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ABSTRACT 

The rising popularity of smart factories and Industry 4.0 has made it possible to collect 

large amounts of data from manufacturing production processes. Thus, supervised machine 

learning methods such as classification can viably predict product compliance quality using 

manufacturing data collected during production. While there has been thorough research on 

predicting the quality of specific manufacturing processes, the adoption of classification methods 

to predict the overall compliance of production batches has not been extensively investigated. 

Data pertaining to processes performed on a multi-model production line would contain 

significantly more features than that of an isolated process. The difficulty of analyzing such a 

large dataset makes it ideal for the application of data mining techniques to derive useful 

knowledge. This paper aims to design machine learning based classification methods for quality 

compliance and validate the models via case study of a multi-model appliance production line. 

The proposed classification model could achieve an accuracy of 0.99 and Cohen’s Kappa of 0.91 

for the compliance quality of unit batches. Thus, the proposed method would enable 

implementation of a predictive model for compliance quality. The case study also highlights the 

importance of feature construction and dataset knowledge in training classification models. 
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CHAPTER 1.    INTRODUCTION 

Production and operational efficiency are essential for the competitiveness of 

manufacturing companies, especially effective quality control. The focus of modern 

manufacturing quality departments has shifted from reactive to proactive methods in the recent 

decades. There has been significant progress in defect prevention via process improvements. 

However, as the requirement for quality increases, the cost of preventing defects could keep 

increasing and even outweigh the potential savings (Campanella, 1999). As such, it is critical to 

reduce the defect prevention cost by improving the prediction accuracy for the production quality 

with historical data. Inspection can then be prioritized for batches that are more likely to contain 

defective units, thus reducing cost of poor quality without incurring significant costs of 

prevention. In addition, insights on factors that attribute to the defects can be revealed by 

examination of the predictive model.  

Data mining is the practice of using data to discover patterns and relations between 

attributes. With the abundance of modern manufacturing and process data, it has become feasible 

for the use of data mining to inductively discover factors that affect the quality of a product 

(Köksal et al., 2011). Data mining methods can reveal information that may often be overlooked 

with a hypothesis-driven approach. There are a number of data mining and knowledge discovery 

techniques such as clustering, association rule mining, and classification. Clustering analysis is 

typically adopted for preprocessing and analysis of large datasets to find clusters of similar 

datapoints (Jain et al., 1999). Association rule mining is used to discover interesting relations 

between attributes in a dataset (Piatetsky-Shapiro, 1991). Both of these techniques do not have a 

clearly defined response attribute. Classification methods are used to create classifiers which can 
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be used for prediction of discrete response variable (Kotsiantis et al., 2007), such as the quality 

levels of incoming parts from a manufacturing line. 

Modern classification methods like the ensemble models benefit from improvements in 

the computing capacity of modern systems (Moretti et al., 2008), supporting the widespread use 

of machine learning methods. This is because the frequently used ensemble classifiers such as 

random forest and adaptive boosting often combine weak learners like simple decision trees, 

Naive Bayes, and k-nearest neighbor into an ensemble to combine the strengths of individual 

learners. Another challenge often faced in real applications is the classification of imbalanced 

datasets (Fernández et al., 2011). This is because most classification algorithms tend to learn 

models that are biased in favor of the majority class. Compliance quality in manufacturing plants 

is a good example of class imbalance since defective product units are in the heavy minority as 

compared to compliant units (Kim et al., 2018). This study aims to shed some light on 

classification for imbalanced datasets since the focal problem is the classification of 

manufacturing quality non-compliance. Special attention has been devoted in the method design 

to address the imbalanced nature of such datasets. 

Imbalanced classification has become an increasingly prominent obstacle in practical 

settings such as credit card fraud detection (Zhu et al., 2020), fault detection in machinery (Jia et 

al., 2018), and diagnosis of cerebrovascular disease (Zhang et al., 2019). In these applications, 

the importance of correctly classifying the minority outweighs that of the majority class. When a 

dataset has a significant imbalance, it poses a challenge for classification of the minority class 

since a prediction model tends to favor correctly classifying the majority class. Lack of data 

points of the minority class makes it challenging to train an accurate model (Fernández et al., 

2011). Current research has yielded solutions in the forms of feature engineering and learning 
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algorithm-based approaches to improve the accuracy of minority class prediction (Zhang et al., 

2019). 

Feature engineering methods to address imbalance datasets include the general sampling 

techniques and methods that are dataset specific such as high-level feature construction and 

selection (Mahanipour & Nezamabadi-pour, 2017).Sampling methods focus on reducing the 

class imbalance by oversampling the minority, under sampling the majority class, or generating 

new data points of the minority class from existing data points via SMOTE (Chawla et al., 2002). 

However, the use of random under sampling results in loss of information regarding the majority 

class whereas random oversampling can result in overfitting the model to training data. SMOTE 

attempts to reduce overfitting by generating new data points via interpolation of nearest neighbor 

minority class. Improving the performance of classifiers for the minority class have yielded 

methods such as cost-sensitive boosting (Tao et al., 2019) and other ensemble methods that 

incorporate sampling within their training loops (Faris et al., 2020; Feng et al., 2019). 

However, the above-mentioned methods to address imbalance do not resolve issues 

wherein the available features cannot be used to train an acceptable model, regardless of the 

currently available classification algorithms. Similar conditions can be encountered when 

attempting to predict the compliance quality of finished product from process data on an 

assembly line. Data pertaining to the manufacturing processes varies significantly in different 

factories and requires feature engineering before it can be used to train a classification model. An 

example of such feature engineering is the construction of explanatory features based on a 

thorough understanding of the dataset and its relevant subject matter (Zhao et al., 2009). Thus, 

feature construction based on dataset knowledge can provide substantially improved results. This 
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served as one of the major motivations for design of the method described in this paper and its 

demonstration in the case study. 

The knowledge required to construct additional features to improve classification models 

may require domain expertise and solutions discovered in this manner would tend to be specific 

for the problem addressed. This is because most practical applications of classification entail 

significant efforts in data consolidation, pre-processing and understanding the use-case (Muñoz 

& Capón-García, 2019; Zhang et al., 2019). The method described in this paper pertains to 

quality prediction in manufacturing. As such, domain knowledge is useful when constructing 

features from the raw dataset and drawing conclusions from the results of training the 

classification models. 

The rest of this paper is organized as follows. In Section 2, the proposed method for 

predicting manufacturing quality compliance is presented. Descriptions have been detailed for 

the classification methods, explanation of common features for manufacturing quality prediction 

and evaluation method for model performance comparison. Section 3 focuses on describing a 

case study to establish the context in which the proposed method is applied and the problems that 

it will address. Section 4 presents the results of this application in the case study and discusses 

possible improvements in the method specific to that case. The paper is concluded in Section 5 

with a summary of findings and future research directions. 

It could be hypothesized that with a large dataset corresponding to production parameters 

and adequate domain expertise, a machine learning method can be developed to predict the 

compliance quality of manufactured goods. 
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CHAPTER 2.    MATERIALS AND METHOD 

Despite research pertaining to the application of machine learning methods to predict 

quality of specific manufacturing processes (Scime & Beuth, 2018), there is still unexplored 

potential for its use in the prediction of overall product compliance quality. Thus, the method 

proposed in this paper can be used in cases such as prediction of the pass-or-fail compliance 

quality at final inspection, using a classification model. A large dataset containing previous 

manufactured units with features corresponding to factors describing the unit or process 

parameters is required to train the model from. Datasets with more features will result in a better 

classification model obtained via this method. 

Figure 1 provides an overview of the proposed method. As a first step, the data is split 

into training and independent test sets for evaluation. Despite the problem that would arise from 

sampling variance, it is beneficial to prevent overfitting the model on the training data and obtain 

an unbiased estimate of how the model would perform in its capacity (Esbensen & Geladi, 2010) 

to predict manufacturing quality non-compliance. Feature selection and construction is then 

performed on the training dataset. Tenfold Cross Validation is then used to evaluate multiple 

models trained from the training dataset and tune hyperparameters of the training algorithms. 

While it would be beneficial to use Leave-one-out Cross Validation when tuning the 

hyperparameters of the classification model, it would be too computationally intensive given the 

number of data points available (Kohavi & others, 1995). Using metrics explained later in this 
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section, the trained models are then evaluated with the independent test dataset.

 

Figure 1. Overview of the proposed method. 

Classification Methods 

Classification is used to predict the response of a discreet variable by considering its 

relations with other variables in the dataset (Kotsiantis et al., 2007). Since the pass-or-fail 

compliance determined during final inspection in manufacturing is a discreet variable, 

classification methods can be used to predict such an outcome. There are multiple classification 

methods that can be used ranging from basics like decision trees, support vector machines and 

Naive Bayes to complex ensemble methods which can be broadly categorized into bagging or 

boosting. Since most methods have specific strengths and rely on assumptions about the nature 

of the dataset, the methods proposed in this paper are generalized enough for most cases 
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pertaining to prediction of compliance quality in a manufacturing plant. Thus, the following 

classification methods can be used in combination to that effect.  

Random Forest 

This popular classification method is an improved form of bagging that utilizes decision 

trees as the weak learners (Feng et al., 2019; Lan & Pan, 2019). The main advantage of random 

forest as compared to bagged ensembles is that it attempts to reduce bias by learning trees from a 

subset of features sampled from the dataset. The trained model can also be improved by tuning 

the number of features to sample, maximum decision tree depth and minimum instances per 

node. As such, its popularity and general effectiveness would allow for a good starting point in 

creating a collection of prediction models.  

XGBoost 

XGBoost is a relatively recent development in inductive learning (Chen & Guestrin, 

2016). This learner has been used extensively with agreement that it tends to be more 

computationally efficient and generally applicable for a wide range of dataset types, from 

common classification problems (Xu & Wang, 2019) to pattern recognition in time-dependent 

features (Yang et al., 2019). 

This algorithm builds upon the gradient boosting algorithm by introducing a 

regularization parameter, which reduces the individual regression tree’s sensitivity towards 

outliers in the dataset. As such, this algorithm will result in a model that has less variance than 

that learned from gradient boosting alone. The use of this learner in combination with random 

forest would likely provide two models that were learned from the principles of boosted and 

bagged ensembles of decision trees, respectively. Additional methods such as support vector 

machines (Drucker et al., 1997) using various kernels or artificial neural networks (Tan et al., 

2000) can also be used for comparison if the results of these learners do not prove satisfactory. 
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Feature Engineering 

Raw data collected from various sources can rarely be used directly to train a 

classification model. Thus, feature engineering refers to the steps taken to prepare a dataset for 

classification. This would entail cleaning the dataset to ensure consistency of data type in each 

feature and removal of redundant variables. Also, features can be constructed to support the 

algorithm used to train classification models in order to obtain improved results. This is achieved 

by transforming and combining features in the available data to obtain new variables. In the 

context of manufacturing quality on a mixed-model assembly line, the following features can be 

derived from available production data and provide a basis for the classification model to be built 

from. 

Suspicious Unit Batches 

Since quality defects tend to be relatively rare in modern manufacturing and the 

prevalence of random inspection, only using identified defective units as a class variable will 

result in a poor prediction model. Thus, a new class variable accounting for random inspection 

for prediction is derived instead. This variable can be constructed from raw data pertaining to 

quality defects found during unit inspection, and production line data containing serial numbers 

of units in the sequential order at which they flowed through production and inspection. Defining 

the size of a suspicious batch of units based on identified defects would require consideration for 

the nature of randomness in inspection and desired confidence in product compliance quality. 

If a factory uses production lines to manufacture goods, the progress of WIP through its 

production stages can be traced more consistently than a job-shop or manufacturing cell layout. 

As such, if the final product inspection is random and a defective unit is found, then based on the 

required confidence level, a certain number of units before and after the defective unit in 

production sequence would have to be considered under suspicion of the same defect. Thus, it 
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would also be a good idea to segregate and inspect the other units centered around the defective 

unit. 

The exact number of units quarantined for such a reason could vary depending on the 

factory’s throughput, inspection strategy and best practices. However, if a 100% inspection 

strategy is used then the construction of this class variable would not be necessary since there is 

no need to account for random inspection. 

Proximity to a Model Changeover 

In modern multi-model production lines, model changeovers have been known to cause 

quality defects in the assembled products (Cheldelin & Ishii, 2004). Thus, a feature constructed 

to represent how close a unit was to a previous model changeover in its production run can result 

in learning a significantly improved classification model. This variable can be presented as: 

An absolute measure (s) of the unit’s sequence number (n) relative to the last model 

change in the sequence numbers (n0) assigned to each unit in the daily production logs. 

s = n – n0, (1)

A continuous variable (x) that measures the relative position of the unit (s) with respect to 

the sequence at which the model change happened (s0) and the next such model change (s1). 

x = (s-s0) / (s1-s0), (2)

Model Color Change 

This feature is proposed based on general guidelines established when investigating 

recurrent quality issues under suspicion of human error. A model change is much more apparent 

when there are stark differences between the appearance of the two models and thus should 

potentially reduce the likelihood of assembly errors (Neumann et al., 2016) caused by the model 

changeover. This feature can be derived from the model change feature discussed earlier but 

would only apply if there was a change in color between the two models. A possible way in 
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which this feature could be constructed is as a binary variable (c) that describes whether the 

previous model in the production logs was of a different color such that c = 0, if model before 

changeover was of same color and c =1 if the model before changeover was of different color. 

Similarly, with knowledge of the use-case, new features corresponding to transformed 

production data can be derived following the same principle as that mentioned above. For 

example, brand, assembly complexity based on bill-of-material, general appearance or packaging 

methods could also be used to construct new features. Many of the features discussed earlier are 

generalized starting points based on best practices when troubleshooting for quality defects. 

Thus, expertise in the subject matter of the manufacturing processes and factors contributing to 

compliance quality will result in constructed features that can be used to train better 

classification models. 

Evaluation Method 

Choosing correct metrics when evaluating the performance of a classification model is 

crucial since each metric places varying emphasis on the overall accuracy, precision, recall, or 

agreement between model and ground truth for different class values. Thus, the chosen metric 

needs to closely evaluate model performance based on what is required from the user. In this 

paper, evaluation of the models is done via Cohen’s Kappa since it is often used as a way to 

measure the ability of a model to predict binary classes with heavy imbalances (Hasan et al., 

2014). 

Despite the fact that a confusion matrix, similar to that shown in Figure 2, can 

comprehensively explain the performance of a model by itself, a single performance measure 

could make the evaluation faster. Also, in the context of manufacturing plants, a single metric 

can be easier to present in cases where cross-functional cooperation is required. 



11 
 

 

Figure 2. A simplified confusion matrix of a class variable with n values. TP denotes true 
positives while F denotes misclassifications. 

Since the problem of manufacturing compliance quality being addressed in this paper can 

be presented as a binary class variable, the confusion matrix is much simpler, as shown in Figure 

3. The class value of ‘yes’ corresponds to potentially defective units while ‘no’ represents 

otherwise.  

 

Figure 3. Confusion matrix for a binary class with negative (no) and positive (yes) values. TN 
denotes true negative, FN denotes false negative, FP denotes false positive and TP denotes true 
positive predictions. 

Accuracy is a performance measure that can be used to evaluate classification models, 

using a test dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 +  𝑇𝑃

𝑇𝑁 +  𝑇𝑃 +  𝐹𝑃 + 𝐹𝑁
 (3)

It is a sum of all correct predictions divided by the total number of predictions made. This 

metric can be a conclusive measure of performance in most datasets where the class has 

attributes with mostly similar representation.  
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However, in cases where there is a heavy class imbalance, accuracy can be misleading as 

a performance measure since it does not penalize misclassification of the minority. For example, 

a dataset with 10% and 90% binary class distribution can allow for the high accuracy of 90% 

simply by allowing the classifier to predict all as the majority class. Thus, there is no guarantee 

with regards to the quality of the classification model, especially for the minority class when 

relying solely on accuracy as a performance measure. 

Another popular performance measure in recent literature regarding classification is the 

F-measure or F1 score. It is a harmonic mean of precision and recall for the prediction of a 

particular value (Chinchor & Sundheim, 1993). In this case, we can consider the F1 score for 

predicting the class attribute as ‘yes’ as shown in Figure 3. 

𝐹ଵ  =  2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  (5)

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (6)

However, a drawback of relying on the F1 measure is the fact that it does not provide a 

good measure of the model’s overall performance. The F1 score depends upon which value of 

the class variable is being considered for the evaluation (Chicco & Jurman, 2020). In the case of 

Figure 3, the F1 score for class value ‘yes’ could be very different as compared to that of class 

value ‘no’. This would not be a problem in cases where the cost of misclassification for one 

value trivializes the other but in other situations, the F1 score might not be sufficient as a 

performance measure by itself. 

As such, Cohen’s Kappa (κ) is another metric that is commonly used to evaluate the 

performance of classification models (Hasan et al., 2014). In the context of classification models, 
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it is a measure of the agreement between the predictor and reference while accounting for the 

agreement that occurs due to chance (Vieira et al., 2010).  

It is a function which penalizes chanced agreement (pe) from the observed accuracy (po). 

𝜅 =  
𝑝଴ − 𝑝௘

1 − 𝑝௘
 (7)

𝑝௢  =  
𝑇𝑁 +  𝑇𝑃

𝑁
 (8)

N is the total number of observations being used to evaluate the model. 

𝑁 =  𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁 (9) 

𝑝௘  = 𝑝ே + 𝑝௉ (10)

pN and pP are the probabilities of agreement between predictor and reference by chance 

for negative (no) and positive (yes) class values. 

𝑝ே  =  
(𝑇𝑁 +  𝐹𝑁)(𝑇𝑁 +  𝐹𝑃)

𝑁ଶ
 (11)

𝑝௉  =  
(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 +  𝐹𝑁)

𝑁ଶ
 (12)

The advantage of using Cohen’s Kappa as opposed to F1 score is that it can summarize 

the performance of the model with regards to the prediction of both classes in one measure 

whereas the use of F1 could require evaluation for two class values. Also, it will account for 

agreement between raters due to chance. Combined with the fact that Cohen’s Kappa can be 

generalized for use in situations where the class can take on more than two values, it has gained 

popularity for use in more complex classification problems as a performance measure. 

Thus, for the problem addressed in the use-case, this paper proposes the use of both 

Cohen’s Kappa as the singular performance metric, and the confusion matrix to consider some of 

the finer details about model performance regarding particular class attributes. 
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CHAPTER 3.    CASE STUDY 

This case study focuses on an appliance manufacturing factory that has recently 

undergone some major changes to one of its assembly lines. These changes include the addition 

of vision systems and scanners to keep track of all its produced units by their serial numbers. 

Also, there were improvements in the organization of quality assurance data regarding inspection 

results, returns and issue descriptions. This presented an opportunity for the newly available data 

to be used to predict compliance quality of production runs or individual units before they even 

arrive at final inspection. 

However, there was also a rise in the number of quality defects being reported during 

random inspection pertaining to parts being missing or assembled wrong in the manufactured 

units. Despite the efforts and suggestions of various employees, it took a few months to 

investigate the issue and during this time, a huge amount of money had to be spent to recall units 

suspected to be defective back to the factory for inspection and release. 

Since most of the production lines in the factory had mixed model production with almost 

negligible changeover time, the entire assembly and inspection process had been streamlined to 

produce nearly 800 units of product daily over 3 work shifts without pause. The rushed pace of 

production made it difficult to recover from errors in production and thus it had become the 

quality engineering department’s main directive to fix and contain quality issues proactively 

rather than reactively. 

Depending on the results of this study, a prediction model based on real time production 

data could be potentially useful, as a tool to alert inspection teams to prioritize batches likely to 

be defective, or even as a way to learn the causes of some of the main quality issues. However, 

since the information systems had not undergone expansion at the time of data collection, there 
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was a lack of detailed data available about the assembly processes. Although, if the preliminary 

study could deliver a feasible prediction system or useful learnings, then the general method used 

could be adapted to similar effect with a dataset containing more features pertaining to process 

and machine data. 

Data Sources 

The data that is used in this paper is masked quality and production data from a large-

scale appliance manufacturing plant. The manufacturing dataset is structured to contain unit 

serials, models and production batch sequence identifiers for every unit that passes through the 

production line. The RCAI dataset contains the unit serial, model number and some identifiers 

for the issues found. This data is then merged with the production dataset in the form of a 

variable that is defined by whether the unit was caught defective in the RCAI. 

Table 1 below describes the variables in the available merged dataset which contains 

75,636 observations of 8 variables, wherein the field SuspiciousUnit is proposed class variable: 

Table 1. A table describing the meaning of fields available in the raw dataset. 

Variable Name Description 

Seq.Number This is the serial number of each unit and serves as a unique sequential 

identifier in the production line. 

Model This is the model number of the unit passing through the production line. 

Week This is the week number at which the unit entered final inspection. 

Color Describes the color of the unit. This tends to get recorded as a derivative of 

the model number. 

BrandGroup Describes the make of the unit. Derived from Model 
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Table 1 Continued 

Variable Name Description 

PlatformGroup Platforms are a way used to group models with similar, discernible features. 

For example, a mountain bicycle and stunt bike can be easily distinguished 

RCAIDefect This denotes a unit found defective in RCAI for Wrong/Missing parts as 1, 

and 0 otherwise. 

SuspiciousUnit This binary variable denotes all of the approximately 50 units before and 

after the RCAI defective unit which are marked for inspection of similar 

issues. 

 

Additionally, Table 2 provides a summary of the distribution of two possible class 

variables in the raw dataset, in order to depict the difference in class imbalance. 

Table 2. Variable distribution of the two possible class variables. 

RCAIDefect Value Datapoints SuspiciousUnit Value Datapoints 

0 75584 0 70501 

1 52 1 5135 

 

Process Overview 

The quality inspections conducted at this plant fall into two categories: 

1. Final Product Inspection (FPI). This is a very rapid inspection that checks for 

several predefined functional and aesthetic issues for the unit. Every unit undergoes this 

inspection. However, a major limitation of this inspection is the fact that due to its speed, only 

issues that are defined on the checklist are checked for and issues are rarely documented. Instead, 
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this inspection tends to serve as a chance for last minute correction to visibly faulty or 

incomplete units. 

2. Random Customer Acceptance Inspection (RCAI). From a batch, about 3% of 

units are selected for a more thorough inspection by a specialist. If an issue is detected at this 

stage, the entire batch of product needs to be placed on warehouse hold in order to check for this 

issue. As such, defects found at this level tend to be costly for the plant. 

One of the main reasons why data from RCAI is used rather than FPI is due to the big 

difference in discipline followed when it comes to documenting defects in RCAI, since it is a 

more thorough inspection. Another distinction that can be made between FPI and RCAI is the 

fact the results of the FPI depend on what is already well known as a problem area for the 

product model, whereas the RCAI tends to discover new issues instead. As such, it can be 

assumed that the inspection checklist used in the FPI is derived indirectly from the outcome of 

the RCAI. The data obtained from FPI could be used invaluably in data mining to improve upon 

first pass quality of the product. However, since issues found at RCAI tend to be much more 

monetarily damaging for the organization and the limitations of the FPI data, this paper will 

focus on the RCAI dataset instead. 

Also, compliance quality failures during the RCAI tend to be costly because of the fact 

that the RCAI is a 3% random sampling inspection that is performed just a few steps before the 

product is packaged and dispatched to the distribution centers. As such, if defects are found at 

this stage, it is likely for other units in the batch to also be affected. However, due to the long 

time required to perform RCAI and how quickly the rest of the units are shipped off to the 

distribution centers, it is also very likely for some suspected units to escape the factory. This 

makes it very costly for a company to track down, recall and perform 100% inspection on all the 
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suspected units. Thus, it could be very beneficial for a classification model to be used in order to 

predict certain failures before the product even reaches the final stages of the production process. 

Additionally, an inductively learned model might be able to explain how different variables 

interact and affect the outcome of product compliance quality in regard to assembly of wrong 

parts. 

In order to formulate an effective approach to this problem, Figure 4 helps to visualize 

the key steps that correspond to each variable in the dataset on the production line. On the mixed 

model production line, units of a particular model are represented by color and as depicted in the 

figure, there is a negligible changeover time between different models on a production that runs 

without pause. Data is collected at key points in the production line via barcode scanners and 

vision systems. Most of this data pertains to serial numbers and model numbers of units that pass 

through the production line at various stages or are redirected to testing and rework loops.  Each 

production run of a particular model can vary widely in the number of units, from a few units of 

an experimental batch to several thousand that continue production over multiple days. Despite 

this, at no point is the production line stopped due to a model changeover. 

Since the serial numbers are assigned sequentially to units on each line during assembly 

with zero loss of units before inspection, the unit’s serial numbers can be used to measure their 

relative position on the production with respect to other units in this study. 
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Figure 4. A depiction of the inspection and containment process for suspected units after one is 
found defective in RCAI. 

During RCAI, units found with defects are recorded on a separate dataset which includes 

additional quality-related information such as unit model, nature of defect, inspector identifiers 

and all other units before and after that were marked for inspection regarding the same defect. 

The data points recorded in the RCAI dataset have fields that contain unrestricted string inputs. 

As such, they tend to require manual dissemination to structure into definable features that can 

be used for classification. Thus, each RCAI defect is categorized into a number of headings. 

The top 3 categories accounting for RCAI defects are described as follows: 

3. New Product Introduction (NPI) Defect. These are defects found on models that 

have been introduced into production recently and thus usually contain a large variety of defects 
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caused by design oversights or frequent model revisions. This category stops being applied to 

defects once occurrence of such defects reaches acceptable thresholds. Thus, there is little need 

to train classification models to detect these since the categorization of their occurrence depends 

on their rate of occurrence and would result in a trivial discovery. 

4. Aesthetic Issues. These RCAI defects pertain to superficial issues such as 

scratches, dents, or discolorations. Multiple factory studies in these issues had found process 

related deviations and other random human error to be the cause of such defects. However, since 

the dataset chosen does not contain manufacturing process parameters for each unit, it would 

seem rather difficult to train an accurate prediction model to classify such occurrences. 

Nonetheless, there is scope for such a study once the required data becomes available. 

5. Wrong/Missing Parts. These refer to defects in which parts were missing from the 

final product or if wrong parts were assembled instead. Early discussions regarding these 

occurrences had suggested causes such as model changeovers, worker fatigue in late shift, 

complexity of certain product models, among others. Since there is abundant data regarding most 

of the suggested causes, it could be possible to train a classification model to predict these 

occurrences and test the validity of suggested causes. As such, RCAI defects exclusively 

categorized as Wrong/Missing Parts would be used as class variables in the classification model 

discussed in this paper. 

Collection of assembly and fabrication process parameters via vision systems and tool metrics 

has been implemented on newer low-throughput lines but was still in process of being installed 

on the main assembly line studied in this paper. Despite the availability of many more features 

on the new line, the reason for using the high-throughput line instead is because of the fact that 

the newer lines do not operate at fixed speeds and also because they only account for about 5% 
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of the total factory’s production as compared to the main line. Combined with the fact that each 

unit on the new lines is inspected and reworked on-the-spot with no guarantee of documentation, 

it would have made for a difficult task to build a classification model using the smaller and 

unreliable dataset available. 
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CHAPTER 4.    RESULTS 

These are the results of multiple classification models trained from the training dataset 

containing 60,508 instances and their resultant predictions on an independent test dataset 

containing 15,128 instances. The results pertain to various models trained from combinations of 

feature selection, feature construction, classification and hyperparameter tuning methods applied 

as per the workflow described in Figure 1. 

All of the resulting models were trained from a dataset containing datapoints synthesized 

using SMOTE to address the massive class imbalance. Also, the same seed was set to ensure 

consistency regarding the cross-validation folds in order to better compare results. 

All models were trained with the use of the caret, classification, and regression training R 

package by Max Kuhn, 2020 along with associated packages used for different classification 

models and visualization. 

Evaluation of the models is done via Cohen’s Kappa (κ), derived from confusion 

matrices. Graphical representations of performance are also depicted in the form of ROC curves. 

Model A: Initial Classification with No Feature Construction or Selection 

Model A was learned via random forest and XGBoost algorithm from the initially 

obtained clean dataset, with no feature selection or additional features constructed. Figure 5 and 

Table 3 show the results of its evaluation. 

Despite the generally high accuracy derived from the confusion matrix, it does not mean 

a good prediction model since the majority class accounts for 93.23% of the dataset. Thus, a 

random classifier would likely achieve similar or better accuracy.  
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The XGBoost classifier performs much better than the random forest classifier when it 

comes to predicting the minority class. However, it still fails to correctly predict 58.89% of the 

suspicious units from the test dataset. 

Table 3. Confusion matrices for the test results of Model A. 

 

 

Figure 5. ROC curves for the results of Model A. 

Primarily, basic features like model or platform type were used in the initial classification 

to make predictions on the likelihood of defects. This would be similar to what a quality 

inspector would conclude based on knowledge of previous inspection data pertaining to 
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problematic models or product platforms. However, a model like this would not be sufficient to 

make any decisions to change inspection strategies. 

Model B: Classification with Model Changeover Feature 

In order to explore some of the possible root causes discussed regarding RCAI defects, 

Model B was trained on a dataset in which irrelevant features like Seq.Number were removed. 

Also, a new feature, model_change is constructed in a manner similar to that described in this 

paper’s method section. The new feature denotes if a unit immediately follows another unit of 

different model in the production line. Figure 6 and Table 4 show the results of the changes. 

Table 4. Confusion matrices for the test results of Model B. 

 

There is a slight improvement in the performance of the random forest model and slight 

worsening of the XGBoost model, but this is mostly negligible in both cases and could be 

attributed to randomness. 

Likely, the problem with the constructed feature is that only the first unit after each 

model changeover is marked whereas multiple suspicious units are identified after each RCAI 

failure. This is supported by the fact that even the minority class constitutes more data points 

than the constructed feature. Therefore, the constructed feature would be a heavy minority and 

would not result in significant improvements in the classification model. 
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Figure 6. ROC curves for the results of Model B. 

Model C: Classification with Proximity to Model Changeover Feature 

To correct the problem identified in Model B, another feature has been derived from the 

model_change feature for Model C, using the method described in this paper. This feature, 

batch_seq represents the number of units between the product pertaining to the data point and the 

last unit which had model_change = 1. The results of training classification models with the 

newly constructed feature are shown in Figure 7 and Table 5. 

The results show a significant improvement in the performance of both models in 

predicting the independent test dataset. This likely confirms the correlation between model 

changeovers and the occurrence of RCAI defects that were categorized as missing or wrong 

parts. 
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Table 5. Confusion matrices for the test results of Model C. 

 

 

Figure 7. ROC curves for the results of Model C. 

The results also show the differences between boosting methods such as XGBoost and 

bagging methods like random forest. While bagging methods tend to suffer from increased bias, 

boosting methods tend to have less bias but suffer from overfitting. Table 5 shows the fact that 

despite the drastically improved performance as compared to the previous model, the random 

forest classifier still only classified 60.16% of the minority class correctly but had a bias towards 

classifying the majority class instead. 
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The XGBoost algorithm performed much better than the random forest classifier since it 

correctly predicted 98.34% of the minority class in the independent test dataset and had a 

comparable performance when evaluated within the cross-validation loop in the training dataset. 

Model D: Classification with Normalized Proximity to Model Changeover Feature 

Despite the success of Model C trained from the earlier constructed feature, the results 

could possibly be improved further by processing the constructed feature even more. 

A limitation of the batch_seq feature constructed earlier is the fact that its value depends 

on the number of units between the product and previous model change. As such, in the factory 

with production runs of variable lengths, an adjusted measure of the unit’s position in the run 

could prove more helpful than an absolute measure like batch_seq. 

Thus, in Model D, the feature batch_seqperc is derived from batch_seq to replace it such 

that: 

batch_seqperc = batch_seq / total units in production run 

This feature accounts for production runs of varying size. Figure 8 and Table 6 show the 

results of training the classification models on the newly constructed batch_seqperc feature. 

Table 6. Confusion matrices for the test results of Model D. 
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Figure 8. ROC curves for the results of Model D. 

The results show slight improvement in the Cohen’s Kappa of the XGBoost model and a 

worsening of the random forest model. Both models become worse at predicting the minority 

class after using the batch_seqperc feature as opposed to the batch_seq feature. 

This likely suggests that the class value of suspicious units can be better explained by an 

absolute measure of the unit’s position in the production run rather than an adjusted measure. 

Possibly, the occurrence of human error when assembling wrong parts in units is highest in the 

units immediately after model change regardless of the total number of units in the same-model 

production run. 

Also, cross-validated results of applying the classification models on the training data 

containing 60,508 datapoints had comparable results as compared to the results obtained from 

the independent test dataset, for all models. For instance, Model C had training Cohen’s Kappa 



29 
 

of 0.6202 for random forest and 0.9156 for XGBoost, which is similar to that obtained from the 

test dataset in Table 5. This indicates minimal overfitting of the trained models. 
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CHAPTER 5.    CONCLUSION 

Despite the common use of machine learning and data mining techniques in individual 

industrial processes, this paper’s results indicate that it is viable to use similar methods to predict 

product quality from data pertaining to multiple processes in manufacturing. The case study 

provided a dataset that could be used to predict product containing wrong or missing parts with 

significant accuracy and Cohen’s Kappa, using the proposed method. Using production and 

quality data from the case studied, machine learning techniques were used to predict the 

compliance quality of a manufactured unit in the context of end inspection. With the increasing 

availability of process data due to Industry 4.0 implementations in modern manufacturing plants, 

future applications of the proposed method are likely to be successful. Thus, product compliance 

quality can be predicted as well as process-specific quality, with sufficiently large and feature-

rich datasets available. 

The aim of this paper was to explore the use of machine learning to predict 

manufacturing compliance quality as per the outcome of quality inspections. It was possible to 

train a prediction model with accuracy of 98.78% and Cohen’s Kappa of 0.91, using a 

combination of feature construction and ensemble classification algorithms with the available 

dataset. The results obtained indicate that there is a significant improvement in the prediction 

model’s performance, when it uses a dataset with features constructed to signify the position of 

each unit within the production line’s run of a product model. It also appears that using an 

absolute measure of the unit’s sequential order produced slightly better prediction of the minority 

class as compared to a normalized variable to represent the unit’s position in the batch. 

The performance of the XGBoost model had been consistently better than that learned via 

random forest and significantly better at predicting the minority class. However, the case study in 
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this paper indicates that regardless of the algorithm chosen, the trained model seemed to perform 

significantly better when specific features were constructed using prior domain knowledge 

regarding the nature of the dataset.  

This study is subject to a few limitations which suggest future research direction in the 

following. Firstly, for the case studied, improvement can be possible by constructing features to 

signify a change in model color or platform, similar to the model change. Other applications of 

the proposed method might require more features to obtain a prediction model with the required 

values of accuracy and Cohen’s Kappa. Secondly, analysis of the models to understand what 

caused quality defects can be conducted. This was not conducted due to the design of this study 

and availability of the data. Future studies using datasets with more features corresponding to 

manufacturing process data can be conducted to understand the causes for quality non-

compliances as well as predictions. Thirdly, due to dataset limitations, only quality defects 

pertaining to product with wrong or missing parts could be feasibly predicted with the available 

features. With sufficient process data, machine learning methods researched in process specific 

applications could be incorporated into end quality inspection as well.
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