaction Regression 0.53 0.77 0.64 0.65 0.45 0.47 0.66 0.68

Figure 3.13 provides complementary information to Figure 3.6 on the estimated contributions

of weather and soil to crop yield.
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2015

2015

2018

2018

Figure 3.13 Violin plots of estimated contributions of soil variables (top) and weather vari-

ables (bottom) on corn and soybean yield in 2015 (left) and 2018 (right). Each

dot on a violin plot represents a county level observation.
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CHAPTER 4. PERFORMANCE PREDICTION OF CROSSES IN PLANT

BREEDING THROUGH GENOTYPE BY ENVIRONMENT

INTERACTIONS

A paper accepted by Scienti�c Reports

Javad Ansarifar, Faezeh Akhavizadegan, Lizhi Wang

4.1 Abstract

Performance prediction of potential crosses plays a signi�cant role in plant breeding, which

aims to produce new crop varieties that have higher yields, require fewer resources, and are more

adaptable to the changing environments. In the 2020 Syngenta crop challenge, Syngenta challenged

participants to predict the yield performance of a list of potential breeding crosses of inbreds and

testers based on their historical yield data in di�erent environments. They released a dataset that

contained the observed yields for 294,128 corn hybrids through the crossing of 593 unique inbreds and

496 unique testers across multiple environments between 2016 and 2018. To address this challenge,

we designed a new predictive approach that integrates random forest and an optimization model

for G × E interaction detection. Our computational experiment found that our approach achieved

a relative root-mean-square-error (RMSE) of 0.0869 for the validation data, outperforming other

state-of-the-art models such as factorization machine and extreme gradient boosting tree. Our

model was also able to detect genotype by environment interactions that are potentially biologically

insightful. This model won the �rst place in the 2020 Syngenta crop challenge in analytics.

4.2 Introduction

Meeting the food demands of the world's growing population is one of the most signi�cant

challenges that society is facing, especially due to the continuously changing climate [18]. Vari-
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ous approaches have been proposed to improve food production and security, including optimizing

planting regime, sustainable farming practices, traits introgression, and modeling of plant physi-

ology and ecology. In particular, optimizing the plant breeding process has been recognized as a

promising area to improve global agrarian output with limited resources [30, 13, 24]. One of the

most challenging decisions that plant breeders have to make is the selection of breeding parents for

crosses [8]. For hybrid plant breeding, breeders make the best biparental crosses with high-yield

potentials and test the hybrids' yield performance by planting them in multiple locations and weath-

ers. The empirical breeding process of predicting, planting, and evaluating biparental combinations

is expensive, labor-intensive, and time-consuming, which is why scientists are turning to arti�cial

crosses to help the breeders predict and select promising breeding parents for hybridization. The

2020 Syngenta crop challenge was a recent e�ort by the agriculture industry to address such a

challenge with realistic datasets. The goal of this challenge is to predict the yield performance of

inbred-tester combinations in a given test set.

Many classic models have been used for prediction and selection of parents for crosses, including,

clustering technique [33] as analysis of genetic diversity of hybrids, mixed models [8, 3, 4], best linear

unbiased prediction (BLUP) [7, 26], ridge regression and the genomic best linear unbiased predictor

(GBLUP) [34], and regression methods such as ridge [16, 17, 28] as predictor of cross performance of

untested crosses, genetic relationship [5] as assessment of yield performance of hybrid combinations.

More recently, machine learning models have been applied to predict yield performances of

crosses. For example, González-Camacho et al. [15] developed random forest, neural networks,

and support vector machine (SVM) for predicting genomic performance. Montesinos-López et al.

[25] applied SVM, neural network, and BLUP in the genomic selection process. A probabilistic

neural network was applied for genome-based prediction of corn and wheat in González-Camacho

et al. [14]. Basnet et al. [6] and Jiang et al. [20] developed G × E interactions models for

grain yield prediction using the genomic general combining ability (GCA) and speci�c combining

ability (SCA) and their interactions with environments. Acosta-Pech et al. [1] were the �rst to

propose an extension of the models of Technow et al. [32] and Massman et al. [23] by combing
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the G × E model with the reaction norm model proposed by Jarquín et al. [19]. They used an

interaction-based model with the interactions between SCA and GCA e�ects and environment for

genomic predictions. State-of-the-art machine learning models have also been used for crop yield

prediction, including stepwise multiple linear regression [11], neural networks [11, 21], convolutional

neural networks [31, 36], recurrent neural networks [36], multiple regression [21], random forest [27],

weighted histograms regression [22], and association rule mining and decision tree [29].

In this paper, we propose a new model for predicting the yield performance of new hybrids based

on historical data of other hybrids. This model integrates a random forest with a combinatorial

optimization-based interaction-detection model and attempts to combine their strengths. The ran-

dom forest model [9] is known for its capability to approximate general form nonlinear relationships

among the variables. On the other hand, the interaction-detection model originated from a recently

published algorithm [2] that has been shown to be particularly e�ective in detecting epistatic type

of interactions. Our model extends that algorithm to the detection of genotype by environment

interactions (G × E).

Our computational results using the 2020 Syngenta crop challenge data suggested that the pro-

posed model can accurately predict the performance of untested cross combinations of inbreds and

testers. Moreover, results of our prediction model can also reveal biologically meaningful insights,

such as the best hybrids for speci�c environments.

4.3 Problem De�nition

Most of the e�ort in a breeding program is related to evaluating inbreds by crossing to another

inbred known as a tester. According to the problem statement of the 2020 Syngenta crop challenge,

�it is a plant breeder's job to identify the best parent combinations by creating experimental hybrids

and assessing the hybrids' performance by `testing' it in multiple environments to identify the hybrids

that perform best.� While the yield performance of a hybrid is largely related to the parents, it is

also a�ected by many factors that are hard to predict, such as heterosis and interactions between

genotype and the environment.
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The objective of the 2020 Syngenta crop challenge was to design a model for predicting the yield

performance of a list of inbred-tester combinations based on historical datasets that included yield,

genetic group, and pedigree information of hybrids collected in di�erent environments over a number

of years. If successful, this challenge will stimulate novel design of predictive models and algorithms

for yield prediction of inbred-tester combinations and progeny testing of inbreds, which will help

breeders make the most promising crosses without having to rely on large-scale trial-and-error that

is expensive, labor intensive, and time consuming. The 2020 Syngenta crop challenge released the

following dataset for commercial corn.

Training Dataset

� Yield: Historical yield performances were measured for 10,919 unique biparental hybrids.

To provide realistic data without revealing proprietary information, actual yield values were

anonymized to make the average and standard deviation of yields approximately 1.0 and 0.1,

respectively. The range of the yields was from 0.0472 to 1.8001.

� Genetic clusters: No genetic marker information was available, but the genetic clusters of

593 unique inbreds and 496 unique testers were provided. Syngenta grouped the inbreds and

testers into some clusters according to their genetic similarities using internal methods. There

were 14 inbred clusters and 13 tester clusters.

� Environment: Out of a total of 593 × 496 = 294,128 possible combinations of inbred-tester

crosses, the training data included 10,919 unique hybrids that were planted across 280 lo-

cations between 2016 and 2018, each year with a unique set of weather conditions. The

information that we had for the environment is 280 location IDs and 3 years such that there

were 599 unique location-weather combinations in the training set. The total number of unique

hybrids-location-weather combinations was 155,765, some of which had multiple replications,

so the total number of yield records was 199,476. However, this training dataset represents
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only 0.08% of all possible 593 × 496 × 280 × 3 = 247,067,520 hybrids-location-weather com-

binations.

Test Dataset: The test dataset includes a set of inbred-tester combinations whose yield perfor-

mances need to be predicted. The environments in which these hybrids would be grown were not

speci�ed in the crop challenge.

Evaluation Criteria: The evaluation criteria for the 2020 Syngenta crop challenge in analytics

were �accuracy of the predicted values in the test set based on root mean squared error, simplicity

and intuitiveness of the solution, clarity in the explanation, and the quality and clarity of the

�nalist's presentation at the 2020 INFORMS Conference on Business Analytics and Operations

Research.� Our model won the �rst place in this competition. For this paper, we evaluated the

proposed model in terms of prediction accuracy. Because we did not have access to the ground

truth yield of the test dataset, we divided the given dataset to training and validation subsets using

10-fold cross-validation (CV). Then, we used the average performance of the proposed model as the

evaluation criteria.

4.4 Method

4.4.1 Data Preprocessing

We de�ned the input variable X as one-hot coding of hybrid-location-weather combinations and

the output variable y as the corresponding yield. To accommodate this de�nition, four types of

training data were converted to binary using the one-hot coding preprocessing: inbred and tester

indices, genetic cluster, location ID, and weather. For those hybrid-location-weather combinations

with multiple replications, the average yield was used as the output data. As such, the training data

has a dimension of 155,765 observations by 1,399 (593 inbreds + 496 testers + 14 inbred clusters +

13 tester clusters + 280 locations + 3 years of weather) one-hot coding variables.
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4.4.2 Proposed Model and Algorithm

We proposed a hybrid model for this challenge, which combines random forest with G × E

interaction detection techniques. The overview of the model is diagramed in Figure 4.1. This model

consists of three main components: a random forest model that captures the complex nonlinear

relationship between input and output variables, a G × E interaction detection model that captures

interactions among hybrid, location, and weather variables, and another random forest model that

utilizes the interactions to augment the prediction performance of the �rst random forest model.

Details of these components are described in the rest of this section.

Figure 4.1 The test process of proposed model.

Random Forest Model 1

Random forest [9] is an ensemble learning model that can be used for classi�cation or regression

by constructing a multitude of decision trees. To grow each tree, a random subset of features is

selected along with replacement sampling (bootstrap sampling) used to select di�erent subsets of

the observations. Therefore, observations in the dataset that were not included in the bootstrapped

samples are considered as out-of-bag observations, and the performance of the tree is evaluated by

the average out-of-bag error. Due to the builtin component of cross-validation, the random forest

is less prone to over�tting.
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The random forest model 1 takes the one-hot matrix X as input and predicts the corresponding

yield performance ŷ as output. This model is sensitive to three hyperparameters: the number of

trees should be large enough to stabilize the error rate and small enough to be tractable; the number

of features controls tree correlation, and the node size (minimum size of terminal nodes) determines

the complexity of the individual trees. A 10-fold CV was used to partition dataset to training and

validation subsets. For each fold, we used the training subset for training and parameter tuning.

A 5-fold CV over train partition for each fold was applied to tune the parameters. Table 4.1 gives

the values of these hyperparameters using a 5-fold CV over the whole dataset to get the best values

that lead to good performance on the validation dataset.

Table 4.1 Tuned hyperparameters for the random forest model 1

Hyperparameters Value

Number of trees 1000

Number of features 100

Node size 10

G × E Interactions Model

The random forest model has the capability to approximate nonlinear relationships among the

variables. It grows many classi�cation trees by randomly selecting subsets of features. As such, this

model is ine�ective in discovering speci�c combinations of features that have the most signi�cant

interactions. Therefore, we also introduced a combinatorial optimization-based model to augment

the random forest by strategically searching for G × E interactions.

The G × E interactions model was designed to detect interactions among speci�c hybrid, lo-

cation, and weather variables. This model is built o� of a recently published algorithm [2], which

was designed to detect genetic interactions in the form of epistases. The algorithm was found to

be e�ective in detecting multiple interactions involving multiple variables. The G × E interactions

model considers yield as a linear function of input variables and their interactions, shown as follows.
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ŷi = β0 +

p∑
j=1

Xi,jβj +

K∑
k=1

bkZi,k + εi. ∀i ∈ {1, ..., n} (4.1)

Here,

� Xi,j ∈ {0, 1} is the one-hot input variable j of observation i,

� ŷi is the yield of observation i,

� Zi,k ∈ {0, 1} indicates whether or not observation i receives interaction k,

� β0, βj , and bk are the e�ects of baseline, variable j, and interaction k, respectively, and

� εi is random noise for observation i.

In this model, the interactions are de�ned by a matrix α, which has a dimension of K×p, where

K is the number of interactions that the proposed model tries to decipher and p is the number of

variables. Each column of this matrix corresponds to a variable and each row corresponds to an

interaction. Moreover, each element of matrix α can take three possible values 0, 0.5, 1. If αk,j = 0,

then interaction k requires that variable j be 0 (Xi,j = 0) for any individual i to receive this e�ect.

If αk,j = 1, then interaction k requires that variable j be 1 (Xi,j = 1) for any individual i to

receive this e�ect. If αk,j = 0.5, then variable j is not involved in interaction k. Given matrix α,

the matrix Z can be subsequently calculated to determine whether or not the individuals receive

the interactions. The dimension of the binary matrix Z is n × K, with each row corresponding

to one individual and each column corresponding to one interaction. If Zi,k = 1, then individual

i receives the interaction k, and Zi,k = 0 otherwise. This complex relationship can be captured

mathematically as: individual i receives interaction k (Zi,k = 1) if and only if Xi,j + αk,j 6= 1, or

equivalently Xi,j = αk,j , for each variable j.

The key to model (4.1) is to �nd Z from a given training dataset (XTrain, yTrain), which requires

the estimation of the number of interactions and the combination of variables that are involved in

each interaction. When Z has been determined, model (4.1) reduces to a multiple linear regression

that is easy to solve and interpret. Figure 4.2 illustrates an over-simpli�ed example of G × E
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interactions on corn yield. The given training data gives the yield of n = 8 corn plants with all

possible combinations of p = 3 variables: high-yield (1) or low-yield (0) gene, fertile (1) or infertile

(0) soil, wet (1) or dry (0) weather. No random noise was added to simplify the illustration.

The �gure shows the solution to the model (4.1). Matrix Z has three columns, indicating three

interactions.

� The �rst interaction is triggered by infertile soil (α1,2 = 0) and dry weather (α1,3 = 0),

reducing yield by 1 (b1 = −1). Plants #3 and #4 receive this e�ect, indicated by the �rst

column of matrix Z.

� The second interaction is triggered by high yield gene (α2,1 = 1) and fertile soil (α2,2 = 1),

increasing yield by 1 (b2 = 1). Plants #1 and #5 receive this e�ect, indicated by the second

column of matrix Z.

� The third interaction is triggered by high yield gene (α3,1 = 1) and wet weather (α3,3 = 1),

increasing yield by 2 (b3 = 2). Plants #5 and #7 receive this e�ect, indicated by the third

column of matrix Z.

The rest of the solution indicates that the baseline yield is β0 = 2, the high yield gene, and wet

weather contribute additional β1 = 1 and β3 = 2, respectively, and the fertile soil has no additive

e�ect (β2 = 0).

In our model, a similar approach is used to detect interactions among hybrid, soil, and weather

at a much larger scale with n = 155, 765 and p = 1, 399. To overcome the computational challenges,

we used a similar heuristic algorithm as in [2], which had three desirable features: (1) it used cross-

validation to avoid-over�tting; (2) it was able to �nd local optimal solutions e�ciently; and (3) it

could be parameterized to balance computation time and solution quality.
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High-Yield Gene High-Yield GeneLow-Yield Gene Low-Yield Gene

Fertile
Soil

Infertile
Soil

Dry Weather Wet Weather

X1 1 1 0

X3 1 0 0

X2 0 1 0

X4 0 0 0

X5 1 1 1

X7 1 0 1

X6 0 1 1

X8 0 0 1

Given:

XTrain =



1 1 0

0 1 0

1 0 0

0 0 0

1 1 1

0 1 1

1 0 1

0 0 1



,yTrain =



4

2

2

1

8

4

7

4



Find:

Z =



0 1 0

0 0 0

1 0 0

1 0 0

0 1 1

0 0 0

0 0 1

0 0 0



β0 = 2

β =

[
1 0 2

]

b =

[
−1 1 2

]

α =


0.5 0 0

1 1 0.5

1 0.5 1


Figure 4.2 An illustrative example of G × E interactions.

Random Forest Model 2

Although the interaction model can decipher the interactions between binary predictors, it

cannot �nd more complex nonlinear function of interactions. Hence, we feed the results of the G

× E model into another random forest to identify more complex nonlinear interactions. Random

forest model 2 was designed to predict the residual prediction from random forest model 1. Let ŷ1
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and ŷ2 denote the predictions from random forest models 1 and 2. The overall model output ŷ1 + ŷ2

will provide a more accurate prediction of yield, y, than ŷ1 if ŷ2 can be trained to estimate y − ŷ1.

To achieve this objective, we feed matrix Z from the G × E interactions model to random forest

2 to predict not only linear G × E interactions described in matrix Z but also more complex and

nonlinear interactions. This model is trained using the residual of y − ŷ1 to improve its accuracy.

The tuned hyperparameters for the random forest model 2 are reported in Table 4.2. The same

process as the random forest model 1 was applied to tune hyperparameters.

Table 4.2 Tuned hyperparameters for the random forest model 2

Hyperparameters Value

Number of trees 1000

Number of features 20

Node size 10

The proposed model combines the strengths of combinatorial optimization in identifying G ×

E interactions and random forest in producing accurate predictions using complex and nonlinear

functions. As such, it is a trade-o� between insight and accuracy. It will be shown in the computa-

tional experiments that this hybrid model produced more insightful and accurate predictions than

using either model alone.

4.5 Quantitative Results

In this section, we report the results of our computational experiments, which were designed to

test the performance of the proposed algorithm with respect to other benchmark approaches.

4.5.1 Prediction Accuracy

To show the performance of the proposed model, it was compared with models from the litera-

ture, which are summarized as follows:
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� A multiple linear regression model was trained using the glmnet [12] package in R statistical

software (version 3.4.4).

� The multi-way interacting regression via factorization machines (MiFM) [37] was implemented

in Python by the authors.

� An extreme gradient boosting tree (XGBoost) [10] model was trained using the xgboost [10]

package in R, which was an e�cient and scalable implementation of gradient boosting frame-

work. Three hyperparameters were tuned using 5-fold cross validation (without data leakage):

�nrounds�, �eta�, and �gamma�.

� A G × E interactions model [2] was implemented in MATLAB (Version 2018a), which used

heuristic algorithms to detect multi-way and multi-e�ect epistasis (interactions between binary

variables). It is equivalent to the G × E interactions model without integrating with the

random forest models.

� A random forest [9] was trained using the ranger [35] packages in R, which was an ensemble

of decision trees and trains with the bagging method, equivalent to the random forest model

1 without the interaction model and the random forest model 2 in our proposed model. Three

hyperparameters were tuned using 5-fold cross-validation: the number of trees, number of

features, and node size.

� The proposed model was implemented in MATLAB (Version 2018a).

Three metrics were used for evaluating and comparing the predictive models' performances:

RMSE, which presents the di�erence between predicted and observed values, Mean Absolute Error

(MAE), which measures the average magnitude of the prediction errors, without considering their

direction, and R2, the coe�cient of determination de�ned as the proportion of the variance in the

response variable that is explained by independent variables. Because the ground truth of the test

dataset was never released, we partitioned the training dataset into training and validation subsets

in a 10-fold CV manner. For each fold, we tuned the parameters and trained the models using
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the training set, and then their performances were evaluated using the validation set. We made

sure that no validation data was leaked in the model training process. The average RMSE, MAE,

and R2 values over 10 partitions for the six algorithms are reported in Table 4.3. These results

indicate that the proposed model outperformed other algorithms in all measures. Since the random

forest model was part of our proposed model and it outperformed the �rst four machine learning

algorithms, these results indicated the e�ectiveness of both the random forest method and our G ×

E interactions detection model.

Table 4.3 Average RMSE, MAE, and R2 of six algorithms for yield prediction. A 10-fold

cross-validation on the training dataset was used for algorithm performance eval-

uation, since the ground truth yield of the test dataset was never released.

Model
Train Validation

RMSE MAE R2 RMSE MAE R2

Linear regression 0.1016 0.1009 0.1047 0.1026 0.0851 0.0866

Factorization machine 0.0740 0.0676 0.4855 0.0984 0.0765 0.1578

Xgboost 0.0790 0.0735 0.4581 0.0996 0.0806 0.1388

G × E 0.0740 0.0706 0.4902 0.0980 0.0744 0.1623

Random forest 0.0737 0.0673 0.5283 0.0976 0.0723 0.1738

Proposed model 0.0548 0.0523 0.7386 0.0869 0.0648 0.3448

The performance of the proposed model is also illustrated in �gure 4.3, which plots the average

predicted yields against actual observations for all inbreds and testers. The results suggest that our

proposed model's prediction is close to the observation, both on average and in terms of probability

density distributions.
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Figure 4.3 The up and down plots indicate the plots of the average observed yield versus

the average predicted yield for performances of inbreds and testers, respectively.
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We also examined the consistency of top and bottom inbreds and testers selected based on our

prediction model against those based on observations. Out of the top 29 (5%) inbreds among all

593 inbreds with the highest average yield selected by our model, 21 of them were consistent with

those selected based on actual observations. Similarly, out of the top 24 (5%) testers among all

496 testers with the highest average yield selected by our model, 17 of them were consistent with

those selected based on actual observations. The counterpart consistency ratios for the bottom 5%

inbreds and bottom 5% testers are
22

29
and

16

24
, respectively. The predicted and observed average

yield for the 14 inbred clusters and 13 tester clusters are summarized in Table 4.4.

Table 4.4 Predicted and observed average yield of 14 inbred clusters and 13 tester clusters.

Average Inbred cluster

Yield 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Predicted 1.010 1.010 1.011 0.997 1.007 0.991 1.002 0.993 0.997 0.990 0.986 0.991 0.992 0.998

Observed 1.006 1.020 1.007 0.992 1.003 0.981 0.999 0.988 0.990 0.991 0.984 0.992 0.996 0.996

Average Tester cluster

Yield 1 2 3 4 5 6 7 8 9 10 11 12 13

Predicted 0.999 1.002 0.999 0.992 1.004 0.993 1.005 1.005 0.998 0.981 0.999 0.992 1.001

Observed 0.995 0.996 0.994 0.992 1.003 0.997 1.001 1.001 0.998 0.980 1.005 0.975 0.996

4.5.2 Genotype and Environment Interactions

The proposed model was able to provide not only accurate yield prediction but also genotype

and environment interactions that could be biologically insightful. Figures 4.4 and 4.5 show the two-

way and three-way interactions between variables, respectively. The results indicate that weather

variables involve in more interactions following soil and genotype.
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Figure 4.4 Two-way interactions. Each line shows the two-way interaction between two

variables.

4.5.3 Optimal Biparental Crosses

To shed light on optimal biparental crosses between the given inbreds and testers, we used the

proposed model to predict the yield performance of all combinations of testers and inbreds in di�er-

ent years and locations. Then, we ranked them based on average yield performance over all years

and locations. The results of the top and bottom 5% of inbred-tester combinations (combinations

of top and bottom 29 inbreds with top and bottom 24 testers) are illustrated in Figure 4.6, which

can help breeders predict the most promising crosses. The average yields for four combinations of

crosses are given in Table 4.5. These results appear to suggest that testers have a slightly higher

weight in determining the yield performance of their progeny.



99

Figure 4.5 Three-way interactions. Each row indicates the three-way interaction between

three variables. The star markers in each row indicate which variables involve

in the interaction.

Table 4.5 Average yield performance of combinations of high- and low-yield testers and

inbreds.

High-yield Tester Low-yield Tester

Low-yield Inbred 1.0098 0.9457

High-yield Inbred 1.0625 0.9789
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Figure 4.6 Predicted yield performances for combinations of the top and bottom 5% of

inbreds and testers.

4.6 Conclusion

We proposed a new model to address the 2020 Syngenta crop challenge, which combines random

forest with an G × E interactions model to predict yield performance of inbreds and testers based
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on historical yield data in multiple years and environments. Random forest model has been found

to be an e�ective and powerful machine learning model for prediction, yet it has its limitations in

the degrees and types of interactions among the predictors. Based on a recently published algorithm

for detecting multi-way and multi-e�ect epistatic e�ects, the G × E interactions model captures

both linear and nonlinear interactions of the genotype by environment e�ects. The combination of

random forest and the G × E interactions model was found to be e�ective in predicting yield perfor-

mances of inbred-tester combinations in our computational study using 10-fold validation, achieving

a 0.0869 validation RMSE, 0.0648 validation MAE, and 0.3448 R-squared value, outperforming four

other popular machine learning algorithms as the benchmark. Moreover, our proposed model was

also more explainable than other machine learning models by yielding genotype by environment in-

teractions. Results from our proposed model will be able to help breeders test progeny and identify

the best parent combinations to produce new hybrids with improved yield performances.
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SERIES GROWING DEGREE UNITS
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5.1 Abstract

Producing higher-quality crops within shortened breeding cycles ensures global food availability

and security, but this improvement intensi�es logistical and productivity challenges for seed indus-

tries in the year-round breeding process due to the storage limitations. In the 2021 Syngenta crop

challenge in analytics, Syngenta raised the problem to design an optimization model for the planting

time scheduling in the 2020 year-round breeding process so that there is a consistent harvest quan-

tity each week. They released a dataset that contained 2569 seed populations with their planting

windows, required growing degree units for harvesting, and their harvest quantities at two sites.

To address this challenge, we developed a new framework that consists of a weather time series

model and an optimization model to schedule the planting time. A deep recurrent neural network

was designed to predict the weather into the future, and a Gaussian process model on top of the

time-series model was developed to model the uncertainty of forecasted weather. The proposed

optimization models also scheduled the seed population's planting time at the fewest number of

weeks with a more consistent weekly harvest quantity. Using the proposed optimization models can

decrease the required capacity by 69% at site 0 and up to 51% at site 1 compared to the original

planting time.
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5.2 Introduction

Global food availability and sustainability are two of the most fundamental challenges due to

the growing population and running out of agricultural land required to produce food for people

and livestock [20, 17]. Additional challenges include increasingly variable growing conditions and

climate change [50, 47]. Data-driven strategies increase and improve the productivity and sustain-

ability of agriculture by proposing appropriate and adaptive management practices (e.g. planting,

irrigation, fertilizing, tilling, harvesting, and management), scheduling the activities in the agricul-

ture �eld, and breeding plants with the highest-yielding genetics [52, 50]. Although applying new

methods and analytical approaches helps seed industries to produce higher-quality crops within

shortened breeding cycles, ultimately ensuring required food for global food security, it comes with

an unprecedented new set of challenges.

Recently, this improvement intensi�es logistical and productivity issues for seed industries in

the year-round breeding process due to the storage capacity limitations and erratic and inconsistent

weekly harvest quantities. One of the most important decisions in management practices is schedul-

ing planting time, which has signi�cant implications in �eld crops' development and productivity,

crop model applications, and in acquiring adaptation strategies for future climate change. Although

implementing an optimal planting time reduces the negative impact on the environment and maxi-

mizes crop yield [4, 32, 43, 49], it hinders seed industries by increasing the storage requirement and

logistic risk incurred during the seed production in the year-round breeding process [11].

Seed industries use analysis of a suite of management practices to identify the optimum schedule

among the possibilities for management practices, including planting, irrigation, fertilizing, tilling,

and harvesting. However, the complexities among management practices decision, resources, avail-

ability of seed, uncertain environment, and policies and procedures have led to the necessity of

proposing a decision-making framework for management practices that consider logistic and stor-

age limitation, seed production process, and environmental uncertainty. The 2021 Syngenta crop

challenge in analytics was launched to �nd a critical decision in sustainable agriculture to optimally
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schedule the planting of seeds to ensure that when ears are harvested, facilities are not over capacity

and that there is a consistent number of ears each week.

Estimation of crop planting time has received special attention among industry players, re-

searchers, and academic actors. In-depth reviews of proposed approaches in crop planning problems

have been published by Lowe and Preckel [31] and Ahumada and Villalobos [2]. Several methods

have been proposed and reported in the literature for addressing crop planting problems because

of the complex and nonlinear relationships between planting time and pro�tability of agricultural

products and uncertainties of the environment. The majority of studies in the literature review

have been conducted research on the scheduling of crop planting time in farmers' �elds during the

summer growing season. In contrast to their work, we schedule planting time of di�erent seed

populations to produce seed for farmers in the year-round breeding at a seed industry level.

Three planting time scheduling methods have been proposed in the literature, including pre-

de�ned and constant planting time, mathematical programming models, and statistical analysis

methods [54]. In the �rst approach, based on long term observations, the constant and �xed plant-

ing time is derived as representing typical average planting time [16, 9, 13, 15, 43]. The second

approach is the application of mathematical programming by adjusting the farming system with

di�erent management practices to optimize the planting time scheduling with limited resources.

Mathematical programming methods include a linear programming model [38], genetic algorithm

for a weighted sum method [56], simple heuristic allocation policy [7], heuristic selection algorithm

using automatic fuzzy clustering [18], a strict mathematical framework using fuzzy set theory [44],

calibrated crop model using a genetic algorithm [57], and integration of demand fuzzy time series

modeling and linear programming methods [23, 53]. The planting scheduling algorithm was de-

veloped to optimize planting time based on the nearest distance to customers and the availability

of greenhouses and open �elds [39]. Closest to our model, Li et al. [30] developed a fuzzy-based

linear multi-objective programming model under uncertainty for crop planting structure planning.

The third approach is statistical analysis methods that determine the best planting time by mea-

suring the yield and other objective function response to planting time. They include a segmented-



109

linear regression model [14], analysis of variance [5, 46], rule-based methods [12, 34], STICS model

[8], DSSAT model [25], CERES-Maize model [51], calibrated RZWQM2 model [3], APSIM model

[6, 26, 22], progression model and simulation analysis [58], nonlinear model [27], and the greatest

likelihood of planting based on cumulative heat units [36].

The majority of studies have attempted to shed light on the planting time scheduling in farmers'

�elds during the growing season using di�erent sets of tools and methods. However, seed companies

need to know the planting time of seeds beyond the conventional growing season (for year-round

breeding) to keep up with genetic improvement in the production cycle. Based on this literature

gap, we focus on optimally scheduling the planting time of di�erent seed populations in the year-

round breeding process so that there is a consistent number of harvested ears each week. First, to

address weather information uncertainty during the year-round breeding process, the weather must

be predicted based on time-series analysis of historical weather information. Then, we developed

the optimization model to schedule the planting of seed population within a few harvest weeks with

a more consistent weekly harvest quantity. To show our model's performance, the 2021 Syngenta

crop challenge data was used for our computational results in di�erent cases.

5.3 Problem de�nition

The year-round breeding process of commercial corn as one of the world's most signi�cant and

planted crops is illustrated in Figure 5.1. When seed populations arrived, they must wait for planting

until their scheduled planting date is reached. After planting, they have to be mature enough to

harvest. Growing degree units (GDUs) are a heuristic measurement in phenology that gardeners

and farmers use to predict the crop development stages (e.g. emergence stage and maturity stage)

by reaching the accumulated GDUs to a certain amount [33, 55]. For several crops in di�erent

regions, a relationship between crop development stages and accumulated GDUs has been conducted

[10, 40, 45]. GDUs are computed by taking the integral of warmth above a base temperature,

approximately the average of the daily minimum and maximum temperatures.
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Figure 5.1 The year-round breeding process

The goal of this paper is to develop the model to optimize the planting time of seed populations

(see Figure 5.2) to address logistical and productivity challenges because of capacity limitations and

inconsistent weekly harvest quantities.

Figure 5.2 The year-round breeding process
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5.3.1 Data

The 2021 Syngenta crop challenge provided the Data, which includes seed populations, planting

windows, required GDUs, harvest quantity, and historical GDUs information to optimize commercial

corn's year-round breeding process.

Calendar information: This challenge is to schedule the seed populations' planting times during

2020. Week index is starting from the �rst week of January 2020. Each week runs from Sunday �

Saturday.

Seed population information: This dataset includes 2569 seed populations, the planting site of

each seed population, planting windows, the required number of GDUs in Celsius needed for the

harvest, and the harvest quantity of each seed population. There are two di�erent cases with speci�c

population's harvest quantity distribution. Syngenta simulated harvest quantities based on normal

distributions for this challenge so that cases 1 and 2 follow normal distributions N(250,100) and

N(350,150), respectively. However, in the real world, to estimate harvest quantities, we have to use

predictive models based on historical information. Moreover, case 1 has the capacities, while there

is no capacity limitation in case 2, and we are looking to determine the lowest possible capacity

required. There are two di�erent sites with di�erent capacities. Site 0 has a capacity of 7,500 ears,

and site 1 has a capacity of 6,000 ears at each week in case 1.

Historical weather information: This dataset includes historical GDUs in Celsius accumulated

for each day for both sites during the last 11 years (2009-2019). Time series techniques can be used

with this information to predict the GDUs in 2020.

5.3.2 Objective function

The objective of case 1 for the 2021 Syngenta crop challenge in analytics was to optimize each

seed population's planting time at the fewest number of weeks so that the seed industry has a

consistent weekly harvest quantity and capacity limitation constraint is met at each week. The

objective of case 2 was to optimize each seed population's planting time so that the seed industry

has a consistent weekly harvest quantity at the lowest possible capacity.
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5.4 Method

We developed a hybrid framework for this challenge, which combined the time series prediction

model and optimization model to schedule the planting time of seed population in a one-year

breeding process. The overview of this framework is diagrammed in Figure 5.3. This model includes

two components: a weather prediction model that forecasts time series of GDUs for 2020 from

historical GDUs information and an optimization model that �nds optimal scheduling for planting

seed populations to ensure a consistent weekly harvest. Details of two components are explained in

the rest of this section.

Figure 5.3 The overview of the proposed framework

Weather prediction model

The harvesting date of seed population is determined based on accumulated GDUs in Celsius

that seed population received during its planting time. Because the goal is to optimize the planting

time for the next years (in this challenge is 2020 and 2021) and the weather information has not

yet been observed, each site's GDUs for each calendar day of 2020 and 2021 must be predicted

using the time series prediction model. Recent deep learning models have indicated high prediction

accuracy in sequence processing and time series problems, particularly recurrent neural network.

But, forecasting several steps into the future (in this problem for the next 2 years) is challenging
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with regards to keeping the forecasted weather within a reasonable range based on the historical

information. Hence, we need a new predictive model to estimate uncertainty in the future. In

this paper, a deep recurrent neural network (RNN) using long short-term memory(LSTM) network

[21] was designed to capture nonlinear and temporal aspects of the GDUs. Moreover, to address

the uncertainty of forecasted GDUs, we trained a Gaussian Process model [42] to predict LSTM's

residual errors. Details of LSTM's structure for the prediction of GDUs and the RIO model are

described in the rest of this section.

Prediction model design

We designed a new time-series prediction using LSTM network model and a fully connected

neural network model to forecast GDUs using historical information. Figure 5.4 indicates the

outline of the proposed model. LSTM is an improved version of a RNN model employed widely

to classify, process, and predict time-series problems. The main advantage of the LSTM over the

conventional RNN model is that LSTM network solve the vanishing gradients problem because of

using multiple gates instead of recurrent hidden neurons in their architectures. Also, the main

di�erence between the LSTM models and conventional deep neural network is that LSTM is able

to remember temporal dependency and patterns over time due to existing feedback connections in

its structure. The structure of the LSTM is illustrated in Figure 5.5.

In the LSTM structure, each time step has a cell with multiple gates as the cell's memory that

manages, updates, and controls the �ow of information throughout the network. The output of one

cell at each time step is the next cell's input at the following time step. LSTM network contains

three gates: forget gate, input gate, and output gate. The �rst sigmoid layer is known as the forget

gate that is responsible for deciding what information must be kept and yield to cell state and what

useless information must be forgotten. The input gate composes of the combination of the �rst

tanh and the second sigmoid layers, which update the cell state with new encoded information. The

output gate that consists of the second tanh and the third sigmoid layers controls the information

�ow. It decides and encodes part of the cell state as input in the following time step.
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Figure 5.4 Outline of the predictive model structure.
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Figure 5.5 The overview of LSTM's structure. The �rst sigmoid layer is forget gate layer

with output ft = σ(Wf .[ht−1, xt] + bf ). The second sigmoid layer as part

of the input gate layer has output it = σ(Wi.[ht − 1, xt] + bi). The �rst

tanh layer as part of the input generates a vector of new candidate values

C̃t = tanh(Wc.[ht − 1, xt] + bc). The old cell state Ct−1 is calculated in the

current cell t by Ct = ft ∗Ct−1 + it ∗ C̃t. The third sigmoid layer as part of the

output gate layer calculates output ot = σ(Wo.[ht−1, xt] + bo). The result of the

output gate calculated by second tanh layer as ht = ot ∗ tanh(Ct).

We used historical GDUs in Celsius accumulated for each day for both sites from 2009 to 2019 to

train the time series prediction model by acquiring short term and long-term dependencies between

sequence of GDUs. The previous 30 days of GDU are fed into the proposed time-series model to

predict the GDU at the current day such that the proposed network is trained to predict GDU

one day in the future. To make predictions far into the future, we can apply the trained model

sequentially over the previous predicted GDU. A major limitation of this approach, however, is the

dependency on previous predictions, which accumulates prediction errors over time [41]. In the next

section, we introduce an auxillary model to improve the performance of the GDU prediction model

by estimating and compensating the residual error.
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Modeling uncertainty in weather prediction

The idea of the uncertainty estimation of the proposed model is to design another predictive

model to estimate the residual error of the proposed network. To develop a more robust estimation

far into the future, the Bayesian model can be integrated with the proposed time-series model to

measure uncertainty [35, 28, 19, 48]. This paper utilizes another machine learning model to predict

the uncertainty directly by predicting residual error and augment the estimated error to the proposed

model's prediction. This method is known as RIO (Residual estimation with an I/O kernel) [41].

The RIO's structure is described in the algorithm 5. In this approach, a modi�ed Gaussian Process

regression model (GP) [41] is trained to estimate the original residual errors in the training data

set. This modi�ed GP uses a new kernel (I/O kernel) that makes use of both inputs and outputs

of the proposed time-series model to capture its behavior by estimating the residual error of the

proposed time-series model. This I/O kernel is composed of the input kernel that corresponds to

the training set and the output kernel that corresponds to the original model's prediction.

To construct the I/O kernel for our proposed model, the last LSTM layer's output and the

predicted GDU from the proposed model are fed into the kernel of RIO as input kernel and output

kernel. After training the modi�ed GP with the I/O kernel, we estimate a Gaussian distribution for

the residual error of the proposed time-series model such that we can compute both the mean and

the standard deviation prediction of GDU. The future estimation of GDUs is calculated via Monte

Carlo rollouts. Instead of predicting GDU at each day in the future and feeding the predicted value

back into the proposed time-series model to predict the next day, we take a sample from the Gaussian

distribution returned by RIO. Then this sample is fed back into the model to predict the next day.

Sampling from the Gaussian distribution helps uncertainty estimation in the predictions, and we

can create several weather scenarios by taking multiple samples from the Gaussian distribution. For

this paper, we generated 25 weather scenarios by sampling 25 times from the Gaussian distribution

of all days of two test years (2020 and 2021).
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Algorithm 5 RIO Algorithm

1: Input: Training set D = {(X,Y )} = {(xi, yi)}ni=1 where xi and yi is the previous 30 days of

GDU at day i and GDu at day i, T as number of days for forecasting.

2: Output: Ỹ = {ỹi}Ti=1 as the prediction of T days far into the future.

3: Train phase

4: Train the proposed network by feeding D = {(X,Y )} and estimate Y as Ŷ .

5: Compute residual error E = Y − Ŷ .

6: Feed X back into the network and extract output of the last LSTM layer as g(X).

7: Train Gaussian process regression using new data set {g(X), E} to estimate residual error for

x and its prediction ŷ as Gaussian distribution N (¯̂e, var(ê)), where

¯̂e = k((g(x), ŷ), (g(X), Ŷ ))k((g(X), Ŷ ), (g(X), Ŷ ))−1E

var(ê) = k((g(x), ŷ), (g(x), ŷ))−k((g(x), ŷ), (g(X), Ŷ ))k((g(X), Ŷ ), (g(X), Ŷ ))−1k((g(X), Ŷ ), (g(x), ŷ))

and k denotes I/O kernel k((xi, ŷi), (xi, ŷi)) = σ2
in

exp(− 1
2l2
in

||xi − xj ||2) + σ2out exp(− 1
2l2
out

||ŷi −

ŷj ||2) with the hyperparameters σin, l2in, σout, l
2
out.

8: Forecast phase

9: Set x̂1 = Y [n− 29 : n].

10: for t = 1 to T do

11: Feed x̂t into the network and extract output of the last LSTM layer as g(x̂t) and its prediction

as ŷt.

12: Use Trained Gaussian process regression model to compute ¯̂e and var(ê).

13: The predicted GDU is sampled as follow ỹt ∼ N (ŷt + ¯̂e, var(ê)).

14: Set x̂t+1 = [x̂t[2 : n], ỹt].

15: end for
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5.4.1 Optimization model

Since the main objective is to optimize the planting time of seed population, we cast the schedul-

ing problem as the optimization model using the predicted GDU as the heuristic measurement for

harvesting. For case 1, the optimization model tried to schedule the planting of seed population at a

minimum number of harvest weeks so that there is consistent harvest quantity among all weeks, and

the capacity constraints are met. While at case 2, the optimization model determines the optimal

scheduling of seed population's planting time at the lowest possible capacity required. Two sites do

not have interaction with each other, and we can optimize them separately. Moreover, we developed

one optimization problem for case 1 (when sites have storage capacity) and one optimization for

case 2 (when sites do not have storage capacity). In the following, the variables and parameters

used in the model are described.

Sets and indices:

I Set of seed populations, i ∈ I = {1, ..., I};

T Set of days in planting horizon, t ∈ T = {1, ..., T};

W Set of weeks in planting horizon, t ∈ W = {1, ...,W};

S Set of weather scenarios, s ∈ S = {1, ..., S}.

Parameters:

Ri Accumulated growing degree units needed for harvesting seed population i;

Ei Earliest date for planting seed population i;

Li Latest date for planting seed population i;

Hi Harvest quantity (number of ears) for seed population i;

C Capacity of site for problem case 1;

Ps Probability of weather scenario s;

Gt,s GDUs during day t at weather scenario s;
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Mw,t Binary parameter indicating whether the day t belongs to week w (Mw,t = 1) or not

(Mw,t = 0);

yi,t,s,w Harvest quantity of seed population i in week w at weather scenario s when it is planted in

day t. yi,t,s,w is computed as yi,t,s,w = Hi ∗Mw,t′∀i ∈ I, t ∈ T , Ei ≤ t ≤ Li, s ∈ S, w ∈ W

where t′ ≤ T so that
∑t′−1

t′′=t Gt′′,s ≥ Ri and
∑t′−1

t′′=t Gt′′,s −Ri ≤ Gt,s, otherwise, yi,t,s,w = 0.

Decision variables:

xi,t Binary variable indicating whether the seed population i is planted in day t (xi,t = 1) or

not (xi,t = 0);

z Auxiliary variable indicating maximum harvesting amount among all weeks and weather

scenarios.

The mathematical programming model for case 1 is formulated as the following optimization

model in Equations (5.1-5.5).

min
∑
s∈S
Ps max

w∈W
{C −

∑
i∈I

∑
t∈T

yi,t,s,wxi,t} (5.1)

s. t.

Li∑
t=Ei

xi,t = 1 ∀i ∈ I (5.2)

∑
i∈I

∑
t∈T

xi,t = I (5.3)

∑
i∈I

∑
t∈T

yi,t,s,wxi,t ≤ C ∀s ∈ S, w ∈ W (5.4)

xi,t = {0, 1} ∀i ∈ I, t ∈ T (5.5)

The objective function in Equation (5.1) is to minimize the expected maximum di�erence be-

tween the capacity and the weekly harvest quantity among all harvest weeks. Constraints (5.2) and

(5.3) specify the planting date of each seed population between their earliest and latest planting

dates. Constraint (5.4) limits the weekly harvest quantity within existing capacity. Constraint (5.5)

is the de�nition of binary decision variables.
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After creating weather scenarios for the next planting and harvesting calendar, we solve the

optimization model (5.1)-(5.5). It is better to use Equation (5.6) instead of the Equation (5.1) for

objective function because it better re�ects the �uctuation in weekly harvest quantity among all

harvest weeks. Equation (5.6) computes the di�erence of all pairs of the weekly harvest quantity

among all harvest weeks. But using that makes the model intractable for the large size of the

problem. Hence, we use the Equation (5.1) as the objective function to solve the model within

a reasonable time and make the model tractable for large problem. Since one of the evaluation

criteria is to minimize the total number of harvest weeks, we iteratively shrink the available weeks

for harvest so that the model (5.1)-(5.5) cannot result in harvesting in these weeks. Then, we

calculate Equation (5.6) just for the harvesting period (from the �rst harvest week to the last

harvest week), and then we select the best period of harvesting time regarding minimizing Equation

(5.6).

∑
s∈S
Ps
∑
w∈W

∑
w′∈W,w<w′

|
∑
i∈I

∑
t∈T

yi,t,s,wxi,t −
∑
i∈I

∑
t∈T

yi,t,s,w′xi,t| (5.6)

The optimization model for case 2 (model (5.7)-(5.11)) is formulated as the same as case 1 by

modifying objective function and the Constraint (5.4) to accommodate the model for the uncapac-

itated version. After �nding the minimum capacity using model (5.7)-(5.11), the model (5.1)-(5.5)

are applied to schedule the planting time of seed population.

min z (5.7)

s. t.

Li∑
t=Ei

xi,t = 1 ∀i ∈ I (5.8)

∑
i∈I

∑
t∈T

xi,t = I (5.9)

∑
i∈I

∑
t∈T

yi,t,s,wxi,t ≤ z ∀s ∈ S, w ∈ W (5.10)

xi,t = {0, 1} ∀i ∈ I, t ∈ T (5.11)
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The objective function in Equation (5.7) is to minimize the maximum capacity required among

all harvest weeks. Constraints (5.8) and (5.9) assign the planting date of each seed population

between their earliest and latest dates of planting. Constraint (5.10) calculates the maximum

harvesting quantity among all harvest weeks. Constraint (5.11) is the de�nition of binary decision

variables.

5.4.2 Experiment settings

The proposed time-series model (both LSTM network and fully connected layers) was imple-

mented in python using the TensorFlow package [1]. Parameter tuning of the hyperparameters of

LSTM and fully connected layers indicated that the LSTM layer with 20 units and a dense layer

with 20 neurons and a recti�ed linear unit (ReLU) activation function resulted in the most accu-

rate model to capture the nonlinear and temporal aspects of the weather information. To tune

the parameter, we used a time-wise �ve-fold cross-validation, as shown in Figure 5.6. Each fold

corresponds to particular six months as test data for prediction, and the rest of the data from 2009

up to test data corresponds to the training set. We applied Adam optimizer [29] with a learning

rate of 0.001 and a mini-batch size of 32. Adam optimizer tries to minimize mean absolute error

(MAE) instead of mean squared error (MSE) because MAE is more robust in training the model

with noisy training data.
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Figure 5.6 Partition of training and test data sets for cross-validation.

To compare with the proposed time-series structure with the state-of-the-art, two di�erent deep

learning structures (convolutional neural network and deep fully connected neural network) were

deployed. Details of CNN and DNN models are provided as follows.

� DNN: DNN with 5 nonlinear layers is implemented in Python by using the TensorFlow

package [1]. Each layer has 20 neurons and a ReLU activation function. We used the batch

normalization [24] to increase the prediction accuracy.

� CNN: CNN with three convolution layers and three max-pooling layers is implemented in

Python by using the TensorFlow package [1]. The output of the last max-pooling layer is

�attened and fed into two fully connected layers with 100 neurons and a ReLU activation

function.

To tune the DNN parameters (numbers of hidden layers and neurons at each layer) and CNN

parameters (numbers of convolution layers, fully connected layers and their neurons), we used a

time-wise �ve-fold cross-validation (shown in Figure 5.6) which led to the lowest cross-validation

prediction error. Adam optimizer [29] with a learning rate of 0.001, and a mini-batch size of 32

were applied to train the DNN and CNN model with regards to minimizing MAE.
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The formulated optimization models were implemented in Python 3. Then, they were solved

with the Gurobi optimizer version 9.0 [37].

5.5 Quantitative results

In this section, we report the computational experiments conducted in this research to test

the proposed structure's performance in predicting weather into the future and the optimization

models' performance in scheduling the planting time of seed population with more consistent harvest

quantity among all weeks.

5.5.1 Prediction accuracy comparison with other machine learning models

We compared the performance of the proposed time-series structure with the state-of-the-art

in terms of three criteria: RMSE, which indicates the di�erence between predicted and observed

weather, relative RMSE (RRMSE), which represents the normalized di�erence between predicted

and observed weather, and coe�cient of determination (R2), which computes the proportion of the

variance in the weather that is explained by independent variables. Table 5.1 summarizes the daily

benchmark of GDU prediction performance of the proposed structure and other models over �ve

test years (2015-2019) to illustrate the impact of the proposed model. These results indicate that

the proposed time-series model outperformed other machine learning models for all test years for

both sites in all evaluation criteria.
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Table 5.1 Daily prediction performance of three time-series models for �ve test years (2015

to 2019) at sites 0 and 1.

criterion Site Method
Test Year

2015 2016 2017 2018 2019

RMSE

Site 0

DNN 0.475 0.493 0.531 0.509 0.428

CNN 0.585 0.602 0.632 0.577 0.544

Proposed 0.429 0.471 0.476 0.447 0.404

Site 1

DNN 0.718 0.834 0.882 0.747 0.702

CNN 1.078 1.106 1.112 1.054 1.018

Proposed 0.689 0.727 0.767 0.710 0.684

RRMSE

Site 0

DNN 5.03% 5.33% 5.95% 5.84% 5.07%

CNN 6.21% 6.5% 7.08% 6.62% 6.43%

Proposed 4.55% 5.09% 5.33% 5.12% 4.77%

Site 1

DNN 6.74% 7.71% 8.42% 7.22% 6.5%

CNN 10.13% 10.23% 10.61% 10.18% 9.42%

Proposed 6.47% 6.72% 7.32% 6.85% 6.33%

R2

Site 0

DNN 0.971 0.972 0.977 0.971 0.983

CNN 0.956 0.959 0.968 0.963 0.973

Proposed 0.976 0.975 0.982 0.978 0.985

Site 1

DNN 0.744 0.736 0.709 0.759 0.714

CNN 0.423 0.536 0.539 0.522 0.399

Proposed 0.764 0.799 0.780 0.783 0.728

Figures 5.7 and 5.8 illustrate the consistency of daily prediction of GDU with actual GDU at

two test years (2018 and 2019) for sites 0 and 1, respectively. For this prediction, the previous 30

days of GDU are fed into the proposed time-series model to predict GDU one day in the future.

The proposed model also shows its ability to capture both the overall trend of GDU over test years

and GDU �uctuations from one day to another.
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Figure 5.7 Daily GDU predictions of site 0 for test years 2018 and 2019.

Figure 5.8 Daily GDU predictions of site 1 for test years 2018 and 2019.

The results of using the RIO to estimate uncertainty in the prediction of the GDU into the

future (next two years) for sites 0 and 1 were visualized in Figure 5.9 and 5.10, respectively. The

proposed time-series model was trained on data up to the end of 2019, and the predictions started

on the �rst of 2020, and it then predicted the GDU 730 days into the future. To model uncertainty

of weather for the next planting and harvesting calendar (2020 and 2021), the RIO approach was
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used to create 25 weather scenarios. The shadow areas represent the con�dence interval of weather

prediction, which indicates the range of variability across 25 weather scenarios. We used 25 weather

scenarios to formulate the stochastic optimization model under weather uncertainty on the given

calendar day of 2020.

The predicted GDU can be compared to the actual GDU during the historical period (2009-

2019), and thus the forecasted GDUs into the future follow meaningful trajectories. This result

can be attributed to sampling from the Gaussian distribution via Monte Carlo rollouts to estimate

weather into the future instead of predicting only by the proposed time-series model and feeding it

back into the model to predict the next step.

Figure 5.9 Forecasted GDU and its uncertainty at site 0 into the future (years 2020 and

2021) using RIO algorithm.
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Figure 5.10 Forecasted GDU and its uncertainty at site 1 into the future (years 2020 and

2021) using RIO algorithm.

5.5.2 Optimal schedule for planting time of seed population

The optimization model's goal in case 1 (sites have capacities) is to schedule the seed population's

planting time within the fewest number of weeks. Hence, we iteratively limited the �rst and the last

week harvest weeks to the speci�c shorter periods for two sites, and then the optimization model

(5.1)-(5.5) scheduled the best planting time for seed populations so that the harvest must be done

in these prede�ned periods. Figure 5.11 shows the objective values of Equation (5.6) for the various

harvesting periods at sites 0 and 1. The results show that the best planting dates with the highest

consistent weekly harvest quantity and the fewest harvest weeks are when the allowed harvesting

weeks are week 19 to week 67 for site 0 and from week 16 to week 67 for site 1. Figures 5.12 and

5.13 illustrate the original and optimal weekly harvest quantities at sites 0 and 1 in case 1 using the

average of forecasted GDU. Table 5.2 reports the maximum required capacity, harvesting period,

and value of Equation (5.6). Our proposed model decreased the required capacity by 69% at site 0

and 48% at site 1 compared to the original planting time. Also, the proposed approach reduced the

harvesting period by 1 week.
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Figure 5.11 The objective values of Equation (5.6) for the di�erent allowed harvesting peri-

ods at sites 0 and 1. The inf value refers to the infeasibility of the optimization

model (5.1)-(5.5). The numbers in each block refer to the value of Equation

(5.6). The darker blocks have higher objective function values, and they are

not optimal.

Figure 5.12 The original and optimal weekly harvest quantities at site 0 in case 1 using

the average of forecasted GDU.
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Figure 5.13 The original and optimal weekly harvest quantities at site 1 in case 1 using

the average of forecasted GDU.

Table 5.2 Optimal and original planting times for case 1.

Method

Site 0

Objective

function

First

harvesting

time

Last

harvesting

time

Harvesting

period

Maximum

required

capacity

Original 7,410,283 15 66 52 24,736

Optimal 647,050 19 67 49 7,475

Method

Site 1

Objective

function

First

harvesting

time

Last

harvesting

time

Harvesting

period

Maximum

required

capacity

Original 4,263,080 14 66 53 11,632

Optimal 117,955 16 67 52 6,000

The aim of the optimization model in case 2 (sites have no capacities) is to schedule the seed

population's planting time at the lowest capacity required for both sites as well as the fewest
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number of weeks. Solving the optimization model (5.7)-(5.11) for both sites suggested that the

lowest capacity required for sites 0 and 1 are 10,658 and 7,875. Then, the optimization model

(5.1)-(5.5) was solved for various harvesting periods with determined capacities. For this purpose,

we limited the model to determine the seeds' planting times so that their harvests happened in the

limited harvesting periods. The best harvesting periods in terms of minimizing Equation (5.6) are

reported in Figure 5.14 for sites 0 and 1. The best harvesting period for site 0 is week 19 to week 66

and for site 1 is week 15 to week 69. The results of solving the optimization model (5.1)-(5.5) with

determined capacities from model (5.7)-(5.11) and optimal harvest week for both sites are shown

in Figures 5.15 and 5.16. These �gures indicate the original and optimal weekly harvest quantities

at sites 0 and 1 in case 2 using the average of forecasted GDU. Table 5.3 shows that our proposed

model found the lowest required capacities by decreasing the capacity by 69% at site 0 and by 51%

at site 1.

Figure 5.14 The objective values of Equation (5.6) for the di�erent allowed harvesting

periods at sites 0 and 1. The numbers in each block refers to value of Equation

(5.6). The darker blocks have higher objective function values, and they are

not optimal.
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Figure 5.15 The original and optimal weekly harvest quantities at site 0 in case 2 using

the average of forecasted GDU.

Figure 5.16 The original and optimal weekly harvest quantities at site 1 in case 2 using

the average of forecasted GDU.
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Table 5.3 Optimal and original planting times for case 2.

Method

Site 0

Objective

function

First

harvesting

time

Last

harvesting

time

Harvesting

period

Maximum

required

capacity

Original 10,362,758 15 66 52 34,799

Optimal 572,924 19 66 48 10,658

Method

Site 1

Objective

function

First

harvesting

time

Last

harvesting

time

Harvesting

period

Maximum

required

capacity

Original 6,210,306 14 66 53 16,299

Optimal 332,184 15 69 55 7,875

5.6 Conclusion

We developed a new framework with the combination of time-series model and optimization

models to address the 2021 Syngenta crop challenge by scheduling the planting time of seed popu-

lations at the lowest capacity required and the fewest number of harvest weeks. This challenge is to

optimize the seed populations' planting times during 2020. Hence, the unseen weather information

at the given calendar days was forecasted by the proposed time-series model that consists of the

LSTM model and fully connected deep learning. To estimate the uncertainty of the weather forecast

into the future, we used the RIO model. The results reported the forecasted weather follows his-

torical trajectories. By having the weather scenarios, we proposed a stochastic optimization model

to schedule the farming system. Results from the computational experiment suggested that the

optimization model achieved a more consistent weekly harvest quantity in fewer harvesting weeks.
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CHAPTER 6. FUTURE WORK SUMMARY AND DISCUSSION

6.1 Thesis Contributions

This dissertation is applications of machine learning and optimization algorithms in agriculture

by proposing explainable predictive models and decision-making models in four di�erent studies:

(i) designing new algorithms for detecting multi-e�ect and multi-way epistatic interactions, (ii)

developing an explainable machine learning model for crop yield prediction, (iii) integrating random

forest model and an optimization model for G × E interaction detection for prediction of crosses in

plant breeding, and (iv) formulating scheduling planting time through developing an optimization

model and time series analysis of the weather.

Chapter 2 presents three new algorithms to detect multi-e�ect and multi-way epistases Interac-

tions. The �rst model was to formulate the problem mathematically as the MIQP model. MIQP

model guarantees the global optimality using existing algorithms and solvers, but it is a time-

consuming way to solve epistasis detection problems, especially for large-size problems. Therefore,

two more heuristic algorithms (local search and advanced local search algorithms) were developed

to solve high-order interaction detection problems with many features e�ciently. These algorithms

can e�ciently �nd local solutions. The heuristic algorithm has three salient features: minimizing

both train and validation RMSE, being less prone to over�tting problems, and having a maximally

tolerable computation time option. These features specify the tradeo� between speed and quality

of the solution and reveal their e�ectiveness of the proposed approaches, especially the heuristic

algorithm on computational results compared with several state-of-the-art methods.

Chapter 3 describes the interaction regression model as our new explainable machine learning

model to predict crop yield prediction by combining the power of optimization, machine learning,

and agronomic insight. Its iterative algorithm attempts to choose a subset of E and M features

for crop yield prediction that are spatially and temporally robust. The proposed model solves the
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optimization problem to detect the most revealing interaction between E and M features in yield on

top of this subset. This transparent and explainable framework can quantify and break down the

yield into contributions from weather, soil, management, and their interactions. This quantifying

allows agronomists to assess the favorable and unfavorable yield factors. The computational result

of the model on a comprehensive case study of corn and soybean yield prediction in 293 counties of

Illinois, Indiana, and Iowa from 2015 to 2018 revealed satisfactorily address both prediction accuracy

(it outperformed state-of-the-art machine learning algorithms with respect to prediction accuracy)

and explainability (it detected interactions that are insightful agronomically).

Chapter 4 provides a new integrated model to predict the yield performance of inbreds and

testers based on historical yield data in multiple years and environments. Two random forest

models were combined with an optimization-based interaction-detection model to predict hybrids'

yield performance. The �rst random forest is an e�ective and powerful machine learning model for

prediction by deciphering complex nonlinear relationships between input and output variables. We

enhance this prediction by augmenting speci�c interactions with the most signi�cant contribution

to yield and are detected by the interactions model. The second random forest �nds more complex

nonlinear functions on detected interactions to improve the prediction accuracy. This model won

�rst place in the 2020 Syngenta crop challenge in analytics. Our computational results on the 2020

Syngenta crop challenge dataset illustrated the founded interactions were potentially biologically

insightful, and the proposed model outperformed other state-of-the-art models.

Chapter 5 describes the optimization model for scheduling the planting time of population

seeds in the year-round breeding process. Because of environmental uncertainty during the year-

round breeding process next year, the unknown weather information was predicted by combining

a deep LSTM model and a fully connected deep learning model. To model uncertainty in the

forecasted weather into the future, we trained a modi�ed Gaussian process regression model over

the residual error of predicted weather. We generated weather scenarios by sampling from the

Gaussian distribution via Monte Carlo rollouts. We then developed a stochastic optimization model

to schedule the seed populations' planting time with consistent weekly harvest quantity at the
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lowest harvesting time. The computation result on the 2021 Syngenta crop challenge showed the

forecasted weather followed historical trajectories. The stochastic optimization model achieved an

e�ective planting time for seed populations with a more consistent weekly harvest quantity in fewer

harvesting weeks.

6.2 Future Research

The proposed optimization models in chapters 2 and 3 can be applied to detect interactions

between discrete and continuous variables in other case studies, such as disease detection and case-

control studies. Optimization algorithms such as Bayesian optimization can be combined with the

proposed heuristic interaction detection algorithm to improve the algorithm's e�ciency.

For yield prediction problems in chapters 3 and 4, a future direction should focus on the pos-

sibility of using additional data (genotype data, plant traits, detailed management strategies, and

satellite images) and analyzing weather, soil, and management variables with them and their in-

teractions. Deep learning models can utilize satellite images to predict yield and help the plants'

growing stages estimations. They provide additional data for feeding the proposed machine learning

models to predict yield more accurately. Hyperparameter optimization methods such as grid search

and Bayesian optimization can be applied to �nd optimal models' parameters in chapters 3 and 4.

Future research can improve the quality of the solution using reinforcement learning algorithms

such as Deep Q-learning to solve dynamic decision-making problems for scheduling planting time of

seed populations in chapter 5. Casting the scheduling problem as a multi-stage stochastic problem or

robust optimization with a high number of scenarios can help the decision-maker �nd optimal actions

and take appropriate actions to modify the initial actions in the future. Considering biological and

agronomical discoveries can be used further to improve the prediction accuracy of the growing stage

of plants and make more robust scheduling. Moreover, the integration of crop modeling and machine

learning models can improve yield predictions and planting time scheduling.
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