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Optimizing the Flexible Design of Hybrid
Renewable Energy Systems

Abstract—Engineering systems often operate for a long
period of time under varying conditions. Designers design the
system based on the best available information at the time of
the decision. They should also account for future uncertainties
in the initial design of the system. The initial design may or
may not change as the future evolves and conditions change.
The goal of this study is to optimize the design of a hybrid
renewable energy system to deliver electricity under highly
uncertain demand. This research explores designing the hybrid
system while taking into account uncertainties over a long
period of time (i.e., 20 years in this study). The objective
is to minimize the expected discounted cost of the hybrid
renewable energy system during the next 20 years. A design
solution may also be flexible, which means that the design can
be adapted or modified in the future to meet new scenarios.
This paper incorporates flexibility or capacity expansion into
engineering design under long-range uncertainty when the
objective function is evaluated via a Monte Carlo simulation.
The value of expanding capacity is measured by comparing
the cost without capacity expansion and cost with capacity
expansion.

Index Terms—Engineering Design, Hybrid Renewable En-
ergy System, Flexibility, Capacity Expansion, Monte Carlo
Simulation, Bayesian Optimization.

I. Introduction
Traditional engineering design assumes that customers

and the public know what they want with a high degree
of certainty and that requirements will not change over
time. The new system will operate in a stable environment
in which the regulations, technologies, demographics, and
usage patterns will not change [1]. However, a design may
not be successful in the future because the operating con-
ditions or demand for a product may change. For example,
an automobile company may design and manufacture cars
based on the current fuel price without considering the
long-term uncertainty in the fuel price [2]. The demand
for this company’s products may decrease in the future
if its cars are not fuel efficient. Many engineered systems
and products may also be used in ways that were not
originally intended by the designers. For example, the
Global Positioning System (GPS) was originally developed
for military use, but a countless number of commercial
devices rely on the GPS today. The developers failed to
design the original GPS with the capability to extend to
these non-military uses [1].

Engineering design can be viewed as a decision-making
process, but complexity and uncertainty make decision
making for systems design challenging [3]. When an engi-
neering system is designed, there may be large amounts
of uncertainty about the future, which makes decisions
about how best to design the system difficult [4]. Designers
design the system based on the best available information

at the time of the decision, and they should also account
for future uncertainties in the initial design of the system.
The initial design may or may not change as the future
evolves and conditions change. For example, power plant
designers should consider uncertainties in the price and
demand for electricity, but they may also want the ability
to change the initial design based on the evolution of price
and demand and other conditions (e.g., technology for
renewable energy sources) in the future. They may choose
to expand capacity under some scenarios and choose not
to expand their capacity under other scenarios. Since
engineered systems constantly face changes and unpre-
dictability in their environments, these systems should be
designed with the capability to respond to future changes
[5].

Engineering system design may require optimizing high-
dimensional, computationally expensive objective func-
tions under long-range uncertainties. Two examples in-
clude the wing design of a high-speed aircraft in the
aerospace industry [6] and the crash worthiness design
in the automotive industry [7]. Designing with many
parameters involves optimizing an objective function in
high-dimensional space. The evaluation of the objective
function often requires the use of a computationally expen-
sive simulation model. High-dimensional design problems
typically have discrete and continuous variables, and there
is often uncertainty around these problems. Monte Carlo
simulation is often used to explore the design output given
design parameters and while considering the uncertainty.

If a designer plans to modify the design, add capac-
ity, or alter the system in the future, then the design
decision is a multi-stage decision problem. The problem
is frequently stochastic because of uncertainties in the
future conditions. Designers should find the optimal design
of the system and how that design should be modified
under different conditions in the future [8]. This multi-
stage design problem can manifest itself in multiple ways.

One such manifestation is determining if and when to
expand the a system’s capacity [4], [9]–[21]. For example,
Wang et al. [16] use game theory and bi-level optimization
to find amount to capacity expansion amount under an
incomplete information for the competitors in the energy
market. Capacity may be discrete units in which case
mixed-integer linear programs may be used to determine
when and if to expand capacity [17], [19] . Hajipour et al.
[18] develop a stochastic program based on a Monte Carlo
approach to find the optimal capacity for the components
of the Microgrid system with wind farms and energy
storage.

Another manifestation of this multi-stage design deci-
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sion under uncertainty is to produce a flexible design.
Flexibility in design enables the designers to review the
initial design in the future and provides them with the
option to modify the system. A flexible design usually
gives designers or the firm the ability to easily modify the
design in order to respond to changing circumstances such
as increasing or decreasing demand [5]. In recent years,
flexibility has been considered in a number of fields from
architecture to software design [22]–[26]. Abandoning the
system permanently or expanding the capacity to handle
more demand in the future are examples of flexibility in
engineering design [8].

Studies show that a flexible design can reduce the costs
of design by 10-30% in comparison to the standard design
[27]. A flexible design may enable a system’s owner to
more easily expand that system’s capacity in the future [4],
[20], [21]. Solution methods to this multi-stage stochastic
optimization problem include generating dozens of sample
paths from the total set of uncertain scenarios [4], meta-
heuristics and evolution algorithms [20], and deploying
Monte Carlo simulation [21]. These papers [4], [20], [21]
assume that the model can be easily evaluated for any
input decision. This assumption does not apply to cases
where the objective function is estimated via a complex
simulation in which it is not computationally efficient to
evaluate the model output for every possible input.

In this paper, we propose an algorithm to design a
flexible hybrid renewable energy system (HRES) by deter-
mining whether or not to expand capacity. The method
outlined in this paper differs from the previous literature
because our method simulates thousands of scenarios
with all of the uncertain parameters to identify the
optimal engineering system design. Traditional stochas-
tic programming approaches for capacity expansion and
flexibility consider a limited number of scenarios within
their optimization algorithm. The multi-stage design al-
gorithm in this paper classifies the scenarios into different
categories which allows the optimization algorithm to
consider thousands of scenarios and approximates the
optimal solution with a smaller dimension.

Since engineered systems, especially large-scale infras-
tructure, frequently operate for long time, a decision-
making framework is needed to incorporate both long-
range uncertainties and computationally expensive sim-
ulations. The design of the HRES is optimized when
the objective function is evaluated using Monte Carlo
simulation that incorporates uncertainties over a long
period of time (i.e., a 20-year lifespan in this study).
Two models are developed to optimize the system design.
The first model uses a simulation optimization algorithm
that considers 10,000 possible future scenarios, and the
design variables are selected that minimize the expected
discounted cost. In this model, the initial design of the
HRES will be fixed and unchanged during the planning
horizon. The second model introduces an algorithm that
uses those 10,000 future scenarios to optimize a multi-
stage decision model. Applying the algorithm to the HRES
enables a decision maker to determine if capacity should

be added to the HRES at fixed points in time depending
on demand. The algorithm can also be used to determine
the value of flexibility if the future decision is a decision
about whether or not to modify the design depending on
the realization of uncertainty.

The uniqueness of this paper is that it measures the
value of expanding capacity in the future or the value
of flexibility in complex engineered systems that require
computationally expensive simulations to evaluate the
objective function. The paper develops a model to op-
timize the design of such systems under highly uncertain
parameters. Our study is the first to use simulation
optimization to solve a multi-stage decision problem for an
HRES. In this study, a multi-stage algorithm is proposed
to find the optimal capacity expansion for the compo-
nents of the HRES over a 20-year planning horizon. The
optimization algorithm measures the value of expanding
capacity or flexibility by comparing the value of design
with capacity expansion to the value of design without
capacity expansion.

The rest of the paper is organized as follows. In
section II, the decision-making framework—to include
the structure of the HRES, the model for flexibility,
and the simulation optimization routine—is discussed in
detail. Section III applies the proposed algorithm and
the simulation optimization method to a real-world case
study. Finally, section IV provides concluding remarks and
directions for further research.

II. Decision-Making Framework
A. Hybrid Renewable Energy Systems

The environmental effects of fossil fuel are encouraging
greater usage of renewable energy to meet rising energy
demand. The high cost of renewable energy technologies
is one of the main challenges to greater use of renewable
energy sources. To overcome these challenges, renewable
energy sources can be integrated to meet the energy
demand of a given area. There are different types of HRES
such as biomass-wind-fuel cell, photovoltaic-wind-battery,
and photovoltaic-wind-battery-fuel cell [28]. The HRES
that we consider consists of photovoltaic (solar panel),
wind turbine, battery, electrolyzer, hydrogen tank, and
fuel cell.

The mathematical model for the HRES comes from
[29]–[31]. For instance, Kaviani et al. [29] optimize the
design of HRES without considering the uncertainty of
wind speed, solar irradiation, and demand. Kaviani et
al. [29] state that incorporating the uncertainty of these
parameters in the HRES model requires the use of “com-
putationally intensive and time consuming algorithms like
Monte Carlo simulations.” In those studies, the initial
design of the system is fixed during the long-term planning
horizon and cannot be changed in the future. This assump-
tion makes their models less applicable to an unpredictable
and changing future. Incorporating the flexible design in
which the initial design of the HRES can be modified in
the future and modeling complex uncertainties represent
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Fig. 1: The energy flow of hybrid renewable energy
system

an important advancement in understanding how to best
design renewable energy systems.

The solar panel and wind turbine work to generate
electricity to satisfy demand. If the generation from solar
and wind exceeds demand, then the surplus amount is
stored in the battery for the future. If the battery’s
capacity is exceeded, any excess energy is converted to
hydrogen by the electrolyzer and stored in the hydrogen
tank. The fuel cell can convert the hydrogen to electricity.
The battery and fuel cell will be utilized if the solar and
wind generation fail to satisfy demand in a given period. If
the wind, solar, and battery sources of energy cannot fulfill
demand, the fuel cell can convert the stored hydrogen to
electricity. Energy storage systems (i.e., the battery and
hydrogen tank) are included in the model to overcome the
mismatch between the electricity demand and supply [32].
If the combination of all of these sources cannot satisfy
demand, diesel fuel can be used to meet the remaining
demand. Figure 1 depicts the energy flow inside the HRES.

1) Solar Panel: The solar photovoltaic (PV) panel is a
device that converts the solar irradiation into electricity
using solar cells. It can play an important role in gen-
erating energy in regions that receive a large amount of
sunlight. The hourly output power of the PV panel E pv

t is
calculated as:

E pv
t = η

pv ·SIt ·Apv (1)

where η pv is the efficiency of the PV panel, SIt indicates
the solar irradiation on the surface of the panel at time t,
and Apv represents the area of the solar panel.

2) Wind Turbine: Wind turbines convert kinetic energy
from the wind into the electrical energy. The output power
of the wind turbine Ewg is calculated as:

Ewg
t =


0.5CpρAwgu3

t , if uc < u < ur

0.5CpρAwgu3
r , if ur < u < u f

0, otherwise
(2)

where Cp is the power coefficient, ρ is the air density, and
Awg is the area of the rotor, u, uc, ur, and u f are the the
wind velocity, cut-in wind velocity, the rated wind velocity,

and the cut-off wind speed, respectively [33]. When the
wind speed is between the rated wind velocity and cut-off
speed then the energy is calculated based on the rated
wind velocity.

3) Battery: If the total amount of wind and solar
power exceeds demand, then the battery will be charged.
Otherwise, the battery is discharged to fulfill the unmet
demand. The battery state of charge at time t Sbat

t is:

Sbat
t =


Sbat

t−1−ηd
bat ×Dbat

t /capbat , if Dt > Ewg
t +Epv

t

Sbat
t−1 +ηc

bat ×Ebat
t /capbat , if Dt < Ewg

t +E pv
t

(3)

where ηc
bat represents the efficiency of the battery if it

is charging, ηd
bat when it is discharging, capbat depicts the

capacity of the battery, Dt shows the demand for electricity
at time t, and Ebat

t is the amount of energy that goes
into the battery at time t. The battery is charging when
the amount of electricity generated from solar panels and
wind turbines is greater than the demand at that period.
Otherwise, the battery will be discharged. The battery can
be charged until it reaches Sbat

max, and it can be discharged
until it reaches Sbat

min. Thus, Sbat
min < Sbat

t < Sbat
max.

4) Electrolyzer: The electrolyzer converts electricity
into hydrogen [31]. It is directly connected to the hydrogen
tank. When the battery is full and a surplus amount
of electricity generated by wind and solar exists, the
electrolyzer converts the surplus electricity to hydrogen.
The amount of energy generated by the electrolyzer to be
stored in the hydrogen tank Eel is calculated as:

Eel
t =


ηel(Ewg

t +E pv
t +Ebat

t −Dt), if Dt > Ewg
t +E pv

t +Ebat
t

& Sbat
t = Sbat

max

0, otherwise
(4)

where ηel is the electrolyzer’s efficiency in converting
electricity to hydrogen.

5) Hydrogen Tank: The hydrogen tank stores the en-
ergy produced by electrolyzer. The amount of energy in the
hydrogen tank increases when the electrolyzer supplies the
hydrogen tank with hydrogen, and the amount of energy
in the tank decreases when the fuel cell consumes energy.
The amount of energy in the tank at time t Etank

t is:

Etank
t = Etank

t−1 +Eel
t −E f c

t (5)

where E f c
t is the amount of energy generated by the fuel

cell at time t.
6) Fuel Cell: The fuel cell is a device that converts

chemical energy into electricity. It can be used as a source
of energy to generate electricity. The amount of electricity
or energy generated by the fuel cell E f c

t is:

E f c
t =


η f c min[Dt − (Ewg

t +E pv
t +Ebat

t ), if Dt < Ewg
t +E pv

t

η tankEtank
t )] +Ebat

t & Sbat
t = Sbat

min

0, otherwise
(6)

where η f c and η tank are the efficiencies of the fuel cell
and hydrogen tank, respectively. The fuel cell is utilized
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when the demand for electricity is greater than the total
amount of energy generated by solar panel, wind turbine,
and battery and the battery is fully discharged.

7) Diesel Generator: The diesel generator is used as the
emergency source of power to satisfy any demand that
cannot be met by the renewable sources. The amount of
energy needed by the diesel generator at time t Eds

t is
calculated as:

Eds
t =


1

ηds [Dt − (Ewg
t +E pv

t

+Ebat
t +E f c

t )], if Dt > (Ewg
t +E pv

t

+Ebat
t +E f c

t )

0, otherwise

(7)

where ηds is the efficiency of the diesel generator.

B. Cost model of HRES
The objective is to minimize the discounted life-cycle

cost of the HRES. The cost function consists of four
parts: investment, operations and maintenance, replace-
ment, and diesel fuel costs. The total cost of the HRES
depends on the size or capacity of each component (i.e.,
the decision variables). The investment cost INV occurs
at the beginning of system operation. The operations
and maintenance cost OP occurs in each period during
the system’s life cycle. Since the system needs to be
maintained properly, replacement costs REP occurs when
any of the components of the HRES requires replacement.
The diesel fuel costs FC represents the cost of purchasing
diesel fuel to satisfy demand. If the total amount of supply
by HRES at period t is less than the demand, then the
shortage amount will be fulfilled by purchasing diesel from
the market. The model ignores the power transmission cost
between system components and also from the supply to
the demand location. The model is a simplified version
of the real HRES system where there should be multiple
system components at different locations.

The parameters cinv
i , com

i , and crep
i are the investment,

operations and maintenance, and replacement costs for
the ith design component. The I = 6 design components
of the HRES are: the PV panel, the wind turbine, the
battery, the electrolyzer, the hydrogen tank, and the fuel
cell. Each component has an energy capacity capi. The
number of times the ith component will be replaced is Ri.
Li is lifetime of component i. The planning-time horizon
has T total periods, and λ represents the interest rate.
The parameter cds is the diesel cost. Eqs. (8-12) provide
the formula for calculating the life-cycle cost and its four
cost components. Eq. (8) shows the total cost of the
system when operating for the T periods. Eq. (9) shows
the investment cost. Eq. (10) displays the annual cost
of operations and maintenance which is converted to the
present value. Eq. (11) shows the present value of the
cost to replace the system’s components at the end of
their lifetime. Eq. (12) calculates the present value of the
fuel cost when the renewable energy sources cannot fulfill
demand.

cost = INV+OP+REP+FC (8)

INV =
I

∑
i=1

cinv
i capi (9)

OP =
I

∑
i=1

com
i

(1+λ )T −1
λ (1+λ )T capi (10)

REP =
I

∑
i=1

Ri

∑
r=1

crep
i

1
(1+λ )Li×r capi (11)

FC = cds

T

∑
t=1

1
(1+λ )t Eds,t (12)

Complexity and dynamics inside the hybrid renewable
energy system require the use of Monte Carlo simulation
to calculate the cost function. Monte Carlo simulation
is used to propagate the parameter uncertainties to the
uncertainty in the life-cycle cost. The expected cost of
design is calculated as the average after N different
simulations.

The decision variables for designing the HRES are the
capacity of each component, capi. The energy generated
by each component at time t, E pv

t , Ewg
t , Ebat

t , Eel
t , Etank

t ,
and E f c

t , must not exceed the chosen capacity for each
component capi. Each component also has a maximum
capacity, capmax

i , so that

E i
t ≤ capi ∀i = 1, . . . , I, t = 1, . . . ,T (13)

and
0≤ capi ≤ capmax

i ∀i = 1, . . . , I (14)

where E i
t represents the energy generated by component i

at time t.
The design decision maker should choose to minimize

the expected discounted life-cycle cost of the HRES by
choosing the capacity of each component and ensuring
the constraints in Eqs. (13) and (14) be satisfied.

C. Multi-Stage Decision-Making Model
Engineering design may involve multiple decisions over

time. One type of multi-stage design is a flexible design,
and a flexible design will allow for different designs, each of
which depends on the realization of individual scenarios.
In the static design without flexibility, the decision maker
would design the HRES based on all of the future demand
and cost simulations from the current time to the end of
planning horizon. However, in the design with flexibility,
the designers have the option to decide whether or not
to expand the capacities of the HRES if it is needed
to generate more electricity to meet increasing future
demand.

The procedure of multi-stage design when the objective
function should be evaluated with the computationally
expensive simulations cannot be done rolling back from
the end of simulation and exercising the options at each
period of time. In this case, the model should be optimized
for each of N simulations, which is usually large (10,000
simulations or more), and for each period in the planning
time horizon, T . Solving the optimization model will
suffer from the curse of dimensionality. In the proposed
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algorithm for design for flexibility (see algorithm 1), we
discretize the continuous HRES problem and consider a
multi-stage decision making process for flexible design.
The decision maker has the option to expand the capacity
of each component during each review of system. For
example, the decision to expand the capacity of each
component of the HRES could occur every 5 years.

The proposed algorithm starts by optimizing the model
(i.e., Eqs. (1-14)) during the first T1 periods (e.g., T1 = 10
years) by taking into account all of the N future scenarios
from time 0 to T1 (lines 2-4 in algorithm 1). The initial
optimal design will be used as an input into the design
modification stages. At time T1, the first decision for the
capacity expansion will be made. The future scenarios
from the first design modification period to the next
review of the system (periods T1 to T2) are divided into K2
different categories. For example, if the future scenarios
consist of demand for electricity, the future demand could
be categorized into low, medium, and high demand during
periods T1 to T2. Given the initial optimal design, the
algorithm optimizes the additional capacity by minimizing
the expected cost for each of the K2 categories from T1 to
T2. At the end of stage 2, there will be K2 different designs
and expected costs (lines 5-10).

At stage 3, given the initial optimal design and each of
the K2 different additional categories, the expected cost
will be minimized by optimizing Eqs. (1-14). The future
scenarios from the second design modification period to
the next review of the system (periods T2 to T3) are
divided into K3 different categories (e.g., low, medium,
and high demand). Given the initial optimal design and
each optimal expansion amounts of stage 2, the algorithm
optimizes the additional capacities by minimizing the
expected cost for each of the K3 categories from periods
T2 to T3. In stage 3, there will be K2K3 different additional
capacities. There will be K3 optimal additional capacities
for each of K2 expansion amounts at stage 2 (lines 11-19).
This process will continue S times where S is the number
of modification stages.

At stage S+1, given the initial optimal design and all
additional capacities in the previous S design stages, the
expected cost will be minimized by optimizing Eqs. (1-14).
The demand from stage S+ 1 of the design modification
period to the end of planning horizon is divided into KS+1
different regions. Given the initial optimal design and
each of the optimal expansion amounts of all previous S
stages, the algorithm optimizes the additional capacities
by minimizing the expected cost for each of the KS+1

categories from TS to T . In stage S+1, there will be
S
∏

s=1
Ks+1

optimal additional capacities for each KS+1 expansion
amounts at stage S+1 (lines 21-31 of algorithm 1). At each
decision-making stage, the capacities of the components
can be increased to fulfill demand for the upcoming
planning periods.

The total expected cost of the design ECF is the
sum of the initial expected cost E[cost1] and average
capacity expansion costs from stage 1 to stage S + 1,

Algorithm 1 Multi-stage decision-making model
1: Inputs: N future scenarios of demand for t = (0,T ),

S number of design stages where each design stage
occurs at discrete times 0,T1,T2, . . . ,T .

2: Stage 1
3: Solve Eqs. (1-14) and find optimal design for N

scenarios from t = (0 : T1)
4: Outputs: E[cost1] and cap1

5: Stage 2
6: Inputs: N future demand scenarios from time T1 to T2

described as DT1:T2 and cap1

7: for k2← 1 to K2 do
8: Solve Eqs. (1-14) and find the optimal additional

capacity |D = ∗DT1:T2
k2

9: end for
10: Outputs: K2 different E[cost1,k2 ] and cap1,k2

11: Stage 3
12: Inputs: N future demand scenarios from time T2 to T3

described as DT2:T3 , cap1 , and K2 different cap1,k2

13: for k3← 1 to K3 do
14: for k2← 1 to K2 do
15: Solve Eqs. (1-14) and find optimal additional

capacity |D = DT2:T3
k3

16: end for
17: end for
18: Outputs: K2K3 different E[cost1,k2,k3 ] and cap1,k2,k3

19:
...

20: Stage S+1
21: Inputs: N future demand scenarios from time TS to

T described as DTS:T , cap1, K2 different cap1,k2, K2K3
different cap1,k2,k3 , ...,K2K3...KS different cap1,k2,k3,...,kS

22: for ks+1← 1 to KS+1 do
23: for ks← 1 to KS do
24:

. . .
25: for k2← 1 to K2 do
26: Solve Eqs. (1-14) and find optimal additional

capacity |D = DTs:T
ks

27: end for
28: end for
29: end for
30: Outputs:

S
∏

s=1
Ks+1 different E[cost1,k2,k3,...,kS+1 ] and

cap1,k2,k3,...,kS+1

31: ∗DT1:T2
k2

is demand (D) from T1 to T2 in which the value
of D at time T1 is within the region k2

which are discounted by the interest rate λ . Since the
number of different decisions to expand capacities in stage
s is

s
∏

s′=1
Ks′+1, the expected cost in stage s for category

ks = 1, . . . ,Ks is denoted as E[cost1,k2,k3,...,ks ]. The total
expected cost of the design is shown in Eq. (15). Eq.
(15) assumes that each of the ks categories in design stage
s occurs with equal probability. If one category is more
likely than another category, Eq. (15) can be modified to
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include the specific probability of each category.

ECF =E[cost1]+
1

K2

1
(1+λ )T1

K2

∑
k2=1

E[cost1,k2 ]

+
1

K2K3

1
(1+λ )T2

K2

∑
k2=1

K3

∑
k3=1

E[cost1,k2,k3 ]+

. . .+
1

S
∏

s=1
Ks+1

1
(1+λ )Ts

K2

∑
k2=1

K3

∑
k3=1

...
KS+1

∑
kS+1=1

E[cost1,k2,...,kS+1 ]

(15)
The proposed algorithm for multi-stage decision mak-

ing is able to find the optimal design for an arbitrary
number of categories. However, increasing the number of
categories and design stages may make solving the decision
impractical. A four-stage problem with 10 categories
at each stage requires solving 1+10+100+1000 = 1111
optimization problems. However, a four-stage problem
with three categories only requires solving 1+3+9+27 =
40 optimization problems, which is much more practical
to solve.

D. Optimization Algorithm
Black-box functions (e.g., f ) provide system output

for specified values of system inputs, and there typically
exists little information about the properties of f . The op-
timization of a black-box system is referred to as black-box
optimization. Black-box optimization algorithms optimize
the objective function f through a query of the value of
f (x) for a point x, but they cannot make any assumptions
on the analytic form of f [34].

Bayesian optimization is a method to utilize the input-
output relationship of the black-box systems. Many design
decisions are evaluated using complex simulation models,
and having tools that can optimize the design using such
simulations is important for many practical engineering
problems. To optimize such models, the key challenge
is that the designer has little knowledge about how
the objective function changes with respect to changes
in the design decision variables. Such difficulty makes
many traditional algorithms that require either first-order
(i.e., gradient) or second-order (i.e., Hessian) information
invalid. Bayesian optimization algorithms can effectively
solve problems that seek to integrate optimization into
simulation analysis [35]. Further details about Bayesian
optimization is discussed in [36].

The decision variable cap =
[cappv,capwg,capbat ,capel ,captank,cap f c] is a vector
composed of the capacities of all of the components
of the HRES (i.e., solar panel, wind turbine, battery,
electrolyzer, fuel tank, and fuel cell). The Bayesian
optimization algorithm evaluates the objective function
without using any first-order or second-order information.
The algorithm constructs a surrogate model for the
objective function and exploits the surrogate model to
find the next evaluation points in the feasible solution
space [37]. A surrogate model is used since the objective

function cannot be directly calculated. The surrogate
model helps us to estimate the black-box function by
constructing an approximate model. The prior and
acquisition functions are the two major ingredients of
the Bayesian optimization algorithm. We choose the
Gaussian process as the prior over the objective function
depicted in Eq. (8) as it is a powerful prior distribution
for functions [38]. The objective function is approximated
with a multivariate normal probability distribution
function. The predictive distribution for the unobserved
values of the objective function ( f new) has the following
form:

p( f new|capnew, f (cap1:n),cap1:n)

=N( f ∗|µ(cap∗|cap1:n),σ
2(cap∗|cap1:n))

(16)

µ(cap∗|cap1:n) =

Cov(cap∗,cap1:n)Cov(cap1:n,cap1:n)
−1 f (cap1:n)

(17)

σ
2(cap∗|cap1:n) =Cov(cap∗,cap∗)−

Cov(cap∗,cap1:n)Cov(cap1:n,cap1:n)
−1Cov(cap∗,cap1:n)

T

(18)
where cap1:n is the n previously evaluated capacities used
to predict the next point, Cov(cap1:n,cap1:n) is the covari-
ance matrix for the n design alternatives that are simulated
to estimate the objective function, Cov(cap∗,cap1:n) is the
covariance of the n design variables and the new capacity
cap∗ to be evaluated, µ(cap∗|cap1:n) is the posterior predic-
tive mean, and σ2(cap∗|cap1:n) is the posterior predictive
variance. The Gaussian radial basis function kernel is used
to calculate the covariance between two capacities cap and
cap′ :

Cov(cap,cap′) = exp

(
||cap− cap′ ||2

2γ2

)
(19)

where γ is a free parameter which will be tuned in the
optimization. The current best capacity that results in
the smallest expected cost based on n evaluated design
alternatives is denoted as capbest = argmincap1:n

f (cap1:n).
The objective function evaluation (i.e., expected dis-
counted cost) corresponding to capbest is f (capbest). The
next alternative to sample in the simulation is found by
maximizing the acquisition function which is the expected
improvement EI over the current best [39].

EI(cap∗|cap1:n) = (µ(cap∗|cap1:n)− f (capbest))Φ(Z)

+σ(cap∗|cap1:n)Φ(Z)
(20)

where Z = µ(cap∗|cap1:n)− f (capbest )
σ(cap∗|cap1:n)

and Φ(·) denotes the
cumulative standard normal distribution function.

The Bayesian optimization algorithm begins with a se-
lection of acquisition function and prior over the objective
function Algorithm 2 shows the main steps of Bayesian
optimization. The prior has a multivariate normal dis-
tribution with six decision variables, and the acquisition
function is calculated based on Eq. (20). In step 2, all
10,000 observations from the Monte Carlo simulation are
used to calculate the objective function (expected cost).
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The decision variables that maximize the expected im-
provement EI become the next alternative to act as input
into the simulation. which then will be used as a prior
to calculate the posterior. This procedure iterates until
there is not enough improvement in the objective function
(i.e, termination criteria). We use the Random Embedding
Bayesian Optimization (REMBO) developed by Wang et
al. [40] to implement the Bayesian optimization algorithm
in MATLAB software [41].

Algorithm 2 Implementation procedure of Bayesian opti-
mization.

1: Choose an appropriate acquisition function and prior
over the objective function

2: Find the posterior over the objective function given
some observations

3: Use the posterior and an appropriate acquisition
function to identify the next evaluation points

4: Update design alternatives and their corresponding
expected costs functions set

III. Application
In this section, the design of HRES is optimized to

deliver electricity for the state of California under highly
uncertain demand. The planning horizon is 20 years (from
2017 to 2036) and each period is 1 month. Demand for
electricity, solar irradiation, and wind velocity are the
uncertain parameters. It is assumed that the hourly solar
irradiation is normally distributed with a mean of 0.5
kwh/m2 and a standard deviation of 0.1. The wind velocity
is normally distributed with a mean of 5 m/h and standard
deviation of 1. Random numbers from the distribution
of the solar irradiation and wind speed are selected and
included in the simulation of the dynamics of the system.
The interest rate, λ , is 2% per year. It is assumed that
the efficiency of the PV panel is η pv = 0.15. The power
coefficient of wind turbine is Cp = 0.59, and air density is
ρ = 1.225. The cut-in wind, rated wind velocities, and cut-
off wind speed are uc = 3.5 m/h, ur = 14 m/h, u f = 25 m/h,
respectively. The application assumes that the maximum
and minimum state of battery are Sbat

max = 1 and Sbat
min = 0.2.

The efficiency of the electrolyzer, fuel cell, hydrogen tank,
and diesel generator are ηel = 0.6, η f c = 0.6, η tank = 0.95
and ηds = 0.95, respectively.

The investment and replacement cost parameters follow
triangular distributions. Table I shows the investment,
maintenance, and replacement cost parameters and the
lifetime of the components for the HRES. The cost
function parameters come from Sharafi et. al [30]. In order
to build a close to 100% renewable energy system, the
diesel cost (cds) has a high fixed penalty cost of 8 million
dollars per 1 MW.

A simulation-optimization approach is used in order to
find the optimal design for the HRES. As described in
Section II, each component in the HRES has a relatively
complicated dynamic, and calculating the system costs

depends on several uncertainties including demand, solar
irradiation, wind speed, and component costs and life-
times. Thus, the HRES model is evaluated with a Monte
Carlo simulation. The output of the simulation determines
the objective function values that enter into the Bayesian
optimization algorithm to identify the optimal design. The
goal is to minimize the expected cost function that results
from the interaction among the components of the HRES
as both supply and demand fluctuate over a time span of
20 years. The Monte Carlo simulation enables the decision
maker to analyze the stochastic behavior of the HRES.

A. Demand Forecast
Renewable energy systems are designed for long-term

usage. Therefore, it is necessary to establish these sources
of electricity generation considering possible future scenar-
ios which will substantially impact the design. Uncertainty
in the future demand will impact the design of the HRES,
and forecasting demand is required for the control of power
systems [42]. Good demand forecasting is an essential
prerequisite of an energy system study for the capacity
expansion planning. Since future demand will be uncer-
tain, incorporating that uncertainty into the forecasting
model will help the system manage load efficiently [43],
[44]. One of the goals of this paper is to investigate how
the long-range demand uncertainty impacts the design of
the HRES.

Demand for electricity is serially autocorrelated, which
suggests that a time series model may be appropriate. We
choose the Auto Regressive Integrated Moving Average
(ARIMA) [45]. ARIMA is a well-known model for time
series analysis. In time series forecasting, the goal is to
predict a series that typically is not deterministic but
rather contains a random component. The ARIMA model
is a linear combination of past observed data points (here
demand for electricity) and errors to produce a forecast
[46], [47]. This method is widely used in the literature
to forecast demand for electricity [47]–[53]. The general
form of ARIMA(p,d,q) forecasts the future based on the
following:

(1−
p

∑
i=1

℘iℑi)(1−ℑ)dDt = (1+
q

∑
i=1

θiℑ
i)εt (21)

where p is the lag order, d is the degree of differencing,
q is the order of the moving average, ℑ is the lag
operator, ℘ is the autoregressive operator represented as
a polynomial in the lag operator, and θ is the moving-
average operator represented as a polynomial in the lag
operator. In this case study, p = 1, d = 0, and q = 12.
The forecast variable Dt is the demand for electricity at
time t, and εt is a normally distributed error. The arima
function in MATLAB software [41] is used to generate the
ARIMA model for electricity demand using historical data
of monthly electricity demand for California from 2001 to
2016 [54].

Since many different events could occur over 20 years
that would have a large impact on electricity demand in
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TABLE I: The cost (in millions of $ per 1 MW) and lifetime parameters of the components of the HRES [30]
Component Lifetime (years) cinv

i crep
i com

i
lower limit mode upper limit lower limit mode upper limit lower limit mode upper limit

Wind 10 25 30 5 7 9 5 6 7.5 20
Solar 10 20 25 1.5 2.5 3 1.2 2 2.5 75
Battery 1 5 7 1.5 2 2.2 1.3 1.5 2.1 20
Electrolyzer 5 10 13 1 2 3 0.9 1.5 2 25
Fuel Tank 10 20 25 0.8 1.3 1.5 0.8 1.2 1.3 15
Fuel Cell 0.7 1.7 2.7 1 3 4 1.9 2.5 3 172

California, we consider a large amount of uncertainty in
the future electricity demand in California. The error term
εt follows a Gaussian distribution with the mean of 0, and
variance of 20,000.

Monte Carlo simulation is used to generate 10,000
simulated paths of demand by sampling from εt for
t = 1,2, . . . ,240 months and applying the ARIMA model
on Eq. (21). Figure 2 shows the historical monthly demand
and the generated scenarios for electricity demand for 20
years. For the first five years of planning (2017-2021), the
simulated demand scenarios exhibit less uncertainty where
90% of the variation around demand mean lies within the
interval of [18.1, 21.5] million Mwh. From 2021 to the
end of the planning horizon (i.e., 2036), the uncertainty
in demand accumulates which leads to a wide variety
of demand paths in the future. Although the demand
uncertainty is very large at the end of planning horizon,
90% of variation around demand mean at the end of 2036
is contained within the interval of [16.7, 39.7] million Mwh.
Modeling the demand with large uncertainty that covers
20 years into the future enables designers to consider
extreme demand scenarios, which may not be very likely
but may still need to be considered in policy planning.
Such a large uncertainty can help motivate the need for
flexibility or capacity expansion in capacity planning.

B. Design without capacity expansion
In the Monte Carlo simulation of the time series model,

10,000 scenarios are generated for modeling the demand
for the next 20 years. The model is solved with 10,000 sam-
ples from uncertain parameters (demand, cost coefficients,
wind speed, and solar irradiation) for 240 months (2017-
2036). The simulation optimization algorithm uses Eqs.
(1-14) to identify the design alternative that minimizes
the expected discounted cost. In design without capacity
expansion, the system is designed at the beginning of the
system operation in 2017 and will not be modified in the
future.

Table II shows the optimal results for design without
capacity expansion. The optimal capacities represent the
nominal capacity of the components. The actual capacity
of each component is the nominal capacity multiplied by
the efficiency. For instance, the solar panel is built with
392 GW nominal capacity; however, the actual capacity
is 0.15×392 = 58.8 GW.

The results show that 78% of the demand during the
10,000 simulations from 2017-2036 are fulfilled with solar
and wind generation. These two components supply the

TABLE II: The optimal design of the HRES for design
without capacity expansion

Plant Optimal Capacity (GW) Percentage (%)

Solar panel 392 56
Wind turbine 146 22
Battery 89 17
Electrolyzer 1041 -
Hydrogen tank 3221 -
Fuel cell 138 4
Diesel - <1

majority of demand. Since the amount of energy generated
by these two sources exceed the demand for many time
periods, the surplus amount of energy will be conserved
in the battery for future use. When the battery is full,
the electrolyzer converts the energy into hydrogen, which
is stored in the hydrogen tank and will be converted to
electricity by the fuel cell. For instance, based on one
of the 10,000 simulations (e.g., Figure 3a), the amount
of energy generated by wind and solar almost always
exceeds demand during the entire 20 years. There are
a few instances in that simulation when solar and wind
generation is low that energy from the battery is used.

The results show that the battery and fuel cell satisfy
17% and 4% of the demand, respectively. The HRES
requires diesel to meet approximately 1% of the demand.
The optimal design of the HRES fulfills more than 99% of
the electricity with the renewable sources. The expected
discounted cost of the design is $40.66 trillion, which
includes a $9.56 trillion investment cost, $21.66 trillion
in operations and maintenance costs, $9.4 trillion in
replacement costs, $40 billion in fuel costs. The large life-
cycle cost is due to needing to build huge components
for the HRES system. Fulfilling the total demand for
electricity in the state of California with HRES requires
a large amount of investment and maintenance cost. A
study shows that tens of trillions of dollars are needed to
achieve California’s 80% greenhouse gas reduction target
in 2050 by constructing renewable energy systems [55].

Figures 3a, 3b, and 3c show three random simulations
to illustrate how demand is fulfilled with different sources
of energy in different simulations. In some cases (Figures
3a and 3c), the electricity generated by solar and wind
exceeds the demand most of the time. The battery stores
the surplus electricity and is used to satisfy demand a
small proportion of the time in these two simulations.
Figure 3b illustrates that in some scenarios solar and
wind generation cannot fulfill the increasing demand in
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Fig. 2: Simulation of electricity demand for California, 2017-2036

the future. Although the battery helps to satisfy some of
the demand, most of the surplus energy generated from
years 2017-2031 is stored in the hydrogen tank. The fuel
cell converts the hydrogen to electricity and satisfies much
of the shortfall in demand from 2031-2034. In 2035, the
hydrogen tank is depleted and the fuel cell is unable to
provide any more electricity. Diesel fuel is required it meet
demand in 2035-2036.

To evaluate the effect of the number of simulation
replications, the expected cost of the optimal design
is calculated for different numbers of replications. Ten
thousand replications result in a half-width for a 95%
confidence interval that is approximately 0.5% of the
expected cost. Including more than 10,000 replications
would drastically increase the computation time without
substantially reducing the variation in the objective func-
tion. Ten thousand replications are sufficient to estimate
the objective function in the Monte Carlo simulation.

Design decision making involves making trade-offs
among many design variables and attributes. Determining
how to make those trade-offs may be difficult in complex
engineered systems [56]. Optimization helps the decision
maker to find the optimal design that offers the best
trade-off among all possible design alternatives. Each
design alternative can lead to a different expected cost.
To better visualize the trade space, parallel coordinate
plots can show design alternatives with respect to different
attributes and design variables [56]. The set of feasible
alternatives from the objective space is projected on the
parallel coordinate plot in Figure 4. The plot illustrates
how the 50 different combinations of design variables
impact the expected cost. The 50 combinations are the
50 best results of the optimization algorithm. It shows
the sensitivity of the objective function to each decision
variable. The expected cost is calculated based on the
actual simulation. The optimal design is represented by
the black line. The red line is the second best solution with

an expected cost of $46.25 trillion among those 50 best
solutions in the model. This figure shows the complexity
of the HRES model. If the value for each variable changes,
a large difference in the expected cost may be seen. For
instance, if the solar panel’s capacity is 176 GW and the
wind turbine’s capacity is 312 GW, then more capacity is
needed for the fuel cell (691 GW) with an expected cost
of $85.27 trillion.

C. Design with capacity expansion
The design with capacity expansion strategy requires

a smaller initial investment than the design without
capacity expansion. This strategy defers additional costs
to the future and takes advantage of the time value
of money [8]. A flexible design usually gives designers
or the company the ability to easily modify the design
in order to respond to changing circumstances. In this
section, the value of capacity expansion will be measured
by comparing the expected discounted cost of designing
with capacity expansion and the expected discounted cost
of designing without capacity expansion. Algorithm 1
identifies a flexible design alternative by factoring in the
cost of modifying the design in the future.

1) Case 1: One stage capacity expansion modeling:
Two different cases for this design are developed. In the
first case, one additional stage for the design modification
is considered and S = 1 and T1 = 10. In stage 1, the
initial design and expected discounted cost considers the
uncertain demand profiles for 2017-2026. The results of
this first stage decision making show that the initial
optimal design of the components of the HRES have less
capacity compared to the optimal solution in the design
without capacity expansion model (see Table III).

The initial optimal design from 2017-2026 serves as an
input to decision making in stage 2, which covers 2027-
2036. The stage 2 decision making considers three different
demand profiles (i.e., K2 = 3). If demand in month 120,
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(a) Demand fulfillment in simulation with constant demand (b) Demand fulfillment in simulation with raising demand

(c) Demand fulfillment in simulation with decreasing de-
mand

Fig. 3: Demand fulfillment for three random demand scenarios

Fig. 4: Parallel coordinates plot for design without
capacity expansion

the last month in year 2026, is less than 20.2 million Mwh,
the demand is considered low. If demand in month 120 is
greater than 20.2 million Mwh and less than 22.7 million
Mwh, the demand is considered medium. If demand in
month 120 is greater than 22.7 million Mwh, the demand

is considered high. Each of these demand profiles occur
in 33% of the simulations. Given the initial optimal
design, the Bayesian optimization determines if additional
capacity for the HRES should be constructed if demand is
low, if demand is medium, and if demand is high. Stage 2
contains three different sets of design variables and three
different expected discounted costs, one for each demand
profile. The average expansion costs are calculated as the
expected cost of additional capacity at stage 2. The total
expected cost of this design is calculated using Eq. (15).

Table III shows the optimal design for the HRES with
capacity expansion with a possible design modification
in 2027. Although the wind turbines should initially be
constructed with a relatively small capacity in order to
avoid unnecessary capacity during the first 10 years, the
decision maker should expand the capacity of the wind
turbines and the battery in the high or medium demand
profiles. Since the wind turbines should be expanded, more
battery capacity is needed to store the surplus amounts
of energy. The results also show that in the low demand
profile, the capacity of the HRES should not be expanded.
Diesel should be purchased from the market to supply
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electricity if demand increases in years 2027-2036. Table
III shows that the optimization algorithm chooses the solar
panel with a higher initial capacity compared to the wind
turbine; however, in the second stage, the algorithm finds
that the wind turbine should be expanded and the solar
panel should be operating for the next 10 years with the
initial capacity.

The results show that the initial expected cost in stage
1 ($20.55 trillion) is almost half of the expected cost
of design without capacity expansion ($40.66 trillion).
However, this initial low capacity design will be expanded
in the medium and high demand scenarios which increases
the expected cost beyond just the stage 1 cost. The
total expected cost of design with capacity expansion
for case 1 is $27.22 trillion. The design with capacity
expansion enables the system to defer the additional cost
of investment and replacement to the future, avoid the
operation and maintenance cost of the full deployment for
the first 10 years of operation, and take advantage of the
time value of money. The value of capacity expansion is the
difference between the expected cost of design with capac-
ity expansion and the expected design without capacity
expansion. In this case, the value of capacity expansion is
$13.44 = $40.66−$27.22 trillion, a 33% percent reduction
in cost.

2) Case 2: Two stage capacity expansion modeling: The
second case assumes that the design can be modified twice,
once in year 2027 and once in year 2032 (T1 = 10, T2 = 15).
Similar to the first case, there are three different regions
in each stage of the design modification (i.e., K2 = K3 = 3).
Based on Algorithm 1, at stage 2, three models should be
solved for 3 different ranges of demand for low, medium,
and high demand profiles. The definitions of the demand
profiles in 2027 are equivalent to those in case 1.

The initial optimal design from 2017-2026 serves as
an input to decision making in stage 2, which covers
2027-2031. Given the initial optimal design, the Bayesian
optimization determines if additional capacity for the
HRES should be constructed if demand is low, if demand
is medium, and if demand is high. Stage 2 contains
three different sets of design variables and three different
expected discounted costs, one for each demand profile.
The stage 3 decision making also considers low, medium,
and high demand profiles. Low demand in month 180 is
less than 22.0 million Mwh, medium demand is between
22.0 and 26.3 million Mwh, and high demand is greater
than 26.3 million Mwh.

The initial optimal design from 2017-2026 and optimal
additional capacities for the three different demand pro-
files in stage 2 serve as the inputs to decision making in
stage 3, which covers 2032-2036. Given the initial optimal
design, the Bayesian optimization determines if additional
capacity for the HRES should be constructed at 2032 for
the following 9 scenarios: high demand in both stages 2
and 3, high demand at stage 3 and medium demand at
stage 2, high demand at stage 3 and low demand at stage
2, medium demand at stage 3 and high demand at stage 2,
medium demand in both stages 2 and 3, medium demand

at stage 3 and low demand at stage 2, low demand at
stage 3 and high demand at stage 2, low demand at stage
3 and medium demand at stage 2, and low demand in
both stages 2 and 3.

The average expansion cost is calculated as the expected
cost of additional capacity at stage 2 plus the expected cost
of additional capacity at stage 3. The total expected cost
of the flexible design is calculated using Eq. (15). Table
IV shows the optimal design for the HRES with design
with capacity expansion in 2027 and 2032. Similar to case
1, the initial design of the system will satisfy demand
for 2017-2026 considering all of the 10,000 simulations for
demand. The initial optimal design is the same as in case
1. In 2027, the capacity of the wind turbines and battery
are expanded for the high and medium demand profiles,
but not as much as in case 1. In case 2, the total capacity
in 2027 should fulfill demand from 2027-2031, but in case
1, it is necessary to expand capacity to meet demand
from 2027-2036. If demand is low in stage 2, none of the
system components’ capacities will be expanded, which is
similar to the case 1. Instead, the needed electricity will
be purchased from the market with diesel.

Given the initial design in stage 1 and the decisions
about expanding capacity in stage 2, the additional
capacity is optimized for high, medium, and low demand
profiles for 2032-2036. The capacity expansion amounts at
stage 2 are the same for the medium and high demand
profiles in 2027-2031 (see Table IV), and the planning for
stage 3 given medium demand in stage 2 is the same as
the planning for stage 3 given high demand in stage 2.
Additional capacity for the battery should be added for
high demand profiles in stage 3. If demand is high or
medium in stage 2 and low in stage 3, the capacity of the
hydrogen tank should be expanded. In these scenarios,
the total amount of energy generated by the wind turbine
and solar panel exceeds demand, and the surplus amount
should be reserved in the hydrogen tank.

There should be no expansion in stage 2 if demand is
low. If demand remains low in stage 3, there should not be
any expansion either. If demand is high or medium in stage
3, the decision maker should add additional capacity to
the wind turbine and the battery. The capacity increases
for high and medium demand in stage 3 are very similar.

Bayesian optimization algorithm and the simulation
model are implemented in MATLAB software. The time
it takes to run Bayesian Optimization algorithm for the
static problem (design without capacity expansion) is ap-
proximately 30 minutes; However, it takes approximately
210 minutes to find optimal solution for the two stage
capacity expansion problem.

3) Value of flexibility or capacity expansion: In the first
case of designing with capacity expansion, less capacity is
needed for the first 10 years operation because demand
does not increase significantly. If demand is high or
medium in month 120, the designer should choose to
increase the capacity of the wind turbine and battery. In
case 2, the initial capacity should be similarly expanded
for the wind turbine and battery if demand is high or
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TABLE III: The optimal design of the HRES with capacity expansion for the 1 stage case

Component Initial design (Giga watt) Stage 2
High demand Medium Demand Low Demand

Solar panel 263 0 0 0
Wind turbine 31 128 98 0
Battery 17 54 39 0
Electrolyzer 230 0 0 0
Hydrogen tank 616 0 0 0
Fuel cell 68 0 0 0
Expected Cost ($ trillion) 20.55 12.22 7.63 7.08
Total Cost ($ trillion) 27.22
Value of capacity expansion ($ trillion) 13.44

TABLE IV: The optimal design of the HRES with capacity expansion in design for the two stages case

Component Initial
design

Stage 2 Stage 3 given high or medium demand in stage 2 Stage 3 given low demand in stage 2
High
demand

Medium
demand

Low
demand

High
demand

Medium
demand

Low
demand

High
demand

Medium
demand

Low
demand

Solar panel 263 0 0 0 0 0 0 0 0 0
Wind tur-
bine

31 62 62 0 0 0 0 106 107 0

Battery 17 25 25 0 50 0 0 47 56 0
Elec-
trolyzer

230 0 0 0 0 0 0 0 0 0

Hydrogen
tank

616 0 0 0 0 0 211 0 0 0

Fuel cell 68 0 0 0 0 0 0 0 0 0
Cost ($ tril-
lion)

20.55 6.11 3.33 3.19 6.38 4.72 0.41 7.5 4.3 2.91

Total Cost
($ trillion)

26.52

Value of
capacity
expan-
sion($
trillion)

14.14

medium in stage 2. Differences occur between the two
cases because case 2 has an additional stage to plan for
in years 2032-2036. If demand is high or medium in stage
2 and low in stage 3, the capacity of the hydrogen tank
should be expanded to have more space for the excess
amount of energy generated. If demand is low in stage 2
and high or medium in stage 3, the capacity of the battery
and wind turbine should be expanded to meet the rising
demand because no expansion occurred in stage 2.

The expected discounted cost of design with capacity
expansion for case 2 is $26.52 trillion which is less than
the expected cost in case 1. In case 2, the designers have
two options to exercise, one in 2027 and one in 2032.
Delaying a decision on expanding capacity to 2032 allows
the designers to take advantage of the time value of money.

Figure 5 shows that the expected cost decreases as more
design modifications are included. In reality, there may be
an increase in the initial investment cost that will allow
the designers to easily expand capacity in the future. If
that increase in the initial investment cost to enable the
possible design modification in the future is less than
$13.44 trillion for the one-stage modification or $14.14
trillion for the two-stage modification, then the designer
should spend the money to have that option available to
him or her in the future. These two values show the value
of adding flexibility or capacity expansion to the design
of HRES.

Flexibility usually requires an upfront cost in order to
be able to pursue the flexible alternatives. However, our
methodology calculates the expected cost of design with
flexibility (or capacity expansion). The difference between
the expected costs of the design with capacity expansion
and without capacity expansion is the maximum amount
that the designer should pay to have a flexible option. This
article only studies one type of flexibility modeling (i.e.,
capacity expansion) for the HRES. Future research can
study other flexibility modeling ideas such as abandoning
the system permanently or switching design configurations
[27].

IV. Conclusion

This paper has presented a method to incorporate the
demand uncertainty into the multi-stage design decisions
of an HRES. The HRES is composed of six components:
solar panel, wind turbine, battery, electrolyzer, hydrogen
tank, and fuel cell. The electricity demand data for
California for over a 20-year period is simulated with
an ARIMA time series model. The Bayesian optimization
algorithm identifies the optimal design of the HRES by
minimizing the expected discounted cost considering the
demand for electricity for California and other uncertain
cost parameters over 20 years. A design with capacity
expansion is conducted in two cases: a single design
modification and two opportunities to modify the design.
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Fig. 5: The expected cost vs. decision stages of the HRES

The results show that a single design modification 10 years
after system deployment reduces the system’s expected
discounted cost by 33%. Including a second design modi-
fication would reduce the expected cost by an additional
3%.

This paper makes an important contribution to the
literature of flexible design by measuring the value of
capacity expansion in a complex engineered systems which
require the use of computationally expensive simulations
to evaluate the objective function. The model optimizes
the design of engineered system by using probability
distributions to forecast highly uncertain demand 20 years
into the future. A multi-stage decision-making model
algorithm is developed to evaluate the value of flexibility
or capacity expansion. The algorithm is tested considering
three categories at each stage. Future studies could further
analyze and find the optimal number of divisions at each
stage.

Future research could also include the time to exercise
an option as a decision variable. For example, Kucuksay-
acigil and Min [57] use real options analysis to find the
optimal time to enlarge a ship after the ship is designed.
If simulation optimization is required to optimize over
many periods, such as 240 months, it is time consuming
and even impossible with today’s CPUs to optimize the
mathematical model 240 times rolling back from the end
for the 10,000 simulations. A heuristic model could be
developed to find the optimal time to review the initial
design of HRES.

The proposed algorithm for multi-stage decision-making
design problems can be applied to any complex engi-
neered system such as jet engines design and self-driving
cars. These complex engineered systems require optimiz-
ing high-dimensional, computationally expensive objective
functions in a highly uncertain environment. Our proposed
algorithm can potentially help designers to design complex

engineered systems flexible to future uncertain situations.
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