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ABSTRACT 

Due to an increasing demand for collaborative robots, called “cobots”, in industrial 

settings, this study aims to predict the chance of accidents occurring due to the introduction of 

cobots in the Korean manufacturing industry determined by a risk model applied Bayesian belief 

network. This will suggest effective risk mitigation measures. This study focuses on the types of 

safety monitored stop, as well as distance and speed control which have a higher collision chance 

compared to the types of power and force limiting which allow for injury-free contact and that of 

hand guiding which allows the cobot to move itself only by clear user’s manipulation. 

The factors that impact annual accident probability are built on the grounds of the 

analysis of occupational injuries and fatalities by industrial robots. These factors were then 

categorized into human, organizational, and technical errors. Each factor’s probability was 

employed from the result of national statistics. If a probability was not available, notional 

probability was applied based on extensive literature reviews, and author’s experiences over 10 

years in the occupational safety and health fields due to it is scarce elsewhere. 

The risk model is constructed with two decision nodes - the employer’s and the 

policymaker’s view - and twelve uncertainty nodes. The model showed that the estimated annual 

accident probability was the same as the average accident rate of the entire manufacturing 

industry of the Republic of Korea in 2018. This could be interpreted as “average-risky”. 

Additionally, the influential factors were analyzed by a sensitivity analysis. By understanding 

which factors are highly influential, this study suggests three key measures to mitigate the risk by 

the introduction of cobots in the stages of design and manufacturing, installation, and usage. 

Researchers and OSH stakeholders may customize the model to assess the risk by the 

introduction of cobots. 
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CHAPTER 1.    INTRODUCTION 

With the introduction of industrial robots into manufacturing industries, mass production 

has increased (Long, Chevallereauo, Chablat, & Girin, 2018). Industrial robots take on tasks that 

are difficult or dangerous tasks for workers to do. However, industrial robots with great power 

and speed have intrinsic hazards and thus, have been operating in isolation from workers (Villani, 

Pini, Leali, & Secchi, 2018). Recently, collaborative robots, called “cobots” have been developed 

in order to work side-by-side with workers without being completely isolated. This means that 

cobots have an ability to control hazardous conditions and autonomously keep working (Audun, 

Trygve, Hisashi, & Mihoko, 2015). This ability helps meet the short-run production challenge 

which is connected to the issue about productivity improvement, faced by various small-medium 

sized enterprises (SMEs). This lowers the automation barrier tremendously (Zanchettin, Ceriani, 

Rocco, Ding, & Matthias, 2016).  

The world robotics report 2018 by International Federation Robotics (IFR), highlights 

how compact, efficient, user-friendly, and safe cobots are expected to be, as well as drive the 

automation market (IFR, 2018). In line with these trends, global robotics companies are 

launching various kinds of cobots in order to meet this demand, resulting in the decrease of the 

price of cobots and thus are affordable for SMEs (Friis & Officer, 2016). However, sharing a 

workplace with robots could allow for the risk of collision between them. Employees especially 

have a reluctance to work in close proximity with robots when they do not believe it is safe, even 

if all safety requirements of cobots are satisfied (You, Kim, Lee, Kamat, & Robert, 2018). 45% 

of workers in the Republic of Korea tend to feel unsafe working around cobots (Youngkook, 

Jinwoo, 2018). According to the IFR report, there are five leading markets occupying 73% of the 

world’s sales volume in 2017: China, Japan, the Republic of Korea, the United States, and 
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Germany. Among those countries, the Republic of Korea has the highest robot densities by far 

(710 robots per 10,000 employees) in 2017. Given this density, an in-depth study in the Republic 

of Korea is related to the risk analysis by the introduction of cobots. 

 
Figure 1.1 Robot density growth: 2016 vs. 2017 (IFR 2018) 

In the upcoming years, the introduction of cobots in SMEs is expected to increase the 

relative vulnerability to occupational accidents compared to large-scale companies due to limited 

safety budget and manpower. Furthermore, the introduction of cobots may create previously 

unknown hazards and unexpected accidents (Youngkook, Jinwoo, 2018). Moreover, previous 

articles investigated that industrial robots have caused many accidents over the past years since 

their introduction (Vasic & Billard, 2103). At this point, one should ask for quantitative, direct 

evidence showing the quantity of accidents occurring from cobots or what causes allow for 

cobot-related accidents. Regrettably, such evidence is not available in the realm of occupational 

safety and health (OSH) and it is scarce elsewhere. Therefore, the objective of this current 

research is to predict the chance of cobot-related accidents occurring in the Korean 

manufacturing industry with a risk model applied Bayesian belief network. Moreover, it will also 

analyze which factors are the largest contributor to the annual accident probability and finally 

suggest effective risk mitigation measures. 
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CHAPTER 2.    SCOPE AND METHODS  

2.1 Scope 

As depicted in Figure 2.1, most of the current risk models for industrial robots do include 

various aspects: technical, environmental, human, and organizational factors. Moreover, issues 

about regulations, national characteristics, and stakeholder expectations need to be considered 

(Thieme & Utne, 2017). However, the scope of this study will not cover all these aspects into 

one risk model since various international standards such as ISO 10218 part 1, 2 and, 15066 were 

developed from the technical view for the safety of cobots. The major manufacturers follow 

these standards in the designing and manufacturing stage of cobots for safety. Moreover, most of 

the recent literatures with regards to the safety of cobots focus on improving the safety in areas 

such as control system and algorithm, sensors, and safety device performance which are an in-

depth knowledge in the technical side (Long et al., 2018; Michalos et al., 2015; Nikolakis, 

Maratos, & Makris, 2019; Vemula, Matthias, & Ahmad, 2018; Vogel, Walter, & Elkmann, 

2017). Therefore, this study will cover a different part of technical factors such as system 

reliability.  

 

   Figure 2.1 The scope of the risk model for this study 
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In the human and organization side, Thieme & Utne (2017) studied a quantitative risk 

model based on Bayesian belief network for human-robot collaboration performance on 

autonomous marine systems. You and Kim (2018) studied cognitive factors for improving the 

safety in human-robot collaboration, but only for workers in the construction industry. However, 

there is no previous study about a risk analysis with a quantitative approach by the introduction 

of cobots, centering on the human and organizational sides. Due to this lack of research, this 

study will cover the safety of cobots in the stage of usage and installation, considering the 

characteristics of human errors, organizational errors, and technical errors to some extent. 

 According to ISO 10218 part 1 and 2, there are four types of cobots. Firstly, Safety 

monitored stop: the robot stops if it detects a worker intruding into a certain pre-set work area. 

This type of cobots is often used for minimal collaborative work. Sensors that can detect if a 

worker enters or remains in a collaborative area are required. Secondly, distance and speed 

control: the robot can slow down its movements to a safe speed when an operator comes closer. 

Sensors that can detect the distance and the relative speed between humans and robots are 

required. Thirdly, hand guiding: the robot moves at limited speed following an explicit request 

for the operation. Sensors that can detect whether a worker is holding the manipulators or not are 

required. Fourthly, power and force limiting: the robot is specifically designed to allow for direct 

interaction with workers without physical safety fences, vision systems, or external scanners. 

Sensors that can detect contact forces between humans and robots are required. This cobot 

allows for injury-free contact between a worker and a cobot. 

The first three types of cobots are now available for high capacity robots, whereas the 

fourth type - power and force limiting - is mainly responsible for human and robot collaboration 

with a special concept.  According to ISO 15066, the main idea behind the fourth one is that they 
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shall not result in pain or injury in case of collision. This means that the cobots themselves are 

not a threat to workers if they work under the legislative regulations or international standards. 

The values of acting forces are adjusted in a way that makes it impossible to cause permanent 

injuries under the condition that the cobot does not use any dangerous tools such as cutters, 

electric burn, or shock (Michal, 2018). In addition, the hand guiding type can move itself only by 

clear user’s manipulation at an extremely limited speed so that the accident resulting in a low 

probability of accident from this type. 

However, in case of the first two types of cobots, it is predictable that there is a high 

chance of injuries and fatalities occurring like those of industrial robots. This is because the 

major difference in safety between industrial robots and these types of cobots is that the use of 

technical safeguards that isolate the robot from the workers and therefore eliminating the hazard 

is no longer applicable to collaborative human-robot systems (Jansen, A., van der Beek, D., 

Cremers, A., et al, 2018). To remove physical fences, the technology of reliable and robust 

virtual safety fences must be applied through safety cameras, proximity sensors, and 

photoelectronic curtains (IEC 61496-2,3,4) etc. Moreover, Distinguishing area such as worker 

only, robot only and collaboration or coexistence zone is very important. Research by Jansen, A., 

van der Beek, D., Cremers, A., et al (2018), shows that installing virtual cages or fences properly 

is crucial in place of physical cages in new industrial settings. Given this context, this paper will 

focus on the first two types of cobots: safety monitored stop and distance and speed control. 

2.2 Methods 

In order to design a risk model and calculate the estimated annual accident probability by 

the introduction of cobots, we are supposed to use a Software - the Netica version 6.05 

developed by Norsys Software Corp. - with the concept of Bayesian Belief Network (BBN). To 
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construct a BBN, the following study used data where applicable, and when this data was not 

applicable, assumptions were based on the study of cobots and literature review to estimate.  

2.2.1 Bayesian belief network 

A Bayesian Belief Network or influence diagram visually models the probabilistic 

relationships among factors that have an impact on a final outcome, uncertainty on the grounds 

of the Bayes’ rule (Corcoran, Tran, & Levine, 2014; Heckerman, 1997). The Bayes’ theorem 

based on the conditional probability is briefly illustrated as the following formula: 

P(A|B) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=  

𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

It expresses that P(A|B) is the posterior probability: conditional probability of an event A 

given an event B. P(B|A) is the likelihood: conditional probability of an event B given an event 

A. P(A) is prior probability. P(B) is the marginal probability or evidence. With this theorem, 

BBN helps make it feasible for modeling casual relationships among factors in combination with 

heterogeneous sources or with insufficient data sets (Uusitalo, 2007). BBN has been widely used 

for supporting decision-making in the diverse fields such as scientific prognosis and risk analysis 

(Fan & Yu, 2004; Heckerman, Mamdani, & Wellman, 1995).  

BBN is drawn with an acyclic graph called “nodes” that is typical of random variables 

and arrows that represent their dependencies in Figure 2.2. When two nodes are linked by an 

arrow, the one with a starting point is called “parent node” and the other one is called “child 

node”. Parent node conditionally has an impact on child node (Leu & Chang, 2013). For 

example, if technical errors occur (parent node), an accident may occur (child node) as seen in 

Figure 2.2. This figure also expresses the states [Occur(O), Does not occur (X)] and conditional 

probability tables for three variables or factors.  With this BBN in Figure 2.2, the question of 
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“what is the accident probability, given that technical errors occur?” is answered. By applying 

the equation (1), the answer can be calculated as follows: 

     · P(Accident (O)|Technical errors (O)) =  
𝑃(𝑇(𝑂)∩𝑃(𝐴(𝑂))

𝑃(𝑇(𝑂))
=  

∑ 𝑃(𝐻,𝑇(𝑜),𝐴(𝑜)) 𝐻∈{o,x)

∑ 𝑃(𝑇(𝑜)) 𝐻,𝐴∈{o,x)
 =     

=  
0.4∗0.1∗0.85+0.6∗0.1∗0.4

0.4∗0.1∗0.85+0.4∗0.1∗0.15+0.6∗0.1∗0.4+0.6∗0.1∗0.6
 = 58% 

 

 

Figure 2.2 Example of Bayesian belief network for risk analysis 

As shown in Figure 2.3, however, it is straightforward for Netica software to calculate the 

final outcome which is P(Accident occurs | Technical errors Occur), by selecting one state.  

 

Figure 2.3 Example of Netica for risk analysis, selecting one state. 
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 Furthermore, this powerful and intuitive software helps us to get easily the final outcome 

given probabilistic relationships between two factors in Figure 2.4.  

 

Figure 2.4 Example of Netica for risk analysis with overall probabilistic relationships 

2.2.2 Materials 

In order to compute the accident probability by the introduction of cobots through BBN, 

fundamental data needs to be available. However, this data is scarce everywhere due to cobots’ 

growing popularity and accident cases are difficult to find. Given this context, this paper will 

analyze the occupational injuries and fatalities due to industrial robots in the Republic of Korea. 

This trend helps to understand the characteristics of the cobot-related accidents because the 

category of industrial robots includes traditional industrial robots as well as newer collaborative 

robots. Consequently, this analysis allows for examination of critical factors that impact the 

occupational injuries by cobots.   

Next, the Occupational Safety and Health Company Survey (OSHCS) 20151, which is the 

national statistics of the Republic of Korea, is implemented regularly for other applied 

researches. This survey is used to provide empirical data that can be utilized to establish mid- to 

long-term occupational safety and health policy agenda. In this survey, the level of safety 

 
1 This questionnaire was developed based on EU OSHA’s survey of enterprises on new and emerging risks and 

European company survey by Eurofound. 
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training, safety management, implementation of risk assessment, and CEO’s safety interests in 

the manufacturing industry in the Republic of Korea have been investigated. This data plays a 

critical role in providing the probabilities that are considered as parent nodes. 

If child nodes are dependent on multiple parent nodes – which means there are multiple 

conditional probabilities given various conditions – it is reasonable to refer to the data from 

previous studies and apply a notional probability with assumptions.  

Lastly, in order to calculate the outcome that also relies on multiple child nodes, naïve 

Bayes classifier is adopted to obtain each conditional probability for estimating the likelihood of 

the accident by cobots, given various conditions. The naïve Bayes method employs Bayes’ 

theorem but assumes that factors are independent of each other. Even if independence is usually 

an unrealistic assumption, naive Bayes bear remarkably comparison with more elaborate 

classifiers in the practical point of view (Rish, 2001).  The following study has been conducted 

with the scope, methods, and materials as mentioned above. 

 

 



10 

 

CHAPTER 3.    INJURIES AND FATALITIES OF INDUSTRIAL ROBOTS 

3.1 The status of OIIRs from 2009 from to 2018 in the republic of Korea 

The status of occupational injuries by industrial robots (OIIRs in the Republic of Korea 

has been analyzed with data approved as occupational injuries under the Industry accident 

Compensation Insurance Act (IACI Act) from 2009 to 2018. In detail, OIIRs were analyzed by 

dividing them into type of injuries, company size, working period, and work loss day to derive 

characteristics of OIIRs.  

3.1.1 The status of OIIRs by types of occupational injuries 

 Classification of the types of injuries are crush, fall from the heights, collision, struck by 

object, cutting/prick etc. Trend of OIIRs by the type of injuries can help derive significant factors 

about what type of injuries occurred the most. Types of OIIRs are assessed in the following 

order: crush (50.6%), collision (37.7%), struck by object (3.7%), fall from the height (3.4%), 

trip/slip (1.4%), and cutting/prick (1.1%). Two types of injuries - crush and collision - occupied 

roughly 88% of OIIRs. This is due to parts of the workers’ body becoming trapped between the 

moving parts of the robot, or were hit by the robot, resulting in rare fatalities. 

Table 3.1 Cases of OIIRs by type of occupational injuries 

Type Crush Collision 
Fall from 

the height 
Struck by 

object 
Trip/slip 

Cutting/ 

prick 
Others 

Injuries by IRs 177 132 12 13 5 4 7 

Injuries in overall 

manufacturing industries 
96,644 23,627 25,592 25,539 29,451 24,477 35,871 
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Figure 3.1 Distribution of OIIRs by type of occupational injuries 

3.1.2 The status of OIIRs by company size 

To analyze the correlation between OIIRs and the size of company, the size of company 

is divided into 4 categories as seen in Table 3.2. In case of overall injuries in the manufacturing 

industry, Figure 3.2 shows that the smaller size of the company, the more injuries occur. This 

trend reflects the injuries by industrial robots in the past 10 years. This could be due to the fact 

that SMEs have limited safety budget and manpower, thus increasing the probability of injury. 

As a result, it is recognized that the size of workplace may affect the accident probability with an 

introduction of cobots. 

Table 3.2 Cases of OIIRs by company size  

Number of workers < 50 50~299 300 ~ 1,999 > 2000 Total 

Injuries by IRs 169 116 29 36 350 

Injuries in overall 

manufacturing industries 
209,475 34,546 6,291 10,889 261,201 
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Figure 3.2 Distribution of OIIRs by company size  

 

3.1.3 The status of OIIRs by working period 

Workers’ proficiency is also one of the major factors that impact the injuries by industrial 

robots. The correlation between OIIRs and the proficiency of workers injured is analyzed 

through the analysis of the working period, defined as time spent working, of workers injured. 

Working period of workers injured by industrial robots has been analyzed in the following order: 

less than 1 year (48.0%) > 1 year ~ 3 years (17.7%), > 3 years ~ 5 years (6.6%). As can be seen 

in the two histograms, the occupational injuries of the two conditions dropped at approximately 

the same rate within 5 years. However, this trend over time varied between the two. Injuries in 

overall manufacturing industries decreased continuously while OIIRs remained stationary after 5 

years. It is important to note that injuries by industrial robots is a problem even for skilled workers. 

Table 3.3 Cases of OIIRs by working period  

Duration < 1year 
1year ~ 

3year 
3year ~ 

5year 
5year ~ 

10year 
10year ~ 

20year 
 > 

20year 
Others Total 

Injuries by IRs 168 62 23 32 32 31 2 350 

Injuries in overall 

manufacturing industries 
141,066 51,455 20,487 22,171 15,999 8,316 1,707 261,201 
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75.0%
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Figure 3.3 Distribution of OIIRs by working period 

3.1.4 The status of OIIRs by work loss day 

Table 3.4 shows the average work loss day of the two conditions. The average work loss 

days of all injuries in the manufacturing industry over the past decade totaled 280 days. On the 

other hand, the average work loss days of OIIRs was 671 days that were 2.4 times higher than 

that of injuries in overall manufacturing industry. This points out that the severity of injuries 

caused by an industrial robot is much more severe. In other words, it seems reasonable to say 

that an injury by industrial robots has a high chance to result in more days missed. 

 

Table 3.4 Cases of OIIRs by work loss day 

Year Ave. 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Injuries by IRs 671.33 724 829 528 995 247 697 994 683 345 721 

Injuries in overall 

manufacturing industries 
280.22 243 277 300 305 304 280 280 273 260 270 
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Figure 3.4 Distribution of OIIRs by work loss day 

 

3.1.5 The implications through the analysis of OIIRs 

An analysis on OIIRs over the past decade with four categories sheds light on the 

characteristics for injuries by the introduction of cobots. Firstly, major types of injuries would be 

crush and collision due to mainly abnormal contact between the driving robot attachments and 

the workers. Secondly, it is expected that the smaller size of company, the higher the number of 

injuries by cobots will occur. Next, the more working periods, the lower cobot-related accident 

probability. This generally means workers who have more working periods, have a higher 

chance to be well-trained for safety. Therefore, the level of safety training would be one of the 

major factors to impact on the accident probability by cobots. Lastly, the average work loss days 

of OIIRs were 2.3 times higher than that of entire injuries in overall manufacturing. This trend 

predicts the cobots’ case to some extent. However, with the help of sophisticated safety-control 

functions such as safety monitored stop or distance and speed control, the strength of injuries by 

cobots would be weaker than that of injuries by industrial robots. 
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3.2 The status of fatalities by industrial robots 

An analysis of 28 fatalities2 due to industrial robots (FIRs) from 2009 to 2018 was 

investigated and the major categories for this analysis were the sector in manufacturing industry 

where the fatality occurred, working period of worker died, installation of safety fence and 

proper safety measures for an entrance, and type of tasks.  

3.2.1 The status of sector of industry involving FIRs 

Transport machinery manufacturing industry had the highest frequency of FIRs, which 

resulted in 12 cases (42.9%) and two cases (7.1%) that took place in the general machinery and 

metal industry respectively. In the category defined as “other”, the electric device manufacturing 

and food industry each had one fatality. Among these industries referred, the transportation and 

general machinery manufacturing industries are related to the automobile industry which 

generally uses many industrial robots in the Republic of Korea. 

Table 3.5 Sector of industry involving FIRs  

Industry 
Transport 

machinery  
General 

machinery  
Metal  Chemical  Others Total 

Fatalities by IRs 12 2 2 2 10 28 

Ratio (%) 42.86 7.14 7.14 7.14 35.71 100 

3.2.2 The status of working period involving FIRs 

Table 3.6 shows that 10 cases (35.7%) of the fatalities occurred in workers with less than 

one year of their working period. This indicates that shorter working periods are more likely to 

result in the high chance to exposure for the fatality. However, one particular thing is that 5 cases 

occurred over 10 years. This means that FIRs could occur unexpectedly for even skilled workers.  

 
2   According to the section 4 of Korean OSH act, fatality is defined as ① an accident in which one or more workers have been 

killed, ② an accident in which two or more workers are injured simultaneously, requiring three months or more with care, ③ an 

accident in which more than 10 people were injured or ill at the same time.  
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Table 3.6 Working periods involving FIRs  

Year < 1 Yr. 
1 Yr. ~  

3 Yr. 

3 Yr. ~  

5 Yr. 

5 Yr. ~  

10 Yr. 
> 10 Yr. 

Unable to 

check 

Fatalities by IRs     10        8       3      1       5     1 

Ratio (%) 35.71 28.57 10.71 3.57 17.86 3.57 

3.2.3 The status of installation of safety fence and safety measures for entrances  

Table 3.7 shows that 4 FIRs have been caused by the installation of industrial robot cells 

without safety fence. Out of the 24 cases of installed safety fences, 9 cases were found to install 

improperly safety interlock for the entrance of safety fences and 1 case was found not to have 

safety interlock for the entrance installed at all as shown in Table 3.8. This means that workers 

could access into a robot zone during operation which is directly connected to the high chance of 

fatality. 

Table 3.7 Installation status of physical safety fence 

Type Installed Not installed 

Fatalities by IRs     24       4 

Ratio (%) 85.71 14.29 

Table 3.8 Installation status of safety interlock for entrance of physical safety fence 

  With this analysis, we can deduce the probability of human errors, organizational errors, 

and technical errors to occur given accident. P (human error | accident, H|A) would be derived 

from the portion of fatality happened although safety fences and interlock for the entrance 

installed properly. P (organizational error | accident, O|A) would also be derived from the portion 

of fatality happened when safety fences and interlock for the entrance were not installed. P 

Type 
Installed 

properly 

Installed 

improperly 
Not installed Unable to check 

Fatalities by IRs        13     9      1      1 

Ratio (%)   54.16 37.5 4.17 4.17 
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(Technical error | accident, T|A) would be derived from the portion of fatality happened when 

safety fences installed properly but safety interlock was installed improperly and thus it failed to 

function properly. These probabilities will be applied for the calculation of conditional 

probabilities. 

Table 3.9 Guidance probabilities of three main errors given accident 

Type P(H|A) P(O|A) P(T|A) 

Ratio (%) 
13 cases /27 cases 

= 48.15 

5 cases / 27 cases 

= 18.52  

9 cases / 27 cases 

= 33.33 

3.2.4 The status of types of tasks involving FIRs 

According to the analysis of the type of tasks of FIRs as seen in Table 3.10, 18 cases 

(64.3%) occurred during repairing of industrial robot systems or related device in industrial robot 

cells, 8 cases (28.6%) occurred during normal operation and 2 cases (7.1%) occurred during 

cleaning in industrial robot cells. In the past, many fatalities occurred during inputting programs 

or teaching robots, but there have been no fatalities during those actions in the last 10 years. It 

was believed that the fatalities during repairing and cleaning could be prevented by locking the 

startup switch with the key and managing the key separately or attaching a sign saying 

"Working” on the startup switch before starting the operation, generally called “Lock out tag out 

(LOTO)”. In other words, it is recognized that these kinds of risk can be eliminated from the 

educational and administrative measures such as safety management and training, as well as 

effective risk assessment. 

Table 3.10 Types of tasks involving FIRs  

Type Teaching  Normal operation Repairing Cleaning 

Fatalities by IR      0        8 18     2 

Ratio (%) 0.00 28.57 64.29 7.14 
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3.2.5 The implication through the analysis of FIRs 

An analysis on FIRs over the past decade also sheds light on the characteristics of severe 

injuries by the introduction of cobots. First of all, it is expected that there will be severe injuries 

caused by cobots in the automobile and general machinery manufacturing industries, due to 

many assembly and welding tasks. Secondly, the more working periods, the lower cobot-related 

fatality, which generally means workers who have more working periods, have a higher chance 

to be well-trained for safety. However, FIRs occurred unexpectedly even for skilled workers. 

Therefore, safety training such as refresher courses should be required for skilled workers. Next, 

proper installation of virtual safety fences is a critical factor to prevent the cobot-related 

accidents. In addition, the probabilities, which are P(H|A), P(O|A), and P(T|A), reflect the 

characteristics of the Korean situation. Lastly, it would be meaningful to say that severe 

accidents are expected to occur in non-routine tasks and thus effective safety training and 

management, as well as risk assessment should be embedded into the workplace. 

3.3 Characteristics factors leading to OIIRs and FIRs 

From the analysis of OIIRs, the major types of injuries are crush and collision and the 

level of safety training based on working period is an important factor to be expected to affect 

the annual accident probability by the introduction of cobots. Furthermore, it is predicted that 

company size impacts the probability of accidents due to the different capacity by size to deal 

with safety issues. OIIRs are three times higher than the rate of the occupational injuries of entire 

manufacturing industry in case of skilled workers over 20 years of work experience. The analysis 

of FIRs also shows this tendency. Therefore, training such as refresher courses should be 

required for skilled workers. From the analysis of FIRs, about 71.4% of FIRs occurred during the 

non-normal operating condition. OSHA guideline for robotics safety (STD 01-12-002) also points 
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out that many robot accidents usually do not occur during routine tasks but instead, during 

programming, maintenance, repair, testing, setup, or adjustment. In other words, this kind of risk 

can be eliminated with educational and administrative measures, such as proper safety 

management and training, as well as effective risk assessment. According to ISO TS 15066, risk 

assessment for cobots should include not only cobot itself, but also control systems and safety 

devices such as virtual fences. 

Furthermore, proper installation of safety fences and safety interlock for entrances of 

safety fences that affect human errors and technical errors should not be overlooked. In case of 

cobots, it's just that physical safety fences turn into virtual safety ones. Improper installation can 

lead to serious hazards depending on the amount varied from the original design. Due to this, 

design, installation requirements, and equipment layout of a robot need to be aligned with the 

codes and guidelines required by the manufacturer. Therefore, regulatory safety certification at 

installation is an effective method to prevent accidents, due to the fact that robots are able to 

adapt to their environmental conditions. In the era of popularization in smart factory, Korean 

government is preemptively considering whether the safety certification system for cobots will 

be introduced or not. In addition, OSHA guideline (STD 01-12-002) suggests that the prevention 

for control errors, mechanical and electronical failures directly impacts the accident probability. 

In this study, it is collectively called system reliability. 

Research by Heinrich’s industrial accident prevention (Heinrich, 1941), suggests that 

unsafe acts and conditions are major causes for industrial accidents. Most of the unsafe acts 

result from human errors, and most of the unsafe conditions result from technical errors such as 

mechanical and physical hazards. This theory is quite an outdated but has suggested simplistic 

and linear concept about how to approach the accident.  

https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
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Poor safety management causes the majority of accidents (Johnson, Ashley 2001). 

Moreover, effective leadership plays a critical role in improving safety performance in high-risk 

working environments (Flin & Yule, 2004). The starting point of safety leadership is the CEO’s 

safety interest. Lastly, unlike industrial robots, the number of cobots is expected to affect the 

accident probability due to the high chance of collision between them.   

With these significant factors and implications from the analysis and literature review, 

the characteristic factors leading to the occupational injuries and fatalities is introduced by the 

collaborative robots in Table 3.11. 

 Table 3.11 Major characteristics to occur industrial robot accident and cobot accidents  

 

Characteristics of Industrial robots 

 

Characteristics of Collaborative robots 

Safety training  Safety training  

Type of tasks Type of tasks 

Safety management (Lock out Tag out) Safety management 

CEO’s safety interest CEO’s safety interest 

Company size Company size 

System reliability System reliability 

Risk assessment Risk assessment 

Proper installation 

 - Physical fences 

 - Fool-proof, fail-safe device 

Proper installation 

 - Virtual fences 

 - Fool-proof, fail-safe device 

 
Regulatory safety certification at 

installation 

 Number of collaborative robots  
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CHAPTER 4.    RISK MODEL  

The risk model by the introduction of cobots can be depicted as a Bayes belief network to 

aid in conceptualizing the complex interrelationships among factors. Figure 4.1 depicts several 

interrelated factors affecting the annual accident probability by the introduction of cobots. 

 

Figure 4.1 Risk (BBN) model of accident prediction by the introduction of cobots  
 

This model includes two decision nodes, twelve uncertainty nodes: three mid-parent 

nodes (human, organizational and technical errors), eight parent nodes, and one child node 

(outcome) which is the annual accident probability by the introduction of cobots. It is assumed 

that the annual accident probability of cobots without any conditions is the average accident rate 

of the Republic of Korea in 2018. With the prior probability, the model estimates mainly whether 

the post annual accident probability by the introduction of cobots increases or not under those 

contributing factors shown in Figure 4.1. 
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4.1 Decisions 

In this paper, the views of two decision makers have been considered. One is an 

employer who makes the decision about how many cobots invest. The other is a policymaker 

who takes charge of the occupational safety in the government’s body. Therefore, this model 

contains two decision nodes: 1) number of cobots from the employer’s view and, 2) regulatory 

safety certification at installation from the policymaker’s view. 

4.1.1 Number of cobots 

If cobots become popular in industrial robotics, workers are likely to work with more 

than one cobot in work cells, in order to maximize productivity. This tendency can affect the 

frequency of the occupational injuries by collaborative robots (OICRs). This is because workers 

and cobots are more likely to bump into each other, leading to a higher chance of slips, lapses, 

and mistakes to occur. This is a result of mainly human and organizational errors, as the number 

of cobots increases in a shared workplace. In case of technical errors, however, because only 

products securing system reliability by international standards were distributed, it is assumed that 

this node does not affect technical errors. In this study, there are three choices for the number of 

cobots being “one”, “two”, and “three”. Each option refers to the number of cobots per working 

cell. It is assumed that each cell is designed for one worker.  

4.1.2 Regulatory safety certification 

The major cause of FIRs is majorly attributed to incomplete installation of industrial 

robot cells such as physical safety guards or interlock safety devices at every entrance. This 

allows for a worker to move into robot cell without pausing the robot. This enables workers to 

violate the safety procedures, being overconfident. Currently, there is no legal system to check 

the safety performance of industrial robots as well as collaborative robots at the installation stage 
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in the republic of Korea. Therefore, it is believed that a regulatory safety certification system will 

be necessary to ensure the safety of cobots. This regulatory system can reduce the occurrence of 

human and technical errors through proper installation. Nowadays, the Korean government is 

taking a huge consideration of whether the system will be implemented. This node can affect the 

uncertainty of proper installation. This node has two decisions: “implemented” or “not 

implemented”. It is assumed that the probability of proper installation is 99.9% when the system 

is implemented.  

4.2. Uncertainties 

The eleven uncertainties depicted in the network in Figure 4.1, are sorted into three major 

categories of human, organizational and technical errors which act as mid-parent nodes. This 

category was improved to be more appropriate for the complex working environment, based on 

the concept of Harvey’s 3Es - Education, Enforcement and Engineering - to affect the accident 

probability of cobots (Julien H. Harvey, 1946). Even though this concept is a little old-fashioned, 

it is still widely used for occupational safety and health approaches to prevent occupational 

injuries and illnesses. The remaining eight uncertainties which act as parent nodes affect each 

mid-parent node.  

4.2.1 Human errors 

Heinrich (1941) suggested that most of industrial accidents came from unsafe act that 

result from human errors. Research by Senders and Moray (1991) defined that human error 

means something has been done that was "not intended by the actor; not desired by a set of rules 

or an external observer; or that led the task or system outside its acceptable limits”. According to 

Health and Safety Executive (HSE), there are three types of human error: slips, lapses, and 

mistakes. Both slips (generally called “commission error”) and lapses (generally called 



24 

 

“omission error”) occur in very familiar tasks which can occur without much conscious attention, 

whereas mistakes are attributable to decision-making failures. There should be many causes 

leading to human errors in the worksites such as poor design, distraction, time pressure, 

workload, and communication systems. Although detailed considerations along these causes are 

meaningful for an entire body of research, it is beyond the scope of this paper. Therefore, we 

intend to apply four factors found from the analysis of OIIRs and FIRs will be applied. There are 

four uncertainties to be concerned: safety training, risk assessment, proper installation, and type 

of tasks. The probability of human error assumes 0.003 in case of “P (safety training: high, risk 

assessment: implemented, type of task: routine, proper installation: proper)” which is general 

human error rate for an act performed incorrectly (Kirwan. B., 1994). When it comes to each 

conditional probability3, Table 4.1 was applied. 

 

Table 4.1 Impact on human errors of four uncertainties and one decision node 

Safety  

training 

Risk  

Assessment 

Type of  

tasks  

Proper 

installation 

Number of 

cobots 

High              (0) Implemented              (0)    Routine              (0) Proper           (0) 1             (0) 

Medium (+0.025) Not implemented (+0.05) Non-routine (+0.05) Improper (+0.05) 2    (+0.025) 

Low         (+0.05)        3      (+0.05) 

 

4.2.1.1 Safety training 

OSHA argues that education and training plays a critical role in informing workers and 

managers about worksite hazards and controls so they can work safely and productively. In 

addition, the more years of working periods, the lower accident probability found from the 

 
3 Book (Robot system reliability and safety, 2015) by Dhillon stated that that roughly 20% of industrial accidents 

with robots resulted from human error. Therefore, the sum of four uncertainty factors’ probability is 20% with the 

same level of contribution. In regards to the number of cobots, the same amount of contribution is applied for the 

objective research. 
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analysis on OIIRs. It generally means that workers who have more working periods, have a 

higher chance to be well-trained for safety. This is attributed to the fact that employers regularly 

provide a safety education – over 6 hours per quarter - for the employee according to Article 31 

of the Korean OSH act. Furthermore, the introduction of cobots will make the integrated system 

more complicated. Therefore, safety education can increase the awareness surrounding risks such 

as collision and trapping from cobots and in turn reduce the chance of human errors. The 

outcomes of this uncertainty are “high, medium and low”. From the previous study of KOSHA 

(Junseok, 2012), the level of safety training in the workplace where industrial robots are 

investigated as shown in Table 4.2. High means “safety training regularly”. Medium means 

“safety training if necessary”. Low means “no training”. The same distribution in case of cobots 

was assumed.   

 Table 4.2 The ratio of the level of safety training  

Low  Medium High 

0.077 0.224 0.699 

4.2.1.2 Type of tasks 

As being similar to the FIRs cases, most of the accidents by cobots are expected to be 

non-routine tasks. From the analysis of FIRs, it shows that 71.4% of FIRs occurred during the 

non-normal operating condition. Research by Brazendale (1988), non-routine tasks give a high 

chance of human errors occurring because of unfamiliarity and unpredictability. The outcomes of 

this uncertainty are “routine” and “non-routine”. The portion of routine and non-routine task was 

assumed in Table 4.3.   
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Table 4.3 The ratio of routine and non-routine tasks 

Routine  Non-routine 

0.93 0.07 

4.2.1.3 Risk assessment 

According to ISO TS 15066, risk assessment for cobots should include not only the cobot 

itself, but also control systems and safety devices such as virtual fences. However, ISO 15066 

refers to ISO 10218-2 based on the ISO 12100 for risk assessment and mitigation of safety 

machinery for designers. This means that this standard does not completely cover hazards at the 

installation and usage stage. In order to implement an effective risk assessment for users, a high 

Safety Integrity Level (SIL; IEC 62061) and/or Performance Level (PL; ISO 13849-1) for 

functional safety need to be applied. Unlike other parent nodes, this node affects two mid-

parents’ node which are human and technical errors. The outcomes of this uncertainty are 

“implemented” or “not implemented”. From the OSHCS 2015 in Korea, 83.3% of workplaces in 

the manufacturing industry implemented risk assessment systems under the article 4.1 of Korean 

OSH act as shown in Table 4.4. The same distribution was assumed with cobots.  

Table 4.4 The ratio of the implementation of risk assessment 

Implemented Not implemented 

0.833 0.167 

4.2.1.4 Proper installation  

Cobots and coordinate systems should be installed according to the law or international 

safety standards because the design, requirements, and layout of equipment, utilities, and 

facilities can lead to hazards if they are not correctly installed. For instance, although there is no 

function of safety monitored stop in co-existence or collaboration zone, a worker might make a 
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wrong judgment to try and enter a cell without caution. Therefore, proper installation is one of 

the major factors that affects human error. This study also considers proper installation as the 

factor of technical errors because if not, the virtual cage for safety has a chance to fail to function 

properly. Therefore, this node can affect two errors - human and technical errors – like the case 

of the node for risk assessment. The outcomes of this uncertainty are proper and improper. From 

the OSHCS 2015, 90.3% of the interviewees replied that preventative measures under the article 

25 of Korean occupational safety and health act were completely applied at workplaces where 

hazardous machinery equipment, such as industrial robots, were installed. It is applied that the 

ratio of the cobots’ case also has the same distribution. 

Table 4.5 The ratio of proper and improper installation of cobots 

Proper Improper 

0.903 0.097 

4.2.2 Organizational errors 

Under the article 5 of Korean OSH act, employers have a responsibility to provide a safe 

work environment and improve working conditions so as to prevent occupational injuries and 

illnesses. Therefore, the CEO’s safety interest based on employers’ responsibility is crucial to 

implement an effective safety management system of occupational safety and health program 

that is encouraged by Korea occupational safety and health agency (KOSHA). Moreover, the 

degree of organizational ability to manage OSH issues generally depends on the size of the 

company because of safety budget and manpower. In this category, there are three uncertainties: 

safety management, CEO’s safety interest, and the size of the company. The probability of 

organizational errors assumes 0.003 in case of “P (safety management: high, CEO’s interest: 

high, company size: greater than 300)” which is the same probability of human error. When it 
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comes to each conditional probability4, the probability following Table 4.6 was applied. 

Table 4.6 Impact on organizational errors of three uncertainties and one decision node 

Safety  

management 

CEO’s safety 

interest 

Company  

size 

Number of  

Cobots 

High                 (0) High                  (0)  Greater than 300     (0)  1                    (0) 

Medium    (+0.033) Medium     (+0.033)  50 ~ 299          (+0.033)   2            (+0.033) 

Low          (+0.066) Low     (+0.066)  1~49                (+0.066)           3            (+0.066) 

4.2.2.1 Safety management 

On the basis of the accident analysis of FIRs, 27 workplaces where fatality occurred had 

a proper safety procedure such as Lock Out/Tag Out (LOTO) 5. However, these tragic fatalities 

happened because the safety procedure was superficial, which implies safety management was 

insufficient and did not work with a chemical bond. Therefore, safety management works to 

reduce accidents caused by cobots. The outcomes of this uncertainty are high, medium, low. 

High means “well built-in”. Medium means “somehow built-in”. Low means “rarely built-in or 

needed”. From the OSHCS 2015, the level of safety management was below Table 4.7. The 

same distribution like the case of cobots was assumed. 

 

      Table 4.7 The ratio of the level of safety management  

High  Medium Low 

0.153 0.81 0.037 

 
4 The sum of three uncertainties’ probability is 20% with the same level of contribution as the case of human error. 

Generally speaking, human and organizational error is a result of interaction by two major factors. Environmental 

factors are not considered in the scope section of this study - and thus affect the occurrence of accident together. For 

clarity, the probability of organizational error is assumed the same as that of human error. In case of number of 

cobots, the same amount of contribution is applied for the objective research. 
5 OSHA Standard 29 CFR 1910.147 for control of hazardous energy, or lockout/tagout (LOTO), is used to prevent 

unexpected startup of equipment, and thus decrease the amount of injuries from harm during maintenance. 
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4.2.2.2 CEO’s safety interest 

In manufacturing environments, effective leadership is used in order to increase the 

safety performance of workers in high-risk situations. (Flin & Yule, 2004). Safety leadership is 

projected at the level of the CEO’s safety’s interest. This is essential to show leadership and 

enable employees to energize their safety performance in a positive way. The outcomes of this 

uncertainty are high, medium, low. High means “strong interest for safety from CEO”. Medium 

means “Moderate interest for safety from CEO”. Low means “Rarely or no CEO’s safety 

interest”. From the OSHCS 2015, the level of CEO’s safety interest was below Table 4.8.  
 

 Table 4.8 The ratio of the level of CEO’s safety interest  

High Medium Low 

0.367 0.601 0.032 

4.2.2.3 Company size 

Larger-size companies have usually lower rates of fatal injuries compared to smaller-size 

companies (Mendeloff, Ewing Marion Kauffman, & Kauffman, 2006). Recently, in the republic 

of Korea, this trend is becoming rigid because of the increase in outsourcing hazardous work 

from a contractor to a sub-contractor for cost reduction (Ministry of Employment and Labor, 

2015). Moreover, it is expected that cobots in SMEs will have higher relative vulnerability to 

occupational accidents compared to large-scale companies due to limited safety budget and 

manpower. In this node, the outcomes of this uncertainty are small, medium and large. From the 

national statistics (2018) from the Ministry of Employment and Labor in the Republic of Korea, 

the proportion of company size in the manufacturing industry is shown in Table 4.9.  

Table 4.9 The ratio of company size in the manufacturing industry  

Small (1 ~ 49) Medium (50 ~ 299) Large (greater than 300) 

0.9606 0.0370 0.0024 
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4.2.3 Technical errors 

The innovative technological advancements from physical cages to virtual cages with 

laser curtains, cameras and sensors for preventing collision and trapping, paved the way to make 

it possible for robots to share workplace with workers. Unlike the accident case of industrial 

robots, with the help of the state-of-art intrinsic safety system, the injuries and fatalities from 

cobots are expected to decrease. However, system reliability is still an important factor that 

affects the occurrence of occupational injuries by cobots. Effective implementation of the risk 

assessment and proper installation by the international standards has a significant impact on 

technical errors. Therefore, three factors can affect technical errors. In this category, there are 

three uncertainties: system reliability, risk assessment, proper installation. The probability of 

technical errors 0.001 in case of “P (system reliability: acceptable, risk assessment: implemented, 

proper installation: proper)” which is the required reliability of cobots system by the 

international standard (IEC 62061). When it comes to each conditional probability6, the 

probability following Table 4.10 was applied. 

Table 4.10 Three uncertainties and their impact on technical errors  

System reliability Risk assessment 
Proper installation 

(Virtual fences) 

Acceptable                        (0) Implemented                  (0)    Proper                   (0) 

Unacceptable               (+0.8) Not implemented      (+0.05) Improper          (+0.05) 

4.2.3.1 System reliability 

Cobots are designed for real-time interactions with humans in a shared place. This 

technical advancement requires complicated logics and hardware reliability compared to 

 
6 It is applied that the most contributable factor was system reliability in technical errors which is directly connected 

to occur the accident in the workplace, if it happens. As a result, the probability occurrence of technical errors 

increases up to 80% in case of unacceptable system reliability. The rest of two, risk assessment and proper 

installation were considered as the same level of contributors like the case of human errors. 
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industrial robots (Maurtua, Ibarguren, Kildal, Susperregi, & Sierra, 2017). According to the 

research on Perrow (1994), more complex logics has a chance to increase dysfunctional 

interactions among system components which is called “system accidents”.  In addition, faults of 

safety devices, sensors, and control panels of cobot system (electrical and mechanical failures) is 

directly associated with the occurrence of the accident by cobots.  

However, these failures should not be improved in the stage of usage or installation but in 

the stage of design and manufacturing. It was assumed that all of cobot manufacturers follow 

international standards such as ISO 15066, 10218-1,2 and IEC 62061 etc. According to IEC 

62061, cobot manufacturers should satisfy all requirements over Safety integrity level (SIL) 2 for 

selling their products.  The probability of failure on demand (PFD), corresponding to SIL 2 is 

10−3< x <10−2 of low demand mode. Therefore, the probability of hardware failure is 0.001 as 

shown in Table 4.11. 

Table 4.11 The reliability of cobots and cobot system 

4.3. Outcome  

The estimated annual accident probability by the introduction of cobots is affected by 

three major categories: human, organizational, and technical errors. Table 4.12 shows the eight 

conditional probabilities for that are inputted into the Netica Software in order to be computed. 

Naïve Bayes classifier based on Bayes’ theorem is applied to calculate eight values as shown in 

Table 4.12. 

 

 

Acceptable Not acceptable 

0.999 0.001 
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Table 4.12 Eight accident probabilities given each condition for outcome node 

① P (accident | human error (o) ∩ organizational error (x) ∩ technical error (x)) = 0.13747 

② P (accident | human error (x) ∩ organizational error (o) ∩ technical error (x)) = 0.00353 

③ P (accident | human error (x) ∩ organizational error (x) ∩ technical error (o)) = 0.07902 

④ P (accident | human error (o) ∩ organizational error (o) ∩ technical error (x)) = 0.24588 

⑤ P (accident | human error (o) ∩ organizational error (x) ∩ technical error (o)) = 0.88749 

⑥ P (accident | human error (x) ∩ organizational error (o) ∩ technical error (o)) = 0.14931 

⑦ P (accident | human error (o) ∩ organizational error (o) ∩ technical error (o)) = 0.94164 

⑧ P (accident | human error (x) ∩ organizational error (x) ∩ technical error (x)) = 0.6E-8 

 

4.3.1 Computation of conditional probabilities with naïve Bayes 

Naïve Bayes assumes that factors are independent each other and thus evidence or marginal 

probability can be divided into independent parts. For example, the annual accident probability 

given that all of three errors occur can be expressed as the following equation. 

=  
𝑃(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑡ℎ𝑟𝑒𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 𝑜𝑐𝑐𝑢𝑟𝑠) 

𝑃(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑡ℎ𝑟𝑒𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 𝑜𝑐𝑐𝑢𝑟𝑠) +  𝑃(𝑛𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑟𝑒𝑒 𝑒𝑟𝑟𝑜𝑟𝑠) 
 

=  
𝑃(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(ℎ𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡)

{ 𝑃(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(ℎ𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) +

𝑃(𝑛𝑜 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(ℎ𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑠|𝑛𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑛𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) ∗ 𝑃(𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠|𝑛𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡) }

 

             Therefore, this equation requires a P(A) which is the marginal probability. Accident 

probability “P(A)” is assumed that it would occur as much as the average occupational accident 

rate of the republic of Korea. In 2018, the average occupational accident rate of the republic of 

Korea was 0.54%. In case of likelihood such as P(human errors | accident), P(organizational 

errors | accident) and P(technical errors | accident), calculated from the status of installation of 

safety fence and safety measures for entrances, in the analysis on FIRs are applied. There are six 

likelihoods depicted in Table 4.13.  
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Table 4.13 Six probabilities given that accident occurs  

P(human error | accident, H|A)           = 0.4815 P(no human error | accident, ~H|A)                = 0.5185 

P(organization error | accident, O|A)  = 0.1852                P(no organization error | accident, ~O|A)    = 0.8148 

P(technical error | accident, T|A)        = 0.3333                P(no technical error | accident), ~T|A)         = 0.6667 

In addition, P (human errors | no accident) is assigned 0.01 which is “human error in a 

routine operation where care is required” from the book that is “A guide practical human 

reliability assessment” written by Barry Kirwan. P (organizational error | no accident) is applied 

0.1 that “supervisor does not recognize the operator’s error” from the book that is “A guide 

practical human reliability assessment” written by Barry Kirwan. In case of P (technical error | 

no accident), the probability of safety integrity level (SIL) 2 from the IEC 62061 is 0.01 as 

shown in Table 4.14. 

Table 4.14 Six probabilities given that accident does not occurs  

P(human error | no accident, H|~A)             = 0.01 P(no human error | no accident, ~H|~A)           = 0.99 

P(organization error | no accident, O|~A)      = 0.1                P(no organization error | no accident, ~O|~A)    = 0.9 

P(technical error | no accident, T|~A)          = 0.01                P(no technical error | no accident, ~T|~A)        = 0.99 

 

With these values, eight posterior probabilities have been computed below:  

   ① P(accident | human error(o) ∩ organizational error(x) ∩ technical error(x)) 

      = P(A | H∩~O ∩~T) ⩭   
𝑃(𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴)

𝑃(𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴) + 𝑃(𝐻|~𝐴)∗𝑃(~𝑂|~𝐴)∗𝑃(~𝑇|~𝐴)∗𝑃(~𝐴)
    

                                         = 
0.4815∗0.8148∗0.6667∗0.0054

0.4815∗0.8148∗0.6667∗0.0054+0.01∗0.9∗0.99∗0.9946
   

                                         = 0.13747 = 13.747% 
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  ② P(accident | human error(x) ∩ organizational error(o) ∩ technical error(x)) 

      = P(A | ~H∩O∩~T) ⩭ 
𝑃(~𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴)

𝑃(~𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴) + 𝑃(~𝐻|~𝐴)∗𝑃(𝑂|~𝐴)∗𝑃(~𝑇|~𝐴)∗𝑃(~𝐴)
   

                                        = 
0.5185∗0.1852∗0.6667∗0.0054

0.5185∗0.1852∗0.6667∗0.0054+0.99∗0.6∗0.99∗0.9946
  

                                        = 0.00353 = 0.353% 

  ③ P(accident | human error(x) ∩ organizational error(x) ∩ technical error(o)) 

    = P(A | ~H∩~O∩T) ⩭  
𝑃(~𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴)

𝑃(~𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴) + 𝑃(~𝐻|~𝐴)∗𝑃(~𝑂|~𝐴)∗𝑃(𝑇|~𝐴)∗𝑃(~𝐴)
   

                                        =   
0.5185∗0.8148∗0.3333∗0.0054

0.5185∗0.8148∗0.3333∗0.0054+0.99∗0.9∗0.01∗0.9946
   

                                             = 0.07902 = 7.902% 

  ④ P(accident | human error(o )∩ organizational error(o) ∩ technical error(x)) 

    = P(A | H∩O∩~T) ⩭  
𝑃(𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴)

𝑃(𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴) + 𝑃(𝐻|~𝐴)∗𝑃(𝑂|~𝐴)∗𝑃(~𝑇|~𝐴)∗𝑃(~𝐴)
   

                                        =   
0.4815∗0.1852∗0.6667∗0.054

0.4815∗0.4∗0.1852∗0.6667∗0.0054+0.01∗0.1∗0.99∗0.9946
   

                                        = 0.24588 = 24.588% 

   ⑤ P(accident | human error(o) ∩ organizational error(x) ∩ technical error(o)) 

    = P(A | H∩~O∩T) ⩭ 
𝑃(𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴)

𝑃(𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴) + 𝑃(𝐻|~𝐴)∗𝑃(~𝑂|~𝐴)∗𝑃(𝑇|~𝐴)∗𝑃(~𝐴)
   

                                         =   
0.4815∗0.8148∗0.3333∗0.0054

0.4815∗0.8148∗0.3333∗0.0054+0.01∗0.9∗0.01∗0.9946
    

                                           = 0.88749 = 88.749% 
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   ⑥ P(accident | human error(x) ∩ organizational error(o) ∩ technical error(o)) 

    = P(A | ~H∩O∩T) ⩭  
𝑃(~𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴)

𝑃(~𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴) + 𝑃(~𝐻|~𝐴)∗𝑃(𝑂|~𝐴)∗𝑃(𝑇|~𝐴)∗𝑃(~𝐴)
    

                                     =   
0.5185∗0.1852∗0.3333∗0.0054

0.5185∗0.1852∗0.3333∗0.0054+0.99∗0.1∗0.01∗0.9946
    

                                     = 0.14932 = 14.932% 

   ⑦ P(accident | human error(o) ∩ organizational error(o) ∩ technical error(o)) 

   = P(A | H∩O∩T) ⩭  
𝑃(𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴)

𝑃(𝐻|𝐴)∗𝑃(𝑂|𝐴)∗𝑃(𝑇|𝐴)∗𝑃(𝐴) + 𝑃(𝐻|~𝐴)∗𝑃(𝑂|~𝐴)∗𝑃(𝑇|~𝐴)∗𝑃(~𝐴)
    

                                  =   
0.4815∗0.1852∗0.3333∗0.0054

0.4815∗0.1852∗0.3333∗0.0054+0.01∗0.1∗0.01∗0.9946
    

                                      = 0.94165 = 94.165% 

  ⑧ P(accident | human error(x) ∩ organizational error(x) ∩ technical error(x)) 

    = P(A | ~H∩~O∩~T) ⩭  
𝑃(~𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴)

𝑃(~𝐻|𝐴)∗𝑃(~𝑂|𝐴)∗𝑃(~𝑇|𝐴)∗𝑃(𝐴) + 𝑃(~𝐻|~𝐴)∗𝑃(~𝑂|~𝐴)∗𝑃(~𝑇|~𝐴)∗𝑃(~𝐴)
  =  

                                          =   
0.5185∗0.8148∗0.6667∗0.0054

0.5185∗0.8148∗0.6667∗0.0054+ 0.99∗0.9∗0.99∗0.9946
  

                                                = 0.00000006=0.000006% 
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CHAPTER 5.    RESULTS 

As a result of Netica software with the decision “one cobot” and “No implementation of 

regulatory safety certification”, the chance of accident occurrence by introduction of cobots is 

0.66 as shown below in Figure 5.1. 

 

Figure 5.1 Bayesian belief network of the annual accident probability by cobots using Netica 
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Regarding other decision nodes, Netica software shows the results in each state below Table 5.1. 

Table 5.1 The annual accident probability by the introduction of cobots  

Number of 

Cobots 

safety certification 

implements 

Safety certification 

does not implement 

1 0.52% 0.66% 

2 0.94% 1.09% 

3 1.37% 1.54% 

It shows that the estimated annual accident probability increases as the number of cobots 

increases, specifically, from one (0.66%) to three (1.54%), given that safety certification is not 

implemented. The introduction of the safety certification system has a positive effect on 

decreasing the annual accident probability from 0.66% (if not implemented) to 0.52% (if 

implemented) with one cobot by directly affecting the ratio of proper installation from 90.3% to 

99.9% in Figure 5.1.  

Regarding the three main errors, organizational errors have the most frequent probability 

(12.0%) as shown in Figure 5.1. In terms of impact, however, human errors have the largest 

impact on annual accident probability as shown in Table 5.2 due to large fluctuation between the 

lowest outcome: 0% occurs selected and the highest outcome: 100% occurs selected. 

Table 5.2 The impact level of three main errors for the annual accident probability 

Three categories 
Estimated annual accident probability 

The lowest7 The highest8 Variance 

Human errors 0.15% 17.5% 17.35 

Organizational errors 0.57% 1.31%   0.74 

Technical errors  0.47% 14.5% 14.03 

 

 
7 The probability when selected that the outcome has not fully occurred in the category  
8 The probability when selected that the outcome has fully occurred  in the category 
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CHAPTER 6.    SENSITIVITY ANALYSIS 

Assumptions on how different factors interact with one another allow for probabilities to 

be based on these assumptions. Sensitivity analysis allows researchers to see how these factors 

interact with one another, and relies on these assumptions and measure the impacts of 

fluctuations by changing the inputs of each factor (Stallard, Mackenzie, & Peters, 2018). The 

Bayesian belief network diagram is able to extrapolate to what extent changing inputs will have 

on target value.  Figure 6.1 shows that the variance of accident probability as each factor moves 

from the best condition to the worst condition while the other factors are fixed. The outcome is 

based on one cobot installed with no safety certification system. For instance, if safety training is 

fully high, the annual accident probability is 0.51%, if fully low, it is 1.30% as seen in Figure 

6.1.  

 

Figure 6.1 Sensitivity analysis for the annual accident probability with one cobot installed and 

regulatory safety certification system implemented  
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As shown in Figure 6.1, the factor that has the largest fluctuation on the outcome is 

system reliability. If system reliability is unacceptable, the probability of accident occurrence 

increases up to 9.15%. However, the level of system reliability has the limitations for 

improvement in usage or installation stages, but not as many in the stages of design and 

manufacturing. It was assumed in this paper that cobots were distributed only if they met 

international standards such as ISO 15066, 10218-1,2 and IEC 62061 for system reliability. Due 

to this, this paper is inconclusive to say that safety reliability has the greatest impact on the 

accident probability.    

The next largest variable factors are proper installation and risk assessment. If installation 

is improper, the probability of accident occurrence increases up to 1.97% and the impacts of 

fluctuations from the best state and the worst state is 1.45%. If risk assessment is not fully 

implemented, the outcome increases up to 1.85% and the impacts of fluctuations from the best 

state to worst state is 1.43%. 

On the other hand, three factors belonging to organizational errors are measured with 

relatively small variability. It is estimated that the portion of P(O|A) is correspondingly small 

compared to P(H|A), P(T|A) and also P(O|~A) is correspondingly big compared to P(H|~A), 

P(T|~A). This is explained by organizational errors affecting accident probability, but they may 

have indirect effects on the chance of accident occurrence which means that human and technical 

errors can cause occupational injuries to occur while organizational errors may play a role in a 

multiplier for the increase of both errors. 
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CHAPTER 7.    DISCUSSION 

The model suggested illustrates how a Bayes belief network is applied to predict an 

annual accident probability by the introduction of cobots. In order to validate the model, the 

question posed should be: “Are they safe or not?”. When using the comparative indicator of 

actual accident rate by industrial robots in Korea, the number of accidents by industrial robots 

can be shown, but the number of workers who work with industrial robots is not able to be 

determined. Therefore, researchers compared with the average accident rate of the entire 

manufacturing industry of Korea in 2018, at a percentage of 0.66%. This percentage is the same 

annual accident probability, when using one cobot and no safety certification system. This is 

classified as “average-risky”. However, with the help of technological advancement such as 

virtual safety fences using light curtains with vision camera and potential collision sensor, the 

accident intensity of cobots is expected to be lower than that of industrial robots. This is due to 

the decrease of speed and power before collision even if there is a collision with unexpected 

human behavior. From this point of view, cobots enable to decrease the work loss days, and thus 

conclude that cobots are safer than industrial robots, even though the number of accidents of 

cobots and industrial robots are very similar. 

Both the analysis on FIRs and the sensitivity analysis on the risk model indicate that 

proper installation is the most influential factor on the chance of accident occurrence. From the 

analysis of FIRs, the cause of 14 out of 28 cases was improper installation of safety fences and 

interlock for the entrance designed to keep the robot inaccessible to workers. This unsafe 

condition can allow workers to enter into a high-risk collision zone with no regard for safety. 

However, the primary risk mitigation strategy of industrial robots that is to separate the robot 

from workers is no longer applicable to cobots. The physical cage needs to be replaced with a 
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reliable, robust virtual cage to guarantee the safety of their human colleagues (Anne Jansen, 

2018). To install this cage safely including the total cobots system, the introduction of the safety 

certification would be an effective regulatory system at the government level. To realize this 

measure at the application level, the government needs to consider introducing qualifications or 

licenses related to the installation of cobots. This will raise the technological level for integrators 

installing cobots’ cells. Furthermore, only safety devices and equipment such as light curtain, 

vision camera and pressure sensors that have passed the safety certification system should be 

distributed to the industry.    

Another effective risk mitigation strategy derived from the risk model is to implement an 

effective risk assessment. The reduction of annual accident probability was significant between 

“implemented” and “not implemented”. However, it is believed that the concept of 

implementation for risk assessment should be changed as human-robot collaboration become 

more popular. While isolation from humans has been the best way to prevent accidents, from 

now on, it is necessary to control and cooperate with robots which are the main hazards to 

mitigate risk. One of the practical approaches is that risk assessment for cobots is not volume or 

static-based, but rather sequence or process-based that will change over time with the method 

recommended by ISO 15066.   

Next, the model points out the importance of safety measures during non-routine tasks 

such as programming, relocating and repairing. Due to the usability and versatility of cobots, 

cobots have a chance to conduct themselves of their various tasks in the workplaces and due to 

this, they will be frequently relocated and reprogrammed. Therefore, sophisticated safety training 

and procedure should be required. 
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Promoting safety awareness through a high-level of safety training for workers is 

important. From the model, the difference in the annual accident probability between high safety 

training and low safety training is 0.79%.  From the analysis of OIIRs, it was recognized that 

there has been a number of accidents for skilled workers who have worked for over 20 years. 

Therefore, training is required for new employees as well as refresher courses need to be for 

programmers, operators, and maintenance workers. 

Another implication is that cannot be overlooked is the CEO’s safety interest as well as 

the safety management system although their level of impact on the annual accident probability 

is relatively lower than other factors. This is attributed to the fact that leadership affects the 

formation of safety culture in the workplace. According to the KOSHA, the safety management 

system refers to a management system that combines the safety management priority based on 

CEO’s safety interest. Declaring safety management as a priority by the CEO is the foundation 

for this system. This functions through a plan-do-check-action cycle in a systematic and 

autonomous manner. High-level of the safety management system combined with the CEO’s 

high-level of safety interest prevents accident by the introduction of collaborative robots. 

It should not be overlooked if the annual accident probability will increase as the number 

of cobots increase per cell. In this study, it was assumed that the risk will simply increase 

linearly with each condition. However, there would be many factors to affect risk in real 

environments, such as unintended movements due to the communication errors between multiple 

cobots. 
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CHAPTER 8.    CONCLUSION 

The demand for collaborative robots is increasing rapidly in the era of 4th industrial 

revolution (Badri, Boudreau-Trudel, & Souissi, 2018). In the line with this trend, the 

occupational injuries by cobots also is regrettably expected to increase. In this respect, it is 

believed that this article is one to initially attempt to suggest a BBN for the risk analysis for the 

introduction of cobots. This study has strived to obtain trustworthy probabilities through the 

analysis on OIIRs, FIRs and national statistics in the Republic of Korea. In addition to this data, 

notional data with renowned literature reviews, as well as the author’s experiences over the 10 

years of occupational safety and health field.  

With the timely attempt, the risk (BBN) model was developed based on the factors for the 

annual accident probability by cobots. This gave outcome of 0.66%, given one cobot and no 

regulatory safety certification. As the validating process, the outcome was compared with the 

average accident rate of entire manufacturing industry of Korea in 2018. Both were the same. It 

can be interpreted “average-risky” in terms of accident frequency, but in terms of the accident 

intensity, that of cobots is expected to be lower than that of industrial robots. This is due to well-

rounded and sophisticated safety system components and devices such as speed and force limit 

with virtual fence. Nonetheless, accident rate and intensity should never be ignorable. 

Through the risk analysis with BBN and sensitivity analysis, these outcomes 

demonstrated how important it is to identify the optimal strategies for mitigating accident by 

cobots. As the saying goes “An ounce of prevention is worth a pound of cure”, all measures 

mentioned in the discussion are vital to accident prevention. However, this paper focuses on 

three key measures to mitigate the risk by the introduction of cobots based on what is realistic 

and effective.  
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The first measure is cobots that have secured safety reliability are designed, produced, 

and distributed at the design and manufacturing stage. Not only should it be based on the result 

of the sensitivity analysis, but it should be done in accordance with the international standards 

such as ISO 15066, 10218-1,2 and IEC 62061. Even though this is out of the scope, this should 

be carried in a big picture view. 

The second measure is that regulatory safety certification system at installation is an 

urgent need in the government level. It has the greatest sensitivity of all of the measures, besides 

the system reliability, and its effect for the accident reduction is magnificent. 

Last but not least, implementing an effectual risk assessment following the international 

standards or regulations at the usage stage as enforced by the law and ISO 15066. This proactive 

measure helps workers alongside cobots to recognize and control hazards in various conditions, 

promote safety awareness, and finally reduce the cobot-related annual accident probability as 

well as costs. Consequently, this paper suggests an effectual concept for preventing the cobot-

related accident in the Republic of Korea as seen in Figure 8.1.  

 

Figure 8.1 A step-by-step approach for preventing the cobot-related accident  
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CHAPTER 9.    FUTURE STUDY 

This study is one of the first attempts that suggest a BBN for the risk analysis by the 

introduction of cobots, this model should be reinforced further to include more factors and a 

complete set of decisions, mirroring actual situations in the future and take more consideration to 

use subjective probabilities through more robust data from expert group surveys or empirical 

experiments. 

These limitations also pointed toward a very powerful and useful approach using 

Bayesian belief network, based on subjective assessments with notional data. Further study needs 

to reflect and consolidate it with present limitations and other important considerations: cyber 

security risks, environmental risks (e.g. electromagnetic interference), cognitive factors, 

regulations, and stakeholder requirements. Moreover, automated guided vehicles called “mobile 

robots” which move on autonomous platforms are the next challenge for safety in the workplace. 

Therefore, the future study should consider the limitations mentioned above to construct more a 

reliable model. 
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APPENDIX.  PROBABILITY IN NETICA SOFTWARE 

# The probability of occurrence for human errors in Netica 
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# The probability of occurrence for organizational errors in Netica 

 



52 

 

 

 

 

# The probability of occurrence for technical errors   

 


