Demonstration of the value of a graphics-based decision support system for order picking warehouse design
by
Steven Stanley Kryk

A thesis submitted to the graduate faculty<br>in partial fulfillment of the requirements for the degree of<br>MASTER OF SCIENCE

Major: Industrial and Manufacturing Systems Engineering

Program of Study Committee:
David Sly, Co-major Professor
Gary Mirka, Co-major Professor
Cameron MacKenzie
Max Morris

The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

## DEDICATION

To my parents, Scott and Rosemary; and siblings, Andy, Dana, and Renee.

## TABLE OF CONTENTS

Page
LIST OF FIGURES ..... iv
LIST OF TABLES ..... vi
NOMENCLATURE ..... ix
ACKNOWLEDGMENTS ..... X
ABSTRACT ..... xi
CHAPTER 1. INTRODUCTION ..... 1
Problem Statement ..... 1
CHAPTER 2. LITERATURE REVIEW ..... 5
Concepts of Warehouse Facilities ..... 5
Concepts of Layout Design ..... 8
CHAPTER 3. METHODOLOGY ..... 32
A General Overview ..... 32
CHAPTER 4. EXPERIMENTAL DETAILS ..... 51
Individual Contributions ..... 51
Layout Generation ..... 52
Evaluating a Layout Design Using an Automated Technique ..... 54
Evaluating a Layout Design Using a Manual Technique ..... 117
CHAPTER 5. EXPERIMENTAL RESULTS ..... 153
Automated Technique ..... 153
Manual Technique ..... 154
CHAPTER 6. CONCLUSION AND DISCUSSION ..... 156
Overall Conclusions ..... 156
Implications for Engineering and Industry ..... 157
Suggestions for Further Research ..... 158
REFERENCES ..... 161
APPENDIX. TRANSPUT - DATA TABLES ..... 168

## LIST OF FIGURES

Page
Figure 1. Pick List "Retail 3" with Straight Flow Routing (L), Pick List "Retail 3" with ..... 34
Figure 2. Pick List "Retail 3" with Aisle Flow Routing and Distant Locations Encircled ..... 36
Figure 3. Pick List "Retail 3" with Improved Layout's Straight Flow Routing (L), Pick ..... 37
Figure 4. Flow Chart for the Method ..... 43
Figure 5. AutoCAD Layout Drawing ..... 45
Figure 6. Optimal Routing for Pick List "Retail 3" Straight Flow (L), Aisle Flow (R) ..... 47
Figure 7. AutoCAD Layout Drawing ..... 56
Figure 8. AutoCAD Layout Drawing Zoomed-in with Locations Viewable ..... 57
Figure 9. Locations Tab Interface ..... 67
Figure 10. Paths Tab Interface ..... 72
Figure 11. Center Lines (Color Changed to Yellow for Easier Identification) ..... 73
Figure 12. Locations Joined to Center Lines (Zoomed-in) ..... 74
Figure 13. Processes Interface ..... 76
Figure 14. Method Types Interface ..... 80
Figure 15. Material Handling Methods Interface ..... 83
Figure 16. Containers Interface. ..... 84
Figure 17. Part Routings Interface ..... 90
Figure 18. Window to Load Electronic Files ..... 96
Figure 19. Straight Flow for All Pick Lists (15) ..... 98
Figure 20. Aisle Flow for All Pick Lists (15) ..... 100
Figure 21. Portion of the Results Window by Aggregates ..... 101
Figure 22. Portion of the Results Window by Routes ..... 102
Figure 23. History Tab from the Results Window ..... 103
Figure 24. Part Routings Tabular Display of Generated Routes ..... 104
Figure 25. Portion of the Paths Tab ..... 106
Figure 26. Portion of Interface and Quantitative Output from the "Filter" Tab Data Table ..... 107
Figure 27. AutoCAD Drawing with the Applied Filter Flow Diagram ..... 107
Figure 28. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \%, ..... 108
Figure 29. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \% Filtered ..... 109
Figure 30. Flow Planner Bar Chart for Tuggers (Time) by Usage \% ..... 110
Figure 31. A Portion of the Tuggers Import Deliveries Table ..... 111
Figure 32. Advanced Report Aggregated by Product ..... 112
Figure 33. Legend from this Experiment ..... 113
Figure 34. Method Material Handling Report ..... 114
Figure 35. Aggregate Material Handling Report ..... 115
Figure 36. AutoCAD Drawing Aggregated by Pick List. ..... 116
Figure 37. Query Path Results Window ..... 117
Figure 38. AutoCAD Drawing with Racking, Walls, Aisles, and Zones ..... 119
Figure 39. Zoomed-in Portion of AutoCAD Drawing with Added Location Text Layer ..... 121
Figure 40. AutoCAD Drawing Output from the Automated Technique ..... 123
Figure 41. AutoCAD Drawing with Pick List "DSD 1" Locations’ Marked by Red Stars ..... 125
Figure 42. Routing for Pick List "DSD 1" ..... 126
Figure 43. History Tab from the Results Window. ..... 148
Figure 44. Method Material Handling Report ..... 149
Figure 45. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \% ..... 151
Figure 46. Tug route Versus Utilization \% Bar Chart ..... 152

## LIST OF TABLES

## Page

Table 1. Initial Results Window for Pick List "Retail 3" ..... 34
Table 2. Initial Results Window for Pick List "Retail 3" for Improved Layout ..... 38
Table 3. Historical Initial Results Window for Pick List "Retail 3" ..... 38
Table 4. "Retail 3" Pick List ..... 44
Table 5. Part Routing Sequence for Pick List "Retail 3" ..... 46
Table 6. Initial Results Window for Pick List "Retail 3" ..... 47
Table 7. Time Study by Executing Method ..... 49
Table 8. Pick List Not Prepared for Simulation. ..... 58
Table 9. Product Input Format ..... 61
Table 10. Products Data Table ..... 63
Table 11. Part Input Format ..... 63
Table 12. Parts Table for Pick List "RETAIL|3" of .prd File ..... 65
Table 13. Portion of the Locations Data Table ..... 68
Table 14. Groups Data Table ..... 70
Table 15. Tug Routes Data Table ..... 70
Table 16. Drawing Extents Data Table ..... 71
Table 17. Processes Data Table ..... 76
Table 18. Method Type Input Format ..... 77
Table 19. Method Types Data Table. ..... 80
Table 20. Material Handling Information Input Format ..... 81
Table 21. Material Handling Methods Data Table ..... 83
Table 22. Containers Data Table ..... 85
Table 23. Part Routings Input Format. ..... 86
Table 24. Portion of the Second .csv File ..... 91
Table 25. Tuggers Data Table for Pick List "DSD 1" ..... 128
Table 26. Part Routings Table ..... 131
Table 27. A Portion of the Paths Table ..... 135
Table 28. Advanced Report Aggregated by Product ..... 138
Table 29. Quantitative Output from the "Filter" Tab ..... 140
Table 30. Query Paths Results Window ..... 144
Table 31. Results Window by Aggregates Part 1 ..... 145
Table 32. Results Window by Routes ..... 147
Table 33. Material Handling Report Aggregated by Pick List ..... 150
Table 34. Time Study Automated Technique ..... 153
Table 35. Time Study Manual Technique. ..... 154
Table 36. Pick Lists ..... 168
Table 37. Part Table from the .prd File ..... 180
Table 38. The Locations Section of the .loc File ..... 194
Table 39. Second .csv File ..... 204
Table 40. Initial Results Window Data Table by Aggregates ..... 223
Table 41. Initial Results Window Data Table by Main Zone ..... 225
Table 42. DSD 1 Part Routings ..... 226
Table 43. DSD 2 Part Routings ..... 228
Table 44. DSD 3 Part Routings ..... 230
Table 45. DSD 4 Part Routings ..... 232
Table 46. Retail 1 Part Routings ..... 235
Table 47. Retail 2 Part Routing. ..... 237
Table 48. Retail 3 Part Routings ..... 238
Table 49. Retail 4 Part Routings ..... 239
Table 50. WHOLE 1 Part Routings ..... 241
Table 51. WHOLE 2 Part Routings ..... 242
Table 52. WHOLE 3 Part Routings ..... 243
Table 53. WHOLE 4 part routings ..... 244
Table 54. WHOLE 5 Part Routings ..... 245
Table 55. WHOLE 6 Part Routings ..... 246
Table 56. WHOLE 7 Part Routings ..... 247
Table 57. Paths Tab Data Table ..... 248
Table 58. Tuggers Tab Data Table ..... 269
Table 59. Report Data Table Time Focus ..... 287
Table 60. Advanced Report Aggregated by Product ..... 307

## NOMENCLATURE

| AEIOUX | Absolutely necessary, Especially important, <br> Important and core, Ordinary, Unimportant, <br> Prohibited or Undesirable |
| :--- | :--- |
| ELECTRE | ELimination and Et Choice Translating REeality |
| GRA | Grey Relational Analysis <br> Evaluation TecHnique by a Categorical Based |
| MACBETH | Occupational Safety and Health Administration |
| OSHA | Preference Ranking Organization Method for <br> Enrichment Evaluation |
| PROMETHEE | Preference Selection Index |
| PSI | Stock Keeping Unit |
| SKU | Technique for Order of Preference by Similarity <br> to Ideal Solution |
| TOPSIS |  |

## ACKNOWLEDGMENTS

I would like to thank Dr. David Sly, for his support in subject expertise. And I would like to thank my other committee members, Dr. Gary Mirka, Dr. Cameron MacKenzie, and Dr. Max Morris, for their assistance throughout the course of this research.

In addition, I would also like to thank my friends for making my time at Iowa State University both fun and memorable.


#### Abstract

All warehouses have a layout design. A company can reduce operational costs in their warehouse by up to $75 \%$ with a layout design that allows for products on a pick list to get picked quicker. Evaluating which layout design would best reduce picking times and communicating the results of that evaluation continue to stump workforces.

Manual techniques fail to quickly test layout designs en masse or offer inaccurate heuristics. Automated techniques often increase the accuracy but are either esoteric or have simulation run-times which rival the durations of a manual technique.

A fast and accurate automated technique that is both executable and provides quantitative and visual outputs accessible to a layperson was documented and empirically tested against a manual technique of similar stature. Time studies were conducted to measure and compare the process times for analyzing different layout design alternatives with both techniques, using data provided by a retailer for analysis.


The proposed automated technique had a process time of 12 minutes to produce the outputs for each subsequent layout design iteration while the manual technique provided identical outputs at a process time of 16.5 hours per iteration.

The value of these outputs and this technique was confirmed by an industry expert and students in the Industrial and Manufacturing Systems Engineering program at Iowa State University.

With the implementation of this automated technique, industry can expect accuracy, picking output data accessible to laypeople, layout visuals illustrating optimal routing, data for determining staffing levels under different demands, and the ability to test multiple layout
designs-all by a worker with minimal training. The outputs are expected to lead to better decision making when choosing a layout design alternative as a team.

## CHAPTER 1. INTRODUCTION

## Problem Statement

## Background

Most often, a warehouse's largest operational cost comes from its picking operation. Picking has been shown to reach an upper bound of $75 \%$ of a warehouse's operational costs, with layout design accounting for an upper bound of $70 \%$ of the picking cost. Inefficient layout designs, when applied on a scale of millions of product orders per year, leaves an organization little choice but to pass on some of the additional costs and increased fulfillment times to the customer.

But in the current climate and that of the near future, where customer's demands for shorter delivery times becomes the new industry standard, companies with inefficient layouts could find themselves no longer competitive as they struggle to meet the customer's demanded delivery date. As automation used in the picking process becomes more viable and common, the difference in performance between warehouses that implement techniques for efficient layouts versus those who ignore those techniques will only be exacerbated.

## Details

In order to produce evidence to suggest which warehouse layout design is superior from a set of alternatives, quantitative performance metrics combined with a visual depiction should be produced for each layout design iteration. Without such quantitative and qualitative data, an individual at an organization may find it difficult to convince a large group of people to come to a common conclusion quickly and confidently. The quantitative performance metrics should quantify the pick time associated with a proposed layout design for a realistic pick list, and provide the travel distances accompanying the routing taken by the picker throughout the
warehouse. The visual should accurately display the transportation routing necessary to fulfill each pick list along with vectors providing directional information at each stop in the warehouse. In addition, the visual should be easy to read and allow for queries on data associated with individually selected paths.

If an employee makes the realizations of their current organization's longevity status concerning their layout efficiency and decides to search for a documented and published method for analyzing warehouse performance quantitatively and visually across a set of alternatives, they will find slow manual methods and perplexing papers using techniques learned in an engineering doctorate program. Although the manual methods are capable of solving said problem, the individual needs to be able to quickly generate a pick sequence that was generated from historical pick lists would persist. In addition, the simulation would have to be run again every time products were moved around within a warehouse because pick sequences would need to be redetermined in order to conclude optimal travel methods within a warehouse and to provide accurate outputs.

In addition, as the amount and specificity of the input variables increase, the manual techniques used to analyze layout designs becomes more time consuming to the extent where few companies would justify the full analysis in the layout design selection process. Although it would be unlikely to avoid a manual analysis altogether, key variables would likely be left out, leading to increased uncertainty amongst a team in the decision-making process.

## Proposal

However, an automated technique can be employed quickly by a layperson involving tools such as Autodesk's AutoCAD, Proplanner's Flow Planner, and Microsoft's Excel to output
results that can be used to aid in determining superior warehouse layout design across a set of given alternatives.

Asking students who are intellectually capable of making basic layout design decisions to make layout decisions with and without the quantitative and visual data which can be provided from an automated technique can be used to document the necessity for having the data present when making a layout-based decision in an organization.

Asking an organization's warehouse planner directly in an interview format for the documentation of their current state techniques used to analyze a layout design can be used for benchmarking the proposed automated technique against said manual technique. An interview would also confirm the additional quantitative and qualitative outputs provided from an extended analysis would add value.

Research was done into the ideal format to present the results of a warehouse layout design analysis to help an organization change and the fastest way to produce the results in said format.

This thesis takes a software program's module originally designed for a tuggers study and modifies the inputs to produce optimal routing for a set of pick lists quickly and easily. These routings and their associated quantitative descriptors allow for an individual to identify potential changes in layout design or test a layout design's performance against other alternatives. Simulating picking a high number of historical pick lists across multiple layout design alternatives allows an individual to make informed decisions on layout design superiority after looking at the outputs for total pick time, cost, and other factors.

This program does not generate layout patterns automatically, but it supplies the user with the necessary information to make educated decisions on value added changes to the layout designs and analyzing the effectiveness of a layout.

The superiority of this technique is demonstrated empirically through time studies in a simulation experiment and confirmed of value by individuals through interviewing an industry expert and multiple students intellectually capable of making layout-based decisions.

## CHAPTER 2. LITERATURE REVIEW

## Concepts of Warehouse Facilities

## Warehouse Rationale

An individual or group may have an idea and decide to create a company around that idea, with the goal of making money (Denning, 2011). One potential outcome of this company is growth. Some companies are fortunate enough to approach a customer demand high enough to reach critical mass-or the demand needed to begin or sustain a project or venture (Sellar, 2016).

As a company grows, the company may find it beneficial to add a warehouse facility within its supply chain system. A facility is typically characterized as a warehouse if the facility is a large building designed for the use of storing raw materials, packing materials, spare parts, or finished products in bulk prior to distribution for commercial purposes (Davies \& Jokiniemi, 2008; Admin, 2016). In addition, the operations performed within a warehouse are expected to fall under one of the following five categories: (1) Receiving and inspection, (2) storing, (3) picking, (4) order consolidating, and (5) shipping (Pingulkar, 2011).

Seeing as having a warehouse in a supply chain requires expenses to cover infrastructure, labor, capital, and information systems, most companies would benefit from avoiding this expense (Bartholdi \& Hackman, 2016). However, if a company faces the need for either additional inventory storage, reduced order fulfillment times and costs, or facility space for order consolidating and shipping goods, then adding a warehouse facility can help meet these needs. (Croxton, 2003; Chand, 2014).

For example, Just Born, the producer of Eater's Peeps marshmallow candies, produces two billion peeps over the course of a year in Bethlehem, Pennsylvania, and needs space to store
their inventory until Easter (Zeveloff, 2013). Adding a warehouse to Just Born's supply chain allows for additional inventory storage so production has space to continue operation. The additional inventory storage comes through the consequently added square footage of the warehouse facility. In addition, "the economics of manufacturing may dictate large batch sizes to amortize large setup costs, so that excess product must be stored," hence the need for a warehouse (Bartholdi \& Hackman, 2016).

For another example, with the idea of warehousing, Amazon was able to introduce one day delivery times because the company, "spent 20-plus years expanding [their] fulfillment and logistics network" (Olsavsky, 2019). Reduced order fulfillment times and costs can be attained through having warehouse facilities closer to the shipping addresses of the customers or through a facility dedicated to order fulfillment with a performance metric focused around order fulfillment times. Warehouses also provide an opportunity for cost savings through reducing material handling number of touches. For example, because the state of New York dictates labeling all items in drug stores with prices, cost savings can be observed through outsourcing this work to warehouse employees where the item is likely to be handled anyway instead of leaving this work to retail employees whose focus should be on customer service (Bartholdi \& Hackman, 2016).

As a final example, Home Depot has benefited through order consolidation in a warehouse because it allows for larger shipments from vendors that qualify for lower, fulltruckload rates. Facility space for order consolidation and shipping goods can be attained similarly to additional inventory storage-through additional square footage. As transportation methods require either cargo ships or aircraft, this need only becomes more apparent. As
shipment sizes consolidate, the ease of receiving downstream increases as the limited number of dock doors are no longer a constraint requiring drivers to wait. (Bartholdi \& Hackman, 2016).

## Warehouse Operational Costs

As beneficial as warehouses are to some supply chain systems, they come with many unavoidable costs if a company chooses to use one. Some costs are fixed, such as the land, lumber, salaries, and information systems. Many operational costs are variable and subject to improvements and subsequent cost savings from improvements. These operations were listed above: (1) Receiving and inspection, (2) storing, (3) picking, (4) order consolidating, and (5) shipping.
(3) Picking-"the process of extracting requested goods from inventory as per demand, bringing them together to form a shipment accurately, on time and in good condition," (Rushton, Oxley, \& Croucher, 2006) has been estimated to incur 50-75\% of all warehouse operating costs [55\% (Tompkins, White, Bozer, \& Tanchoco, 2003), 60\% (Drury, 1988), 60\% (Roodbergen, 2000), and 50-70\% (Coyle, Bardi, \& Langley, 1996)]. Due to this disparity in allocation of warehouse operating costs toward picking, it is reasonable to conclude that focusing attention on improving picking efficiencies could result in a greater minimization of expenses, and ultimately make a company more money, as stated in the goal communicated by Denning (2011) above (Denning, 2011).

One significant factor attributing to this high picking operation cost is the facility's layout design. It was identified $15-70 \%$ of operating costs are associated with the layout design, with improved layout designs reducing the costs by 10-50\% [10-30\% (Tompkins, 1996) \& 50\% (Drira, Pierreval, \& Harjri-Gabouj, 2007)]. Separate studies confirm that $50 \%$ of the total picking time can be attributed strictly to travel (Tompkins et al., 2003; De Koster \& van der Poort, 2007).

Travel includes retrieving products, moving throughout the warehouse, and delivering products. Since travel time and travel distance are directly correlated with total operational costs, it is expected that a decrease in travel time and travel distance should cause a decrease in total operational costs.

While travel distance can be a strong indicator of total operational cost, minimizing time is the primary objective. Time is more relevant toward operational cost than distance as two equal distances can take different travel times if one of the routes contains corners requiring additional travel time for decelerating, turning, and accelerating. Because layout design is a leading contributing factor toward warehouse operational costs, optimizing attributes of a layout design should lead a company toward significant cost savings.

## Concepts of Layout Design

The full cycle from layout design ideation to implementing the layout takes place over three distinct and separate phases: (1) Generation, (2) Evaluation, and (3) Communication.

## (1) Generation

## Layout design rationale

In a warehouse, every item needs a designated location. This is important because if item locations are left to randomness, then locating specific items would be difficult and timeconsuming. Creating a warehouse layout design is a solution to this problem.

Layout design has been previously defined as, "the physical arrangement of the manufacturing facilities (machines, processing equipment, service departments, etc.) of a plant and its various parts." (Karande \& Chakraborty, 2014). Karande and Chakraborty (2014) specify that a good layout will yield, "the most effective physical arrangement [of these facilities] in
order to achieve the best coordination and efficiency in the usage of manpower, machines, and materials resulting in the fastest and smoothest production activities." (Karande \& Chakraborty, 2014).

There is a nearly infinite number of physical arrangements for the manufacturing facilities. Naturally, some of those physical arrangements will be superior to other arrangements. In this context, superiority will mean total cost savings and avoidance.

Creating a new warehouse layout design can be necessary either for the initial design to begin operations, or during the production process as the current layout design begins to stray further from optimal. While the current layout design may have been optimal at the time of development, as new processes get introduced, changes in manufacturing procedure take place, products change, designs of products change, or demand for products change, then a new warehouse layout will have to be developed to account for these changes (Ertay, Ruan, \& Tuzkaya, 2006). Even if the current warehouse layout design does fulfill the needs of the company, a new layout could benefit a company seeing as the operational costs associated with poor layout design are at the forefront of total costs.

Regardless of the cause for needing a new warehouse layout design, the question of how to most effectively arrange the physical items proves no easy feat. This topic has been researched extensively as companies see the potential for decreasing operational costs that come along with better layout design.

## Business operating processes

Designing a layout which will interact smoothly with the business operating processes of a warehouse is mandatory to ensure a cohesive system. Identifying and incorporating these
processes will lead to decreased costs for a company. Business operating processes are methods incorporated by a business that dictate how a warehouse should function. This includes rules such as where items should be located or how items should be picked. This is different than metrics since metrics are solely meant for measurement, whereas business operating processes aid in selecting metrics.

Because pick time affects the overall evaluation of a layout design at a disproportionate rate to the other metrics, looking at strategies to reduce picking time in a warehouse layout is worthwhile. Two methods proposed here for reducing picking time are the popularity rule and zoning.

## The popularity rule

Many products in a warehouse follow the Pareto principle-or the $80 / 20$ rule. This principle states that $20 \%$ of the inventory products make up $80 \%$ of the customer ordered products (Bunkley, 2008). Given this phenomenon, travel time can be reduced by organizing a warehouse so products most commonly picked are located closest to the shipping and receiving dock(s). A typical product is moved twice in a warehouse-the initial delivery of the product to its warehouse storage location from the receiving dock, and the movement from its storage location to the delivery dock during the picking operation. Neither of these processes fall under the category of value added work, so reducing the times and distances of these interactions are beneficial to the company. Similarly, placing rarely ordered products furthest away from the dock(s) allows for the storage of the products which are ordered more frequently to occupy the locations closer to the dock(s).

## Zoning

Zoning is a strategy to organize a warehouse layout into different zones based on whichever criteria the company finds advantageous. Often this zone is based on customer type, but a warehouse can also be zoned by order frequencies such as in the popularity rule, storage requirements such as temperature requirements for refrigerated or frozen products, a zone for expensive items requiring additional security measures, or any other preferred zoning category. Zoning adds more benefits to the picking process as the size of a warehouse increases or the number of SKUs increase (Hornby, 2017). Dividing SKUs into zones based on pick frequency can decrease average pick times compared to a benchmark with SKUs not zoned by pick frequency. Zoning by items that are commonly ordered and therefore picked together, such as a toothbrush and toothpaste, allows for those items to be picked in quick succession and reduce total pick time.

To maximize the cost savings which can be attributed to successful zoning, it is recommended to designate a different warehouse picker to each zone. This designation is expected to reduce picking and travel times due to increased familiarity with the products and storing locations in the zone as well as reduce the total travel distance because zones are constructed to be a subset of the population for all locations within a warehouse. (van Gils, Ramaekers, Braekers, Depaire, \& Caris, 2016). Zoning also allows for picker accuracy to be measured and traced in the event of an error (Hornby, 2017).

## Zoning complications

One problem that can occur during the picking of a zoned warehouse is if a customer's order contains products from more than one zone. One solution is to split the order into two different pick lists which must be consolidated after retrieving the SKUs (van Gils et al., 2016).

Another solution is to fill the order by different employees as the order gets passed through each zone (Hornby, 2017)

If overlapping products between two zones begins to present a recurring pattern, then establishing a zone dedicated to the specific overlap is a solution to further reduce picking time.

## (2) Evaluation

## Characteristics of a good layout design

In short, a good layout design allows work to occur at the rate it needs to occur while minimizing expenses. In order to ensure a good warehouse layout design, metrics have been created to use as proxies toward evaluating the performance of a generated layout.

## Metrics

Typical patterns observed in successful warehouse layout designs include:

- Minimized pick time
- Minimized personnel travel time
- Minimized material handling travel time and number of touches on material
- Minimized injuries and fatalities to personnel

A well-designed warehouse layout can affect each aspect described above. For a more exhaustive list, Besbes, Affonso, Marc, Masmoudi, and Haddar (2019) created a survey of the literature presenting value added metrics for facility layout evaluation. The metrics were classified into two categories: (1) quantitative and (2) qualitative-all of whose metrics are listed below (Besbes, Affonso, Marc, Masmoudi, \& Haddar 2019).

## Quantitative

- Adjacency - closeness between manufacturing facilities (Sule, 2008). A warehouse can experience a positive or negative interaction based on the closeness between two areas. For example, placing two areas adjacent which share a set of tools or the same manager can be positive due to reduced travel and increased oversight. However, placing an area that produces flammable gas next to an area producing flames creates a risk for a fire which a warehouse would be smart to avoid. Other features that could cause problems for adjacency are noise, light, vibrational forces, and dust. To account for adjacency, relationship planning (AEIOUX diagramming) was introduced by Muther in 1969, which is commonly found in workplace practices still today (Muther \& Knut, 1969). Houshyar and White (1993) presented an exact optimal solution for facility layout by deciding which pairs of locations should be adjacent (Houshyar \& White, 1993). Al-Hawari, Mumani, and Momani (2014) extended the importance for adjacency beyond manufacturing areas and on to material handling equipment and having a high number of routes available between heavily congested areas (AlHawari, Mumani, \& Momani, 2014).
- $\underline{\text { Cost }}$ - total expense. A good layout can reduce the cost of manufactured parts by contributing in one of four cost subcategories:
- Operating cost - the cost to run the plant. Operating costs consist of overhead, materials handling, repair and maintenance, and indirect materials used by machines. Minimizing idle time is expected to reduce operating cost. In addition, as the need for flexibility in systems continues to increase, reconfiguration cost is included here as well.
- Capital investment - the cost to establish the plant. Capital investment costs include the building, machines, and engineering. Machine capital investment cost includes procurement and salvage costs.
- Inventory cost - "raw materials, work-in-progress, and finished goods inventories" (Abdul-Hamid, Kochhar, \& Khan, 1999).
- Labor cost - payroll cost. Labor costs include operators, supervisors, and internal employees.

The production process type directly influences all of these costs. Production volume levels have been directly associated with total cost. It can be argued that all metrics can be converted into costs, however, leaving the cost metric separate allows for companies to make better decisions based on budgetary constraints (Abdul-Hamid et al., 1999; Abdi, 2005).

- Distance - the amount of space between things ("distance", n.d.). A good placement of facilities can contribute to the overall efficiency of operations and reduce almost $50 \%$ of the total operating expenses (Drira et al., 2007). Standard work instructions for facilities include traveling to a destination to pick a product, performing an operation, or dropping off a product. Travel can be by foot, bike, forklift, tugger, or other material handling methods for transportation. As mentioned above, separate studies confirm that $50 \%$ of the total picking time can be attributed strictly to travel (Tompkins et al., 2003; de Koster et al., 2007). Therefore, many companies focus on reducing total travel distance in a warehouse to reduce costs and fulfillment times. Traveling any distance in this scenario is considered non-value added work because traveling does not increase the value of the final product. To accurately measure
distance, all employees' traveling should be recorded over an extended time period in order to get an accurate representation of the total travel occurring within a warehouse. Minimizing total distance also minimizes material handling costs and increases the utilization of that machinery and personnel (Yang \& Kuo, 2003). Total flow distance should be considered, which is, "the sum of the products of flow volume and rectilinear distance," between the two locations (Kuo, Yang, \&, Huang, 2008). Distance is based on pick sequence orders, so a high-quality solver is required to ensure distance is minimized (Hadi-Venchen \& Mohamadghasemi, 2013). Other expected benefits from a layout design which minimizes total distance include reduced energy expenditure from operating material handling machines shorter distances-especially if routing paths are optimal, reduced man-hours required to fulfill pick lists, and a competitive advantage in the marketplace by allowing a company to promise faster delivery times and being able to take on more business if the demand rate exceeds the current throughput rate from a warehouse due to a faster throughput rate. Despite all of the benefits that accompany decreasing total distance in warehousing operations, if the decrease is dependent on adding additional turns around corners, then a quantitative analysis should be completed to determine if the pick time is expected to decrease or increase for the operation.
- Machine utilization - the proportion of time a machine is being operated to accomplish work versus the time a facility is open for work (Ateekh-Ur-Rehman \& Lateef-Ur-Rehman, 2013). If a machine is observed to be a bottleneck operation, then utilization under $100 \%$ would prevent maximum throughput.
- Material handling vehicle utilization - the proportion of time a material handling vehicle is being operated to accomplish work versus the time a facility is open for work (Ertay et al., 2006).
- Number of machines and number of operators - the count of machines and line workers who are necessary based on the layout configuration (Ben Cheikh, HajriGabouj, \& Darmoul, 2016).
- Process capacity - "the amount a process can produce" (Kaye, Fox, \& Urman, 2012). Maximizing the process capacity of a layout for a company allows for the demand to be met if the demand grows either in the short or long term (Yang, $\mathrm{Su}, \& \mathrm{Hsu}, 2000$ ).
- Productive area utilization - the proportion of value added areas to non-value added areas in a plant (Al-Hawari et al., 2014). Value added activity occurs when a customer is willing to pay for a non-rework process to transform the product toward its completed state (Swan, 2012).
- Productivity - total work throughput as a function of the number of workers (Yang \& Kuo, 2003).
- Products indicators - how close a product was completed relative to its desired completed time. Early completion time is likely preferred to late, although both scenarios would come second to an ideal just-in-time framework (Ben Cheikh et al., 2016).
- Quality - the standard established for the completed products and production process. The Expert Choice program has previously valued product quality over production process quality when comparing layout design alternatives (Ertay et al., 2006).
- Shape ratio - "the maximum of the depth-to-width and width-to-depth ratio of the smallest rectangle that completely encloses the department" (Yang \& Kuo, 2003). It is ideal to minimize the shape ratio and flow distance while maximizing adjacency (Yang \& Kuo, 2003).
- Throughput time - the required time for a single unit to have completed the production process (Ben Cheikh et al., 2016).


## Qualitative

- Accessibility - the space to allow for movements of people, materials, and machinery throughout a facility without excessive challenge or a high risk of safety. This quality should account for not just the production process, but to also include things like maintenance and training new employees. The designing phase of a layout should allow extra aisle room and room along the contours of the department to allow for accessibility with current travel methods and anticipated future methods.
- Flexibility - "the capability to adapt to new, different, or changing requirements" ("flexible", n.d.). A flexible manufacturing system is expected to respond to dynamic and uncertain requirements efficiently (Ertay et al., 2006). Flexibility has been shown to occasionally be a company's greatest factor during layout design comparisons (Abdul-Hamid et al., 1999). A good layout designs for flexibility in five subcategories:
- Design flexibility - the capability for a facility to adjust to design changes in the manufactured product.
- Expansion flexibility - the capability for a facility to adjust to additional capacity with ease. Typical characteristics include large amounts of floor space with, "good shape factors or useable areas" (Besbes et al., 2019).
- Manufacturing flexibility - the capability for a plant to produce multiple products using multiple machines with different processing requirements. Setup times for product changes on the line are a significant contributing factor. The ability to adjust scheduling can also add value here.
- Routing flexibility - the capability to change the routing or material handling plans for product transport. Having a high number of accessible and alternate routes allows for more routing flexibility (Al-Hawari et al., 2014).
- Volume flexibility - the capability for a facility to adjust to large increases or decreases to scheduled production amounts. Changing the number of manufacturing facilities can change this metric (Besbes et al., 2019).
- Human issues cluster - this is an umbrella term for all issues involving personnel. This includes supervisory challenges dealing with adjacency of areas to ergonomics for the operators. A sufficient layout should allow for supervisory duties to be carried out without undue difficulty if the supervisor oversees multiple areas. As far as ergonomics-safety, noise, light, vibrational forces, emotional stresses, and temperature were deemed important in previous research (Shang, 1993). As the product line requires greater quantities of work to be done without automation, the value of this metric increases to improve human performance. Neglecting this metric could result in OSHA violations and decreased worker morale (Ben Cheikh et al., 2016).
- Layout reconfigurability - the ability for a layout to quickly change or rearrange manufacturing facilities as the product line, technology, or environmental requirement change. Six prominent criteria for layout reconfigurability are modularity, material handling, scalability, variety, mobility, and reconfiguration time (Abdi, 2005; Ben Cheikh et al., 2016).
- Maintenance - "the required space for maintenance engineers and tool movement" (Yang \& Kuo, 2003).
- Work in process - product that is unfinished for any reason. (Ben Cheikh et al., 2016). Poor layout design can introduce an accumulation of work in process which is typically unwanted by a company (Singh \& Singh, 2011). Work in process presents a liability since the product is susceptible to damage until delivered to a customer. Work in process also brings the problems that are presented with decreased available floor space.

As one can see, due to the large number of metrics provided for layout assessment, exceeding in one criterion does not guarantee a good layout. Rather, companies will benefit greater by considering as many criteria as possible while still allowing a cost-effective and fast enough designing process for the layout. Balancing these metrics will present unique challenges to each company as values within a company are likely personalized. In other words, there is not a one-size-fits-all algorithm for layout design created for all companies.

All of the qualitative metrics listed above need to be assessed by an employee. Due to this personnel constraint, assessing a layout design to all metrics will take significant time. However, these assessments should be completed, because if some of these metrics are graded poorly, then the layout design alternative should not be considered for implementation. For
example, the owner of a warehouse may choose to veto a layout design if the aisle widths appear too narrow for safe transportation by material handling vehicles.

## Concepts of warehouse layout design comparison

As the reality of creating multiple good warehouse layout designs became available, there quickly became a need for a method selecting the best layout design. The method can be separated into two categories: manual techniques and automated techniques. Automated techniques require software capable of either creating layout designs or generating reports for the operational processes, whereas manual techniques are created for use without the assistance of software.

## Manual techniques

Different manual techniques yield either estimated values for metrics or actual values. Estimated values are often simpler to collect and may be a good enough measure for a smallerscale warehouse. Estimated values are acceptable to use especially if expected cost savings from other operations exceed the predicted cost savings from more accurately reporting metrics such as pick distances.

## Estimated values

Using existing manual techniques for calculating and comparing quantitative metrics is believed to have a process time significantly slower than using existing automated methods. Using estimated values can be quicker when individual layout design metric scores are compared rather than the aggregate across all metrics. For example, Hall (1993), authored a paper on how to approximate distance for routing manual pickers in a warehouse (Hall, 1993). This paper uses historical pick lists and a rectangular warehouse to calculate the total distance traveled. However, this method is not as precise as the data output from certain automated techniques.

Different customer orders have different pick times, which is largely influenced by the number of unique items and other metrics such as travel distance. Estimating a pick time for each pick list is nearly always necessary to ensure equal distribution of work to warehouse pickers by line balancing. Pick time has been historically calculated by hand through either a locationdriven method, zone travel method, or a discrete standards method. (Dorcas, 2015). A routing path must first be created as a prerequisite to distance measurement. If reduced order picking costs is desired, then the route should be as short as possible with as minimal turns as possible. Identifying this route is time consuming when done by hand. Typical manual techniques for this task are using heuristic approaches to provide estimated travel distances and times. In regards to routing strategies, heuristics, such as the s-shape, return, aisle-by-aisle, largest gap, midpoint, and combined routing strategies (Roodbergen, n.d.; Roodbergen \& de Koster, 2001, Vaughan \& Peterson, 1999; Ratliff \& Rosenthal, 1983; Hall, 1993) all attempt to provide solutions to warehouses by providing estimates for the mathematically optimal solution for minimizing travel distance. (Gui, Dai, \& Cimini, 2000).

The biggest problem presented with calculating quantitative characteristics by hand is if the decision maker wants to change only one location in the warehouse, then the pick sequence and routing paths have to be redetermined since the previously reported distances and times would now have different values.

## Location-driven method

In a location-driven method, credit is given for the time to travel between locations based on average time. Employees will underperform or overperform, but over a longer period of time, this value will approach the average. While arguably the easiest of the methods to put into action, situations with employees having lists requiring longer pick times should report a worse
performance. Also, there is an incentive for employees to choose to place different pallets out of their proper location in nearby locations to save on travel time and receive a higher performance rating. (Dorcas, 2015)

## Zone travel method

Unrelated to the business operating process, zoning, from above, the zone travel method divides a facility into zones. This approach typically divides a warehouse into 20-150 zones. The average distance between zones is then calculated based on where the intermediate destinations were located (Dorcas, 2015).

## Actual values

## Discrete standards method

In the discrete standards method, each warehouse location is assigned a unique $\mathrm{x}, \mathrm{y}$, and z coordinate. After routing paths are created by hand, then the distance is calculated based on the ideal path. While this method is the most accurate approach for manual calculation, this method is complicated and time-consuming to maintain. As new locations are added or previous locations changed, an employee must manually update the new coordinates. In addition, blocked aisles would require the picker to take a non-ideal routing path, leading to a misrepresentation of performance in their individual picking report. (Dorcas, 2015). Without the computational power offered by commercial computer programs today, continuing to measure and compare layout designs by hand would take far greater time and effort to complete the same amount of work.

## Automated techniques

Similar to the manual techniques section, calculating quantitative metrics and comparing said metrics can be attempted by computer. Methods for selecting the best layout from a set of alternatives all seem to incorporate a multiple attribute decision making method. Many of these
methods utilize an automated technique for comparing layouts but require human measurement and input of data from metrics. These methods were introduced in the order: GRA (Kuo, Yang, \& Huang, 2006), TOPSIS and fuzzy TOPSIS (Yang \& Hung, 2007), a second GRA (Kuo, Yang \& Huang, 2008), ELECTRE (Lateef-Ur-Rehman, Ateekh-Ur-Rehman, \& Babu, 2009), PROMETHEE (Rehman \& Rehman, 2012), PSI (Maniya \& Bhatt, 2011), a simulation, fuzzy analytic hierarchy process, and quality function deployment (Shahin \& Poormostafa, 2011), a second TOPSIS and fuzzy TOPSIS (Ataei, 2013), MACBETH (Karande \& Chakraborty, 2014, followed by aggregating survey results for previous methods (Besbes et al., 2019).

## Lack of automated methods focusing on picking

All research focused on automated techniques to evaluate warehouse layout design within the last five years was gathered. Three papers were published 2014-current which feature a qualitative or visual output from automated techniques:
(1) Use of promethee method to determine the best alternative for warehouse storage location assignment (Fontana \& Cavalcante, 2014).

The main objective of this paper was to determine the best alternative for assigning a product to a warehouse storage location. The method uses a model to rank alternatives for allocating the products so a decision maker can choose which allocation is preferred. The model determined the most efficient storage at the lowest overall cost to the company (Fontana \& Cavalcante, 2014).

The promethee algorithm begins with studying historical information about the warehouse, including, "layout, operation costs, inventory, requirement space, order frequency, equipment to order picking, etc" (Fontana \& Cavalcante, 2014). Following this, six criteria were identified as most important in determining the value of the product placement through a
warehouse. These criteria are as follows: "Required space, order picking distance, total operation cost, the average time to reach different type of product, the time spent on average to meet a client's orders, and the average time it takes to serve orders from client groups who demand the same product" (Fontana \& Cavalcante, 2014). The layouts were scored across the six criteria and the layouts which were stochastically dominated were eliminated. Three decision makers then were consulted for preferences in value weighting across the criteria. The algorithm ends by analyzing the layout alternative ranking provided by promethee to determine the superior alternative. Further details on the software used to execute the calculations used to provide the scoring was not included (Fontana \& Cavalcante, 2014).

The visuals provided include four tables. One table displays the six scored criteria previously denoted as important, with the associated weighted values from three different decision makers. The second table displays all six layout design alternatives and their respective scores across the six criteria. The third table ranks the alternatives for each decision maker using the outputs from the promethee I and promethee II methods. The fourth table displays the product classes ranking formed by each alternative. (Fontana \& Cavalcante, 2014).

## (2) The number of pickers and stock-keeping unit arrangement on a unidirectional

picking line (Hagspihl \& Visagie, 2014).
This paper simulated a picking line configuration with an agent-based approach to describe the behavior of an individual picker. The simulation was then used to analyze the effect of the number of pickers and the SKU arrangement (Hagspihl \& Visagie, 2014).

This simulation uses agents to evaluate their current surroundings and respond based on current stresses. The agents represent the pickers in this simulation. The picking model was developed by the company XJ Technologies in a software titled Anylogic, using functions such
as nested if statements to determine behavioral decisions. Inputs included data such as a list of products with their product locations, a list of customer orders, the number of pickers available, and an algorithm to determine picker walk velocities. Video recordings provided proportions for time allocations by pickers. The simulation considered four SKU arrangements: The organ-pipe arrangement, greedy ranking and partitioning, classroom discipline heuristic, and the original arrangement. The simulation compared completion times and congestion rates across the four SKU arrangements. Ultimately, a marginal analysis method was used to choose an optimal number of pickers up to a specified level of maximum permissible congestion. The classroom discipline heuristic was recommended as it provided the lowest level of congestion amongst the simulated pickers. This heuristic attempts to spread out the SKUs according to their pick frequencies as evenly as possible, avoiding groupings of SKUs with ultra-low or ultra-high pick frequencies-the opposite of what the popularity rule recommends (Hagspihl \& Visagie, 2014).

A table and a large number of graphs were included as visuals. The table displayed a, "comparison of the two alternative layout designs and the historical SKU arrangements with respect to percentage picks and the corresponding percentage congestion for a selection of the first 10 bays, out of a total number of 56 bays" (Hagspihl \& Visagie, 2014). The graphs displayed things including the pick frequencies by SKU when arranged by the other two alternatives, the congestion fraction as a function of the number of pickers, and the total completion time across the number of pickers. (Hagspihl \& Visagie, 2014).
(3) Artificial intelligence applied to assigned merchandise location in retail sales systems (Cruz-Domínguez \& Santos-Mayorga, 2016).

This paper wanted to determine product placements in a warehouse beyond the typical sales frequency metric. Flexsim® ${ }^{\circledR}$ was used to allocate product locations additionally by product
family, physical characteristics, and sales patterns-such as seasonal goods (Cruz-Domínguez \& Santos-Mayorga, 2016).

The experiment involved a simulation that uses artificial neural networks to detect sales patterns and cyclical behaviors (Cruz-Domínguez \& Santos-Mayorga, 2016).

Included as visuals were tables displaying wait times in a queue and graphs picturing the number of customers in a queue and the number of purchased items per customer which entered the retail store. There was also a picture of layout zones used according to product sales volume. (Cruz-Domínguez \& Santos-Mayorga, 2016).

There appears to be a disconnect between what academia has been providing and what the industry wants. Despite numerous programs and decision models created intended for industry use, industry continues to often proceed without a solution that considers the metrics listed in the "Characteristics of a good layout design" sub-section.

## (3) Communication

## Rationale

As noted back in 1993, few publications provide both qualitative and visual feedback beyond those which implement heuristics (Hall, 1993). Unfortunately, the research has not started to provide qualitative and visual feedback to the scale at which it is demanded by industry today.

## Belief for rejection of current academia methods

Some academic models were described above, yet few of these models have ever seen a warehouse floor. If an engineer shows an output with quantitative metrics, this information may be information overload or appear inaccurate to the decision maker. This may be because many
of the current methods reviewed by Besbes et al. (2019) have no associated visual or quantitative metrics displayed in conventional units. The methods which do provide any form of metrics often elect to use non-conventional units such as an arbitrary scale or a low, medium, and high rating system-often difficult to interpret or to use for comparisons without an extended explanation by the creator of the scaling system. If a warehouse floor manager or lead decision maker without an advanced engineering degree were to receive a discrete-event simulation output which was difficult to interpret, what would they possibly do with that information? If other quantitative metrics of interest were not also reported, the floor manager may also reason that the program does not consider all of the variables.

In conclusion, the belief is that there is simply not enough buy-in from the warehouse floor manager to make the confident and costly decision to change layout designs after seeing the outputs from the models provided by the academic community. The customer for the models in this process is the warehouse team-often not another engineer nor computer. People will be looking at the results from the computer simulations, not another computer. The results need to be formatted as non-intimidating to the average worker and convincing enough to quickly gain buy-in from the team.

## Group buy-in

When designing a new warehouse layout or assessing warehouse layouts, getting buy-in from the other employees is a must. Warehouses which utilize human labor for picking and want maximal productivity output and minimized turnover from their employees will find it in their best interest to make decisions as a team and clearly explain why a new process will add value to the current operations in terms of ease or safety for the employees doing the labor. As communicating results from layout design research approaches a higher technical level, the
researcher should expect a greater level of push back from the employees if the ideas cannot be clearly explained and results immediately noticed.

## Strategies for increasing group buy-in

Using visual methods for displaying current operations and anticipated future operations add value to the process of gaining buy-in by allowing all employees to see how a proposed new process would impact future operations. More experienced employees can provide additional value if they have had experience with a similar process in the past at the same company because the more experienced employee may notice something that the engineer failed to consider. Simply displaying this information quantitatively does not allow for this opportunity.

An example of one visual and clear method for displaying a process problem and its solution is by creating a spaghetti diagram. A spaghetti diagram starts with an overhead view of a layout, which an individual draws lines over to trace the movement of a person or product throughout its period of study. They add value by clearly communicating how much non-value added travel there is throughout a build or assembly. As one senior consultant said:

The results are surprising! The visual picture of movement (the waste of "motion") within the process is usually nothing like what everyone believes is happening. It is often a real WOW moment. "I can't believe that I walk that far!" They cannot believe that they travel so much, do that much back-tracking, search and wander around that much to do their jobs. (Lowstuter, 2006).

He continues by stating how a spaghetti diagram can be created for a new process flow and compared to the original process flow, resulting in clear visual documentation for both
processes which can, "be shared with leaders within the organization to get buy-in for change to occur" (Lowstuter, 2006).

Not only are the spaghetti diagrams good for supplying visuals, but the distance can later be measured and used to quantify the waste in the process, and walking speeds can be estimated to provide an estimated calculation for total time wasted on travel (Gladysz, Santarek, \& Lysiak, 2017).

Measuring and displaying current processes can increase confidence and credibility for an engineer hoping to propose a new method since the employees can believe the calculations used for projected future processes is reliable. For example, if an engineer proposing change to a process is operating under the conclusion that a specific process takes a full eight-hour workday to complete based on the math used in their simulation, but the employees know the process can be completed within an hour because they did the process that day, then the employees would have no reason to switch to a new method provided by the engineer which promises that the process can be completed in two hours. If this new method is forced on the employees and the process does yield the longer time, then the engineer will see the implementation as an improvement while the employees will see the implementation as unnecessary labor which can lead to conflict, lower employee morale, and rejections of future new methods which may actually add value.

## How can warehouse layout designs be compared better?

To start, buy-in from the team is required. In order to win over the team, a visual for optimal routing in both the current and proposed layouts would add value. A quantitative output for operations will add value too, because if the team knows it took an eight-hour day to pick two hundred items and the output from a program confirms the current layout's abilities, then the
team may believe in the new method which proposes that the same amount of work can be accomplished in an hour less. A warehouse floor manager can have increased confidence in their decision by seeing the results of a simulation that ran historical pick lists in the current and future layouts and provided visual routing with quantitative metrics such as pick time and distance traveled in an easy to read format.

This research relied on commercial software designed for another purpose. The software produced quantitative and visual feedback with a quick and easy technique that could be employed by an individual in minimal time. This paper attempts to demonstrate 2 things:

1. This method is an accurate way to document and analyze different warehouse layout design alternatives
2. This technique is faster than the techniques that have previously been published

A company provided data regarding layouts and historical pick lists for initial analysis. To validate the quantitative superiority of this method, other methods were used without the aforementioned tool for a few sample routings and the execution time was recorded. Then, the proposed method was executed and with that time also recorded. Next, to demonstrate that the diagrams and quantification for flows are effective, these methods were shared with an industry expert who design warehouse layouts and feedback was gathered. The result was that the industry expert accepted the technique as superior.

Besbes et al. (2019) noted in their discussion and conclusion section, "In fact, the commercial software available to reinforce the facility layout problems are currently restricted." (Besbes et al., 2019). That is where this paper will add value. Previous publications require lengthy execution times to run their techniques and require redetermining pick sequences after
moving an object around within the layout. Software such as Proplanner's Flow Planner used in conjunction with Autodesk's AutoCAD and Microsoft's Excel provides an automated technique that can output travel time statistics for all pick orders for each layout alternative in minimal time, while also providing a qualitative routing display on a layout in AutoCAD. This process should lead to selecting the superior layout design amongst a set of numerous layout design alternatives.

## CHAPTER 3. METHODOLOGY

## A General Overview

## Research Questions

A two-part research question was developed:

1. What is the ideal format to present the results of a warehouse layout design analysis to help an organization change?
2. What is the fastest way to achieve that outcome?

## Ideal format

First, in order to make an accurate and quick decision about warehouse layout design superiority across a set of alternatives, it would be beneficial to have additional data on the performance and optics of each layout. Such additional information includes pick times for historical pick lists, cost, and a visual layout with clearly drawn optimal travel routes.

## Industry Valuation

In an attempt to document a technique which would be implemented in industry in the future rather than lay dormant in an internet repository, an interview was held with a supply chain engineer for a retailer. During this conversation, it was stated that without the aid of software in industry, the picking order for a pick list, "would be based on tribal knowledge and experience." It was also stated that, "they do not have any graphics," but "it would be definitely helpful, at least from a planning perspective," to receive layout drawings with exact locations marked and arrows drawn to indicate directional travel along an optimal aisle route, and, "strategically, it makes sense." Later in the interview, manually quantifying the performance of a layout design was discussed. Statements were made, including, "calculations would not be exact
... it would be basically estimates," and, "I do not think you can really get a good answer doing hand calculations. Multiple pick lists would take hours [to complete]." The interview was concluded with, "you just cannot do it by hand."

## Method Overview

A simulation was done using an automated technique that produces visual and quantitative outputs. All data for the inputs of this simulation was provided by a retailer for this research effort.

Figure 1 and Table 1 display a quantitative and visual output for the performance of a pick list which caters to the requests from the supply chain engineer. The picture on the left of Figure 1 shows an AutoCAD layout drawing with a straight flow routing (which ignores physical barriers but displays the chronological pick order) for the pick list entitled, "Retail 3." This pick list was one from the set of fifteen historical pick lists supplied from a retailer for this research effort. The picture on the right of Figure 1 shows an AutoCAD layout drawing with an aisle flow routing for the same pick list, "Retail 3 ." The picture depicting the straight flow communicates the optimal order in which to visit the twelve product locations from later discussed part routings table in a visual format. The picture depicting the aisle flow visits the same picking locations as the straight flow routing but allows for realistic travel through obeying factory travel constraints.

The quantitative table, Table 1, reports the data from the main prioritized calculations which would be used in determining the best layout from a set of alternatives. The data includes distance, time, cost, and percentage of time spent on travel. Calculations that provide supplementary information are shown later in the report.


Figure 1. Pick List "Retail 3" with Straight Flow Routing (L), Pick List "Retail 3" with Aisle Flow Routing (R)

Table 1. Initial Results Window for Pick List "Retail 3"

| Pick List | Distance (Feet) | Time (Hours) | Cost | Travel Percent |
| :--- | ---: | ---: | ---: | ---: |
| Retail 3 | $1,183.50$ | 0.26 | $\$ 5.27$ | $68.38 \%$ |

Given the output of the AutoCAD aisle flow routing diagram, one can observe which specific locations are geographically distant from the main set of products to be picked. The picture on the right in Figure 1 is again displayed in Figure 2, but with the geographically distant product locations encircled in red. The flow diagrams add value because it is easier to convince a group of people with minimal training to relocate the distant product closer to the location which holds the main products for the pick list, assuming it is not needed in the other zone and is sorted loosely based on the popularity rule (explained in further detail later).

One consequence of having this diagram is being able to quickly identify distant product locations. After finding out which products those locations correspond to, the product locations can be moved closer to the main set of products, which would result in a faster pick time if a set of similar products were to be reordered.

Figure 3 provides an example of a new layout and routing with the distant locations moved closer to the main set of pick items.


Figure 2. Pick List "Retail 3" with Aisle Flow Routing and Distant Locations Encircled in Red


Figure 3. Pick List "Retail 3" with Improved Layout's Straight Flow Routing (L), Pick List "Retail 3" with Improved Layout's Aisle Flow Routing (R)

Table 2. Initial Results Window for Pick List "Retail 3" for Improved Layout

| Pick List | Distance (Feet) | Time (Hours) | Cost | Travel Percent |
| :--- | ---: | ---: | ---: | ---: |
| Retail 3 | 944.67 | 0.23 | $\$ 4.59$ | $63.65 \%$ |

Table 3. Historical Initial Results Window for Pick List "Retail 3"

| Pick List | Distance (Feet) | Time (Hours) | Cost | Travel Percent |
| :--- | ---: | ---: | ---: | ---: |
| Retail 3 Original | $1,183.50$ | 0.26 | $\$ 5.27$ | $68.38 \%$ |
| Retail 3 Improved | 944.67 | 0.23 | $\$ 4.59$ | $63.65 \%$ |
| Difference (\%) | $\mathbf{2 0 . 1 8 \%}$ | $\mathbf{1 1 . 5 4 \%}$ | $\mathbf{1 2 . 9 0 \%}$ | $\mathbf{6 . 9 2 \%}$ |

As one may have guessed from the improved layout drawings in Figure 3, the associated pick time for the pick list "Retail 3" with the new product locations has decreased. This can be confirmed from the output of the quantitative table from the same simulation. Table 3 communicates a layout which can allow for the picking to occur $11.54 \%$ faster, at a cost savings of $12.9 \%$, with $20.18 \%$ less distance traveled. Time and cost are calculated and explained in the Experimental Details section of this thesis.

However, some layouts will perform better for some pick lists but worse for others. Selecting a layout design alternative based on the performance of a single pick list is not enough evidence to suggest superiority. However, when a layout is fed mass amounts of often cyclical historical pick lists, either a statistically significant difference in performance will likely surface or pick patterns will likely be identifiable visually which will likely allow for layout changes to decrease total pick time and costs. In addition, this technique allows for nearly instant feedback after altering product locations in a layout by recording and outputting different layout performances in a historical table.

Questioning why a layout should change in the first place, especially if orders are making it out the door on time, is expected. However, with the help of a visual diagram and quantitative report, relocating the distant product locations closer to the set of other product locations on the pick list produces a travel route that empirically decreases distance, pick time, and cost. Therefore, it is in the organization's best interest to change the layout in order to reap the benefits of a faster process.

Access to these diagrams and quantitative reports allows a group of people to respond with better judgment toward decision-making in the discussion of a layout redesign. Providing both visual and quantitative summaries of the process creates information accessible to people of all learning and communication styles. The addition of data tables from this method provides quantitative evidence for individuals desiring measurable improvements. It is important to remember a previous point-which is that humans will be the ones reading the simulation outputs and not another computer.

One can now see the additional value provided by the data and drawings. These diagrams enable a person very quickly to figure out how to improve a layout and they provide a means to clearly communicate to the team concerns about a specific layout alternative.

## Peer Valuation

In an effort to provide more evidence of the value added by these diagrams and tables, two industrial engineering graduates were individually interviewed and their responses were collected. Interviewees included two students currently pursuing a Master of Science in Industrial and Manufacturing Systems at Iowa State University, both of whom graduated with a Bachelor of Science in Industrial Engineering from Iowa State University.

The interviews started by providing the graduates with a layout absent of product storage locations and a list of the 1265 product numbers which were provided for this research.

The graduates were asked how they would place the product numbers in an AutoCAD drawing with empty product storing racking locations. Both students commented that they would place products that were the most frequently sold closest to the docks, with less frequently sold products getting placed further from the dock.

After being given a sample pick list, the interviewees were asked what if any actions they would perform before sending out a picker to pick the products on the pick list. One student commented:

I would take the time to locate the product locations before I send a picker out to pick. Because otherwise, they could be looking all the way on the other side of the warehouse, not knowing that the product's location was right in front of them. I would try to design a route before I send them out to go pick.

The other student commented:

I do not think I would just send them out. How would they know where the products are? The numbering of products seems pretty random. That would be difficult. How would they know which product lies where? They would be lost. Marking the locations would be easier. Drawing a route would also be quicker.

The interviewees differed in how they would apply this method across multiple pick lists. One student commented, "I would identify the product locations and the routing for all 15 pick lists in a shift prior to sending them out to pick," while the other student commented, "If you are
given 15 pick lists, you cannot mark the locations and routings for each one of them. It would take too long."

Regardless of which action would be taken, one can conclude that not only would the routing diagrams help, but the method often has too long of an execution time to justify its use while completing the process manually. To confirm this conclusion, the interviewees were finally supplied with the automated technique's routing diagrams and quantitative outputs. When asked what difference these tools would make, both students commented that the tools would help. One student commented, "if you had to draw the routings for all pick lists in all shifts every day, that is like a person's job. So, we are talking about saved salary cost and time."

Finally, when asked if they would be able to choose a superior layout design alternative if the analysis had been done for multiple different layouts if only supplied with either the qualitative data (drawing plus routing) or the quantitative data, both students commented that they would need both the qualitative and quantitative data to make a confident decision. One student commented:

I mean if you were only given either the drawing or the data tables and told to decide then you would just be guessing. I think you would need both. If you just had the drawing, you would be guessing, 'oh that one looks a little shorter.' Maybe I would pull out a ruler. The drawings help to show upper management like somebody who is not as familiar with the process. They want to see the numbers but they would want to confirm this visually too. Warehouse workers would need the visuals, too, for sure. They would not be able to provide feedback on whether the calculations were realistic without seeing it.

## Fastest technique to produce ideal format

The second research question asks, "What is the fastest way to present the aforementioned ideal output format of a warehouse design analysis?" One can perceive that doing this process without an automated computer tool is unviable. In order to suggest this with empirical evidence, the method was executed with and without the aid of specialized automated software, and the time was measured to complete each step of the process. One constraint was to produce the same level of detail in drawing routings and data reports across the set of pick lists.

## Method Completed with Specialized Software

In order to produce diagrams and data tables of the quality levels displayed above and with the omitted supplementary information, the following steps were done:

1. Create an electronic pick list
2. Create a layout
3. Solve the traveling salesman problem
4. Generate expected pick times
5. Change the layout, run the simulation again, and repeat
6. Apply all pick lists for a shift and determine labor requirements in current warehouse

This process is displayed in a flowchart in Figure 4. The number of pick lists chosen for this process was the number of pick lists picked in a shift. The reasoning behind this is to be able to confirm the validity of the simulation with the warehouse pickers to get feedback and buy-in on what they believe is possible over a realistic time period.


Figure 4. Flow Chart for the Method

## 1. Create an electronic pick list

A provided pick list was reformatted into a table in Microsoft Excel. The vital column headers needed to ensure a correct picking was done are part numbers, descriptions, and quantities. The reformatted pick list is seen in Table 4 [product descriptions redacted].

Table 4. "Retail 3" Pick List

| Part Number | Description | QTY |
| ---: | :--- | ---: |
| 506284 | Description 1 | 1 |
| 473916 | Description 2 | 2 |
| 507238 | Description 3 | 1 |
| 509198 | Description 4 | 1 |
| 509192 | Description 5 | 1 |
| 410608 | Description 6 | 2 |
| 508782 | Description 7 | 1 |
| 511839 | Description 8 | 3 |
| 503791 | Description 9 | 1 |
| 479006 | Description 10 | 1 |
| 511309 | Description 11 | 1 |
| 666688 | Description 12 | 4 |

## 2. Create a layout

A layout was then created in AutoCAD, and product locations were assigned using principles of zoning and the popularity rule within each zone. Products were placed into zones
based on what order type they fell into (DSD, DW, WHOLESALE, WR, RETAIL). The final layout is displayed in Figure 5.


Figure 5. AutoCAD Layout Drawing

## 3. Solve the traveling salesman problem

To determine the sequence of picking from the pick list provided in step 1 within the layout provided in step 2, the traveling salesman problem was applied using the aisle network of that layout which required solving Dijkstra's shortest path algorithm. When solved, the traveling
salesman problem for one specific pick list, "Retail 3," produced the part routing pick sequence displayed in Table 5.

Table 5. Part Routing Sequence for Pick List "Retail 3"

| Zone | From | To | Part | Qty |
| :--- | :--- | ---: | ---: | ---: |
| Retail | RET_DOCK | RW_511309 | 511309 | 1 |
| Retail | RW_511309 | RW_511839 | 511839 | 1 |
| Retail | RW_511839 | R_410608 | 410608 | 1 |
| Retail | R_410608 | R_473916 | 473916 | 1 |
| Retail | R_473916 | R_507238 | 507238 | 2 |
| Retail | R_507238 | R_508782 | 508782 | 1 |
| Retail | R_508782 | R_666688 | 666688 | 1 |
| Retail | R_666688 | R_479006 | 479006 | 3 |
| Retail | R_479006 | R_509198 | 509198 | 1 |
| Retail | R_509198 | R_503791 | 503791 | 1 |
| Retail | R_503791 | R_506284 | 506284 | 4 |
| Retail | R_506284 | R_509192 | 509192 | 1 |
| Retail | R_509192 | RET_DOCK | RETURN | 1 |

Table 5 is read left to right, top to bottom. A picker assigned to the designated "Zone" starts at the "From" location, travels to the "To" location, and picks the product at that location whose identification number is listed under "Part" in the amount under "Qty." A picker would then travel to get the next product listed in the next row and repeat this process until they return to the dock with all products picked.

## 4. Generate expected pick times

Now that the optimal picking sequence had been listed and the traveling salesman problem solved, the sequence was applied to generate the flow diagrams and associated pick times seen in Figure 6 and Table 6, which were used as the original diagrams for pick list "Retail 3" in Figure 3 and Table 2.


Figure 6. Optimal Routing for Pick List "Retail 3" Straight Flow (L), Aisle Flow (R)

Table 6. Initial Results Window for Pick List "Retail 3"

| Pick List | Distance (Feet) | Time (Hours) | Cost | Travel Percent |
| :--- | ---: | ---: | ---: | ---: |
| Retail 3 | $1,183.50$ | 0.26 | $\$ 5.27$ | $68.38 \%$ |

## 5. Change the layout, run the simulation again, and repeat

The layout was evaluated and appropriate design changes were made to the product locations in an effort to decrease total travel distance. The user should then return to step 3 to solve the traveling salesman problem again, as the pick sequence will have to be redetermined in order to optimally travel throughout the warehouse. The user should continue until this process is completed for all pick lists gathered for all employees across a shift.

## 6. Apply all pick lists for a shift and determine labor requirements in current warehouse

The value added from the automated technique does not stop at shorter execution times. Since the simulation used real, historical pick lists and a layout drawing as inputs, a side benefit is naturally presented which allows for a company to predict labor requirements at peak warehouse demand periods. Warehouses which operate under time-based demands, such as seasonal ones which observe a peak during seasons like Christmas, a user can answer how many pickers would be required to pick the set of pick lists in the analyzed layout design.

## Time study

A time study was completed to quantify the runtimes for completing the method manually versus using automated software. Table 7 summarizes the runtimes to complete the process outlined above. Details on how these were calculated are shown in the experimental details and results sections.

Table 7. Time Study by Executing Method

|  | Manual | Automated |
| :--- | ---: | ---: |
| Create electronic pick list | $0: 00: 00$ | $0: 34: 19$ |
| Create layout | $3: 03: 24$ | $3: 03: 24$ |
| Solve traveling salesman problem | $1: 37: 45$ | $0: 05: 08$ |
| Generate expected pick times | $14: 53: 22$ | $0: 06: 50$ |
| Change layout and run the simulation again | $16: 31: 07$ | $0: 11: 58$ |
| Totals | $\mathbf{1 9 : 3 4 : 3 1}$ | $\mathbf{3 : 4 9 : 4 1}$ |

The manual process took a user 19:34:31 (hours:minutes:seconds) to produce a detailed analysis for the first layout, with each additional layout requiring an additional 16:31:07 (hours:minutes:seconds) to execute. Many companies would not see the benefit in taking this time to complete said analysis, so the analysis remains incomplete, resulting in sub-optimal warehouse layout designs. The logical step taken next would be to automate this process, so the aforementioned outputs could be provided in a shorter time period.

In comparison, the automated process had an initial simulation runtime of 3:49:41 (hours:minutes:seconds), with each additional layout requiring an additional 0:11:58 (hours:minutes:seconds). It is more likely that a company would complete the analysis with this technique, due to a faster runtime and the significant impact of a warehouse layout on warehouse performance, as outlined in the literature review.

Because of this, a company would be able to test multiple layouts against multiple historical pick lists in a relatively short time period, resulting in the group who decides the
warehouse layout to have more complete information and select a warehouse layout design that is closer to optimal.

## Summary

To summarize, implementing an automated method in the process of layout design analysis adds value through presenting data and visuals in an industry demanded format in a short time period. A manual technique is not viable in the current warehousing environment due to its slow runtimes (16:31:07 (hours:minutes:seconds) per additional layout). However, an automated technique solves this problem and is viable in the current environment since it comes with a significantly faster run time (0:11:58 (hours:minutes:seconds) per additional layout).

The automated technique concurrently solves two problems. First, it helps a user identify what is wrong with layout designs and identify superiorly designed layouts. The visual helps by highlighting how a layout can be improved by looking at outlier paths with excessive travel distance, which is all quantified in the supplemental quantitative table. Second, with no additional effort, the analysis for determining staffing levels under different demands is already completed due to simulating the automated method using real pick lists and layouts designs.

The following section breaks down the process required to prepare all of the inputs for the method.

## CHAPTER 4. EXPERIMENTAL DETAILS

An experiment was created to discover if disparities in simulation runtimes existed between the automated and manual techniques.

This experiment simulated warehouse material handlers picking a set of pick lists using, first, an automated technique, followed by a manual technique using the same set of inputsincluding warehouse layout and products. For each pick list, the picker started at a designated dock location, picked the assigned set of products in the quickest, easily identifiable route, and returned to the designated shipping dock.

The conclusion and discussion section of this paper discusses the differences in how the processes were carried out and how realistic applying each method would have been on a larger scale when used to compare different warehouse design layout alternatives.

The simulation run time for each method began when a warehouse picker received the customer order and ended when the customer order was delivered to the designated dock for the customer order.

The data used in the simulation was provided by a company for warehouse layout design analysis. It was reasoned that pick lists that more closely represented actual customer orders would provide increased confidence in the outputs attached to a warehouse layout design, and allow for determining labor requirements across a shift. For this reason historical pick lists were used from the same company to ensure relevancy and accuracy.

## Individual Contributions

This experiment used software which the author did not develop or code, using data provided by a company. However, transforming the software from its current state to the state
necessary to run this experiment and provide interpretable results was completed by the author. In order to get the software capable of running this experiment, the author had to reformat the data inputs and enter this data into columns different than the definitional labeling from Flow Planner. This process was documented by the author so the experiment could be repeated by another individual using different company data in an industry setting. The author completed a literature review, designed the experiment, ran the simulation, and interpreted the outputs to make the data relevant to the problem. To reiterate, this software was not capable of running an automated warehouse picking prior to the author's contributions.

## Layout Generation

Before the evaluation and analysis of layout design, strategies for creating advantageous layout designs are first discussed.

## Zoning

Based on the data provided by the company, zoning this warehouse by customer type was considered the best method, as products ordered by different customer types were often unique to the customer type rather than the whole customer base. In fact, many products were only ever ordered by one type of customer. It was also observed that there was considerable overlap between some customer types, and nearly no overlap between other customer types, leading to extra zones being created to cater specifically to products often ordered by two different customer types.

Ultimately it was decided to separate the warehouse horizontally into five unique zones (three main zones and two overlap zones). As the warehouse floor was rectangular, the zones were presented as follows, from left to right: DSD (direct store delivery), DW (the overlap between direct store delivery and wholesale), wholesale, WR (the overlap between wholesale
and retail, and retail. Wholesale was chosen as the customer base with two overlapping zones as direct to store and retail had no overlap in common products whereas wholesale had considerable commonality in products ordered with both DSD and retail.

Products were sorted into these zones based on historical customer orders. After each zone had a list of products it would be housing, the next step for the layout generation was to decide the location of each product in terms of proximity to the corresponding dock for each customer type.

## Popularity rule

As examined in the literature above (Tompkins et al., 2003; de Koster et al., 2007), minimizing travel distance should reduce pick time and operational cost. Additional literature from above (Fontana \& Cavalcante, 2004) organized products in a layout by popularity to preference product location for those with higher order frequencies. For these reasons, the proximity of the products to the docks were organized by order frequency (popularity). The popularity rule was used to designate warehouse locations for each product following the sorting of warehouse products into their respective zones.

In order to determine popularity, a list of all products and all orders were supplied. Counts were taken for each time an order contained a product. These counts were sorted organized into a descending list with their respective counts displayed in a table in Microsoft Excel. Products with higher frequencies of orders received storing locations closest to the dock, and storing locations decreased in proximity to the dock as the order frequencies for products decreased.

## Evaluating a Layout Design Using an Automated Technique

The automated method chosen for this experiment was Flow Planner-an application provided by Proplanner and fully integrated with AutoCAD. Flow Planner used input data to create optimal routing for pick lists and displayed these routes visually in a warehouse drawing in AutoCAD. In addition, this application calculates the time, distance, and cost accompanying the routing and displays this information in tabular form as a report.

Additional analysis can be done through different modules offered within the application's interface. The combination of the quantitative routing information and the qualitative visualization can help a user determine inefficiencies in current or theoretical material handling processes.

Because Flow Planner is integrated within AutoCAD, it uses AutoCAD layers to create and draw the material handling routings. While all file inputs and analysis' can be completed in the Flow Planner interface in AutoCAD, files can also be created externally through third-party software such as Microsoft Excel or Microsoft Notepad and imported into Flow Planner.

Although no Flow Planner module exists explicitly to analyze a warehouse layout, the tuggers module input format can be modified to simulate multiple pick lists' performance metrics on different warehouse layouts.

Historically, the tuggers module had been used to create routings for tuggers-a specific type of material handling equipment used to transfer multiple materials to multiple locations within a facility. Generally, the input format is a list of different materials to be delivered to different locations at different times. However, if the input format is altered to ask for all products delivered to the same location at the same time, then the situation mirrors that of
picking a pick list and bringing those products to the designated dock all at the same time. The tuggers module then calculates a shortest-path routing based on the time and travel space constraints input by a user.

Since a starting layout had been created, it was time to evaluate the layout. The automated technique's layout design evaluation in this experiment was divided into three phases: (1) pre-picking, (2) picking, and (3) post-picking.

## (1) Pre-picking

The Pre-picking phase consisted of preparing a drawing and creating readable input files for the analysis.

## Preparing a drawing

The calculations performed later in this experiment uses the distances provided from the AutoCAD drawing. Therefore, increased accuracy in the drawing will produce increased confidence in the calculation results. The drawing must allow for a user to identify all locations to which a warehouse picker travels. When analyzing a warehouse, warehouse storing dimensions, storing locations, dock locations, and aisle widths are of the highest priority to accurately portray.

The warehouse drawing consisted primarily of the walls, racking, and aisles. From there, zones were added to the drawing for the reasons presented above in the literature review.

The finished drawing can be seen in Figure 7. The product locations become apparent when zoomed-in, as seen in Figure 8.


Figure 7. AutoCAD Layout Drawing


Figure 8. AutoCAD Layout Drawing Zoomed-in with Locations Viewable

## Understanding the received data

The automated technique began to differentiate itself from the manual technique by requiring data inputs readable by the software. A pick list (customer order), in its original format, is currently unreadable by Flow Planner. A pick list is a standard item a warehouse picker would receive at the beginning of the picking process. An example of this is displayed in Table 8.

Table 8. Pick List Not Prepared for Simulation

| Pick List \# |  |  |  |
| :---: | :---: | :---: | :---: |
| \#\#\#.\#\#\#.\#\#\#\# |  | Identification Number |  |
| email@email.com |  | DD/MM/YYYY | Shipping Company |
| ATTN: Warehouse Manager's Name |  |  |  |
| ITEM NO. | UOM | QTY | DESCRIPTION |
| 506284 | CASE(12) | 4 | Description 1 |
| 473916 | Each | 1 | Description 2 |
| 507238 | Each | 2 | Description 3 |
| 509198 | CASE(6) | 1 | Description 4 |
| 509192 | CASE(6) | 1 | Description 5 |
| 410608 | Each | 1 | Description 6 |
| 508782 | Each | 1 | Description 7 |
| 511839 | CASE(12) | 1 | Description 8 |
| 503791 | CASE (150) | 1 | Description 9 |
| 479006 | CASE(12) | 3 | Description 10 |
| 511309 | CASE(12) | 1 | Description 11 |
| 666688 | Each | 1 | Description 12 |
| TOTAL PIECE COUNT 12.00 |  |  |  |
| Approximate Item Weight 141.00 LBS |  |  |  |

The pick list is formatted as a table with four columns-three columns of which are of interest ("ITEM NO.," "UOM," and "QTY"). A column of interest in this example is defined as a column whose information is required to fulfill a pick list without making mistakes during the picking operation. For this pick list example, there were twelve items ordered by the customer, denoted by each row in the table starting with the first entry.

The first column of interest, "ITEM NO." (item number), is a numerical, six digit, unique identifier for a specific product. Many products are similar in name in the description column or
similar in appearance while on the warehouse floor. A unique numerical identifier ensures that the correct product is picked rather than a similar product.

The second column of interest, "UOM" (unit of measurement), communicates what a product with an order quantity of one should look like. In the example from Table 8, a unit of item number 506284 is a case ( 12 pack), whereas a unit of item number 473916 is a single item. This column prevents a warehouse picker from disassembling a packaged unit if the unit of measurement contains multiple of the same single item.

The third and last column of interest, "QTY" (quantity), communicates the order quantity for the unit of measurement associated with each ordered product.

These three columns when combined form a row that corresponds to an item, the quantity that item is stored in, and the total quantity in the order. A warehouse picker needs this information to fulfill each item on this pick list without an error.

Fifteen pick lists were provided by a company for layout design analysis. These pick lists are displayed in their entirety in the Appendix.

## Creating readable data files

In order for the customer's order data to be read by the software which executes the automated technique, and the analysis of routings and travel times to take place, the data had to be reformatted to create an electronic file capable of interacting with the software as an input. Flow Planner recommended either a comma-separated values Microsoft Excel file or their interface as the source for input. Both of these input sources were used depending on the file type. Five different input files had to be created on a user's computer. These files were:

1. A .prd file that contained information on which pick lists were used and which zones the products on the pick lists would be located. Other information included which products belonged to which pick lists and zones. The file also contained information on which color the optimal routing paths should be displayed after the paths were drawn in the AutoCAD drawing.
2. A .loc file that contained information about all locations visited in the picking operation.
3. A .csv file that contained locations for center aisle lines which material handling equipment used for travel during picking.
4. A .mhe file that contained material handling information-such as type and speeds, container information-such as type and dimensions, and processes information-such as type and time.
5. A second .csv file that contained order information. The information included products, container types, container quantities, product locations, dock locations, pick list number, and zone.

## The .prd file

The .prd file was created in Microsoft Excel and had two main categories: products and parts. As this experiment was considered a non-traditional study for the tuggers module in Flow Planner, the column names did not always correspond to their definitional labeling. For this scenario, it is easier to think of product as a "main flow group", and to think of part as a "subflow group".

## Products

The Products category of the .prd file required information to be entered in the format displayed in Table 9.

Table 9. Product Input Format

| Column | Data Value |
| ---: | :--- |
| 1 | Name |
| 2 | Quantity |
| 3 | Color |
| 4 | Calc |

The first column, "Name", corresponded to the name of the three main zones and the pick list number. As there were three different main zones (DSD, retail, and wholesale), and 15 different pick lists in the original data set (four DSD pick lists, four retail pick lists, and seven wholesale pick lists), there were 15 rows in this Excel file-excluding the row with column headings. These rows began with "DSD|1", and ended with "WHOLE|7".

The second column, "Quantity", corresponded to how many entries the pick lists in the "Name" column had in this table. Since this experiment had historical pick lists for zones whose delivery information remained constant, this column always had a numerical data value of " 1 ". In other words, only " 1 " pick list named "WHOLE 5" was used and only " 1 " pick list named "RETAIL 4" was used.

The third column, "Color", corresponded to which color each optimal routing path of the fifteen pick lists should be drawn in on the AutoCAD interface. This experiment assigned unique colors for each of the three main zones, with DSD using red lines and arrows, retail using yellow lines and arrows, and wholesale using green lines and arrows. The software had an input constraint for numbers, so the numbers " 1 ", " 2 ", and " 3 " were used to correspond to the colors red, yellow, and green respectively.

The fourth column, "Calc" (calculation), corresponded to whether Flow Planner would perform its calculations (e.g. distances, costs, flow diagrams), with the information in the table. Since this information was desired as an output, all columns had the categorical value of "Yes".

The final products data table appeared as displayed in Table 10.

Parts
As mentioned above, for this scenario, it is easier to think of part as a "sub-flow group".

The parts category of the .prd file required information to be entered in the format displayed in Table 11.

Table 10. Products Data Table

| Name | Quantity | Color | Calc |
| :--- | ---: | ---: | :--- |
| DSD\|1 | 1 | 1 | Yes |
| DSD\|2 | 1 | 1 | Yes |
| DSD\|3 | 1 | 1 | Yes |
| DSD\|4 | 1 | 1 | Yes |
| RETAIL\|1 | 1 | 2 | Yes |
| RETAIL\|2 | 1 | 2 | Yes |
| RETAIL\|3 | 1 | 2 | Yes |
| RETAIL\|4 | 1 | 2 | Yes |
| WHOLE\|1 | 1 | 3 | Yes |
| WHOLE\|2 | 1 | 3 | Yes |
| WHOLE\|3 | 1 | 3 | Yes |
| WHOLE\|4 | 1 | 3 | Yes |
| WHOLE\|5 | 1 | 3 | Yes |
| WHOLE\|6 | 1 | 3 | Yes |
| WHOLE\|7 | 1 | 3 | Yes |

Table 11. Part Input Format

| Column | Data Value |
| ---: | :--- |
| 1 | Product Name |
| 2 | Part Name |
| 3 | Qty Parts/Product |
| 4 | Use\% |
| 5 | Days Inventory |
| 6 | Color |

The first column, "Product Name", corresponds to the name of the zone and the pick list number, identical to the values entered in the "Name" column from the product table. Similarly, these rows began with "DSD|1", and ended with "WHOLE $\mid 7$ ". However, each product and return to dock step required its own row, and as there were 302 total products across 15 pick lists, 317 rows were needed in Excel. For example, pick list "DSD|1" has 27 products on its pick list and its return to dock step. Therefore, the first 28 rows of the "Product Name" column had the value "DSD|1".

The second column, "Part Name", was used to identify the product or the return step. The same six-digit numerical item number from the pick list was copied over here. Each of these numbers was used to identify a unique product. The examples from the pick list "Retail 3" include " 506284 " to represent "Description 1" and "479006" to represent "Description 10" [product descriptions redacted]. The only exception to this rule is the last "Part Name" on each pick list had a value of "RETURN" to signify a return to dock step.

The third column, "Qty Parts/Product", corresponded to how many times the "Part Name" appeared under each "Product Name". Since the pick sequence only had a picker go to the product location once to pick multiple of a part, this value was always entered as " 1 ".

The fourth column, "Use\%", corresponds to how often the "Part Name" was given in a specific pick list. Since all of the pick lists had the "Part Name" required for picking $100 \%$ of the time, this value was entered as " $100 \%$ " for all rows.

The fifth and sixth columns, "Days Inventory" and "Color" were not pertinent to this experiment. These values were both set to " 1 " for all rows to keep the Flow Planner application
running as intended. The parts table of pick list "RETAIL|3" is displayed in Table 12. The parts table of the .prd file is shown in its entirety in the Appendix.

Table 12. Parts Table for Pick List "RETAIL|3" of .prd File

| Product Name | Part Name | Qty <br> Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | :--- | ---: | ---: | ---: |
| RETAIL\|3 | 506284 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 473916 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 507238 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 509198 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 509192 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 410608 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 508782 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 511839 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 503791 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 479006 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 511309 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 666688 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | RETURN | 1 | 100 | 1 | 1 |

## The .loc file

Following the organizing of relevant information into a readable .prd file for Flow Planner, a locations file was created using the Flow Planner interface.

## Locations

The bulk of the .loc file is the locations section. This step began with opening the warehouse layout drawing to be analyzed in AutoCAD on a user's computer. Once AutoCAD was open with the proper drawing loaded, Proplanner's Flow Planner application had to be launched either by selecting the Flow Planner icon button from the Proplanner ribbon of

AutoCAD or by typing "ppfp" into the command window-an acronym for Proplanner Flow Planner. The Flow Planner interface opened in AutoCAD over the drawing, but the drawing could be accessed again simply by clicking the "Go to AutoCAD button" from the Flow Planner interface.

Once in the Flow Planner interface, the default selected tab from the top of the window was "Part Routings". For this specific file, the "Locations" tab needed to be selected. The interface for this tab is shown at the end of this section.

The locations are documented through clicking product locations on the AutoCAD drawing and attaching a text label to the chosen x and y coordinates. This file type can be exported as a .loc file.

When in the "Locations" tab's interface, the "Add Location" button was clicked. The first prompt for the user was to type in the "Location Name". For this experiment, the input format of Zone_Product\# or "Part Name" from the .prd file was used (e.g. "R_511816" and "DW_512487"). Here, the zones DSD, retail, warehouse, retail/warehouse, and DSD/warehouse were input as D, R, W, RW, and DW, respectively. Docks were also added in this phase as MainZone_DOCK (i.e. "DSD_DOCK, "RET_DOCK", and "WHL_DOCK"). The second prompt for the user was to "Select Location for "Part Name"". It is here where the user would click on the AutoCAD drawing on a storing location. The chosen product location could be based on principles of the popularity rule, zoning, or simply to see how moving a product's location would affect performance metrics associated with picking said product.

The x and y coordinates of this location were stored in a .loc file and used as variables in optimal routing calculations to minimize travel time. After the user clicks on a location in the

AutoCAD drawing, they will automatically get returned to the Flow Planner interface with the new location added. Flow Planner will automatically fill in the values under the "Group" and "Route" columns as "UNASSIGNED", the values under the "Passthrough" and "Stop" columns as "No", and the values under "Delaytime" as " 0 ". Since all of these values were not pertinent to this experiment, these values were left unchanged. The process of typing in the part name and selecting the location on the AutoCAD drawing was repeated until all locations for all products were added to the Flow Planner interface. In the AutoCAD drawing, these location names were displayed as text in the selected area for each location, defaulted to the layer
"PP_LOCATIONS". The "Locations" tab's interface is displayed in Figure 9. A portion of the data table is shown in Table 13. The locations data table is shown in its entirety in the Appendix.


Figure 9. Locations Tab Interface

Table 13. Portion of the Locations Data Table

| NAME | X <br> (INCHES) | Y <br> (INCHES) | GROUP | TUG_ROUTE | PASSTHROUGH | STOP | DELAYTIME |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| 836261_BULK | 13856.1 | 3491.31 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| DSD_DOCK | 14802.3 | 2984.72 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RET_DOCK | 17822.8 | 2988.28 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509554 | 16926.6 | 3623.31 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509594 | 16926.6 | 3666.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510130 | 16926.6 | 3716.07 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510136 | 16923 | 3769.58 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510138 | 16923 | 3815.96 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510141 | 16923 | 3855.2 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510142 | 16923 | 3905.15 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510198 | 16915.9 | 3937.26 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510418 | 16923 | 3972.93 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510419 | 16851.6 | 3619.74 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510421 | 16855.2 | 3680.39 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510422 | 16855.2 | 3719.63 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 13 Continued

| NAME | X <br> (INCHES) | Y <br> (INCHES) | GROUP | TUG_ROUTE | PASSTHROUGH | STOP | DELAYTIME |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| RW_510425 | 16862.3 | 3773.15 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510426 | 16855.2 | 3815.96 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510646 | 16851.6 | 3858.77 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510835 | 16855.2 | 3908.71 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510936 | 16855.2 | 3930.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511108 | 16858.8 | 3976.5 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511309 | 16723.1 | 3616.17 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511312 | 16730.2 | 3662.55 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| 836261_BULK | 13856.1 | 3491.31 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| DSD_DOCK | 14802.3 | 2984.72 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RET_DOCK | 17822.8 | 2988.28 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509554 | 16926.6 | 3623.31 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509594 | 16926.6 | 3666.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510130 | 16926.6 | 3716.07 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510136 | 16923 | 3769.58 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510138 | 16923 | 3815.96 | UNASSIGNED | UNASSIGNED | No | No | 0 |

## Groups

After establishing the product's locations, a basic group has to be established. On the right side of the interface, typing "UNASSIGNED" as the group name and choosing " 1 -RED" as the dropdown box for color, and then clicking the "Add" button creates the group necessary to run the analysis. The groups data table is displayed in Table 14.

Table 14. Groups Data Table

| Name | COLOR | $\mathbf{X}$ | $\mathbf{Y}$ |
| :--- | ---: | ---: | ---: |
| UNASSIGNED | 1 | 0 | 0 |

## Tug Routes

Three tug routes were created in this file. These tug routes describe the color and time intervals for the routes. This data table is displayed in Table 15.

Table 15. Tug Routes Data Table

| NAME | COLOR | INTERVAL | INCLUDE |
| :--- | ---: | :--- | :--- |
| DSD | 1 | $0.0 / 24.0 / 60 / 60$ | YES |
| WHOLE | 3 | $0.0 / 24.0 / 60 / 60$ | YES |
| RETAIL | 4 | $0.0 / 24.0 / 60 / 60$ | YES |

## Drawing Extents

The last section of the .loc file quantifies the extrema of the coordinates of the AutoCAD drawing. This data table is displayed in Table 16.

Table 16. Drawing Extents Data Table

| MINX (INCHES) | MINY (INCHES) | MAXX (INCHES) | MAXY (INCHES) |
| ---: | ---: | ---: | ---: |
| 12180.9349 | 2733.4438 | 24902.767 | 13028.277 |

## The first .csv file

The next step in this experiment was to create a .csv file in the Flow Planner interface to add center aisle lines in the AutoCAD drawing. Center aisle lines are read by Flow Planner as the only paths capable of travel by the material handling equipment. To initiate this step, the "Paths" tab in the Flow Planner interface was clicked. The "Paths" interface is shown in Figure 10. This was followed by clicking the "Add/Edit Aisle" button, which takes the user to the AutoCAD drawing. From there, the user should click the radio button indicating any directional travel constraints (bidirectional in this experiment), select the aisle width (undefined in this experiment), and draw lines by indicating the starting and ending points of a center aisle line and repeating these steps until all aisles are drawn and connected/intersecting. These center aisle lines tell the software where material handling equipment can geographically travel. The center aisle lines appeared in the layer "PF_AISLEPATH" and in white color by default. The drawing with center lines is displayed in Figure 11. Once all aisles had been drawn, clicking the "Return" button to return to Flow Planner and clicking the "Join Locs to Aisle" (Join Locations to Aisle)
drew a red line in the FP_AISLEPATH-JOIN layer to connect all designated locations' texts to the center aisle lines. This is shown in Figure 12. This function located the closest center aisle line to each previously named location and drew a perpendicular line to minimize travel distance, which the software used for travel calculations. The software uses a shortest-path algorithm to find the best route between two location points using the center aisle lines. The final .csv file is shown in its entirety in the appendix.


Figure 10. Paths Tab Interface


Figure 11. Center Lines (Color Changed to Yellow for Easier Identification)


Figure 12. Locations Joined to Center Lines (Zoomed-in)

## The .mhe file

At this point, a .mhe file that stores material handling, container, and processes information was created using the Flow Planner interface.

## Processes

The processes information was first input, in the "Processes" tab. As processes are functions used in the time calculations and therefore costs of methods, creating the processes data input was a prerequisite to the rest of the .mhe sub-files. In this experiment, only one
process type needed to be created, "LOAD". Creating an unload process was not done because the load and unload processes were determined to be approximately equal, so simply using the load process for the unload process satisfied this condition. Therefore, regardless of the direction for product flow in relation to the material handling equipment, the selected process and its associated performance times was always the "LOAD" process.

The predetermined time systems, including MODAPTS, MTM-B, MTM-UAS or BasicMOST, were foregone in favor of building a "Template".
"Template" is a predetermined time parser code in Flow Planner. The chosen "Activity Code or Description" was "BT(10/10)" which translates to a base time of 10 seconds per process plus an additional time of 10 seconds per container. This means that if a forklift was to pick up four containers, the total load time for this operation is considered to be 50 seconds ( 10 seconds for the base time, plus 10 additional seconds for each of the four containers to be loaded). The processes interface is shown in Figure 13. This data table is shown in Table 17.


Figure 13. Processes Interface

Table 17. Processes Data Table

| Name | Time in sec | Time in <br> MOD/MU | Activity Code | Special Code | Weight Code |
| :--- | ---: | ---: | :--- | ---: | ---: |
| LOAD | -1 | 0 | BT(10/10) | 0 | 0 |

## Method Types

Material handling information was then input into the "Methods" tab. The "Method Types" section was first addressed. The method types category of the .mhe file required information to be entered in the format displayed in Table 18.

Table 18. Method Type Input Format

| Column | Data Value |
| :--- | :--- |
| 1 | Type |
| 2 | Qty |
| 3 | Eff. \% |
| 4 | Max (min) |
| 5 | Fixed\$ |
| 6 | Variable\$ |
| 7 | Straight Speed (f/s) |
| 8 | Accel/Decel (f/s^2) |
| 9 | Curn Angle (deg) |
| 10 | Aisle Path Layer |
| 11 |  |

The "Type" column described the characteristics of the material handling equipment while also acting as an input column option for the methods. "WALKER" was chosen for all method types for the provided data.

The "Qty" (Quantity) column counted how many of this method type exist for use in the picking operation. Since eight pickers were available in the system, the "Qty" column had a value of 8 .

The "Eff. \%" (Effective percentage) displayed the percent of value-added time by the method type, and as such was constrained from 0 to 100 . The only occasion when this data value would not be 100 is if the method type traveled while empty to a location not including the initial routing if provided in the "Parts Routing" tab. As there was no deadheading required in the company data, this value was 100 .

The "Max (min)" (Maximum minutes) column quantified the maximum minutes the method type was available per time period. The default was 115,200 minutes per year (one fulltime shift), which was left at its default value for the data column here.

The "Fixed\$" (Fixed Cost) column was not pertinent to this experiment so a value of 0 was used.

The "Variable\$" (Variable cost) column displayed the method type's variable cost per hour. The chosen value here was $\$ 20 /$ hour, which was the salary of a picker for the company that supplied the data.

The "Straight Speed (f/s)" column corresponded to the travel time in feet per second the method type traveled while moving in a straight line. A value of 2 feet/second was determined to accurately represent a picker's straight speed in this experiment.

The "Accel/Decel (f/s^2)" column corresponded to the rate of acceleration and deceleration in feet per second squared for the method type. This information was important for pick time calculations when traveling around corners which required accelerating and decelerating to accurately quantify total travel time. A value of 2 feet/second/second was determined to accurately represent a picker's acceleration and deceleration in this experiment.

The "Turn Angle (deg)" column corresponded to the angle in degrees required for the method type to complete a turn, and therefore require accelerating and decelerating. This would alert the software to account for additional travel time, as traveling 100 feet straight would take less time than traveling 100 feet with multiple U-turns. The input data was constrained to integer values. The default value was 100 degrees, which meant that any turn angle less than or equal to 100 degrees would constitute a turn for the method type. However, the material handling equipment used in this experiment elicited turn at 120 degrees, which was the value used in this experiment.

The "Aisle Path Layer" column denoted which AutoCAD layer the aisle paths were drawn on so the method type could locate the travelable lines. The default layer created by Flow Planner was "PF_AISLEPATH", which was left to its default layer for this experiment.

The "Color" column corresponded to which color AutoCAD would display the method type if method type was the decided aggregation. The default value of " 1 " (red) was used.

The "Method Types" interface is displayed in Figure 14. This data table is displayed in Table 19.


Figure 14. Method Types Interface

Table 19. Method Types Data Table

| Type | Qty | Eff. <br> \% | Max <br> $(\mathbf{m i n})$ | Fixed\$ | Variable\$ | Straight <br> Speed (f/s) $)$ | Accel/Decel <br> $\left(\mathbf{f} / \mathbf{s}^{\wedge} \mathbf{2}\right)$ | Turn Angle <br> $(\mathbf{d e g})$ | Aisle Path <br> Layer | Color |
| :--- | ---: | :--- | :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| WALKER | 8 | 100 | 115200 | 0 | 20 | 2 |  | 2 | 120 | PF_AISLEPATH |

## Material Handling Methods

Following method types, the "Material Handling Methods" information was then input in the "Methods" tab. The Material Handling Methods category of the .mhe file required information to be entered in the format displayed in Table 20.

Table 20. Material Handling Information Input Format

| Column | Data Value |
| :--- | :--- |
| 1 | Method |
| 2 | Calc |
| 3 | Qty |
| 4 | Type |
| 5 | Load (secs) |
| 6 | Unload (secs) |
| 7 | Start Loc |
| 8 | Color |

The "Method" column named the main zone in which the material handling method would be picked. As mentioned before, since the three main zones were DSD, retail, and wholesale, this column's values were constrained to "DSD", "RETAIL", and "WHOLE". These values were used in the upcoming second .csv file in the "Method" column.

The "Calc" (calculation) column corresponded to whether Flow Planner would perform its calculations (e.g. distances, costs, flow diagrams), with the information in the table. Since this information was desired as an output, all columns had the categorical value of "Yes".

The "Qty" (Quantity) column in the context of this experiment meant how many warehouse main zones have the "Method" name. As there were only one DSD, RETAIL, and WHOLE zones, all quantities were input as " 1 ".

The "Type" column referenced a method type created in the previous section. As there was only one method type created, "WALKER", this was the method type used for this material handling method type. The quantitative metrics from the method types section were linked to this material handling method type.

The "Load (secs)" and "Unload (secs)" tell the software how long in seconds it takes to respectively load and unload the material handling method. Previously created processes can be mentioned here instead of using these columns. DSD and RETAIL elected to use the times assigned to the "LOAD" process, while WHOLE elected to use the load time from the "LOAD" process, but use an unload time of 15 seconds.

The "Start Loc" (Starting location) column was left blank as it was not pertinent to this experiment.

The "Color" column designated the color used to draw paths for the material handling method. All material handling methods used the default value of " 1 " (red).

The material handling methods interface is displayed in Figure 15. This data table is displayed in Table 21.


Figure 15. Material Handling Methods Interface

Table 21. Material Handling Methods Data Table

| Name | Calc | Qty | Type | Load <br> (secs) | Unload <br> (secs) | Start <br> Loc | Color |
| :--- | :--- | ---: | :--- | ---: | :--- | :--- | ---: |
| DSD | Yes | 1 | WALKER | LOAD | LOAD |  | 1 |
| RETAIL | Yes | 1 | WALKER | LOAD | LOAD |  | 1 |
| WHOLE | Yes | 1 | WALKER | LOAD | 15 |  | 1 |

## Containers

After the material handling information part of the .mhe file, the containers section of the file was created in Flow Planner. First, the "Containers" tab, which stores the information about container type used for product movement throughout the warehouse and container dimensions was clicked. There was only one type of container used here, "CASE," whose dimensions were not pertinent to this experiment as congestion diagrams for the aisles would not be created. For
this reason, leaving the default dimensions of the container to 1 -inch x 1 -inch x 1 -inch was sufficient.

The case container was determined to have full and empty stack quantities of 1 , meaning that only 1 case can be carried along the paths joining the Locations to the center aisle lines at a time. Last, color was left at the default value " 1 " (red) as container would not be used as an aggregation technique. Group and description were left blank as they were not pertinent to this experiment.

The containers interface is dispalyed in Figure 16, and this data table is displayed in Table 22.


Figure 16. Containers Interface

Table 22. Containers Data Table

| Name | Length | Width | Height | Full Qty | Empty Qty | Color |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CASE | 1 | 1 | 1 | 1 | 1 | 1 |

## The second .csv file

The last file type created was a second .csv file, used to store part routings information. A company provided fifteen different historical pick lists to be used in the analysis of different warehouse layout designs. These fifteen pick lists had product order quantities of 27, 37, 32, 42, $18,19,12,17,11,13,9,15,13,16$, and 21 products, corresponding to 302 total products across all orders. Since Flow Planner reads each row as a product order, 302 total rows were needed under the column heading row to encompass all of the historical data for the warehouse layout analysis.

The Part Routings category of the .csv file required information to be entered in the format displayed in Table 23.

Table 23. Part Routings Input Format

| Column | Data Value |
| :--- | :--- |
| 1 | *ID |
| 2 | Part |
| 3 | Container |
| 4 | ContQty |
| 5 | From |
| 6 | Stage |
| 7 | To |
| 8 | ETD |
| 9 | Direction |
| 10 | Load |
| 11 | Unload |
| 12 | Route |

A Microsoft Excel table was created which had twelve columns, with each row representing a different product from a customer's order. The resulting Excel file was 12 columns by 303 rows, including the first row of column headings.

As this was a non-standard use of the tuggers module, a strategy of defining the "Stage" and "To" locations for the deliveries file while leaving the "From" field blank communicated to the software to read this file to mean start at the "Stage" location (which remained constant
across all rows for a pick list), travel to all of the "To" Locations, and return to the "Stage" location. The significance of the other columns is explained below.

The "*ID" column was used to provide a unique numerical identifier associated with each different delivery of a product to a location. The first row had an *ID value of " 1 ", and this column increased by 1 for each row, i.e. $1,2,3,4,5, \ldots, n$. In the data provided by the company, 302 products needed picking so the final value in this column was " 302 ".

The "Part" column was used to identify the product. The same six-digit item number from the pick list was copied over here. This is different from the *ID column as there were instances where the same product was used as a part of two different orders in the data file. For instances such as these, the products had different *ID numbers but identical part numbers. Examples of part numbers representative to those provided used for the experiment were 310565, 305644, and 751008 . Each of these numbers was used to identify a unique product.

The "Container" column was used to name which storing container was used to transport the parts. Examples used for analysis in Flow Planner include pallet, tub, barrel, rack, case, etc. This field is important for congestion diagrams as the data in this column corresponded with the capacity pickers had for carrying containers, which affected the total picking time if multiple containers were ordered. However, this experiment did not use congestion diagrams. In the data provided by the company, "CASE" was designated as the container type for all 302 products.

The "ContQty" (Container Quantity) column was used to denote the order quantity of a product number. This column's values were constrained to real numbers greater than 0 . In the data provided by a company, ContQty values were observed to be as low as " 1 " product and as high as " 30 " products.

The "From" column was left blank in the data provided by the company. This column could be used to store a location if the picking order needed to be completed in a specific order. Occupying this column with a value was expected to decrease the optimality for the routing path provided by Flow Planner.

The "Stage" column designated the dock to which all the picked products would be brought at the completion of the pick list. This column's information became more necessary as the number of shipping docks in a warehouse increased. Since there were three different main docks in the warehouse provided by the company, this column had one of the three docks ("DSD_DOCK", "WHL_DOCK", and "RET_DOCK") listed here depending on which shipping dock was selected from the zoned customer order areas.

The "To" column was used to designate the location of the particular product in the warehouse. These locations were placed in the drawing as text for the Flow Planner software to locate and create an x and y coordinate. This column was necessary to provide pickers with the locations of the products in the pick lists and to determine optimal path routing for the picking operation.

The "ETD" (estimated time of delivery) column was originally created to denote the exact time at which a product needed to be delivered from the tugger material handling equipment to the "Stage" location. This column value held integer values to represent the hour or hold values with one decimal point, with each increasing decimal point adding six minutes to the estimated time for delivery. However, to determine optimal routing paths, the tuggers file type can use this column to instead communicate which pick list was getting picked. To do this, all products of the same pick list received the same value which told the software to have all of the products in an order delivered to the user-designated dock at the same time. The values used in
the company provided data ranged from " 1 " to " 4 " for the DSD zone, " 1 " to " 4 " for the retail zone, and " 1 " to " 7 " for the wholesale zone, with each number denoting the pick list to which a product belonged.

The "Direction" column tells Flow Planner the delivery direction. Only two values were allowed in this field. " 1 ", meaning the container was picked up at the "From" location and dropped off at the "TO" location, or, "-1", meaning the container was picked up at the "TO" location and dropped off at the "From" location. This information was necessary for Flow Planner to account for the additional operation of returning empty containers if products held directional values of "-1". In this experiment, because the products were all part of a pick list, and not dropped off at the product's location, this column's values were all " 1 "s.

The "Load" column was optional, which could have been used to designate the time in seconds it takes a worker to load the container for this product. Filling in values for this column is expected to provide a more reliable estimation for the pick time of a pick list. There was also an option in the Flow Planner interface to input a standard load time for all containers regardless of product. This column was left blank in the data provided by the company, as the alternative of defining load and unload times by material handling method was elected instead.

Similarly, the "Unload" column was optional, which could have been used to designate the time in seconds it takes a worker to unload the container for this product. Filling in values for this column is expected to provide a more reliable estimation for the pick time of a pick list. There was also an option in the Flow Planner interface to input a standard unload time for all containers regardless of product. This column was also left blank in the data provided by the company, as the alternative of defining load and unload times by material handling method was also elected instead.

The "Route" column was also optional, which was used in this experiment to assign a main zone to the particular delivery row used to designate which route a particular set of pick lists belonged. Since the company whose data was provided was zoned into three main areas, there were three routes provided. Each route was listed in alphabetical characters. These routes were "DSD", "RETAIL", and "WHOLE". This also indicated which pick lists should be picked by which route drivers.

The part routings interface is displayed in Figure 17. A portion of this data table is shown in Table 24. This second .csv file's data table is displayed in its entirety in the Appendix.


Figure 17. Part Routings Interface

Table 24. Portion of the Second .csv File

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| ---: | :--- | :--- | ---: | ---: | :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| 1 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 1 | 1 |  |  | DSD |
| 2 | 506952 | CASE | 30 |  | DSD_DOCK | DW_506952 | 1 | 1 |  |  | DSD |
| 3 | 506953 | CASE | 30 |  | DSD_DOCK | DW_506953 | 1 | 1 |  |  | DSD |
| 4 | 509625 | CASE | 5 |  | DSD_DOCK | DW_509625 | 1 | 1 |  |  | DSD |
| 5 | 100411 | CASE | 10 |  | DSD_DOCK | DW_100411 | 1 | 1 |  |  | DSD |
| 6 | 100621 | CASE | 25 |  | DSD_DOCK | DW_100621 | 1 | 1 |  |  | DSD |
| 7 | 505554 | CASE | 15 |  | DSD_DOCK | DW_505554 | 1 | 1 |  | DSD |  |
| 8 | 510203 | CASE | 5 |  | DSD_DOCK | DW_510203 | 1 | 1 |  |  | DSD |
| 9 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 1 | 1 |  | DSD |  |
| 10 | 503971 | CASE | 5 |  | DSD_DOCK | DW_503971 | 1 |  | 1 |  | DSD |
| 11 | 503279 | CASE | 10 |  | DSD_DOCK | DW_503279 | 1 | 1 |  | DSD |  |
| 12 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 1 | 1 |  |  | DSD |
| 13 | 831261 | CASE | 5 |  | DSD_DOCK | DW_831261 | 1 | 1 |  |  | DSD |
| 14 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 1 | 1 |  |  | DSD |
| 15 | 832461 | CASE | 5 |  | DSD_DOCK | DW_832461 | 1 | 1 |  |  | DSD |
| 16 | 834161 | CASE | 15 |  | DSD_DOCK | DW_834161 | 1 | 1 |  |  | DSD |
| 17 | 835261 | CASE | 20 |  | DSD_DOCK | DW_835261 | 1 | 1 |  |  | DSD |

Table 24 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | 836261 | CASE | 15 |  | DSD_DOCK | DW_836261 | 1 | 1 |  |  | DSD |
| 19 | 505546 | CASE | 15 |  | DSD_DOCK | DW_505546 | 1 | 1 |  |  | DSD |
| 20 | 505550 | CASE | 5 |  | DSD_DOCK | DW_505550 | 1 | 1 |  |  | DSD |
| 21 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 1 | 1 |  |  |  |
| 22 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 1 | 1 | DSD |  |  |
| 23 | 505551 | CASE | 5 |  | DSD_DOCK | DW_505551 | 1 | 1 |  |  | DSD |
| 24 | 510645 | CASE | 5 |  | DSD_DOCK | DW_510645 | 1 | 1 |  |  | DSD |
| 25 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 1 | 1 |  |  | DSD |
| 26 | 506630 | CASE | 5 |  | DSD_DOCK | DW_506630 | 1 | 1 |  |  |  |
| 27 | 509042 | CASE | 15 |  | DSD_DOCK | DW_509042 | 1 | 1 |  |  | DSD |
| 30 | 505548 | CASE | 4 |  | DSD_DOCK | DW_505548 | 2 | 1 |  |  | DSD |

After the drawing had been prepared and the electronic files created, Flow Planner was able to design the optimal route and perform calculations necessary for providing performance metrics of the tested warehouse layout. This information is covered in phase two-picking.

## (2) Picking

The picking phase for the automated method's half of this experiment consisted of running the simulation.

## Load electronic inputs

This step began in the Flow Planner interface. Once in the Flow Planner interface, the default selected tab from the top of the window was "Part Routings". For this specific analysis, the "Tuggers" tab needed to be selected since that is the module used for this scenario. Once the "Tuggers" tab was selected, the next step was to click the "Import Deliveries" button in the upper-left corner of the Flow Planner interface. This loaded another window where the part deliveries, methods, containers, processes, location group, and route assignments were imported (the .csv, .mhe, and .loc files). This window is displayed in Figure 18.


Figure 18. Window to Load Electronic Files

The user should first click the "CSV File" button next to the "Part Deliveries" input box and locate the saved comma-separated values file on the user's computer, which was created in the "Creating readable data files" phase. The user should then click the "MHE File" button and locate the created MHE file. Last, the user should click the "LOC File" button and locate the LOC file from the user's computer.

After all three files had been loaded into the import windows, clicking the "OK" button in the bottom left corner resulted in Flow Planner successfully loading the different files' information into its interface. This step was completed as soon as the "Status" display area gave a reading of "Done."

## Generate routings

After importing all of the relevant information, the next step was to generate the tuggers routes which consider the constraints entered from the input files and order the products in an order which a warehouse picker should pick the products in order to deliver the full pick list to the designated dock in the shortest time. This step is also completed in the tuggers tab.

Proplanner recommended first generating routes by selecting the less-realistic "Distance Type" of the "Straight Flow" option instead of the more-realistic "Aisle Flow" option. The straight flow option ignored all lines drawn in the AutoCAD drawing and allowed transportation in a straight line while ignoring physical barriers such as walls, racking, and inaccessible areas. Generating initial tugger routes this way allowed for validation of data by ensuring all products' locations are approximately in the correct areas and for the joining of locations to aisles to occur. These routes were not included in the analysis. After generating the straight flow routes, the user clicked on the "Paths" tab and clicked the "Join Locs to Aisle" button located in the "Aisle Paths" area to link all travel locations to aisles capable of travel.

## Generate flow diagrams

The tuggers tab generated the routings based on the information imported into Flow Planner. The next step was to create the flow diagrams-lines drawn in the AutoCAD drawing which instructed the picker which route to take to pick which goods in which order if the order was placed. The flow diagrams added a visual display for the decision makers of the group and allowed for calculations on performance metrics to take place for the routes. To finish the simulation, the user switched from the tuggers tab to the "Part Routings" tab, and selected the following options under the "Calculate" settings: "Path Arrows", "Calc Locs/Network", "Include accel/decal", "Straight Flow", and "Aggregated by" "Product". Selecting the path arrows option
creates the flow lines in AutoCAD with arrows at the end of the line segments, indicating directional travel for a route. Selecting to include accelerations and decelerations provides a more accurate pick time as it is not feasible for material handling equipment to make turns without initially decreasing speed while entering a turn followed by increasing speed while exiting a turn. As more corners and stops are required for the picking, selecting this option approximates the simulated picking time closer to the actual picking time. Cost will also be reflected in the longer pick times associated with accelerations and decelerations, but travel distance should not observe any change.

The straight flow generated for the fifteen pick lists is displayed in Figure 19.


Figure 19. Straight Flow for All Pick Lists (15)

After verifying no obvious mistakes were made using the straight flow technique, the user switched back to the tuggers tab and changed the distance type from straight flow to aisle flow which allowed for routes capable of analysis to be generated. The "TSP Algorithm" radio button was changed from "Fast" to "Accurate" for increased accuracy as these results would be used for the warehouse layout design analysis. The "Staging Time" was set to "0" seconds as the time for staging activities was not pertinent to this experiment. Clicking the "Generate Routes" button was the last step to generate the routes.

After clicking the generate routes button with the new settings, the routes were regenerated. This time, the routing was restricted to travel in the center aisle lines and the aisle join lines from the center aisle lines to the product locations, and accounted for obstacles in the drawing which material handling equipment would have to avoid in the event of an actual picking occurring. The simulation run time for aisle flow took longer than straight flow but was able to produce routes that were capable of travel. The result was a picking order assigned to all pick list routes to minimize total picking time in the warehouse layout drawing.

To finish the simulation, the user switched from the tuggers tab to the "Part Routings" tab, and changed the "Calculate" settings from "Straight Flow" to "Aisle Flow". The user clicked the "Calculate" button to put into sequence the final action for completing the simulation. Once the calculations terminate, a "Results" window appeared over the Flow Planner interface, and the run time of the simulation was considered over.

The aisle flow generation is displayed in Figure 20.


Figure 20. Aisle Flow for All Pick Lists (15)

## (3) Post-picking

The final phase of the automated technique's process was the post-picking analysis phase. This phase consisted of the software calculating all necessary quantitative metrics and creating all visual displays used to aid the decision-making team in determining the value of a warehouse layout drawing. The analysis for the automated technique was divided into eight categories: The initial results window, part routings tab, paths tab, filter tab, utilization tab, tuggers tab, reports tab, and the AutoCAD drawing.

## Initial results window

The first observation the simulator would notice is the "Results" window, which can be viewed by the default "Aggregates" (pick lists), or "Routes" (main zones) if the radio button is changed at the bottom of this window. The initial results window hosts a table displaying quantitative performance results for the picking operation for the theoretical warehouse layout design. The quantitative performance data includes the distance traveled, time for the trip, cost for the trip, percent of time spent in the picking operation dedicated only to travel as opposed to load and unload times, quantity of items in each pick list, average trip time, minimum trip time, maximum trip time, standard deviation of the trip times, average travel time, minimum travel time, maximum travel time, standard deviation of the trip times, average handle time, minimum handle time, maximum handle time, standard deviation of the trip handle times, and how many containers were used with each pick list and main zone or just main zone-along with the totals for all columns. A portion of this window grouped by pick list and by main zone can be seen in Figures 21 and 22. These data tables are shown in their entirety in the Appendix.

| E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current History |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aggregate | Dist (Ft) | Time (Hrs) | Cost | Travel\% | TugVol \% | Qty | AvgTripTime (Mins) | Min TripTime (Mins) | Max TripTime (Mins) | SDEV TripTime (Mins) | Avg Travelime (Mins) | Min Traveltime (Mins) | Max Travelime (Mins) | SDEV Travelime (Mins) |
| DSD;01.0000 | 927.67 | 1.01 | \$20.12 | 13.85\% | 16.49\% | 28 | 2.16 | 0.54 | 5.24 | 1.30 | 0.30 | 0.01 | 0.97 | 0.33 |
| DSD;02.0000 | 924.00 | 0.67 | \$13.32 | 21.18\% | 8.80\% | 38 | 1.05 | 0.38 | 2.21 | 0.42 | 0.22 | 0.01 | 1.23 | 0.32 |
| DSD;03.0000 | 785.67 | 0.47 | \$9.36 | 25.79\% | 5.38\% | 33 | 0.85 | 0.31 | 2.59 | 0.55 | 0.22 | 0.01 | 1.22 | 0.30 |
| DSD;04.0000 | 1,048.17 | 1.24 | \$24.77 | 12.96\% | 20.02\% | 43 | 1.73 | 0.64 | 5.23 | 0.99 | 0.22 | 0.01 | 1.09 | 0.31 |
| Retailio 0.0000 | 1,278.67 | 0.33 | \$6.58 | 56.94\% | 1.91\% | 19 | 1.04 | 0.37 | 3.53 | 0.82 | 0.59 | 0.04 | 1.79 | 0.59 |
| Retailio2.0000 | 1,330.00 | 0.33 | \$6.52 | 59.96\% | 1.62\% | 20 | 0.98 | 0.36 | 2.53 | 0.60 | 0.59 | 0.02 | 2.19 | 0.55 |
| Retailio3.0000 | 958.50 | 0.22 | \$4.48 | 62.79\% | 1.04\% | 13 | 1.03 | 0.49 | 1.69 | 0.45 | 0.65 | 0.06 | 1.42 | 0.49 |
| Retailio4.0000 | 1,294.00 | 0.30 | \$6.02 | 63.12\% | 1.33\% | 18 | 1.00 | 0.35 | 2.15 | 0.53 | 0.63 | 0.01 | 1.82 | 0.54 |
| WHOLE; 01.0000 | 660.00 | 0.14 | \$2.88 | 68.19\% | 0.81\% | 12 | 0.72 | 0.29 | 1.62 | 0.48 | 0.49 | 0.04 | 1.37 | 0.47 |
| WHOLE: 02.0000 | 516.33 | 0.13 | \$2.66 | 59.21\% | 1.16\% | 14 | 0.57 | 0.27 | 1.16 | 0.32 | 0.34 | 0.02 | 0.91 | 0.31 |
| WHOLE' ${ }^{\text {O }}$ 3.0000 | 520.00 | 0.11 | \$2.30 | 67.36\% | 2.66\% | 10 | 0.69 | 0.26 | 1.67 | 0.47 | 0.46 | 0.01 | 1.42 | 0.50 |
| WHOLE; 04.0000 | 1,111.17 | 0.23 | \$4.51 | 72.26\% | 1.10\% | 16 | 0.84 | 0.27 | 2.29 | 0.51 | 0.61 | 0.02 | 2.04 | 0.50 |
| WHOLE;05.0000 | 773.17 | 0.17 | \$3.37 | 67.83\% | 1.39\% | 14 | 0.72 | 0.22 | 1.28 | 0.37 | 0.49 | 0.04 | 1.03 | 0.35 |
| WHOLE;06.0000 | 618.50 | 0.16 | \$3.18 | 58.10\% | 2.14\% | 17 | 0.56 | 0.22 | 1.38 | 0.37 | 0.33 | 0.00 | 1.13 | 0.37 |
| WHOLE; $\mathbf{\prime} 7.0000$ | 955.33 | 0.23 | \$4.62 | 62.11\% | 2.43\% | 22 | 0.63 | 0.27 | 1.35 | 0.37 | 0.39 | 0.02 | 1.10 | 0.37 |
| Total | 13,701.17 | 5.73 | \$114.68 | 35.62\% | 4.55\% | 317 |  |  |  |  |  |  |  |  |
| < |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right-Click to Cop | py Screen |  |  |  |  |  |  |  | Return | - Aggregates | Routes |  |  |  |

Figure 21. Portion of the Results Window by Aggregates


Figure 22. Portion of the Results Window by Routes

This simulation would likely be run with multiple layout alternatives to determine which layout would provide the company with superior value. Different layouts would produce different performance metrics for the columns in the results' window tables. A group can look at total time spent picking as a prioritized metric while looking at the proportion of time spent traveling (a non-value added activity) to attempt to further decrease total picking time by editing the layout design. This column can also provide the team with information as to whether prioritizing process improvements toward reducing total travel time or reducing picking time would be in the company's best interest.

The "Qty" column in the "Aggregates" window represents how many stops were made for each pick list (this includes stops for picking products and the final stop of returning to the dock). The same "Qty" column in the "Routes" window represents how many pick lists exist for each main zone ( 4 for the DSD zone, 4 for the RETAIL zone, and 7 for the WHOLE zone).

For a further breakdown of how time was utilized, charts can be accessed in the utilization tab-as discussed below.

The quantitative metrics from the layout design analysis can be saved, and after some locations are moved, the model can be run again to generate the quantitative metrics associated with the different layout design alternative. All of the design iteration's performance metrics are stored in the "History" tab of the calculation results window. The history tab allows for direct comparisons across multiple metrics quickly-a positive quality about incorporating an automated method, as mentioned previously. This window can be shown to a group of people to aid in converging on an optimal layout. The history tab from the initial results window is displayed in Figure 23.


Figure 23. History Tab from the Results Window

## Part Routings tab

Clicking the "Return" button in the results window will take the user back to the main Flow Planner interface, in the "Part Routings" tab. The part routings window is displayed in Figure 24.


Figure 24. Part Routings Tabular Display of Generated Routes

Here, the simulator can observe the generated flow routes in a tabular format. The first pick list, "DSD 1" (the first historical pick list from the DSD zone route) is the default route shown, but the pick list can be changed by selecting a different pick list from the drop-down box in the upper left corner of the part routings window.

The pick list's data table provides a data entry (row) for every stop made (load) in a pick. Each row provides information on which product was picked from which location using which
container type, how many containers, and where the next picking location is. All of these rows are automatically sorted in chronological visitation order.

The table can be read as the picker starting at "DSD_DOCK" (row 1 under the "From" column) and traveling to the text location in the drawing "DW_506952" (under the "To Loc" column) to pick 30 cases of the product 506952 . Following this pick, the picker would next travel to "DW_506953" (row 2 under the "To Loc" column) to pick 30 cases of that product. The final entry on the pick list (not shown in Figure 24) tells the picker to return to the dock "DSD_DOCK" (listed in the final row under the "To Loc" column).

This pick list makes one delivery of twenty-seven items to one location (the dock). This is read in the final row which uses a part number of "RETURN" which tells the software to return to the initial dock, in this case, "DSD_DOCK". The container name is listed as "!NA" as this value communicates to the software to ignore the load/unload time but to calculate the distance and walk time. A value of "- 2 " in the "Parts/C" column communicates to the software that the stop is an unload at the "TO" location. Since all products had the same "ETD" value in the tuggers tab, this delivery delivered all products at the same time to the final staging area ("DSD_DOCK").

The part routings data tables are shown in their entirety for all fifteen pick lists in the Appendix.

## Paths tab

The data table in the paths tab, which populated after the simulation, is filled with quantitative metrics on every path traveled throughout the simulation. Each path lists the pick list in which the path was traveled, origin point, destination, distance, travel time, load/unload time,
and cost. Figure 25 displays a portion of the data table in an interface format, with the data table provided in its entirety in the Appendix.


Figure 25. Portion of the Paths Tab

## Filter tab

The filter tab allows for a subset of the population's results to be displayed either visually or in the format of a data table-effectively, hiding specific data points.

This process begins with the user clicking the "Filter" tab in the Flow Planner interface. Once in the filter tab, the user would select pick list(s), from location(s), and/or to location(s) of interest and click the "Filter Flows" button to get the data filtered to the chosen inputs. For example, if the user wanted to see a quantitative report and visual routing in the AutoCAD drawing for all picking that originated from the "DSD_DOCK", then Flow Planner would output the data table shown in Figure 26 and the flow diagram displayed in Figure 27.


Figure 26. Portion of Interface and Quantitative Output from the "Filter" Tab Data Table


Figure 27. AutoCAD Drawing with the Applied Filter Flow Diagram

## Utilization tab

Selecting the "Utilization" tab in the Flow Planner interface shows the user graphical depictions (bar charts) on performance metrics for each pick list with respect to material handling equipment. The first "Chart Type", "Aggregate (Load/Unload)", provides the user with a bar chart for each pick list displaying the percentage of total pick time spent on loading and unloading versus traveling. Users can use this information to adjust policies for picking or to further change product locations to add more value-added work to the picking process. In the data provided from a company, usage rates for travel time in a pick list ranged from approximately $19 \%$ in pick list "DSD 1 " to approximately $76 \%$ in pick list "WHOLE 4", as seen in the bar chart in Figure 28.


Figure 28. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \%

In addition, these utilization charts can be filtered by pick list to observe a smaller scale of pick lists which can be used for more direct comparisons while ignoring pick lists not of concern at that moment of analysis. Figure 29 displays the result of filtering to only show the DSD pick lists' performance for loading and unloading versus traveling time.


Figure 29. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \% Filtered to Only Show DSD Pick Lists

The bar chart type can be changed by selecting a different radio button option from the "Chart Type" area in the bottom left corner of the utilization tab. The second chart type which can be used is the "Tuggers (Time)" option. This chart type displays the percent of the time a picker is overutilized versus idle versus busy. These performance metrics provide the user with information on whether more products can be added to a specific pick list without overworking the picker with respect to time. This bar chart is shown in Figure 30.


Figure 30. Flow Planner Bar Chart for Tuggers (Time) by Usage \%

## Tuggers tab

Following the generate routings action performed earlier, a sequence of picks was created with the objective of minimizing the total pick time for each pick list. The main window in the "Tuggers" tab, "Import Deliveries", is a table which stores information between every stop in the picking process. A portion of this table can be seen in Figure 31.

```
|PartRoutings Products Locations Paths 
```



Figure 31. A Portion of the Tuggers Import Deliveries Table

The pick sequence was determined using the built-in Dijkstra's shortest path algorithm which uses the aisle network of the layout to solve the traveling salesman problem. In this example, seen in Figure 31, the algorithm recommended starting by picking product 506632, followed by product 506952, and so forth until the entire pick list had been picked. The data table displayed in this window is shown in its entirety in the Appendix.

## Reports tab

The "Reports" tab allows the user to create reports based on specific filters that allow for easier viewing, quick printing, and exporting of these reports to software capable of advanced statistical analysis, such as Microsoft Excel.

The upper left area for this tab is the "Flow Report" area, which includes three subfields: "Aggregate to Report", "Report Type", and "Fields to Print". As this experiment is an atypical
tuggers experiment, the only selectable aggregate from the drop-down list to report is "Product".
Report type should be left to its default values, and the "Fields to print" area should have all boxes selected except for "Volume (Tuggers)", as this field is not pertinent to this experiment. Fields to print means that all selected boxes will appear in the report. Clicking the "Create Report" button in this area will create an XML file type report displaying the fields to print aggregated by the selected aggregate, product (pick list), while displaying the data for all flow paths.

| SIMPLE AGGREGATE SUMMARY : Year |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGGREGATE | FROM | то | FREQUENCY | TOTAL DISTANCE FEET | TRIP DISTANCE FEET | EFF. TRIP DISTANCE FEET | TRAVEL TIME SECONDS | L/ULTIME SECONDS | totaltime SECONDS | TRIP TRAVEL TIME SECONDS | $\begin{gathered} \text { COST } \\ \$ \end{gathered}$ |
| DSD'01.0000 | DSD_DOCK | 1 | 1 | 34 | 34 | 34 | 19 | 60 | 79 | 19 | 0.44 |
|  | 1 | 1 | 1 | 19.08 | 19.08 | 19.08 | 11.54 | 110 | 121.54 | 11.54 | 0.68 |
|  | 1 | 1 | 1 | 7.67 | 7.67 | 7.67 | 4.83 | 260 | 264.83 | 4.83 | 1.47 |
|  | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 160 | 160 | 0 | 0.89 |
|  | 4 | 5 | 1 | 105.58 | 105.58 | 105.58 | 55.79 | 60 | 115.79 | 55.79 | 0.64 |
|  | 5 | 6 | 1 | 13.92 | 13.92 | 13.92 | 7.96 | 60 | 67.96 | 7.96 | 0.38 |
|  | 6 | 2 | 1 | 5.42 | 5.42 | 5.42 | 3.71 | 160 | 163.71 | 3.71 | 0.91 |
|  | 2 | 9 | 1 | 97.58 | 97.58 | 97.58 | 51.79 | 110 | 161.79 | 51.79 | 0.9 |
|  | 9 | 1 | 1 | 4.17 | 4.17 | 4.17 | 2.82 | 60 | 62.82 | 2.82 | 0.35 |
|  | 1 | 6 | 1 | 3.83 | 3.83 | 3.83 | 2.92 | 160 | 162.92 | 2.92 | 0.91 |
|  | 6 | 7 | 1 | 3.67 | 3.67 | 3.67 | 2.54 | 110 | 112.54 | 2.54 | 0.63 |
|  | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 60 | 60 | 0 | 0.33 |
|  | 0 | 2 | 1 | 7.83 | 7.83 | 7.83 | 4.92 | 60 | 64.92 | 4.92 | 0.36 |
|  | 2 | 9 | 1 | 0.42 | 0.42 | 0.42 | 0.65 | 60 | 60.65 | 0.65 | 0.34 |
|  | 9 | 1 | 1 | 111.25 | 111.25 | 111.25 | 58.33 | 160 | 218.33 | 58.33 | 1.21 |
|  | 1 | 1 | 1 | 3.25 | 3.25 | 3.25 | 2.33 | 60 | 62.33 | 2.33 | 0.35 |
|  | 1 | 1 | 1 | 5.5 | 5.5 | 5.5 | 3.49 | 60 | 63.49 | 3.49 | 0.35 |
|  | 1 | 0 | 1 | 98.33 | 98.33 | 98.33 | 52.17 | 60 | 112.17 | 52.17 | 0.62 |
|  | 0 | 8 | 1 | 18.58 | 18.58 | 18.58 | 10.29 | 60 | 70.29 | 10.29 | 0.39 |
|  | 8 | 1 | 1 | 68.67 | 68.67 | 68.67 | 35.08 | 60 | 95.08 | 35.08 | 0.53 |
|  | 1 | 1 | 1 | 6.25 | 6.25 | 6.25 | 4.13 | 210 | 214.13 | 4.13 | 1.19 |
|  | 1 | 5 | 1 | 49.75 | 49.75 | 49.75 | 26.88 | 60 | 86.88 | 26.88 | 0.48 |
|  | 5 | 1 | 1 | 79.83 | 79.83 | 79.83 | 41.92 | 160 | 201.92 | 41.92 | 1.12 |
|  | 1 | 3 | 1 | 69.25 | 69.25 | 69.25 | 35.63 | 60 | 95.63 | 35.63 | 0.53 |
|  | 3 | 7 | 1 | 43 | 43 | 43 | 22.5 | 60 | 82.5 | 22.5 | 0.46 |
|  | 7 | 3 | 1 | 5.67 | 5.67 | 5.67 | 3.83 | 310 | 313.83 | 3.83 | 1.74 |
|  | 3 | 2 | 1 | 6.75 | 6.75 | 6.75 | 4.38 | 310 | 314.38 | 4.38 | 1.75 |
|  | 2 | DSD_DOCK | 1 | 58.42 | 58.42 | 58.42 | 32.21 | 0 | 32.21 | 32.21 | 0.18 |
| SUB TOTAL |  |  | 28 | 927.67 |  |  | 501.64 | 3,120.00 | 3,621.64 |  | 20.13 |

Figure 32. Advanced Report Aggregated by Product

## Inserting a Legend

The "Legend" area of the "Reports" tab creates a visual key to decipher color codes for different routes based on different aggregations in the AutoCAD drawing. The legend should be used for a clearer interpretation of a visual which may contain many lines. Color-coding routes here is unnecessary if the explanation as to why some routes are displayed in certain colors is left unknown. This experiment aggregated by "Product", which assigns a different color to each main zone. For instance, the pick lists from the DSD zone, RETAIL zone, and WHOLE zone were represented by red lines, yellow lines, and green lines in the AutoCAD drawing, respectively. The scaling command in AutoCAD adjusts the size of the legend with respect to the size of the warehouse layout. The size and location of the legend are left to the choice of the user. Figure 33 displays an example of how a legend may appear in an AutoCAD drawing.


Figure 33. Legend from this Experiment

## Methods Reports

The "Methods Reports" area is used to generate external reports for method utilization using either aggregate or method.

The method report aggregates calculations by main picking zone and provides calculations including quantity, travel time, load/unload time, total time, available time/quantity, and utilization. A user can determine from this output whether an individual main zone provides greater room for improvements than others.

| MATERIAL HANDLING DEVICE UTILIZATION |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| METHOD | QUANTITY |  | TRAVEL TIME HOURS |  | L/UL TIME HOURS | TOTAL TIME HOURS | AVAIL TIME/QTY | UTILIZATION |
| DSD |  | 1 |  | 0.9 | 2.82 | 3.72 | 1,920.00 | 0.19\% |
| RETAIL |  | 1 |  | 0.86 | 0.47 | 1.33 | 1,920.00 | 0.07\% |
| WHOLE |  | 1 |  | 1 | 0.41 | 1.41 | 1,920.00 | 0.07\% |
| total | 8 |  | 2.76 |  | 3.7 | 6.46 | 15,360.00 | 0.04\% |

Figure 34. Method Material Handling Report

The aggregate report aggregates calculations by pick list and provides calculations including travel time, load/unload time, total time, percentage travelling, and percentage load/unloading. A user can determine from this output whether some individual pick lists provide greater room for improvements than others.

|  | MATERIAL HANDLING AGGREGATE UTILIZATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AGGREGATE | TRAVEL TIME HOURS | L/UL time HOURS | TOTAL TIME hours | PERCENTAGE TRAVELLING | PERCENTAGE LOAD/UNLOADING |
| DSD',01.0000 | 0.21 | 0.87 | 1.08 | 19.44\% | 80.56\% |
| DSD',02.0000 | 0.23 | 0.53 | 0.76 | 30.26\% | 69.74\% |
| DSD; 03.0000 | 0.21 | 0.35 | 0.56 | 37.50\% | 62.50\% |
| DSD; 04.0000 | 0.26 | 1.08 | 1.34 | 19.40\% | 80.60\% |
| RETAIL,'01.0000 | 0.23 | 0.14 | 0.37 | 62.16\% | 37.84\% |
| RETAIL;'02.0000 | 0.24 | 0.13 | 0.37 | 64.86\% | 35.14\% |
| RETAIL',03.0000 | 0.17 | 0.08 | 0.25 | 68.00\% | 32.00\% |
| RETAIL; 04.0000 | 0.23 | 0.11 | 0.34 | 67.65\% | 32.35\% |
| WHOLE,01.0000 | 0.12 | 0.05 | 0.17 | 70.59\% | 29.41\% |
| WHOLE:02.0000 | 0.11 | 0.05 | 0.16 | 68.75\% | 31.25\% |
| WHOLE:03.0000 | 0.1 | 0.04 | 0.14 | 71.43\% | 28.57\% |
| WHOLE; 04.0000 | 0.2 | 0.06 | 0.26 | 76.92\% | 23.08\% |
| WHOLE: 05.0000 | 0.15 | 0.05 | 0.2 | 75.00\% | 25.00\% |
| WHOLE,06.0000 | 0.13 | 0.07 | 0.2 | 65.00\% | 35.00\% |
| WHOLE; 07.0000 | 0.19 | 0.09 | 0.28 | 67.86\% | 32.14\% |
| TOTAL | 2.78 | 3.7 | 6.48 | 42.90\% | 57.10\% |

Figure 35. Aggregate Material Handling Report

## AutoCAD drawing

When the user wants to look at the qualitative results from the simulation, they can click on the "Go to AutoCAD" button in the Flow Planner interface. This will take them to their warehouse layout design. The paths were made thicker through increasing the "Flow Path Thickness" scale from 100 to 1000 in the "Paths" tab and updating the model. The visual output from this experiment produced the AutoCAD window displayed in Figure 36.


Figure 36. AutoCAD Drawing Aggregated by Pick List

When in the AutoCAD interface, a user can click the "QueryPath" button in the reduced Flow Planner interface to generate a quantitative report on individual or multiple paths from the drawing. A query path report can be seen in Figure 37, which was created from two paths chosen by random in the AutoCAD drawing.


Figure 37. Query Path Results Window

The query path results window contains information on individual paths including the pick list to which the path belongs, "From" and "To" locations, distance, total travel time, total load/unload time, cost, and totals from each column.

## Evaluating a Layout Design Using a Manual Technique

Similar to the automated technique, the manual technique's layout design analyzation was divided into three phases: (1) Pre-picking, (2) picking, and (3) post-picking. Rather than using software to determine picking times, costs, and other relevant information used in deciding a warehouse layout design, a human had to manually determine picking routes based on pick lists, measure travel distances manually, and incorporate starting/stopping/accelerating/decelerating/loading/unloading/cost into the calculations used to determine total pick times and costs for given layout alternatives.

## (1) Pre-picking

## Preparing a drawing

A drawing was created in AutoCAD to provide a visual for the picking process and to aid in determining decisions such as product locations. The scale of the warehouse and internal distances needed to again be accurate as calculating total travel distances had to be done using the "Distance Measure" command offered within AutoCAD. Just like the automated method, warehouse storing dimensions, storing locations, dock locations, and aisle widths are of the highest priority to accurately portray. The AutoCAD drawing needed to have the same qualities regardless of whether an automated or manual technique was being used to analyze the warehouse layout. As such, the warehouse drawing consisted primarily of the walls, racking, and aisles. From there, zones were added to the drawing due to the increased expected performance associated with zoning a warehouse, as mentioned in the literature review above. Figure 38 is a visual display of the AutoCAD drawing up to this point.


Figure 38. AutoCAD Drawing with Racking, Walls, Aisles, and Zones

## Understanding the received data

The pick list received from a customer order would be the same as the one used in the automated technique since historical orders were used for the same company. Therefore, the data within the pick list would be read identical to the pick list in the automated technique's section.

## Creating readable data files

Since software meant in assisting the route planning could not be used in a manual technique, the data did not have to be reformatted as a human would be reading the information
instead of a computer. However, locations still had to be assigned to racking in the warehouse, load and unload times had to be assigned to the picking process, and the material handling equipment had to have designated performance metrics. All of these metrics are discussed in the following sections.

## Assigning product locations

This process consisted of identifying a product name from the product list, identifying which zone the product needed to be located, and typing in a text layer in the AutoCAD drawing within the geographical area of a storage rack to designate the storage rack location to a product. Locations were designated based on zoning principles and the popularity rule. Locations were added one by one until all products from the product list had an assigned storing location in the AutoCAD drawing. Figure 39 displays an updated visual of a portion of the AutoCAD drawing (zoomed-in to make the text layer readable) with the addition of text layers in the drawing to designate product storing locations.


Figure 39. Zoomed-in Portion of AutoCAD Drawing with Added Location Text Layer

## Designating load and unload times

It was previously determined to use identical load and unload times for picking, as both processes were estimated to be approximately equal. Similarly, a base time of 10 seconds per process plus an additional time of 10 seconds per container was determined as load/unload times should not change simply because the analyzing technique did.

## Quantifying material handling equipment metrics

Material handling equipment needed an assigned variable cost, straight speed (feet/second), acceleration and deceleration times, and turn angle (degrees) to be used in quantifying the picking time and cost for picking each pick list. The chosen values here were
identical to the values chosen in the automated technique's section: $\$ 20 /$ hour variable cost, 2 feet/second straight speed, 2 feet/second/second acceleration and deceleration rates, and a 120degree turn angle required to activate an acceleration and deceleration.

## (2) Picking

Simulating the picking process consisted of determining the optimal routes for the pick lists and displaying these routes graphically on top of an AutoCAD layout. An AutoCAD drawing file was necessary as a prerequisite to determining the optimal routes. The picking phase was considered terminated when the last path for the last route was drawn, returning the picker to the final pick list's dock.

## AutoCAD Drawing

As mentioned, the AutoCAD drawing was a prerequisite to creating the routings. Since a human is determining the optimal route here rather than a computer, creating a visual aid helps minimize the routing mistakes that may have arisen in the routing process. The drawing also happens to serve as a prerequisite to many of the post-picking phase's report calculations, and for these reasons, the drawing was created prior to said routing creations or post-picking phase's report calculations.

In the "Preparing a drawing" section of the pre-picking phase above, the warehouse storing dimensions, storing locations, dock locations, aisle widths, walls, and zones were drawn. In order to produce a final product identical to the output from the automated technique (see Figure 40), the following steps had to be done:


Figure 40. AutoCAD Drawing Output from the Automated Technique

## 1. Creating a legend

The first step was to choose a color to correspond with each main picking zone. In the interest of replicability, the colors red, yellow, and green were chosen to depict the drawn routes from the DSD, RETAIL, and WHOLE zones. A physical legend was drawn in AutoCAD to serve as a reference for the decision-making team when looking at the drawing.

## 2. Drawing the routings

Following the assignment of locations, routings had to be created for each pick list. Manually, this process required solving the traveling salesman problem in a user's head-a problem of how to move to multiple locations in the shortest possible time or distance. Other manual techniques included the heuristics identified in the literature review section, such as the
s-shape, return, aisle-by-aisle, largest gap, midpoint, and combined routing strategies. For this experiment, a method outlined by an industry expert in chapter 3 was used. First, the user marked each product's location from each product on a pick list in the AutoCAD drawing. Then, the user used their best judgment as to creating a quick route that would stop at each marked location along the way, starting at the designated dock, and ending back at the identical dock. For example, using pick list "DSD 1" in this experiment, the user would have marked the AutoCAD drawing in Figure 41 as such, with red stars designating locations hosting products listed in the pick list currently ready for an assigned routing.

The product location's text layer was turned off for Figure 41 to provide a clearer visual of marked locations.

Following the location marking, a directional route was drawn starting at the designated dock, connecting all of the stars by traveling through the middle of the aisles, and ending back at the same starting dock. To do this, a line had to be drawn in AutoCAD. The thickness for the line was set to 1000 so the routes would be more visible in the drawing. The chosen pick list's corresponding color from the legend was then selected in AutoCAD. An example of a route the user may have identified as sufficient appears in Figure 42.


Figure 41. AutoCAD Drawing with Pick List "DSD 1" Locations' Marked by Red Stars


Figure 42. Routing for Pick List "DSD 1"

Arrows were drawn at each product location and some corners to indicate the direction of travel to minimize mistakes from the picker when it comes time to fulfill a pick list. This step was repeated until all fifteen routes were drawn in the AutoCAD layout. After all of these steps, an AutoCAD drawing identical to the output from the automated technique should be visible with the equivalent level of detail.

## (3) Post-picking

The final phase for the manual technique's process consisted of calculating all necessary quantitative metrics and creating all visual displays which could be used to aid the decisionmaking team when comparing layout design alternatives. As this was an experiment, the outputs from the automated technique had to be identical to the outputs created by the manual technique. Therefore, seven categories were used for dividing the analysis: The tuggers tab, part routings tab, paths tab, reports tab, filter tab, query paths results window, initial results windows, reports tab revisited, and utilization tab.

## Tuggers tab

Now that each pick list had a near-optimal pick route, the data table from the tuggers tab could be recreated in Microsoft Excel which would display the products in pick order with their location and the next pick location. An ID, part number, container quantity, dock, location, pick list, direction, and route were entered for each product. The part numbers used for each product were the location without the leading main zone initials. Container quantity information was retrieved from the physical pick lists in the pre-picking phase. The dock was chosen based on which main zone the pick list routed through. The locations were read from the AutoCAD drawing and typed into a cell. The final data table appeared as seen in Table 25-identical to the data table produced in the tuggers tab using the automated technique.

Table 25. Tuggers Data Table for Pick List "DSD 1"

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 1 | 1 |  |  | DSD |
| 2 | 506952 | CASE | 30 |  | DSD_DOCK | DW_506952 | 1 | 1 |  |  | DSD |
| 3 | 506953 | CASE | 30 |  | DSD_DOCK | DW_506953 | 1 | 1 |  |  | DSD |
| 4 | 509625 | CASE | 5 |  | DSD_DOCK | DW_509625 | 1 | 1 |  |  | DSD |
| 5 | 100411 | CASE | 10 |  | DSD_DOCK | DW_100411 | 1 | 1 |  |  | DSD |
| 6 | 100621 | CASE | 25 |  | DSD_DOCK | DW_100621 | 1 | 1 |  |  | DSD |
| 7 | 505554 | CASE | 15 |  | DSD_DOCK | DW_505554 | 1 | 1 |  |  | DSD |
| 8 | 510203 | CASE | 5 |  | DSD_DOCK | DW_510203 | 1 | 1 |  |  | DSD |
| 9 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 1 | 1 |  |  | DSD |
| 10 | 503971 | CASE | 5 |  | DSD_DOCK | DW_503971 | 1 | 1 |  |  | DSD |
| 11 | 503279 | CASE | 10 |  | DSD_DOCK | DW_503279 | 1 | 1 |  |  | DSD |
| 12 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 1 | 1 |  |  | DSD |
| 13 | 831261 | CASE | 5 |  | DSD_DOCK | DW_831261 | 1 | 1 |  |  | DSD |
| 14 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 1 | 1 |  |  | DSD |
| 15 | 832461 | CASE | 5 |  | DSD_DOCK | DW_832461 | 1 | 1 |  |  | DSD |
| 16 | 834161 | CASE | 15 |  | DSD_DOCK | DW_834161 | 1 | 1 |  |  | DSD |
| 17 | 835261 | CASE | 20 |  | DSD_DOCK | DW_835261 | 1 | 1 |  |  | DSD |

Table 25 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | 836261 | CASE | 15 |  | DSD_DOCK | DW_836261 | 1 | 1 |  |  | DSD |
| 19 | 505546 | CASE | 15 |  | DSD_DOCK | DW_505546 | 1 | 1 |  |  | DSD |
| 20 | 505550 | CASE | 5 |  | DSD_DOCK | DW_505550 | 1 | 1 |  |  | DSD |
| 21 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 1 | 1 |  |  | DSD |
| 22 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 1 | 1 |  |  | DSD |
| 23 | 505551 | CASE | 5 |  | DSD_DOCK | DW_505551 | 1 | 1 |  |  | DSD |
| 24 | 510645 | CASE | 5 |  | DSD_DOCK | DW_510645 | 1 | 1 |  |  | DSD |
| 25 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 1 | 1 |  |  | DSD |
| 26 | 506630 | CASE | 5 |  | DSD_DOCK | DW_506630 | 1 | 1 |  |  | DSD |
| 27 | 509042 | CASE | 15 |  | DSD_DOCK | DW_509042 | 1 | 1 |  |  | DSD |

## Part routings tab

Since the routes had been generated and detailed in the tuggers tab data table, creating a "Part Routings" data table only added an additional column for the "From" location and a column to indicate whether the stop had a load or unload process at the from or to location (this experiment always unloaded at the To location). Unloading at the To location is designated by a value of "-2" in the "Parts/C" column. The final data table appeared as displayed in Table 26.

## Paths tab

The paths tab data table was then created as a table with seven columns: Aggregate
Name, From, To, Calc Dist/Trip (Ft.), Total Travel time (Hrs), Total L/UL time (Hrs), and Total \$. This table was recreated in Microsoft Excel in a process someone using the manual technique would employ. Each path lists the pick list in which the path was traveled, origin point, destination, distance, travel time, load/unload time, and cost.

Table 26. Part Routings Table

| Part | \% | From | Method | Container | C/Trip | Parts/C | To Loc | Via Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505551 | 100 |  | DSD | CASE | 5 | -2 | DW_505551 |  |  | 0 | 505551 |
| 100411 | 100 |  | DSD | CASE | 10 | -2 | DW_100411 |  |  | 0 | 100411 |
| 100621 | 100 |  | DSD | CASE | 25 | -2 | DW_100621 |  |  | 0 | 100621 |
| 505554 | 100 |  | DSD | CASE | 15 | -2 | DW_505554 |  |  | 0 | 505554 |
| 509625 | 100 |  | DSD | CASE | 5 | -2 | DW_509625 |  |  | 0 | 509625 |
| 509046 | 100 |  | DSD | CASE | 5 | -2 | DW_509046 |  |  | 0 | 509046 |
| 509042 | 100 |  | DSD | CASE | 15 | -2 | DW_509042 |  |  | 0 | 509042 |
| 503279 | 100 |  | DSD | CASE | 10 | -2 | DW_503279 |  |  | 0 | 503279 |
| 503971 | 100 |  | DSD | CASE | 5 | -2 | DW_503971 |  |  | 0 | 503971 |
| 505546 | 100 |  | DSD | CASE | 15 | -2 | DW_505546 |  |  | 0 | 505546 |
| 505547 | 100 |  | DSD | CASE | 10 | -2 | DW_505547 |  |  | 0 | 505547 |
| 506630 | 100 |  | DSD | CASE | 5 | -2 | DW_506630 |  |  | 0 | 506630 |
| 506632 | 100 |  | DSD | CASE | 5 | -2 | DW_506632 |  |  | 0 | 506632 |
| 505549 | 100 |  | DSD | CASE | 5 | -2 | DW_505549 |  |  | 0 | 505549 |
| 836261 | 100 |  | DSD | CASE | 15 | -2 | DW_836261 |  |  | 0 | 836261 |
| 832461 | 100 |  | DSD | CASE | 5 | -2 | DW_832461 |  |  | 0 | 832461 |
| 831261 | 100 |  | DSD | CASE | 5 | -2 | DW_831261 |  |  | 0 | 831261 |

Table 26 Continued

| Part | \% | From | Method | Container | C/Trip | Parts/C | To Loc | Via Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505550 | 100 |  | DSD | CASE | 5 | -2 | DW_505550 |  |  | 0 | 505550 |
| 510708 | 100 |  | DSD | CASE | 5 | -2 | DW_510708 |  |  | 0 | 510708 |
| 836561 | 100 |  | DSD | CASE | 5 | -2 | DW_836561 |  |  | 0 | 836561 |
| 835261 | 100 |  | DSD | CASE | 20 | -2 | DW_835261 |  |  | 0 | 835261 |
| 510645 | 100 |  | DSD | CASE | 5 | -2 | DW_510645 |  |  | 0 | 510645 |
| 834161 | 100 |  | DSD | CASE | 15 | -2 | DW_834161 |  |  | 0 | 834161 |
| 510203 | 100 |  | DSD | CASE | 5 | -2 | DW_510203 |  |  | 0 | 510203 |
| 507087 | 100 |  | DSD | CASE | 5 | -2 | DW_507087 |  |  | 0 | 507087 |
| 506953 | 100 |  | DSD | CASE | 30 | -2 | DW_506953 |  |  | 0 | 506953 |
| 506952 | 100 |  | DSD | CASE | 30 | -2 | DW_506952 |  |  | 0 | 506952 |
| RETURN | 100 |  | DSD | !NA | 1 | -1 | DSD_DOCK |  |  | 0 |  |

The first column, "Aggregate Name", identified which pick list to which a path belongs. Since the paths were listed in chronological order, row one's aggregate name was DSD 1, which was repeated until all paths from the pick list DSD 1 were entered into the table.

The second column, "From", identified the initial point for each path. Commonly, this data entry is the "To" location from the previous data row. However, for the first row, the starting location was at DSD_DOCK, since this is the default starting location for a picker with a new and unpicked pick list.

The third column, "To", identified the terminal point for each path. This column provided the AutoCAD text label from each product location, with each subsequent row holding the data value from the product location picked next, according to the routing path created previously.

The fourth column, "Calc Dist/Trip (Ft.)", listed the distance in feet from the "From" location to the "To" location, including all turns. The data entered here was calculated using the "Distance Measure" command in AutoCAD and drawing the lines a material handler would travel to pick the product. AutoCAD automatically measures the distance and provides it as an output, which was entered into Microsoft Excel. This process began with selecting pick list DSD 1, and measuring the distances for all individual paths in AutoCAD, recording said paths distances to the nearest inch, and repeating this process for all fifteen pick lists. For example, pick list DSD 1 begins at the DSD_DOCK and picks its first product at location DW_505551. A table was created in Microsoft Excel displaying the start and end location and the distance measured in AutoCAD (50'-11").

The fifth column, "Total Travel time (Hrs)", accounted for the straight speed of the material handling equipment, acceleration and deceleration around corners, and acceleration and
deceleration accompanying stopping to pick products. The time for each path was calculated using the straight speed provided for the material handling equipment multiplied by the distance moved in a straight line using the material handling machine. The required stopping distance can be calculated by squaring the straight speed and dividing this result by the product of 2 , a constant 9.8 (acceleration due to gravity), and the unitless coefficient of friction (assumed similar to dry asphalt at 0.8 ). After determining the distance required to imitate a full stop, the time required to complete the stop was necessary in order to determine an accurate pick time, since a material handling device would not be able to travel at its straight speed when approaching a product's location which required stopping to pick.

The sixth column, "Total L/UL time (Hrs)", calculated the walk time to and from the product storing location from the material handling equipment. In the "Designating load and unload times" subsection in the pre-picking phase above, this process was calculated using a base time of 10 seconds per process plus an additional time of 10 seconds per container.

The sixth column, "Total \$", converted the time spent picking into a monetary figure and added in any fixed and variable costs associated with production.

The data table in Table 27 was produced to rival the data table created produced from the automated technique used by Proplanner. This data table is shown in its entirety in the Appendix.

Table 27. A Portion of the Paths Table

| Aggregate <br> Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total L/UL Time (Hrs) | $\begin{aligned} & \text { Total } \\ & \$ \end{aligned}$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|1 | DW_DOCK | DW_505551 | 1 | 34'-0" | 0.01 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_505551 | DW_100411 | 1 | 19'-1" | 0 | 0.03 | 1 | WALKER |
| DSD\|1 | DW_100411 | DW_100621 | 1 | 7'-8" | 0 | 0.07 | 1 | WALKER |
| DSD\|1 | DW_100621 | DW_509625 | 1 | 105'-7" | 0.02 | 0.02 | 1 | WALKER |
| DSD\|1 | DW_509625 | DW_509046 | 1 | 13'-11' | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_509046 | DW_509042 | 1 | 5'-5" | 0 | 0.04 | 1 | WALKER |
| DSD\|1 | DW_509042 | DW_503279 | 1 | 97'-7" | 0.01 | 0.03 | 1 | WALKER |
| DSD\|1 | DW_503279 | DW_503971 | 1 | 4'-2" | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_503971 | DW_505546 | 1 | 3'-10" | 0 | 0.04 | 1 | WALKER |
| DSD\|1 | DW_505546 | DW_505547 | 1 | 3'-8" | 0 | 0.03 | 1 | WALKER |
| DSD\|1 | DW_505547 | DW_506632 | 1 | 7'-10" | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_506632 | DW_505549 | 1 | 5" | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_505549 | DW_836261 | 1 | 111'-3" | 0.02 | 0.04 | 1 | WALKER |
| DSD\|1 | DW_836261 | DW_832461 | 1 | 3'-3' | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_832461 | DW_831261 | 1 | 5'-6" | 0 | 0.02 | 0 | WALKER |

Table 27 Continued

| Aggregate <br> Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|1 | DW_831261 | DW_505550 | 1 | 98'-4" | 0.01 | 0.02 | 1 | WALKER |
| DSD\|1 | DW_505550 | DW_510708 | 1 | 18'-7" | 0 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_510708 | DW_836561 | 1 | 68'-8" | 0.01 | 0.02 | 1 | WALKER |
| DSD\|1 | DW_836561 | DW_835261 | 1 | 6'-3" | 0 | 0.06 | 1 | WALKER |
| DSD\|1 | DW_835261 | DW_510645 | 1 | 49'-9" | 0.01 | 0.02 | 0 | WALKER |
| DSD\|1 | DW_510645 | DW_834161 | 1 | 79'-10" | 0.01 | 0.04 | 1 | WALKER |
| DSD\|1 | DW_834161 | DW_510203 | 1 | 69'-3" | 0.01 | 0.02 | 1 | WALKER |
| DSD\|1 | DW_510203 | DW_510203 | 1 | 69'-3" | 0.01 | 0.02 | 1 | WALKER |
| DSD\|1 | DW_510203 | DW_506953 | 1 | 5'-8" | 0 | 0.09 | 2 | WALKER |
| DSD\|1 | DW_506953 | DW_506952 | 1 | 6'-9" | 0 | 0.09 | 2 | WALKER |
| DSD\|1 | DW_506952 | DW_DOCK | 1 | 58'-5" | 0.01 | 0 | 0 | WALKER |

## Reports tab

The first of the three reports, "Advanced Report aggregated by product", was created in Microsoft Excel. All of this information was produced in prior data tables, so the process of filling out this data table was merely done by reorganizing information from previous data tables. The data table in the report includes columns for Aggregate (pick list), From, To, Distance, Travel Time, Load/Unload Time, and Cost. Table 28 displays a portion of the report. The report is shown in its entirety in the Appendix.

## Filter Tab

The "Filter" tab added value by allowing a user to select a path or multiple paths, and observe the Pick List, From Location, To Location, Route Distance, Total Travel time, Total L/UL Time, and Total \$ associated with the pick list(s). For example, if a user wanted to receive the data for all routes originating from DSD_DOCK, then the user would have to locate the appropriate paths from the paths data table and reorganize this information into a data table in Microsoft Excel. For this example, the filter chosen was again all routes originating from the DSD_DOCK, identical to the filter when using the automated technique. Table 29 is the data table produced from filtering the flows to only flows originating from DSD_DOCK.

Table 28. Advanced Report Aggregated by Product

| Aggregate | From | To | Freq | Total <br> Distance <br> (Feet) | Travel <br> Time <br> (Sec) | L/UL <br> Time <br> (Sec) | Total <br> Time <br> (Sec) | Cost <br> (\$) |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| DSD\|1 | DSD_DOCK | DW_505551 | 1 | 34 | 19 | 60 | 79 | 0.44 |
| DSD\|1 | DW_505551 | DW_100411 | 1 | 19.08 | 11.54 | 110 | 121.54 | 0.68 |
| DSD\|1 | DW_100411 | DW_100621 | 1 | 7.67 | 4.83 | 260 | 264.83 | 1.47 |
| DSD\|1 | DW_100621 | DW_505554 | 1 | 0 | 0 | 160 | 160 | 0.89 |
| DSD\|1 | DW_505554 | DW_509625 | 1 | 105.58 | 55.79 | 60 | 115.79 | 0.64 |
| DSD\|1 | DW_509625 | DW_509046 | 1 | 13.92 | 7.96 | 60 | 67.96 | 0.38 |
| DSD\|1 | DW_509046 | DW_509042 | 1 | 5.42 | 3.71 | 160 | 163.71 | 0.91 |
| DSD\|1 | DW_509042 | DW_503279 | 1 | 97.58 | 51.79 | 110 | 161.79 | 0.9 |
| DSD\|1 | DW_503279 | DW_503971 | 1 | 4.17 | 2.82 | 60 | 62.82 | 0.35 |
| DSD\|1 | DW_503971 | DW_505546 | 1 | 3.83 | 2.92 | 160 | 162.92 | 0.91 |
| DSD\|1 | DW_505546 | DW_505547 | 1 | 3.67 | 2.54 | 110 | 112.54 | 0.63 |
| DSD\|1 | DW_505547 | DW_506630 | 1 | 0 | 0 | 60 | 60 | 0.33 |
| DSD\|1 | DW_506630 | DW_506632 | 1 | 7.83 | 4.92 | 60 | 64.92 | 0.36 |
| DSD\|1 | DW_506632 | DW_505549 | 1 | 0.42 | 0.65 | 60 | 60.65 | 0.34 |
| DSD\|1 | DW_505549 | DW_836261 | 1 | 111.25 | 58.33 | 160 | 218.33 | 1.21 |
| DSD\|1 | DW_836261 | DW_832461 | 1 | 3.25 | 2.33 | 60 | 62.33 | 0.35 |

Table 28 Continued

| Aggregate | From | To | Freq | Total Distance (Feet) | Travel Time (Sec) | $\begin{aligned} & \hline \text { L/UL } \\ & \text { Time } \\ & \text { (Sec) } \end{aligned}$ | Total Time (Sec) | Cost <br> (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|1 | DW_832461 | DW_831261 | 1 | 5.5 | 3.49 | 60 | 63.49 | 0.35 |
| DSD\|1 | DW_831261 | DW_505550 | 1 | 98.33 | 52.17 | 60 | 112.17 | 0.62 |
| DSD\|1 | DW_505550 | DW_510708 | 1 | 18.58 | 10.29 | 60 | 70.29 | 0.39 |
| DSD\|1 | DW_510708 | DW_836561 | 1 | 68.67 | 35.08 | 60 | 95.08 | 0.53 |
| DSD\|1 | DW_836561 | DW_835261 | 1 | 6.25 | 4.13 | 210 | 214.13 | 1.19 |
| DSD\|1 | DW_835261 | DW_510645 | 1 | 49.75 | 26.88 | 60 | 86.88 | 0.48 |
| DSD\|1 | DW_510645 | DW_834161 | 1 | 79.83 | 41.92 | 160 | 201.92 | 1.12 |
| DSD\|1 | DW_834161 | DW_510203 | 1 | 69.25 | 35.63 | 60 | 95.63 | 0.53 |
| DSD\|1 | DW_510203 | DW_507087 | 1 | 43 | 22.5 | 60 | 82.5 | 0.46 |
| DSD\|1 | DW_507087 | DW_506953 | 1 | 5.67 | 3.83 | 310 | 313.83 | 1.74 |
| DSD\|1 | DW_506953 | DW_506952 | 1 | 6.75 | 4.38 | 310 | 314.38 | 1.75 |
| DSD\|1 | DW_506952 | DSD_DOCK | 1 | 58.42 | 32.21 | 0 | 32.21 | 0.18 |
|  |  | Sub Totals: | 28 | 927.67 | 501.64 | 3,120.00 | 3,621.64 | 20.13 |

Table 29. Quantitative Output from the "Filter" Tab

| Aggregate <br> Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User <br> Dist/Trip <br> (Ft) | Total <br> Travel <br> Time <br> (Sec) | Total <br> L/UL <br> Time <br> (Sec) | $\begin{aligned} & \text { Total } \\ & \$ \end{aligned}$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|1 | DSD_DOCK | DW_505551 | 1 | 34'-0" | 34'-0" | None | 19 | 60 | 0 | WALKER |
| DSD\|1 | DSD_DOCK | DW_100521 | 1 | 57'-1" | 57'-1" | None | 31 | 50 | 0 | WALKER |
| DSD\|1 | DSD_DOCK | DW_100411 | 1 | 53'-1" | 53'-1" | None | 30 | 20 | 0 | WALKER |
| DSD\|1 | DSD_DOCK | DW_100521 | 1 | 57'-1" | 57'-1' | None | 31 | 160 | 1 | WALKER |
| Total |  |  | 4 | 201'-3" | 201'-3" | $0{ }^{\prime \prime}$ | 111 | 290 | 1 |  |

## Query Paths results window

The query paths results window in Flow Planner queries the paths tab for specific data entries for a specific individual path or multiple paths. Manually, this process would involve an inquirer to physically point to a drawn path in AutoCAD, a user to determine which pick list this path belongs to, which path this is using information including the starting point (From) and the destination (To), and for that individual to copy over the selected values into a table including distance, times, and cost while adding in a summation data row at the bottom. For this example, two paths were selected without methodology using the AutoCAD drawing. The user then queried the rows in the paths table and output the results of the query with a totals row in Table 30.

## Initial Results Window

Two initial results data tables were created to match the detail and quality offered from the initial results windows provided by the automated technique. These data tables are aggregated by pick list and aggregated by main zone, each with a totals row.

The first initial results data table, aggregated by pick list, gives summary statistics for all quantitative metrics (mean, minimum, maximum, and standard deviation). These statistics are given for trip times, travel times, and handle times. Other information, which is identical to the information provided by the automated technique, includes distance traveled, time for the trip, cost for the trip, percent of time spent in the picking operation dedicated only to travel as opposed to load and unload times, and container quantities. This table can be seen in Table 31.

The other initial results data table is aggregated by main zone/route. The column headers are identical to the data table shown in Table 31, but pick lists were grouped into main zone rather than as a standalone. This table can be seen in Table 32.

If another layout had been created and ran through all of the above steps, then a data table with comparative metrics would have been produced. This data table simply gathers the totals from previous data tables and displays the differences between the layout alternatives. Since a different layout alternative was not analyzed for this simulation, the time to complete this step was left out from the time studies.

Table 30. Query Paths Results Window

| Aggregate <br> Name | From | To | Freq | Calc Dist/Trip | Total Travel Time (mins) | Total L/UL Time (mins) | Total \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL\|3 | R_506284 | R_509198 | 1 | 64'-4" | 35 | 20 | 0 |
| RETAIL\|4 | R_513020 | R_506562 | 1 | 143'-5" | 77 | 20 | 1 |
| TOTAL |  |  | 2 | 207'-9" | 112 | 40 | 1 |

Table 31. Results Window by Aggregates Part 1

| Aggregate | Dist <br> (Ft) | Time <br> (Hrs) | Cost | Travel\% | Qty | Avg Trip Time <br> (Mins) | Min Trip Time <br> (Mins) | Max Trip Time <br> (Mins) | SDEV <br> Trip Time <br> (Mins) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD101.0000 | 1585 | 1.11 | \$22.27 | 22.17\% | 28 | 2.39 | 1.02 | 5.9 | 1.4 |
| DSDi02.0000 | 1605.33 | 0.78 | \$15.63 | 32.83\% | 38 | 1.23 | 0.47 | 2.29 | 0.44 |
| DSDi03.0000 | 1407.33 | 0.57 | \$11.44 | 39.32\% | 33 | 1.04 | 0.42 | 3.41 | 0.67 |
| DSD ${ }_{1} 04.0000$ | 2028.83 | 1.4 | \$27.98 | 22.95\% | 43 | 1.95 | 0.79 | 4.41 | 0.98 |
| RETAIL 01.0000 | 1421.33 | 0.36 | \$7.20 | 60.64\% | 19 | 1.14 | 0.46 | 3.1 | 0.71 |
| RETAILi02.0000 | 1597.67 | 0.38 | \$7.51 | 65.22\% | 20 | 1.13 | 0.43 | 2.56 | 0.61 |
| RETAILi03.0000 | 1183.5 | 0.26 | \$5.27 | 68.38\% | 13 | 1.22 | 0.43 | 1.91 | 0.53 |
| RETAIL; 04.0000 | 1422.83 | 0.33 | \$6.59 | 66.29\% | 18 | 1.1 | 0.47 | 2.31 | 0.55 |
| WHOLE ${ }^{\text {! }}$ 01.0000 | 942.33 | 0.19 | \$3.82 | 76.03\% | 12 | 0.96 | 0.43 | 1.84 | 0.47 |
| WHOLE ${ }^{\text {! }}$ (22.0000 | 797.5 | 0.18 | \$3.59 | 69.85\% | 14 | 0.77 | 0.41 | 1.45 | 0.37 |
| WHOLE! 03.0000 | 639 | 0.14 | \$2.73 | 72.53\% | 10 | 0.82 | 0.4 | 1.79 | 0.46 |
| WHOLE ${ }^{\text {! }} 04.0000$ | 1471.5 | 0.29 | \$5.72 | 78.15\% | 16 | 1.07 | 0.43 | 1.96 | 0.46 |
| WHOLE ${ }^{\text {[ }}$ 05.0000 | 1073.67 | 0.22 | \$4.39 | 75.31\% | 14 | 0.94 | 0.42 | 1.45 | 0.37 |
| WHOLE ${ }^{\text {! }}$ 06.0000 | 1147.17 | 0.24 | \$4.87 | 72.65\% | 17 | 0.86 | 0.39 | 1.39 | 0.36 |
| WHOLE! 07.0000 | 1550 | 0.33 | \$6.55 | 73.29\% | 22 | 0.89 | 0.4 | 2.02 | 0.44 |
| Total | 19873 | 6.78 | \$135.58 | 45.54\% | 317 |  |  |  |  |

Table 31 Continued
$\left.\begin{array}{|l|r|r|r|r|l|l|l|l|l|}\hline & \begin{array}{l}\text { Avg } \\ \text { Travel } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { Min } \\ \text { Travel } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { Max } \\ \text { Travel } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { SDEV } \\ \text { Travel } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { Avg } \\ \text { Handle } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { Min } \\ \text { Handle } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { Max } \\ \text { Handle } \\ \text { Time } \\ \text { (Mins) }\end{array} & \begin{array}{l}\text { SDEV } \\ \text { Handle } \\ \text { Time } \\ \text { (Mins) }\end{array} \\ \hline \text { DSD;01.0000 } & 0.53 & 0.08 & 1.4 & 0.42 & 1.86 & 0 & 5.17 & 1.34 & 285 \\ \text { Container } \\ \text { Qty }\end{array}\right]$

Table 32. Results Window by Routes

| Aggregate | Dist <br> $($ (Ft) | Time <br> (Hrs) | Cost | Travel\% | Qty | Avg <br> Trip <br> Time <br> (Mins) | Min <br> Trip <br> Time <br> (Mins) | Max <br> Trip <br> Time <br> (Mins) | SDEV <br> Trip <br> Time <br> (Mins) |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DSD | 6626.5 | 3.87 | $\$ 77.33$ | $27.15 \%$ | 4 | 57.99 | 34.33 | 83.93 | 21.86 |
| RETAIL | 5625.3 | 1.33 | $\$ 26.57$ | $64.87 \%$ | 4 | 19.93 | 15.81 | 22.52 | 2.97 |
| WHOLE | 7621.2 | 1.58 | $\$ 31.68$ | $74.23 \%$ | 7 | 13.58 | 8.19 | 19.66 | 3.92 |
| Total | 19873 | 6.78 | $\$ 135.58$ | $59.18 \%$ | 15 |  |  |  |  |

Table 32 Continued

| Aggregate | Avg <br> Travel <br> Time <br> (Mins) | Min <br> Travel <br> Time <br> (Mins) | Max <br> Travel <br> Time <br> (Mins) | SDEV <br> Travel <br> Time <br> (Mins) | Avg <br> Handle <br> Time <br> (Mins) | Min <br> Handle <br> Time <br> (Mins) | Max <br> Handle <br> Time <br> (Mins) | SDEV <br> Handle <br> Time <br> (Mins) | Container Qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD | 15.74 | 13.5 | 19.26 | 2.48 | 42.25 | 20.83 | 64.67 | 19.76 | 876 |
| RETAIL | 12.93 | 10.81 | 14.69 | 1.6 | 7 | 5 | 8.5 | 1.53 | 102 |
| WHOLE | 10.08 | 5.94 | 14.41 | 3.04 | 3.5 | 2.25 | 5.25 | 0.97 | 202 |
| Total |  |  |  |  |  |  |  |  | 1180 |



Figure 43. History Tab from the Results Window

## Reports tab revisited

Two additional report types were created to fully replicate the reports produced using the automated technique. These reports were both given on methods, with the difference being aggregating by main zone/route versus by individual pick list.

The first method report aggregates calculations by main picking zone and provides calculations including quantity, travel time, load/unload time, total time, available time/quantity, and utilization. A user can determine from this output whether a main zone provides greater room for improvements than others.

| MATERIAL HANDLING DEVICE UTILIZATION |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| METHOD | QUANTITY |  | TRAVEL TIME HOURS | L/UL TIME HOURS | TOTAL TIME HOURS | AVAIL TIME/QTY | UTILIZATION |
| DSD |  | 1 | 0.9 | 2.82 | 3.72 | 1,920.00 | 0.19\% |
| RETAIL |  | 1 | 0.86 | 0.47 | 1.33 | 1,920.00 | 0.07\% |
| WHOLE |  | 1 | 1 | 0.41 | 1.41 | 1,920.00 | 0.07\% |
| TOTAL | 8 |  | 2.76 | 3.7 | 6.46 | 15,360.00 | 0.04\% |

Figure 44. Method Material Handling Report

The second method report aggregates calculations by individual pick list and provides calculations including travel time, load/unload time, total time, percentage travelling, and percentage load/unloading. A user can determine from this output whether some specific pick lists provide greater room for improvements than others.

## Utilization tab

For a further breakdown of how time was utilized, graphical charts (bar charts) were created to give the same information a decision-making team would have received, had they incorporated the automated technique instead. This information consists of traveling versus loading/unloading usage percentage for each pick list with respect to material handling equipment, and a display of material handling equipment utilization percentage categorized by either over utilized, idle, or busy with respect to each pick list. Figures 45 and 46 were created in Microsoft Excel using data from the previously created data tables.

Table 33. Material Handling Report Aggregated by Pick List

| Aggregate | Travel <br> Time <br> (Hrs) | L/UL <br> Time <br> (Hrs) | Total <br> Time <br> (Hrs) | Percentage <br> Traveling | Percentage <br> Load/Unloading |
| :--- | ---: | ---: | ---: | ---: | ---: |
| DSD\|1 | 0.21 | 0.87 | 1.08 | $19.44 \%$ | $80.56 \%$ |
| DSD\|2 | 0.23 | 0.53 | 0.76 | $30.26 \%$ | $69.74 \%$ |
| DSD\|3 | 0.21 | 0.35 | 0.56 | $37.50 \%$ | $62.50 \%$ |
| DSD\|4 | 0.26 | 1.08 | 1.34 | $19.40 \%$ | $80.60 \%$ |
| RETAIL\|1 | 0.23 | 0.14 | 0.37 | $62.16 \%$ | $37.84 \%$ |
| RETAIL\|2 | 0.24 | 0.13 | 0.37 | $64.86 \%$ | $35.14 \%$ |
| RETAIL\|3 | 0.17 | 0.08 | 0.25 | $68.00 \%$ | $32.00 \%$ |
| RETAIL\|4 | 0.23 | 0.11 | 0.34 | $67.65 \%$ | $32.35 \%$ |
| WHOLE\|1 | 0.12 | 0.05 | 0.17 | $70.59 \%$ | $29.41 \%$ |
| WHOLE\|2 | 0.11 | 0.05 | 0.16 | $68.75 \%$ | $31.25 \%$ |
| WHOLE\|3 | 0.1 | 0.04 | 0.14 | $71.43 \%$ | $28.57 \%$ |
| WHOLE\|4 | 0.2 | 0.06 | 0.26 | $76.92 \%$ | $23.08 \%$ |
| WHOLE\|5 | 0.15 | 0.05 | 0.2 | $75.00 \%$ | $25.00 \%$ |
| WHOLE\|6 | 0.13 | 0.07 | 0.2 | $65.00 \%$ | $35.00 \%$ |
| WHOLE\|7 | 0.19 | 0.09 | 0.28 | $67.86 \%$ | $32.14 \%$ |
| TOTAL | 2.78 | 3.7 | 6.48 | $42.90 \%$ | $57.10 \%$ |
|  |  |  |  |  |  |



Figure 45. Flow Planner Bar Chart for Aggregate (Load/Unload) by Usage \%

The second "Chart Type" which can be used is the "Tuggers (Time)" option. This chart type displays the percent of time a picker is over utilized versus idle versus busy. These performance metrics provide the user with information on whether more products can be added to a specific pick list without overworking the picker with respect to time. This bar chart is shown in Figure 46.


Figure 46. Tug route Versus Utilization \% Bar Chart

## CHAPTER 5. EXPERIMENTAL RESULTS

A time study was done for each step of the method using both the automated and manual techniques. Seeing as the products of each technique were replaceable, the metric of primary interest for this experiment was process time-or run time. Tables 34 and 35 display the duration for each step's process.

## Automated Technique

Table 34. Time Study Automated Technique

|  | Time |  |  |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Step | Hours | Minutes | Seconds |  |  |  |  |  |  |
|  | Create AutoCAD Drawing | 3 | 3 | 24 |  |  |  |  |  |
|  | Create Input Files |  | 34 | 19 |  |  |  |  |  |
| Picking |  | 5 | 8 |  |  |  |  |  |  |
| Post-picking | Totals |  | 6 | 50 |  |  |  |  |  |
|  |  |  |  |  |  |  | 3 | 49 | 41 |

As one can see, it took a user 3:49:41 (hours:minutes:seconds) to complete all of the analysis necessary to bring to a group for making a layout design alternative decision. Since the AutoCAD drawing and input files remain constant as the warehouse locations change in each design iteration, the analysis for each additional warehouse layout design would take 0:11:58 (hours:minutes:seconds) to complete.

## Manual Technique

Table 35. Time Study Manual Technique

|  | Time |  |  |
| :--- | ---: | ---: | ---: |
| Step | Hours | Minutes | Seconds |
| Pre-picking | 3 | 3 | 24 |
| Picking | 1 | 37 | 45 |
| Post-picking | 14 | 53 | 22 |
| Totals | 19 | 34 | 31 |

As one can see, it took a user 19:34:31 (hours:minutes:seconds) to complete all of the analysis necessary to bring to a group for making a layout design alternative decision. Since the drawing and input files remain constant as the warehouse locations change in each design iteration, the analysis for each additional warehouse layout design would take 16:31:07 (hours:minutes:seconds) to complete.

Many companies would most likely not see the benefit in expending the process time necessary to complete a layout design analysis when using a manual technique, so the analysis would remain absent or incomplete, resulting in non-optimal layout designs. However, due to the improved process time of 0:11:58 (hours:minutes:seconds) taken to analyze a different layout alternative using the automated technique, a company would more likely find this process beneficial due to the significant impact of a warehouse layout design on warehouse performance, as outlined in the literature review. Because of this, a company would be able to test multiple layouts against multiple historical pick lists in a relatively short time period, resulting in the team
who decides the warehouse layout to have more complete information at the time of the decision and select a warehouse layout that is closer to optimal.

## CHAPTER 6. CONCLUSION AND DISCUSSION

## Overall Conclusions

A new automated technique has been documented and presented for quickly and straightforwardly providing analysis on warehouse layout design. This automated technique provides two main components-quantitative and visual outputs.

The quantitative output provides value added data from a simulation, namely, total pick time, cost, travel distance, travel time, load/unload times, and extended reports on each pick list and each path of each pick list. As discussed in the literature review section, total pick time with respect to historically relevant pick lists often indicates the optimality of its corresponding layout. Minimizing the total picking time across multiple pick lists by reallocating specific products within a warehouse layout is expected to produce a layout capable of better meeting customer demands.

The visual output provides value from producing a layout drawing with optimal routing paths drawn and color-coded. These conditions provide an easy to read layout for analysis and picking, with improvements more easily observable, all while catering to communicators less comfortable with data or more comfortable with spatial intelligence.

It was shown that implementing an automated technique such as the one discussed above, which used AutoCAD, Flow Planner, and Microsoft Excel, can produce an analysis resulting in more optimal layout designs capable of fulfilling pick lists in shorter pick times quicker than the analysis provided from a manual technique. The automated technique's added value is amplified as the number of product locations, pick lists, and size of pick lists increase.

## Implications for Engineering and Industry

## Industry Valuation

As pointed out previously in the methodology section, the disconnect between academia and industry produces publications that boast improvements to conventional warehouse processes but are not implemented due to either complexity, doubt from the decision makers, unawareness of the publication, or some sort of combination of these factors.

In the interest of building additional credibility in this paper combined with a type of validation, the principles of this process and method were taken to industry to gauge the applicability of the concepts discussed above.

## Implications for Engineering

Warehouses are currently a commonplace for manufacturers and retailers. Promising shorter delivery times has led to requiring warehouses in most major regions across the country. As manufacturing has been outsourced globally, the average distance between the manufacturer and the retailer has increased, leading to additional warehouses. Despite a push for just-in-time techniques, which have promoted skipping the warehousing step in a supply chain system with the supplier delivering directly to the consumer, warehouses continue to serve a need. With competition increasing as manufacturers promise shorter delivery times and lower-priced products, costs have to be saved in warehousing in order to either maintain profits or keep the cost from being reflected in the customer's price.

Warehouse layout planners are therefore challenged with:

- how to provide accurate and quick expected pick times for pick lists
- how to quickly produce a visual layout with illustrated optimal routing
- how to analyze multiple layout designs over a short time period
- and how to analyze multiple layout designs with minimal training

Using an automated technique, such as the one presented in this thesis, can provide solutions to all of these grievances. It is anticipated that using an automated tool would lead to better group decisions since there would be more data on hand and increased accuracy in said data.

The methodology provides greater detail and accuracy to current methods of layout design analysis. The results provide empirical evidence suggesting quicker simulation run-times when an automated technique is implemented. Finally, the industry valuation confirms the additional added value from using this technique.

## Suggestions for Further Research

Further research into the nature of warehouse layout design analysis will provide additional value. Some suggested research areas are as follows:

1. Designing a scientific study to achieve evaluation of technique
2. Auto-assigning locations from input pick lists for an automated technique
3. Mining the Data Sets to Automate Generation of Zones
4. Group decision-making methods for selecting a layout design
5. Application in warehouse-style supermarkets

## Designing a Scientific Study to Achieve Evaluation of Technique

Given more time, designing and running an experiment to suggest effectiveness of the technique would add credibility to the paper. One way to achieve this is to re-do the peer valuation by randomly sorting the students into two groups; one of which runs the manual
technique while the other runs the automated technique. Comparing the pick times of the proposed layouts and the run times of each technique would suggest more evidence for superiority than giving the whole group both techniques. Another way to achieve this is to create a layout around a randomly selected $80 \%$ of the data points, and then evaluating the quality of the layout and technique using the remaining $20 \%$ of the data points. This process would allow a user to observe if the generated layouts are catering too strong to the supplied data and to see if the layout should continue to perform at a high level.

## Auto-assigning Locations from Input Pick Lists for an Automated Technique

One drawback that requires additional simulation run-time and prevents optimality is the constraint for the chosen automated techniques software, in this case, Flow Planner, to require a human to initially assign product storing locations within racking. In addition, a human is required to manually move the AutoCAD text layer denoting location to a different location after seeing a visual route that requires travel distant from the main items in the pick list. Creating a feature in one of the modules that allows for an input of locations through a Microsoft Excel file and then assigns those locations to a set of empty racking to minimize travel time would provide a strong starting point for layout design, which could then be compared to the popularity rule calculations to confirm the placement of the auto-assigned locations.

## Mining the Data Sets to Automate Generation of Zones

Determining which products get sorted into which zones is currently done manually using this technique. Creating an algorithm which sorts the products into zones based on historical data and updates the zones based on future customer orders would eliminate a manual portion of this technique while notifying the human when orders begin to display an irregular pattern relative to the historical data sets.

## Group Decision-making Methods for Selecting a Layout Design

The scope of this research ends with producing the materials necessary for a group to begin the decision-making process. Additional research into objectives hierarchies combined with utilities would aid the group in removing bias between attachments to specific layout designs and provide a starting point for the discussion.

## Application in Warehouse-style Supermarkets

Retail stores, such as Costco and Sam's Club, have adopted warehouse-style supermarkets where products are displayed on industrial racking rather than traditional supermarket shelving. This leads to the building functioning as both a warehouse and a supermarket. Retailers such as these could benefit from similar implementation used to design layouts, and effective routing used to store product after receiving. A retailer may even find it beneficial to develop an application for customers to use which displays how to gather all of the items on their shopping list as quickly as possible. This could provide a competitive advantage for a retailer among competitors.

## REFERENCES

Abdi, M. R. (2005). Selection of a layout configuration for reconfigurable manufacturing system using the AHP. International Symposium on the Analytic Hierarchy Process, c(January 2009), 1-6. https://doi.org/10.1504/IJMTM.2009.023783

Abdul-Hamid, Y. T., Kochhar, A. K., \& Khan, M. K. (1999). An analytic hierarchy process approach to the choice of manufacturing plant layout. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213(4), 397-406.

Admin (2016). Warehouse uses and types. Dadelift. Retrieved from http://dadelift.com/warehouse-uses-and-types/

Al-Hawari, T., Mumani, A., \& Momani, A. (2014). Application of the Analytic Network Process to facility layout selection. Journal of Manufacturing Systems, 33(4), 488-497. https://doi.org/10.1016/j.jmsy.2014.04.006

Ataei, E. (2013). Application of TOPSIS and Fuzzy TOPSIS methods for plant layout design. World Applied Sciences Journal, 23(12), 48-53.
https://doi.org/10.5829/idosi.wasj.2013.23.12.975

Ateekh-Ur-Rehman, Lateef-Ur-Rehman, and Babu (2009) Evaluation of reconfigured manufacturing systems: an AHP framework. Int. J. Product. Qual.Manag., vol. 4, no. 2:228246.doi: 10.1504/IJPQM.2009.023189

[^0]Bartholdi, J., \& Hankman, S. (2011). Warehouse \& distribution science Release 0.94.

Ben Cheikh, S., Hajri-Gabouj, S., \& Darmoul, S. (2016). Manufacturing configuration selection under arduous working conditions : A multi-criteria decision approach. Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management, 1280-1291.

Besbes, M., Affonso, R. C., Marc, Z., Masmoudi, F., Haddar, M. (2019). Multi-criteria decision making approaches for Facility Layout (FL ) evaluation and selection: A survey. HAL Id : hal-01711799

Bunkley, N. (2008). Joseph Juran, 103, Pioneer in Quality Control, Dies. The New York Times. Retrieved from https://www.nytimes.com/2008/03/03/business/03juran.html

Chand, S. (2014). Warehousing: Function, Benefits and Types of Warehousing. Retrieved from Yourarticlelibrary: http://www.yourarticlelibrary.com/marketing/warehousing-functions-andtypes-of-warehouses/25849

Coyle, J. J., Bardi, E. J., \& Langley, C. J. (1996). The management of business logistics. MN: West: St. Paul.

Croxton, K. (2003). The Order Fulfillment Process. The International Journal of Logistics Management, 14(1), 19-
32. https://doi.org.proxy.lib.iastate.edu/10.1108/09574090310806512

Cruz-Domínguez, O., \& Santos-Mayorga, R. (2016). Artificial intelligence applied to assigned merchandise location in retail sales systems. South African Journal of Industrial Engineering, 27(1), 112-124. https://doi.org/10.7166/27-1-1192

Davies, N., \& Jokiniemi, E. (2008). Dictionary of Architecture and Building Construction. In Dictionary of Architecture and Building Construction. https://doi.org/10.4324/9780080878744
de Koster, R., \& van der Poort, E. (1998). Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions. IIE Transactions, 30(5), 469-480. https://doi.org/10.1080/07408179808966487

Denning, S. (2011). Is the goal of a corporation to make money? Forbes, 25-27.

Distance. (n.d.). Dictionary.com. Retrieved from https://www.dictionary.com/browse/distance

Dorcas, D. (2015). How to measure warehouse travel for maximum productivity. Easy Metrics. Retrieved from https://www.easymetrics.com/measure-warehouse-travel-for-productivity/

Drira, A., Pierreval H., \& Hajri-Gabouj, S. (2007) Facility layout problems: A survey. Annual Reviews in Control, vol. 31(2): 255-267.
doi: http://dx.doi.org/10.1016/j.arcontrol.2007.04.001

Drury, J. (1988) Towards more efficient orderpicking, in IMM Monographs I, Institute of Materials Management, Cranfield, UK.

Ertay, T., Ruan, D., \& Tuzkaya, U. R. (2006). Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences, 176(3), 237-262. https://doi.org/10.1016/j.ins.2004.12.001

Flexible. (n.d.). Merriam-Webster. Retrieved from https://www.merriamwebster.com/dictionary/flexible

Fontana, M. E., \& Cavalcante, C. A. V. (2014). Use of Promethee method to determine the best alternative for warehouse storage location assignment. International Journal of Advanced Manufacturing Technology, 70(9-12), 1615-1624. https://doi.org/10.1007/s00170-013-5405-z

Gladysz, B., Santarek, K., \& Lysiak, C. (2017). Dynamic Spaghetti Diagrams. A Case Study of Pilot RTLS Implementation. Proceedings of the First International Conference on Intelligent Systems in Production Engineering and Maitenance ISPEM 2017. 238-248

Gui, B., Dai, L., \& Cimini, L. J. (2000). Routing Strategies. Sort, 3, 661-666.

Hadi-Vencheh, A., \& Mohamadghasemi, A. (2013). An integrated AHP-NLP methodology for facility layout design. Journal of Manufacturing Systems, 32(1), 40. https://doi.org/10.1016/j.jmsy.2012.07.009

Hagspihl, R., \& Visagie, S. E. (2014). The number of pickers and stock-keeping unit arrangement on a unidirectional picking line. South African Journal of Industrial Engineering, November 2014, 25(3), 169-183.

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE Transactions (Institute of Industrial Engineers), 25(4), 76-87. https://doi.org/10.1080/07408179308964306

Hornby, S. (2017). Different Picking Methods with Warehouse Inventory Software. Blue Link. Retrieved from https://www.bluelinkerp.com/blog/2017/12/28/different-picking-methods-with-warehouse-inventory-software/

Houshyar, A. \& White, B. (1993). Exact optimal solution for facility layout: deciding which pairs of locations should be adjacent, Computers and Industrial Engineering, 24(2), 177187.

Karande, P., \& Chakraborty, S. (2014). A Facility Layout Selection Model using MACBETH Method. Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, (Mcdm), 17-26. Retrieved from http://iieom.org/ieom2014/pdfs/9.pdf

Kaye, A. D., Fox, C. J. III., \& Urman, R. D. (2012). Operating Room Leadership and Management. Cambrigde Univeristy Press.

Kuo, Y., Yang, T., \& Huang, G. W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers and Industrial Engineering, 55(1), 80-93. https://doi.org/10.1016/j.cie.2007.12.002

Lowstuter, B. (2006). Spaghetti Diagrams are Key to Implementing Lean Improvements. Lean Healthcare Exchange. Retrieved from https://www.leanhealthcareexchange.com/spaghetti-diagrams-are-key-to-implementing-lean-improvements/

Maniya, K. D., \& Bhatt, M. G. (2011). An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems. Computers and Industrial Engineering, 61(3), 542-549. https://doi.org/10.1016/j.cie.2011.04.009

Muther, R., \& Knut, H. (1969). Systematic Handling Analysis. Management and Industrial Research Publications.

Olsavsky, B. (2019, April). Amazon.com, Inc. (NASDAQ:AMZN) Q1 2019 Earnings Conference Call April 25, 2019 5:30 PM ET.

Pingulkar, A. V. (2011). Picking productivity estimation in Distribution Warehouses. 1-7.

Ratliff, H., \& Rosenthal, A. (1983). Orderpicking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem. Operations Research, Vol. 31. 507-521 (1983).

Roodbergen, K. J. (2000). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133, 32-43. Retrieved from www.elsevier.com/locate/dsw

Roodbergen, K.J., \& De Koster, R. (2001). Routing methods for warehouses with multiple cross aisles, International Journal of Production Research 39(9), 1865-1883.

Roodbergen, K. J. (n.d.). Routing order pickers in a warehouse. Roodbergen.com. Retrieved from http://www.roodbergen.com/warehouse/background.php

Rushton, A., Oxley, J., \& Croucher, P. (2006). The Handbook of Logistics and Distribution Management, third ed. Kogan Page, London.

Sellar, T. (2016). Critical mass. Theater, 46(1), 1-2. https://doi.org/10.1215/01610775-3322706

Shahin, A., \& Poormostafa, M. (2011). Facility layout simulation and optimization: An integration of advanced quality and decision making tools and techniques. Modern Applied Science, 5(4), 95-111. https://doi.org/10.5539/mas.v5n4p95

Shang, J. S. (1993). Theory and Methodology Multicriteria facility layout problem: An integrated approach. Mathematical Programming, 66, 291-304.

Singh, S. P., \& Singh, V. K. (2011). Three-level AHP-based heuristic approach for a multiobjective facility layout problem, International Journal of Production Research, 49:4, 11051125, DOI: 10.1080/00207540903536148

Sule, D. R. (2008). Manufacturing Facilities: Location, Planning, and Design, Third Edition. CRC Press, Northwest, Washington, D.C.

Swan, E. (2012). Non-Value Adding Activities. GoLeanSixSigma.com. Retrieved from https://goleansixsigma.com/non-value-adding-activities/

Tompkins, J. A. (1996). Facility Planning [M]. New York: John Wiley

Tompkins, J. A., White, J. A., Bozer, Y. A., \& Tanchoco, J. M. A. (2003). Facilities Planning, 3rd ed., (Wiley: New Jersey).
van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., \& Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197(June 2016), 243-261. https://doi.org/10.1016/j.ijpe.2017.11.021

Vaughan, T.S. and Petersen, C.G. (1999), The effect of warehouse cross aisles on order picking efficiency, International Journal of Production Research 37(4), 881-897.

Yang T., Hung C. C. (2007) Multiple-attribute decision making methods for plant layout design problem. Robotics and Computer Integrated Manufacturing, vol. 23 :126-137.doi: http://dx.doi.org/10.1016/j.rcim.2005.12.002

Yang, T., \& Kuo, C. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147(1), 128-136. https://doi.org/10.1016/S0377-2217(02)00251-5

Yang, T., Su, C. T., \& Hsu, Y. R. (2000). Systematic layout planning: A study on semiconductor wafer fabrication facilities. International Journal of Operations and Production Management, 20(11), 1359-1371. https://doi.org/10.1108/01443570010348299

Zeveloff, J. (2013). Go Inside The Factory That Makes 2 Billion Marshmallow Peeps A Year. Business Insider Australia. Retrievd from https://www.businessinsider.com.au/how-marshmallow-peeps-are-made-2013-3\#peeps-are-made-by-the-millions-at-the-just-born-factory-in-bethlehem-pennsylvania-1

## APPENDIX. TRANSPUT - DATA TABLES

Table 36. Pick Lists

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|1 | 506632 | 5 |
| DSD\|1 | 506952 | 30 |
| DSD\|1 | 506953 | 30 |
| DSD\|1 | 509625 | 5 |
| DSD\|1 | 100411 | 10 |
| DSD\|1 | 100621 | 25 |
| DSD\|1 | 505554 | 15 |
| DSD\|1 | 510203 | 5 |
| DSD\|1 | 509046 | 5 |
| DSD\|1 | 503971 | 5 |
| DSD\|1 | 503279 | 10 |
| DSD\|1 | 507087 | 5 |
| DSD\|1 | 831261 | 5 |
| DSD\|1 | 836561 | 5 |
| DSD\|1 | 832461 | 5 |
| DSD\|1 | 834161 | 15 |
| DSD\|1 | 835261 | 20 |
| DSD\|1 | 836261 | 15 |
| DSD\|1 | 505546 | 15 |
| DSD\|1 | 505550 | 5 |
| DSD\|1 | 505547 | 10 |
| DSD\|1 | 505549 | 5 |
| DSD\|1 | 505551 | 5 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|1 | 510645 | 5 |
| DSD\|1 | 510708 | 5 |
| DSD\|1 | 506630 | 5 |
| DSD\|1 | 509042 | 15 |
| DSD\|2 | 505548 | 4 |
| DSD\|2 | 506953 | 8 |
| DSD\|2 | 503278 | 6 |
| DSD\|2 | 509871 | 4 |
| DSD\|2 | 100521 | 4 |
| DSD\|2 | 100621 | 3 |
| DSD\|2 | 505555 | 4 |
| DSD\|2 | 505554 | 4 |
| DSD\|2 | 503971 | 4 |
| DSD\|2 | 831261 | 3 |
| DSD\|2 | 834161 | 3 |
| DSD\|2 | 831661 | 6 |
| DSD\|2 | 836261 | 4 |
| DSD\|2 | 839061 | 4 |
| DSD\|2 | 509752 | 4 |
| DSD\|2 | 505546 | 6 |
| DSD\|2 | 505547 | 4 |
| DSD\|2 | 505549 | 8 |
| DSD\|2 | 510645 | 4 |
| DSD\|2 | 510644 | 2 |
| DSD\|2 | 511068 | 4 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|2 | 506295 | 6 |
| DSD\|2 | 506296 | 3 |
| DSD\|2 | 506297 | 2 |
| DSD\|2 | 506630 | 4 |
| DSD\|2 | 508939 | 2 |
| DSD\|2 | 510416 | 4 |
| DSD\|2 | 510417 | 4 |
| DSD\|2 | 510419 | 6 |
| DSD\|2 | 510425 | 6 |
| DSD\|2 | 512487 | 4 |
| DSD\|2 | 512486 | 6 |
| DSD\|2 | 512485 | 6 |
| DSD\|2 | 513504 | 3 |
| DSD\|2 | 510135 | 1 |
| DSD\|2 | 510139 | 1 |
| DSD\|2 | 510136 | 1 |
| DSD\|3 | 506632 | 1 |
| DSD\|3 | 506952 | 2 |
| DSD\|3 | 506953 | 2 |
| DSD\|3 | 509625 | 1 |
| DSD\|3 | 100411 | 1 |
| DSD\|3 | 100521 | 2 |
| DSD\|3 | 100621 | 5 |
| DSD\|3 | 505554 | 2 |
| DSD\|3 | 509046 | 3 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|3 | 503279 | 1 |
| DSD\|3 | 831961 | 1 |
| DSD\|3 | 834161 | 5 |
| DSD\|3 | 835261 | 4 |
| DSD\|3 | 831661 | 1 |
| DSD\|3 | 836261 | 7 |
| DSD\|3 | 509752 | 1 |
| DSD\|3 | 505546 | 4 |
| DSD\|3 | 505549 | 2 |
| DSD\|3 | 505553 | 1 |
| DSD\|3 | 510645 | 1 |
| DSD\|3 | 506295 | 3 |
| DSD\|3 | 506631 | 1 |
| DSD\|3 | 506630 | 1 |
| DSD\|3 | 506951 | 2 |
| DSD\|3 | 506950 | 2 |
| DSD\|3 | 510416 | 14 |
| DSD\|3 | 510419 | 5 |
| DSD\|3 | 510421 | 4 |
| DSD\|3 | 510422 | 2 |
| DSD\|3 | 510426 | 8 |
| DSD\|3 | 512486 | 2 |
| DSD\|3 | 512485 | 2 |
| DSD\|4 | 505548 | 10 |
| DSD\|4 | 506632 | 5 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|4 | 509753 | 5 |
| DSD\|4 | 503278 | 10 |
| DSD\|4 | 509871 | 5 |
| DSD\|4 | 100521 | 15 |
| DSD\|4 | 511873 | 15 |
| DSD\|4 | 505555 | 5 |
| DSD\|4 | 505554 | 10 |
| DSD\|4 | 513009 | 15 |
| DSD\|4 | 509046 | 5 |
| DSD\|4 | 503971 | 10 |
| DSD\|4 | 507087 | 5 |
| DSD\|4 | 831261 | 10 |
| DSD\|4 | 836261 | 14 |
| DSD\|4 | 836561 | 5 |
| DSD\|4 | 832461 | 10 |
| DSD\|4 | 835261 | 15 |
| DSD\|4 | 831661 | 5 |
| DSD\|4 | 839061 | 10 |
| DSD\|4 | 509752 | 5 |
| DSD\|4 | 505546 | 25 |
| DSD\|4 | 505547 | 10 |
| DSD\|4 | 505549 | 5 |
| DSD\|4 | 505638 | 3 |
| DSD\|4 | 510645 | 10 |
| DSD\|4 | 511068 | 5 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| DSD\|4 | 510706 | 5 |
| DSD\|4 | 512730 | 5 |
| DSD\|4 | 506295 | 20 |
| DSD\|4 | 506296 | 10 |
| DSD\|4 | 506297 | 10 |
| DSD\|4 | 510708 | 5 |
| DSD\|4 | 512487 | 5 |
| DSD\|4 | 512486 | 5 |
| DSD\|4 | 512485 | 8 |
| DSD\|4 | 510052 | 3 |
| DSD\|4 | 510053 | 3 |
| DSD\|4 | 510138 | 5 |
| DSD\|4 | 510135 | 5 |
| DSD\|4 | 510139 | 5 |
| DSD\|4 | 510136 | 5 |
| RETAIL\|1 | 506284 | 12 |
| RETAIL\|1 | 510141 | 1 |
| RETAIL\|1 | 508782 | 1 |
| RETAIL\|1 | 513096 | 1 |
| RETAIL\|1 | 508730 | 3 |
| RETAIL\|1 | 511108 | 1 |
| RETAIL\|1 | 480077 | 1 |
| RETAIL\|1 | 503890 | 1 |
| RETAIL\|1 | 479006 | 2 |
| RETAIL\|1 | 508687 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| RETAIL\|1 | 511309 | 1 |
| RETAIL\|1 | 666688 | 1 |
| RETAIL\|1 | 511312 | 1 |
| RETAIL\|1 | 510646 | 1 |
| RETAIL\|1 | 510418 | 1 |
| RETAIL\|1 | 510419 | 1 |
| RETAIL\|1 | 510421 | 1 |
| RETAIL\|1 | 510426 | 2 |
| RETAIL\|2 | 509209 | 1 |
| RETAIL\|2 | 509594 | 1 |
| RETAIL\|2 | 506284 | 5 |
| RETAIL\|2 | 510138 | 1 |
| RETAIL\|2 | 510136 | 2 |
| RETAIL\|2 | 512988 | 1 |
| RETAIL\|2 | 500078 | 1 |
| RETAIL\|2 | 509197 | 1 |
| RETAIL\|2 | 509193 | 1 |
| RETAIL\|2 | 509206 | 1 |
| RETAIL\|2 | 509204 | 1 |
| RETAIL\|2 | 504503 | 1 |
| RETAIL\|2 | 513020 | 1 |
| RETAIL\|2 | 508730 | 3 |
| RETAIL\|2 | 510936 | 2 |
| RETAIL\|2 | 503791 | 1 |
| RETAIL\|2 | 479006 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| RETAIL\|2 | 503760 | 1 |
| RETAIL\|2 | 511312 | 2 |
| RETAIL\|3 | 506284 | 4 |
| RETAIL\|3 | 473916 | 1 |
| RETAIL\|3 | 507238 | 2 |
| RETAIL\|3 | 509198 | 1 |
| RETAIL\|3 | 509192 | 1 |
| RETAIL\|3 | 410608 | 1 |
| RETAIL\|3 | 508782 | 1 |
| RETAIL\|3 | 511839 | 1 |
| RETAIL\|3 | 503791 | 1 |
| RETAIL\|3 | 479006 | 3 |
| RETAIL\|3 | 511309 | 1 |
| RETAIL\|3 | 666688 | 1 |
| RETAIL\|4 | 506284 | 4 |
| RETAIL\|4 | 513022 | 2 |
| RETAIL\|4 | 512728 | 1 |
| RETAIL\|4 | 510835 | 1 |
| RETAIL\|4 | 512986 | 1 |
| RETAIL\|4 | 506562 | 1 |
| RETAIL\|4 | 504503 | 1 |
| RETAIL\|4 | 508782 | 1 |
| RETAIL\|4 | 513020 | 1 |
| RETAIL\|4 | 513096 | 2 |
| RETAIL\|4 | 508730 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| RETAIL\|4 | 511309 | 1 |
| RETAIL\|4 | 503760 | 1 |
| RETAIL\|4 | 511312 | 2 |
| RETAIL\|4 | 510142 | 1 |
| RETAIL\|4 | 510422 | 1 |
| RETAIL\|4 | 510425 | 1 |
| WHOLE\|1 | 501919 | 1 |
| WHOLE\|1 | 500252 | 1 |
| WHOLE\|1 | 501684 | 1 |
| WHOLE\|1 | 501961 | 1 |
| WHOLE\|1 | 508737 | 1 |
| WHOLE\|1 | 511870 | 4 |
| WHOLE\|1 | 503106 | 1 |
| WHOLE\|1 | 509148 | 1 |
| WHOLE\|1 | 509145 | 1 |
| WHOLE\|1 | 509146 | 1 |
| WHOLE\|1 | 510139 | 1 |
| WHOLE\|2 | 507208 | 2 |
| WHOLE\|2 | 501493 | 2 |
| WHOLE\|2 | 501627 | 2 |
| WHOLE\|2 | 501552 | 3 |
| WHOLE\|2 | 477080 | 1 |
| WHOLE\|2 | 510136 | 1 |
| WHOLE\|2 | 512802 | 3 |
| WHOLE\|2 | 511355 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| WHOLE\|2 | 503106 | 1 |
| WHOLE\|2 | 509148 | 1 |
| WHOLE\|2 | 509145 | 1 |
| WHOLE\|2 | 509146 | 1 |
| WHOLE\|2 | 509147 | 1 |
| WHOLE\|3 | 500252 | 7 |
| WHOLE\|3 | 510198 | 1 |
| WHOLE\|3 | 10005 | 6 |
| WHOLE\|3 | 10003 | 6 |
| WHOLE\|3 | 10004 | 6 |
| WHOLE\|3 | 10001 | 6 |
| WHOLE\|3 | 10016 | 6 |
| WHOLE\|3 | 10008 | 6 |
| WHOLE\|3 | 503103 | 2 |
| WHOLE\|4 | 501919 | 1 |
| WHOLE\|4 | 501920 | 1 |
| WHOLE\|4 | 500252 | 1 |
| WHOLE\|4 | 500030 | 1 |
| WHOLE\|4 | 501961 | 1 |
| WHOLE\|4 | 477265 | 1 |
| WHOLE\|4 | 512986 | 1 |
| WHOLE\|4 | 510140 | 2 |
| WHOLE\|4 | 508730 | 2 |
| WHOLE\|4 | 508732 | 1 |
| WHOLE\|4 | 509671 | 2 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| WHOLE\|4 | 476422 | 1 |
| WHOLE\|4 | 511043 | 1 |
| WHOLE\|4 | 511312 | 2 |
| WHOLE\|4 | 510139 | 1 |
| WHOLE\|5 | 506284 | 4 |
| WHOLE\|5 | 501919 | 1 |
| WHOLE\|5 | 501493 | 2 |
| WHOLE\|5 | 504468 | 2 |
| WHOLE\|5 | 501961 | 2 |
| WHOLE\|5 | 503565 | 4 |
| WHOLE\|5 | 508730 | 1 |
| WHOLE\|5 | 509671 | 1 |
| WHOLE\|5 | 508202 | 1 |
| WHOLE\|5 | 479006 | 3 |
| WHOLE\|5 | 511309 | 1 |
| WHOLE\|5 | 511042 | 1 |
| WHOLE\|5 | 511312 | 1 |
| WHOLE\|6 | 507208 | 2 |
| WHOLE\|6 | 501919 | 4 |
| WHOLE\|6 | 500228 | 2 |
| WHOLE\|6 | 510081 | 2 |
| WHOLE\|6 | 501552 | 2 |
| WHOLE\|6 | 503565 | 2 |
| WHOLE\|6 | 503793 | 1 |
| WHOLE\|6 | 503794 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :---: | :---: | :---: |
| WHOLE\|6 | 500037 | 3 |
| WHOLE\|6 | 511309 | 2 |
| WHOLE\|6 | 503106 | 3 |
| WHOLE\|6 | 509149 | 3 |
| WHOLE\|6 | 503760 | 1 |
| WHOLE\|6 | 508730 | 3 |
| WHOLE\|6 | 511043 | 4 |
| WHOLE\|6 | 511042 | 2 |
| WHOLE\|7 | 506284 | 12 |
| WHOLE\|7 | 507208 | 3 |
| WHOLE\|7 | 501919 | 2 |
| WHOLE\|7 | 504468 | 3 |
| WHOLE\|7 | 477265 | 1 |
| WHOLE\|7 | 510136 | 1 |
| WHOLE\|7 | 508709 | 1 |
| WHOLE\|7 | 506562 | 1 |
| WHOLE\|7 | 509554 | 1 |
| WHOLE\|7 | 505308 | 1 |
| WHOLE\|7 | 511542 | 1 |
| WHOLE\|7 | 506245 | 1 |
| WHOLE\|7 | 510130 | 1 |
| WHOLE\|7 | 509671 | 1 |
| WHOLE\|7 | 508686 | 4 |
| WHOLE\|7 | 503103 | 1 |
| WHOLE\|7 | 508687 | 1 |

Table 36 Continued

| Pick List | Part | Quantity |
| :--- | :--- | :--- |
| WHOLE $\mid 7$ | 503893 | 2 |
| WHOLE $\mid 7$ | 511312 | 1 |
| WHOLE $\mid 7$ | 508730 | 2 |
| WHOLE $\mid 7$ | 510139 | 1 |

Table 37. Part Table from the .prd File

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| DSD\|1 | 506632 | 1 | 100 | 1 | 1 |
| DSD\|1 | 506952 | 1 | 100 | 1 | 1 |
| DSD\|1 | 506953 | 1 | 100 | 1 | 1 |
| DSD\|1 | 509625 | 1 | 100 | 1 | 1 |
| DSD\|1 | 100411 | 1 | 100 | 1 | 1 |
| DSD\|1 | 100621 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505554 | 1 | 100 | 1 | 1 |
| DSD\|1 | 510203 | 1 | 100 | 1 | 1 |
| DSD\|1 | 509046 | 1 | 100 | 1 | 1 |
| DSD\|1 | 503971 | 1 | 100 | 1 | 1 |
| DSD\|1 | 503279 | 1 | 100 | 1 | 1 |
| DSD\|1 | 507087 | 1 | 100 | 1 | 1 |
| DSD\|1 | 831261 | 1 | 100 | 1 | 1 |
| DSD\|1 | 836561 | 1 | 100 | 1 | 1 |
| DSD\|1 | 832461 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|1 | 834161 | 1 | 100 | 1 | 1 |
| DSD\|1 | 835261 | 1 | 100 | 1 | 1 |
| DSD\|1 | 836261 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505546 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505550 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505547 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505549 | 1 | 100 | 1 | 1 |
| DSD\|1 | 505551 | 1 | 100 | 1 | 1 |
| DSD\|1 | 510645 | 1 | 100 | 1 | 1 |
| DSD\|1 | 510708 | 1 | 100 | 1 | 1 |
| DSD\|1 | 506630 | 1 | 100 | 1 | 1 |
| DSD\|1 | 509042 | 1 | 100 | 1 | 1 |
| DSD\|1 | RETURN | 1 | 100 | 1 | 1 |
| DSD\|2 | 505548 | 1 | 100 | 1 | 1 |
| DSD\|2 | 506953 | 1 | 100 | 1 | 1 |
| DSD\|2 | 503278 | 1 | 100 | 1 | 1 |
| DSD\|2 | 509871 | 1 | 100 | 1 | 1 |
| DSD\|2 | 100521 | 1 | 100 | 1 | 1 |
| DSD\|2 | 100621 | 1 | 100 | 1 | 1 |
| DSD\|2 | 505555 | 1 | 100 | 1 | 1 |
| DSD\|2 | 505554 | 1 | 100 | 1 | 1 |
| DSD\|2 | 503971 | 1 | 100 | 1 | 1 |
| DSD\|2 | 831261 | 1 | 100 | 1 | 1 |
| DSD\|2 | 834161 | 1 | 100 | 1 | 1 |
| DSD\|2 | 831661 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| DSD\|2 | 836261 | 1 | 100 | 1 | 1 |
| DSD\|2 | 839061 | 1 | 100 | 1 | 1 |
| DSD\|2 | 509752 | 1 | 100 | 1 | 1 |
| DSD\|2 | 505546 | 1 | 100 | 1 | 1 |
| DSD\|2 | 505547 | 1 | 100 | 1 | 1 |
| DSD\|2 | 505549 | 1 | 100 | 1 | 1 |
| DSD\|2 | 510645 | 1 | 100 | 1 | 1 |
| DSD\|2 | 510644 | 1 | 100 | 1 | 1 |
| DSD\|2 | 511068 | 1 | 100 | 1 | 1 |
| DSD\|2 | 506295 | 1 | 100 | 100 | 1 |
| DSD\|2 | 506296 | 1 | 100 | 1 | 1 |
| DSD\|2 | 506297 | 506630 | 1 | 100 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|2 | RETURN | 1 | 100 | 1 | 1 |
| DSD\|3 | 506632 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506952 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506953 | 1 | 100 | 1 | 1 |
| DSD\|3 | 509625 | 1 | 100 | 1 | 1 |
| DSD\|3 | 100411 | 1 | 100 | 1 | 1 |
| DSD\|3 | 100521 | 1 | 100 | 1 | 1 |
| DSD\|3 | 100621 | 1 | 100 | 1 | 1 |
| DSD\|3 | 505554 | 1 | 100 | 1 | 1 |
| DSD\|3 | 509046 | 1 | 100 | 1 | 1 |
| DSD\|3 | 503279 | 1 | 100 | 1 | 1 |
| DSD\|3 | 831961 | 1 | 100 | 1 | 1 |
| DSD\|3 | 834161 | 1 | 100 | 1 | 1 |
| DSD\|3 | 835261 | 1 | 100 | 1 | 1 |
| DSD\|3 | 831661 | 1 | 100 | 1 | 1 |
| DSD\|3 | 836261 | 1 | 100 | 1 | 1 |
| DSD\|3 | 509752 | 1 | 100 | 1 | 1 |
| DSD\|3 | 505546 | 1 | 100 | 1 | 1 |
| DSD\|3 | 505549 | 1 | 100 | 1 | 1 |
| DSD\|3 | 505553 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510645 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506295 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506631 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506630 | 1 | 100 | 1 | 1 |
| DSD\|3 | 506951 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DSD\|3 | 506950 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510416 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510419 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510421 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510422 | 1 | 100 | 1 | 1 |
| DSD\|3 | 510426 | 1 | 100 | 1 | 1 |
| DSD\|3 | 512486 | 1 | 100 | 1 | 1 |
| DSD\|3 | 512485 | 1 | 100 | 1 | 1 |
| DSD\|3 | RETURN | 1 | 100 | 1 | 1 |
| DSD\|4 | 505548 | 1 | 100 | 1 | 1 |
| DSD\|4 | 506632 | 1 | 100 | 1 | 1 |
| DSD\|4 | 509753 | 1 | 100 | 1 | 1 |
| DSD\|4 | 503278 | 1 | 100 | 1 | 1 |
| DSD\|4 | 509871 | 1 | 100 | 1 | 1 |
| DSD\|4 | 100521 | 1 | 100 | 1 | 1 |
| DSD\|4 | 511873 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505555 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505554 | 1 | 100 | 1 | 1 |
| DSD\|4 | 513009 | 1 | 100 | 1 | 1 |
| DSD\|4 | 509046 | 1 | 100 | 1 | 1 |
| DSD\|4 | 503971 | 1 | 100 | 1 | 1 |
| DSD\|4 | 507087 | 1 | 100 | 1 | 1 |
| DSD\|4 | 831261 | 1 | 100 | 1 | 1 |
| DSD\|4 | 836261 | 1 | 100 | 1 | 1 |
| DSD\|4 | 836561 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| DSD\|4 | 832461 | 1 | 100 | 1 | 1 |
| DSD\|4 | 835261 | 1 | 100 | 1 | 1 |
| DSD\|4 | 831661 | 1 | 100 | 1 | 1 |
| DSD\|4 | 839061 | 1 | 100 | 1 | 1 |
| DSD\|4 | 509752 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505546 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505547 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505549 | 1 | 100 | 1 | 1 |
| DSD\|4 | 505638 | 1 | 100 | 1 | 1 |
| DSD\|4 | 510645 | 1 | 100 | 1 | 1 |
| DSD\|4 | 511068 | 1 | 100 | 1 |  |
| DSD\|4 | 1 | 100 | 1 | 1 |  |
| DSD\|4 | 510706 | 1 | 1 | 1 | 1 |
| DSD\|4 | 512730 | 1 | 1 | 1 | 1 |
| DSD\|4 | 506295 | 506296 | 1 | 100 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| DSD\|4 | 510139 | 1 | 100 | 1 | 1 |
| DSD\|4 | 510136 | 1 | 100 | 1 | 1 |
| DSD\|4 | RETURN | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 506284 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 510141 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 508782 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 513096 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 508730 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 511108 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 480077 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 503890 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 479006 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 508687 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 511309 | 1 | 1 | 1 | 1 |
| RETAIL\|1 | 666688 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 511312 | 1 | 1 | 1 | 1 |
| RETAIL\|1 | 510646 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 510418 | 1 | 1 | 1 | 1 |
| RETAIL\|1 | 510419 | 1 | 1 | 1 | 1 |
| RETAIL\|1 | 510421 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | 510426 | 1 | 100 | 1 | 1 |
| RETAIL\|1 | RETURN | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 509209 | 1 | 1 | 1 | 1 |
| RETAIL\|2 | 509594 | 1 | 1 | 1 | 1 |
| RETAIL\|2 | 506284 | 1 | 1 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| RETAIL\|2 | 510138 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 510136 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 512988 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 500078 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 509197 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 509193 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 509206 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 509204 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 504503 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 513020 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 508730 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 510936 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 503791 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 479006 | 1 | 100 | 1 | 1 |
| RETAIL\|2 | 503760 | 1 | 1 | 1 | 1 |
| RETAIL\|2 | 511312 | 1 | 1 | 1 | 1 |
| RETAIL\|2 | RETURN | 1 | 1 | 1 | 1 |
| RETAIL\|3 | 506284 | 1 | 1 | 1 | 1 |
| RETAIL\|3 | 473916 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 507238 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 509198 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 509192 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 410608 | 1 | 1 | 1 | 1 |
| RETAIL\|3 | 508782 | 1 | 1 | 1 | 1 |
| RETAIL\|3 | 511839 | 1 | 1 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| RETAIL\|3 | 503791 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 479006 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 511309 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | 666688 | 1 | 100 | 1 | 1 |
| RETAIL\|3 | RETURN | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 506284 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 513022 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 512728 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 510835 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 512986 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 506562 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 504503 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 508782 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 513020 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 513096 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 508730 | 1 | 1 | 1 | 1 |
| RETAIL\|4 | 511309 | 1 | 1 | 1 | 1 |
| RETAIL\|4 | 503760 | 1 | 1 | 1 | 1 |
| RETAIL\|4 | 511312 | 1 | 1 | 1 | 1 |
| RETAIL\|4 | 510142 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 510422 | 1 | 100 | 1 | 1 |
| RETAIL\|4 | 510425 | 1 | 1 | 1 | 1 |
| RETAIL\|4 | RETURN | 1 | 1 | 1 | 1 |
| WHOLE\|1 | 501919 | 1 | 1 | 1 | 1 |
| WHOLE\|1 | 500252 | 1 | 1 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE\|1 | 501684 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 501961 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 508737 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 511870 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 503106 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 509148 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 509145 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 509146 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | 510139 | 1 | 100 | 1 | 1 |
| WHOLE\|1 | RETURN | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 507208 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 501493 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 501627 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 501552 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 477080 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 510136 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 512802 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 511355 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 503106 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 509148 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 509145 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 509146 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | 509147 | 1 | 100 | 1 | 1 |
| WHOLE\|2 | RETURN | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE\|3 | 500252 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 510198 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10005 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10003 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10004 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10001 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10016 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 10008 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | 503103 | 1 | 100 | 1 | 1 |
| WHOLE\|3 | RETURN | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 501919 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 501920 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 500252 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 500030 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 501961 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 477265 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 512986 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 510140 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 508730 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 508732 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 509671 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 476422 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 511043 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 511312 | 1 | 100 | 1 | 1 |
| WHOLE\|4 | 510139 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE\|4 | RETURN | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 506284 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 501919 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 501493 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 504468 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 501961 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 503565 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 508730 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 509671 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 508202 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 479006 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 511309 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 511042 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | 511312 | 1 | 100 | 1 | 1 |
| WHOLE\|5 | RETURN | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 507208 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 501919 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 500228 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 510081 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 501552 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 503565 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 503793 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 503794 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 500037 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 511309 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE\|6 | 503106 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 509149 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 503760 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 508730 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 511043 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | 511042 | 1 | 100 | 1 | 1 |
| WHOLE\|6 | RETURN | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 506284 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 507208 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 501919 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 504468 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 477265 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 510136 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 508709 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 506562 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 509554 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 505308 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 511542 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 506245 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 510130 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 509671 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 508686 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 503103 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 508687 | 1 | 100 | 1 | 1 |

Table 37 Continued

| Product Name | Part Name | Qty Parts/Product | Use\% | Days Inventory | Color |
| :--- | ---: | ---: | ---: | ---: | ---: |
| WHOLE\|7 | 503893 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 511312 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 508730 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | 510139 | 1 | 100 | 1 | 1 |
| WHOLE\|7 | RETURN | 1 | 100 | 1 | 1 |

Table 38. The Locations Section of the .loc File

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 836261_BULK | 13856.1425 | 3491.3096 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| DSD_DOCK | 14802.2765 | 2984.7154 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RET_DOCK | 17822.762 | 2988.2822 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509554 | 16926.6128 | 3623.3094 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_509594 | 16926.6128 | 3666.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510130 | 16926.6128 | 3716.0663 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510136 | 16923.0435 | 3769.5803 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510138 | 16923.0435 | 3815.9578 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510141 | 16923.0435 | 3855.2016 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510142 | 16923.0435 | 3905.1479 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510198 | 16915.9025 | 3937.2551 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510418 | 16923.0435 | 3972.9312 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510419 | 16851.6354 | 3619.7426 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510421 | 16855.2072 | 3680.3902 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510422 | 16855.2072 | 3719.6341 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510425 | 16862.3483 | 3773.1471 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510426 | 16855.2072 | 3815.9578 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| RW_510646 | 16851.6354 | 3858.7694 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510835 | 16855.2072 | 3908.7147 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_510936 | 16855.2072 | 3930.1205 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511108 | 16858.7765 | 3976.499 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511309 | 16723.1064 | 3616.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511312 | 16730.2449 | 3662.5532 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511542 | 16715.9653 | 3694.6614 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_511839 | 16719.5346 | 3762.4447 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_512728 | 16719.5346 | 3812.391 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_512986 | 16719.5346 | 3848.066 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_512988 | 16712.3935 | 3905.1479 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| RW_513022 | 16712.3935 | 3940.8229 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_410608 | 17894.8435 | 3976.499 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_473916 | 17665.6687 | 3619.7426 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_479006 | 17658.5276 | 3662.5532 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_480077 | 17658.5276 | 3698.2282 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_500078 | 17654.9583 | 3758.8769 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| R_503760 | 17658.5276 | 3794.553 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_503791 | 17665.6687 | 3840.9314 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_503890 | 17669.2379 | 3898.0123 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_504503 | 17662.0994 | 3937.2551 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_506284 | 17665.6687 | 3994.337 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_506562 | 17751.3564 | 3616.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_507238 | 17747.7846 | 3666.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_508687 | 17747.7846 | 3712.4985 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_508730 | 17751.3564 | 3762.4447 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_508782 | 17758.4974 | 3808.8232 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509192 | 17747.7846 | 3855.2016 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509193 | 17751.3564 | 3901.5801 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509197 | 17747.7846 | 3944.3907 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509198 | 17754.9256 | 3983.6336 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509204 | 17887.029 | 3619.7426 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509206 | 17879.8879 | 3673.2556 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_509209 | 17879.8879 | 3708.9317 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| R_513020 | 17879.8879 | 3758.8769 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_513096 | 17879.8879 | 3798.1208 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| R_666688 | 17883.4572 | 3844.4992 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_100411 | 15038.9814 | 3905.1479 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_100521 | 15038.9814 | 3951.5253 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_100621 | 15046.1224 | 3994.337 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_503278 | 14812.9869 | 3609.0391 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_503279 | 14820.1279 | 3655.4176 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_503971 | 14809.4151 | 3708.9317 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505546 | 14823.6972 | 3773.1471 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505547 | 14820.1279 | 3805.2554 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505548 | 14809.4151 | 3840.9314 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505549 | 14809.4151 | 3901.5801 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505550 | 14812.9869 | 3951.5253 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505551 | 14809.4151 | 3994.337 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505553 | 14945.0877 | 3990.7692 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505554 | 14952.2288 | 3962.2288 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| WD_505555 | 14952.2288 | 3912.2825 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_505638 | 14945.0877 | 3869.4718 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506295 | 14948.6595 | 3826.6612 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506296 | 14948.6595 | 3790.9852 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506297 | 14945.0877 | 3719.6341 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506630 | 14948.6595 | 3676.8234 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506631 | 14948.6595 | 3616.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506632 | 15041.4857 | 3619.7426 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506950 | 15030.7754 | 3651.8498 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506951 | 15027.2061 | 3694.6614 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506952 | 15020.0651 | 3755.3091 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_506953 | 15020.0651 | 3794.553 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_507087 | 15023.6343 | 3830.229 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_508939 | 15170.0173 | 3616.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_509042 | 15177.1584 | 3658.9854 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_509046 | 15177.1584 | 3712.4985 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_509625 | 15166.448 | 3766.0125 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| WD_509752 | 15170.0173 | 3801.6876 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_509753 | 15180.7302 | 3844.4992 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_509871 | 15166.448 | 3908.7147 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510052 | 15166.448 | 3944.3907 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510053 | 15170.0173 | 3980.0668 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510135 | 15173.5891 | 4044.2822 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510136 | 15173.5891 | 4094.2285 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510138 | 15173.5891 | 4144.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510139 | 15037.9165 | 4040.7154 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510140 | 15030.7754 | 4083.5261 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510203 | 15034.3472 | 4129.9045 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510416 | 14955.798 | 4051.4179 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510417 | 14945.0877 | 4083.5261 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510419 | 14945.0877 | 4119.2011 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510421 | 15173.5891 | 4194.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510422 | 15166.448 | 4222.6605 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510425 | 15166.448 | 4261.9043 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| WD_510426 | 15045.0575 | 4186.9854 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510644 | 15048.6268 | 4222.6605 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510645 | 15041.4857 | 4265.4721 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510706 | 14948.6595 | 4194.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_510708 | 14948.6595 | 4219.0936 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_511068 | 14959.3698 | 4261.9043 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_511873 | 14955.798 | 4318.9852 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_512485 | 14952.2288 | 4354.6612 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_512486 | 14952.2288 | 4397.4719 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_512487 | 14945.0877 | 4461.6883 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_512730 | 14948.6595 | 4493.7956 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_513009 | 15183.8246 | 3637.7826 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_513504 | 14948.6595 | 4533.0394 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_831261 | 15045.0575 | 4322.553 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_831661 | 15030.7754 | 4368.9314 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_831961 | 15034.3472 | 4401.0397 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_832461 | 15034.3472 | 4461.6883 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| WD_834161 | 15034.3472 | 4500.9312 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_835261 | 15034.3472 | 4529.4716 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_836261 | 15173.5891 | 4326.1208 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_836561 | 15173.5891 | 4361.7958 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WD_839061 | 15173.5891 | 4401.0397 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| WHL_DOCK | 15937.6349 | 3006.1203 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10001 | 15851.9472 | 3623.3094 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10003 | 15844.8086 | 3669.6878 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10004 | 15844.8086 | 3708.9317 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10005 | 15844.8086 | 3762.4447 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10008 | 15841.2368 | 3790.9852 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_10016 | 15841.2368 | 3833.7958 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_476422 | 15844.8086 | 3908.7147 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_477080 | 15841.2368 | 3947.9585 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_477265 | 15844.8086 | 3983.6336 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_479006 | 15851.9472 | 4062.1203 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_500030 | 15851.9472 | 4101.3641 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| W_500037 | 15848.3779 | 4140.607 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_500228 | 15984.0505 | 4137.0392 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_500252 | 15987.6198 | 4094.2285 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501493 | 15987.6198 | 4044.2822 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501552 | 15994.7609 | 3987.2014 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501627 | 15994.7609 | 3958.6609 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501684 | 15994.7609 | 3912.2825 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501919 | 15994.7609 | 3848.066 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501920 | 15994.7609 | 3805.2554 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_501961 | 15994.7609 | 3762.4447 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503103 | 15987.6198 | 3701.7961 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503106 | 15987.6198 | 3669.6878 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503565 | 15984.0505 | 3626.8772 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503760 | 16069.7382 | 3626.8772 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503793 | 16059.0254 | 3658.9854 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503794 | 16062.5972 | 3694.6614 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_503893 | 16051.8869 | 3773.1471 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| W_504468 | 16066.1664 | 3815.9578 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_505308 | 16066.1664 | 3837.3636 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_506245 | 16059.0254 | 3908.7147 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_506284 | 16062.5972 | 3947.9585 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_506562 | 16066.1664 | 3994.337 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_507208 | 16055.4561 | 4051.4179 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508202 | 16066.1664 | 4090.6607 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508686 | 16062.5972 | 4122.7689 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508687 | 16198.2698 | 4144.1748 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508709 | 16216.1212 | 4094.2285 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508730 | 16194.698 | 4033.5798 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508732 | 16205.4083 | 3994.337 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_508737 | 16216.1212 | 3940.8229 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_509145 | 16216.1212 | 3894.4445 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_509146 | 16201.8391 | 3844.4992 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_509147 | 16201.8391 | 3808.8232 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_509148 | 16205.4083 | 3773.1471 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 38 Continued

| Name | X (Inches) | Y (Inches) | Group | Tug Route | Passthrough | Stop | Delaytime |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| W_509149 | 16201.8391 | 3723.2019 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_509671 | 16219.6905 | 3694.6614 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_510081 | 16198.2698 | 3641.1474 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_511042 | 16291.096 | 3612.6069 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_511043 | 16283.9575 | 3666.12 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_511355 | 16283.9575 | 3701.7961 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_511870 | 16273.2446 | 3758.8769 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_512802 | 16276.8165 | 3808.8232 | UNASSIGNED | UNASSIGNED | No | No | 0 |
| W_513009 | 16280.3857 | 3840.9314 | UNASSIGNED | UNASSIGNED | No | No | 0 |

Table 39. Second .csv File

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| ---: | :--- | :--- | ---: | ---: | :--- | :--- | ---: | ---: | :--- | :--- | :--- |
| 1 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 1 | 1 |  |  | DSD |
| 2 | 506952 | CASE | 30 |  | DSD_DOCK | DW_506952 | 1 | 1 |  |  | DSD |
| 3 | 506953 | CASE | 30 |  | DSD_DOCK | DW_506953 | 1 | 1 |  |  | DSD |
| 4 | 509625 | CASE | 5 |  | DSD_DOCK | DW_509625 | 1 | 1 |  |  | DSD |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 100411 | CASE | 10 |  | DSD_DOCK | DW_100411 | 1 | 1 |  |  | DSD |
| 6 | 100621 | CASE | 25 |  | DSD_DOCK | DW_100621 | 1 | 1 |  |  | DSD |
| 7 | 505554 | CASE | 15 |  | DSD_DOCK | DW_505554 | 1 | 1 |  |  | DSD |
| 8 | 510203 | CASE | 5 |  | DSD_DOCK | DW_510203 | 1 | 1 |  |  | DSD |
| 9 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 1 | 1 |  |  | DSD |
| 10 | 503971 | CASE | 5 |  | DSD_DOCK | DW_503971 | 1 | 1 |  |  | DSD |
| 11 | 503279 | CASE | 10 |  | DSD_DOCK | DW_503279 | 1 | 1 |  |  | DSD |
| 12 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 1 | 1 |  |  | DSD |
| 13 | 831261 | CASE | 5 |  | DSD_DOCK | DW_831261 | 1 | 1 |  |  | DSD |
| 14 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 1 | 1 |  |  | DSD |
| 15 | 832461 | CASE | 5 |  | DSD_DOCK | DW_832461 | 1 | 1 |  |  | DSD |
| 16 | 834161 | CASE | 15 |  | DSD_DOCK | DW_834161 | 1 | 1 |  |  | DSD |
| 17 | 835261 | CASE | 20 |  | DSD_DOCK | DW_835261 | 1 | 1 |  |  | DSD |
| 18 | 836261 | CASE | 15 |  | DSD_DOCK | DW_836261 | 1 | 1 |  |  | DSD |
| 19 | 505546 | CASE | 15 |  | DSD_DOCK | DW_505546 | 1 | 1 |  |  | DSD |
| 20 | 505550 | CASE | 5 |  | DSD_DOCK | DW_505550 | 1 | 1 |  |  | DSD |
| 21 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 1 | 1 |  |  | DSD |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 1 | 1 |  |  | DSD |
| 23 | 505551 | CASE | 5 |  | DSD_DOCK | DW_505551 | 1 | 1 |  |  | DSD |
| 24 | 510645 | CASE | 5 |  | DSD_DOCK | DW_510645 | 1 | 1 |  |  | DSD |
| 25 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 1 | 1 |  |  | DSD |
| 26 | 506630 | CASE | 5 |  | DSD_DOCK | DW_506630 | 1 | 1 |  |  | DSD |
| 27 | 509042 | CASE | 15 |  | DSD_DOCK | DW_509042 | 1 | 1 |  |  | DSD |
| 30 | 505548 | CASE | 4 |  | DSD_DOCK | DW_505548 | 2 | 1 |  |  | DSD |
| 31 | 506953 | CASE | 8 |  | DSD_DOCK | DW_506953 | 2 | 1 |  |  | DSD |
| 32 | 503278 | CASE | 6 |  | DSD_DOCK | DW_503278 | 2 | 1 |  |  | DSD |
| 33 | 509871 | CASE | 4 |  | DSD_DOCK | DW_509871 | 2 | 1 |  |  | DSD |
| 34 | 100521 | CASE | 4 |  | DSD_DOCK | DW_100521 | 2 | 1 |  |  | DSD |
| 35 | 100621 | CASE | 3 |  | DSD_DOCK | DW_100621 | 2 | 1 |  |  | DSD |
| 36 | 505555 | CASE | 4 |  | DSD_DOCK | DW_505555 | 2 | 1 |  |  | DSD |
| 37 | 505554 | CASE | 4 |  | DSD_DOCK | DW_505554 | 2 | 1 |  |  | DSD |
| 38 | 503971 | CASE | 4 |  | DSD_DOCK | DW_503971 | 2 | 1 |  |  | DSD |
| 39 | 831261 | CASE | 3 |  | DSD_DOCK | DW_831261 | 2 | 1 |  |  | DSD |
| 40 | 834161 | CASE | 3 |  | DSD_DOCK | DW_834161 | 2 | 1 |  |  | DSD |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41 | 831661 | CASE | 6 |  | DSD_DOCK | DW_831661 | 2 | 1 |  |  | DSD |
| 42 | 836261 | CASE | 4 |  | DSD_DOCK | DW_836261 | 2 | 1 |  |  | DSD |
| 43 | 839061 | CASE | 4 |  | DSD_DOCK | DW_839061 | 2 | 1 |  |  | DSD |
| 44 | 509752 | CASE | 4 |  | DSD_DOCK | DW_509752 | 2 | 1 |  |  | DSD |
| 45 | 505546 | CASE | 6 |  | DSD_DOCK | DW_505546 | 2 | 1 |  |  | DSD |
| 46 | 505547 | CASE | 4 |  | DSD_DOCK | DW_505547 | 2 | 1 |  | DSD |  |
| 47 | 505549 | CASE | 8 |  | DSD_DOCK | DW_505549 | 2 | 1 |  | DSD |  |
| 48 | 510645 | CASE | 4 |  | DSD_DOCK | DW_510645 | 2 | 1 |  | DSD |  |
| 49 | 510644 | CASE | 2 |  | DSD_DOCK | DW_510644 | 2 | 1 |  | DSD |  |
| 50 | 511068 | CASE | 4 |  | DSD_DOCK | DW_511068 | 2 | 1 |  | DSD |  |
| 51 | 506295 | CASE | 6 |  | DSD_DOCK | DW_506295 | 2 | 1 |  | DSD |  |
| 52 | 506296 | CASE | 3 |  | DSD_DOCK | DW_506296 | 2 | 1 |  | DSD |  |
| 53 | 506297 | CASE | 2 |  | DSD_DOCK | DW_506297 | 2 | 1 |  | DSD |  |
| 54 | 506630 | CASE | 4 |  | DSD_DOCK | DW_506630 | 2 | 1 |  | DSD |  |
| 55 | 508939 | CASE | 2 |  | DSD_DOCK | DW_508939 | 2 | 1 | DSD |  |  |
| 56 | 510416 | CASE | 4 |  | DSD_DOCK | DW_510416 | 2 | 1 |  | DSD |  |
| 57 | 510417 | CASE | 4 | DSD_DOCK | DW_510417 | 2 | 1 |  |  |  |  |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 58 | 510419 | CASE | 6 |  | DSD_DOCK | DW_510419 | 2 | 1 |  |  | DSD |
| 59 | 510425 | CASE | 6 |  | DSD_DOCK | DW_510425 | 2 | 1 |  |  | DSD |
| 60 | 512487 | CASE | 4 |  | DSD_DOCK | DW_512487 | 2 | 1 |  |  | DSD |
| 61 | 512486 | CASE | 6 |  | DSD_DOCK | DW_512486 | 2 | 1 |  |  | DSD |
| 62 | 512485 | CASE | 6 |  | DSD_DOCK | DW_512485 | 2 | 1 |  |  | DSD |
| 63 | 513504 | CASE | 3 |  | DSD_DOCK | DW_513504 | 2 | 1 |  | DSD |  |
| 64 | 510135 | CASE | 1 |  | DSD_DOCK | DW_510135 | 2 | 1 |  | DSD |  |
| 65 | 510139 | CASE | 1 |  | DSD_DOCK | DW_510139 | 2 | 1 |  | DSD |  |
| 66 | 510136 | CASE | 1 |  | DSD_DOCK | DW_510136 | 2 | 1 |  | DSD |  |
| 68 | 506632 | CASE | 1 |  | DSD_DOCK | DW_506632 | 3 | 1 |  | DSD |  |
| 69 | 506952 | CASE | 2 |  | DSD_DOCK | DW_506952 | 3 | 1 |  | DSD |  |
| 70 | 506953 | CASE | 2 |  | DSD_DOCK | DW_506953 | 3 | 1 |  | DSD |  |
| 71 | 509625 | CASE | 1 |  | DSD_DOCK | DW_509625 | 3 | 1 |  | DSD |  |
| 72 | 100411 | CASE | 1 |  | DSD_DOCK | DW_100411 | 3 | 1 |  | DSD |  |
| 73 | 100521 | CASE | 2 |  | DSD_DOCK | DW_100521 | 3 | 1 |  | DSD |  |
| 74 | 100621 | CASE | 5 |  | DSD_DOCK | DW_100621 | 3 | 1 |  |  |  |
| 75 | 505554 | CASE | 2 | DSD_DOCK | DW_505554 | 3 | 1 |  |  |  |  |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | 509046 | CASE | 3 |  | DSD_DOCK | DW_509046 | 3 | 1 |  |  | DSD |
| 77 | 503279 | CASE | 1 |  | DSD_DOCK | DW_503279 | 3 | 1 |  |  | DSD |
| 78 | 831961 | CASE | 1 |  | DSD_DOCK | DW_831961 | 3 | 1 |  |  | DSD |
| 79 | 834161 | CASE | 5 |  | DSD_DOCK | DW_834161 | 3 | 1 |  |  | DSD |
| 80 | 835261 | CASE | 4 |  | DSD_DOCK | DW_835261 | 3 | 1 |  |  | DSD |
| 81 | 831661 | CASE | 1 |  | DSD_DOCK | DW_831661 | 3 | 1 |  | DSD |  |
| 82 | 836261 | CASE | 7 |  | DSD_DOCK | DW_836261 | 3 | 1 |  | DSD |  |
| 83 | 509752 | CASE | 1 |  | DSD_DOCK | DW_509752 | 3 | 1 |  | DSD |  |
| 84 | 505546 | CASE | 4 |  | DSD_DOCK | DW_505546 | 3 | 1 |  | DSD |  |
| 85 | 505549 | CASE | 2 |  | DSD_DOCK | DW_505549 | 3 | 1 |  | DSD |  |
| 86 | 505553 | CASE | 1 |  | DSD_DOCK | DW_505553 | 3 | 1 |  | DSD |  |
| 87 | 510645 | CASE | 1 |  | DSD_DOCK | DW_510645 | 3 | 1 |  | DSD |  |
| 88 | 506295 | CASE | 3 |  | DSD_DOCK | DW_506295 | 3 | 1 |  | DSD |  |
| 89 | 506631 | CASE | 1 |  | DSD_DOCK | DW_506631 | 3 | 1 |  | DSD |  |
| 90 | 506630 | CASE | 1 |  | DSD_DOCK | DW_506630 | 3 | 1 |  | DSD |  |
| 91 | 506951 | CASE | 2 |  | DSD_DOCK | DW_506951 | 3 | 1 |  | DSD |  |
| 92 | 506950 | CASE | 2 | DSD_DOCK | DW_506950 | 3 | 1 |  |  |  |  |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 92 | 506950 | CASE | 2 |  | DSD_DOCK | DW_506950 | 3 | 1 |  |  | DSD |
| 93 | 510416 | CASE | 14 |  | DSD_DOCK | DW_510416 | 3 | 1 |  |  | DSD |
| 94 | 510419 | CASE | 5 |  | DSD_DOCK | DW_510419 | 3 | 1 |  |  | DSD |
| 95 | 510421 | CASE | 4 |  | DSD_DOCK | DW_510421 | 3 | 1 |  |  | DSD |
| 96 | 510422 | CASE | 2 |  | DSD_DOCK | DW_510422 | 3 | 1 |  |  | DSD |
| 97 | 510426 | CASE | 8 |  | DSD_DOCK | DW_510426 | 3 | 1 |  |  | DSD |
| 98 | 512486 | CASE | 2 |  | DSD_DOCK | DW_512486 | 3 | 1 |  |  | DSD |
| 99 | 512485 | CASE | 2 |  | DSD_DOCK | DW_512485 | 3 | 1 |  |  | DSD |
| 101 | 505548 | CASE | 10 |  | DSD_DOCK | DW_505548 | 4 | 1 |  |  | DSD |
| 102 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 4 | 1 |  |  | DSD |
| 103 | 509753 | CASE | 5 |  | DSD_DOCK | DW_509753 | 4 | 1 |  |  | DSD |
| 104 | 503278 | CASE | 10 |  | DSD_DOCK | DW_503278 | 4 | 1 |  |  | DSD |
| 105 | 509871 | CASE | 5 |  | DSD_DOCK | DW_509871 | 4 | 1 |  |  | DSD |
| 106 | 100521 | CASE | 15 |  | DSD_DOCK | DW_100521 | 4 | 1 |  |  | DSD |
| 107 | 511873 | CASE | 15 |  | DSD_DOCK | DW_511873 | 4 | 1 |  |  | DSD |
| 108 | 505555 | CASE | 5 |  | DSD_DOCK | DW_505555 | 4 | 1 |  |  | DSD |
| 109 | 505554 | CASE | 10 |  | DSD_DOCK | DW_505554 | 4 | 1 |  |  | DSD |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | 513009 | CASE | 15 |  | DSD_DOCK | W_513009 | 4 | 1 |  |  | DSD |
| 111 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 4 | 1 |  |  | DSD |
| 112 | 503971 | CASE | 10 |  | DSD_DOCK | DW_503971 | 4 | 1 |  |  | DSD |
| 113 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 4 | 1 |  |  | DSD |
| 114 | 831261 | CASE | 10 |  | DSD_DOCK | DW_831261 | 4 | 1 |  |  | DSD |
| 115 | 836261 | CASE | 14 |  | DSD_DOCK | DW_836261 | 4 | 1 |  |  | DSD |
| 116 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 4 | 1 |  |  | DSD |
| 117 | 832461 | CASE | 10 |  | DSD_DOCK | DW_832461 | 4 | 1 |  |  | DSD |
| 118 | 835261 | CASE | 15 |  | DSD_DOCK | DW_835261 | 4 | 1 |  |  | DSD |
| 119 | 831661 | CASE | 5 |  | DSD_DOCK | DW_831661 | 4 | 1 |  |  | DSD |
| 120 | 839061 | CASE | 10 |  | DSD_DOCK | DW_839061 | 4 | 1 |  |  | DSD |
| 121 | 509752 | CASE | 5 |  | DSD_DOCK | DW_509752 | 4 | 1 |  |  | DSD |
| 122 | 505546 | CASE | 25 |  | DSD_DOCK | DW_505546 | 4 | 1 |  |  | DSD |
| 123 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 4 | 1 |  |  | DSD |
| 124 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 4 | 1 |  |  | DSD |
| 125 | 505638 | CASE | 3 |  | DSD_DOCK | DW_505638 | 4 | 1 |  |  | DSD |
| 126 | 510645 | CASE | 10 |  | DSD_DOCK | DW_510645 | 4 | 1 |  |  | DSD |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 127 | 511068 | CASE | 5 |  | DSD_DOCK | DW_511068 | 4 | 1 |  |  | DSD |
| 128 | 510706 | CASE | 5 |  | DSD_DOCK | DW_510706 | 4 | 1 |  |  | DSD |
| 129 | 512730 | CASE | 5 |  | DSD_DOCK | DW_512730 | 4 | 1 |  |  | DSD |
| 130 | 506295 | CASE | 20 |  | DSD_DOCK | DW_506295 | 4 | 1 |  |  | DSD |
| 131 | 506296 | CASE | 10 |  | DSD_DOCK | DW_506296 | 4 | 1 |  |  | DSD |
| 132 | 506297 | CASE | 10 |  | DSD_DOCK | DW_506297 | 4 | 1 |  |  | DSD |
| 133 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 4 | 1 |  |  | DSD |
| 134 | 512487 | CASE | 5 |  | DSD_DOCK | DW_512487 | 4 | 1 |  |  | DSD |
| 135 | 512486 | CASE | 5 |  | DSD_DOCK | DW_512486 | 4 | 1 |  |  | DSD |
| 136 | 512485 | CASE | 8 |  | DSD_DOCK | DW_512485 | 4 | 1 |  |  | DSD |
| 137 | 510052 | CASE | 3 |  | DSD_DOCK | DW_510052 | 4 | 1 |  |  | DSD |
| 138 | 510053 | CASE | 3 |  | DSD_DOCK | DW_510053 | 4 | 1 |  |  | DSD |
| 139 | 510138 | CASE | 5 |  | DSD_DOCK | DW_510138 | 4 | 1 |  |  | DSD |
| 140 | 510135 | CASE | 5 |  | DSD_DOCK | DW_510135 | 4 | 1 |  |  | DSD |
| 141 | 510139 | CASE | 5 |  | DSD_DOCK | DW_510139 | 4 | 1 |  |  | DSD |
| 142 | 510136 | CASE | 5 |  | DSD_DOCK | DW_510136 | 4 | 1 |  |  | DSD |
| 144 | 506284 | CASE | 12 |  | RET_DOCK | R_506284 | 1 | 1 |  |  | RETAIL |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 145 | 510141 | CASE | 1 |  | RET_DOCK | RW_510141 | 1 | 1 |  |  | RETAIL |
| 146 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 1 | 1 |  |  | RETAIL |
| 147 | 513096 | CASE | 1 |  | RET_DOCK | R_513096 | 1 | 1 |  |  | RETAIL |
| 148 | 508730 | CASE | 3 |  | RET_DOCK | R_508730 | 1 | 1 |  |  | RETAIL |
| 149 | 511108 | CASE | 1 |  | RET_DOCK | RW_511108 | 1 | 1 |  |  | RETAIL |
| 150 | 480077 | CASE | 1 |  | RET_DOCK | R_480077 | 1 | 1 |  |  | RETAIL |
| 151 | 503890 | CASE | 1 |  | RET_DOCK | R_503890 | 1 | 1 |  |  | RETAIL |
| 152 | 479006 | CASE | 2 |  | RET_DOCK | R_479006 | 1 | 1 |  |  | RETAIL |
| 153 | 508687 | CASE | 1 |  | RET_DOCK | R_508687 | 1 | 1 |  |  | RETAIL |
| 154 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 1 | 1 |  |  | RETAIL |
| 155 | 666688 | CASE | 1 |  | RET_DOCK | R_666688 | 1 | 1 |  |  | RETAIL |
| 156 | 511312 | CASE | 1 |  | RET_DOCK | RW_511312 | 1 | 1 |  |  | RETAIL |
| 157 | 510646 | CASE | 1 |  | RET_DOCK | RW_510646 | 1 | 1 |  |  | RETAIL |
| 158 | 510418 | CASE | 1 |  | RET_DOCK | RW_510418 | 1 | 1 |  |  | RETAIL |
| 159 | 510419 | CASE | 1 |  | RET_DOCK | RW_510419 | 1 | 1 |  |  | RETAIL |
| 160 | 510421 | CASE | 1 |  | RET_DOCK | RW_510421 | 1 | 1 |  |  | RETAIL |
| 161 | 510426 | CASE | 2 |  | RET_DOCK | RW_510426 | 1 | 1 |  |  | RETAIL |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 163 | 509209 | CASE | 1 |  | RET_DOCK | R_509209 | 2 | 1 |  |  | RETAIL |
| 164 | 509594 | CASE | 1 |  | RET_DOCK | RW_509594 | 2 | 1 |  |  | RETAIL |
| 165 | 506284 | CASE | 5 |  | RET_DOCK | R_506284 | 2 | 1 |  |  | RETAIL |
| 166 | 510138 | CASE | 1 |  | RET_DOCK | RW_510138 | 2 | 1 |  |  | RETAIL |
| 167 | 510136 | CASE | 2 |  | RET_DOCK | RW_510136 | 2 | 1 |  |  | RETAIL |
| 168 | 512988 | CASE | 1 |  | RET_DOCK | RW_512988 | 2 | 1 |  |  | RETAIL |
| 169 | 500078 | CASE | 1 |  | RET_DOCK | R_500078 | 2 | 1 |  |  | RETAIL |
| 170 | 509197 | CASE | 1 |  | RET_DOCK | R_509197 | 2 | 1 |  |  | RETAIL |
| 171 | 509193 | CASE | 1 |  | RET_DOCK | R_509193 | 2 | 1 |  |  | RETAIL |
| 172 | 509206 | CASE | 1 |  | RET_DOCK | R_509206 | 2 | 1 |  |  | RETAIL |
| 173 | 509204 | CASE | 1 |  | RET_DOCK | R_509204 | 2 | 1 |  |  | RETAIL |
| 174 | 504503 | CASE | 1 |  | RET_DOCK | R_504503 | 2 | 1 |  |  | RETAIL |
| 175 | 513020 | CASE | 1 |  | RET_DOCK | R_513020 | 2 | 1 |  |  | RETAIL |
| 176 | 508730 | CASE | 3 |  | RET_DOCK | R_508730 | 2 | 1 |  |  | RETAIL |
| 177 | 510936 | CASE | 2 |  | RET_DOCK | RW_510936 | 2 | 1 |  |  | RETAIL |
| 178 | 503791 | CASE | 1 |  | RET_DOCK | R_503791 | 2 | 1 |  |  | RETAIL |
| 179 | 479006 | CASE | 1 |  | RET_DOCK | R_479006 | 2 | 1 |  |  | RETAIL |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 503760 | CASE | 1 |  | RET_DOCK | R_503760 | 2 | 1 |  |  | RETAIL |
| 181 | 511312 | CASE | 2 |  | RET_DOCK | RW_511312 | 2 | 1 |  |  | RETAIL |
| 183 | 506284 | CASE | 4 |  | RET_DOCK | R_506284 | 3 | 1 |  |  | RETAIL |
| 184 | 473916 | CASE | 1 |  | RET_DOCK | R_473916 | 3 | 1 |  |  | RETAIL |
| 185 | 507238 | CASE | 2 |  | RET_DOCK | R_507238 | 3 | 1 |  |  | RETAIL |
| 186 | 509198 | CASE | 1 |  | RET_DOCK | R_509198 | 3 | 1 |  |  | RETAIL |
| 187 | 509192 | CASE | 1 |  | RET_DOCK | R_509192 | 3 | 1 |  |  | RETAIL |
| 188 | 410608 | CASE | 1 |  | RET_DOCK | R_410608 | 3 | 1 |  |  | RETAIL |
| 189 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 3 | 1 |  |  | RETAIL |
| 190 | 511839 | CASE | 1 |  | RET_DOCK | RW_511839 | 3 | 1 |  |  | RETAIL |
| 191 | 503791 | CASE | 1 |  | RET_DOCK | R_503791 | 3 | 1 |  |  | RETAIL |
| 192 | 479006 | CASE | 3 |  | RET_DOCK | R_479006 | 3 | 1 |  |  | RETAIL |
| 193 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 3 | 1 |  |  | RETAIL |
| 194 | 666688 | CASE | 1 |  | RET_DOCK | R_666688 | 3 | 1 |  |  | RETAIL |
| 196 | 506284 | CASE | 4 |  | RET_DOCK | R_506284 | 4 | 1 |  |  | RETAIL |
| 197 | 513022 | CASE | 2 |  | RET_DOCK | RW_513022 | 4 | 1 |  |  | RETAIL |
| 198 | 512728 | CASE | 1 |  | RET_DOCK | RW_512728 | 4 | 1 |  |  | RETAIL |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 199 | 510835 | CASE | 1 |  | RET_DOCK | RW_510835 | 4 | 1 |  |  | RETAIL |
| 200 | 512986 | CASE | 1 |  | RET_DOCK | RW_512986 | 4 | 1 |  |  | RETAIL |
| 201 | 506562 | CASE | 1 |  | RET_DOCK | R_506562 | 4 | 1 |  |  | RETAIL |
| 202 | 504503 | CASE | 1 |  | RET_DOCK | R_504503 | 4 | 1 |  |  | RETAIL |
| 203 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 4 | 1 |  |  | RETAIL |
| 204 | 513020 | CASE | 1 |  | RET_DOCK | R_513020 | 4 | 1 |  |  | RETAIL |
| 205 | 513096 | CASE | 2 |  | RET_DOCK | R_513096 | 4 | 1 |  |  | RETAIL |
| 206 | 508730 | CASE | 1 |  | RET_DOCK | R_508730 | 4 | 1 |  |  | RETAIL |
| 207 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 4 | 1 |  |  | RETAIL |
| 208 | 503760 | CASE | 1 |  | RET_DOCK | R_503760 | 4 | 1 |  |  | RETAIL |
| 209 | 511312 | CASE | 2 |  | RET_DOCK | RW_511312 | 4 | 1 |  |  | RETAIL |
| 210 | 510142 | CASE | 1 |  | RET_DOCK | RW_510142 | 4 | 1 |  |  | RETAIL |
| 211 | 510422 | CASE | 1 |  | RET_DOCK | RW_510422 | 4 | 1 |  |  | RETAIL |
| 212 | 510425 | CASE | 1 |  | RET_DOCK | RW_510425 | 4 | 1 |  |  | RETAIL |
| 214 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 1 | 1 |  |  | WHOLE |
| 215 | 500252 | CASE | 1 |  | WHL_DOCK | W_500252 | 1 | 1 |  |  | WHOLE |
| 216 | 501684 | CASE | 1 |  | WHL_DOCK | W_501684 | 1 | 1 |  |  | WHOLE |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 217 | 501961 | CASE | 1 |  | WHL_DOCK | W_501961 | 1 | 1 |  |  | WHOLE |
| 218 | 508737 | CASE | 1 |  | WHL_DOCK | W_508737 | 1 | 1 |  |  | WHOLE |
| 219 | 511870 | CASE | 4 |  | WHL_DOCK | W_511870 | 1 | 1 |  |  | WHOLE |
| 220 | 503106 | CASE | 1 |  | WHL_DOCK | W_503106 | 1 | 1 |  |  | WHOLE |
| 221 | 509148 | CASE | 1 |  | WHL_DOCK | W_509148 | 1 | 1 |  |  | WHOLE |
| 222 | 509145 | CASE | 1 |  | WHL_DOCK | W_509145 | 1 | 1 |  |  | WHOLE |
| 223 | 509146 | CASE | 1 |  | WHL_DOCK | W_509146 | 1 | 1 |  |  | WHOLE |
| 224 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 1 | 1 |  |  | WHOLE |
| 226 | 507208 | CASE | 2 |  | WHL_DOCK | W_507208 | 2 | 1 |  |  | WHOLE |
| 227 | 501493 | CASE | 2 |  | WHL_DOCK | W_501493 | 2 | 1 |  |  | WHOLE |
| 228 | 501627 | CASE | 2 |  | WHL_DOCK | W_501627 | 2 | 1 |  |  | WHOLE |
| 229 | 501552 | CASE | 3 |  | WHL_DOCK | W_501552 | 2 | 1 |  |  | WHOLE |
| 230 | 477080 | CASE | 1 |  | WHL_DOCK | W_477080 | 2 | 1 |  |  | WHOLE |
| 231 | 510136 | CASE | 1 |  | WHL_DOCK | DW_510136 | 2 | 1 |  |  | WHOLE |
| 232 | 512802 | CASE | 3 |  | WHL_DOCK | W_512802 | 2 | 1 |  |  | WHOLE |
| 233 | 511355 | CASE | 1 |  | WHL_DOCK | W_511355 | 2 | 1 |  |  | WHOLE |
| 234 | 503106 | CASE | 1 |  | WHL_DOCK | W_503106 | 2 | 1 |  |  | WHOLE |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 235 | 509148 | CASE | 1 |  | WHL_DOCK | W_509148 | 2 | 1 |  |  | WHOLE |
| 236 | 509145 | CASE | 1 |  | WHL_DOCK | W_509145 | 2 | 1 |  |  | WHOLE |
| 237 | 509146 | CASE | 1 |  | WHL_DOCK | W_509146 | 2 | 1 |  | WHOLE |  |
| 238 | 509147 | CASE | 1 |  | WHL_DOCK | W_509147 | 2 | 1 |  |  | WHOLE |
| 240 | 500252 | CASE | 7 |  | WHL_DOCK | W_500252 | 3 | 1 |  | WHOLE |  |
| 241 | 510198 | CASE | 1 |  | WHL_DOCK | RW_510198 | 3 | 1 |  | WHOLE |  |
| 242 | 10005 | CASE | 6 |  | WHL_DOCK | W_10005 | 3 | 1 |  | WHOLE |  |
| 243 | 10003 | CASE | 6 |  | WHL_DOCK | W_10003 | 3 | 1 |  | WHOLE |  |
| 244 | 10004 | CASE | 6 |  | WHL_DOCK | W_10004 | 3 | 1 |  | WHOLE |  |
| 245 | 10001 | CASE | 6 |  | WHL_DOCK | W_10001 | 3 | 1 | WHOLE |  |  |
| 246 | 10016 | CASE | 6 |  | WHL_DOCK | W_10016 | 3 | 1 |  | WHOLE |  |
| 247 | 10008 | CASE | 6 |  | WHL_DOCK | W_10008 | 3 | 1 | WHOLE |  |  |
| 248 | 503103 | CASE | 2 |  | WHL_DOCK | W_503103 | 3 | 1 |  |  |  |
| 250 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 4 | 1 | WHOLE |  |  |
| 251 | 501920 | CASE | 1 |  | WHL_DOCK | W_501920 | 4 | 1 |  | WHOLE |  |
| 252 | 500252 | CASE | 1 |  | WHL_DOCK | W_500252 | 4 | 1 | WHOLE |  |  |
| 253 | 500030 | CASE | 1 | WHL_DOCK | W_500030 | 4 | 1 |  | WHOLE |  |  |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 254 | 501961 | CASE | 1 |  | WHL_DOCK | W_501961 | 4 | 1 |  |  | WHOLE |
| 255 | 477265 | CASE | 1 |  | WHL_DOCK | W_477265 | 4 | 1 |  |  | WHOLE |
| 256 | 512986 | CASE | 1 |  | WHL_DOCK | RW_512986 | 4 | 1 |  | WHOLE |  |
| 257 | 510140 | CASE | 2 |  | WHL_DOCK | DW_510140 | 4 | 1 |  |  | WHOLE |
| 258 | 508730 | CASE | 2 |  | WHL_DOCK | W_508730 | 4 | 1 |  | WHOLE |  |
| 259 | 508732 | CASE | 1 |  | WHL_DOCK | W_508732 | 4 | 1 |  | WHOLE |  |
| 260 | 509671 | CASE | 2 |  | WHL_DOCK | W_509671 | 4 | 1 |  | WHOLE |  |
| 261 | 476422 | CASE | 1 |  | WHL_DOCK | W_476422 | 4 | 1 | WHOLE |  |  |
| 262 | 511043 | CASE | 1 |  | WHL_DOCK | W_511043 | 4 | 1 |  | WHOLE |  |
| 263 | 511312 | CASE | 2 |  | WHL_DOCK | RW_511312 | 4 | 1 | WHOLE |  |  |
| 264 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 4 | 1 |  | WHOLE |  |
| 266 | 506284 | CASE | 4 |  | WHL_DOCK | W_506284 | 5 | 1 |  |  | WHOLE |
| 267 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 5 | 1 |  |  |  |
| 268 | 501493 | CASE | 2 |  | WHL_DOCK | W_501493 | 5 | 1 | WHOLE |  |  |
| 269 | 504468 | CASE | 2 |  | WHL_DOCK | W_504468 | 5 | 1 |  | WHOLE |  |
| 270 | 501961 | CASE | 2 |  | WHL_DOCK | W_501961 | 5 | 1 | WHOLE |  |  |
| 271 | 503565 | CASE | 4 | WHL_DOCK | W_503565 | 5 | 1 |  | WHOLE |  |  |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 272 | 508730 | CASE | 1 |  | WHL_DOCK | W_508730 | 5 | 1 |  |  | WHOLE |
| 273 | 509671 | CASE | 1 |  | WHL_DOCK | W_509671 | 5 | 1 |  |  | WHOLE |
| 274 | 508202 | CASE | 1 |  | WHL_DOCK | W_508202 | 5 | 1 |  |  | WHOLE |
| 275 | 479006 | CASE | 3 |  | WHL_DOCK | W_479006 | 5 | 1 |  |  | WHOLE |
| 276 | 511309 | CASE | 1 |  | WHL_DOCK | RW_511309 | 5 | 1 |  |  | WHOLE |
| 277 | 511042 | CASE | 1 |  | WHL_DOCK | W_511042 | 5 | 1 |  |  | WHOLE |
| 278 | 511312 | CASE | 1 |  | WHL_DOCK | RW_511312 | 5 | 1 |  |  | WHOLE |
| 280 | 507208 | CASE | 2 |  | WHL_DOCK | W_507208 | 6 | 1 |  |  | WHOLE |
| 281 | 501919 | CASE | 4 |  | WHL_DOCK | W_501919 | 6 | 1 |  |  | WHOLE |
| 282 | 500228 | CASE | 2 |  | WHL_DOCK | W_500228 | 6 | 1 |  |  | WHOLE |
| 283 | 510081 | CASE | 2 |  | WHL_DOCK | W_510081 | 6 | 1 |  |  | WHOLE |
| 284 | 501552 | CASE | 2 |  | WHL_DOCK | W_501552 | 6 | 1 |  |  | WHOLE |
| 285 | 503565 | CASE | 2 |  | WHL_DOCK | W_503565 | 6 | 1 |  |  | WHOLE |
| 286 | 503793 | CASE | 1 |  | WHL_DOCK | W_503793 | 6 | 1 |  |  | WHOLE |
| 287 | 503794 | CASE | 1 |  | WHL_DOCK | W_503794 | 6 | 1 |  |  | WHOLE |
| 288 | 500037 | CASE | 3 |  | WHL_DOCK | W_500037 | 6 | 1 |  |  | WHOLE |
| 289 | 511309 | CASE | 2 |  | WHL_DOCK | RW_511309 | 6 | 1 |  |  | WHOLE |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 290 | 503106 | CASE | 3 |  | WHL_DOCK | W_503106 | 6 | 1 |  |  | WHOLE |
| 291 | 509149 | CASE | 3 |  | WHL_DOCK | W_509149 | 6 | 1 |  |  | WHOLE |
| 292 | 503760 | CASE | 1 |  | WHL_DOCK | W_503760 | 6 | 1 |  |  | WHOLE |
| 293 | 508730 | CASE | 3 |  | WHL_DOCK | W_508730 | 6 | 1 |  |  | WHOLE |
| 294 | 511043 | CASE | 4 |  | WHL_DOCK | W_511043 | 6 | 1 |  |  | WHOLE |
| 295 | 511042 | CASE | 2 |  | WHL_DOCK | W_511042 | 6 | 1 |  |  | WHOLE |
| 297 | 506284 | CASE | 12 |  | WHL_DOCK | W_506284 | 7 | 1 |  |  | WHOLE |
| 298 | 507208 | CASE | 3 |  | WHL_DOCK | W_507208 | 7 | 1 |  |  | WHOLE |
| 299 | 501919 | CASE | 2 |  | WHL_DOCK | W_501919 | 7 | 1 |  |  | WHOLE |
| 300 | 504468 | CASE | 3 |  | WHL_DOCK | W_504468 | 7 | 1 |  |  | WHOLE |
| 301 | 477265 | CASE | 1 |  | WHL_DOCK | W_477265 | 7 | 1 |  |  | WHOLE |
| 302 | 510136 | CASE | 1 |  | WHL_DOCK | DW_510136 | 7 | 1 |  |  | WHOLE |
| 303 | 508709 | CASE | 1 |  | WHL_DOCK | W_508709 | 7 | 1 |  |  | WHOLE |
| 304 | 506562 | CASE | 1 |  | WHL_DOCK | W_506562 | 7 | 1 |  |  | WHOLE |
| 305 | 509554 | CASE | 1 |  | WHL_DOCK | RW_509554 | 7 | 1 |  |  | WHOLE |
| 306 | 505308 | CASE | 1 |  | WHL_DOCK | W_505308 | 7 | 1 |  |  | WHOLE |
| 307 | 511542 | CASE | 1 |  | WHL_DOCK | RW_511542 | 7 | 1 |  |  | WHOLE |

Table 39 Continued

| *ID | Part | Container | ContQty | From | Stage | To | ETD | Direction | Load | Unload | Route |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 308 | 506245 | CASE | 1 |  | WHL_DOCK | W_506245 | 7 | 1 |  |  | WHOLE |
| 309 | 510130 | CASE | 1 |  | WHL_DOCK | RW_510130 | 7 | 1 |  |  | WHOLE |
| 310 | 509671 | CASE | 1 |  | WHL_DOCK | W_509671 | 7 | 1 |  |  | WHOLE |
| 311 | 508686 | CASE | 4 |  | WHL_DOCK | W_508686 | 7 | 1 |  |  | WHOLE |
| 312 | 503103 | CASE | 1 |  | WHL_DOCK | W_503103 | 7 | 1 |  |  | WHOLE |
| 313 | 508687 | CASE | 1 |  | WHL_DOCK | W_508687 | 7 | 1 |  |  | WHOLE |
| 314 | 503893 | CASE | 2 |  | WHL_DOCK | W_503893 | 7 | 1 |  |  | WHOLE |
| 315 | 511312 | CASE | 1 |  | WHL_DOCK | RW_511312 | 7 | 1 |  |  | WHOLE |
| 316 | 508730 | CASE | 2 |  | WHL_DOCK | W_508730 | 7 | 1 |  |  | WHOLE |
| 317 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 7 | 1 |  |  | WHOLE |

Table 40. Initial Results Window Data Table by Aggregates

| Aggregate | Dist (Ft) | Time (Hrs) | Cost | Travel\% | $\begin{aligned} & \text { TugVol } \\ & \% \end{aligned}$ | Qty | Avg TripTime (Mins) | Min <br> TripTime <br> (Mins) | Max TripTime (Mins) | SDEV <br> TripTime (Mins) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 01.0000$ | 1314.8 | 1.07 | \$21.45 | 19.19\% | 16.49\% | 28 | 2.3 | 0.74 | 5.46 | 1.31 |
| DSD;02.0000 | 1443.7 | 0.76 | \$15.13 | 30.60\% | 8.80\% | 38 | 1.19 | 0.47 | 2.38 | 0.43 |
| DSD ${ }_{1} 03.0000$ | 1307.3 | 0.56 | \$11.14 | 37.64\% | 5.38\% | 33 | 1.01 | 0.47 | 2.81 | 0.57 |
| DSD;04.0000 | 1597 | 1.34 | \$26.71 | 19.30\% | 20.02\% | 43 | 1.86 | 0.79 | 5.31 | 1 |
| RETAIL!01.0000 | 1489.8 | 0.37 | \$7.38 | 61.59\% | 1.91\% | 19 | 1.16 | 0.46 | 3.66 | 0.82 |
| RETAIL! 02.0000 | 1548 | 0.37 | \$7.35 | 64.47\% | 1.62\% | 20 | 1.1 | 0.43 | 2.66 | 0.6 |
| RETAIL!03.0000 | 1105.7 | 0.25 | \$5.03 | 66.88\% | 1.04\% | 13 | 1.16 | 0.57 | 1.81 | 0.45 |
| RETAIL!04.0000 | 1499 | 0.34 | \$6.79 | 67.29\% | 1.33\% | 18 | 1.13 | 0.47 | 2.29 | 0.53 |
| WHOLE! 01.0000 | 801.17 | 0.17 | \$3.40 | 73.05\% | 0.81\% | 12 | 0.85 | 0.43 | 1.77 | 0.49 |
| WHOLE! ${ }^{\text {¢ }}$ ( 2.0000 | 683.33 | 0.16 | \$3.26 | 66.75\% | 1.16\% | 14 | 0.7 | 0.41 | 1.28 | 0.31 |
| WHOLE! 03.0000 | 638.33 | 0.14 | \$2.73 | 72.54\% | 2.66\% | 10 | 0.82 | 0.4 | 1.82 | 0.46 |
| WHOLE! 04.0000 | 1307.8 | 0.26 | \$5.22 | 76.07\% | 1.10\% | 16 | 0.98 | 0.43 | 2.43 | 0.52 |
| WHOLE! 05.0000 | 950 | 0.2 | \$4.01 | 72.97\% | 1.39\% | 14 | 0.86 | 0.3 | 1.43 | 0.38 |
| WHOLE ${ }^{\prime}$ (06.0000 | 832.33 | 0.2 | \$3.96 | 66.32\% | 2.14\% | 17 | 0.7 | 0.3 | 1.52 | 0.38 |
| WHOLE! 07.0000 | 1226.3 | 0.28 | \$5.61 | 68.80\% | 2.43\% | 22 | 0.76 | 0.4 | 1.52 | 0.38 |
| Total | 17745 | 6.46 | \$129.17 | 42.84\% | 4.55\% | 317 |  |  |  |  |

Table 40 Continued

| Aggregate | Avg <br> Travel Time (Mins) | Min <br> Travel Time (Mins) | Max <br> Travel Time (Mins) | SDEV <br> Travel Time (Mins) | Avg Handle Time (Mins) | Min Handle Time (Mins) | Max <br> Handle <br> Time <br> (Mins) | SDEV <br> Handle <br> Time <br> (Mins) | Container Qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 01.0000$ | 0.44 | 0.08 | 1.1 | 0.34 | 1.86 | 0 | 5.17 | 1.34 | 285 |
| DSD;02.0000 | 0.37 | 0.07 | 1.38 | 0.32 | 0.83 | 0 | 1.5 | 0.32 | 152 |
| DSD;03.0000 | 0.38 | 0.12 | 1.4 | 0.31 | 0.63 | 0 | 2.5 | 0.46 | 93 |
| DSD;04.0000 | 0.36 | 0.09 | 1.32 | 0.33 | 1.5 | 0 | 4.33 | 0.83 | 346 |
| RETAIL! 01.0000 | 0.72 | 0.13 | 1.9 | 0.59 | 0.45 | 0 | 2.17 | 0.43 | 33 |
| RETAIL! 02.0000 | 0.71 | 0.1 | 2.33 | 0.55 | 0.39 | 0 | 1 | 0.19 | 28 |
| RETAIL! 03.0000 | 0.78 | 0.14 | 1.57 | 0.49 | 0.38 | 0 | 0.83 | 0.2 | 18 |
| RETAIL'04.0000 | 0.76 | 0.14 | 1.96 | 0.54 | 0.37 | 0 | 0.83 | 0.16 | 23 |
| WHOLE ${ }^{\text {[ }} 01.0000$ | 0.62 | 0.18 | 1.52 | 0.47 | 0.23 | 0 | 0.25 | 0.07 | 14 |
| WHOLE ${ }^{\prime} 02.0000$ | 0.47 | 0.16 | 1.03 | 0.31 | 0.23 | 0 | 0.25 | 0.07 | 20 |
| WHOLE! 03.0000 | 0.59 | 0.15 | 1.57 | 0.49 | 0.23 | 0 | 0.25 | 0.08 | 46 |
| WHOLE ${ }^{\text {[ }} 04.0000$ | 0.75 | 0.18 | 2.18 | 0.5 | 0.23 | 0 | 0.25 | 0.06 | 19 |
| WHOLE!05.0000 | 0.63 | 0.17 | 1.18 | 0.36 | 0.23 | 0 | 0.25 | 0.07 | 24 |
| WHOLE!06.0000 | 0.46 | 0.14 | 1.27 | 0.37 | 0.24 | 0 | 0.25 | 0.06 | 37 |
| WHOLE!07.0000 | 0.53 | 0.15 | 1.27 | 0.37 | 0.24 | 0 | 0.25 | 0.05 | 42 |

Table 41. Initial Results Window Data Table by Main Zone

| Aggregate | Dist (Ft) | Time <br> (Hrs) | Cost | Travel \% | TugVol <br> $\%$ | Qty | AvgTripTime <br> (Mins) | Min <br> TripTime <br> (Mins) | Max <br> TripTime <br> (Mins) | SDEV <br> TripTime <br> (Mins) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DSD | 5662.83 | 3.72 | $\$ 74.42$ | $24.31 \%$ | $12.67 \%$ | 4 | 55.82 | 33.41 | 80.13 | 20.61 |
| RETAIL | 5642.5 | 1.33 | $\$ 26.55$ | $64.85 \%$ | $1.48 \%$ | 4 | 19.91 | 15.1 | 22.13 | 3.31 |
| WHOLE | 6439.33 | 1.41 | $\$ 28.19$ | $71.03 \%$ | $1.67 \%$ | 7 | 12.08 | 8.19 | 16.83 | 3.15 |
| Total | 17744.67 | 6.46 | $\$ 129.17$ | $56.92 \%$ | $4.55 \%$ | 15 |  |  |  |  |

Table 41 Continued

| Aggregate | Avg <br> Travel <br> Time <br> (Mins) | Min <br> Travel <br> Time <br> (Mins) | Max <br> Travel <br> Time <br> (Mins) | SDEV <br> Travel <br> Time <br> (Mins) | Avg <br> Handle <br> Time <br> (Mins) | Min <br> Handle <br> Time <br> (Mins) | Max <br> Handle <br> Time <br> (Mins) | SDEV <br> Handle <br> Time <br> (Mins) | Container <br> Qty |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| DSD | 13.57 | 12.35 | 15.46 | 1.43 | 42.25 | 20.83 | 64.67 | 19.76 | 876 |
| RETAIL | 12.91 | 10.1 | 14.21 | 1.9 | 7 | 5 | 8.5 | 1.53 | 102 |
| WHOLE | 8.58 | 5.94 | 11.92 | 2.35 | 3.5 | 2.25 | 5.25 | 0.97 | 202 |
| Total |  |  |  |  |  |  |  |  |  |

Table 42. DSD 1 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505551 | 100 | DSD_DOCK | DSD | CASE | 5 | -2 | DW_505551 |  |  | 0 | 505551 |
| 100411 | 100 | DW_505551 | DSD | CASE | 10 | -2 | DW_100411 |  |  | 0 | 100411 |
| 100621 | 100 | DW_100411 | DSD | CASE | 25 | -2 | DW_100621 |  |  | 0 | 100621 |
| 505554 | 100 | DW_100621 | DSD | CASE | 15 | -2 | DW_505554 |  |  | 0 | 505554 |
| 509625 | 100 | DW_505554 | DSD | CASE | 5 | -2 | DW_509625 |  |  | 0 | 509625 |
| 509046 | 100 | DW_509625 | DSD | CASE | 5 | -2 | DW_509046 |  |  | 0 | 509046 |
| 509042 | 100 | DW_509046 | DSD | CASE | 15 | -2 | DW_509042 |  |  | 0 | 509042 |
| 503279 | 100 | DW_509042 | DSD | CASE | 10 | -2 | DW_503279 |  |  | 0 | 503279 |
| 503971 | 100 | DW_503279 | DSD | CASE | 5 | -2 | DW_503971 |  |  | 0 | 503971 |
| 505546 | 100 | DW_503971 | DSD | CASE | 15 | -2 | DW_505546 |  |  | 0 | 505546 |
| 505547 | 100 | DW_505546 | DSD | CASE | 10 | -2 | DW_505547 |  |  | 0 | 505547 |
| 506630 | 100 | DW_505547 | DSD | CASE | 5 | -2 | DW_506630 |  |  | 0 | 506630 |
| 506632 | 100 | DW_506630 | DSD | CASE | 5 | -2 | DW_506632 |  |  | 0 | 506632 |
| 505549 | 100 | DW_506632 | DSD | CASE | 5 | -2 | DW_505549 |  |  | 0 | 505549 |
| 836261 | 100 | DW_505549 | DSD | CASE | 15 | -2 | DW_836261 |  |  | 0 | 836261 |
| 832461 | 100 | DW_836261 | DSD | CASE | 5 | -2 | DW_832461 |  |  | 0 | 832461 |
| 831261 | 100 | DW_832461 | DSD | CASE | 5 | -2 | DW_831261 |  |  | 0 | 831261 |

Table 42 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505550 | 100 | DW_831261 | DSD | CASE | 5 | -2 | DW_505550 |  |  | 0 | 505550 |
| 510708 | 100 | DW_505550 | DSD | CASE | 5 | -2 | DW_510708 |  |  | 0 | 510708 |
| 836561 | 100 | DW_510708 | DSD | CASE | 5 | -2 | DW_836561 |  |  | 0 | 836561 |
| 835261 | 100 | DW_836561 | DSD | CASE | 20 | -2 | DW_835261 |  |  | 0 | 835261 |
| 510645 | 100 | DW_835261 | DSD | CASE | 5 | -2 | DW_510645 |  |  | 0 | 510645 |
| 834161 | 100 | DW_510645 | DSD | CASE | 15 | -2 | DW_834161 |  |  | 0 | 834161 |
| 510203 | 100 | DW_834161 | DSD | CASE | 5 | -2 | DW_510203 |  |  | 0 | 510203 |
| 507087 | 100 | DW_510203 | DSD | CASE | 5 | -2 | DW_507087 |  |  | 0 | 507087 |
| 506953 | 100 | DW_507087 | DSD | CASE | 30 | -2 | DW_506953 |  |  | 0 | 506953 |
| 506952 | 100 | DW_506953 | DSD | CASE | 30 | -2 | DW_506952 |  |  | 0 | 506952 |
| RETURN | 100 | DW_506952 | DSD | !NA | 1 | -1 | DSD_DOCK |  |  | 0 |  |

Table 43. DSD 2 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100521 | 100 | DSD_DOCK | DSD | CASE | 4 | -2 | DW_100521 |  |  | 0 | 100521 |
| 100621 | 100 | DW_100521 | DSD | CASE | 3 | -2 | DW_100621 |  |  | 0 | 100621 |
| 505554 | 100 | DW_100621 | DSD | CASE | 4 | -2 | DW_505554 |  |  | 0 | 505554 |
| 503278 | 100 | DW_505554 | DSD | CASE | 6 | -2 | DW_503278 |  |  | 0 | 503278 |
| 505555 | 100 | DW_503278 | DSD | CASE | 4 | -2 | DW_505555 |  |  | 0 | 505555 |
| 506295 | 100 | DW_505555 | DSD | CASE | 6 | -2 | DW_506295 |  |  | 0 | 506295 |
| 503971 | 100 | DW_506295 | DSD | CASE | 4 | -2 | DW_503971 |  |  | 0 | 503971 |
| 506296 | 100 | DW_503971 | DSD | CASE | 3 | -2 | DW_506296 |  |  | 0 | 506296 |
| 505546 | 100 | DW_506296 | DSD | CASE | 6 | -2 | DW_505546 |  |  | 0 | 505546 |
| 506297 | 100 | DW_505546 | DSD | CASE | 2 | -2 | DW_506297 |  |  | 0 | 506297 |
| 505547 | 100 | DW_506297 | DSD | CASE | 4 | -2 | DW_505547 |  |  | 0 | 505547 |
| 506630 | 100 | DW_505547 | DSD | CASE | 4 | -2 | DW_506630 |  |  | 0 | 506630 |
| 831661 | 100 | DW_506630 | DSD | CASE | 6 | -2 | DW_831661 |  |  | 0 | 831661 |
| 836261 | 100 | DW_831661 | DSD | CASE | 4 | -2 | DW_836261 |  |  | 0 | 836261 |
| 839061 | 100 | DW_836261 | DSD | CASE | 4 | -2 | DW_839061 |  |  | 0 | 839061 |
| 831261 | 100 | DW_839061 | DSD | CASE | 3 | -2 | DW_831261 |  |  | 0 | 831261 |
| 512485 | 100 | DW_831261 | DSD | CASE | 6 | -2 | DW_512485 |  |  | 0 | 512485 |

Table 43 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 512486 | 100 | DW_512485 | DSD | CASE | 6 | -2 | DW_512486 |  |  | 0 | 512486 |
| 510645 | 100 | DW_512486 | DSD | CASE | 4 | -2 | DW_510645 |  |  | 0 | 510645 |
| 510644 | 100 | DW_510645 | DSD | CASE | 2 | -2 | DW_510644 |  |  | 0 | 510644 |
| 511068 | 100 | DW_510644 | DSD | CASE | 4 | -2 | DW_511068 |  |  | 0 | 511068 |
| 510425 | 100 | DW_511068 | DSD | CASE | 6 | -2 | DW_510425 |  |  | 0 | 510425 |
| 505549 | 100 | DW_510425 | DSD | CASE | 8 | -2 | DW_505549 |  |  | 0 | 505549 |
| 505548 | 100 | DW_505549 | DSD | CASE | 4 | -2 | DW_505548 |  |  | 0 | 505548 |
| 510416 | 100 | DW_505548 | DSD | CASE | 4 | -2 | DW_510416 |  |  | 0 | 510416 |
| 510417 | 100 | DW_510416 | DSD | CASE | 4 | -2 | DW_510417 |  |  | 0 | 510417 |
| 510419 | 100 | DW_510417 | DSD | CASE | 6 | -2 | DW_510419 |  |  | 0 | 510419 |
| 512487 | 100 | DW_510419 | DSD | CASE | 4 | -2 | DW_512487 |  |  | 0 | 512487 |
| 834161 | 100 | DW_512487 | DSD | CASE | 3 | -2 | DW_834161 |  |  | 0 | 834161 |
| 513504 | 100 | DW_834161 | DSD | CASE | 3 | -2 | DW_513504 |  |  | 0 | 513504 |
| 510139 | 100 | DW_513504 | DSD | CASE | 1 | -2 | DW_510139 |  |  | 0 | 510139 |
| 510136 | 100 | DW_510139 | DSD | CASE | 1 | -2 | DW_510136 |  |  | 0 | 510136 |
| 510135 | 100 | DW_510136 | DSD | CASE | 1 | -2 | DW_510135 |  |  | 0 | 510135 |
| 509871 | 100 | DW_510135 | DSD | CASE | 4 | -2 | DW_509871 |  |  | 0 | 509871 |

Table 43 Continued

| Part | $\%$ | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via <br> C/Trip |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 509752 | 100 | DW_509871 | DSD | CASE | 4 | -2 | DW_509752 |  |  | 0 |
| 508939 | 100 | DW_509752 | DSD | CASE | 2 | -2 | DW_508939 |  |  | 0 |
| 506953 | 100 | DW_508939 | DSD | CASE | 8 | -2 | DW_506953 |  |  | 508939 |
| RETURN | 100 | DW_506953 | DSD | !NA | 1 | -1 | DSD_DOCK |  | 0 | 506953 |

Table 44. DSD 3 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via Loc | Via Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100411 | 100 | DSD_DOCK | DSD | CASE | 1 | -2 | DW_100411 |  |  | 0 | 100411 |
| 505553 | 100 | DW_100411 | DSD | CASE | 1 | -2 | DW_505553 |  |  | 0 | 505553 |
| 100521 | 100 | DW_505553 | DSD | CASE | 2 | -2 | DW_100521 |  |  | 0 | 100521 |
| 505554 | 100 | DW_100521 | DSD | CASE | 2 | -2 | DW_505554 |  |  | 0 | 505554 |
| 100621 | 100 | DW_505554 | DSD | CASE | 5 | -2 | DW_100621 |  |  | 0 | 100621 |
| 506295 | 100 | DW_100621 | DSD | CASE | 3 | -2 | DW_506295 |  |  | 0 | 506295 |
| 503279 | 100 | DW_506295 | DSD | CASE | 1 | -2 | DW_503279 |  |  | 0 | 503279 |
| 505546 | 100 | DW_503279 | DSD | CASE | 4 | -2 | DW_505546 |  |  | 0 | 505546 |
| 506630 | 100 | DW_505546 | DSD | CASE | 1 | -2 | DW_506630 |  |  | 0 | 506630 |

Table 44 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 506631 | 100 | DW_506630 | DSD | CASE | 1 | -2 | DW_506631 |  |  | 0 | 506631 |
| 506632 | 100 | DW_506631 | DSD | CASE | 1 | -2 | DW_506632 |  |  | 0 | 506632 |
| 505549 | 100 | DW_506632 | DSD | CASE | 2 | -2 | DW_505549 |  |  | 0 | 505549 |
| 510422 | 100 | DW_505549 | DSD | CASE | 2 | -2 | DW_510422 |  |  | 0 | 510422 |
| 510426 | 100 | DW_510422 | DSD | CASE | 8 | -2 | DW_510426 |  |  | 0 | 510426 |
| 510645 | 100 | DW_510426 | DSD | CASE | 1 | -2 | DW_510645 |  |  | 0 | 510645 |
| 835261 | 100 | DW_510645 | DSD | CASE | 4 | -2 | DW_835261 |  |  | 0 | 835261 |
| 834161 | 100 | DW_835261 | DSD | CASE | 5 | -2 | DW_834161 |  |  | 0 | 834161 |
| 510419 | 100 | DW_834161 | DSD | CASE | 5 | -2 | DW_510419 |  |  | 0 | 510419 |
| 510416 | 100 | DW_510419 | DSD | CASE | 14 | -2 | DW_510416 |  |  | 0 | 510416 |
| 510421 | 100 | DW_510416 | DSD | CASE | 4 | -2 | DW_510421 |  |  | 0 | 510421 |
| 512486 | 100 | DW_510421 | DSD | CASE | 2 | -2 | DW_512486 |  |  | 0 | 512486 |
| 512485 | 100 | DW_512486 | DSD | CASE | 2 | -2 | DW_512485 |  |  | 0 | 512485 |
| 831661 | 100 | DW_512485 | DSD | CASE | 1 | -2 | DW_831661 |  |  | 0 | 831661 |
| 836261 | 100 | DW_831661 | DSD | CASE | 7 | -2 | DW_836261 |  |  | 0 | 836261 |
| 831961 | 100 | DW_836261 | DSD | CASE | 1 | -2 | DW_831961 |  |  | 0 | 831961 |
| 506953 | 100 | DW_831961 | DSD | CASE | 2 | -2 | DW_506953 |  |  | 0 | 506953 |

Table 44 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 506952 | 100 | DW_506953 | DSD | CASE | 2 | -2 | DW_506952 |  |  | 0 | 506952 |
| 509752 | 100 | DW_506952 | DSD | CASE | 1 | -2 | DW_509752 |  |  | 0 | 509752 |
| 509625 | 100 | DW_509752 | DSD | CASE | 1 | -2 | DW_509625 |  |  | 0 | 509625 |
| 509046 | 100 | DW_509625 | DSD | CASE | 3 | -2 | DW_509046 |  |  | 0 | 509046 |
| 506951 | 100 | DW_509046 | DSD | CASE | 2 | -2 | DW_506951 |  |  | 0 | 506951 |
| 506950 | 100 | DW_506951 | DSD | CASE | 2 | -2 | DW_506950 |  |  | 0 | 506950 |
| RETURN | 100 | DW_506950 | DSD | !NA | 1 | -1 | DSD_DOCK |  |  | 0 |  |

Table 45. DSD 4 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100521 | 100 | DSD_DOCK | DSD | CASE | 15 | -2 | DW_100521 |  |  | 0 | 100521 |
| 505554 | 100 | DW_100521 | DSD | CASE | 10 | -2 | DW_505554 |  |  | 0 | 505554 |
| 505555 | 100 | DW_505554 | DSD | CASE | 5 | -2 | DW_505555 |  |  | 0 | 505555 |
| 503278 | 100 | DW_505555 | DSD | CASE | 10 | -2 | DW_503278 |  |  | 0 | 503278 |
| 505638 | 100 | DW_503278 | DSD | CASE | 3 | -2 | DW_505638 |  |  | 0 | 505638 |

Table 45 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 506295 | 100 | DW_505638 | DSD | CASE | 20 | -2 | DW_506295 |  |  | 0 | 506295 |
| 503971 | 100 | DW_506295 | DSD | CASE | 10 | -2 | DW_503971 |  |  | 0 | 503971 |
| 506296 | 100 | DW_503971 | DSD | CASE | 10 | -2 | DW_506296 |  |  | 0 | 506296 |
| 836261 | 100 | DW_506296 | DSD | CASE | 14 | -2 | DW_836261 |  |  | 0 | 836261 |
| 831661 | 100 | DW_836261 | DSD | CASE | 5 | -2 | DW_831661 |  |  | 0 | 831661 |
| 832461 | 100 | DW_831661 | DSD | CASE | 10 | -2 | DW_832461 |  |  | 0 | 832461 |
| 839061 | 100 | DW_832461 | DSD | CASE | 10 | -2 | DW_839061 |  |  | 0 | 839061 |
| 831261 | 100 | DW_839061 | DSD | CASE | 10 | -2 | DW_831261 |  |  | 0 | 831261 |
| 512486 | 100 | DW_831261 | DSD | CASE | 5 | -2 | DW_512486 |  |  | 0 | 512486 |
| 512730 | 100 | DW_512486 | DSD | CASE | 5 | -2 | DW_512730 |  |  | 0 | 512730 |
| 512485 | 100 | DW_512730 | DSD | CASE | 8 | -2 | DW_512485 |  |  | 0 | 512485 |
| 505546 | 100 | DW_512485 | DSD | CASE | 25 | -2 | DW_505546 |  |  | 0 | 505546 |
| 506297 | 100 | DW_505546 | DSD | CASE | 10 | -2 | DW_506297 |  |  | 0 | 506297 |
| 505547 | 100 | DW_506297 | DSD | CASE | 10 | -2 | DW_505547 |  |  | 0 | 505547 |
| 505548 | 100 | DW_505547 | DSD | CASE | 10 | -2 | DW_505548 |  |  | 0 | 505548 |
| 506632 | 100 | DW_505548 | DSD | CASE | 5 | -2 | DW_506632 |  |  | 0 | 506632 |
| 505549 | 100 | DW_506632 | DSD | CASE | 5 | -2 | DW_505549 |  |  | 0 | 505549 |

Table 45 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 510706 | 100 | DW_505549 | DSD | CASE | 5 | -2 | DW_510706 |  |  | 0 | 510706 |
| 510708 | 100 | DW_510706 | DSD | CASE | 5 | -2 | DW_510708 |  |  | 0 | 510708 |
| 511068 | 100 | DW_510708 | DSD | CASE | 5 | -2 | DW_511068 |  |  | 0 | 511068 |
| 836561 | 100 | DW_511068 | DSD | CASE | 5 | -2 | DW_836561 |  |  | 0 | 836561 |
| 835261 | 100 | DW_836561 | DSD | CASE | 15 | -2 | DW_835261 |  |  | 0 | 835261 |
| 510645 | 100 | DW_835261 | DSD | CASE | 10 | -2 | DW_510645 |  |  | 0 | 510645 |
| 511873 | 100 | DW_510645 | DSD | CASE | 15 | -2 | DW_511873 |  |  | 0 | 511873 |
| 512487 | 100 | DW_511873 | DSD | CASE | 5 | -2 | DW_512487 |  |  | 0 | 512487 |
| 513009 | 100 | DW_512487 | DSD | CASE | 15 | -2 | W_513009 |  |  | 0 | 513009 |
| 510139 | 100 | W_513009 | DSD | CASE | 5 | -2 | DW_510139 |  |  | 0 | 510139 |
| 510138 | 100 | DW_510139 | DSD | CASE | 5 | -2 | DW_510138 |  |  | 0 | 510138 |
| 510135 | 100 | DW_510138 | DSD | CASE | 5 | -2 | DW_510135 |  |  | 0 | 510135 |
| 510136 | 100 | DW_510135 | DSD | CASE | 5 | -2 | DW_510136 |  |  | 0 | 510136 |
| 510053 | 100 | DW_510136 | DSD | CASE | 3 | -2 | DW_510053 |  |  | 0 | 510053 |
| 510052 | 100 | DW_510053 | DSD | CASE | 3 | -2 | DW_510052 |  |  | 0 | 510052 |
| 509871 | 100 | DW_510052 | DSD | CASE | 5 | -2 | DW_509871 |  |  | 0 | 509871 |
| 509753 | 100 | DW_509871 | DSD | CASE | 5 | -2 | DW_509753 |  |  | 0 | 509753 |

Table 45 Continued

| Part | $\%$ | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via <br> C/Trip |
| ---: | ---: | :--- | :--- | :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| 509752 | 100 | DW_509753 | DSD | CASE | 5 | -2 | DW_509752 |  |  | 0 |
| 509046 | 100 | DW_509752 | DSD | CASE | 5 | -2 | DW_509046 |  |  | 0 |
| 507087 | 100 | DW_509046 | DSD | CASE | 5 | -2 | DW_507087 |  |  | 0 |
| RETURN | 100 | DW_507087 | DSD | !NA | 1 | -1 | DSD_DOCK |  | 509046 |  |

Table 46. Retail 1 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | $\begin{aligned} & \hline \text { Via } \\ & \text { Loc } \end{aligned}$ | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 503890 | 100 | RET_DOCK | RETAIL | CASE | 1 | -2 | R_503890 |  |  | 0 | 503890 |
| 508782 | 100 | R_503890 | RETAIL | CASE | 1 | -2 | R_508782 |  |  | 0 | 508782 |
| 508730 | 100 | R_508782 | RETAIL | CASE | 3 | -2 | R_508730 |  |  | 0 | 508730 |
| 508687 | 100 | R_508730 | RETAIL | CASE | 1 | -2 | R_508687 |  |  | 0 | 508687 |
| 506284 | 100 | R_508687 | RETAIL | CASE | 12 | -2 | R_506284 |  |  | 0 | 506284 |
| 513096 | 100 | R_506284 | RETAIL | CASE | 1 | -2 | R_513096 |  |  | 0 | 513096 |
| 479006 | 100 | R_513096 | RETAIL | CASE | 2 | -2 | R_479006 |  |  | 0 | 479006 |
| 666688 | 100 | R_479006 | RETAIL | CASE | 1 | -2 | R_666688 |  |  | 0 | 666688 |

Table 46 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 510418 | 100 | R_666688 | RETAIL | CASE | 1 | -2 | RW_510418 |  |  | 0 | 510418 |
| 510646 | 100 | RW_510418 | RETAIL | CASE | 1 | -2 | RW_510646 |  |  | 0 | 510646 |
| 510141 | 100 | RW_510646 | RETAIL | CASE | 1 | -2 | RW_510141 |  |  | 0 | 510141 |
| 511312 | 100 | RW_510141 | RETAIL | CASE | 1 | -2 | RW_511312 |  |  | 0 | 511312 |
| 511309 | 100 | RW_511312 | RETAIL | CASE | 1 | -2 | RW_511309 |  |  | 0 | 511309 |
| 511108 | 100 | RW_511309 | RETAIL | CASE | 1 | -2 | RW_511108 |  |  | 0 | 511108 |
| 510426 | 100 | RW_511108 | RETAIL | CASE | 2 | -2 | RW_510426 |  |  | 0 | 510426 |
| 510419 | 100 | RW_510426 | RETAIL | CASE | 1 | -2 | RW_510419 |  |  | 0 | 510419 |
| 510421 | 100 | RW_510419 | RETAIL | CASE | 1 | -2 | RW_510421 |  |  | 0 | 510421 |
| 480077 | 100 | RW_510421 | RETAIL | CASE | 1 | -2 | R_480077 |  |  | 0 | 480077 |
| RETURN | 100 | R_480077 | RETAIL | !NA | 1 | -1 | RET_DOCK |  |  | 0 |  |

Table 47. Retail 2 Part Routing

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 509193 | 100 | RET_DOCK | RETAIL | CASE | 1 | -2 | R_509193 |  |  | 0 | 509193 |
| 504503 | 100 | R_509193 | RETAIL | CASE | 1 | -2 | R_504503 |  |  | 0 | 504503 |
| 509197 | 100 | R_504503 | RETAIL | CASE | 1 | -2 | R_509197 |  |  | 0 | 509197 |
| 510936 | 100 | R_509197 | RETAIL | CASE | 2 | -2 | RW_510936 |  |  | 0 | 510936 |
| 511312 | 100 | RW_510936 | RETAIL | CASE | 2 | -2 | RW_511312 |  |  | 0 | 511312 |
| 510138 | 100 | RW_511312 | RETAIL | CASE | 1 | -2 | RW_510138 |  |  | 0 | 510138 |
| 510136 | 100 | RW_510138 | RETAIL | CASE | 2 | -2 | RW_510136 |  |  | 0 | 510136 |
| 512988 | 100 | RW_510136 | RETAIL | CASE | 1 | -2 | RW_512988 |  |  | 0 | 512988 |
| 513020 | 100 | RW_512988 | RETAIL | CASE | 1 | -2 | R_513020 |  |  | 0 | 513020 |
| 503791 | 100 | R_513020 | RETAIL | CASE | 1 | -2 | R_503791 |  |  | 0 | 503791 |
| 509206 | 100 | R_503791 | RETAIL | CASE | 1 | -2 | R_509206 |  |  | 0 | 509206 |
| 509209 | 100 | R_509206 | RETAIL | CASE | 1 | -2 | R_509209 |  |  | 0 | 509209 |
| 509594 | 100 | R_509209 | RETAIL | CASE | 1 | -2 | RW_509594 |  |  | 0 | 509594 |
| 508730 | 100 | RW_509594 | RETAIL | CASE | 3 | -2 | R_508730 |  |  | 0 | 508730 |
| 503760 | 100 | R_508730 | RETAIL | CASE | 1 | -2 | R_503760 |  |  | 0 | 503760 |
| 500078 | 100 | R_503760 | RETAIL | CASE | 1 | -2 | R_500078 |  |  | 0 | 500078 |
| 509204 | 100 | R_500078 | RETAIL | CASE | 1 | -2 | R_509204 |  |  | 0 | 509204 |

Table 47 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via <br> C/Trip |
| ---: | :--- | :--- | :--- | :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| 479006 | 100 | R_509204 | RETAIL | CASE | 1 | -2 | R_479006 |  |  | 0 |
| 506284 | 100 | R_479006 | RETAIL | CASE | 5 | -2 | R_506284 |  |  | 0 |
| RETURN | 100 | R_506284 | RETAIL | !NA | 1 | -1 | RET_DOCK |  |  | 506284 |

Table 48. Retail 3 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | $\begin{aligned} & \text { Via } \\ & \text { Loc } \end{aligned}$ | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 509192 | 100 | RET_DOCK | RETAIL | CASE | 1 | -2 | R_509192 |  |  | 0 | 509192 |
| 503791 | 100 | R_509192 | RETAIL | CASE | 1 | -2 | R_503791 |  |  | 0 | 503791 |
| 506284 | 100 | R_503791 | RETAIL | CASE | 4 | -2 | R_506284 |  |  | 0 | 506284 |
| 509198 | 100 | R_506284 | RETAIL | CASE | 1 | -2 | R_509198 |  |  | 0 | 509198 |
| 479006 | 100 | R_509198 | RETAIL | CASE | 3 | -2 | R_479006 |  |  | 0 | 479006 |
| 666688 | 100 | R_479006 | RETAIL | CASE | 1 | -2 | R_666688 |  |  | 0 | 666688 |
| 473916 | 100 | R_666688 | RETAIL | CASE | 1 | -2 | R_473916 |  |  | 0 | 473916 |
| 507238 | 100 | R_473916 | RETAIL | CASE | 2 | -2 | R_507238 |  |  | 0 | 507238 |
| 508782 | 100 | R_507238 | RETAIL | CASE | 1 | -2 | R_508782 |  |  | 0 | 508782 |

Table 48 Continued

| Part | $\%$ | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via <br> C/Trip |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 410608 | 100 | R_508782 | RETAIL | CASE | 1 | -2 | R_410608 |  |  | 0 |
| 511839 | 100 | R_410608 | RETAIL | CASE | 1 | -2 | RW_511839 |  |  | 0 |
| 511309 | 100 | RW_511839 | RETAIL | CASE | 1 | -2 | RW_511309 |  |  | 511839 |
| RETURN | 100 | RW_511309 | RETAIL | !NA | 1 | -1 | RET_DOCK |  | 0 | 511309 |

Table 49. Retail 4 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 506284 | 100 | RET_DOCK | RETAIL | CASE | 4 | -2 | R_506284 |  |  | 0 | 506284 |
| 513096 | 100 | R_506284 | RETAIL | CASE | 2 | -2 | R_513096 |  |  | 0 | 513096 |
| 513020 | 100 | R_513096 | RETAIL | CASE | 1 | -2 | R_513020 |  |  | 0 | 513020 |
| 506562 | 100 | R_513020 | RETAIL | CASE | 1 | -2 | R_506562 |  |  | 0 | 506562 |
| 508730 | 100 | R_506562 | RETAIL | CASE | 1 | -2 | R_508730 |  |  | 0 | 508730 |
| 508782 | 100 | R_508730 | RETAIL | CASE | 1 | -2 | R_508782 |  |  | 0 | 508782 |
| 503760 | 100 | R_508782 | RETAIL | CASE | 1 | -2 | R_503760 |  |  | 0 | 503760 |
| 510835 | 100 | R_503760 | RETAIL | CASE | 1 | -2 | RW_510835 |  |  | 0 | 510835 |

Table 49 Continued

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 512986 | 100 | RW_510835 | RETAIL | CASE | 1 | -2 | RW_512986 |  |  | 0 | 512986 |
| 511312 | 100 | RW_512986 | RETAIL | CASE | 2 | -2 | RW_511312 |  |  | 0 | 511312 |
| 511309 | 100 | RW_511312 | RETAIL | CASE | 1 | -2 | RW_511309 |  |  | 0 | 511309 |
| 510425 | 100 | RW_511309 | RETAIL | CASE | 1 | -2 | RW_510425 |  |  | 0 | 510425 |
| 513022 | 100 | RW_510425 | RETAIL | CASE | 2 | -2 | RW_513022 |  |  | 0 | 513022 |
| 510422 | 100 | RW_513022 | RETAIL | CASE | 1 | -2 | RW_510422 |  |  | 0 | 510422 |
| 504503 | 100 | RW_510422 | RETAIL | CASE | 1 | -2 | R_504503 |  |  | 0 | 504503 |
| 510142 | 100 | R_504503 | RETAIL | CASE | 1 | -2 | RW_510142 |  |  | 0 | 510142 |
| 512728 | 100 | RW_510142 | RETAIL | CASE | 1 | -2 | RW_512728 |  |  | 0 | 512728 |
| RETURN | 100 | RW_512728 | RETAIL | !NA | 1 | -1 | RET_DOCK |  |  | 0 |  |

Table 50. WHOLE 1 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 509146 | 100 | WHL_DOCK | WHOLE | CASE | 1 | -2 | W_509146 |  |  | 0 | 509146 |
| 501684 | 100 | W_509146 | WHOLE | CASE | 1 | -2 | W_501684 |  |  | 0 | 501684 |
| 501919 | 100 | W_501684 | WHOLE | CASE | 1 | -2 | W_501919 |  |  | 0 | 501919 |
| 509145 | 100 | W_501919 | WHOLE | CASE | 1 | -2 | W_509145 |  |  | 0 | 509145 |
| 508737 | 100 | W_509145 | WHOLE | CASE | 1 | -2 | W_508737 |  |  | 0 | 508737 |
| 501961 | 100 | W_508737 | WHOLE | CASE | 1 | -2 | W_501961 |  |  | 0 | 501961 |
| 510139 | 100 | W_501961 | WHOLE | CASE | 1 | -2 | DW_510139 |  |  | 0 | 510139 |
| 503106 | 100 | DW_510139 | WHOLE | CASE | 1 | -2 | W_503106 |  |  | 0 | 503106 |
| 511870 | 100 | W_503106 | WHOLE | CASE | 4 | -2 | W_511870 |  |  | 0 | 511870 |
| 500252 | 100 | W_511870 | WHOLE | CASE | 1 | -2 | W_500252 |  |  | 0 | 500252 |
| 509148 | 100 | W_500252 | WHOLE | CASE | 1 | -2 | W_509148 |  |  | 0 | 509148 |
| RETURN | 100 | W_509148 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 51. WHOLE 2 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | $\begin{aligned} & \hline \text { Via } \\ & \text { Loc } \end{aligned}$ | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 509148 | 100 | WHL_DOCK | WHOLE | CASE | 1 | -2 | W_509148 |  |  | 0 | 509148 |
| 509147 | 100 | W_509148 | WHOLE | CASE | 1 | -2 | W_509147 |  |  | 0 | 509147 |
| 501627 | 100 | W_509147 | WHOLE | CASE | 2 | -2 | W_501627 |  |  | 0 | 501627 |
| 501552 | 100 | W_501627 | WHOLE | CASE | 3 | -2 | W_501552 |  |  | 0 | 501552 |
| 507208 | 100 | W_501552 | WHOLE | CASE | 2 | -2 | W_507208 |  |  | 0 | 507208 |
| 501493 | 100 | W_507208 | WHOLE | CASE | 2 | -2 | W_501493 |  |  | 0 | 501493 |
| 511355 | 100 | W_501493 | WHOLE | CASE | 1 | -2 | W_511355 |  |  | 0 | 511355 |
| 512802 | 100 | W_511355 | WHOLE | CASE | 3 | -2 | W_512802 |  |  | 0 | 512802 |
| 503106 | 100 | W_512802 | WHOLE | CASE | 1 | -2 | W_503106 |  |  | 0 | 503106 |
| 510136 | 100 | W_503106 | WHOLE | CASE | 1 | -2 | DW_510136 |  |  | 0 | 510136 |
| 477080 | 100 | DW_510136 | WHOLE | CASE | 1 | -2 | W_477080 |  |  | 0 | 477080 |
| 509145 | 100 | W_477080 | WHOLE | CASE | 1 | -2 | W_509145 |  |  | 0 | 509145 |
| 509146 | 100 | W_509145 | WHOLE | CASE | 1 | -2 | W_509146 |  |  | 0 | 509146 |
| RETURN | 100 | W_509146 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 52. WHOLE 3 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500252 | 100 | WHL_DOCK | WHOLE | CASE | 7 | -2 | W_500252 |  |  | 0 | 500252 |
| 503103 | 100 | W_500252 | WHOLE | CASE | 2 | -2 | W_503103 |  |  | 0 | 503103 |
| 10016 | 100 | W_503103 | WHOLE | CASE | 6 | -2 | W_10016 |  |  | 0 | 10016 |
| 10005 | 100 | W_10016 | WHOLE | CASE | 6 | -2 | W_10005 |  |  | 0 | 10005 |
| 10004 | 100 | W_10005 | WHOLE | CASE | 6 | -2 | W_10004 |  |  | 0 | 10004 |
| 10001 | 100 | W_10004 | WHOLE | CASE | 6 | -2 | W_10001 |  |  | 0 | 10001 |
| 10008 | 100 | W_10001 | WHOLE | CASE | 6 | -2 | W_10008 |  |  | 0 | 10008 |
| 10003 | 100 | W_10008 | WHOLE | CASE | 6 | -2 | W_10003 |  |  | 0 | 10003 |
| 510198 | 100 | W_10003 | WHOLE | CASE | 1 | -2 | RW_510198 |  |  | 0 | 510198 |
| RETURN | 100 | RW_510198 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 53. WHOLE 4 part routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 511043 | 100 | WHL_DOCK | WHOLE | CASE | 1 | -2 | W_511043 |  |  | 0 | 511043 |
| 501919 | 100 | W_511043 | WHOLE | CASE | 1 | -2 | W_501919 |  |  | 0 | 501919 |
| 500030 | 100 | W_501919 | WHOLE | CASE | 1 | -2 | W_500030 |  |  | 0 | 500030 |
| 476422 | 100 | W_500030 | WHOLE | CASE | 1 | -2 | W_476422 |  |  | 0 | 476422 |
| 477265 | 100 | W_476422 | WHOLE | CASE | 1 | -2 | W_477265 |  |  | 0 | 477265 |
| 508732 | 100 | W_477265 | WHOLE | CASE | 1 | -2 | W_508732 |  |  | 0 | 508732 |
| 501961 | 100 | W_508732 | WHOLE | CASE | 1 | -2 | W_501961 |  |  | 0 | 501961 |
| 512986 | 100 | W_501961 | WHOLE | CASE | 1 | -2 | RW_512986 |  |  | 0 | 512986 |
| 508730 | 100 | RW_512986 | WHOLE | CASE | 2 | -2 | W_508730 |  |  | 0 | 508730 |
| 511312 | 100 | W_508730 | WHOLE | CASE | 2 | -2 | RW_511312 |  |  | 0 | 511312 |
| 510140 | 100 | RW_511312 | WHOLE | CASE | 2 | -2 | DW_510140 |  |  | 0 | 510140 |
| 510139 | 100 | DW_510140 | WHOLE | CASE | 1 | -2 | DW_510139 |  |  | 0 | 510139 |
| 501920 | 100 | DW_510139 | WHOLE | CASE | 1 | -2 | W_501920 |  |  | 0 | 501920 |
| 500252 | 100 | W_501920 | WHOLE | CASE | 1 | -2 | W_500252 |  |  | 0 | 500252 |
| 509671 | 100 | W_500252 | WHOLE | CASE | 2 | -2 | W_509671 |  |  | 0 | 509671 |
| RETURN | 100 | W_509671 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 54. WHOLE 5 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 506284 | 100 | WHL_DOCK | WHOLE | CASE | 4 | -2 | W_506284 |  |  | 0 | 506284 |
| 511042 | 100 | W_506284 | WHOLE | CASE | 1 | -2 | W_511042 |  |  | 0 | 511042 |
| 509671 | 100 | W_511042 | WHOLE | CASE | 1 | -2 | W_509671 |  |  | 0 | 509671 |
| 501493 | 100 | W_509671 | WHOLE | CASE | 2 | -2 | W_501493 |  |  | 0 | 501493 |
| 508730 | 100 | W_501493 | WHOLE | CASE | 1 | -2 | W_508730 |  |  | 0 | 508730 |
| 511309 | 100 | W_508730 | WHOLE | CASE | 1 | -2 | RW_511309 |  |  | 0 | 511309 |
| 511312 | 100 | RW_511309 | WHOLE | CASE | 1 | -2 | RW_511312 |  |  | 0 | 511312 |
| 501961 | 100 | RW_511312 | WHOLE | CASE | 2 | -2 | W_501961 |  |  | 0 | 501961 |
| 508202 | 100 | W_501961 | WHOLE | CASE | 1 | -2 | W_508202 |  |  | 0 | 508202 |
| 479006 | 100 | W_508202 | WHOLE | CASE | 3 | -2 | W_479006 |  |  | 0 | 479006 |
| 501919 | 100 | W_479006 | WHOLE | CASE | 1 | -2 | W_501919 |  |  | 0 | 501919 |
| 504468 | 100 | W_501919 | WHOLE | CASE | 2 | -2 | W_504468 |  |  | 0 | 504468 |
| 503565 | 100 | W_504468 | WHOLE | CASE | 4 | -2 | W_503565 |  |  | 0 | 503565 |
| RETURN | 100 | W_503565 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 55. WHOLE 6 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500228 | 100 | WHL_DOCK | WHOLE | CASE | 2 | -2 | W_500228 |  |  | 0 | 500228 |
| 503106 | 100 | W_500228 | WHOLE | CASE | 3 | -2 | W_503106 |  |  | 0 | 503106 |
| 503760 | 100 | W_503106 | WHOLE | CASE | 1 | -2 | W_503760 |  |  | 0 | 503760 |
| 511042 | 100 | W_503760 | WHOLE | CASE | 2 | -2 | W_511042 |  |  | 0 | 511042 |
| 503794 | 100 | W_511042 | WHOLE | CASE | 1 | -2 | W_503794 |  |  | 0 | 503794 |
| 510081 | 100 | W_503794 | WHOLE | CASE | 2 | -2 | W_510081 |  |  | 0 | 510081 |
| 507208 | 100 | W_510081 | WHOLE | CASE | 2 | -2 | W_507208 |  |  | 0 | 507208 |
| 501552 | 100 | W_507208 | WHOLE | CASE | 2 | -2 | W_501552 |  |  | 0 | 501552 |
| 503793 | 100 | W_501552 | WHOLE | CASE | 1 | -2 | W_503793 |  |  | 0 | 503793 |
| 508730 | 100 | W_503793 | WHOLE | CASE | 3 | -2 | W_508730 |  |  | 0 | 508730 |
| 511309 | 100 | W_508730 | WHOLE | CASE | 2 | -2 | RW_511309 |  |  | 0 | 511309 |
| 500037 | 100 | RW_511309 | WHOLE | CASE | 3 | -2 | W_500037 |  |  | 0 | 500037 |
| 509149 | 100 | W_500037 | WHOLE | CASE | 3 | -2 | W_509149 |  |  | 0 | 509149 |
| 501919 | 100 | W_509149 | WHOLE | CASE | 4 | -2 | W_501919 |  |  | 0 | 501919 |
| 511043 | 100 | W_501919 | WHOLE | CASE | 4 | -2 | W_511043 |  |  | 0 | 511043 |
| 503565 | 100 | W_511043 | WHOLE | CASE | 2 | -2 | W_503565 |  |  | 0 | 503565 |
| RETURN | 100 | W_503565 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |  |

Table 56. WHOLE 7 Part Routings

| Part | \% | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via Loc | Via <br> Method | Via C/Trip | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 508686 | 100 | WHL_DOCK | WHOLE | CASE | 4 | -2 | W_508686 |  |  | 0 | 508686 |
| 504468 | 100 | W_508686 | WHOLE | CASE | 3 | -2 | W_504468 |  |  | 0 | 504468 |
| 501919 | 100 | W_504468 | WHOLE | CASE | 2 | -2 | W_501919 |  |  | 0 | 501919 |
| 509671 | 100 | W_501919 | WHOLE | CASE | 1 | -2 | W_509671 |  |  | 0 | 509671 |
| 505308 | 100 | W_509671 | WHOLE | CASE | 1 | -2 | W_505308 |  |  | 0 | 505308 |
| 508709 | 100 | W_505308 | WHOLE | CASE | 1 | -2 | W_508709 |  |  | 0 | 508709 |
| 503103 | 100 | W_508709 | WHOLE | CASE | 1 | -2 | W_503103 |  |  | 0 | 503103 |
| 506245 | 100 | W_503103 | WHOLE | CASE | 1 | -2 | W_506245 |  |  | 0 | 506245 |
| 506562 | 100 | W_506245 | WHOLE | CASE | 1 | -2 | W_506562 |  |  | 0 | 506562 |
| 507208 | 100 | W_506562 | WHOLE | CASE | 3 | -2 | W_507208 |  |  | 0 | 507208 |
| 508730 | 100 | W_507208 | WHOLE | CASE | 2 | -2 | W_508730 |  |  | 0 | 508730 |
| 508687 | 100 | W_508730 | WHOLE | CASE | 1 | -2 | W_508687 |  |  | 0 | 508687 |
| 510130 | 100 | W_508687 | WHOLE | CASE | 1 | -2 | RW_510130 |  |  | 0 | 510130 |
| 511312 | 100 | RW_510130 | WHOLE | CASE | 1 | -2 | RW_511312 |  |  | 0 | 511312 |
| 511542 | 100 | RW_511312 | WHOLE | CASE | 1 | -2 | RW_511542 |  |  | 0 | 511542 |
| 509554 | 100 | RW_511542 | WHOLE | CASE | 1 | -2 | RW_509554 |  |  | 0 | 509554 |
| 477265 | 100 | RW_509554 | WHOLE | CASE | 1 | -2 | W_477265 |  |  | 0 | 477265 |

Table 56 Continued

| Part | $\%$ | From | Method | (C)ontainer | C/Trip | Parts/C | To Loc | Via <br> Loc | Via <br> Method | Via <br> C/Trip |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 510139 | 100 | W_477265 | WHOLE | CASE | 1 | -2 | DW_510139 |  |  | 0 |
| 510136 | 100 | DW_510139 | WHOLE | CASE | 1 | -2 | DW_510136 |  |  | 0 |
| 503893 | 100 | DW_510136 | WHOLE | CASE | 2 | -2 | W_503893 |  | 510136 |  |
| 506284 | 100 | W_503893 | WHOLE | CASE | 12 | -2 | W_506284 |  | 0 | 503893 |
| RETURN | 100 | W_506284 | WHOLE | !NA | 1 | -1 | WHL_DOCK |  |  | 0 |

Table 57. Paths Tab Data Table

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User <br> Dist/Trip <br> (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DSD_DOCK | DW_505551 | 1 | 50'-11" | 50'-11' | None | 0.01 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_505551 | DW_100411 | 1 | 28'-11" | 28'-11" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_100411 | DW_100621 | 1 | 10'-10" | 10'-10" | None | 0 | 0.07 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {01. }} 00000$ | DW_100621 | DW_505554 | 1 | 12'-10" | 12'-10" | None | 0 | 0.04 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505554 | DW_509625 | 1 | 120'-11" | 120'-11" | None | 0.02 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_509625 | DW_509046 | 1 | 21'-2" | 21'-2" | None | 0 | 0.02 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD; ${ }^{\text {¢ }}$ ( 00000 | DW_509046 | DW_509042 | 1 | 11'-9" | 11'-9" | None | 0 | 0.04 | 1 | WALKER |
| DSD; ${ }^{\text {¢ }}$ 01.0000 | DW_509042 | DW_503279 | 1 | 102'-4' | 102'-4" | None | 0.02 | 0.03 | 1 | WALKER |
| DSD'01.0000 | DW_503279 | DW_503971 | 1 | 7'-4" | 7'-4" | None | 0 | 0.02 | 0 | WALKER |
| DSD;01.0000 | DW_503971 | DW_505546 | 1 | 6'-3" | 6'-3' | None | 0 | 0.04 | 1 | WALKER |
| DSD; ${ }^{\text {¢ }}$ 01.0000 | DW_505546 | DW_505547 | 1 | 6'-1' | 6'-1' | None | 0 | 0.03 | 1 | WALKER |
|  | DW_505547 | DW_506630 | 1 | 12'-10" | 12'-10" | None | 0 | 0.02 | 0 | WALKER |
| DSD'01.0000 | DW_506630 | DW_506632 | 1 | 30'-10" | 30'-10" | None | 0.01 | 0.02 | 0 | WALKER |
| DSD; ${ }_{1}{ }^{\text {01.0000 }}$ | DW_506632 | DW_505549 | 1 | 13'-4" | 13'-4" | None | 0 | 0.02 | 0 | WALKER |
| DSD'01.0000 | DW_505549 | DW_836261 | 1 | 124'-1" | 124'-1" | None | 0.02 | 0.04 | 1 | WALKER |
| DSD'01.0000 | DW_836261 | DW_832461 | 1 | 26'-0" | 26'-0" | None | 0 | 0.02 | 0 | WALKER |
| DSD; ${ }^{\text {¢ }}$ ( 00000 | DW_832461 | DW_831261 | 1 | 23'-9" | 23'-9" | None | 0 | 0.02 | 0 | WALKER |
| DSD'01.0000 | DW_831261 | DW_505550 | 1 | 106'-8" | 106'-8" | None | 0.02 | 0.02 | 1 | WALKER |
| DSD; ${ }^{\text {¢ }}$ 01.0000 | DW_505550 | DW_510708 | 1 | 20'-11" | 20'-11' | None | 0 | 0.02 | 0 | WALKER |
| DSD; ${ }^{\text {¢ }}$ ( 0000 | DW_510708 | DW_836561 | 1 | 80'-11" | 80'-11" | None | 0.01 | 0.02 | 1 | WALKER |
| DSD'01.0000 | DW_836561 | DW_835261 | 1 | 29'-0" | 29'-0" | None | 0 | 0.06 | 1 | WALKER |
| DSD;01.0000 | DW_835261 | DW_510645 | 1 | 71'-3" | 71'-3' | None | 0.01 | 0.02 | 1 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD; ${ }^{\text {¢ }}$ ( 00000 | DW_510645 | DW_834161 | 1 | 101'-0" | 101'-0" | None | 0.02 | 0.04 | 1 | WALKER |
| DSD'01.0000 | DW_834161 | DW_510203 | 1 | 92'-7" | 92'-7' | None | 0.01 | 0.02 | 1 | WALKER |
| DSD'01.0000 | DW_510203 | DW_507087 | 1 | 66'-1" | 66'-1" | None | 0.01 | 0.02 | 1 | WALKER |
| DSD;01.0000 | DW_507087 | DW_506953 | 1 | 28'-2" | 28'-2" | None | 0 | 0.09 | 2 | WALKER |
| DSD; ${ }^{\text {¢ }}$ 01.0000 | DW_506953 | DW_506952 | 1 | 29'-7" | 29'-7" | None | 0 | 0.09 | 2 | WALKER |
|  | DW_506952 | DSD_DOCK | 1 | 78'-6" | 78'-6" | None | 0.01 | 0 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DSD_DOCK | DW_100521 | 1 | 67'-8" | 67'-8" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{1} 02.0000$ | DW_100521 | DW_100621 | 1 | 7'-2' | 7'-2' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }} 00000$ | DW_100621 | DW_505554 | 1 | 12'-10" | 12'-10" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505554 | DW_503278 | 1 | 20'-1" | 20'-1" | None | 0 | 0.02 | 0 | WALKER |
|  | DW_503278 | DW_505555 | 1 | 15'-6" | 15'-6" | None | 0 | 0.01 | 0 | WALKER |
| DSD'02.0000 | DW_505555 | DW_506295 | 1 | 29'-7" | 29'-7" | None | 0 | 0.02 | 0 | WALKER |
| DSD; ${ }_{6}{ }^{\text {2 }}$, 0000 | DW_506295 | DW_503971 | 1 | 16'-8" | 16'-8" | None | 0 | 0.01 | 0 | WALKER |
| DSD; ${ }^{\text {¢ }}$ 2.0000 | DW_503971 | DW_506296 | 1 | 14'-3" | 14'-3" | None | 0 | 0.01 | 0 | WALKER |
| DSD'02.0000 | DW_506296 | DW_505546 | 1 | 15'-2" | 15'-2" | None | 0 | 0.02 | 0 | WALKER |
| DSD; ${ }^{\text {2 }}$ 2.0000 | DW_505546 | DW_506297 | 1 | 12'-7" | 12'-7" | None | 0 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_506297 | DW_505547 | 1 | 16'-8" | 16'-8" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505547 | DW_506630 | 1 | 12'-10" | 12'-10" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_506630 | DW_831661 | 1 | 136'-2" | 136'-2' | None | 0.02 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_831661 | DW_836261 | 1 | 17'-5" | 17'-5" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_836261 | DW_839061 | 1 | 22'-10" | 22'-10" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_839061 | DW_831261 | 1 | 19'-1" | 19'-1" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_831261 | DW_512485 | 1 | 24'-10" | 24'-10" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_512485 | DW_512486 | 1 | 21'-11" | 21'-11' | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_512486 | DW_510645 | 1 | 47'-0" | 47'-0" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510645 | DW_510644 | 1 | 45'-4' | 45'-4" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510644 | DW_511068 | 1 | 13'-2' | 13'-2" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_511068 | DW_510425 | 1 | 30'-1" | 30'-1" | None | 0 | 0.02 | 0 | WALKER |
|  | DW_510425 | DW_505549 | 1 | 30'-0' | 30'-0' | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}$ 02.0000 | DW_505549 | DW_505548 | 1 | 5'-8" | 5'-8" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_505548 | DW_510416 | 1 | 129'-9" | 129'-9" | None | 0.02 | 0.01 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_510416 | DW_510417 | 1 | 26'-2' | 26'-2" | None | 0 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510417 | DW_510419 | 1 | 28'-4" | 28'-4" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510419 | DW_512487 | 1 | 51'-9" | 51'-9" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_512487 | DW_834161 | 1 | 50'-9" | 50'-9" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_834161 | DW_513504 | 1 | 155'-0" | 155'-0" | None | 0.02 | 0.01 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_513504 | DW_510139 | 1 | 102'-10" | 102'-10" | None | 0.02 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_510139 | DW_510136 | 1 | 12'-9" | 12'-9" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510136 | DW_510135 | 1 | 10'-8" | 10'-8" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_510135 | DW_509871 | 1 | 22'-2" | 22'-2" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_509871 | DW_509752 | 1 | 24'-2" | $24^{\prime}-2{ }^{\prime \prime}$ | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_509752 | DW_508939 | 1 | 32'-1" | 32'-1" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_508939 | DW_506953 | 1 | 57'-6" | 57'-6" | None | 0.01 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_506953 | DSD_DOCK | 1 | 85'-3" | 85'-3' | None | 0.01 | 0 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$, 0000 | DSD_DOCK | DW_100411 | 1 | 63'-4" | 63'-4" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}$ 03.0000 | DW_100411 | DW_505553 | 1 | 16'-6" | 16'-6" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_505553 | DW_100521 | 1 | 13'-6" | 13'-6" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_100521 | DW_505554 | 1 | 16'-10" | 16'-10" | None | 0 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505554 | DW_100621 | 1 | 12'-10" | 12'-10" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_100621 | DW_506295 | 1 | 24'-6" | 24'-6" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506295 | DW_503279 | 1 | 13'-2' | 13'-2' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_503279 | DW_505546 | 1 | 10'-5" | 10'-5" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505546 | DW_506630 | 1 | 15'-9" | 15'-9" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506630 | DW_506631 | 1 | 28'-1" | 28'-1" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506631 | DW_506632 | 1 | 26'-3" | 26'-3' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_506632 | DW_505549 | 1 | 13'-4" | 13'-4" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505549 | DW_510422 | 1 | 23'-2" | 23'-2" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510422 | DW_510426 | 1 | 36'-0" | 36'-0" | None | 0.01 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_510426 | DW_510645 | 1 | 57'-3' | 57'-3' | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_510645 | DW_835261 | 1 | 71'-3" | 71'-3' | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$. 0000 | DW_835261 | DW_834161 | 1 | 152'-7" | 152'-7" | None | 0.02 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_834161 | DW_510419 | 1 | 79'-10" | 79'-10" | None | 0.01 | 0.02 | 1 | WALKER |
| DSDi03.0000 | DW_510419 | DW_510416 | 1 | 31'-8" | 31'-8" | None | 0.01 | 0.04 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_510416 | DW_510421 | 1 | 48'-2' | 48'-2" | None | 0.01 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510421 | DW_512486 | 1 | 42'-0" | 42'-0" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_512486 | DW_512485 | 1 | 21'-11" | 21'-11' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_512485 | DW_831661 | 1 | 31'-10" | 31'-10" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_831661 | DW_836261 | 1 | 17'-5" | 17'-5" | None | 0 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_836261 | DW_831961 | 1 | 21'-6" | 21'-6" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_831961 | DW_506953 | 1 | 157'-6" | 157'-6" | None | 0.02 | 0.01 | 1 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506953 | DW_506952 | 1 | 29'-7" | 29'-7" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_506952 | DW_509752 | 1 | 76'-6" | 76'-6" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_509752 | DW_509625 | 1 | 11'-5" | 11'-5" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_509625 | DW_509046 | 1 | 21'-2' | 21'-2" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_509046 | DW_506951 | 1 | 54'-7" | 54'-7" | None | 0.01 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_506951 | DW_506950 | 1 | 18'-3" | 18'-3' | None | 0 | 0.01 | 0 | WALKER |
|  | DW_506950 | DSD_DOCK | 1 | 49'-3" | 49'-3' | None | 0.01 | 0 | 0 | WALKER |
| DSD ${ }_{1}$ 04.0000 | DSD_DOCK | DW_100521 | 1 | 67'-8" | 67'-8" | None | 0.01 | 0.04 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_100521 | DW_505554 | 1 | 16'-10" | 16'-10" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505554 | DW_505555 | 1 | 27'-1" | 27'-1" | None | 0 | 0.02 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505555 | DW_503278 | 1 | 15'-6" | 15'-6" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_503278 | DW_505638 | 1 | 13'-0" | 13'-0" | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505638 | DW_506295 | 1 | 25'-11" | 25'-11" | None | 0 | 0.06 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_506295 | DW_503971 | 1 | 16'-8" | 16'-8" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_503971 | DW_506296 | 1 | 14'-3" | 14'-3' | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_506296 | DW_836261 | 1 | 149'-2" | 149'-2' | None | 0.02 | 0.04 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_836261 | DW_831661 | 1 | 17'-5" | 17'-5" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_831661 | DW_832461 | 1 | 19'-9" | 19'-9" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_832461 | DW_839061 | 1 | 19'-0" | 19'-0" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_839061 | DW_831261 | 1 | 19'-1" | 19'-1" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_831261 | DW_512486 | 1 | 35'-7" | 35'-7" | None | 0.01 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_512486 | DW_512730 | 1 | 25'-7" | 25'-7" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512730 | DW_512485 | 1 | 19'-4" | 19'-4" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512485 | DW_505546 | 1 | 108'-9" | 108'-9" | None | 0.02 | 0.07 | 2 | WALKER |
| DSDi04.0000 | DW_505546 | DW_506297 | 1 | 12'-7" | 12'-7" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_506297 | DW_505547 | 1 | 16'-8" | 16'-8" | None | 0 | 0.03 | 1 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 04.0000$ | DW_505547 | DW_505548 | 1 | 7'-0" | 7'-0" | None | 0 | 0.03 | 1 | WALKER |
| DSD ${ }_{1}$ 04.0000 | DW_505548 | DW_506632 | 1 | 15'-10" | 15'-10" | None | 0 | 0.02 | 0 | WALKER |
| DSD104.0000 | DW_506632 | DW_505549 | 1 | 13'-4" | 13'-4" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_505549 | DW_510706 | 1 | 16'-4" | 16'-4" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_510706 | DW_510708 | 1 | 11'-5" | 11'-5" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_510708 | DW_511068 | 1 | 13'-10" | 13'-10" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{104.0000}$ | DW_511068 | DW_836561 | 1 | 69'-5" | 69'-5" | None | 0.01 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}^{104.0000}$ | DW_836561 | DW_835261 | 1 | 29'-0" | 29'-0" | None | 0 | 0.04 | 1 | WALKER |
| DSDi04.0000 | DW_835261 | DW_510645 | 1 | 71'-3" | 71'-3' | None | 0.01 | 0.03 | 1 | WALKER |
| DSDi04.0000 | DW_510645 | DW_511873 | 1 | 126'-0" | 126'-0" | None | 0.02 | 0.04 | 1 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_511873 | DW_512487 | 1 | 75'-9" | 75'-9" | None | 0.01 | 0.02 | 1 | WALKER |
| DSDi04.0000 | DW_512487 | W_513009 | 1 | 122'-9" | 122'-9" | None | 0.02 | 0.04 | 1 | WALKER |
| DSDi04.0000 | W_513009 | DW_510139 | 1 | 98'-8" | 98'-8" | None | 0.02 | 0.02 | 1 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_510139 | DW_510138 | 1 | 8'-8" | 8'-8" | None | 0 | 0.02 | 0 | WALKER |
| DSDi04.0000 | DW_510138 | DW_510135 | 1 | 15'-1" | 15'-1" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1} 04.0000$ | DW_510135 | DW_510136 | 1 | 10'-8" | 10'-8' | None | 0 | 0.02 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User <br> Dist/Trip <br> (Ft) | Total <br> Travel Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510136 | DW_510053 | 1 | 18'-2" | 18'-2' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}$ 04.0000 | DW_510053 | DW_510052 | 1 | 9'-0" | 9'-0' | None | 0 | 0.01 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510052 | DW_509871 | 1 | 9'-0" | 9'-0" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509871 | DW_509753 | 1 | 19'-11" | 19'-11' | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509753 | DW_509752 | 1 | 10'-7" | 10'-7" | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509752 | DW_509046 | 1 | 24'-5" | $24^{\prime}-5{ }^{\prime \prime}$ | None | 0 | 0.02 | 0 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509046 | DW_507087 | 1 | 70'-6" | 70'-6" | None | 0.01 | 0.02 | 1 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_507087 | DSD_DOCK | 1 | 90'-7' | 90'-7" | None | 0.01 | 0 | 0 | WALKER |
| RETAIL!01.0000 | RET_DOCK | R_503890 | 1 | 69'-8" | 69'-8' | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;01.0000 | R_503890 | R_508782 | 1 | 152'-8" | 152'-8" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL!01.0000 | R_508782 | R_508730 | 1 | 10'-3" | 10'-3' | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!01.0000 | R_508730 | R_508687 | 1 | 9'-6" | 9'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!01.0000 | R_508687 | R_506284 | 1 | 168'-10" | 168'-10" | None | 0.02 | 0.04 | 1 | WALKER |
| RETAIL!01.0000 | R_506284 | R_513096 | 1 | 23'-1" | 23'-1" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL;01.0000 | R_513096 | R_479006 | 1 | 86'-11" | 86'-11" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL! 01.0000 | R_479006 | R_666688 | 1 | 68'-2" | 68'-2' | None | 0.01 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;01.0000 | R_666688 | RW_510418 | 1 | 206'-2" | 206'-2" | None | 0.03 | 0.01 | 1 | WALKER |
| RETAIL;01.0000 | RW_510418 | RW_510646 | 1 | 217'-8" | 217'-8" | None | 0.03 | 0.01 | 1 | WALKER |
| RETAIL;01.0000 | RW_510646 | RW_510141 | 1 | 147'-0" | 147'-0" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL!01.0000 | RW_510141 | RW_511312 | 1 | 53'-4" | 53'-4" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;01.0000 | RW_511312 | RW_511309 | 1 | 15'-6" | 15'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAILi01.0000 | RW_511309 | RW_511108 | 1 | 24'-0" | 24'-0" | None | 0 | 0.01 | 0 | WALKER |
| RETAILi01.0000 | RW_511108 | RW_510426 | 1 | 20'-6" | 20'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAILi01.0000 | RW_510426 | RW_510419 | 1 | 33'-5" | 33'-5" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAILi01.0000 | RW_510419 | RW_510421 | 1 | 16'-6" | 16'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAILi01.0000 | RW_510421 | R_480077 | 1 | 113'-0" | 113'-0" | None | 0.02 | 0.01 | 0 | WALKER |
| RETAIL!01.0000 | R_480077 | RET_DOCK | 1 | 53'-8" | 53'-8" | None | 0.01 | 0 | 0 | WALKER |
| RETAIL!02.0000 | RET_DOCK | R_509193 | 1 | 56'-8" | 56'-8" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_509193 | R_504503 | 1 | 7'-2" | 7'-2" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL;02.0000 | R_504503 | R_509197 | 1 | 11'-10" | 11'-10" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_509197 | RW_510936 | 1 | 142'-9" | 142'-9" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL!02.0000 | RW_510936 | RW_511312 | 1 | 29'-8" | 29'-8" | None | 0 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 02.0000 | RW_511312 | RW_510138 | 1 | 76'-7' | 76'-7' | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;02.0000 | RW_510138 | RW_510136 | 1 | 17'-6" | 17'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL! 02.0000 | RW_510136 | RW_512988 | 1 | 116'-10" | 116'-10" | None | 0.02 | 0.01 | 0 | WALKER |
| RETAIL! 02.0000 | RW_512988 | R_513020 | 1 | 269'-1" | 269'-1" | None | 0.04 | 0.01 | 1 | WALKER |
| RETAIL; 02.0000 | R_513020 | R_503791 | 1 | 21'-1" | 21'-1" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL; 02.0000 | R_503791 | R_509206 | 1 | 40'-3" | 40'-3" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_509206 | R_509209 | 1 | 15'-4" | 15'-4" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL;02.0000 | R_509209 | RW_509594 | 1 | 141'-2" | 141'-2" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL;02.0000 | RW_509594 | R_508730 | 1 | 161'-6" | 161'-6" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL;02.0000 | R_508730 | R_503760 | 1 | 78'-5' | 78'-5" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_503760 | R_500078 | 1 | 37'-1" | 37'-1" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_500078 | R_509204 | 1 | 87'-9" | 87'-9" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL!02.0000 | R_509204 | R_479006 | 1 | 72'-5" | 72'-5" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;02.0000 | R_479006 | R_506284 | 1 | 78'-6" | 78'-6" | None | 0.01 | 0.02 | 1 | WALKER |
| RETAIL;02.0000 | R_506284 | RET_DOCK | 1 | 86'-5" | 86'-5" | None | 0.01 | 0 | 0 | WALKER |
| RETAIL;03.0000 | RET_DOCK | R_509192 | 1 | 45'-4" | 45'-4" | None | 0.01 | 0.01 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 03.0000 | R_509192 | R_503791 | 1 | 38'-2' | 38'-2" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;03.0000 | R_503791 | R_506284 | 1 | 100'-1" | 100'-1" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL ${ }_{1} 03.0000$ | R_506284 | R_509198 | 1 | 64'-4" | 64'-4" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL ${ }_{1} 03.0000$ | R_509198 | R_479006 | 1 | 28'-10" | 28'-10" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;03.0000 | R_479006 | R_666688 | 1 | 68'-2' | 68'-2" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL ${ }_{1} 03.0000$ | R_666688 | R_473916 | 1 | 157'-0" | 157'-0" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL; 03.0000 | R_473916 | R_507238 | 1 | 11'-4" | 11'-4" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL; 03.0000 | R_507238 | R_508782 | 1 | 22'-5" | 22'-5" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!03.0000 | R_508782 | R_410608 | 1 | 104'-10" | 104'-10" | None | 0.02 | 0.01 | 0 | WALKER |
| RETAIL;03.0000 | R_410608 | RW_511839 | 1 | 167'-1" | 167'-1" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL!03.0000 | RW_511839 | RW_511309 | 1 | 119'-2" | 119'-2" | None | 0.02 | 0.01 | 0 | WALKER |
| RETAIL;03.0000 | RW_511309 | RET_DOCK | 1 | 178'-11" | 178'-11" | None | 0.03 | 0 | 1 | WALKER |
| RETAIL;04.0000 | RET_DOCK | R_506284 | 1 | 86'-5" | 86'-5" | None | 0.01 | 0.01 | 1 | WALKER |
| RETAIL;04.0000 | R_506284 | R_513096 | 1 | 23'-1" | 23'-1" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL'04.0000 | R_513096 | R_513020 | 1 | 82'-9" | 82'-9" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;04.0000 | R_513020 | R_506562 | 1 | 143'-5" | 143'-5" | None | 0.02 | 0.01 | 1 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 04.0000 | R_506562 | R_508730 | 1 | 20'-11" | 20'-11" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL;04.0000 | R_508730 | R_508782 | 1 | 10'-3' | 10'-3' | None | 0 | 0.01 | 0 | WALKER |
| RETAIL;04.0000 | R_508782 | R_503760 | 1 | 82'-0" | 82'-0" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL! 04.0000 | R_503760 | RW_510835 | 1 | 159'-8" | 159'-8" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL;04.0000 | RW_510835 | RW_512986 | 1 | 225'-3" | 225'-3" | None | 0.03 | 0.01 | 1 | WALKER |
| RETAIL;04.0000 | RW_512986 | RW_511312 | 1 | 142'-6" | 142'-6" | None | 0.02 | 0.01 | 1 | WALKER |
| RETAIL!04.0000 | RW_511312 | RW_511309 | 1 | 15'-6" | 15'-6" | None | 0 | 0.01 | 0 | WALKER |
| RETAILi04.0000 | RW_511309 | RW_510425 | 1 | 35'-10" | 35'-10" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAILi04.0000 | RW_510425 | RW_513022 | 1 | 22'-8" | 22'-8" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!04.0000 | RW_513022 | RW_510422 | 1 | 14'-4" | 14'-4" | None | 0 | 0.01 | 0 | WALKER |
| RETAIL!04.0000 | RW_510422 | R_504503 | 1 | 121'-11" | 121'-11" | None | 0.02 | 0.01 | 0 | WALKER |
| RETAIL!04.0000 | R_504503 | RW_510142 | 1 | 68'-1" | 68'-1" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;04.0000 | RW_510142 | RW_512728 | 1 | 91'-11" | 91'-11" | None | 0.01 | 0.01 | 0 | WALKER |
| RETAIL;04.0000 | RW_512728 | RET_DOCK | 1 | 152'-6" | 152'-6" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 01.0000$ | WHL_DOCK | W_509146 | 1 | 47'-5" | 47'-5" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{1} 01.0000$ | W_509146 | W_501684 | 1 | 15'-8" | 15'-8" | None | 0 | 0 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 02.0000$ | W_501493 | W_511355 | 1 | 107'-6" | 107'-6" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | W_511355 | W_512802 | 1 | 33'-7' | 33'-7' | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | W_512802 | W_503106 | 1 | 20'-7' | 20'-7' | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | W_503106 | DW_510136 | 1 | 113'-4" | 113'-4" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | DW_510136 | W_477080 | 1 | 48'-7" | 48'-7" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 02.0000$ | W_477080 | W_509145 | 1 | 92'-6" | 92'-6" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | W_509145 | W_509146 | 1 | 24'-7' | 24'-7" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 02.0000$ | W_509146 | WHL_DOCK | 1 | 47'-5" | 47'-5" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | WHL_DOCK | W_500252 | 1 | 48'-1" | 48'-1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_500252 | W_503103 | 1 | 104'-8" | 104'-8" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_503103 | W_10016 | 1 | 69'-11" | 69'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_10016 | W_10005 | 1 | 28'-4" | 28'-4" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_10005 | W_10004 | 1 | 13'-3' | 13'-3' | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_10004 | W_10001 | 1 | 26'-4" | 26'-4" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_10001 | W_10008 | 1 | 19'-1" | 19'-1" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | W_10008 | W_10003 | 1 | 14'-11" | 14'-11" | None | 0 | 0 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 03.0000$ | W_10003 | RW_510198 | 1 | 178'-1" | 178'-1" | None | 0.03 | 0 | 1 | WALKER |
| WHOLE ${ }^{\prime} 03.0000$ | RW_510198 | WHL_DOCK | 1 | 135'-8" | 135'-8" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | WHL_DOCK | W_511043 | 1 | 34'-1" | 34'-1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_511043 | W_501919 | 1 | 31'-11" | 31'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_501919 | W_500030 | 1 | 43'-1" | 43'-1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_500030 | W_476422 | 1 | 22'-0" | 22'-0" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_476422 | W_477265 | 1 | 16'-7" | 16'-7" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_477265 | W_508732 | 1 | 73'-11" | 73'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_508732 | W_501961 | 1 | 108'-11" | 108'-11" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{1} 04.0000$ | W_501961 | RW_512986 | 1 | 127'-2" | 127'-2" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | RW_512986 | W_508730 | 1 | 105'-0" | 105'-0" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_508730 | RW_511312 | 1 | 107'-6" | 107'-6" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | RW_511312 | DW_510140 | 1 | 251'-5" | 251'-5" | None | 0.04 | 0 | 1 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | DW_510140 | DW_510139 | 1 | 104'-9" | 104'-9" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | DW_510139 | W_501920 | 1 | 114'-7" | 114'-7" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_501920 | W_500252 | 1 | 30'-0" | 30'-0" | None | 0.01 | 0 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 04.0000$ | W_500252 | W_509671 | 1 | 84'-11" | 84'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_509671 | WHL_DOCK | 1 | 52'-0' | 52'-0" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | WHL_DOCK | W_506284 | 1 | 52'-1" | 52'-1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | W_506284 | W_511042 | 1 | 113'-2" | 113'-2" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | W_511042 | W_509671 | 1 | 37'-1" | 37'-1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }_{1}^{\prime} 05.0000$ | W_509671 | W_501493 | 1 | 77'-5" | 77'-5" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | W_501493 | W_508730 | 1 | 56'-11" | 56'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | W_508730 | RW_511309 | 1 | 110'-10" | 110'-10" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | RW_511309 | RW_511312 | 1 | 15'-6" | 15'-6" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | RW_511312 | W_501961 | 1 | 129'-8" | 129'-8" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | W_501961 | W_508202 | 1 | 131'-9" | 131'-9" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | W_508202 | W_479006 | 1 | 94'-3" | 94'-3" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | W_479006 | W_501919 | 1 | 57'-2' | 57'-2" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{1} 05.0000$ | W_501919 | W_504468 | 1 | 27'-4" | 27'-4" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | W_504468 | W_503565 | 1 | 14'-8" | 14'-8" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 05.0000 | W_503565 | WHL_DOCK | 1 | 32'-2' | 32'-2' | None | 0.01 | 0 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE! ${ }^{\prime} 06.0000$ | WHL_DOCK | W_500228 | 1 | 44'-11" | 44'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_500228 | W_503106 | 1 | 42'-0" | 42'-0" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | W_503106 | W_503760 | 1 | 135'-7" | 135'-7" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_503760 | W_511042 | 1 | 15'-7" | 15'-7" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_511042 | W_503794 | 1 | 14'-3" | 14'-3" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 06.0000$ | W_503794 | W_510081 | 1 | 34'-5" | 34'-5" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_510081 | W_507208 | 1 | 79'-10" | 79'-10" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_507208 | W_501552 | 1 | 18'-7" | 18'-7" | None | 0 | 0 | 0 | WALKER |
| WHOLE 06.0000 | W_501552 | W_503793 | 1 | 25'-9" | 25'-9" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_503793 | W_508730 | 1 | 32'-1" | 32 -1" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_508730 | RW_511309 | 1 | 110'-10" | 110'-10" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE 06.0000 | RW_511309 | W_500037 | 1 | 142'-9" | 142'-9" | None | 0.02 | 0 | 1 | WALKER |
| WHOLE! 06.0000 | W_500037 | W_509149 | 1 | 14'-4" | 14'-4" | None | 0 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_509149 | W_501919 | 1 | 44'-9" | 44'-9" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE! 06.0000 | W_501919 | W_511043 | 1 | 31'-11" | 31'-11" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE 06.0000 | W_511043 | W_503565 | 1 | 12'-7' | 12'-7" | None | 0 | 0 | 0 | WALKER |

Table 57 Continued

| Aggregate Name | From | To | Freq |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 57 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 07.0000$ | RW_511542 | RW_509554 | 1 | 76'-9" | 76'-9" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | RW_509554 | W_477265 | 1 | 118'-0" | 118'-0" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_477265 | DW_510139 | 1 | 85'-8" | 85'-8" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | DW_510139 | DW_510136 | 1 | 12'-9" | 12'-9" | None | 0 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | DW_510136 | W_503893 | 1 | 105'-8" | 105'-8" | None | 0.02 | 0 | 0 | WALKER |
| WHOLE! 07.0000 | W_503893 | W_506284 | 1 | 42'-0" | 42'-0" | None | 0.01 | 0 | 0 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_506284 | WHL_DOCK | 1 | 52'-1" | 52'-1" | None | 0.01 | 0 | 0 | WALKER |

Table 58. Tuggers Tab Data Table

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 1 | 1 |  |  | DSD |
| 2 | 506952 | CASE | 30 |  | DSD_DOCK | DW_506952 | 1 | 1 |  |  | DSD |
| 3 | 506953 | CASE | 30 |  | DSD_DOCK | DW_506953 | 1 | 1 |  |  | DSD |
| 4 | 509625 | CASE | 5 |  | DSD_DOCK | DW_509625 | 1 | 1 |  |  | DSD |
| 5 | 100411 | CASE | 10 |  | DSD_DOCK | DW_100411 | 1 | 1 |  |  | DSD |
| 6 | 100621 | CASE | 25 |  | DSD_DOCK | DW_100621 | 1 | 1 |  |  | DSD |
| 7 | 505554 | CASE | 15 |  | DSD_DOCK | DW_505554 | 1 | 1 |  |  | DSD |
| 8 | 510203 | CASE | 5 |  | DSD_DOCK | DW_510203 | 1 | 1 |  |  | DSD |
| 9 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 1 | 1 |  |  | DSD |
| 10 | 503971 | CASE | 5 |  | DSD_DOCK | DW_503971 | 1 | 1 |  |  | DSD |
| 11 | 503279 | CASE | 10 |  | DSD_DOCK | DW_503279 | 1 | 1 |  |  | DSD |
| 12 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 1 | 1 |  |  | DSD |
| 13 | 831261 | CASE | 5 |  | DSD_DOCK | DW_831261 | 1 | 1 |  |  | DSD |
| 14 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 1 | 1 |  |  | DSD |
| 15 | 832461 | CASE | 5 |  | DSD_DOCK | DW_832461 | 1 | 1 |  |  | DSD |
| 16 | 834161 | CASE | 15 |  | DSD_DOCK | DW_834161 | 1 | 1 |  |  | DSD |
| 17 | 835261 | CASE | 20 |  | DSD_DOCK | DW_835261 | 1 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 836261 | CASE | 15 |  | DSD_DOCK | DW_836261 | 1 | 1 |  |  | DSD |
| 19 | 505546 | CASE | 15 |  | DSD_DOCK | DW_505546 | 1 | 1 |  |  | DSD |
| 20 | 505550 | CASE | 5 |  | DSD_DOCK | DW_505550 | 1 | 1 |  |  | DSD |
| 21 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 1 | 1 |  |  | DSD |
| 22 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 1 | 1 |  |  | DSD |
| 23 | 505551 | CASE | 5 |  | DSD_DOCK | DW_505551 | 1 | 1 |  |  | DSD |
| 24 | 510645 | CASE | 5 |  | DSD_DOCK | DW_510645 | 1 | 1 |  |  | DSD |
| 25 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 1 | 1 |  |  | DSD |
| 26 | 506630 | CASE | 5 |  | DSD_DOCK | DW_506630 | 1 | 1 |  |  | DSD |
| 27 | 509042 | CASE | 15 |  | DSD_DOCK | DW_509042 | 1 | 1 |  |  | DSD |
| 30 | 505548 | CASE | 4 |  | DSD_DOCK | DW_505548 | 2 | 1 |  |  | DSD |
| 31 | 506953 | CASE | 8 |  | DSD_DOCK | DW_506953 | 2 | 1 |  |  | DSD |
| 32 | 503278 | CASE | 6 |  | DSD_DOCK | DW_503278 | 2 | 1 |  |  | DSD |
| 33 | 509871 | CASE | 4 |  | DSD_DOCK | DW_509871 | 2 | 1 |  |  | DSD |
| 34 | 100521 | CASE | 4 |  | DSD_DOCK | DW_100521 | 2 | 1 |  |  | DSD |
| 35 | 100621 | CASE | 3 |  | DSD_DOCK | DW_100621 | 2 | 1 |  |  | DSD |
| 36 | 505555 | CASE | 4 |  | DSD_DOCK | DW_505555 | 2 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37 | 505554 | CASE | 4 |  | DSD_DOCK | DW_505554 | 2 | 1 |  |  | DSD |
| 38 | 503971 | CASE | 4 |  | DSD_DOCK | DW_503971 | 2 | 1 |  |  | DSD |
| 39 | 831261 | CASE | 3 |  | DSD_DOCK | DW_831261 | 2 | 1 |  |  | DSD |
| 40 | 834161 | CASE | 3 |  | DSD_DOCK | DW_834161 | 2 | 1 |  |  | DSD |
| 41 | 831661 | CASE | 6 |  | DSD_DOCK | DW_831661 | 2 | 1 |  |  | DSD |
| 42 | 836261 | CASE | 4 |  | DSD_DOCK | DW_836261 | 2 | 1 |  |  | DSD |
| 43 | 839061 | CASE | 4 |  | DSD_DOCK | DW_839061 | 2 | 1 |  |  | DSD |
| 44 | 509752 | CASE | 4 |  | DSD_DOCK | DW_509752 | 2 | 1 |  |  | DSD |
| 45 | 505546 | CASE | 6 |  | DSD_DOCK | DW_505546 | 2 | 1 |  |  | DSD |
| 46 | 505547 | CASE | 4 |  | DSD_DOCK | DW_505547 | 2 | 1 |  |  | DSD |
| 47 | 505549 | CASE | 8 |  | DSD_DOCK | DW_505549 | 2 | 1 |  |  | DSD |
| 48 | 510645 | CASE | 4 |  | DSD_DOCK | DW_510645 | 2 | 1 |  |  | DSD |
| 49 | 510644 | CASE | 2 |  | DSD_DOCK | DW_510644 | 2 | 1 |  |  | DSD |
| 50 | 511068 | CASE | 4 |  | DSD_DOCK | DW_511068 | 2 | 1 |  |  | DSD |
| 51 | 506295 | CASE | 6 |  | DSD_DOCK | DW_506295 | 2 | 1 |  |  | DSD |
| 52 | 506296 | CASE | 3 |  | DSD_DOCK | DW_506296 | 2 | 1 |  |  | DSD |
| 53 | 506297 | CASE | 2 |  | DSD_DOCK | DW_506297 | 2 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 54 | 506630 | CASE | 4 |  | DSD_DOCK | DW_506630 | 2 | 1 |  |  | DSD |
| 55 | 508939 | CASE | 2 |  | DSD_DOCK | DW_508939 | 2 | 1 |  |  | DSD |
| 56 | 510416 | CASE | 4 |  | DSD_DOCK | DW_510416 | 2 | 1 |  |  | DSD |
| 57 | 510417 | CASE | 4 |  | DSD_DOCK | DW_510417 | 2 | 1 |  |  | DSD |
| 58 | 510419 | CASE | 6 |  | DSD_DOCK | DW_510419 | 2 | 1 |  |  | DSD |
| 59 | 510425 | CASE | 6 |  | DSD_DOCK | DW_510425 | 2 | 1 |  |  | DSD |
| 60 | 512487 | CASE | 4 |  | DSD_DOCK | DW_512487 | 2 | 1 |  |  | DSD |
| 61 | 512486 | CASE | 6 |  | DSD_DOCK | DW_512486 | 2 | 1 |  |  | DSD |
| 62 | 512485 | CASE | 6 |  | DSD_DOCK | DW_512485 | 2 | 1 |  |  | DSD |
| 63 | 513504 | CASE | 3 |  | DSD_DOCK | DW_513504 | 2 | 1 |  |  | DSD |
| 64 | 510135 | CASE | 1 |  | DSD_DOCK | DW_510135 | 2 | 1 |  |  | DSD |
| 65 | 510139 | CASE | 1 |  | DSD_DOCK | DW_510139 | 2 | 1 |  |  | DSD |
| 66 | 510136 | CASE | 1 |  | DSD_DOCK | DW_510136 | 2 | 1 |  |  | DSD |
| 68 | 506632 | CASE | 1 |  | DSD_DOCK | DW_506632 | 3 | 1 |  |  | DSD |
| 69 | 506952 | CASE | 2 |  | DSD_DOCK | DW_506952 | 3 | 1 |  |  | DSD |
| 70 | 506953 | CASE | 2 |  | DSD_DOCK | DW_506953 | 3 | 1 |  |  | DSD |
| 71 | 509625 | CASE | 1 |  | DSD_DOCK | DW_509625 | 3 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | 100411 | CASE | 1 |  | DSD_DOCK | DW_100411 | 3 | 1 |  |  | DSD |
| 73 | 100521 | CASE | 2 |  | DSD_DOCK | DW_100521 | 3 | 1 |  |  | DSD |
| 74 | 100621 | CASE | 5 |  | DSD_DOCK | DW_100621 | 3 | 1 |  |  | DSD |
| 75 | 505554 | CASE | 2 |  | DSD_DOCK | DW_505554 | 3 | 1 |  |  | DSD |
| 76 | 509046 | CASE | 3 |  | DSD_DOCK | DW_509046 | 3 | 1 |  |  | DSD |
| 77 | 503279 | CASE | 1 |  | DSD_DOCK | DW_503279 | 3 | 1 |  |  | DSD |
| 78 | 831961 | CASE | 1 |  | DSD_DOCK | DW_831961 | 3 | 1 |  |  | DSD |
| 79 | 834161 | CASE | 5 |  | DSD_DOCK | DW_834161 | 3 | 1 |  |  | DSD |
| 80 | 835261 | CASE | 4 |  | DSD_DOCK | DW_835261 | 3 | 1 |  |  | DSD |
| 81 | 831661 | CASE | 1 |  | DSD_DOCK | DW_831661 | 3 | 1 |  |  | DSD |
| 82 | 836261 | CASE | 7 |  | DSD_DOCK | DW_836261 | 3 | 1 |  |  | DSD |
| 83 | 509752 | CASE | 1 |  | DSD_DOCK | DW_509752 | 3 | 1 |  |  | DSD |
| 84 | 505546 | CASE | 4 |  | DSD_DOCK | DW_505546 | 3 | 1 |  |  | DSD |
| 85 | 505549 | CASE | 2 |  | DSD_DOCK | DW_505549 | 3 | 1 |  |  | DSD |
| 86 | 505553 | CASE | 1 |  | DSD_DOCK | DW_505553 | 3 | 1 |  |  | DSD |
| 87 | 510645 | CASE | 1 |  | DSD_DOCK | DW_510645 | 3 | 1 |  |  | DSD |
| 88 | 506295 | CASE | 3 |  | DSD_DOCK | DW_506295 | 3 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | 506631 | CASE | 1 |  | DSD_DOCK | DW_506631 | 3 | 1 |  |  | DSD |
| 90 | 506630 | CASE | 1 |  | DSD_DOCK | DW_506630 | 3 | 1 |  |  | DSD |
| 91 | 506951 | CASE | 2 |  | DSD_DOCK | DW_506951 | 3 | 1 |  |  | DSD |
| 92 | 506950 | CASE | 2 |  | DSD_DOCK | DW_506950 | 3 | 1 |  |  | DSD |
| 93 | 510416 | CASE | 14 |  | DSD_DOCK | DW_510416 | 3 | 1 |  |  | DSD |
| 94 | 510419 | CASE | 5 |  | DSD_DOCK | DW_510419 | 3 | 1 |  |  | DSD |
| 95 | 510421 | CASE | 4 |  | DSD_DOCK | DW_510421 | 3 | 1 |  |  | DSD |
| 96 | 510422 | CASE | 2 |  | DSD_DOCK | DW_510422 | 3 | 1 |  |  | DSD |
| 97 | 510426 | CASE | 8 |  | DSD_DOCK | DW_510426 | 3 | 1 |  |  | DSD |
| 98 | 512486 | CASE | 2 |  | DSD_DOCK | DW_512486 | 3 | 1 |  |  | DSD |
| 99 | 512485 | CASE | 2 |  | DSD_DOCK | DW_512485 | 3 | 1 |  |  | DSD |
| 101 | 505548 | CASE | 10 |  | DSD_DOCK | DW_505548 | 4 | 1 |  |  | DSD |
| 102 | 506632 | CASE | 5 |  | DSD_DOCK | DW_506632 | 4 | 1 |  |  | DSD |
| 103 | 509753 | CASE | 5 |  | DSD_DOCK | DW_509753 | 4 | 1 |  |  | DSD |
| 104 | 503278 | CASE | 10 |  | DSD_DOCK | DW_503278 | 4 | 1 |  |  | DSD |
| 105 | 509871 | CASE | 5 |  | DSD_DOCK | DW_509871 | 4 | 1 |  |  | DSD |
| 106 | 100521 | CASE | 15 |  | DSD_DOCK | DW_100521 | 4 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 107 | 511873 | CASE | 15 |  | DSD_DOCK | DW_511873 | 4 | 1 |  |  | DSD |
| 108 | 505555 | CASE | 5 |  | DSD_DOCK | DW_505555 | 4 | 1 |  |  | DSD |
| 109 | 505554 | CASE | 10 |  | DSD_DOCK | DW_505554 | 4 | 1 |  |  | DSD |
| 110 | 513009 | CASE | 15 |  | DSD_DOCK | W_513009 | 4 | 1 |  |  | DSD |
| 111 | 509046 | CASE | 5 |  | DSD_DOCK | DW_509046 | 4 | 1 |  |  | DSD |
| 112 | 503971 | CASE | 10 |  | DSD_DOCK | DW_503971 | 4 | 1 |  |  | DSD |
| 113 | 507087 | CASE | 5 |  | DSD_DOCK | DW_507087 | 4 | 1 |  |  | DSD |
| 114 | 831261 | CASE | 10 |  | DSD_DOCK | DW_831261 | 4 | 1 |  |  | DSD |
| 115 | 836261 | CASE | 14 |  | DSD_DOCK | DW_836261 | 4 | 1 |  |  | DSD |
| 116 | 836561 | CASE | 5 |  | DSD_DOCK | DW_836561 | 4 | 1 |  |  | DSD |
| 117 | 832461 | CASE | 10 |  | DSD_DOCK | DW_832461 | 4 | 1 |  |  | DSD |
| 118 | 835261 | CASE | 15 |  | DSD_DOCK | DW_835261 | 4 | 1 |  |  | DSD |
| 119 | 831661 | CASE | 5 |  | DSD_DOCK | DW_831661 | 4 | 1 |  |  | DSD |
| 120 | 839061 | CASE | 10 |  | DSD_DOCK | DW_839061 | 4 | 1 |  |  | DSD |
| 121 | 509752 | CASE | 5 |  | DSD_DOCK | DW_509752 | 4 | 1 |  |  | DSD |
| 122 | 505546 | CASE | 25 |  | DSD_DOCK | DW_505546 | 4 | 1 |  |  | DSD |
| 123 | 505547 | CASE | 10 |  | DSD_DOCK | DW_505547 | 4 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 124 | 505549 | CASE | 5 |  | DSD_DOCK | DW_505549 | 4 | 1 |  |  | DSD |
| 125 | 505638 | CASE | 3 |  | DSD_DOCK | DW_505638 | 4 | 1 |  |  | DSD |
| 126 | 510645 | CASE | 10 |  | DSD_DOCK | DW_510645 | 4 | 1 |  |  | DSD |
| 127 | 511068 | CASE | 5 |  | DSD_DOCK | DW_511068 | 4 | 1 |  |  | DSD |
| 128 | 510706 | CASE | 5 |  | DSD_DOCK | DW_510706 | 4 | 1 |  |  | DSD |
| 129 | 512730 | CASE | 5 |  | DSD_DOCK | DW_512730 | 4 | 1 |  |  | DSD |
| 130 | 506295 | CASE | 20 |  | DSD_DOCK | DW_506295 | 4 | 1 |  |  | DSD |
| 131 | 506296 | CASE | 10 |  | DSD_DOCK | DW_506296 | 4 | 1 |  |  | DSD |
| 132 | 506297 | CASE | 10 |  | DSD_DOCK | DW_506297 | 4 | 1 |  |  | DSD |
| 133 | 510708 | CASE | 5 |  | DSD_DOCK | DW_510708 | 4 | 1 |  |  | DSD |
| 134 | 512487 | CASE | 5 |  | DSD_DOCK | DW_512487 | 4 | 1 |  |  | DSD |
| 135 | 512486 | CASE | 5 |  | DSD_DOCK | DW_512486 | 4 | 1 |  |  | DSD |
| 136 | 512485 | CASE | 8 |  | DSD_DOCK | DW_512485 | 4 | 1 |  |  | DSD |
| 137 | 510052 | CASE | 3 |  | DSD_DOCK | DW_510052 | 4 | 1 |  |  | DSD |
| 138 | 510053 | CASE | 3 |  | DSD_DOCK | DW_510053 | 4 | 1 |  |  | DSD |
| 139 | 510138 | CASE | 5 |  | DSD_DOCK | DW_510138 | 4 | 1 |  |  | DSD |
| 140 | 510135 | CASE | 5 |  | DSD_DOCK | DW_510135 | 4 | 1 |  |  | DSD |

Table 58 Continued

| ID | Part | Container | Cont. <br> Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 141 | 510139 | CASE | 5 |  | DSD_DOCK | DW_510139 | 4 | 1 |  |  | DSD |
| 142 | 510136 | CASE | 5 |  | DSD_DOCK | DW_510136 | 4 | 1 |  |  | DSD |
| 144 | 506284 | CASE | 12 |  | RET_DOCK | R_506284 | 1 | 1 |  |  | RETAIL |
| 145 | 510141 | CASE | 1 |  | RET_DOCK | RW_510141 | 1 | 1 |  |  | RETAIL |
| 146 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 1 | 1 |  |  | RETAIL |
| 147 | 513096 | CASE | 1 |  | RET_DOCK | R_513096 | 1 | 1 |  |  | RETAIL |
| 148 | 508730 | CASE | 3 |  | RET_DOCK | R_508730 | 1 | 1 |  |  | RETAIL |
| 149 | 511108 | CASE | 1 |  | RET_DOCK | RW_511108 | 1 | 1 |  |  | RETAIL |
| 150 | 480077 | CASE | 1 |  | RET_DOCK | R_480077 | 1 | 1 |  |  | RETAIL |
| 151 | 503890 | CASE | 1 |  | RET_DOCK | R_503890 | 1 | 1 |  |  | RETAIL |
| 152 | 479006 | CASE | 2 |  | RET_DOCK | R_479006 | 1 | 1 |  |  | RETAIL |
| 153 | 508687 | CASE | 1 |  | RET_DOCK | R_508687 | 1 | 1 |  |  | RETAIL |
| 154 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 1 | 1 |  |  | RETAIL |
| 155 | 666688 | CASE | 1 |  | RET_DOCK | R_666688 | 1 | 1 |  |  | RETAIL |
| 156 | 511312 | CASE | 1 |  | RET_DOCK | RW_511312 | 1 | 1 |  |  | RETAIL |
| 157 | 510646 | CASE | 1 |  | RET_DOCK | RW_510646 | 1 | 1 |  |  | RETAIL |
| 158 | 510418 | CASE | 1 |  | RET_DOCK | RW_510418 | 1 | 1 |  |  | RETAIL |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 159 | 510419 | CASE | 1 |  | RET_DOCK | RW_510419 | 1 | 1 |  |  | RETAIL |
| 160 | 510421 | CASE | 1 |  | RET_DOCK | RW_510421 | 1 | 1 |  |  | RETAIL |
| 161 | 510426 | CASE | 2 |  | RET_DOCK | RW_510426 | 1 | 1 |  |  | RETAIL |
| 163 | 509209 | CASE | 1 |  | RET_DOCK | R_509209 | 2 | 1 |  |  | RETAIL |
| 164 | 509594 | CASE | 1 |  | RET_DOCK | RW_509594 | 2 | 1 |  |  | RETAIL |
| 165 | 506284 | CASE | 5 |  | RET_DOCK | R_506284 | 2 | 1 |  |  | RETAIL |
| 166 | 510138 | CASE | 1 |  | RET_DOCK | RW_510138 | 2 | 1 |  |  | RETAIL |
| 167 | 510136 | CASE | 2 |  | RET_DOCK | RW_510136 | 2 | 1 |  |  | RETAIL |
| 168 | 512988 | CASE | 1 |  | RET_DOCK | RW_512988 | 2 | 1 |  |  | RETAIL |
| 169 | 500078 | CASE | 1 |  | RET_DOCK | R_500078 | 2 | 1 |  |  | RETAIL |
| 170 | 509197 | CASE | 1 |  | RET_DOCK | R_509197 | 2 | 1 |  |  | RETAIL |
| 171 | 509193 | CASE | 1 |  | RET_DOCK | R_509193 | 2 | 1 |  |  | RETAIL |
| 172 | 509206 | CASE | 1 |  | RET_DOCK | R_509206 | 2 | 1 |  |  | RETAIL |
| 173 | 509204 | CASE | 1 |  | RET_DOCK | R_509204 | 2 | 1 |  |  | RETAIL |
| 174 | 504503 | CASE | 1 |  | RET_DOCK | R_504503 | 2 | 1 |  |  | RETAIL |
| 175 | 513020 | CASE | 1 |  | RET_DOCK | R_513020 | 2 | 1 |  |  | RETAIL |
| 176 | 508730 | CASE | 3 |  | RET_DOCK | R_508730 | 2 | 1 |  |  | RETAIL |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 177 | 510936 | CASE | 2 |  | RET_DOCK | RW_510936 | 2 | 1 |  |  | RETAIL |
| 178 | 503791 | CASE | 1 |  | RET_DOCK | R_503791 | 2 | 1 |  |  | RETAIL |
| 179 | 479006 | CASE | 1 |  | RET_DOCK | R_479006 | 2 | 1 |  |  | RETAIL |
| 180 | 503760 | CASE | 1 |  | RET_DOCK | R_503760 | 2 | 1 |  |  | RETAIL |
| 181 | 511312 | CASE | 2 |  | RET_DOCK | RW_511312 | 2 | 1 |  |  | RETAIL |
| 183 | 506284 | CASE | 4 |  | RET_DOCK | R_506284 | 3 | 1 |  |  | RETAIL |
| 184 | 473916 | CASE | 1 |  | RET_DOCK | R_473916 | 3 | 1 |  |  | RETAIL |
| 185 | 507238 | CASE | 2 |  | RET_DOCK | R_507238 | 3 | 1 |  |  | RETAIL |
| 186 | 509198 | CASE | 1 |  | RET_DOCK | R_509198 | 3 | 1 |  |  | RETAIL |
| 187 | 509192 | CASE | 1 |  | RET_DOCK | R_509192 | 3 | 1 |  |  | RETAIL |
| 188 | 410608 | CASE | 1 |  | RET_DOCK | R_410608 | 3 | 1 |  |  | RETAIL |
| 189 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 3 | 1 |  |  | RETAIL |
| 190 | 511839 | CASE | 1 |  | RET_DOCK | RW_511839 | 3 | 1 |  |  | RETAIL |
| 191 | 503791 | CASE | 1 |  | RET_DOCK | R_503791 | 3 | 1 |  |  | RETAIL |
| 192 | 479006 | CASE | 3 |  | RET_DOCK | R_479006 | 3 | 1 |  |  | RETAIL |
| 193 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 3 | 1 |  |  | RETAIL |
| 194 | 666688 | CASE | 1 |  | RET_DOCK | R_666688 | 3 | 1 |  |  | RETAIL |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 196 | 506284 | CASE | 4 |  | RET_DOCK | R_506284 | 4 | 1 |  |  | RETAIL |
| 197 | 513022 | CASE | 2 |  | RET_DOCK | RW_513022 | 4 | 1 |  |  | RETAIL |
| 198 | 512728 | CASE | 1 |  | RET_DOCK | RW_512728 | 4 | 1 |  |  | RETAIL |
| 199 | 510835 | CASE | 1 |  | RET_DOCK | RW_510835 | 4 | 1 |  |  | RETAIL |
| 200 | 512986 | CASE | 1 |  | RET_DOCK | RW_512986 | 4 | 1 |  |  | RETAIL |
| 201 | 506562 | CASE | 1 |  | RET_DOCK | R_506562 | 4 | 1 |  |  | RETAIL |
| 202 | 504503 | CASE | 1 |  | RET_DOCK | R_504503 | 4 | 1 |  |  | RETAIL |
| 203 | 508782 | CASE | 1 |  | RET_DOCK | R_508782 | 4 | 1 |  |  | RETAIL |
| 204 | 513020 | CASE | 1 |  | RET_DOCK | R_513020 | 4 | 1 |  |  | RETAIL |
| 205 | 513096 | CASE | 2 |  | RET_DOCK | R_513096 | 4 | 1 |  |  | RETAIL |
| 206 | 508730 | CASE | 1 |  | RET_DOCK | R_508730 | 4 | 1 |  |  | RETAIL |
| 207 | 511309 | CASE | 1 |  | RET_DOCK | RW_511309 | 4 | 1 |  |  | RETAIL |
| 208 | 503760 | CASE | 1 |  | RET_DOCK | R_503760 | 4 | 1 |  |  | RETAIL |
| 209 | 511312 | CASE | 2 |  | RET_DOCK | RW_511312 | 4 | 1 |  |  | RETAIL |
| 210 | 510142 | CASE | 1 |  | RET_DOCK | RW_510142 | 4 | 1 |  |  | RETAIL |
| 211 | 510422 | CASE | 1 |  | RET_DOCK | RW_510422 | 4 | 1 |  |  | RETAIL |
| 212 | 510425 | CASE | 1 |  | RET_DOCK | RW_510425 | 4 | 1 |  |  | RETAIL |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 214 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 1 | 1 |  |  | WHOLE |
| 215 | 500252 | CASE | 1 |  | WHL_DOCK | W_500252 | 1 | 1 |  |  | WHOLE |
| 216 | 501684 | CASE | 1 |  | WHL_DOCK | W_501684 | 1 | 1 |  |  | WHOLE |
| 217 | 501961 | CASE | 1 |  | WHL_DOCK | W_501961 | 1 | 1 |  |  | WHOLE |
| 218 | 508737 | CASE | 1 |  | WHL_DOCK | W_508737 | 1 | 1 |  |  | WHOLE |
| 219 | 511870 | CASE | 4 |  | WHL_DOCK | W_511870 | 1 | 1 |  |  | WHOLE |
| 220 | 503106 | CASE | 1 |  | WHL_DOCK | W_503106 | 1 | 1 |  |  | WHOLE |
| 221 | 509148 | CASE | 1 |  | WHL_DOCK | W_509148 | 1 | 1 |  |  | WHOLE |
| 222 | 509145 | CASE | 1 |  | WHL_DOCK | W_509145 | 1 | 1 |  |  | WHOLE |
| 223 | 509146 | CASE | 1 |  | WHL_DOCK | W_509146 | 1 | 1 |  |  | WHOLE |
| 224 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 1 | 1 |  |  | WHOLE |
| 226 | 507208 | CASE | 2 |  | WHL_DOCK | W_507208 | 2 | 1 |  |  | WHOLE |
| 227 | 501493 | CASE | 2 |  | WHL_DOCK | W_501493 | 2 | 1 |  |  | WHOLE |
| 228 | 501627 | CASE | 2 |  | WHL_DOCK | W_501627 | 2 | 1 |  |  | WHOLE |
| 229 | 501552 | CASE | 3 |  | WHL_DOCK | W_501552 | 2 | 1 |  |  | WHOLE |
| 230 | 477080 | CASE | 1 |  | WHL_DOCK | W_477080 | 2 | 1 |  |  | WHOLE |
| 231 | 510136 | CASE | 1 |  | WHL_DOCK | DW_510136 | 2 | 1 |  |  | WHOLE |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232 | 512802 | CASE | 3 |  | WHL_DOCK | W_512802 | 2 | 1 |  |  | WHOLE |
| 233 | 511355 | CASE | 1 |  | WHL_DOCK | W_511355 | 2 | 1 |  |  | WHOLE |
| 234 | 503106 | CASE | 1 |  | WHL_DOCK | W_503106 | 2 | 1 |  |  | WHOLE |
| 235 | 509148 | CASE | 1 |  | WHL_DOCK | W_509148 | 2 | 1 |  |  | WHOLE |
| 236 | 509145 | CASE | 1 |  | WHL_DOCK | W_509145 | 2 | 1 |  |  | WHOLE |
| 237 | 509146 | CASE | 1 |  | WHL_DOCK | W_509146 | 2 | 1 |  |  | WHOLE |
| 238 | 509147 | CASE | 1 |  | WHL_DOCK | W_509147 | 2 | 1 |  |  | WHOLE |
| 240 | 500252 | CASE | 7 |  | WHL_DOCK | W_500252 | 3 | 1 |  |  | WHOLE |
| 241 | 510198 | CASE | 1 |  | WHL_DOCK | RW_510198 | 3 | 1 |  |  | WHOLE |
| 242 | 10005 | CASE | 6 |  | WHL_DOCK | W_10005 | 3 | 1 |  |  | WHOLE |
| 243 | 10003 | CASE | 6 |  | WHL_DOCK | W_10003 | 3 | 1 |  |  | WHOLE |
| 244 | 10004 | CASE | 6 |  | WHL_DOCK | W_10004 | 3 | 1 |  |  | WHOLE |
| 245 | 10001 | CASE | 6 |  | WHL_DOCK | W_10001 | 3 | 1 |  |  | WHOLE |
| 246 | 10016 | CASE | 6 |  | WHL_DOCK | W_10016 | 3 | 1 |  |  | WHOLE |
| 247 | 10008 | CASE | 6 |  | WHL_DOCK | W_10008 | 3 | 1 |  |  | WHOLE |
| 248 | 503103 | CASE | 2 |  | WHL_DOCK | W_503103 | 3 | 1 |  |  | WHOLE |
| 250 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 4 | 1 |  |  | WHOLE |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 251 | 501920 | CASE | 1 |  | WHL_DOCK | W_501920 | 4 | 1 |  |  | WHOLE |
| 252 | 500252 | CASE | 1 |  | WHL_DOCK | W_500252 | 4 | 1 |  |  | WHOLE |
| 253 | 500030 | CASE | 1 |  | WHL_DOCK | W_500030 | 4 | 1 |  |  | WHOLE |
| 254 | 501961 | CASE | 1 |  | WHL_DOCK | W_501961 | 4 | 1 |  |  | WHOLE |
| 255 | 477265 | CASE | 1 |  | WHL_DOCK | W_477265 | 4 | 1 |  |  | WHOLE |
| 256 | 512986 | CASE | 1 |  | WHL_DOCK | RW_512986 | 4 | 1 |  |  | WHOLE |
| 257 | 510140 | CASE | 2 |  | WHL_DOCK | DW_510140 | 4 | 1 |  |  | WHOLE |
| 258 | 508730 | CASE | 2 |  | WHL_DOCK | W_508730 | 4 | 1 |  |  | WHOLE |
| 259 | 508732 | CASE | 1 |  | WHL_DOCK | W_508732 | 4 | 1 |  |  | WHOLE |
| 260 | 509671 | CASE | 2 |  | WHL_DOCK | W_509671 | 4 | 1 |  |  | WHOLE |
| 261 | 476422 | CASE | 1 |  | WHL_DOCK | W_476422 | 4 | 1 |  |  | WHOLE |
| 262 | 511043 | CASE | 1 |  | WHL_DOCK | W_511043 | 4 | 1 |  |  | WHOLE |
| 263 | 511312 | CASE | 2 |  | WHL_DOCK | RW_511312 | 4 | 1 |  |  | WHOLE |
| 264 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 4 | 1 |  |  | WHOLE |
| 266 | 506284 | CASE | 4 |  | WHL_DOCK | W_506284 | 5 | 1 |  |  | WHOLE |
| 267 | 501919 | CASE | 1 |  | WHL_DOCK | W_501919 | 5 | 1 |  |  | WHOLE |
| 268 | 501493 | CASE | 2 |  | WHL_DOCK | W_501493 | 5 | 1 |  |  | WHOLE |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 269 | 504468 | CASE | 2 |  | WHL_DOCK | W_504468 | 5 | 1 |  |  | WHOLE |
| 270 | 501961 | CASE | 2 |  | WHL_DOCK | W_501961 | 5 | 1 |  |  | WHOLE |
| 271 | 503565 | CASE | 4 |  | WHL_DOCK | W_503565 | 5 | 1 |  |  | WHOLE |
| 272 | 508730 | CASE | 1 |  | WHL_DOCK | W_508730 | 5 | 1 |  |  | WHOLE |
| 273 | 509671 | CASE | 1 |  | WHL_DOCK | W_509671 | 5 | 1 |  |  | WHOLE |
| 274 | 508202 | CASE | 1 |  | WHL_DOCK | W_508202 | 5 | 1 |  |  | WHOLE |
| 275 | 479006 | CASE | 3 |  | WHL_DOCK | W_479006 | 5 | 1 |  |  | WHOLE |
| 276 | 511309 | CASE | 1 |  | WHL_DOCK | RW_511309 | 5 | 1 |  |  | WHOLE |
| 277 | 511042 | CASE | 1 |  | WHL_DOCK | W_511042 | 5 | 1 |  |  | WHOLE |
| 278 | 511312 | CASE | 1 |  | WHL_DOCK | RW_511312 | 5 | 1 |  |  | WHOLE |
| 280 | 507208 | CASE | 2 |  | WHL_DOCK | W_507208 | 6 | 1 |  |  | WHOLE |
| 281 | 501919 | CASE | 4 |  | WHL_DOCK | W_501919 | 6 | 1 |  |  | WHOLE |
| 282 | 500228 | CASE | 2 |  | WHL_DOCK | W_500228 | 6 | 1 |  |  | WHOLE |
| 283 | 510081 | CASE | 2 |  | WHL_DOCK | W_510081 | 6 | 1 |  |  | WHOLE |
| 284 | 501552 | CASE | 2 |  | WHL_DOCK | W_501552 | 6 | 1 |  |  | WHOLE |
| 285 | 503565 | CASE | 2 |  | WHL_DOCK | W_503565 | 6 | 1 |  |  | WHOLE |
| 286 | 503793 | CASE | 1 |  | WHL_DOCK | W_503793 | 6 | 1 |  |  | WHOLE |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 287 | 503794 | CASE | 1 |  | WHL_DOCK | W_503794 | 6 | 1 |  |  | WHOLE |
| 288 | 500037 | CASE | 3 |  | WHL_DOCK | W_500037 | 6 | 1 |  |  | WHOLE |
| 289 | 511309 | CASE | 2 |  | WHL_DOCK | RW_511309 | 6 | 1 |  |  | WHOLE |
| 290 | 503106 | CASE | 3 |  | WHL_DOCK | W_503106 | 6 | 1 |  |  | WHOLE |
| 291 | 509149 | CASE | 3 |  | WHL_DOCK | W_509149 | 6 | 1 |  |  | WHOLE |
| 292 | 503760 | CASE | 1 |  | WHL_DOCK | W_503760 | 6 | 1 |  |  | WHOLE |
| 293 | 508730 | CASE | 3 |  | WHL_DOCK | W_508730 | 6 | 1 |  |  | WHOLE |
| 294 | 511043 | CASE | 4 |  | WHL_DOCK | W_511043 | 6 | 1 |  |  | WHOLE |
| 295 | 511042 | CASE | 2 |  | WHL_DOCK | W_511042 | 6 | 1 |  |  | WHOLE |
| 297 | 506284 | CASE | 12 |  | WHL_DOCK | W_506284 | 7 | 1 |  |  | WHOLE |
| 298 | 507208 | CASE | 3 |  | WHL_DOCK | W_507208 | 7 | 1 |  |  | WHOLE |
| 299 | 501919 | CASE | 2 |  | WHL_DOCK | W_501919 | 7 | 1 |  |  | WHOLE |
| 300 | 504468 | CASE | 3 |  | WHL_DOCK | W_504468 | 7 | 1 |  |  | WHOLE |
| 301 | 477265 | CASE | 1 |  | WHL_DOCK | W_477265 | 7 | 1 |  |  | WHOLE |
| 302 | 510136 | CASE | 1 |  | WHL_DOCK | DW_510136 | 7 | 1 |  |  | WHOLE |
| 303 | 508709 | CASE | 1 |  | WHL_DOCK | W_508709 | 7 | 1 |  |  | WHOLE |
| 304 | 506562 | CASE | 1 |  | WHL_DOCK | W_506562 | 7 | 1 |  |  | WHOLE |

Table 58 Continued

| ID | Part | Container | Cont. Qty | From | Stage | To | ETD | Dir | Load | Unload | Route |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305 | 509554 | CASE | 1 |  | WHL_DOCK | RW_509554 | 7 | 1 |  |  | WHOLE |
| 306 | 505308 | CASE | 1 |  | WHL_DOCK | W_505308 | 7 | 1 |  |  | WHOLE |
| 307 | 511542 | CASE | 1 |  | WHL_DOCK | RW_511542 | 7 | 1 |  |  | WHOLE |
| 308 | 506245 | CASE | 1 |  | WHL_DOCK | W_506245 | 7 | 1 |  |  | WHOLE |
| 309 | 510130 | CASE | 1 |  | WHL_DOCK | RW_510130 | 7 | 1 |  |  | WHOLE |
| 310 | 509671 | CASE | 1 |  | WHL_DOCK | W_509671 | 7 | 1 |  |  | WHOLE |
| 311 | 508686 | CASE | 4 |  | WHL_DOCK | W_508686 | 7 | 1 |  |  | WHOLE |
| 312 | 503103 | CASE | 1 |  | WHL_DOCK | W_503103 | 7 | 1 |  |  | WHOLE |
| 313 | 508687 | CASE | 1 |  | WHL_DOCK | W_508687 | 7 | 1 |  |  | WHOLE |
| 314 | 503893 | CASE | 2 |  | WHL_DOCK | W_503893 | 7 | 1 |  |  | WHOLE |
| 315 | 511312 | CASE | 1 |  | WHL_DOCK | RW_511312 | 7 | 1 |  |  | WHOLE |
| 316 | 508730 | CASE | 2 |  | WHL_DOCK | W_508730 | 7 | 1 |  |  | WHOLE |
| 317 | 510139 | CASE | 1 |  | WHL_DOCK | DW_510139 | 7 | 1 |  |  | WHOLE |

Table 59. Report Data Table Time Focus

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DSD_DOCK | DW_506952 | 1 | 942 | 942 | None | 0.012 | 0.086 | 1.968 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_506952 | DW_506953 | 1 | 355 | 355 | None | 0.005 | 0.086 | 1.821 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_506953 | DW_507087 | 1 | 338 | 338 | None | 0.005 | 0.017 | 0.428 | WALKER |
| DSD ${ }_{1}{ }^{\text {01. }} 00000$ | DW_507087 | DW_509042 | 1 | 781 | 781 | None | 0.01 | 0.044 | 1.097 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_509042 | DW_509046 | 1 | 141 | 141 | None | 0.002 | 0.017 | 0.383 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_509046 | DW_509625 | 1 | 254 | 254 | None | 0.004 | 0.017 | 0.409 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_509625 | DW_510203 | 1 | 1309 | 1309 | None | 0.017 | 0.017 | 0.664 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_510203 | DW_510645 | 1 | 971 | 971 | None | 0.012 | 0.017 | 0.58 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_510645 | DW_831261 | 1 | 731 | 731 | None | 0.01 | 0.017 | 0.525 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_831261 | DW_835261 | 1 | 1350 | 1350 | None | 0.017 | 0.058 | 1.507 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_835261 | DW_836261 | 1 | 1509 | 1509 | None | 0.019 | 0.044 | 1.264 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_836261 | DW_836561 | 1 | 1577 | 1577 | None | 0.02 | 0.017 | 0.725 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_836561 | DW_834161 | 1 | 1899 | 1899 | None | 0.023 | 0.044 | 1.356 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_834161 | DW_832461 | 1 | 1530 | 1530 | None | 0.019 | 0.017 | 0.714 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_832461 | DW_510708 | 1 | 1170 | 1170 | None | 0.015 | 0.017 | 0.626 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_510708 | DW_505550 | 1 | 251 | 251 | None | 0.003 | 0.017 | 0.403 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_505550 | DW_505549 | 1 | 78 | 78 | None | 0.001 | 0.017 | 0.362 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505549 | DW_505547 | 1 | 132 | 132 | None | 0.002 | 0.031 | 0.651 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505547 | DW_505546 | 1 | 73 | 73 | None | 0.001 | 0.044 | 0.915 | WALKER |
| DSD ${ }_{1}{ }^{\text {01. }} 00000$ | DW_505546 | DW_503971 | 1 | 75 | 75 | None | 0.001 | 0.017 | 0.362 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_503971 | DW_503279 | 1 | 88 | 88 | None | 0.001 | 0.031 | 0.641 | WALKER |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_503279 | DW_100621 | 1 | 174 | 174 | None | 0.003 | 0.072 | 1.495 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_100621 | DW_100411 | 1 | 130 | 130 | None | 0.002 | 0.031 | 0.652 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_100411 | DW_505551 | 1 | 347 | 347 | None | 0.005 | 0.017 | 0.433 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505551 | DW_505554 | 1 | 555 | 555 | None | 0.008 | 0.044 | 1.04 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505554 | DW_506630 | 1 | 546 | 546 | None | 0.007 | 0.017 | 0.476 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_506630 | DW_506632 | 1 | 370 | 370 | None | 0.005 | 0.017 | 0.436 | WALKER |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_506632 | DSD_DOCK | 1 | 1344 | 1344 | None | 0.017 | 0 | 0.339 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DSD_DOCK | DW_506953 | 1 | 1023 | 1023 | None | 0.013 | 0.025 | 0.765 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_506953 | DW_505554 | 1 | 1265 | 1265 | None | 0.016 | 0.014 | 0.598 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DW_505554 | DW_505555 | 1 | 325 | 325 | None | 0.005 | 0.014 | 0.37 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505555 | DW_506295 | 1 | 355 | 355 | None | 0.005 | 0.019 | 0.486 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {02 }}$, 0000 | DW_506295 | DW_506296 | 1 | 333 | 333 | None | 0.005 | 0.011 | 0.316 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_506296 | DW_506297 | 1 | 313 | 313 | None | 0.004 | 0.008 | 0.254 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_506297 | DW_506630 | 1 | 316 | 316 | None | 0.004 | 0.014 | 0.368 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_506630 | DW_505549 | 1 | 248 | 248 | None | 0.003 | 0.025 | 0.57 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505549 | DW_505548 | 1 | 68 | 68 | None | 0.001 | 0.014 | 0.302 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_505548 | DW_505547 | 1 | 84 | 84 | None | 0.002 | 0.014 | 0.308 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505547 | DW_505546 | 1 | 73 | 73 | None | 0.001 | 0.019 | 0.415 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_505546 | DW_503971 | 1 | 75 | 75 | None | 0.001 | 0.014 | 0.306 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_503971 | DW_503278 | 1 | 127 | 127 | None | 0.002 | 0.019 | 0.428 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_503278 | DW_100621 | 1 | 125 | 125 | None | 0.002 | 0.011 | 0.262 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_100621 | DW_100521 | 1 | 86 | 86 | None | 0.002 | 0.014 | 0.308 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_100521 | DW_510425 | 1 | 788 | 788 | None | 0.01 | 0.019 | 0.585 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_510425 | DW_511068 | 1 | 361 | 361 | None | 0.005 | 0.014 | 0.375 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_511068 | DW_510645 | 1 | 424 | 424 | None | 0.006 | 0.014 | 0.394 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DW_510645 | DW_510644 | 1 | 544 | 544 | None | 0.007 | 0.008 | 0.315 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_510644 | DW_510416 | 1 | 1226 | 1226 | None | 0.016 | 0.014 | 0.589 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {02 }}$, 0000 | DW_510416 | DW_510417 | 1 | 314 | 314 | None | 0.004 | 0.014 | 0.367 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_510417 | DW_510419 | 1 | 340 | 340 | None | 0.005 | 0.019 | 0.484 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_510419 | DW_512486 | 1 | 856 | 856 | None | 0.011 | 0.019 | 0.615 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_512486 | DW_512487 | 1 | 913 | 913 | None | 0.012 | 0.014 | 0.517 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_512487 | DW_512485 | 1 | 916 | 916 | None | 0.012 | 0.019 | 0.629 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_512485 | DW_831261 | 1 | 298 | 298 | None | 0.004 | 0.011 | 0.308 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_831261 | DW_839061 | 1 | 229 | 229 | None | 0.003 | 0.014 | 0.347 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_839061 | DW_836261 | 1 | 274 | 274 | None | 0.004 | 0.014 | 0.355 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_836261 | DW_831661 | 1 | 209 | 209 | None | 0.003 | 0.019 | 0.45 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_831661 | DW_834161 | 1 | 1501 | 1501 | None | 0.019 | 0.011 | 0.597 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_834161 | DW_513504 | 1 | 1860 | 1860 | None | 0.023 | 0.011 | 0.681 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_513504 | DW_510139 | 1 | 1234 | 1234 | None | 0.015 | 0.006 | 0.413 | WALKER |
| DSD ${ }_{1}{ }^{\text {0 }}$ 2.0000 | DW_510139 | DW_510136 | 1 | 153 | 153 | None | 0.003 | 0.006 | 0.163 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_510136 | DW_510135 | 1 | 128 | 128 | None | 0.002 | 0.006 | 0.157 | WALKER |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DW_510135 | DW_509871 | 1 | 266 | 266 | None | 0.004 | 0.014 | 0.356 | WALKER |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_509871 | DW_509752 | 1 | 290 | 290 | None | 0.004 | 0.014 | 0.362 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {02 }}$, 0000 | DW_509752 | DW_508939 | 1 | 385 | 385 | None | 0.005 | 0.008 | 0.272 | WALKER |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_508939 | DSD_DOCK | 1 | 939 | 939 | None | 0.012 | 0 | 0.245 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$, 0000 | DSD_DOCK | DW_506950 | 1 | 591 | 591 | None | 0.008 | 0.008 | 0.326 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_506950 | DW_506951 | 1 | 219 | 219 | None | 0.003 | 0.008 | 0.23 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_506951 | DW_506952 | 1 | 566 | 566 | None | 0.008 | 0.008 | 0.32 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$, 0000 | DW_506952 | DW_506953 | 1 | 355 | 355 | None | 0.005 | 0.008 | 0.266 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_506953 | DW_509046 | 1 | 782 | 782 | None | 0.01 | 0.011 | 0.431 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_509046 | DW_509625 | 1 | 254 | 254 | None | 0.004 | 0.006 | 0.187 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_509625 | DW_509752 | 1 | 137 | 137 | None | 0.002 | 0.006 | 0.159 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_509752 | DW_510416 | 1 | 1191 | 1191 | None | 0.015 | 0.042 | 1.137 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510416 | DW_510419 | 1 | 380 | 380 | None | 0.005 | 0.017 | 0.438 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510419 | DW_510421 | 1 | 478 | 478 | None | 0.007 | 0.014 | 0.411 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }} 00000$ | DW_510421 | DW_512486 | 1 | 504 | 504 | None | 0.007 | 0.008 | 0.306 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_512486 | DW_512485 | 1 | 263 | 263 | None | 0.004 | 0.008 | 0.244 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_512485 | DW_831661 | 1 | 382 | 382 | None | 0.005 | 0.006 | 0.216 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_831661 | DW_831961 | 1 | 187 | 187 | None | 0.003 | 0.006 | 0.169 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_831961 | DW_834161 | 1 | 1554 | 1554 | None | 0.019 | 0.017 | 0.721 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_834161 | DW_836261 | 1 | 1576 | 1576 | None | 0.02 | 0.022 | 0.835 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_836261 | DW_835261 | 1 | 1509 | 1509 | None | 0.019 | 0.014 | 0.653 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_835261 | DW_510645 | 1 | 855 | 855 | None | 0.011 | 0.006 | 0.331 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510645 | DW_510426 | 1 | 687 | 687 | None | 0.009 | 0.025 | 0.681 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_510426 | DW_510422 | 1 | 432 | 432 | None | 0.006 | 0.008 | 0.282 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_510422 | DW_506632 | 1 | 410 | 410 | None | 0.006 | 0.006 | 0.221 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506632 | DW_506631 | 1 | 315 | 315 | None | 0.004 | 0.006 | 0.201 | WALKER |
| DSD ${ }_{1}^{\dagger} 03.0000$ | DW_506631 | DW_506630 | 1 | 337 | 337 | None | 0.005 | 0.006 | 0.204 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_506630 | DW_505549 | 1 | 248 | 248 | None | 0.003 | 0.008 | 0.237 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505549 | DW_505546 | 1 | 167 | 167 | None | 0.002 | 0.014 | 0.324 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505546 | DW_503279 | 1 | 125 | 125 | None | 0.002 | 0.006 | 0.15 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }} 00000$ | DW_503279 | DW_100621 | 1 | 174 | 174 | None | 0.003 | 0.017 | 0.384 | WALKER |
| DSD ${ }_{1}{ }^{\text {03.0000 }}$ | DW_100621 | DW_100521 | 1 | 86 | 86 | None | 0.002 | 0.008 | 0.197 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_100521 | DW_100411 | 1 | 90 | 90 | None | 0.001 | 0.006 | 0.141 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_100411 | DW_505553 | 1 | 198 | 198 | None | 0.003 | 0.006 | 0.171 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_505553 | DW_505554 | 1 | 318 | 318 | None | 0.004 | 0.008 | 0.256 | WALKER |
| DSD ${ }_{1}^{\prime} 03.0000$ | DW_505554 | DW_506295 | 1 | 410 | 410 | None | 0.006 | 0.011 | 0.332 | WALKER |
| DSD ${ }_{1}{ }^{\text {03 }}$.0000 | DW_506295 | DSD_DOCK | 1 | 1108 | 1108 | None | 0.014 | 0 | 0.283 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DSD_DOCK | DW_509046 | 1 | 1031 | 1031 | None | 0.013 | 0.017 | 0.6 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509046 | DW_509752 | 1 | 293 | 293 | None | 0.004 | 0.017 | 0.418 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_509752 | DW_509753 | 1 | 127 | 127 | None | 0.002 | 0.017 | 0.379 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509753 | DW_509871 | 1 | 239 | 239 | None | 0.004 | 0.017 | 0.405 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_509871 | DW_510052 | 1 | 108 | 108 | None | 0.002 | 0.011 | 0.264 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_510052 | DW_510053 | 1 | 108 | 108 | None | 0.002 | 0.011 | 0.264 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510053 | DW_510135 | 1 | 174 | 174 | None | 0.003 | 0.017 | 0.39 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510135 | DW_510136 | 1 | 128 | 128 | None | 0.002 | 0.017 | 0.38 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510136 | DW_510138 | 1 | 129 | 129 | None | 0.002 | 0.017 | 0.38 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_510138 | DW_510139 | 1 | 104 | 104 | None | 0.002 | 0.017 | 0.374 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_510139 | DW_512486 | 1 | 848 | 848 | None | 0.011 | 0.017 | 0.557 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512486 | DW_512487 | 1 | 913 | 913 | None | 0.012 | 0.017 | 0.572 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_512487 | DW_512485 | 1 | 916 | 916 | None | 0.012 | 0.025 | 0.74 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512485 | DW_512730 | 1 | 232 | 232 | None | 0.004 | 0.017 | 0.404 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_512730 | DW_831261 | 1 | 396 | 396 | None | 0.005 | 0.031 | 0.719 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_831261 | DW_839061 | 1 | 229 | 229 | None | 0.003 | 0.031 | 0.681 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_839061 | DW_835261 | 1 | 1407 | 1407 | None | 0.018 | 0.044 | 1.242 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_835261 | DW_836261 | 1 | 1509 | 1509 | None | 0.019 | 0.042 | 1.209 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_836261 | DW_836561 | 1 | 1577 | 1577 | None | 0.02 | 0.017 | 0.725 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_836561 | DW_831661 | 1 | 1502 | 1502 | None | 0.019 | 0.017 | 0.709 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_831661 | DW_832461 | 1 | 237 | 237 | None | 0.004 | 0.031 | 0.683 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_832461 | DW_511873 | 1 | 1830 | 1830 | None | 0.022 | 0.044 | 1.339 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_511873 | W_513009 | 1 | 2110 | 2110 | None | 0.026 | 0.044 | 1.405 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | W_513009 | DW_510645 | 1 | 1670 | 1670 | None | 0.02 | 0.031 | 1.02 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510645 | DW_511068 | 1 | 424 | 424 | None | 0.006 | 0.017 | 0.45 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_511068 | DW_510708 | 1 | 166 | 166 | None | 0.002 | 0.017 | 0.381 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_510708 | DW_510706 | 1 | 137 | 137 | None | 0.002 | 0.017 | 0.376 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_510706 | DW_505549 | 1 | 196 | 196 | None | 0.003 | 0.017 | 0.39 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_505549 | DW_505548 | 1 | 68 | 68 | None | 0.001 | 0.031 | 0.635 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505548 | DW_505547 | 1 | 84 | 84 | None | 0.002 | 0.031 | 0.641 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505547 | DW_505546 | 1 | 73 | 73 | None | 0.001 | 0.072 | 1.471 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505546 | DW_503971 | 1 | 75 | 75 | None | 0.001 | 0.031 | 0.639 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_503971 | DW_503278 | 1 | 127 | 127 | None | 0.002 | 0.031 | 0.65 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_503278 | DW_100521 | 1 | 173 | 173 | None | 0.003 | 0.044 | 0.94 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_100521 | DW_505554 | 1 | 202 | 202 | None | 0.003 | 0.031 | 0.671 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505554 | DW_505555 | 1 | 325 | 325 | None | 0.005 | 0.017 | 0.425 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_505555 | DW_505638 | 1 | 314 | 314 | None | 0.004 | 0.011 | 0.31 | WALKER |
| DSD ${ }_{1}^{\dagger} 04.0000$ | DW_505638 | DW_506295 | 1 | 311 | 311 | None | 0.004 | 0.058 | 1.254 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_506295 | DW_506296 | 1 | 333 | 333 | None | 0.005 | 0.031 | 0.705 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_506296 | DW_506297 | 1 | 313 | 313 | None | 0.004 | 0.031 | 0.699 | WALKER |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_506297 | DW_506632 | 1 | 416 | 416 | None | 0.006 | 0.017 | 0.446 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_506632 | DW_507087 | 1 | 1705 | 1705 | None | 0.021 | 0.017 | 0.756 | WALKER |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_507087 | DSD_DOCK | 1 | 1087 | 1087 | None | 0.014 | 0 | 0.279 | WALKER |
| RETAIL! 01.0000 | RET_DOCK | R_480077 | 1 | 644 | 644 | None | 0.009 | 0.006 | 0.288 | WALKER |
| RETAIL; 01.0000 | R_480077 | RW_510419 | 1 | 1316 | 1316 | None | 0.017 | 0.006 | 0.444 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;01.0000 | RW_510419 | RW_510421 | 1 | 198 | 198 | None | 0.003 | 0.006 | 0.174 | WALKER |
| RETAIL;01.0000 | RW_510421 | RW_510426 | 1 | 361 | 361 | None | 0.005 | 0.008 | 0.267 | WALKER |
| RETAIL! 01.0000 | RW_510426 | RW_511108 | 1 | 246 | 246 | None | 0.004 | 0.006 | 0.185 | WALKER |
| RETAIL!01.0000 | RW_511108 | RW_511309 | 1 | 288 | 288 | None | 0.004 | 0.006 | 0.194 | WALKER |
| RETAIL; 01.0000 | RW_511309 | RW_511312 | 1 | 186 | 186 | None | 0.003 | 0.006 | 0.171 | WALKER |
| RETAIL! 01.0000 | RW_511312 | RW_510141 | 1 | 640 | 640 | None | 0.009 | 0.006 | 0.281 | WALKER |
| RETAIL!01.0000 | RW_510141 | RW_510646 | 1 | 1764 | 1764 | None | 0.022 | 0.006 | 0.542 | WALKER |
| RETAIL; 01.0000 | RW_510646 | RW_510418 | 1 | 2612 | 2612 | None | 0.032 | 0.006 | 0.744 | WALKER |
| RETAIL!01.0000 | RW_510418 | R_508782 | 1 | 2127 | 2127 | None | 0.026 | 0.006 | 0.631 | WALKER |
| RETAIL; 01.0000 | R_508782 | R_508730 | 1 | 123 | 123 | None | 0.002 | 0.011 | 0.267 | WALKER |
| RETAIL! 01.0000 | R_508730 | R_508687 | 1 | 114 | 114 | None | 0.002 | 0.006 | 0.154 | WALKER |
| RETAIL! 01.0000 | R_508687 | R_666688 | 1 | 2068 | 2068 | None | 0.025 | 0.006 | 0.618 | WALKER |
| RETAIL! 01.0000 | R_666688 | R_479006 | 1 | 818 | 818 | None | 0.011 | 0.008 | 0.378 | WALKER |
| RETAIL! 01.0000 | R_479006 | R_503890 | 1 | 1113 | 1113 | None | 0.014 | 0.006 | 0.391 | WALKER |
| RETAIL! 01.0000 | R_503890 | R_506284 | 1 | 1223 | 1223 | None | 0.016 | 0.036 | 1.033 | WALKER |
| RETAIL; 01.0000 | R_506284 | R_513096 | 1 | 277 | 277 | None | 0.004 | 0.006 | 0.192 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;01.0000 | R_513096 | RET_DOCK | 1 | 938 | 938 | None | 0.012 | 0 | 0.245 | WALKER |
| RETAIL! 02.0000 | RET_DOCK | R_509197 | 1 | 736 | 736 | None | 0.01 | 0.006 | 0.309 | WALKER |
| RETAIL;02.0000 | R_509197 | R_509193 | 1 | 110 | 110 | None | 0.002 | 0.006 | 0.148 | WALKER |
| RETAIL!02.0000 | R_509193 | R_504503 | 1 | 86 | 86 | None | 0.002 | 0.006 | 0.145 | WALKER |
| RETAIL! 02.0000 | R_504503 | R_513020 | 1 | 767 | 767 | None | 0.01 | 0.006 | 0.316 | WALKER |
| RETAIL! 02.0000 | R_513020 | R_503791 | 1 | 253 | 253 | None | 0.004 | 0.006 | 0.186 | WALKER |
| RETAIL! 02.0000 | R_503791 | R_506284 | 1 | 1201 | 1201 | None | 0.015 | 0.017 | 0.639 | WALKER |
| RETAIL! 02.0000 | R_506284 | R_509206 | 1 | 1500 | 1500 | None | 0.019 | 0.006 | 0.486 | WALKER |
| RETAIL! 02.0000 | R_509206 | R_509209 | 1 | 184 | 184 | None | 0.003 | 0.006 | 0.17 | WALKER |
| RETAIL! 02.0000 | R_509209 | R_503760 | 1 | 697 | 697 | None | 0.009 | 0.006 | 0.3 | WALKER |
| RETAIL! ${ }_{\text {! }}$ 2.0000 | R_503760 | R_500078 | 1 | 445 | 445 | None | 0.006 | 0.006 | 0.236 | WALKER |
| RETAIL! 02.0000 | R_500078 | R_479006 | 1 | 282 | 282 | None | 0.004 | 0.006 | 0.193 | WALKER |
| RETAIL! 02.0000 | R_479006 | R_509204 | 1 | 869 | 869 | None | 0.011 | 0.006 | 0.334 | WALKER |
| RETAIL! 02.0000 | R_509204 | R_508730 | 1 | 2153 | 2153 | None | 0.026 | 0.011 | 0.748 | WALKER |
| RETAIL! ${ }_{\text {¢ }}{ }^{\text {2 }}$.0000 | R_508730 | RW_509594 | 1 | 1938 | 1938 | None | 0.024 | 0.006 | 0.587 | WALKER |
| RETAIL; ${ }^{\text {¢ }}$ 2.0000 | RW_509594 | RW_512988 | 1 | 3091 | 3091 | None | 0.037 | 0.006 | 0.854 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;02.0000 | RW_512988 | RW_510138 | 1 | 1352 | 1352 | None | 0.017 | 0.006 | 0.452 | WALKER |
| RETAIL! 02.0000 | RW_510138 | RW_510136 | 1 | 210 | 210 | None | 0.003 | 0.008 | 0.232 | WALKER |
| RETAIL! ${ }^{\text {¢ }}$ 2.0000 | RW_510136 | RW_511312 | 1 | 969 | 969 | None | 0.013 | 0.008 | 0.419 | WALKER |
| RETAIL!02.0000 | RW_511312 | RW_510936 | 1 | 356 | 356 | None | 0.005 | 0.008 | 0.266 | WALKER |
| RETAIL! 02.0000 | RW_510936 | RET_DOCK | 1 | 1973 | 1973 | None | 0.024 | 0 | 0.484 | WALKER |
| RETAIL! 03.0000 | RET_DOCK | RW_511309 | 1 | 2147 | 2147 | None | 0.026 | 0.006 | 0.636 | WALKER |
| RETAIL;03.0000 | RW_511309 | RW_511839 | 1 | 1430 | 1430 | None | 0.018 | 0.006 | 0.47 | WALKER |
| RETAIL! 03.0000 | RW_511839 | R_410608 | 1 | 2005 | 2005 | None | 0.025 | 0.006 | 0.603 | WALKER |
| RETAIL;03.0000 | R_410608 | R_473916 | 1 | 997 | 997 | None | 0.013 | 0.006 | 0.37 | WALKER |
| RETAIL; 03.0000 | R_473916 | R_507238 | 1 | 136 | 136 | None | 0.002 | 0.008 | 0.215 | WALKER |
| RETAIL! 03.0000 | R_507238 | R_508782 | 1 | 269 | 269 | None | 0.004 | 0.006 | 0.19 | WALKER |
| RETAIL! 03.0000 | R_508782 | R_666688 | 1 | 2145 | 2145 | None | 0.026 | 0.006 | 0.635 | WALKER |
| RETAIL! 03.0000 | R_666688 | R_479006 | 1 | 818 | 818 | None | 0.011 | 0.011 | 0.434 | WALKER |
| RETAIL! 03.0000 | R_479006 | R_509198 | 1 | 346 | 346 | None | 0.005 | 0.006 | 0.213 | WALKER |
| RETAIL! 03.0000 | R_509198 | R_503791 | 1 | 1233 | 1233 | None | 0.016 | 0.006 | 0.424 | WALKER |
| RETAIL; 03.0000 | R_503791 | R_506284 | 1 | 1201 | 1201 | None | 0.015 | 0.014 | 0.584 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;03.0000 | R_506284 | R_509192 | 1 | 931 | 931 | None | 0.012 | 0.006 | 0.354 | WALKER |
| RETAIL;03.0000 | R_509192 | RET_DOCK | 1 | 544 | 544 | None | 0.007 | 0 | 0.143 | WALKER |
| RETAIL! 04.0000 | RET_DOCK | R_504503 | 1 | 712 | 712 | None | 0.01 | 0.006 | 0.304 | WALKER |
| RETAIL;04.0000 | R_504503 | R_513020 | 1 | 767 | 767 | None | 0.01 | 0.006 | 0.316 | WALKER |
| RETAIL; 04.0000 | R_513020 | R_513096 | 1 | 993 | 993 | None | 0.013 | 0.008 | 0.424 | WALKER |
| RETAIL! 04.0000 | R_513096 | R_506284 | 1 | 277 | 277 | None | 0.004 | 0.014 | 0.359 | WALKER |
| RETAIL;04.0000 | R_506284 | R_503760 | 1 | 1289 | 1289 | None | 0.016 | 0.006 | 0.437 | WALKER |
| RETAIL;04.0000 | R_503760 | R_506562 | 1 | 744 | 744 | None | 0.009 | 0.006 | 0.3 | WALKER |
| RETAIL;04.0000 | R_506562 | R_508730 | 1 | 251 | 251 | None | 0.004 | 0.006 | 0.186 | WALKER |
| RETAIL;04.0000 | R_508730 | R_508782 | 1 | 123 | 123 | None | 0.002 | 0.006 | 0.156 | WALKER |
| RETAIL! 04.0000 | R_508782 | RW_510835 | 1 | 2730 | 2730 | None | 0.033 | 0.006 | 0.771 | WALKER |
| RETAIL! 04.0000 | RW_510835 | RW_512986 | 1 | 2703 | 2703 | None | 0.033 | 0.006 | 0.765 | WALKER |
| RETAIL! 04.0000 | RW_512986 | RW_511312 | 1 | 1710 | 1710 | None | 0.021 | 0.008 | 0.59 | WALKER |
| RETAIL! 04.0000 | RW_511312 | RW_511309 | 1 | 186 | 186 | None | 0.003 | 0.006 | 0.171 | WALKER |
| RETAIL; ${ }^{\text {¢ }}$ - 4.0000 | RW_511309 | RW_510425 | 1 | 430 | 430 | None | 0.006 | 0.006 | 0.227 | WALKER |
| RETAIL; 04.0000 | RW_510425 | RW_510422 | 1 | 264 | 264 | None | 0.004 | 0.006 | 0.187 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User <br> Dist/Trip <br> (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL;04.0000 | RW_510422 | RW_512728 | 1 | 865 | 865 | None | 0.011 | 0.006 | 0.339 | WALKER |
| RETAIL!04.0000 | RW_512728 | RW_513022 | 1 | 887 | 887 | None | 0.012 | 0.008 | 0.398 | WALKER |
| RETAIL;04.0000 | RW_513022 | RW_510142 | 1 | 1042 | 1042 | None | 0.013 | 0.006 | 0.379 | WALKER |
| RETAIL;04.0000 | RW_510142 | RET_DOCK | 1 | 1101 | 1101 | None | 0.014 | 0 | 0.283 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | WHL_DOCK | W_509148 | 1 | 523 | 523 | None | 0.007 | 0.004 | 0.229 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | W_509148 | W_501684 | 1 | 922 | 922 | None | 0.012 | 0.004 | 0.325 | WALKER |
| WHOLE ${ }_{1}$ 01.0000 | W_501684 | W_501919 | 1 | 181 | 181 | None | 0.003 | 0.004 | 0.142 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | W_501919 | W_509145 | 1 | 206 | 206 | None | 0.003 | 0.004 | 0.148 | WALKER |
| WHOLE ${ }_{1}$ 01.0000 | W_509145 | W_501961 | 1 | 1354 | 1354 | None | 0.017 | 0.004 | 0.425 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | W_501961 | W_508737 | 1 | 1637 | 1637 | None | 0.02 | 0.004 | 0.49 | WALKER |
| WHOLE! 01.0000 | W_508737 | DW_510139 | 1 | 2165 | 2165 | None | 0.026 | 0.004 | 0.612 | WALKER |
| WHOLE ${ }_{1} 101.0000$ | DW_510139 | W_503106 | 1 | 1283 | 1283 | None | 0.016 | 0.004 | 0.408 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | W_503106 | W_509146 | 1 | 1258 | 1258 | None | 0.016 | 0.004 | 0.402 | WALKER |
| WHOLE ${ }^{\prime} 01.0000$ | W_509146 | W_511870 | 1 | 1004 | 1004 | None | 0.013 | 0.004 | 0.342 | WALKER |
| WHOLE ${ }^{\prime} 01.0000$ | W_511870 | W_500252 | 1 | 198 | 198 | None | 0.003 | 0.004 | 0.144 | WALKER |
| WHOLE ${ }_{\text {! }}$ 01.0000 | W_500252 | WHL_DOCK | 1 | 577 | 577 | None | 0.008 | 0 | 0.158 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }_{1}$ 02.0000 | WHL_DOCK | W_511355 | 1 | 553 | 553 | None | 0.008 | 0.004 | 0.234 | WALKER |
| WHOLE! 02.0000 | W_511355 | W_512802 | 1 | 403 | 403 | None | 0.005 | 0.004 | 0.192 | WALKER |
| WHOLE ${ }_{\text {! }}$ 02.0000 | W_512802 | W_509146 | 1 | 1163 | 1163 | None | 0.015 | 0.004 | 0.379 | WALKER |
| WHOLE ${ }_{1}$ 02.0000 | W_509146 | W_509145 | 1 | 295 | 295 | None | 0.004 | 0.004 | 0.168 | WALKER |
| WHOLE! ${ }_{\text {! }}$ 22.0000 | W_509145 | W_503106 | 1 | 1377 | 1377 | None | 0.017 | 0.004 | 0.43 | WALKER |
| WHOLE ${ }_{1}^{\prime} 02.0000$ | W_503106 | DW_510136 | 1 | 1360 | 1360 | None | 0.017 | 0.004 | 0.426 | WALKER |
| WHOLE! 02.0000 | DW_510136 | W_477080 | 1 | 583 | 583 | None | 0.008 | 0.004 | 0.241 | WALKER |
| WHOLE ${ }_{\text {! }}$ 02.0000 | W_477080 | W_501627 | 1 | 1629 | 1629 | None | 0.02 | 0.004 | 0.483 | WALKER |
| WHOLE ${ }_{1}$ 02.0000 | W_501627 | W_501552 | 1 | 273 | 273 | None | 0.004 | 0.004 | 0.163 | WALKER |
| WHOLE ${ }_{\text {! }}$ 02.0000 | W_501552 | W_501493 | 1 | 253 | 253 | None | 0.004 | 0.004 | 0.157 | WALKER |
| WHOLE! ${ }_{\text {! }}$ 22.0000 | W_501493 | W_507208 | 1 | 168 | 168 | None | 0.003 | 0.004 | 0.136 | WALKER |
| WHOLE ${ }_{1}^{\prime} 02.0000$ | W_507208 | W_509148 | 1 | 826 | 826 | None | 0.011 | 0.004 | 0.301 | WALKER |
| WHOLE ${ }_{1}^{\prime} 02.0000$ | W_509148 | W_509147 | 1 | 193 | 193 | None | 0.003 | 0.004 | 0.145 | WALKER |
| WHOLE! 02.0000 | W_509147 | WHL_DOCK | 1 | 494 | 494 | None | 0.007 | 0 | 0.139 | WALKER |
| WHOLE! 03.0000 | WHL_DOCK | W_500252 | 1 | 577 | 577 | None | 0.008 | 0.004 | 0.242 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | W_500252 | W_503103 | 1 | 1256 | 1256 | None | 0.016 | 0.004 | 0.402 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE! 03.0000 | W_503103 | W_10016 | 1 | 839 | 839 | None | 0.011 | 0.004 | 0.3 | WALKER |
| WHOLE! 03.0000 | W_10016 | W_10004 | 1 | 311 | 311 | None | 0.004 | 0.004 | 0.171 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | W_10004 | W_10005 | 1 | 159 | 159 | None | 0.003 | 0.004 | 0.134 | WALKER |
| WHOLE ${ }_{1}$ 03.0000 | W_10005 | W_10008 | 1 | 424 | 424 | None | 0.006 | 0.004 | 0.201 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | W_10008 | W_10003 | 1 | 179 | 179 | None | 0.003 | 0.004 | 0.139 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | W_10003 | W_10001 | 1 | 196 | 196 | None | 0.003 | 0.004 | 0.145 | WALKER |
| WHOLE ${ }_{1}$ 03.0000 | W_10001 | RW_510198 | 1 | 2099 | 2099 | None | 0.026 | 0.004 | 0.597 | WALKER |
| WHOLE ${ }_{\text {! }}$ 03.0000 | RW_510198 | WHL_DOCK | 1 | 1628 | 1628 | None | 0.02 | 0 | 0.402 | WALKER |
| WHOLE ${ }_{1}$ 04.0000 | WHL_DOCK | W_511043 | 1 | 409 | 409 | None | 0.005 | 0.004 | 0.19 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_511043 | W_500252 | 1 | 804 | 804 | None | 0.011 | 0.004 | 0.295 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_500252 | W_501920 | 1 | 360 | 360 | None | 0.005 | 0.004 | 0.183 | WALKER |
| WHOLE ${ }_{1}$ 04.0000 | W_501920 | W_501919 | 1 | 1217 | 1217 | None | 0.015 | 0.004 | 0.393 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_501919 | W_508730 | 1 | 1596 | 1596 | None | 0.02 | 0.004 | 0.481 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_508730 | W_477265 | 1 | 1118 | 1118 | None | 0.014 | 0.004 | 0.37 | WALKER |
| WHOLE ${ }^{\prime} 04.0000$ | W_477265 | W_476422 | 1 | 199 | 199 | None | 0.003 | 0.004 | 0.143 | WALKER |
| WHOLE ${ }_{\text {! }}$ (04.0000 | W_476422 | W_500030 | 1 | 264 | 264 | None | 0.004 | 0.004 | 0.16 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }_{1}$ 04.0000 | W_500030 | DW_510139 | 1 | 1135 | 1135 | None | 0.014 | 0.004 | 0.372 | WALKER |
| WHOLE ${ }_{\text {! }}$ (04.0000 | DW_510139 | DW_510140 | 1 | 1257 | 1257 | None | 0.016 | 0.004 | 0.402 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | DW_510140 | W_508732 | 1 | 2336 | 2336 | None | 0.028 | 0.004 | 0.652 | WALKER |
| WHOLE ${ }_{1}$ 04.0000 | W_508732 | W_501961 | 1 | 1307 | 1307 | None | 0.017 | 0.004 | 0.414 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_501961 | RW_512986 | 1 | 1526 | 1526 | None | 0.019 | 0.004 | 0.464 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | RW_512986 | RW_511312 | 1 | 1710 | 1710 | None | 0.021 | 0.004 | 0.507 | WALKER |
| WHOLE ${ }_{1}$ 04.0000 | RW_511312 | W_509671 | 1 | 1796 | 1796 | None | 0.022 | 0.004 | 0.527 | WALKER |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_509671 | WHL_DOCK | 1 | 624 | 624 | None | 0.008 | 0 | 0.169 | WALKER |
| WHOLE ${ }_{1}$ 05.0000 | WHL_DOCK | W_503565 | 1 | 386 | 386 | None | 0.005 | 0.004 | 0.185 | WALKER |
| WHOLE ${ }_{\text {! }}$ 05.0000 | W_503565 | W_504468 | 1 | 176 | 176 | None | 0.003 | 0.004 | 0.139 | WALKER |
| WHOLE! 05.0000 | W_504468 | W_501919 | 1 | 328 | 328 | None | 0.005 | 0.004 | 0.176 | WALKER |
| WHOLE ${ }_{1}$ 05.0000 | W_501919 | W_511042 | 1 | 1353 | 1353 | None | 0.017 | 0.004 | 0.423 | WALKER |
| WHOLE ${ }_{\text {! }}$ 05.0000 | W_511042 | W_479006 | 1 | 1123 | 1123 | None | 0.014 | 0.004 | 0.371 | WALKER |
| WHOLE ${ }^{\prime} 05.0000$ | W_479006 | W_508202 | 1 | 1131 | 1131 | None | 0.014 | 0.004 | 0.362 | WALKER |
| WHOLE! 05.0000 | W_508202 | W_501961 | 1 | 1581 | 1581 | None | 0.02 | 0.004 | 0.477 | WALKER |
| WHOLE ${ }_{\text {! }}$ 05.0000 | W_501961 | W_508730 | 1 | 1106 | 1106 | None | 0.014 | 0.004 | 0.367 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }_{1} 05.0000$ | W_508730 | RW_511312 | 1 | 1290 | 1290 | None | 0.016 | 0.004 | 0.41 | WALKER |
| WHOLE! 05.0000 | RW_511312 | RW_511309 | 1 | 186 | 186 | None | 0.003 | 0.004 | 0.143 | WALKER |
| WHOLE ${ }_{\text {! }}$ 05.0000 | RW_511309 | W_501493 | 1 | 1603 | 1603 | None | 0.02 | 0.004 | 0.482 | WALKER |
| WHOLE ${ }_{1}$ 05.0000 | W_501493 | W_509671 | 1 | 929 | 929 | None | 0.012 | 0.004 | 0.326 | WALKER |
| WHOLE ${ }_{1} 05.0000$ | W_509671 | W_506284 | 1 | 1067 | 1067 | None | 0.014 | 0.004 | 0.358 | WALKER |
| WHOLE ${ }_{\text {! }}$ 05.0000 | W_506284 | WHL_DOCK | 1 | 625 | 625 | None | 0.008 | 0 | 0.169 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | WHL_DOCK | W_503565 | 1 | 386 | 386 | None | 0.005 | 0.004 | 0.185 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_503565 | W_511043 | 1 | 151 | 151 | None | 0.002 | 0.004 | 0.131 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | W_511043 | W_500228 | 1 | 766 | 766 | None | 0.01 | 0.004 | 0.287 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_500228 | W_503106 | 1 | 504 | 504 | None | 0.007 | 0.004 | 0.215 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_503106 | W_501919 | 1 | 1309 | 1309 | None | 0.017 | 0.004 | 0.414 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | W_501919 | W_511042 | 1 | 1353 | 1353 | None | 0.017 | 0.004 | 0.423 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_511042 | W_503760 | 1 | 187 | 187 | None | 0.003 | 0.004 | 0.14 | WALKER |
| WHOLE; 06.0000 | W_503760 | W_503794 | 1 | 194 | 194 | None | 0.003 | 0.004 | 0.143 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | W_503794 | W_501552 | 1 | 1302 | 1302 | None | 0.016 | 0.004 | 0.412 | WALKER |
| WHOLE ${ }_{\text {! }}$ (06.0000 | W_501552 | W_510081 | 1 | 1043 | 1043 | None | 0.013 | 0.004 | 0.353 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total <br> Travel <br> Time <br> (Hrs) | Total <br> L/UL <br> Time <br> (Hrs) | Total \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }_{1} 06.0000$ | W_510081 | W_507208 | 1 | 958 | 958 | None | 0.012 | 0.004 | 0.331 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_507208 | W_503793 | 1 | 340 | 340 | None | 0.005 | 0.004 | 0.179 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_503793 | RW_511309 | 1 | 1521 | 1521 | None | 0.019 | 0.004 | 0.463 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | RW_511309 | W_508730 | 1 | 1330 | 1330 | None | 0.017 | 0.004 | 0.419 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_508730 | W_509149 | 1 | 1237 | 1237 | None | 0.016 | 0.004 | 0.396 | WALKER |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_509149 | W_500037 | 1 | 172 | 172 | None | 0.003 | 0.004 | 0.137 | WALKER |
| WHOLE ${ }_{1}$ 06.0000 | W_500037 | WHL_DOCK | 1 | 1013 | 1013 | None | 0.012 | 0 | 0.247 | WALKER |
| WHOLE ${ }_{\text {! }}$ 07.0000 | WHL_DOCK | W_508686 | 1 | 402 | 402 | None | 0.005 | 0.004 | 0.19 | WALKER |
| WHOLE ${ }_{1}$ 07.0000 | W_508686 | W_504468 | 1 | 202 | 202 | None | 0.003 | 0.004 | 0.145 | WALKER |
| WHOLE ${ }_{\text {! }}$ 07.0000 | W_504468 | W_503103 | 1 | 1113 | 1113 | None | 0.014 | 0.004 | 0.369 | WALKER |
| WHOLE! 07.0000 | W_503103 | W_507208 | 1 | 1164 | 1164 | None | 0.015 | 0.004 | 0.379 | WALKER |
| WHOLE ${ }_{1}$ 07.0000 | W_507208 | W_506562 | 1 | 149 | 149 | None | 0.002 | 0.004 | 0.132 | WALKER |
| WHOLE ${ }_{\text {! }}$ 07.0000 | W_506562 | W_506245 | 1 | 205 | 205 | None | 0.003 | 0.004 | 0.146 | WALKER |
| WHOLE! 07.0000 | W_506245 | W_509671 | 1 | 849 | 849 | None | 0.011 | 0.004 | 0.308 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_509671 | W_505308 | 1 | 250 | 250 | None | 0.004 | 0.004 | 0.158 | WALKER |
| WHOLE! 07.0000 | W_505308 | W_508709 | 1 | 183 | 183 | None | 0.003 | 0.004 | 0.142 | WALKER |

Table 59 Continued

| Aggregate Name | From | To | Freq | Calc <br> Dist/Trip <br> (Ft) | Eff. <br> Dist/Trip <br> (Ft) | User Dist/Trip (Ft) | Total Travel Time (Hrs) | Total L/UL Time (Hrs) | Total <br> \$ | Method Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 07.0000$ | W_508709 | W_501919 | 1 | 1195 | 1195 | None | 0.015 | 0.004 | 0.388 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_501919 | W_503893 | 1 | 1393 | 1393 | None | 0.018 | 0.004 | 0.434 | WALKER |
| WHOLE ${ }_{1}^{\prime} 07.0000$ | W_503893 | W_477265 | 1 | 1117 | 1117 | None | 0.014 | 0.004 | 0.37 | WALKER |
| WHOLE ${ }^{1} 07.0000$ | W_477265 | W_508730 | 1 | 1118 | 1118 | None | 0.014 | 0.004 | 0.37 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_508730 | W_508687 | 1 | 271 | 271 | None | 0.004 | 0.004 | 0.163 | WALKER |
| WHOLE ${ }_{1}^{1} 07.0000$ | W_508687 | RW_509554 | 1 | 1215 | 1215 | None | 0.015 | 0.004 | 0.392 | WALKER |
| WHOLE ${ }_{1}^{\prime} 07.0000$ | RW_509554 | RW_511312 | 1 | 1168 | 1168 | None | 0.015 | 0.004 | 0.381 | WALKER |
| WHOLE ${ }_{1}^{\prime} 07.0000$ | RW_511312 | RW_511542 | 1 | 381 | 381 | None | 0.005 | 0.004 | 0.188 | WALKER |
| WHOLE ${ }_{1}^{\prime} 07.0000$ | RW_511542 | RW_510130 | 1 | 1411 | 1411 | None | 0.018 | 0.004 | 0.438 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | RW_510130 | DW_510139 | 1 | 2422 | 2422 | None | 0.029 | 0.004 | 0.672 | WALKER |
| WHOLE ${ }_{1}^{\prime} 07.0000$ | DW_510139 | DW_510136 | 1 | 153 | 153 | None | 0.003 | 0.004 | 0.135 | WALKER |
| WHOLE ${ }_{1}^{1} 07.0000$ | DW_510136 | W_506284 | 1 | 1614 | 1614 | None | 0.02 | 0.004 | 0.483 | WALKER |
| WHOLE ${ }^{\prime} 07.0000$ | W_506284 | WHL_DOCK | 1 | 625 | 625 | None | 0.008 | 0 | 0.169 | WALKER |

Table 60. Advanced Report Aggregated by Product

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL TIME SECONDS | TOTAL <br> TIME <br> SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 01.0000$ | DSD_DOCK | DW_506952 | 1 | 78.50 | 44.25 | 310 | 354.25 | 1.97 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_506952 | DW_506953 | 1 | 29.58 | 17.79 | 310 | 327.79 | 1.82 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_506953 | DW_507087 | 1 | 28.17 | 17.08 | 60 | 77.08 | 0.43 |
| DSD ${ }_{1} 01.0000$ | DW_507087 | DW_509042 | 1 | 65.08 | 37.54 | 160 | 197.54 | 1.1 |
| DSD ${ }_{1} 01.0000$ | DW_509042 | DW_509046 | 1 | 11.75 | 8.88 | 60 | 68.88 | 0.38 |
| DSD ${ }_{1}^{101.0000}$ | DW_509046 | DW_509625 | 1 | 21.17 | 13.58 | 60 | 73.58 | 0.41 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_509625 | DW_510203 | 1 | 109.08 | 59.54 | 60 | 119.54 | 0.66 |
| DSD ${ }_{1} 01.0000$ | DW_510203 | DW_510645 | 1 | 80.92 | 44.46 | 60 | 104.46 | 0.58 |
| DSD ${ }_{1}^{101.0000}$ | DW_510645 | DW_831261 | 1 | 60.92 | 34.46 | 60 | 94.46 | 0.52 |
| DSD ${ }_{1} 01.0000$ | DW_831261 | DW_835261 | 1 | 112.50 | 61.25 | 210 | 271.25 | 1.51 |
| DSDi01.0000 | DW_835261 | DW_836261 | 1 | 125.75 | 67.58 | 160 | 227.58 | 1.26 |
| DSD ${ }_{1} 01.0000$ | DW_836261 | DW_836561 | 1 | 131.42 | 70.41 | 60 | 130.41 | 0.72 |
| DSDi01.0000 | DW_836561 | DW_834161 | 1 | 158.25 | 84.13 | 160 | 244.13 | 1.36 |
| DSDi01.0000 | DW_834161 | DW_832461 | 1 | 127.50 | 68.49 | 60 | 128.49 | 0.71 |
| DSD'01.0000 | DW_832461 | DW_510708 | 1 | 97.50 | 52.73 | 60 | 112.73 | 0.63 |
| DSD ${ }_{1}$ 01.0000 | DW_510708 | DW_505550 | 1 | 20.92 | 12.45 | 60 | 72.45 | 0.4 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 01.0000$ | DW_505550 | DW_505549 | 1 | 6.50 | 5.24 | 60 | 65.24 | 0.36 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_505549 | DW_505547 | 1 | 11.00 | 7.21 | 110 | 117.21 | 0.65 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_505547 | DW_505546 | 1 | 6.08 | 4.71 | 160 | 164.71 | 0.92 |
| DSD ${ }_{1} 01.0000$ | DW_505546 | DW_503971 | 1 | 6.25 | 5.09 | 60 | 65.09 | 0.36 |
| DSD ${ }_{1} 01.0000$ | DW_503971 | DW_503279 | 1 | 7.33 | 5.34 | 110 | 115.34 | 0.64 |
| DSD ${ }_{1} 01.0000$ | DW_503279 | DW_100621 | 1 | 14.50 | 9.18 | 260 | 269.18 | 1.5 |
| DSD ${ }_{1} 01.0000$ | DW_100621 | DW_100411 | 1 | 10.83 | 7.35 | 110 | 117.35 | 0.65 |
| DSD ${ }_{1} 01.0000$ | DW_100411 | DW_505551 | 1 | 28.92 | 17.92 | 60 | 77.92 | 0.43 |
| DSD ${ }_{1}^{\prime} 01.0000$ | DW_505551 | DW_505554 | 1 | 46.25 | 27.13 | 160 | 187.13 | 1.04 |
| DSD ${ }_{1}{ }^{\text {01.0000 }}$ | DW_505554 | DW_506630 | 1 | 45.50 | 25.75 | 60 | 85.75 | 0.48 |
|  | DW_506630 | DW_506632 | 1 | 30.83 | 18.42 | 60 | 78.42 | 0.44 |
| DSD ${ }_{1}{ }^{\text {0 }}$ ( 0000 | DW_506632 | DSD_DOCK | 1 | 112.00 | 61 | 0 | 61 | 0.34 |
| SUB TOTAL |  |  | 28 | 1,585.00 | 888.96 | 3,120.00 | 4,008.96 | 22.27 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 02.0000$ | DSD_DOCK | DW_506953 | 1 | 85.25 | 47.63 | 90 | 137.63 | 0.76 |
| DSDi02.0000 | DW_506953 | DW_505554 | 1 | 105.42 | 57.71 | 50 | 107.71 | 0.6 |
| DSD ${ }_{1} 02.0000$ | DW_505554 | DW_505555 | 1 | 27.08 | 16.54 | 50 | 66.54 | 0.37 |
| DSD ${ }_{1}$ 02.0000 | DW_505555 | DW_506295 | 1 | 29.58 | 17.53 | 70 | 87.53 | 0.49 |
| DSD102.0000 | DW_506295 | DW_506296 | 1 | 27.75 | 16.88 | 40 | 56.88 | 0.32 |
| DSD ${ }_{1} 02.0000$ | DW_506296 | DW_506297 | 1 | 26.08 | 15.75 | 30 | 45.75 | 0.25 |
| DSD ${ }_{1} 02.0000$ | DW_506297 | DW_506630 | 1 | 26.33 | 16.17 | 50 | 66.17 | 0.37 |
| DSD ${ }_{1} 02.0000$ | DW_506630 | DW_505549 | 1 | 20.67 | 12.58 | 90 | 102.58 | 0.57 |
| DSD ${ }_{1} 02.0000$ | DW_505549 | DW_505548 | 1 | 5.67 | 4.32 | 50 | 54.32 | 0.3 |
| DSD ${ }_{1} 02.0000$ | DW_505548 | DW_505547 | 1 | 7.00 | 5.46 | 50 | 55.46 | 0.31 |
| DSD ${ }_{1} 02.0000$ | DW_505547 | DW_505546 | 1 | 6.08 | 4.71 | 70 | 74.71 | 0.42 |
| DSD ${ }_{1}$ 02.0000 | DW_505546 | DW_503971 | 1 | 6.25 | 5.09 | 50 | 55.09 | 0.31 |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DW_503971 | DW_503278 | 1 | 10.58 | 7 | 70 | 77 | 0.43 |
| DSD ${ }_{1} 02.0000$ | DW_503278 | DW_100621 | 1 | 10.42 | 7.17 | 40 | 47.17 | 0.26 |
| DSD ${ }_{1} 02.0000$ | DW_100621 | DW_100521 | 1 | 7.17 | 5.48 | 50 | 55.48 | 0.31 |
| DSD ${ }_{1} 02.0000$ | DW_100521 | DW_510425 | 1 | 65.67 | 35.26 | 70 | 105.26 | 0.58 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD102.0000 | DW_510425 | DW_511068 | 1 | 30.08 | 17.54 | 50 | 67.54 | 0.38 |
| DSDi02.0000 | DW_511068 | DW_510645 | 1 | 35.33 | 20.91 | 50 | 70.91 | 0.39 |
| DSD ${ }_{1} 02.0000$ | DW_510645 | DW_510644 | 1 | 45.33 | 26.67 | 30 | 56.67 | 0.31 |
| DSD ${ }_{1}$ 02.0000 | DW_510644 | DW_510416 | 1 | 102.17 | 56.08 | 50 | 106.08 | 0.59 |
| DSD102.0000 | DW_510416 | DW_510417 | 1 | 26.17 | 16.08 | 50 | 66.08 | 0.37 |
| DSD ${ }_{1} 02.0000$ | DW_510417 | DW_510419 | 1 | 28.33 | 17.17 | 70 | 87.17 | 0.48 |
| DSD ${ }_{1} 02.0000$ | DW_510419 | DW_512486 | 1 | 71.33 | 40.67 | 70 | 110.67 | 0.61 |
| DSD ${ }_{1} 02.0000$ | DW_512486 | DW_512487 | 1 | 76.08 | 43.04 | 50 | 93.04 | 0.52 |
| DSD ${ }_{1}^{102.0000}$ | DW_512487 | DW_512485 | 1 | 76.33 | 43.17 | 70 | 113.17 | 0.63 |
| DSD ${ }_{1} 02.0000$ | DW_512485 | DW_831261 | 1 | 24.83 | 15.42 | 40 | 55.42 | 0.31 |
| DSD ${ }_{1}{ }^{0} 2.0000$ | DW_831261 | DW_839061 | 1 | 19.08 | 12.54 | 50 | 62.54 | 0.35 |
| DSD ${ }_{1}$ 02.0000 | DW_839061 | DW_836261 | 1 | 22.83 | 13.86 | 50 | 63.86 | 0.35 |
| DSD ${ }_{1} 02.0000$ | DW_836261 | DW_831661 | 1 | 17.42 | 11.03 | 70 | 81.03 | 0.45 |
| DSD ${ }_{1}^{102.0000}$ | DW_831661 | DW_834161 | 1 | 125.08 | 67.54 | 40 | 107.54 | 0.6 |
| DSD ${ }_{1} 02.0000$ | DW_834161 | DW_513504 | 1 | 155.00 | 82.5 | 40 | 122.5 | 0.68 |
| DSD ${ }_{\mathbf{1}} 02.0000$ | DW_513504 | DW_510139 | 1 | 102.83 | 54.42 | 20 | 74.42 | 0.41 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME <br> SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}{ }^{\text {02 }}$.0000 | DW_510139 | DW_510136 | 1 | 12.75 | 9.38 | 20 | 29.38 | 0.16 |
|  | DW_510136 | DW_510135 | 1 | 10.67 | 8.33 | 20 | 28.33 | 0.16 |
| DSD; ${ }^{\text {¢ }}$ 2.0000 | DW_510135 | DW_509871 | 1 | 22.17 | 14.08 | 50 | 64.08 | 0.36 |
| DSD ${ }_{1}^{\dagger} 02.0000$ | DW_509871 | DW_509752 | 1 | 24.17 | 15.08 | 50 | 65.08 | 0.36 |
| DSD ${ }_{1}^{1} 02.0000$ | DW_509752 | DW_508939 | 1 | 32.08 | 19.04 | 30 | 49.04 | 0.27 |
| DSDi02.0000 | DW_508939 | DSD_DOCK | 1 | 78.25 | 44.13 | 0 | 44.13 | 0.25 |
| SUB TOTAL |  |  | 38 | 1,605.31 | 923.96 | 1,890.00 | 2,813.96 | 15.64 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD103.0000 | DSD_DOCK | DW_506950 | 1 | 49.25 | 28.63 | 30 | 58.63 | 0.33 |
| DSD ${ }^{\text {¢ }} 03.0000$ | DW_506950 | DW_506951 | 1 | 18.25 | 11.45 | 30 | 41.45 | 0.23 |
| DSD ${ }_{1} 03.0000$ | DW_506951 | DW_506952 | 1 | 47.17 | 27.58 | 30 | 57.58 | 0.32 |
| DSD ${ }_{1} 03.0000$ | DW_506952 | DW_506953 | 1 | 29.58 | 17.79 | 30 | 47.79 | 0.27 |
| DSD ${ }_{1} 03.0000$ | DW_506953 | DW_509046 | 1 | 65.17 | 37.58 | 40 | 77.58 | 0.43 |
| DSD ${ }_{1} 03.0000$ | DW_509046 | DW_509625 | 1 | 21.17 | 13.58 | 20 | 33.58 | 0.19 |
| DSD ${ }_{1} 03.0000$ | DW_509625 | DW_509752 | 1 | 11.42 | 8.71 | 20 | 28.71 | 0.16 |
| DSD ${ }_{1} 03.0000$ | DW_509752 | DW_510416 | 1 | 99.25 | 54.63 | 150 | 204.63 | 1.14 |
| DSD ${ }_{1}^{103.0000}$ | DW_510416 | DW_510419 | 1 | 31.67 | 18.83 | 60 | 78.83 | 0.44 |
| DSD ${ }_{1} 03.0000$ | DW_510419 | DW_510421 | 1 | 39.83 | 23.92 | 50 | 73.92 | 0.41 |
| DSD ${ }_{1} 03.0000$ | DW_510421 | DW_512486 | 1 | 42.00 | 25 | 30 | 55 | 0.31 |
| DSD ${ }_{1} 03.0000$ | DW_512486 | DW_512485 | 1 | 21.92 | 13.96 | 30 | 43.96 | 0.24 |
| DSD ${ }_{1} 03.0000$ | DW_512485 | DW_831661 | 1 | 31.83 | 18.92 | 20 | 38.92 | 0.22 |
| DSD ${ }_{1}^{103.0000}$ | DW_831661 | DW_831961 | 1 | 15.58 | 10.5 | 20 | 30.5 | 0.17 |
| DSD ${ }_{1} 03.0000$ | DW_831961 | DW_834161 | 1 | 129.50 | 69.75 | 60 | 129.75 | 0.72 |
| DSD ${ }_{\mathbf{1}} 03.0000$ | DW_834161 | DW_836261 | 1 | 131.33 | 70.37 | 80 | 150.37 | 0.84 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | $\begin{gathered} \text { COST } \\ \$ \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD103.0000 | DW_836261 | DW_835261 | 1 | 125.75 | 67.58 | 50 | 117.58 | 0.65 |
| DSD ${ }_{1} 03.0000$ | DW_835261 | DW_510645 | 1 | 71.25 | 39.63 | 20 | 59.63 | 0.33 |
| DSD ${ }_{1}$ 03.0000 | DW_510645 | DW_510426 | 1 | 57.25 | 32.63 | 90 | 122.63 | 0.68 |
| DSD ${ }_{1} 03.0000$ | DW_510426 | DW_510422 | 1 | 36.00 | 20.75 | 30 | 50.75 | 0.28 |
| DSD ${ }^{\text {¢ }} 03.0000$ | DW_510422 | DW_506632 | 1 | 34.17 | 19.83 | 20 | 39.83 | 0.22 |
| DSD ${ }_{1} 03.0000$ | DW_506632 | DW_506631 | 1 | 26.25 | 16.13 | 20 | 36.13 | 0.2 |
| DSD ${ }_{1} 03.0000$ | DW_506631 | DW_506630 | 1 | 28.08 | 16.79 | 20 | 36.79 | 0.2 |
| DSD ${ }_{1} 03.0000$ | DW_506630 | DW_505549 | 1 | 20.67 | 12.58 | 30 | 42.58 | 0.24 |
| DSD ${ }_{1} 03.0000$ | DW_505549 | DW_505546 | 1 | 13.92 | 8.4 | 50 | 58.4 | 0.32 |
| DSD ${ }_{1} 03.0000$ | DW_505546 | DW_503279 | 1 | 10.42 | 6.91 | 20 | 26.91 | 0.15 |
| DSD ${ }_{1} 03.0000$ | DW_503279 | DW_100621 | 1 | 14.50 | 9.18 | 60 | 69.18 | 0.38 |
| DSD ${ }_{1} 03.0000$ | DW_100621 | DW_100521 | 1 | 7.17 | 5.48 | 30 | 35.48 | 0.2 |
| DSD ${ }_{1} 03.0000$ | DW_100521 | DW_100411 | 1 | 7.50 | 5.38 | 20 | 25.38 | 0.14 |
| DSD ${ }_{1}^{103.0000}$ | DW_100411 | DW_505553 | 1 | 16.50 | 10.72 | 20 | 30.72 | 0.17 |
| DSD ${ }_{1} 03.0000$ | DW_505553 | DW_505554 | 1 | 26.50 | 15.99 | 30 | 45.99 | 0.26 |
| DSD ${ }_{1} 03.0000$ | DW_505554 | DW_506295 | 1 | 34.17 | 19.82 | 40 | 59.82 | 0.33 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP <br> DISTANCE <br> FEET | TRAVEL <br> TIME <br> SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL <br> TIME <br> SECONDS | COST <br> \$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DSD03.0000 | DW_506295 | DSD_DOCK | 1 | 92.33 | 50.91 | 0 | 50.91 | 0.28 |
| SUB TOTAL |  | $\mathbf{3 3}$ | $\mathbf{1 , 4 0 7 . 3 5}$ | $\mathbf{8 0 9 . 9 1}$ | $\mathbf{1 , 2 5 0 . 0 0}$ | $\mathbf{2 , 0 5 9 . 9 1}$ | $\mathbf{1 1 . 4 5}$ |  |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1}$ 04.0000 | DSD_DOCK | DW_509046 | 1 | 85.92 | 47.96 | 60 | 107.96 | 0.6 |
| DSD ${ }_{1} 04.0000$ | DW_509046 | DW_509752 | 1 | 24.42 | 15.21 | 60 | 75.21 | 0.42 |
| DSD ${ }_{1} 04.0000$ | DW_509752 | DW_509753 | 1 | 10.58 | 8.29 | 60 | 68.29 | 0.38 |
| DSD ${ }_{1}$ 04.0000 | DW_509753 | DW_509871 | 1 | 19.92 | 12.96 | 60 | 72.96 | 0.41 |
| DSD ${ }_{1} 04.0000$ | DW_509871 | DW_510052 | 1 | 9.00 | 7.5 | 40 | 47.5 | 0.26 |
| DSD ${ }_{1}^{\prime} 04.0000$ | DW_510052 | DW_510053 | 1 | 9.00 | 7.5 | 40 | 47.5 | 0.26 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_510053 | DW_510135 | 1 | 14.50 | 10.25 | 60 | 70.25 | 0.39 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME <br> SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 04.0000$ | DW_510135 | DW_510136 | 1 | 10.67 | 8.33 | 60 | 68.33 | 0.38 |
| DSD ${ }_{1}$ 04.0000 | DW_510136 | DW_510138 | 1 | 10.75 | 8.38 | 60 | 68.38 | 0.38 |
| DSD ${ }_{1}$ 04.0000 | DW_510138 | DW_510139 | 1 | 8.67 | 7.33 | 60 | 67.33 | 0.37 |
| DSD ${ }_{1}$ 04.0000 | DW_510139 | DW_512486 | 1 | 70.67 | 40.33 | 60 | 100.33 | 0.56 |
| DSD ${ }_{1} 04.0000$ | DW_512486 | DW_512487 | 1 | 76.08 | 43.04 | 60 | 103.04 | 0.57 |
| DSD ${ }_{1} 04.0000$ | DW_512487 | DW_512485 | 1 | 76.33 | 43.17 | 90 | 133.17 | 0.74 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512485 | DW_512730 | 1 | 19.33 | 12.67 | 60 | 72.67 | 0.4 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_512730 | DW_831261 | 1 | 33.00 | 19.5 | 110 | 129.5 | 0.72 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_831261 | DW_839061 | 1 | 19.08 | 12.54 | 110 | 122.54 | 0.68 |
| DSD ${ }_{1} 04.0000$ | DW _839061 | DW_835261 | 1 | 117.25 | 63.63 | 160 | 223.63 | 1.24 |
| DSD ${ }_{1}{ }^{\text {04,0000 }}$ | DW_835261 | DW_836261 | 1 | 125.75 | 67.58 | 150 | 217.58 | 1.21 |
| DSD ${ }_{1}$ 04.0000 | DW_836261 | DW_836561 | 1 | 131.42 | 70.41 | 60 | 130.41 | 0.72 |
| DSD ${ }_{1} 04.0000$ | DW _836561 | DW_831661 | 1 | 125.17 | 67.58 | 60 | 127.58 | 0.71 |
| DSD ${ }_{1} 04.0000$ | DW _831661 | DW_832461 | 1 | 19.75 | 12.88 | 110 | 122.88 | 0.68 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_832461 | DW_511873 | 1 | 152.50 | 80.99 | 160 | 240.99 | 1.34 |
| DSD ${ }_{1} 04.0000$ | DW_511873 | W_513009 | 1 | 175.83 | 92.92 | 160 | 252.92 | 1.41 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME <br> SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 04.0000$ | W_513009 | DW_510645 | 1 | 139.17 | 73.58 | 110 | 183.58 | 1.02 |
| DSD ${ }_{1}$ 04.0000 | DW_510645 | DW_511068 | 1 | 35.33 | 20.91 | 60 | 80.91 | 0.45 |
| DSD ${ }_{1}$ 04.0000 | DW_511068 | DW_510708 | 1 | 13.83 | 8.66 | 60 | 68.66 | 0.38 |
| DSD ${ }_{1}$ 04.0000 | DW_510708 | DW_510706 | 1 | 11.42 | 7.69 | 60 | 67.69 | 0.38 |
| DSD ${ }_{1} 04.0000$ | DW_510706 | DW_505549 | 1 | 16.33 | 10.15 | 60 | 70.15 | 0.39 |
| DSD ${ }_{1} 04.0000$ | DW_505549 | DW_505548 | 1 | 5.67 | 4.32 | 110 | 114.32 | 0.64 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505548 | DW_505547 | 1 | 7.00 | 5.46 | 110 | 115.46 | 0.64 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505547 | DW_505546 | 1 | 6.08 | 4.71 | 260 | 264.71 | 1.47 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505546 | DW_503971 | 1 | 6.25 | 5.09 | 110 | 115.09 | 0.64 |
| DSD ${ }_{1} 04.0000$ | DW_503971 | DW_503278 | 1 | 10.58 | 7 | 110 | 117 | 0.65 |
| DSD ${ }_{1}{ }^{\text {04,0000 }}$ | DW_503278 | DW_100521 | 1 | 14.42 | 9.13 | 160 | 169.13 | 0.94 |
| DSD ${ }_{1}$ 04.0000 | DW_100521 | DW_505554 | 1 | 16.83 | 10.84 | 110 | 120.84 | 0.67 |
| DSD ${ }_{1} 04.0000$ | DW_505554 | DW_505555 | 1 | 27.08 | 16.54 | 60 | 76.54 | 0.43 |
| DSD ${ }_{1} 04.0000$ | DW_505555 | DW_505638 | 1 | 26.17 | 15.83 | 40 | 55.83 | 0.31 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_505638 | DW_506295 | 1 | 25.92 | 15.7 | 210 | 225.7 | 1.25 |
| DSD ${ }_{1}{ }^{\text {04.0000 }}$ | DW_506295 | DW_506296 | 1 | 27.75 | 16.88 | 110 | 126.88 | 0.7 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE FEET | $\begin{aligned} & \text { TRAVEL } \\ & \text { TIME } \\ & \text { SECONDS } \end{aligned}$ | L/UL TIME SECONDS | TOTAL TIME SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSDi04.0000 | DW_506296 | DW_506297 | 1 | 26.08 | 15.75 | 110 | 125.75 | 0.7 |
| DSDi04.0000 | DW_506297 | DW_506632 | 1 | 34.67 | 20.33 | 60 | 80.33 | 0.45 |
| DSDi04.0000 | DW_506632 | DW_507087 | 1 | 142.08 | 76.04 | 60 | 136.04 | 0.76 |
| DSDi04.0000 | DW_507087 | DSD_DOCK | 1 | 90.58 | 50.29 | 0 | 50.29 | 0.28 |
| SUB TOTAL |  |  | 43 | 2,028.83 | 1,155.85 | 3,880.00 | 5,035.85 | 27.98 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | $\begin{gathered} \text { TRIP } \\ \text { DISTANCE } \\ \text { FEET } \end{gathered}$ | $\begin{gathered} \hline \text { TRAVEL } \\ \text { TIME } \\ \text { SECONDS } \end{gathered}$ | L/UL TIME SECONDS | $\begin{gathered} \hline \text { TOTAL } \\ \text { TIME } \\ \text { SECONDS } \end{gathered}$ | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL'01.0000 | RET_DOCK | R_480077 | 1 | 53.67 | 31.83 | 20 | 51.83 | 0.29 |
| RETAIL; 01.0000 | R_480077 | RW_510419 | 1 | 109.67 | 59.83 | 20 | 79.83 | 0.44 |
| RETAIL'01.0000 | RW_510419 | RW_510421 | 1 | 16.50 | 11.25 | 20 | 31.25 | 0.17 |
| RETAIL'01.0000 | RW_510421 | RW_510426 | 1 | 30.08 | 18.04 | 30 | 48.04 | 0.27 |
| RETAIL; 01.0000 | RW_510426 | RW_511108 | 1 | 20.50 | 13.25 | 20 | 33.25 | 0.18 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL TIME SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 01.0000 | RW_511108 | RW_511309 | 1 | 24.00 | 15 | 20 | 35 | 0.19 |
| RETAIL! 01.0000 | RW_511309 | RW_511312 | 1 | 15.50 | 10.75 | 20 | 30.75 | 0.17 |
| RETAIL! 01.0000 | RW_511312 | RW_510141 | 1 | 53.33 | 30.67 | 20 | 50.67 | 0.28 |
| RETAIL! 01.0000 | RW_510141 | RW_510646 | 1 | 147.00 | 77.5 | 20 | 97.5 | 0.54 |
| RETAIL'01.0000 | RW_510646 | RW_510418 | 1 | 217.67 | 113.83 | 20 | 133.83 | 0.74 |
| RETAIL'01.0000 | RW_510418 | R_508782 | 1 | 177.25 | 93.63 | 20 | 113.63 | 0.63 |
| RETAIL! 01.0000 | R_508782 | R_508730 | 1 | 10.25 | 8.13 | 40 | 48.13 | 0.27 |
| RETAIL! 01.0000 | R_508730 | R_508687 | 1 | 9.50 | 7.75 | 20 | 27.75 | 0.15 |
| RETAIL! 01.0000 | R_508687 | R_666688 | 1 | 172.33 | 91.17 | 20 | 111.17 | 0.62 |
| RETAIL! 01.0000 | R_666688 | R_479006 | 1 | 68.17 | 38.08 | 30 | 68.08 | 0.38 |
| RETAIL! 01.0000 | R_479006 | R_503890 | 1 | 92.75 | 50.38 | 20 | 70.38 | 0.39 |
| RETAIL; 01.0000 | R_503890 | R_506284 | 1 | 101.92 | 55.96 | 130 | 185.96 | 1.03 |
| RETAIL! 01.0000 | R_506284 | R_513096 | 1 | 23.08 | 14.54 | 20 | 34.54 | 0.19 |
| RETAIL'01.0000 | R_513096 | RET_DOCK | 1 | 78.17 | 44.08 | 0 | 44.08 | 0.24 |
| SUB TOTAL |  |  | 19 | 1,421.34 | 785.67 | 510 | 1,295.67 | 7.17 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | $\begin{gathered} \text { COST } \\ \$ \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 02.0000 | RET_DOCK | R_509197 | 1 | 61.33 | 35.67 | 20 | 55.67 | 0.31 |
| RETAIL! 02.0000 | R_509197 | R_509193 | 1 | 9.17 | 6.58 | 20 | 26.58 | 0.15 |
| RETAIL! 02.0000 | R_509193 | R_504503 | 1 | 7.17 | 6.02 | 20 | 26.02 | 0.14 |
| RETAIL! ${ }^{\text {¢ }}$ 22.0000 | R_504503 | R_513020 | 1 | 63.92 | 36.96 | 20 | 56.96 | 0.32 |
| RETAIL! ${ }^{\text {¢ }}$ 22.0000 | R_513020 | R_503791 | 1 | 21.08 | 13.54 | 20 | 33.54 | 0.19 |
| RETAIL! ${ }^{\text {¢ }}$ 22.0000 | R_503791 | R_506284 | 1 | 100.08 | 55.04 | 60 | 115.04 | 0.64 |
| RETAIL;02.0000 | R_506284 | R_509206 | 1 | 125.00 | 67.5 | 20 | 87.5 | 0.49 |
| RETAIL! 02.0000 | R_509206 | R_509209 | 1 | 15.33 | 10.67 | 20 | 30.67 | 0.17 |
| RETAIL! ${ }^{\text {¢ }}$ [2.0000 | R_509209 | R_503760 | 1 | 58.08 | 34.04 | 20 | 54.04 | 0.3 |
| RETAIL; 02.0000 | R_503760 | R_500078 | 1 | 37.08 | 22.54 | 20 | 42.54 | 0.24 |
| RETAIL; ${ }^{\text {¢ }}$ 2.0000 | R_500078 | R_479006 | 1 | 23.50 | 14.75 | 20 | 34.75 | 0.19 |
| RETAIL! 02.0000 | R_479006 | R_509204 | 1 | 72.42 | 40.21 | 20 | 60.21 | 0.33 |
| RETAIL! 02.0000 | R_509204 | R_508730 | 1 | 179.42 | 94.71 | 40 | 134.71 | 0.75 |
| RETAIL; 02.0000 | R_508730 | RW_509594 | 1 | 161.50 | 85.75 | 20 | 105.75 | 0.59 |
| RETAIL! 02.0000 | RW_509594 | RW_512988 | 1 | 257.58 | 133.79 | 20 | 153.79 | 0.85 |
| RETAIL! 02.0000 | RW_512988 | RW_510138 | 1 | 112.67 | 61.33 | 20 | 81.33 | 0.45 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | $\begin{gathered} \text { TRIP } \\ \text { DISTANCE } \\ \text { FEET } \end{gathered}$ | TRAVEL TIME SECONDS | $\begin{gathered} \hline \text { L/UL } \\ \text { TIME } \\ \text { SECONDS } \end{gathered}$ | TOTAL TIME SECONDS | $\begin{gathered} \text { COST } \\ \$ \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL ${ }^{\prime} 02.0000$ | RW_510138 | RW_510136 | 1 | 17.50 | 11.75 | 30 | 41.75 | 0.23 |
| RETAIL ${ }^{\prime} 02.0000$ | RW_510136 | RW_511312 | 1 | 80.75 | 45.38 | 30 | 75.38 | 0.42 |
| RETAIL ${ }^{\text {j0 }}$ 2.0000 | RW_511312 | RW_510936 | 1 | 29.67 | 17.83 | 30 | 47.83 | 0.27 |
| RETAIL'02.0000 | RW_510936 | RET_DOCK | 1 | 164.42 | 87.21 | 0 | 87.21 | 0.48 |
| SUB TOTAL |  |  | 20 | 1,597.67 | 881.27 | 470 | 1,351.27 | 7.51 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL!03.0000 | RET_DOCK | RW_511309 | 1 | 178.92 | 94.46 | 20 | 114.46 | 0.64 |
| RETAIL! 03.0000 | RW_511309 | RW_511839 | 1 | 119.17 | 64.58 | 20 | 84.58 | 0.47 |
| RETAIL! 03.0000 | RW_511839 | R_410608 | 1 | 167.08 | 88.54 | 20 | 108.54 | 0.6 |
| RETAIL!03.0000 | R_410608 | R_473916 | 1 | 83.08 | 46.54 | 20 | 66.54 | 0.37 |
| RETAIL!03.0000 | R_473916 | R_507238 | 1 | 11.33 | 8.67 | 30 | 38.67 | 0.21 |
| RETAIL!03.0000 | R_507238 | R_508782 | 1 | 22.42 | 14.21 | 20 | 34.21 | 0.19 |
| RETAIL!03.0000 | R_508782 | R_666688 | 1 | 178.75 | 94.38 | 20 | 114.38 | 0.64 |
| RETAIL! 03.0000 | R_666688 | R_479006 | 1 | 68.17 | 38.08 | 40 | 78.08 | 0.43 |
| RETAIL! 03.0000 | R_479006 | R_509198 | 1 | 28.83 | 18.42 | 20 | 38.42 | 0.21 |
| RETAIL!03.0000 | R_509198 | R_503791 | 1 | 102.75 | 56.38 | 20 | 76.38 | 0.42 |
| RETAIL! 03.0000 | R_503791 | R_506284 | 1 | 100.08 | 55.04 | 50 | 105.04 | 0.58 |
| RETAIL! 03.0000 | R_506284 | R_509192 | 1 | 77.58 | 43.79 | 20 | 63.79 | 0.35 |
| RETAIL!03.0000 | R_509192 | RET_DOCK | 1 | 45.33 | 25.67 | 0 | 25.67 | 0.14 |
| SUB TOTAL |  |  | 13 | 1,183.49 | 648.76 | 300 | 948.76 | 5.25 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL <br> TIME <br> SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RETAIL! 04.0000 | RET_DOCK | R_504503 | 1 | 59.33 | 34.67 | 20 | 54.67 | 0.3 |
| RETAIL; 04.0000 | R_504503 | R_513020 | 1 | 63.92 | 36.96 | 20 | 56.96 | 0.32 |
| RETAIL! 04.0000 | R_513020 | R_513096 | 1 | 82.75 | 46.38 | 30 | 76.38 | 0.42 |
| RETAIL;04.0000 | R_513096 | R_506284 | 1 | 23.08 | 14.54 | 50 | 64.54 | 0.36 |
| RETAIL; 04.0000 | R_506284 | R_503760 | 1 | 107.42 | 58.71 | 20 | 78.71 | 0.44 |
| RETAIL! 04.0000 | R_503760 | R_506562 | 1 | 62.00 | 34 | 20 | 54 | 0.3 |
| RETAIL! 04.0000 | R_506562 | R_508730 | 1 | 20.92 | 13.46 | 20 | 33.46 | 0.19 |
| RETAIL! 04.0000 | R_508730 | R_508782 | 1 | 10.25 | 8.13 | 20 | 28.13 | 0.16 |
| RETAILi.04.0000 | R_508782 | RW_510835 | 1 | 227.50 | 118.75 | 20 | 138.75 | 0.77 |
| RETAIL, 04.0000 | RW_510835 | RW_512986 | 1 | 225.25 | 117.63 | 20 | 137.63 | 0.76 |
| RETAIL;04.0000 | RW_512986 | RW_511312 | 1 | 142.50 | 76.25 | 30 | 106.25 | 0.59 |
| RETAIL;04.0000 | RW_511312 | RW_511309 | 1 | 15.50 | 10.75 | 20 | 30.75 | 0.17 |
| RETAIL; 04.0000 | RW_511309 | RW_510425 | 1 | 35.83 | 20.92 | 20 | 40.92 | 0.23 |
| RETAIL, 04.0000 | RW_510425 | RW_510422 | 1 | 22.00 | 13.75 | 20 | 33.75 | 0.19 |
| RETAIL;04.0000 | RW_510422 | RW_512728 | 1 | 72.08 | 41.04 | 20 | 61.04 | 0.34 |
| RETAIL;04.0000 | RW_512728 | RW_513022 | 1 | 73.92 | 41.71 | 30 | 71.71 | 0.4 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSD ${ }_{1} 02.0000$ | DW_510425 | DW_511068 | 1 | 30.08 | 17.54 | 50 | 67.54 | 0.38 |
| DSD ${ }_{1} 02.0000$ | DW_511068 | DW_510645 | 1 | 35.33 | 20.91 | 50 | 70.91 | 0.39 |
| DSD ${ }_{1} 02.0000$ | DW_510645 | DW_510644 | 1 | 45.33 | 26.67 | 30 | 56.67 | 0.31 |
| DSD ${ }_{1}{ }^{\text {02 }} 00000$ | DW_510644 | DW_510416 | 1 | 102.17 | 56.08 | 50 | 106.08 | 0.59 |
| DSD ${ }_{1} 02.0000$ | DW_510416 | DW_510417 | 1 | 26.17 | 16.08 | 50 | 66.08 | 0.37 |
| DSD ${ }_{1} 02.0000$ | DW_510417 | DW_510419 | 1 | 28.33 | 17.17 | 70 | 87.17 | 0.48 |
| DSD ${ }_{1}^{102.0000}$ | DW_510419 | DW_512486 | 1 | 71.33 | 40.67 | 70 | 110.67 | 0.61 |
| DSD ${ }_{1}^{102.0000}$ | DW_512486 | DW_512487 | 1 | 76.08 | 43.04 | 50 | 93.04 | 0.52 |
| DSD ${ }_{1}{ }^{\text {02 }}$, 0000 | DW_512487 | DW_512485 | 1 | 76.33 | 43.17 | 70 | 113.17 | 0.63 |
| DSD ${ }_{1} 02.0000$ | DW_512485 | DW_831261 | 1 | 24.83 | 15.42 | 40 | 55.42 | 0.31 |
|  | DW_831261 | DW_839061 | 1 | 19.08 | 12.54 | 50 | 62.54 | 0.35 |
| DSD ${ }_{1}{ }^{\text {02 }}$ 2.0000 | DW_839061 | DW_836261 | 1 | 22.83 | 13.86 | 50 | 63.86 | 0.35 |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_836261 | DW_831661 | 1 | 17.42 | 11.03 | 70 | 81.03 | 0.45 |
| DSD ${ }_{1}^{\prime} 02.0000$ | DW_831661 | DW_834161 | 1 | 125.08 | 67.54 | 40 | 107.54 | 0.6 |
| DSDi02.0000 | DW_834161 | DW_513504 | 1 | 155.00 | 82.5 | 40 | 122.5 | 0.68 |
| DSD ${ }_{1}{ }^{\text {02 }}$, 0000 | DW_513504 | DW_510139 | 1 | 102.83 | 54.42 | 20 | 74.42 | 0.41 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP <br> DISTANCE <br> FEET | TRAVEL <br> TIME <br> SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL <br> TIME <br> SECONDS | COST <br> \$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| RETAIL!04.0000 | RW_513022 | RW_510142 | 1 | 86.83 | 48.17 | 20 | 68.17 | 0.38 |
| RETAIL;04.0000 | RW_510142 | RET_DOCK | 1 | 91.75 | 50.88 | 0 | 50.88 | 0.28 |
| SUB TOTAL | $\mathbf{1 8}$ | $\mathbf{1 , 4 2 2 . 8 3}$ | $\mathbf{7 8 6 . 7}$ | $\mathbf{4 0 0}$ | $\mathbf{1 , 1 8 6 . 7 0}$ | $\mathbf{6 . 6}$ |  |  |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL <br> TIME <br> SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\text {¢ }} 01.0000$ | WHL_DOCK | W_509148 | 1 | 43.58 | 26.23 | 15 | 41.23 | 0.23 |
| WHOLE! 01.0000 | W_509148 | W_501684 | 1 | 76.83 | 43.42 | 15 | 58.42 | 0.32 |
| WHOLE! 01.0000 | W_501684 | W_501919 | 1 | 15.08 | 10.54 | 15 | 25.54 | 0.14 |
| WHOLE ${ }^{\text {¢ }} 01.0000$ | W_501919 | W_509145 | 1 | 17.17 | 11.58 | 15 | 26.58 | 0.15 |
| WHOLE ${ }^{\prime} 01.0000$ | W_509145 | W_501961 | 1 | 112.83 | 61.42 | 15 | 76.42 | 0.42 |
| WHOLE ${ }^{\prime} 01.0000$ | W_501961 | W_508737 | 1 | 136.42 | 73.21 | 15 | 88.21 | 0.49 |
| WHOLE ${ }^{\prime} 01.0000$ | W_508737 | DW_510139 | 1 | 180.42 | 95.21 | 15 | 110.21 | 0.61 |
| WHOLE 01.0000 | DW_510139 | W_503106 | 1 | 106.92 | 58.46 | 15 | 73.46 | 0.41 |
| WHOLE! 01.0000 | W_503106 | W_509146 | 1 | 104.83 | 57.42 | 15 | 72.42 | 0.4 |
| WHOLE! 01.0000 | W_509146 | W_511870 | 1 | 83.67 | 46.56 | 15 | 61.56 | 0.34 |
| WHOLE ${ }^{\prime} 01.0000$ | W_511870 | W_500252 | 1 | 16.50 | 10.98 | 15 | 25.98 | 0.14 |
| WHOLE ${ }^{\prime} 01.0000$ | W_500252 | WHL_DOCK | 1 | 48.08 | 28.48 | 0 | 28.48 | 0.16 |
| SUB TOTAL |  |  | 12 | 942.33 | 523.51 | 165 | 688.51 | 3.81 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL TIME SECONDS | TOTAL TIME <br> SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\text {¢ }} 02.0000$ | WHL_DOCK | W_511355 | 1 | 46.08 | 27.21 | 15 | 42.21 | 0.23 |
| WHOLE ${ }^{\text {¢ }} 02.0000$ | W_511355 | W_512802 | 1 | 33.58 | 19.53 | 15 | 34.53 | 0.19 |
| WHOLE ${ }^{\text {¢ }} 02.0000$ | W_512802 | W_509146 | 1 | 96.92 | 53.2 | 15 | 68.2 | 0.38 |
| WHOLE ${ }^{\text {[ }}$ O2.0000 | W_509146 | W_509145 | 1 | 24.58 | 15.29 | 15 | 30.29 | 0.17 |
| WHOLE ${ }^{\text {[ }}$ O2.0000 | W_509145 | W_503106 | 1 | 114.75 | 62.38 | 15 | 77.38 | 0.43 |
| WHOLE ${ }^{\text {[02 }}$ 2.0000 | W_503106 | DW_510136 | 1 | 113.33 | 61.67 | 15 | 76.67 | 0.43 |
| WHOLE ${ }^{\text {[ }}$ O2.0000 | DW_510136 | W_477080 | 1 | 48.58 | 28.29 | 15 | 43.29 | 0.24 |
| WHOLE 02.0000 | W_477080 | W_501627 | 1 | 135.75 | 71.88 | 15 | 86.88 | 0.48 |
| WHOLE ${ }^{\text {¢ }}$ O2.0000 | W_501627 | W_501552 | 1 | 22.75 | 14.38 | 15 | 29.38 | 0.16 |
| WHOLE ${ }^{\text {j }} 02.0000$ | W_501552 | W_501493 | 1 | 21.08 | 13.28 | 15 | 28.28 | 0.16 |
| WHOLE ${ }^{\text {j }}$ O2.0000 | W_501493 | W_507208 | 1 | 14.00 | 9.47 | 15 | 24.47 | 0.14 |
| WHOLE ${ }^{1} 02.0000$ | W_507208 | W_509148 | 1 | 68.83 | 39.15 | 15 | 54.15 | 0.3 |
| WHOLE ${ }^{1} 02.0000$ | W_509148 | W_509147 | 1 | 16.08 | 11.04 | 15 | 26.04 | 0.14 |
| WHOLE ${ }^{1} 02.0000$ | W_509147 | WHL_DOCK | 1 | 41.17 | 25.02 | 0 | 25.02 | 0.14 |
| SUB TOTAL |  |  | 14 | 797.48 | 451.79 | 195 | 646.79 | 3.59 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{1} 03.0000$ | WHL_DOCK | W_500252 | 1 | 48.08 | 28.48 | 15 | 43.48 | 0.24 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_500252 | W_503103 | 1 | 104.67 | 57.33 | 15 | 72.33 | 0.4 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_503103 | W_10016 | 1 | 69.92 | 38.96 | 15 | 53.96 | 0.3 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_10016 | W_10004 | 1 | 25.92 | 15.7 | 15 | 30.7 | 0.17 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_10004 | W_10005 | 1 | 13.25 | 9.04 | 15 | 24.04 | 0.13 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_10005 | W_10008 | 1 | 35.33 | 21.15 | 15 | 36.15 | 0.2 |
| WHOLE ${ }^{\text {¢ }} 03.0000$ | W_10008 | W_10003 | 1 | 14.92 | 9.94 | 15 | 24.94 | 0.14 |
| WHOLE ${ }^{\text {¢ }}$ 03.0000 | W_10003 | W_10001 | 1 | 16.33 | 11.17 | 15 | 26.17 | 0.15 |
| WHOLE ${ }^{\text {j }}$ 03.0000 | W_10001 | RW_510198 | 1 | 174.92 | 92.46 | 15 | 107.46 | 0.6 |
| WHOLE ${ }^{\text {¢ }}$ 03.0000 | RW_510198 | WHL_DOCK | 1 | 135.67 | 72.27 | 0 | 72.27 | 0.4 |
| SUB TOTAL |  |  | 10 | 639.01 | 356.5 | 135 | 491.5 | 2.73 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\prime} 04.0000$ | WHL_DOCK | W_511043 | 1 | 34.08 | 19.14 | 15 | 34.14 | 0.19 |
| WHOLE ${ }^{\prime} 04.0000$ | W_511043 | W_500252 | 1 | 67.00 | 38.16 | 15 | 53.16 | 0.3 |
| WHOLE ${ }^{\prime} 04.0000$ | W_500252 | W_501920 | 1 | 30.00 | 18 | 15 | 33 | 0.18 |
| WHOLE ${ }^{\prime} 04.0000$ | W_501920 | W_501919 | 1 | 101.42 | 55.71 | 15 | 70.71 | 0.39 |
| WHOLE ${ }^{\prime} 04.0000$ | W_501919 | W_508730 | 1 | 133.00 | 71.5 | 15 | 86.5 | 0.48 |
| WHOLE ${ }^{\prime} 04.0000$ | W_508730 | W_477265 | 1 | 93.17 | 51.58 | 15 | 66.58 | 0.37 |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_477265 | W_476422 | 1 | 16.58 | 10.74 | 15 | 25.74 | 0.14 |
| WHOLE ${ }_{\text {! }}$ 04.0000 | W_476422 | W_500030 | 1 | 22.00 | 13.74 | 15 | 28.74 | 0.16 |
| WHOLE ${ }^{\prime} 04.0000$ | W_500030 | DW_510139 | 1 | 94.58 | 52.03 | 15 | 67.03 | 0.37 |
| WHOLE ${ }^{\prime} 04.0000$ | DW_510139 | DW_510140 | 1 | 104.75 | 57.38 | 15 | 72.38 | 0.4 |
| WHOLE ${ }^{\prime} 04.0000$ | DW_510140 | W_508732 | 1 | 194.67 | 102.33 | 15 | 117.33 | 0.65 |
| WHOLE ${ }^{\prime} 04.0000$ | W_508732 | W_501961 | 1 | 108.92 | 59.46 | 15 | 74.46 | 0.41 |
| WHOLE ${ }^{\prime} 04.0000$ | W_501961 | RW_512986 | 1 | 127.17 | 68.58 | 15 | 83.58 | 0.46 |
| WHOLE ${ }^{\prime} 04.0000$ | RW_512986 | RW_511312 | 1 | 142.50 | 76.25 | 15 | 91.25 | 0.51 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | $\begin{gathered} \text { TRIP } \\ \text { DISTANCE } \\ \text { FEET } \end{gathered}$ | TRAVEL TIME <br> SECONDS | L/UL TIME SECONDS | TOTAL TIME SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\text {[ }} 04.0000$ | RW_511312 | W_509671 | 1 | 149.67 | 79.83 | 15 | 94.83 | 0.53 |
| WHOLE ${ }^{\text {! }} 04.0000$ | W_509671 | WHL_DOCK | 1 | 52.00 | 30.44 | 0 | 30.44 | 0.17 |
| SUB TOTAL |  |  | 16 | 1,471.51 | 804.87 | 225 | 1,029.87 | 5.71 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL TIME SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE! 05.0000 | WHL_DOCK | W_503565 | 1 | 32.17 | 18.27 | 15 | 33.27 | 0.18 |
| WHOLE ${ }^{\text {! }} 05.0000$ | W_503565 | W_504468 | 1 | 14.67 | 10 | 15 | 25 | 0.14 |
| WHOLE ${ }^{\text {¢ }} 05.0000$ | W_504468 | W_501919 | 1 | 27.33 | 16.67 | 15 | 31.67 | 0.18 |
| WHOLE! 05.0000 | W_501919 | W_511042 | 1 | 112.75 | 61.12 | 15 | 76.12 | 0.42 |
| WHOLE! 05.0000 | W_511042 | W_479006 | 1 | 93.58 | 51.79 | 15 | 66.79 | 0.37 |
| WHOLE! 05.0000 | W_479006 | W_508202 | 1 | 94.25 | 50.13 | 15 | 65.13 | 0.36 |
| WHOLE 05.0000 | W_508202 | W_501961 | 1 | 131.75 | 70.88 | 15 | 85.88 | 0.48 |
| WHOLE ${ }^{\text {[05 }}$ [0000 | W_501961 | W_508730 | 1 | 92.17 | 51.08 | 15 | 66.08 | 0.37 |
| WHOLE ${ }^{\text {¢ }} 05.0000$ | W_508730 | RW_511312 | 1 | 107.50 | 58.75 | 15 | 73.75 | 0.41 |
| WHOLE ${ }^{\text {¢ }} 05.0000$ | RW_511312 | RW_511309 | 1 | 15.50 | 10.75 | 15 | 25.75 | 0.14 |
| WHOLE 05.0000 | RW_511309 | W_501493 | 1 | 133.58 | 71.79 | 15 | 86.79 | 0.48 |
| WHOLE 05.0000 | W_501493 | W_509671 | 1 | 77.42 | 43.71 | 15 | 58.71 | 0.33 |
| WHOLE 05.0000 | W_509671 | W_506284 | 1 | 88.92 | 49.46 | 15 | 64.46 | 0.36 |
| WHOLE ${ }^{\text {¢ }} 05.0000$ | W_506284 | WHL_DOCK | 1 | 52.08 | 30.48 | 0 | 30.48 | 0.17 |
| SUB TOTAL |  |  | 14 | 1,073.67 | 594.88 | 195 | 789.88 | 4.39 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | WHL_DOCK | W_503565 | 1 | 32.17 | 18.27 | 15 | 33.27 | 0.18 |
| WHOLE! 06.0000 | W_503565 | W_511043 | 1 | 12.58 | 8.54 | 15 | 23.54 | 0.13 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_511043 | W_500228 | 1 | 63.83 | 36.58 | 15 | 51.58 | 0.29 |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_500228 | W_503106 | 1 | 42.00 | 23.73 | 15 | 38.73 | 0.22 |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_503106 | W_501919 | 1 | 109.08 | 59.54 | 15 | 74.54 | 0.41 |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_501919 | W_511042 | 1 | 112.75 | 61.12 | 15 | 76.12 | 0.42 |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_511042 | W_503760 | 1 | 15.58 | 10.27 | 15 | 25.27 | 0.14 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_503760 | W_503794 | 1 | 16.17 | 10.82 | 15 | 25.82 | 0.14 |
| WHOLE ${ }_{1}^{\prime} 06.0000$ | W_503794 | W_501552 | 1 | 108.50 | 59.25 | 15 | 74.25 | 0.41 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_501552 | W_510081 | 1 | 86.92 | 48.46 | 15 | 63.46 | 0.35 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_510081 | W_507208 | 1 | 79.83 | 44.65 | 15 | 59.65 | 0.33 |
| WHOLE ${ }_{1}$ 06.0000 | W_507208 | W_503793 | 1 | 28.33 | 17.17 | 15 | 32.17 | 0.18 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_503793 | RW_511309 | 1 | 126.75 | 68.38 | 15 | 83.38 | 0.46 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | RW_511309 | W_508730 | 1 | 110.83 | 60.42 | 15 | 75.42 | 0.42 |
| WHOLE ${ }_{\text {! }}$ 06.0000 | W_508730 | W_509149 | 1 | 103.08 | 56.28 | 15 | 71.28 | 0.4 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP <br> DISTANCE <br> FEET | TRAVEL <br> TIME <br> SECONDS | LUL <br> TIME <br> SECONDS | TOTAL <br> TIME <br> SECONDS | COST |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \$ |  |  |  |  |  |  |  |  |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | TRIP DISTANCE <br> FEET | TRAVEL TIME SECONDS | L/UL <br> TIME <br> SECONDS | TOTAL TIME SECONDS | COST \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE!07.0000 | WHL_DOCK | W_508686 | 1 | 33.50 | 19.19 | 15 | 34.19 | 0.19 |
| WHOLE ${ }^{1} 07.0000$ | W_508686 | W_504468 | 1 | 16.83 | 11.16 | 15 | 26.16 | 0.15 |
| WHOLE ${ }^{\text {j }} 07.0000$ | W_504468 | W_503103 | 1 | 92.75 | 51.38 | 15 | 66.38 | 0.37 |
| WHOLE ${ }^{\text {[ }} 07.0000$ | W_503103 | W_507208 | 1 | 97.00 | 53.23 | 15 | 68.23 | 0.38 |
| WHOLE ${ }^{\text {[ }}$ ( 7.0000 | W_507208 | W_506562 | 1 | 12.42 | 8.7 | 15 | 23.7 | 0.13 |
| WHOLE ${ }^{\text {[ }} 07.0000$ | W_506562 | W_506245 | 1 | 17.08 | 11.28 | 15 | 26.28 | 0.15 |
| WHOLE ${ }^{\text {[ }} 07.0000$ | W_506245 | W_509671 | 1 | 70.75 | 40.38 | 15 | 55.38 | 0.31 |
| WHOLE ${ }^{\text {[ }} 07.0000$ | W_509671 | W_505308 | 1 | 20.83 | 13.42 | 15 | 28.42 | 0.16 |
| WHOLE ${ }^{1} 07.0000$ | W_505308 | W_508709 | 1 | 15.25 | 10.63 | 15 | 25.63 | 0.14 |
| WHOLE ${ }^{\text {j }} 07.0000$ | W_508709 | W_501919 | 1 | 99.58 | 54.79 | 15 | 69.79 | 0.39 |
| WHOLE!07.0000 | W_501919 | W_503893 | 1 | 116.08 | 63.04 | 15 | 78.04 | 0.43 |
| WHOLE ${ }^{1} 07.0000$ | W_503893 | W_477265 | 1 | 93.08 | 51.54 | 15 | 66.54 | 0.37 |
| WHOLE 07.0000 | W_477265 | W_508730 | 1 | 93.17 | 51.58 | 15 | 66.58 | 0.37 |
| WHOLE ${ }^{1} 07.0000$ | W_508730 | W_508687 | 1 | 22.58 | 14.29 | 15 | 29.29 | 0.16 |
| WHOLE ${ }^{1} 07.0000$ | W_508687 | RW_509554 | 1 | 101.25 | 55.63 | 15 | 70.63 | 0.39 |
| WHOLE ${ }^{1} 07.0000$ | RW_509554 | RW_511312 | 1 | 97.33 | 53.67 | 15 | 68.67 | 0.38 |

Table 60 Continued

| AGGREGATE | FROM | TO | FREQUENCY | $\begin{gathered} \text { TRIP } \\ \text { DISTANCE } \\ \text { FEET } \end{gathered}$ | TRAVEL TIME <br> SECONDS | $\begin{gathered} \text { L/UL } \\ \text { TIME } \\ \text { SECONDS } \end{gathered}$ | TOTAL TIME <br> SECONDS | COST <br> \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHOLE ${ }^{\text {j }} 07.0000$ | RW_511312 | RW_511542 | 1 | 31.75 | 18.88 | 15 | 33.88 | 0.19 |
| WHOLE ${ }^{\text {j }} 07.0000$ | RW_511542 | RW_510130 | 1 | 117.58 | 63.79 | 15 | 78.79 | 0.44 |
| WHOLE ${ }^{\text {¢ }}$ 07.0000 | RW_510130 | DW_510139 | 1 | 201.83 | 105.92 | 15 | 120.92 | 0.67 |
| WHOLE ${ }^{\text {j }} 07.0000$ | DW_510139 | DW_510136 | 1 | 12.75 | 9.38 | 15 | 24.38 | 0.14 |
| WHOLE! 07.0000 | DW_510136 | W_506284 | 1 | 134.50 | 71.98 | 15 | 86.98 | 0.48 |
| WHOLE! 07.0000 | W_506284 | WHL_DOCK | 1 | 52.08 | 30.48 | 0 | 30.48 | 0.17 |
| SUB TOTAL |  |  | 22 | 1,549.97 | 864.34 | 315 | 1,179.34 | 6.56 |
| TOTAL |  |  | 317 | 19,872.94 | 11,114.42 | 13,290.00 | 24,404.42 | 135.5 |


[^0]:    Ateekh-Ur-Rehman, Lateef-Ur-Rehman, (2013). Manufacturing configuration selection using multicriteria decision tool. Int J Adv Manuf Tech 65(5-8):625-639.doi: 10.1007/s00170-012-4201-5

