
Computing tool accessibility of polyhedral models for toolpath planning in multi-axis

machining

by

Guangyu Hou

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Program of Study Committee:

Matthew Frank, Major Professor

Frank Peters

John Jackman

James Oliver

Chris Harding

The student author, whose presentation of the scholarship herein was approved by the

program of study committee, is solely responsible for the content of this dissertation. The

Graduate College will ensure this dissertation is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright © Guangyu Hou, 2019. All rights reserved.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... iv

ABSTRACT ...v

CHAPTER 1. INTRODUCTION ..1
1.1 Multi-axis CNC Machining ... 1
1.2 Visibility Concept .. 3

1.3 Tool Accessibility Concept ... 5
1.4 Motivation ... 6

1.5 References ... 8

CHAPTER 2. LITERATURE REVIEW ...10

2.1 Visibility Computation .. 10
2.2 Tool Accessibility Computation .. 11
2.3 Research Problem and Objectives ... 12

2.4 References ... 13

CHAPTER 3. COMPUTING THE GLOBAL VISIBILITY MAP USING SLICE

GEOMETRY FOR SETUP PLANNING ..15
Abstract .. 15
3.1 Introduction ... 16

3.2 Related Work ... 17

3.3 Methodology .. 19
3.4 Axis of Rotation Map .. 29
3.5 Implementation .. 32

3.6 Conclusion ... 42
3.7 References ... 43

CHAPTER 4. COMPUTING THE ACCESSIBILITY OF A POLYHEDRON USING A

THREE-DIMENSIONAL OFFSET FOR BALL-END MILLING ..47
Abstract .. 47
4.1 Introduction ... 47
4.2 Related Work ... 50
4.3 Methodology .. 51

4.4 Implementation .. 60
4.5 Conclusion ... 64

4.6 References ... 65

CHAPTER 5. A HYBRID APPROACH TO COMPUTE THE VISIBILITY MAP OF A

POLYHEDRON ..66
Abstract .. 66
5.1 Introduction ... 66
5.2 Related Work ... 67

iii

5.3 Methodology .. 68

5.4 Implementation .. 83

5.5 Conclusion ... 89
5.6 References ... 89

CHAPTER 6. CONCLUSION...91

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Matthew Frank, for

his excellent and consistent guidance, understanding, patience, and providing me with a

wonderful atmosphere for doing research. I would like to thank my committee members, Dr.

Frank Peters, Dr. John Jackman, Dr. James Oliver and Dr. Chris Harding, for their guidance

and support throughout the course of this research.

In addition, I would like to thank my colleagues Shuangyan Lei, Ashish Joshi, Siqi

Zhu, Niechen Chen, Prashant Barnawal, Michael Hoefer, David Peiffer, Alicia Guzman,

Esra’a Abdel-All and all other colleagues and friends in the RMPL lab for their kindly help

in the development of this dissertation. I would also like to thank the department faculty and

staff for making my time at Iowa State University a wonderful experience.

Finally, I would like to thank my parents and my brother for their consistent

encouragement, respect and love.

v

ABSTRACT

This dissertation focuses on three new methods for calculating visibility and

accessibility, which contribute directly to the precise planning of setup and toolpaths in a

Computer Numerical Control (CNC) machining process. They include 1) an approximate

visibility determination method; 2) an approximate accessibility determination method and 3)

a hybrid visibility determination method with an innovative computation time reduction

strategy. All three methods are intended for polyhedral models.

First, visibility defines the directions of rays from which a surface of a 3D model is

visible. Such can be used to guide machine tools that reach part surfaces in material removal

processes. In this work, we present a new method that calculates visibility based on 2D slices

of a polyhedron. Then we show how visibility results determine a set of feasible axes of

rotation for a part. This method effectively reduces a 3D problem to a 2D one and is

embarrassingly parallelizable in nature. It is an approximate method with controllable

accuracy and resolution. The method’s time complexity is linear to both the number of

polyhedron’s facets and number of slices. Lastly, due to representing visibility as geodesics,

this method enables a quick visible region identification technique which can be used to

locate the rough boundary of true visibility.

Second, tool accessibility defines the directions of rays from which a surface of a 3D

model is accessible by a machine tool (a tool’s body is included for collision avoidance). In

this work, we present a method that computes a ball-end tool’s accessibility as visibility on

the offset surface. The results contain all feasible orientations for a surface instead of a

Boolean answer. Such visibility-to-accessibility conversion is also compatible with various

kinds of facet-based visibility methods.

vi

Third, we introduce a hybrid method for near-exact visibility. It incorporates an exact

visibility method and an approximate visibility method aiming to balance computation time

and accuracy. The approximate method is used to divide the visibility space into three

subspaces; the visibility of two of them are fully determined. The exact method is then used

to determine the exact visibility boundary in the subspace whose visibility is undetermined.

Since the exact method can be used alone to determine visibility, this method can be viewed

as an efficiency improvement for it. Essentially, this method reduces the processing time for

exact computation at the cost of introducing approximate computation overhead. It also

provides control over the ratio of exact-approximate computation.

1

CHAPTER 1. INTRODUCTION

1.1 Multi-axis CNC Machining

Milling is a machining process that uses rotary cutters to remove material from a

workpiece. The cutter is advancing in a direction that is perpendicular to the axis of the cutter

(Fig. 1-1a). The capability of making parts to precise dimensions and shapes and creating

complex features has made milling one of the most commonly used manufacturing processes

in industry. The advent of Computer Numerical Control (CNC) in the 1950s, by which a

machining tool’s movement is controlled by computers, has upgraded traditional milling

machines to machining centers with accurate control and complex mechanical systems,

making milling much more automated and precise (Fig. 1-1b). Based on the kinematic

capability of the machine, CNC machines are categorized into 3-axis, 4-axis and 5-axis. 3-

axis CNC machines have 3 linear axes. 4-axis CNC machine provide one extra freedom by

adding a rotary axis. 5-axis CNC machines introduce two rotary axes which, if not for a

machine’s rotation limits, can pose the tool in arbitrary orientations (Fig. 1-1c).

Fig. 1-1 Multi-axis CNC milling and machine centers [1-3]

(a) (b) (c)

2

Tool Access Directions

A workpiece must be fixated on the machine mounting table before it can be

machined. Tool Access Directions (TAD) are, in the mounting table coordinates system, all

the directions the table can be approached by the tool (definition and part of the subfigures

are from [4]). Since 5-axis CNC machines represent the most general case of tool access

scenario, we use them as the example to illustrate TAD.

Fig. 1-2 Five-axis trunnion table and its tool access directions [5]

There are many different configurations of rotary axes for 5-axis CNC machines. One

common configuration is the A-C table where the platter (mounting table) can rotate around

its center line (C-axis) by 0-360 degrees (Fig. 1-2a). This platter is on another rotary axis (A-

axis) that can rotate in a range specified by the machine limits. The cutter can move linearly

in X, Y or Z axis. Under such configuration, in the mounting table coordinate system, the

direction space where the tool can orient (i.e. TAD) is a spherical cap (Fig. 1-2b). TAD

defines a machine’s reorientation capability.

Setup Planning

As machining is a subtractive manufacturing process, material is gradually removed

from a workpiece (e.g. a cylindrical block) and eventually what is left is the desired part.

1

Department of IMSE

A

C

TAD

(a) A-C type 5-axis CNC machines (b) Tool Access Directions

3

Before machining, a machinist must decide how the part should be oriented and positioned in

the workpiece. Because the workpiece is fixated on a mounting table, it is equivalent to

deciding how the part should position and orient with respect to the mounting table. Such a

posture is called a setup of the part (Fig. 1-3a). The choice of the setup affects whether

specific surfaces of the part can be accessed by the machine tool, considering the machine

tool usually cannot approach the mounting table from all directions (namely TAD is smaller

than a unit sphere). The choice of what setup to use and how many setups to use in order to

completely machine a part is decided in setup planning. It is important as it determines

whether all surfaces of a part can be accessible by the machine tool and, if a setup is fixed,

from what directions a surface can be accessed by a machine tool (Fig. 1-3b). The latter

would affect the available toolpath choices for a surface.

Fig. 1-3 Setup and tool path planning

1.2 Visibility Concept

To help solve the setup planning problem, the visibility concept is introduced. We

define the visibility of a point as the collection of directions of a ray that is casting from this

point while not colliding with any obstacle (Fig. 1-4a). Similarly, we define the visibility of a

surface as the collection of directions of parallel rays that are casting from every point in this

1

Department of IMSE

?

mounting table

setup

(a) Setup planning (b) Tool path planning

feasible tool

directions

4

surface while not colliding with any obstacle (Fig. 1-4b). An alternative but equivalent

definition is given below: We define a surface of a part as visible from a direction if and only

if there exists an infinite distant point in that direction can see the entirety of the surface

without obstruction by the part itself. Such a direction is called a visible direction. The

visibility of a surface is defined as the collection of such visible directions. Because we are

only concerned with polyhedral models in this dissertation, the smallest surface of a part is a

polygon (e.g. a triangle). In such case, the visibility of a polygon surface (a facet) has a more

intuitive definition. Suppose we extrude a 3D beam from this facet along a direction where

all side edges of this 3D beam are parallel. We define the facet as visible from a direction if

and only if the extruded 3D beam in this direction does not collide with any obstacle (Fig.

1-4c). The visibility of a facet is the collection of such directions.

Fig. 1-4 Definition of visibility

Visibility is usually represented on a unit sphere as spherical points because they are

essentially a set of directions. Because the boundary of these points creates spherical

polygon(s), we use the term visibility polygon(s) to refer to the visibility’s exact shape.

Visibility is used in many technological fields where there is a requirement that an

object’s surfaces be accessed from various directions by tools specific to that field. Such

1

Department of IMSE

(a) Visibility of a point (b) Visibility of a facet (c) Visibility of a facet –

equivalent formulation

3D

light beam

obstacle

obstacle

Visibility

cone

ray
rays

5

technologies include Coordinate Measurement Machines (CMMs), where visibility

determines the accessibility of the contact probe [6]; CNC machining, where visibility serves

as the necessary condition for the accessibility of the cutting tools [7-9] and also where

accessibility has been addressed by the “C-Space” method [10]; Laser scanning, where

visibility helps determine a sufficient set of the scanning orientations [11] and molding

design, where visibility is used to determine parting lines [12-14]. Also, visibility is widely

used in the field of computer graphics, where shadow computation, global illumination,

point-based rendering and view-dependent mesh-simplification are good examples [15, 16].

It is necessary to point out, although visibility is not explicitly addressed in some literature

tackling CNC process planning, it is the prerequisite and efficiently narrows down the design

space of more advanced planning strategies. For example, optimization of the toolpath

smoothness [17] and optimization of the workpiece setups for 5-axis CNC machining for

energy-saving purpose [18]. Moreover, with the advancement of AM technologies,

innovative methods using multidirectional deposition processes are emerging [19]. Unlike

conventional AM processes that use a single building direction, multidirectional deposition

has increased degrees of freedom and therefore visibility will play an important role in

facilitating the process planning of these new systems.

1.3 Tool Accessibility Concept

Tool accessibility of a part’s surface is the collection of directions from which a tool

can access the entirety of the surface without colliding with the part. It is different from

visibility in that it includes the body of the tool in collision requirements instead of a line as

in visibility.

6

Fig. 1-5 Visibility vs. Accessibility

Tool accessibility is based on a more accurate modelling of a machining tools’

movement than visibility. The limitation of using visibility for feasible tool orientations is

obvious: a surface that is visible from a direction is not necessarily accessible by the tool

(Fig. 1-5). This is because visibility only provides accessibility for the center line of the tool.

Thus, the other space that the tool occupies could easily collide with the part. As such,

visibility is in fact an overestimate of feasible tool orientations. Accordingly, the setups

derived from visibility results do not necessarily expose the entire part surface to the cutting

tool; an incomplete cutting situation. To solve this problem, the tool body must be considered

in collision, as is in accessibility. However, the two concepts are also related. One can treat

visibility as an extreme case of tool accessibility where the tool is infinitely thin. In fact,

accessibility can be derived from visibility for ball-end tools, as will be shown in Chapter 4.

1.4 Motivation

Using Accessibility in Setup Planning

Intuitively, the more complex the part geometry is, the more difficult it is to make;

accessibility of a part is one of the useful indicators of difficulty. It provides a requirement of

tool orientations for the machine to match. Because a machine has its orientation limits,

defined by Tool Access Directions (TAD), it is therefore straightforward that we want to

1

Department of IMSE

cutter

visible

invisible

accessible

inaccessible

7

match a part’s accessibility with a machine’s TAD. Because of the setup, a part’s

accessibility is in different coordinate system from a machine’s TAD ((Workpiece

Coordinate System (WCS)) versus Table Coordinate System (TCS)). We can compare them

by transforming the TAD into the WCS (Fig. 1-6, some subfigures are from [4]). In WCS,

the overlapped region represents the tool directions that are required by the part’s surface and

also satisfied by the machine. We can see that one specific setup leads to one specific

orientation of TAD in WCS. Changing the setup, the TAD may overlap with accessibilities

from different surfaces. Therefore, we can determine whether a setup renders some surfaces

accessible or whether a collection of setups render all part surfaces accessible.

In summary, a part’s accessibility results can help determine its feasible setups which

is why we are interested in accessibility (and visibility) computation methods.

Fig. 1-6 A part's accessibility and a machine's Tool Access Directions

 As part models are becoming increasingly complicated today, the efficiency of

computing visibility and accessibility is emphasized. An efficient visibility/accessibility

2

Department of IMSE

TAD

TAD

Tool Accessibility of a Part

1

Department of IMSE

Fig.4 Tool accessibility of a part and tool access directions (TAD) of the machine

A

coordinate

Transformation

mounting table

A

setup

TAD

TAD

2

Department of IMSE

TAD

TAD

A

C

Multiple facets

8

determination method will also facilitate rapid prototyping processes that use CNC

machining, 3D printing or both. Therefore, it is highly desirable that we can compute

visibility and accessibility under reasonable time cost while maintaining some degree of

accuracy.

1.5 References

[1] Sandvik, 2019, "Milling tools,"https://www.sandvik.coromant.com/en-

gb/products/pages/milling-tools.aspx, p. Solid milling tools and exchangeable tips.

[2] Haas-Automation, 2019, "5-axis Universal

Machines,"https://www.haascnc.com/machines/vertical-mills/universal-

machine.html, pp. 5-axis Universal Machines.

[3] Martínez, Q., 2018, "CNC machining workshop in Valencia,"http://umesal.com/taller-de-

mecanizado-cnc-en-valencia/, p. The most efficient machining.

[4] Hu, P., Tang, K., and Lee, C.-H., 2013, "Global obstacle avoidance and minimum

workpiece setups in five-axis machining," Comput Aided Design, 45(10), pp. 1222-

1237.

[5] Haas-Automation, 2019, "UMC-750,"https://www.haascnc.com/machines/vertical-

mills/universal-machine/models/umc-750.html#gsc.tab=0, pp. 5-axis trunnion table.

[6] Kweon, S., and Medeiros, D. J., 1998, "Part orientations for CMM inspection using

dimensioned visibility maps," Comput Aided Design, 30(9), pp. 741-749.

[7] Wang, N., and Tang, K., 2007, "Automatic generation of gouge-free and angular-

velocity-compliant five-axis toolpath," Comput Aided Design, 39(10), pp. 841-852.

[8] Balasubramaniam, M., Sarma, S. E., and Marciniak, K., 2003, "Collision-free finishing

toolpaths from visibility data," Comput Aided Design, 35(4), pp. 359-374.

[9] Suh, S.-H., and Lee, J.-J., 1998, "Five-Axis Part Machining With Three-Axis CNC

Machine and Indexing Table," Journal of Manufacturing Science and Engineering,

120(1), pp. 120-128.

https://www.sandvik.coromant.com/en-gb/products/pages/milling-tools.aspx
https://www.sandvik.coromant.com/en-gb/products/pages/milling-tools.aspx
https://www.haascnc.com/machines/vertical-mills/universal-machine.html
https://www.haascnc.com/machines/vertical-mills/universal-machine.html
http://umesal.com/taller-de-mecanizado-cnc-en-valencia/
http://umesal.com/taller-de-mecanizado-cnc-en-valencia/
https://www.haascnc.com/machines/vertical-mills/universal-machine/models/umc-750.html#gsc.tab=0
https://www.haascnc.com/machines/vertical-mills/universal-machine/models/umc-750.html#gsc.tab=0

9

[10] Morishige, K., Takeuchi, Y., and Kase, K., 1999, "Tool Path Generation Using C-Space

for 5-Axis Control Machining," Journal of Manufacturing Science and Engineering,

121(1), pp. 144-149.

[11] Elber, G., and Zussman, E., 1998, "Cone visibility decomposition of freeform surface,"

Comput Aided Design, 30(4), pp. 315-320.

[12] Fu, M. W., 2008, "The application of surface demoldability and moldability to side-core

design in die and mold CAD," Comput Aided Design, 40(5), pp. 567-575.

[13] Chen, L.-L., Chou, S.-Y., and Woo, T. C., 1995, "Partial visibility for selecting a parting

direction in mold and die design," J Manuf Syst, 14(5), pp. 319-330.

[14] Priyadarshi, A. K., and Gupta, S. K., 2004, "Geometric algorithms for automated design

of multi-piece permanent molds," Comput Aided Design, 36(3), pp. 241-260.

[15] Bittner, J., and Wonka, P., 2003, "Visibility in computer graphics," Environ Plann B,

30(5), pp. 729-755.

[16] Zach, C., and Karner, K., 2003, "Progressive compression of visibility data for view-

dependent multiresolution meshes," Wscg'2003, Vol 11, No 3, Conference

Proceedings, pp. 546-553.

[17] Lu, Y., Ding, Y., and Zhu, L., 2016, "Smooth Tool Path Optimization for Flank Milling

Based on the Gradient-Based Differential Evolution Method," Journal of

Manufacturing Science and Engineering, 138(8), pp. 081009-081009-081011.

[18] Xu, K., and Tang, K., 2016, "Optimal Workpiece Setup for Time-Efficient and Energy-

Saving Five-Axis Machining of Freeform Surfaces," Journal of Manufacturing

Science and Engineering, 139(5), pp. 051003-051003-051016.

[19] Song, X., Pan, Y., and Chen, Y., 2015, "Development of a Low-Cost Parallel Kinematic

Machine for Multidirectional Additive Manufacturing," Journal of Manufacturing

Science and Engineering, 137(2), pp. 021005-021005-021013.

10

CHAPTER 2. LITERATURE REVIEW

2.1 Visibility Computation

There has been a considerable amount of work addressing the problem of visibility

computation. Among them, the seminal work in this field is attributed to Chen and Woo [1]

where a Gaussian Map was described. The basic idea is to compute a dual image of the

Gaussian map on a unit sphere. Later, methods using the Gaussian Map were then applied to

compute setup orientations for 4 and 5 axis machining [2, 3]. However, visibility obtained

from a Gaussian map is local, ignoring the fact that the visibility of a designated surface

might be occluded by other surfaces. Therefore, such methods are limited to the visibility of

certain features of the component [4]. Suh and Kang obtained a global visibility map by

discretizing the visibility sphere into spherical triangles and using an occupation test to

obtain the visibility cone [5]. One drawback of this method is that it uses the centroid to

approximate the triangle, resulting in an approximated visibility. Besides, the occupation test

leads to inefficient computation due to the enumeration of discretized directions. Li and

Frank introduced a boundary tracing method that computes non-visibility between a pair of

polyhedral facets [6]. Though global visibility is obtained, the computation time complexity

of (𝑛) remains a challenge, where n is the number of facets of the model.

The methods to compute visibility can be classified into two categories: approximate

methods and exact methods. An approximate method calculates visibility in finite resolution

at a reasonable computational cost. On the other hand, an exact method calculates the exact

visibility image using sophisticated geometry, usually at a relatively more expensive

computational cost.

11

Among the approximate category, there is one type of method that uses the hidden

surface removal technique. They create two discretized surfaces, one for the part and one for

the visibility space. Then, a mapping from the discrete surface of the part to the discrete

space of visibility is built. One way to build such a mapping is by ray-casting [7]. Some

others use a Z-buffer method, created through graphics hardware [8]. Another approximate

method makes use of the slice geometry, where the 3D part is sliced into a set of 2D cross

sections. The visibility of the 3D part is then derived from the visibility of the 2D slices [9-

11]. The drawbacks of the approximate methods include inaccuracy and incompleteness of

visibility results. The approximation in computation might lead to an underestimate or

overestimate of visibility and the discretization might render the results incomplete.

Within the exact category, Dhaliwal et al. proposed a method that essentially

conducts an occlusion calculation between a pair of triangular facets [12]. Liu and Ramani

extended the work to the occlusion calculation between a pair of convex facets [13]. A

similar method by Li and Frank computes pairwise occlusion using a boundary tracing

technique [6]. These approaches share a common bottleneck: due to the pairwise occlusion

computation, the algorithm’s time complexity is quadratic to mesh size. Besides, the union

operation among all spherical polygons (pairwise occlusion results) before generating the

final visibility is an expensive computational task. To improve the latter’s efficiency, Liu and

Ramani further extended their work by introducing the use of Minkowski sum [14].

2.2 Tool Accessibility Computation

Miller investigated the application of surface accessibility on the visual effect of

shading [15]. In which, accessibility is defined as radius of a sphere which may touch a

surface point and not intersect any surface. The results highlight the inaccessible surface by a

12

spherical probe. However, the method only gives a Boolean answer to whether a surface is

accessible; it does not provide actual access orientations. Elber proposed a method to

determine the inaccessible surface induced by flat-end tools in 5-axis machining [16].

However, the method is restricted to inaccessibility of convex surfaces due to other check

surfaces and does not provide feasible tool orientations for the accessible surfaces. Tang et al.

proposed a surface offset/upper envelope method that solves gouging for 3-axis multi-surface

Numerical Control (NC) machining [17]. Kim et al. proposed a triangular mesh offset

algorithm for tool path planning of generalized cutters in NC machining [18]. However, both

Tang and Kim’s work focuses on 3-axis NC machining where tool orientation is not

considered. Xu et al. proposed a method that determines feasible tool orientations for each

predefined cutter contact (CC) point in 5-axis NC machining [19]. However, CC points and

CC paths must be provided first. This is not desirable if we want to optimize the tool path

choice. This method works better in the case where a CC path is already determined, and CC

points are used to generate gouge-free and collision-free tool orientations. Alternatively, it

can be used to verify if a given toolpath is gouge and collision free.

2.3 Research Problem and Objectives

Research Problem

 After reviewing the literature, there does not exist a visibility method that has the

capacity to incorporate both exact and approximate visibility computations. Such flexibility

enables the balancing between processing time and accuracy. Besides, there is no work that

derives accessibility directly from visibility. With such a method, we can adopt various

existing visibility methods for accessibility.

13

Research Objectives

To solve these research problems, the objective of this dissertation is to develop three

new computational methods:

1. A method that computes the approximate visibility map efficiently.

2. A method that computes the tool accessibility map based on visibility results.

3. A method that computes the near-exact visibility map while balancing processing

time and accuracy using an approximate visibility method for preprocessing.

2.4 References

[1] Chen, L. L., and Woo, T. C., 1992, "Computational Geometry on the Sphere with

Application to Automated Machining," J Mech Design, 114(2), pp. 288-295.

[2] Tang, K., Woo, T., and Gan, J., 1992, "Maximum Intersection of Spherical Polygons and

Workpiece Orientation for 4-Axis and 5-Axis Machining," J Mech Design, 114(3),

pp. 477-485.

[3] Chen, L. L., Chou, S. Y., and Woo, T. C., 1993, "Separating and Intersecting Spherical

Polygons - Computing Machinability on 3-Axis, 4-Axis and 5-Axis Numerically

Controlled Machines," Acm T Graphic, 12(4), pp. 305-326.

[4] Chen, L.-L., Chou, S.-Y., and Woo, T. C., 1993, "Parting directions for mould and die

design," Comput Aided Design, 25(12), pp. 762-768.

[5] Suh, S. H., and Kang, J. K., 1995, "Process Planning for Multiaxis Nc Machining of Free

Surfaces," Int J Prod Res, 33(10), pp. 2723-2738.

[6] Li, Y., and Frank, M. C., 2007, "Computing non-visibility of convex polygonal facets on

the surface of a polyhedral CAD model," Comput Aided Design, 39(9), pp. 732-744.

[7] Tarbox, G. H., and Gottschlich, S. N., 1995, "Planning for Complete Sensor Coverage in

Inspection," Comput Vis Image Und, 61(1), pp. 84-111.

[8] Spitz, S. N., and Requicha, A. A. G., 2000, "Accessibility analysis using computer

graphics hardware," Ieee T Vis Comput Gr, 6(3), pp. 208-219.

14

[9] Frank, M. C., Wysk, R. A., and Joshi, S. B., 2006, "Determining setup orientations from

the visibility of slice geometry for rapid computer numerically controlled machining,"

J Manuf Sci E-T Asme, 128(1), pp. 228-238.

[10] James Stewart, A., 1999, "Computing visibility from folded surfaces," Computers &

Graphics, 23(5), pp. 693-702.

[11] Suthunyatanakit, K., Bohez, E. L. J., and Annanon, K., 2009, "A new global

accessibility algorithm for a polyhedral model with convex polygonal facets,"

Comput Aided Design, 41(12), pp. 1020-1033.

[12] Dhaliwal, S., Gupta, S. K., Huang, J., and Priyadarshi, A., 2003, "Algorithms for

Computing Global Accessibility Cones," Journal of Computing and Information

Science in Engineering, 3(3), pp. 200-209.

[13] Liu, M., and Ramani, K., 2007, "Computing an exact spherical visibility map for

meshed polyhedra," Proceedings of the 2007 ACM symposium on Solid and physical

modeling, ACM, Beijing, China, pp. 367-372.

[14] Liu, M., Liu, Y. S., and Ramani, K., 2009, "Computing global visibility maps for

regions on the boundaries of polyhedra using Minkowski sums," Comput Aided

Design, 41(9), pp. 668-680.

[15] Miller, G., 1994, "Efficient algorithms for local and global accessibility shading,"

Proceedings of the 21st annual conference on Computer graphics and interactive

techniques, ACM, pp. 319-326.

[16] Elber, G., 1994, "Accessibility in 5-axis milling environment," Comput Aided Design,

26(11), pp. 796-802.

[17] Tang, K., Cheng, C. C., and Dayan, Y., 1995, "Offsetting surface boundaries and 3-axis

gouge-free surface machining," Comput Aided Design, 27(12), pp. 915-927.

[18] Kim, S.-J., and Yang, M.-Y., 2005, "Triangular mesh offset for generalized cutter,"

Comput Aided Design, 37(10), pp. 999-1014.

[19] Xu, X. J., Bradley, C., Zhang, Y. F., Loh, H. T., and Wong, Y. S., 2002, "Tool-path

generation for five-axis machining of free-form surfaces based on accessibility

analysis," Int J Prod Res, 40(14), pp. 3253-3274.

15

CHAPTER 3. COMPUTING THE GLOBAL VISIBILITY MAP USING SLICE

GEOMETRY FOR SETUP PLANNING

A paper published as Hou G, Frank MC. Computing the Global Visibility Map Using Slice

Geometry for Setup Planning. ASME. J. Manuf. Sci. Eng. 2017;139(8):081006-081006-11.

doi:10.1115/1.4036423.

Guangyu Hou1

Department of Industrial and Manufacturing System Engineering,

Iowa State University,

3023 Black Engineering,

Ames, IA, 50011

e-mail: houes@iastate.edu

Matthew C. Frank

Department of Industrial and Manufacturing System Engineering,

Iowa State University,

3023 Black Engineering,

Ames, IA, 50011

e-mail: mfrank@iastate.edu

Abstract

This paper introduces a new method that uses slice geometry to compute the Global

Visibility Map (GVM). Global Visibility Mapping is a fundamentally important process that

extracts geometric information about an object which can be used to solve hard problems; for

example, the setup and process planning in CNC machining. In this work, we present a

method for creating the GVM from slice data of polyhedron models, and then show how it

can help determine around which axis of rotation a part can be machined. There have been

various methods of calculating the GVM to date, tracing back to the well-known seminal

methods that use Gaussian Mapping. Compared to the considerable amount of work in this

field, the proposed method has an advantage of starting from feature-free models like STL

files and has adjustable resolution. Moreover, since it is built upon slicing the model, the

1 Corresponding author.

16

method is embarrassingly parallelizable in nature, thus suitable for high-performance

computing. Using the GVM obtained by this method, we generate an axis of rotation map to

facilitate the setup planning for 4-axis CNC milling machines as one implementation

example.

Keywords: Global Visibility Map (GVM), Slice Geometry, Axis of rotation, Setup Planning,

CAD/CAM, 4-axis CNC Machining, Parallel Computing

3.1 Introduction

Conceptually speaking, visibility is the quantified measurement of the extent that a

geometric entity (point, surface, object, etc.) can be viewed or accessed from a distance

considering other entities as obstacles. Specifically, it is a set of all possible lines of sight that

are able to reach the geometric entity. Since only the orientations of these lines of sight

matter to describe visibility, visibility is often depicted on a unit sphere, using a portion of

the spherical surface to denote the visible

area, as shown in Fig. 3-1. If the center of the

sphere is connected to the boundary of the

spherical visible area with radii, the resultant

3D geometry is referred to as a visibility cone

in some literature.

Visibility is used in many

technological fields, especially where the

geometry of the surface is critical to their applications. Such technologies include Coordinate

Measurement Machines (CMMs), where visibility determines the accessibility of the contact

Fig. 3-1 An example showing the visibility

cone of a facet on the pocket of the cube

17

probe [1]; CNC machining, where visibility serves as the necessary condition for the

accessibility of the cutting tools [2-4] and also where accessibility has been addressed by the

“C-Space” method [5]; Laser scanning, where visibility helps determine a sufficient set of the

scanning orientations [6] and molding design, where visibility is used to determine parting

lines [7-9]. Also, visibility is widely used in the field of computer graphics, where shadow

computation, global illumination, point-based rendering and view-dependent mesh-

simplification are good examples [10, 11]. It is necessary to point out, although visibility is

not explicitly addressed in some literature tackling CNC process planning, it is the

prerequisite and efficiently narrows down the design space of more advanced planning

strategies. For example, optimization of the toolpath smoothness [12] and optimization of the

workpiece setups for 5-axis CNC machining for the energy-saving purpose [13]. Moreover,

with the advancement of AM technologies, innovative methods using multidirectional

deposition processes are emerging [14]. Unlike conventional AM processes that use a single

building direction, multidirectional deposition has increased degrees of freedom and

therefore visibility will play an important role in facilitating the process planning of these

new systems.

3.2 Related Work

There has been a considerable amount of work addressing the problem of visibility

computation. Among them, the seminal work in this field is attributed to Chen and Woo [15]

where a Gaussian Map was described. The basic idea is to compute a dual image of the

Gaussian map on a unit sphere. Later, methods using the Gaussian Map were then applied to

compute setup orientations for 4- and 5- axis machining [16, 17]. However, visibility

obtained from a Gaussian map is local, ignoring the fact that the visibility cone of a

18

designated entity might be occluded by other surfaces. Therefore, such methods are limited

to the visibility of certain features of the component [18]. Suh and Kang [19] obtained a

global visibility map by discretizing the visibility sphere into spherical triangles and used an

occupation test to obtain the visibility cone. One drawback of this method is that it uses the

centroid of the triangle to approximate the triangle, resulting in an approximated visibility.

Also, the occupation test leads to an inefficient computation. Li and Frank [20] introduced an

approach that computes visibility by an occlusion computation between a pair of polyhedral

facets. Though global visibility is obtained, the time complexity of (𝑛) remains a

challenge, where 𝑛 is the number of facets.

The methods to compute visibility can be classified into two categories; approximate

solution methods and exact solution methods. The approximate solution methods attempt to

capture most of the visibility area at a reasonable computational cost. On the other hand,

exact solution methods compute the exact visibility image using sophisticated geometry,

usually at an expensive computational cost.

Among the approximate solutions category, hidden surface removal methods create

two discretized surfaces, one for the component and one for the visibility space. Then, a

mapping from the discrete surface of the component to the discrete visibility space is built.

One technique to build such a mapping is to use ray-casting [21], while others use a z-buffer

method, created through graphics hardware [22]. Another approximation method makes use

of the slice geometry, where the 3D component is sliced into a set of 2D cross sections. The

visibility of the 3D component is then derived from the visibility of the 2D slices [23-26].

One drawback of the approximated methods is their impaired visibility accuracy. The

discretization impacts visibility accuracy and the visibility cone is often underestimated.

19

Within the exact solution category, Dhaliwal, Gupta et al. [27] proposed a method

that essentially conducts an occlusion calculation between a pair of triangle facets. Liu and

Ramani [28] extended the work to the occlusion calculation between a pair of convex facets.

A similar method by Li and Frank [20] computes pairwise occlusion using a boundary

tracing approach. These approaches share a common bottleneck: due to pairwise occlusion

computing, the algorithm’s time efficiency is driven by the size of the mesh. Also, the union

operation among all spherical polygons before generating the GVM is an expensive

computational task. To improve efficiency in the latter problem, Liu and Ramani [29] further

extended their work by introducing the Minkowski sum.

3.3 Methodology

The proposed method assumes a triangulated model (STL) as input. Thus, the

objective is to determine the visibility cone of each triangular facet. The visibility of any

polyhedron surface is easily derived from its constituent facets; a simple intersection. The

method is an approximate solution method in that the

visibility will only be evaluated at a finite number of

positions: the unit visibility sphere is discretized into a

set of intensely distributed points located at the

intersections of evenly spaced longitude and latitude

lines (Fig. 3-2). The angular spacing between both

longitudinal and latitudinal lines is set to one degree by

default. Thus, a total of 64,442(=179*360+2) points are

Fig. 3-2 The discretization of

the visibility sphere

20

sampled to represent the entire visibility sphere. As the resolution is controlled by the

number of sampling points, it is easily adjustable.

Fig. 3-3 An example of a 3D visibility cone built up by a set of 2D visibility arcs. (a) an

actual visibility cone is approximated by a set of arcs/points, (b) a visibility arc is

represented by a set of visibility points, (c) a sweep of the visibility arcs yields the

visibility cone. In this paper, the continuous visibility arcs are showed by a set of points

To compute the visibility cone, the method uses the fact that, as an approximation, a

3D visibility cone can be discretized into a finite set of 2D visibility arcs (Fig. 3-3a). Thus,

the task is further simplified to compute a set of visibility arcs. In general, the visibility cones

can appear anywhere and may exist

disconnected in multiple places on

the sphere, so do the constituent

visibility arcs. Therefore, the

visibility arcs should be evaluated

in places that cover the entire

sphere. To do this, the 2D

visibility arcs are chosen to be

evaluated on 360 uniformly

Fig. 3-4 The distribution of sampling longitude lines

where visibility arcs are evaluated. (a) top view

showing evenly spaced sampling longitude lines

captures multiple visibility cones, (b) isometric view

showing five visibility arcs of a visibility cone

discovered by the densely angular spaced sampling

longitude lines

21

spaced longitude lines throughout the sphere (Fig. 3-4a). Because of this dense sampling,

most visibility cones can be accurately captured (Fig. 3-4b). This sampling scheme of

visibility arcs matches with the former discretization of the visibility sphere.

With the visibility arcs’ sampling scheme determined, the next critical step is to

actually compute the visibility arcs on the sampling longitude lines, namely determining the

visible portion of the longitude lines. It is obvious that each visibility arc resides on the plane

defined by the longitude line. When such plane rotates, the visibility arcs should change

accordingly. The solution to the problem can then be simplified into two phases. The first

phase is to compute the 2D visibility arcs on each sampling plane and the second phase is to

assemble these 2D visibility arcs from all sampling planes.

Fig. 3-5 The slice-based visibility computation showed by an example. (a) an example

part, (b) the slice geometry, (c) one slice for demonstration, (d) visibility computation

for a segment on the slice chain, (e-f) example where sliced segments changes with the

slicing direction, (g) example showing the visibility arc resides on the plane

perpendicular to the slicing direction

To obtain the 2D visibility arcs, this paper utilizes the visibility algorithm developed

by Frank et al. [23], and further extends it to a facet-based visibility algorithm. The earlier

version of this visibility algorithm represents the 3D object as multiple 2D slices. It assumes

22

the viewer resides on a plane parallel to those 2D slices. It then computes the visibility within

such plane for all segments in the slices (Fig. 3-5a-d). The reason that the visibility scope is

restricted in a plane is that in applications like 4-axis CNC milling machine, once the 4th axis

(rotation axis) is chosen, the accessibility of the cutting tools is restricted in a plane (in

workpiece coordinate system). Thus, such visibility is sufficient to tell whether the

component is visible from the cutting tool.

In the algorithm mentioned above, the plane where visibility arcs lie is perpendicular

to the pre-defined slicing direction (Fig. 3-5g). To apply it to the method in this paper, where

we evaluate visibility arcs on planes containing longitude lines, the slicing vectors must lie in

the XY-plane. Consequently, when we rotate the slicing vector in the XY-plane with a one-

degree interval, the visibility arcs can then be computed on uniformly angular-spaced

longitude lines as planned earlier. However, segment-based visibility exposes its limitations

when we try to assemble such results: because the sliced segments of a given facet changes

while slicing direction changes (Fig. 3-5e and Fig. 3-5f), the two visibility results cannot

combine directly. To solve this, we need a fixed geometry whose visibility result can be

divided and computed in different planes separately and combined in 3D afterward. This

requirement leads to the facet-based visibility.

In this paper, the visibility of a facet is defined as the intersection of visibility of its

containing segments – a necessary condition (Fig. 3-6). Such definition is an approximation:

since in the ideal situation, the number of containing segments should reach infinity to be

exact. In fact, because of the finite number of segments, this definition assumes the visibility

bounds remains constant for a certain distance in the slicing direction (Fig. 3-6a). Therefore,

23

the visibility bounds of a segment are equivalent to the visibility bounds of a corresponding

area.

Fig. 3-6 The definition of facet visibility. (a) an example showing segment’s visibility is

constant for a distance due to approximation, (b-d) the formation of the facet visibility

by intersecting visibility ranges of its containing segments

Using a facet as the visibility source enables us to combine visibility arcs resulting

from different sampling planes. The facet remains fixed while the slicing plane (or vector)

rotates. Nevertheless, such facet-based visibility erases certain visibility conveyed by

segments due to the intersection operation. For example, if one out of ten segments is

invisible and the other nine are visible, the intersection of visibility indicates the facet is

invisible. Clearly, visible area, no matter the proportion, is ignored due to the intersection. To

retain as much visibility as possible, it is necessary to reduce the difference of visibility

among segments in a facet. In general, the smaller the facet, the less likely this kind of

visibility loss occurs since segments in a smaller facet have more similar geometric

surroundings. However, smaller facets lead to a denser mesh, thus a higher computational

cost. A threshold should be set to balance the trade-off. To estimate the visibility loss due to

24

intersection operation, we introduce the “weighted visibility.” Weighted visibility is defined

as the product of 2D visibility range and the area it is on. Thus, before the intersection

operation, the aggregate weighted visibility of a facet is

1

n

ii
i

A
=

 (1)

Where 𝑛 is the number of segments in a facet; 𝜃𝑖, 𝑖 are the 2D visibility range and the

effective area of segment 𝑖, respectively. After the intersection operation, the weighted

visibility of a facet is 𝜃𝑖𝑛 𝑒𝑟𝑠𝑒𝑐 ∙ 𝑓𝑎𝑐𝑒 . Therefore, the ratio

𝝆 = int sec

1

1
faceter t

n

ii
i

A

A




=


−


 (2)

is used to define the loss of visibility due to the intersection. In our implementation, we deem

a facet’s visibility is “under representative” if 𝜌 > 0.2. If the total area of under

representative facets is greater than 5% of the model’s surface area, a global mesh refinement

can be implemented. The choice of the thresholds 0.2 and 5% are empirical values with the

consideration of computational

capability. Theoretically, the

smaller the thresholds, the better

the result is expected (closer to

real visibility). However, to keep

the size of the mesh (thus the

computational cost) to an

Fig. 3-7 An example of improved visibility after mesh

refinement. (a) visibility loss ratio of the original facet

is 1.0, (b) visibility loss ratio of the equivalent facets

after refinement is 0.36. Assuming visibility range θ is

constant for all visible segment

25

acceptable value (e.g. less than 20,000 facets), the proposed thresholds have been found to be

reasonable. An example is given in Fig. 3-7 to show that mesh refinement reduces the

amount of visibility loss due to visibility conversion from segment to facet.

Now consider a facet-based visibility arc is obtained in the YZ-plane using a slicing

vector aligned with the X-axis. Rotating the slicing vector around the Z-axis gradually at a 1°

interval through 179° will correspondently create visibility arcs around the globe (Fig. 3-8b-

d). The union of these visibility arcs reveals the complete visibility cones (Fig. 3-8e). Note

that for each individual slicing direction, visibility arcs are generated for all facets

simultaneously. Thus, after the rotation, visibility cones are created for all the facets, namely

the Global Visibility Map (GVM). In fact, the starting and ending slicing vector can be

randomly chosen as long as they sweep 179 degrees. In this paper, the rotation is around the

Z-axis and counterclockwise. The X-axis is the starting vector and the slicing vectors are

chosen at 0, 1, 2 … 179 degrees (Fig. 3-8a).

Fig. 3-8 Examples showing the union of visibility arcs from different slicing planes. (a)

the orientations of slicing vectors, (b–d) visibility arcs generated from different slicing

planes, (e) the union of visibility arcs from 180 sampling planes results in a complete

visibility cone

26

The parallel planes challenge

One of the challenges using slice geometry is to address the “missing plane” problem

caused by the model planes that are parallel to the slicing planes. These parallel planes are

ignored in the slicing process. For example, in 3D printing, a part’s physical planes parallel

to the slicing planes are always approximated by the cross-sections near them (less than a

slice spacing above or below). Similarly, parallel

planes fail to be captured and counted in the

visibility computation since no segment is

generated to represent those planes. Specifically,

such deficiency may lead to an incomplete

visibility cone that misses some constituent

visibility arcs. One solution is to use a second set

of slicing planes to slice the parallel planes

specifically [30]. The second set of slicing planes

(B-planes) are chosen to be perpendicular to the

first set of slicing planes (A-planes), thus also perpendicular to the unsliced facets (Fig. 3-9).

This ensures the facets missed by A-planes are properly sliced by B-planes. Here, we define

“A-segments” as the segments sliced by A-planes and “B-segments” as the segments sliced

by B-planes. The visibility computation for B-segments is different from that of A-segments.

First, an obstacle chain has to be found for B-segments. Second, since a B-segment belongs

to no chain in the parallel plane, it can be accessed from both sides.

In this paper, we introduce a new method to compute the visibility of facets on

parallel planes. Instead of using B-segments, which could be too many if the slicing interval

Fig. 3-9 The use of two sets of slices

(perpendicular to each other) to solve

the missing parallel planes (in red)

problem

27

is small, we use the three edges of the triangular facet. An example part is shown in Fig.

3-10a. The non-visibility for a triangle with respect to one obstacle chain is computed as the

maximum angle difference of six bounding rays sent from the three vertices (Fig. 3-10c).

Since the vertices of a triangle are shared by its neighboring triangles, the bounding rays are

also shared (Fig. 3-10b). Ultimately, the task is simplified to obtaining the bounding rays of

each vertex on the parallel plane with respect to the obstacle chains. Compared to B-

segments, this method greatly saves computational time and is inherently an exact method

(since we no longer approximate a triangle’s visibility by its containing segments).

Fig. 3-10 An example of parallel plane visibility computation using the three edges of a

triangle; (a) a demonstration part with its parallel planes marked, (b) a triangular facet

on a parallel plane showing its vertices are shared by its neighboring triangles, (c)

obstacle range obtained by finding the maximum angle difference among six bounding

rays. Rays of the same color come from the same vertex.

Though efficient, this method should be implemented carefully considering the

complex boundary cases. Ideally, the triangle in the parallel planes should always be on the

exterior of the obstacle chain. In other words, none of the triangle’s three vertices should be

in the obstacle chain (as in Fig. 3-11a-e). However, in the boundary cases where at least one

vertex is on the obstacle chain (Fig. 3-11b-d), due to numerical error in slicing (to obtain the

obstacle chain), some of the triangle’s vertices could get into the obstacle chain by some

small value ∆ (Fig. 3-11f-h). In such case, we call this vertex “false” interior with respect to

28

the obstacle chain. “False” interior vertices lead to the problem that the bounding rays

sending from such vertex will be erroneously computed. As can be seen in Fig. 3-11𝑖, if the

triangle’s vertex is on the exterior of the obstacle chain, the bounding rays are defined as rays

of min and max accumulated angle (the triangle’s vertex to each vertex on the obstacle chain

forms a ray). However, for a “false” interior vertex, the rays of min and max accumulated

angle fail to capture the obstacle chain’s boundary. For example, in Fig. 3-11𝑗, if we start

counting angle from 𝑝 and traverse the obstacle chain counterclockwise, then after visiting

all the vertices, the min and max rays will go through 𝑝 and 𝑝0 respectively, which is an

incorrect boundary. To solve this problem, all “false” interior vertices must be corrected. A

vertex is identified as a “false” interior if it is contained by an outer obstacle chain

meanwhile quite near the chain. It must be near because otherwise it could be an exterior

vertex surrounded by the obstacle as seen in Fig. 3-11e. The extent of nearness is defined by

the constant 𝜖 (namely if ∆ < 𝜖 , the vertex is near the chain). 𝜖 should be large enough to

tolerate numerical errors and small enough so that the vertex does not cross the obstacle and

become an exterior vertex contained by the inner obstacle chain (Fig. 3-11k). In this paper, 𝜖

is set to 10−6 because it is very rare that a part has a wall feature thinner than 10−6 inch and

10−6 detects most “false” interior vertices in implementation. Once “false” interior vertices

are found, either the vertex is offset to the exterior of the outer obstacle chain or such triangle

is offset inward by a small value 𝜖 depending on how many of the three vertices are deemed

“false” interior (Fig. 3-11k and Fig. 3-11l). The choice of 𝜖 has more freedom, where 𝜖

should be greater than zero to make the vertex exterior, but small enough so that the angles of

bounding rays are computed as if from a vertex on the obstacle chain. In practice, setting 𝜖

29

to 10−6 has achieved both goals in implementation.

Fig. 3-11 The possible position relations of a triangle facet and its obstacle chains

together with the solution to numerical error. The triangle’s edges are in yellow. The

obstacle chain is in blue. The triangle (a) is out of-, (b) has one vertex on-, (c) has two

vertices on-, (d) has three vertices on-, (e) is contained by-, the obstacle chain. (f-h) due

to numerical error, at least one vertex is contained in the obstacle chain, (i) the rays of

min and max accumulated angle give the correct bounding rays if vertex is on the

exterior, (j) the rays of min and max accumulated angle give the wrong bounding rays if

vertex is in the interior, (k) offset the triangle's “false” interior vertex to the exterior by

a small value 𝝐𝟐, (l) offset the triangle inward to its centroid by a small value. The

vertex is deemed “false” interior if ∆< 𝝐𝟏.

3.4 Axis of Rotation Map

In CNC machining, it is necessary to determine a set of “setups” with which to fixture

an object. Simple rectangular parts may require as few as one setup; however, in multiple

setups, or even multi-axis setups, the problem is more challenging. For this work, we show

how a GVM can lead to possible “axes of rotation” for an object. That is, if a 4th axis rotary

(indexer) was available, what are the possible rotations of the part geometry about that axis

yielding a potentially feasible solution? An example is given in Fig. 3-12 to show the

correspondence between a visibility point in GVM and feasible axes of rotation. The rule is

that a visibility point in GVM corresponds to axes on a great circle in the plane perpendicular

to the visibility vector. A detailed explanation of this property has been properly shown in

30

[31]. A simple explanation

begins by noting that the cutting

tool is always perpendicular to

the axis of rotation. If the

visibility vector is also

perpendicular to the axis of

rotation, then they are co-

planar. Thus, the cutting tool

can align with the visibility

vector by a rotation.

Accordingly, the tool and

visibility point coincide, leading to the facet being seen by the tool. Granted, further analysis

would need to ascertain whether the part workpiece can be clamped, whether the swept

diameter is reachable, and whether the machine’s envelope/travel can handle the part in a

particular orientation. However, the mapping of “potential” axes of rotations is invaluable,

as one could avoid re-clamping and re-positioning the workpiece if a singular axis could be

found. If not, the mapping could still be valuable in determining a minimum set of axes with

which a part can be machined. Given the GVM, such an axis of rotation map could be

generated [31]. This axis of rotation map provides a feasible design space of the rotation axes

for 4-axis CNC milling machines.

For a facet, the feasible axis of rotation provides how the facet should be oriented to

align with the CNC machine’s 4th axis for it to be visible from the cutting tool. The first step

is to find the corresponding axes of rotation for each visibility point on the visibility cone. As

Fig. 3-12 The correspondence between a visibility point

and feasible axes of rotation. (a) a real 4-axis CNC

machine setup, (b) the feasible axes of rotation are any

axes perpendicular to the visibility vector. Assuming the

component is fixed while two indexers rotates to align

with different axes

31

shown in Fig. 3-13a, a region of feasible axes of rotation is generated for one visibility cone

in the GVM. Note that a facet might have multiple visibility cones. Thus, its corresponding

axes of rotation region could be very complex (e.g. in the shape of a union of multiple rings).

Clearly, if an axis of rotation is shared by all the facets of the model, it is the axis that makes

the entire model visible – a feasible axis for the model. In other words, intersecting the axes

regions obtained from all facets of the model yields the feasible axes for the model (Fig.

3-13b shows an example of axes region intersection between two facets).

Fig. 3-13 The procedure of finding feasible axes of rotation from the GVM. (a) find

corresponding axes of rotation region of a visibility cone, (b) an example showing

intersecting axes’ regions of two facets to obtain the share axes of rotation region

In summary, the GVM provides the map from facets to visibility cones. Using the

rule in Fig. 3-13a provides the map from the visibility cones to the axes of rotation. A

concatenation of the two maps generates the “facets to axes of rotation” map. To see how

many facets each axis reveals, a reverse mapping on the “facets to axes of rotation” map is

generated (resulting in an “axes to facets” map shown in Fig. 3-14a). For each axis, the

reverse mapping collects every facet that maps to it in the original map. It is different from

an inverse function because our map is one-to-many. It is also convenient to see the surface

area each axis reveals by summing the corresponding facet areas. Such axes to visible surface

areas mapping is the “axes of rotation” map for the model where the visible surface area is

normalized by the model’s total surface area (thus with range [0,1]). For display purpose,

color is used to show the visibility of each axis, where red and blue denotes the highest and

32

lowest visibility respectively, an example is given in Fig. 3-14b. As such, all axes of rotation

are represented as 3D dots on the upper hemisphere. The color of the 3D dot indicates the

visibility of the corresponding axis. Only the upper hemisphere is used because axes are

symmetric about the origin.

Fig. 3-14 The formation of the "axes of rotation" map. (a) facets to axes map and its

reverse map (For each axis, the reverse mapping collects every facet that maps to it in

the original map), (b) an example of “axes of rotation” map where visibility is the

normalized visible surface area showed by gradient color

3.5 Implementation

The method in this paper was implemented using the C++ programming language in

Visual Studio 2010 on a PC of the following configuration: Intel Quad-Core i5-2300 CPU

@2.8GHz, 6GB RAM running Windows 7/64bit on an SSD. The display of the models,

GVM and the axis of rotation map were executed in OpenGL. A flowchart is used to

illustrate the procedure of GVM computation (Fig. 3-15a). Together with the flowchart, Fig.

3-15b is used to illustrate some of the most critical steps in GVM computation.

As can be seen from the flowchart, GVM computation involves a loop structure.

Using slice geometry, visibility computations among different slicing directions are

completely independent of each other. This makes computing the GVM an embarrassingly

33

parallel procedure. To take advantage of this, the code was written to support OpenMP, an

API for shared-memory multiprocessing programming.

Fig. 3-15 An overview of the computational procedure (a) the flowchart showing entire

computational flow, (b) the corresponding detailed illustration showing five critical

steps in the flowchart

The program was tested with a set of models (Fig. 3-16). Model 1 is a cube with one

cylindrical pocket; Model 2 is a cube with three connecting square pockets; Model 3 is a

cube with one square pocket; Model 4 is a ring with the engraved text “RMPL”; Model 5 is a

bracket with two through-holes; Model 6 is a toy jack. The facets of interest are denoted as

yellow dots in model 1-4 as they are too small. The facets of interest are indicated with black

arrows while the visibility cones are represented by a set of yellow points.

Fig. 3-16 The resulting visibility cones for various models

34

The concave cylindrical pocket of model 1 is specially designed so that the radius is

equal to the depth. Therefore, the visibility cone is expected to have a 90-degree opening

angle. The program collects each point at the boundary of the visibility cone and gives a

resulting opening angle of 90°~94°. Similarly, the square pocket of part 3 has the depth to

width ratio of 0.8 whose visibility cone is expected to have an opening angle in the range

51°~60°. Program results show the opening angle is 54°~63°. The error between the expected

value and program results can be attributed to the following reasons; 1) The facet

investigated is not small enough to be treated as a point; 2) Since it is an STL mesh, the

cylindrical pocket of model 1 does not have continuous curves; 3) the visibility computation

has errors (which will be discussed later). The result for model 2 shows the method’s ability

to capture multiple visibility cones, while the results for model 4 shows the method’s ability

to capture small features (text lettering). Results for model 5 and 6 show the method’s

performance on representative industrial components.

Fig. 3-17 The time on computing Global Visibility Map for various models. Sample

parts 5-8 are from the source in [32-35]

The results in Fig. 3-17 provides a comparison of computational time among models

ranging from those with simple geometry to those with freeform surfaces. The slicing

Part name Sample1 Sample2 Sample3 Sample4
Sample5

[32]

Sample6

[33]

Sample7

[34]

Sample8

[35]

Part

preview

of facets 60 176 1152 2088 3174 7922 10668 26402

Dimension

(inch)
2.0x2.0x2.0 2.0x2.0x2.0 3.7x3.5x4 2.8x3.3x2.3 1.2x0.7x1.9 4.2x2.0x2.6 3.7x4.2x4.4 3.5x2.2x3.6

Dimension

(cm)
5.1x5.1x5.1 5.1x5.1x5.1

9.4x8.9x10.

2
7.1x8.4x5.7 3.1x1.8x5.0

10.7x5.1x6.

6

9.4x10.7x11

.1
8.8x5.6x9.1

Time (s) 6 10 25 56 47 220 410 727

35

interval is set to be the model’s diagonal length divided by 200. This setting ensures the

computational time is not affected by the dimensions of the model.

The nature of the algorithm causes its computational time be largely affected by two

factors, the number of

slices 𝑘 and number of

facets 𝑛. To see their

influences, an example

model has been tested

under various settings

of 𝑘 and 𝑛. The

results are shown in

Table 3-1 and plotted

in Fig. 3-18. Note that the 𝑘 slices are evenly spaced and the mesh is subdivided at the edge’s

middle point to increase size. This test was conducted on a PC of the following

configuration: Intel Core i7-6700HQ CPU@2.6GHz, 16GB RAM, running windows 10/64bit

on an SSD. The results show the computational time is approximately linear to both 𝑘 and 𝑛.

Table 3-1 The statistics of computational time(s) for the model in Fig. 3-18a under

various settings of slice number k and facets number n

 Slices# (𝑘)

Facets # (𝑛)
50 100 150 200 250

2690 5 7 9 11 14

7836 13 22 29 35 42

22194 37 61 80 98 121

53374 85 150 210 258 301

Fig. 3-18 The statistics of computational time on a various

number of slices and facets for an example model. (a) the example

model, (b) line chart where the number of facets is used as

horizontal axis (Data from Table 3-1)

36

A time complexity analysis is given below, where we suppose a slice has 𝑐 contours.

These contours have = {𝑛 , 𝑛 , 𝑛 …𝑛𝑐} vertices respectively. For a contour 𝑢, visibility is

computed on each of its vertices. In the worst case, the visibility computation for a vertex

requires traversing all vertices on its own contour (local visibility) and all vertices on its

obstacle contours (global visibility). This gives the time complexity

 (𝑛𝑢
 + ∑ 𝑛𝑢 ∙ 𝑛𝑣
𝑣= … 𝑐,𝑣≠𝑢

).

Therefore, for all contours in this slice, the time complexity is:

 (∑ 𝑛𝑖

𝑖= … 𝑐

+ 2 ∙ ∑ 𝑛𝑗 ∙ 𝑛𝑘
𝑗= … 𝑐− ,𝑘=𝑗+ … 𝑐

) = (∑ 𝑛𝑖
𝑖= …𝑐

).

Denote 𝑚𝑙 = ∑ 𝑛𝑖𝑖= …𝑐 which is the total number of vertices in slice 𝑙. Now, considering all

slices, the computational complexity is:

 (∑𝑚𝑙

∀𝑙

).

Suppose there are 𝑘 slices and 𝑚̅ is the root mean square (generalized mean with exponent 2)

of the set {𝑚𝑙} (the set of vertices numbers of slices), then the above time complexity can be

rewritten as:

 (𝑘 ∙ 𝑚̅).

Now imagine an arbitrarily shaped polyhedron whose surface area is 𝑆 and number of facets

is 𝑛. The average area for a triangular facet is
𝑆

𝑛
 (assuming a homogeneous meshing of the

model). Then, the characteristic edge length of an average facet is on the order of √
𝑆

𝑛
 .

Meanwhile, the perimeter of an average slice is on the order of √𝑆. Therefore, on average,

37

the number of facets a slice may cross is
average perimeter of a slice

characteristic edge length of a facet
 , which is on the

order of (
√𝑆

√
𝑆

𝑛

) = √𝑛 . Consider the number of facets a slice crosses as roughly the number

of vertices in a slice, we have 𝑚̅ ≈ 𝑡 ∙ √𝑛 , where 𝑡 is some constant coefficient.

Accordingly, the time complexity for visibility computation on all slices is:

 (𝑘 ∙ 𝑛).

Until now, the analysis only considers the time spent on one slicing direction. Suppose we

conduct visibility computation in ℎ different slicing directions, then the overall time

complexity is:

 (𝑘 ∙ 𝑛 ∙ ℎ).

In this paper, we have a fixed number of slicing directions (h = 180). This time complexity

is in accordance with the test results (Fig. 3-18).

Fig. 3-19 The method to obtain total area of the visibility cone from discrete visibility

arcs; (a) example part and visibility cone, (b) total area of visibility cone is computed as

the area summation of spherical triangles determined by corresponding visibility arcs,

(c) example showing the spherical triangle determined by the visibility arc could either

overestimate or underestimate the portion of the cone area

 The accuracy of this method is affected by two major factors: the number of slices and

the number of slicing directions. The number of facets does not affect accuracy per se, although

number of facets affects the geometric approximation of the original CAD model. Also, the

38

visibility will be closer to point visibility for smaller facets. Since a facet is approximated by

its containing segments in visibility computation, putting more evenly spaced segments in a

facet gives a more accurate representation. Increasing the number of slices effectively increases

the number of segments generated for each facet. Hence, a better visibility result is expected.

The other major approximation in this method is the use of a finite number of slicing directions.

This causes that only a subset of the visibility cone is covered by the visibility arcs. Hence,

increasing the number of slicing directions (thus number of visibility arcs) is expected to

improve visibility results. To facilitate the accuracy estimation, we use the area of the visibility

cone as the indicator. In this test, the area of a visibility cone is computed as the area summation

of a set of spherical triangles where the spherical triangles are determined by the corresponding

visibility arcs (Fig. 3-19). To see how the cone area is affected by the number of slices 𝑘 and

number of slicing directions 𝑚, the sample from Fig. 3-19a is tested with various settings of 𝑘

and 𝑚 (Fig. 3-20). Please note, the analytical solution of this cone area is approximated by a

nearly converged result which all other results are compared to. The results show that with

increasing number of slices, the cone area decreases monotonically and trends to converge.

The cone area decreases because the more segments a facet has, the more restricted the

visibility (consider the intersection operation). When the number of segments in a facet is

considerably large, the visibility for a facet will hardly change since the segments populate

much of the area of the facet. Therefore, the visibility converges with increasing slice number.

On the other hand, the results also show that with increasing number of slicing directions, the

cone area becomes more accurate. The number of slicing directions determines how many

visibility arcs are used to approximate the cone. The more visibility arcs, the better the

geometry of the cone is captured. Hence, the visibility improves with increasing slicing

39

directions. Depending on the positions of the visibility arc, it could either overestimate or

underestimate a certain portion of cone area (Fig. 3-19c). Thus, both positive and negative

errors exist in the results. However, in general, the absolute errors tend to decrease as the

number of slicing directions increases, which is expected for arbitrary shaped cones.

Fig. 3-20 The results showing areas of visibility cone for (a) errors of areas of visibility

cone versus the number of slices, (b) errors of areas of visibility cone versus the number

of slicing directions (Data from Table 3-2)

Table 3-2 The results of visibility cone area (assuming 𝑹 = 𝟏) for the model in Fig.

3-19a under various settings. All area results are compared to the nearly converged

result under the setting (180 slicing directions & 10,000 slices)

Number of slice directions = 180

of

slices
10 50 100 200 300 400 500 600 1000 2000 10000

cone

area
0.7493 0.6807 0.6606 0.6506 0.6476 0.6468 0.646 0.6463 0.6449 0.6446 0.6441

error

(%)
16.3 5.7 2.6 1.0 0.54 0.42 0.29 0.34 0.12 0.078 0

Number of slices = 10,000

of

planes
12 18 30 36 45 60 90 108 135 180

cone

area
0.6568 0.6335 0.6397 0.6497 0.6387 0.6481 0.6429 0.6458 0.6429 0.6441

error

(%)
2.0 -1.6 -0.68 -0.06 -0.82 0.62 -0.19 0.26 -0.18 0

Once the GVM is available, an axis of rotation map can be generated. In Fig. 3-21,

three different cubes with one, two and three orthogonal pockets plus a cube with a

cylindrical through-hole were tested. Note in Fig. 3-21a-c and e, only axes that make the

40

model 100% visible are shown in red; whereas, in Fig. 3-21d, axes with incomplete visibility

are also shown. In addition, the distance from the 3D dots to the origin is scaled by visibility

(thus, an axis’ visibility is reflected by a dot’s color as well as a dot’s distance to the origin).

The results show that cubes with one pocket and two pockets find feasible axes of rotation.

They can be machined by a 4-axis CNC milling machine. However, cubes with three

orthogonal pockets are at most 96% visible for a 4-axis CNC machine. Thus, it cannot be

machined fully. Such results actually reflect the general case where features like pockets

inflict strong restrictions on machinability. Compared to a cube with one square pocket, a

cube with a cylindrical through-hole finds more feasible axes (Fig. 3-21e). This is because

the through-hole can possibly be reached from two opposite directions, making it more

accessible. The cube with a through-hole is designed in a way that the diameter of the

cylinder is half of the cube’s edge length. The expected opening angle of this axes region can

be derived from simple geometry (26.57°). The result from the program is 26°.

Fig. 3-21 Examples of the computed feasible axes of rotation and the “axis of rotation”

map. (a) a cube with one pocket has feasible axes on a great circle, (b) a cube with two

orthogonal pockets has only one feasible axis, (c) a cube with three orthogonal pockets

has no feasible axis, (d) the axis of rotation map for a cube with three orthogonal

pockets, (e) a cube with a cylindrical through-hole has a feasible axes region of a ring

shape

Additionally, the axis of rotation region that reveals more than 99% of surface area is

shown for two industrial parts in Fig. 3-22.As can be seen in both parts, in additional to the

principle axes, which we normally consider, many more unconventional axes are also found

to be feasible. More choices of axes imply a more manufacturable part. On the other hand, as

41

some previous un-machinable parts may become machinable by choosing an unconventional

axis now, more choices of

axes also give the part

designer more freedom in

choosing geometries.

As can be seen in Fig.

3-22a, the part’s Y-axis is a

feasible axis of rotation for

the industrial bracket. This

component was further analyzed for toolpath planning via an automated machining software

called CNC-RP, developed in the Rapid Manufacturing and Prototyping Lab at Iowa State

University, by selecting the part’s Y-axis as the axis of rotation. The component was

machined via a 4-axis

HAAS VF2ss CNC

mill from cylindrical

aluminum stock (Fig.

3-23a). After the

supports were

removed, the finished

part is shown in Fig.

3-23b, clearly showing that the computed axis of rotation is feasible for the machining of this

bracket.

Fig. 3-23 An example of an industrial bracket machined by a 4-

axis CNC machine where the axis of rotation is chosen as the

part’s Y-axis. (a) the bracket with supports on after CNC-RP

machining, (b) The finished bracket with all supports removed

Fig. 3-22 The axes of rotation region which reveals more

than 99% of component’s surface area. Axes are shown in

red dots. (a) an industrial bracket with two cylindrical

through-holes, (b) an industrial linkage

42

3.6 Conclusion

This paper introduces a new method to compute the Global Visibility Map (GVM).

The method starts with polyhedron models and creates visibility cones by assembling

visibility arcs computed from a set of planes. Parallel computing is implemented to take

advantage of the embarrassingly parallel nature of the slice geometry and saves a

considerable amount of computational time. Results have shown that the computed visibility

cone has good accuracy and captures small features. Given the GVM, an axis of rotation map

is developed to determine the feasible axes of rotation for parts to be machined by 4-axis

milling. Results have shown that the computed feasible axes are valid and many more

solutions in additional to the conventional ones like the principle axes are discovered. In the

case that no feasible axis exists, the axis of rotation map still provides valuable information

for part designers by showing the best axes for visibility. However, there are still challenges

in the proposed method. One is that in actual setup planning for machining, satisfying

visibility requirement is only a necessary condition, while not sufficient to obtain true

accessibility since the tool’s geometry should also be considered. Previous work addresses

this problem for 3-axis flat end milling [36], which could be extended to 5-axis ball end

milling. Also, the proposed approach is an approximated method, where the computational

effort increases dramatically when the visibility resolution and accuracy requirements raise.

Other than increasing the number of slices for better accuracy, one could also apply an

adaptive slicing strategy [37] for a better approximation of the original model, since reducing

the staircase error would also benefit visibility accuracy. Moreover, due to the facet

visibility’s definition, the size of a facet affects the extent its visibility is explored. In the

future, effort should be made to find a tool’s true accessibility on the foundation of the

43

current visibility results. Besides, a more efficient way of building up the visibility cone from

arcs other than the exhaustive method should be explored. Furthermore, we are actively

looking for opportunities to extend the current method to facilitate the setup planning of

advanced 5-axis CNC machines where a more comprehensive set of machining factors

including the tools’ orientations, lengths and diameters can be optimized.

3.7 References

[1] Kweon, S., and Medeiros, D. J., 1998, "Part orientations for CMM inspection using

dimensioned visibility maps," Comput Aided Design, 30(9), pp. 741-749.

[2] Wang, N., and Tang, K., 2007, "Automatic generation of gouge-free and angular-

velocity-compliant five-axis toolpath," Comput Aided Design, 39(10), pp. 841-852.

[3] Balasubramaniam, M., Sarma, S. E., and Marciniak, K., 2003, "Collision-free finishing

toolpaths from visibility data," Comput Aided Design, 35(4), pp. 359-374.

[4] Suh, S.-H., and Lee, J.-J., 1998, "Five-Axis Part Machining With Three-Axis CNC

Machine and Indexing Table," Journal of Manufacturing Science and Engineering,

120(1), pp. 120-128.

[5] Morishige, K., Takeuchi, Y., and Kase, K., 1999, "Tool Path Generation Using C-Space

for 5-Axis Control Machining," Journal of Manufacturing Science and Engineering,

121(1), pp. 144-149.

[6] Elber, G., and Zussman, E., 1998, "Cone visibility decomposition of freeform surface,"

Comput Aided Design, 30(4), pp. 315-320.

[7] Fu, M. W., 2008, "The application of surface demoldability and moldability to side-core

design in die and mold CAD," Comput Aided Design, 40(5), pp. 567-575.

[8] Chen, L.-L., Chou, S.-Y., and Woo, T. C., 1995, "Partial visibility for selecting a parting

direction in mold and die design," J Manuf Syst, 14(5), pp. 319-330.

[9] Priyadarshi, A. K., and Gupta, S. K., 2004, "Geometric algorithms for automated design

of multi-piece permanent molds," Comput Aided Design, 36(3), pp. 241-260.

[10] Bittner, J., and Wonka, P., 2003, "Visibility in computer graphics," Environ Plann B,

30(5), pp. 729-755.

44

[11] Zach, C., and Karner, K., 2003, "Progressive compression of visibility data for view-

dependent multiresolution meshes," Wscg'2003, Vol 11, No 3, Conference

Proceedings, pp. 546-553.

[12] Lu, Y., Ding, Y., and Zhu, L., 2016, "Smooth Tool Path Optimization for Flank Milling

Based on the Gradient-Based Differential Evolution Method," Journal of

Manufacturing Science and Engineering, 138(8), pp. 081009-081009-081011.

[13] Xu, K., and Tang, K., 2016, "Optimal Workpiece Setup for Time-Efficient and Energy-

Saving Five-Axis Machining of Freeform Surfaces," Journal of Manufacturing

Science and Engineering, 139(5), pp. 051003-051003-051016.

[14] Song, X., Pan, Y., and Chen, Y., 2015, "Development of a Low-Cost Parallel Kinematic

Machine for Multidirectional Additive Manufacturing," Journal of Manufacturing

Science and Engineering, 137(2), pp. 021005-021005-021013.

[15] Chen, L. L., and Woo, T. C., 1992, "Computational Geometry on the Sphere with

Application to Automated Machining," J Mech Design, 114(2), pp. 288-295.

[16] Tang, K., Woo, T., and Gan, J., 1992, "Maximum Intersection of Spherical Polygons

and Workpiece Orientation for 4-Axis and 5-Axis Machining," J Mech Design,

114(3), pp. 477-485.

[17] Chen, L. L., Chou, S. Y., and Woo, T. C., 1993, "Separating and Intersecting Spherical

Polygons - Computing Machinability on 3-Axis, 4-Axis and 5-Axis Numerically

Controlled Machines," Acm T Graphic, 12(4), pp. 305-326.

[18] Chen, L.-L., Chou, S.-Y., and Woo, T. C., 1993, "Parting directions for mould and die

design," Comput Aided Design, 25(12), pp. 762-768.

[19] Suh, S. H., and Kang, J. K., 1995, "Process Planning for Multiaxis Nc Machining of

Free Surfaces," Int J Prod Res, 33(10), pp. 2723-2738.

[20] Li, Y., and Frank, M. C., 2007, "Computing non-visibility of convex polygonal facets on

the surface of a polyhedral CAD model," Comput Aided Design, 39(9), pp. 732-744.

[21] Tarbox, G. H., and Gottschlich, S. N., 1995, "Planning for Complete Sensor Coverage in

Inspection," Comput Vis Image Und, 61(1), pp. 84-111.

[22] Spitz, S. N., and Requicha, A. A. G., 2000, "Accessibility analysis using computer

graphics hardware," Ieee T Vis Comput Gr, 6(3), pp. 208-219.

45

[23] Frank, M. C., Wysk, R. A., and Joshi, S. B., 2006, "Determining setup orientations from

the visibility of slice geometry for rapid computer numerically controlled machining,"

J Manuf Sci E-T Asme, 128(1), pp. 228-238.

[24] James Stewart, A., 1999, "Computing visibility from folded surfaces," Computers &

Graphics, 23(5), pp. 693-702.

[25] Hou, Z., Li, X., Huang, Y., and Ho, S. T., 2013, "Physics of elliptical reflectors at large

reflection and divergence angles I: Their design for nano-photonic integrated circuits

and application to low-loss low-crosstalk waveguide crossing," Optics

Communications, 287, pp. 96-105.

[26] Suthunyatanakit, K., Bohez, E. L. J., and Annanon, K., 2009, "A new global

accessibility algorithm for a polyhedral model with convex polygonal facets,"

Comput Aided Design, 41(12), pp. 1020-1033.

[27] Dhaliwal, S., Gupta, S. K., Huang, J., and Priyadarshi, A., 2003, "Algorithms for

Computing Global Accessibility Cones," Journal of Computing and Information

Science in Engineering, 3(3), pp. 200-209.

[28] Liu, M., and Ramani, K., 2007, "Computing an exact spherical visibility map for

meshed polyhedra," Proceedings of the 2007 ACM symposium on Solid and physical

modeling, ACM, Beijing, China, pp. 367-372.

[29] Liu, M., Liu, Y. S., and Ramani, K., 2009, "Computing global visibility maps for

regions on the boundaries of polyhedra using Minkowski sums," Comput Aided

Design, 41(9), pp. 668-680.

[30] Joshi, A. M., 2015, "Computer aided process planning for multi-axis CNC machining

using feature free polygonal CAD models," Graduate Theses and Dissertations., Iowa

State University, Digital Repository@ISU.

[31] Li, Y., and Frank, M. C., 2012, "Computing Axes of Rotation for Setup Planning Using

Visibility of Polyhedral Computer-Aided Design Models," J Manuf Sci E-T Asme,

134(4).

46

[32] Rajab, S. M., 2016, "Reverse engineer blade," grabcad.com/library/reverse-engineer-

blade-1.

[33] Čapo, B., 2016, "Tea Pot," grabcad.com/library/tea-pot-11.

[34] Boose, C., 2015, "Smooth Fluted Pitcher," grabcad.com/library/smooth-fluted-pitcher-1.

[35] Pundir, N., 2016, "Fortune cookie," grabcad.com/library/fortune-cookie-1.

[36] Li, Y., and Frank, M. C., 2006, "Machinability analysis for 3-axis flat end milling," J

Manuf Sci E-T Asme, 128(2), pp. 454-464.

[37] Siraskar, N., Paul, R., and Anand, S., 2015, "Adaptive Slicing in Additive

Manufacturing Process Using a Modified Boundary Octree Data Structure," Journal

of Manufacturing Science and Engineering, 137(1), pp. 011007-011007-011011.

47

CHAPTER 4. COMPUTING THE ACCESSIBILITY OF A POLYHEDRON USING

A THREE-DIMENSIONAL OFFSET FOR BALL-END MILLING

Abstract

Accessibility of a surface is the set of directions that a cutting tool follows to reach

the entirety of a surface from a distance without collision. Compared to visibility, where a

surface is visible from a direction if a set of parallel rays in that direction can reach the

entirety of it without collision, accessibility accounts for the body of the cutting tool (tool end

and tool shank) in collision. Thus, accessibility is a more accurate modelling of the

machining constraints. As visibility is relatively easier to compute, we propose a method that

generates accessibility results from visibility on the offset surface for ball-end tools. Putting

cutter locations on the offset surface avoids a tool’s local gouging. Visibility results on the

offset surface provides a tool’s feasible orientations that are globally collision-free. A one-to-

many facets mapping from part surface to offset surface is created, such that a part’s surface

can find its cutter locations on the offset surface. The results have shown that the tool body is

effectively accounted for in collision. The method provides more than a Boolean answer of

accessibility – it provides all feasible tool orientations. In this paper, we are concerned with

triangular polyhedral models only, where the smallest surface is a triangle.

4.1 Introduction

Accessibility of a surface is the set of directions that a cutting tool follows to reach

the entirety of this surface from a distance without collision. Accessibility recognizes a tool’s

body (a tool end and a tool shank) in collision. Visibility, on the other hand, simplifies the

cutting tool with a line (infinitely thin tool).

48

Visibility for a polyhedron

Visibility for a part consists of visibility for each surface of the part. As we represent

a part’s surface using a triangulated (tessellated) polyhedron, each surface is a triangular

facet. Thus, computing the visibility for a part is equivalent to computing the visibility for

each facet of the part.

The visibility of a polyhedral facet is a set of directions. Along each direction, a set of

parallel lines can reach every point in this facet without intersecting the polyhedron. A 2D

example is given in Fig. 4-1. Notice, the 2D counterpart of a facet is a segment.

Fig. 4-1 The visibility of a segment on a polygon

Accessibility for a polyhedron

 Tool accessibility of a polyhedral facet is a set of directions. Along each direction, a

set of tools whose central lines are parallel can reach every point of this facet without

colliding with the polyhedron. Both visibility and accessibility are widely used for setup and

toolpath planning in Computer Numerical Controlled (CNC) machining. However, visibility

has its limitation in that: a surface that is visible from a direction is not necessarily accessible

by the tool (Fig. 4-2 leftmost subfigure). This is because visibility only provides accessibility

Department of IMSE

Visible orientation 1 Visible orientation 2

Segment in question

Not visible orientation Visibility

visibility

49

for an infinitely thin tool; space in the tool other than the center line can easily collide with

the part. This makes visibility an overestimate of actual tool accessibility. Accordingly, using

visibility as accessibility is either unsafe or will render incomplete cutting of the part. To

solve this problem, the tool body must be accounted for in accessibility computation.

Fig. 4-2 The accessibility of a segment on a polygon

Using an Offset Surface for Ball-end Tool for Accessibility

In this paper, we propose that a tool body can be accounted for in collision by 1)

using the three-dimensional (3D) offset surface of the part as the cutter locations and 2)

treating the offset surface as obstacles in feasible tool orientations computation (Fig. 4-3).

Cutter locations are where the center of the tool’s ball-end locates. Using an offset surface as

cutter locations avoids local gouging of the tool. Treating the offset surface as an obstacle in

feasible tool orientations computation avoids global collision between the tool and part.

Lastly, the method calculates accessibility on the part surface as visibility on the offset

surface.

accessibility

Inaccessible surface Access orientation 1 Access orientation 2 Accessibility

Segment in question

50

Fig. 4-3 The observation that accessibility of a part surface can be derived from the visibility

of its offset surface

4.2 Related Work

Miller investigated the application of surface accessibility on the visual effect of

shading. In that work, accessibility was defined as radius of a sphere which may touch a

surface point and not intersect any surface [1]. The results highlighted the inaccessible

surface by a spherical probe. However, the method only provides a Boolean answer to

whether a surface is accessible by the probe; not actual access orientations. Elber proposed a

method to determine the inaccessible surface induced by a flat-end tool in 5-axis machining.

However, the method is restricted to inaccessibility of convex surfaces due to other check

surfaces. Also, it does not provide feasible tool orientations for the accessible surfaces [2].

Tang et al. proposed a surface offset/upper envelop method that solves gouging for 3-axis

multi-surface NC machining [3]. Kim et al. proposed a triangular mesh offset algorithm for

tool path planning of a generalized cutter in NC machining [4]. However, both Tang and

Kim’s work focuses on 3-axis NC machining where tool orientation was not considered. Xu

et al. proposed a method that determines feasible tool orientations for each predefined cutter

contact (CC) point in 5-axis NC machining [5]. However, CC points and CC paths must be

(a) Offset contour by tool radius (b) The rightmost feasible orientation
for ball end mill on point 𝑝

𝑝

𝑝

(c) The leftmost feasible orientation
for ball end mill on point 𝑝

(d) The accessibility of ball end mill on point 𝑝

𝑝

(a) Offset contour by tool radius (b) The rightmost feasible orientation
for ball end mill on point 𝑝

(c) The leftmost feasible orientation
for ball end mill on point 𝑝

(d) The accessibility of ball end mill
on point 𝑝

(a) Offset contour by tool radius (b) The rightmost feasible orientation
for ball end mill on point 𝑝

𝑝

51

provided first. This is not desirable if we want to optimize the tool path choice. This method

works better in the case where CC paths are already determined and used to generate gouge-

free and collision-free tool orientations.

In conclusion, a method that can determine accessible and inaccessible part surfaces

for ball-end cutter in 5-axis machining environment while also providing feasible tool

orientations for each surface is needed. In addition, we propose a new method that can

evaluate accessibility by reusing visibility results.

4.3 Methodology

4.3.1 Overview of the Methodology

The method consists of four steps (Fig. 4-4):

• The part surface is offset outward by the ball-end tool radius. The 3D offset is

realized by conducting a 3D Minkowski Sum between two polyhedra: one sphere

representing the tool-end and one representing the part;

• Visibility is computed on the offset surface using an approximate visibility

method;

• A mapping between part surfaces and offset surfaces is generated (facets to facets

mapping);

• And finally, accessibility of a part facet is obtained by intersecting visibilities of

its mapped facets on the offset surface.

52

Fig. 4-4 The four steps to compute accessibility

4.3.2 Computing the 3D Offset Surface

We first explain the rationale behind “Surface Offsetting for Accessibility” – why the

use of an offset surface leads to the gouging-free and collision-free directions of ball-end

tools.

Ball Centered on Offset Surface to Avoid Local Gouging

For the rest of the analysis, it is assumed we use a ball-end tool of a fixed radius. The

offset surface has divided the 3D space into two subspaces for cutter locations; an inner

subspace and outer subspace (subspace does not include the boundary, i.e. offset surface).

The inner subspace is the collision space where a ball-end must collide with the part if it is in

this subspace. The outer subspace is the collision-free space that guarantees no ball-end to

part intersection. If the ball-end’s center is positioned on the offset surface, it might be

tangent to some part surfaces, but it will never gouge into any. Since a part surface can only

be machined if the tool end is tangent to it, the offset surface becomes the only feasible space

for cutter locations (locations for the ball-end’s center).

 0

1. Offset outward

by tool radius

2. Compute visibility on

the offset surface
3. Find a facet’s mapping

on the offset surface

 0 {
 ,
 }

4. Intersect visibility of facets

in the mapping to obtain

accessibility

 0 = { , }

 0 0

part surface

offset surface

53

A surface of the part can be machined if and only if every point in this surface can

find its corresponding cutter location on the offset surface. Thus, the accessibility of a part

surface can be solved on its offset surface.

Using Offset Surface as the Obstacle to Avoid Global Collision

Although placing a tool’s ball center on the offset surface avoids local gouging, this

location being the travel destination of the ball-end might not be reachable due to tool-part

collision. Even if it is reachable, the tool’s access directions are still to be determined.

More formally, the problem to solve is this: Given a point on the offset surface, from

what directions can a tool’s ball center approach this point without any tool-part collision

(Assuming the tool always approaches the part surface in a straight line and the tool is

infinitely long)? Considering the tool’s approaching as a dynamic process, at any time, the

travelling ball should be collision-free with the part. Notice the offset surface has created an

outer subspace that guarantees no ball-part intersection and an inner subspace that guarantees

ball-part intersection. Thus, the trace of the travelling ball (a ray) must lie within the outer

subspace. This is equivalent to shooting a ray from said point without colliding with the inner

subspace. In fact, this is effectively a visibility problem; finding the set of rays which start

from a fixed point on the offset surface that do not interest with the offset surface (Notice the

offset surface is the boundary of the inner subspace).

In conclusion, the visibility results of a point on the offset surface (Cutter Location

(CL) point) provide directions that render the ball-end tool globally collision free (i.e. tool

shank does not collide with the part). Meanwhile, the visibility results also provide the

feasible tool orientations of a part point corresponding to this CL point.

54

Using the 3D Minkowski Sum for Surface Offset

Fig. 4-5 Comparison between (a) Simple offset and (b) a Minkowski Sum with disk

To simulate ball-end tool machining (assuming the ball-end’s radius is R), we require

the offset surface to have the following property: First, any sphere of radius R centered on

the offset surface does not collide with the part except for tangentially touching; Second, the

offset surface must contain the exact sphere-part collision space, no larger or smaller. The

first one guarantees there is no part gouge if cutter locations are on the offset surface. The

second one guarantees an accurate boundary of the sphere-part collision space which affects

the accuracy of visibility computation where the offset surface is treated as an obstacle.

The commonly used offset strategy in most CAM software (offset face-by-face, then

extend and trim) does not satisfy the second requirement (Fig. 4-5a). However, the surface

generated by a 3D Minkowski Sum of the part and a sphere of radius R does meet the

requirement (Fig. 4-5b). Minkowski sum of two geometry objects is the space occupied by

both objects when traversing one object along every point in the other object (Fig. 4-6). The

3D Minkowski Sum of a part and a sphere simulates the process of traversing a ball-end in

the interior and on the surface of the part. The sum is the union of the spaces where tool-part

collision occurs. Therefore, the interior of the sum is the part-tool collision space where the

exterior of the sum is the part-tool collision-free space.

(a) (b)

55

Fig. 4-6 2D and 3D Minkowski Sum [6, 7]

There are many computer programs that can compute the 3D Minkowski Sum, a

commonly used one is by CGAL [6]. However, the time complexity of its implementation is

 (𝑚 𝑛) making it a very slow process, where m and n are the complexities of the two input

polyhedra. Complexity of a polyhedron is the sum of its vertices and edges. Lien has

proposed a much faster algorithm to compute 3D Minkowski Sum using collision detection,

though some results might be problematic (low dimensions) [8]. Li has proposed a fast

voxel-based 3D Minkowski Sum using GPU [7]; however, the results are not exact. In this

work, we choose OpenSCAD, an open source software based on Constructive Solid

Geometry (CSG) and a CGAL kernel that provides basic Boolean operations of solids and

3D Minkowski Sum [9]. Though it is somewhat computationally expensive, we prefer the

accuracy of the offset surface in this work.

56

Inaccessible Part Surfaces Determination

Fig. 4-7 Inaccessible surface (red) and residual material (yellow)

 We first find the part surfaces that are completely inaccessible by the ball-end cutter

to save computation time for the facet mapping from part surface to offset surface.

Inaccessible surfaces can be determined using a two-offsetting technique (Fig. 4-8):

1. Offset the part surface outward by distance R (using 3D Minkowski Sum); the offset

surface defines Cutter Locations (CL) on the surface (Fig. 4-8b).

2. Offset the CL surface inward by distance R (using 3D Minkowski Sum); the resulting

surface defines the Maximal Cut (MC) surface (Fig. 4-8c).

3. Subtract the solid represented by the MC surface by the part to get residual volume;

which represents the material left by Maximal Cut (Fig. 4-8c).

4. Calculate the part surfaces that are tangent to the residual material; these part surfaces

are not accessible (Fig. 4-8d).

Note that in OpenSCAD, there is no Minkowski Sum that goes inward. To achieve

the same effect of inward offsetting, we can subtract a model from a bigger cube (big enough

to cover the model). The resulting solid has an inner surface that is the exterior surface of the

model. Since it is an exterior surface, we can then conduct Minkowski Sum on it which

effectively realizes inward offsetting of the model.

57

Fig. 4-8 The two-offsetting method to find inaccessible surfaces

4.3.3 Mapping from Part Surface to Offset surface

 Cutter Locations Determination for a Part Surface

To calculate a part facet’s feasible tool orientations, its cutter locations must be

found. Cutter location for a point on the part surface is its normal projection on the offset

surface. We define such projection as an image of the part vertex/surface. Because the offset

surface has a different triangulation from that of the part surface, the image of a part facet (on

the offset surface) could intersect multiple offset surface facets. We define the offset facets

that intersect with the part facet’s image as the mapped facets. In this way, the accessibility

of a part facet is the intersection of the visibilities of its mapped facets.

6

Department of IMSE

Fig.20 Two offsettings method to find inaccessible surface

Cutter Locations

part partpart part

Cutter Locations
ball-end

tool

part part

residual material

part part

Inaccessible surface

(a) (b)

(c) (d)

58

Fig. 4-9 Locating cutter locations; (a) Locating the cutter location of a point on part

surface (b) Locating the cutter locations for a part facet (c) Searching all mapped facets

by a graph traversal (Breadth First Search is chosen).

To find the mapped facets for a part facet 𝑓0, a segment starting from the centroid of

𝑓0, extended in the normal direction of 𝑓0, of a length R (R is ball-end tool’s radius) is

created. The facet on the offset surface intersected by this segment must be one of the

mapped facets (denoted as 𝑓0
). Because the mapped facets must be connected (thus in a

connected component), we can conduct a graph traversal starting from 𝑓0
 to enumerate all

mapped facets. In each step of the traversal, we test if the current offset facet intersects with

the image facet, if yes, we proceed to explore its neighbor facets, else we stop exploring this

facet.

To speed up the collision detection which finds 𝑓0
 , we create an Axis Aligned

Bounding Box (AABB) tree for quick intersection query on the offset surface. This AABB

tree is reused for locating cutter locations of other part facets.

4.3.4 Computing the Visibility for Facets on the Offset Surface

 In this paper, we use a slice geometry-based method from our previous work to

compute visibility (Fig. 4-10) [10]. A brief review of the four main steps is as follows:

Department of IMSE

Fig.21 Locating Cutter Locations for a part facet

Part surface

Offset surface

(Cutter Locations)

part facet 𝑓0

Offset surface facets

(b) 3D

𝑛

Part surface

Offset surface

(b) (c)

(d) (e)

(f)

(a)

• Find the first mapped facet
 : Collision test between offset surface and a

ray starting from centroid of 𝑓0, pointing at direction 𝑛 (build AABB tree for

offset surface to speed up intersection query).

centroid

• Find all mapped facets: Graph travel starting from 𝑓0
 .

CL

surface

part

(a) 2D (c) Search for mapped facets

𝑝

𝑓0

59

First, we select a set of parallel planes cutting the part into a set of slices. Each slice

consists of a set of segments. A 2D visibility algorithm is conducted on each slice to compute

visibility for each segment. The direction perpendicular to these parallel planes is called a

slicing direction. Second, for each facet sliced by a set of segments, intersect the visibility

from those segments to generate visibility for the facet. This process is repeated for all facets.

Third, we repeat step one and two for other slicing directions. These directions should be

comprehensive (normal planes of slicing direction span the entire space). Fourth, we gather

the visibility results from different slicing directions (a set of arcs) to form the final visibility

results.

Fig. 4-10 The slice-geometry based visibility method

(a) Compute segments’ visibility

(b) Convert segment visibility to facet visibility

(c) Compute visibility on differently oriented planes

Overview

3

Department of IMSE

slicing

plane

60

4.4 Implementation

4.4.1 Surface Offsetting Results

Fig. 4-11 Surface offset results for three models (via OpenSCAD)

Fig. 4-12 Inaccessible surface results (yellow)

Implementation, Surface Offsetting

Department of IMSE

Fig.24 Surface offset results for three models (OpenSCAD)

Original model Offset model

Original model Offset model

Part

Surface

Offsetting

Surface

Original model Offset model

sphere used

Inaccessible Surface

2

Department of IMSE

Fig.25 Inaccessible surface (yellow) results

Residual material Inaccessible surface

Surface of
sphere

Surface of Part

Residual material Inaccessible surface

Surface of
sphere

Surface of Part

Part

Inaccessible

surface

Residual

volume

61

4.4.2 Cutter Location Determination (for a Part Facet) Results

Fig. 4-13 Mapping from part faces to offset surface faces (four cases of mapping)

The example part shown in Fig. 4-13 is a cube with a tapered pocket on the top. In all

5 subfigures, the offset surface (using 3D Minkowski Sum, offset distance 0.5 inch) is shown

in transparent mesh. The four subfigures on the right show four pairs of mapping. In each,

the orange facet indicates the facet on the part surface while red facets indicate mapped

facets on the offset surface, respectively. Depending on the size and position of the part facet,

its mapped facets’ count varies.

As we will conduct the intersection of visibility on the mapped facets, the more the

mapped facets resemble the part facet, the more accurate the result is for the part facet. To

better approximate the part facet, the polyhedron of the offset surface can be re-meshed to

generate smaller facets.

part

surface

(solid)

offset

surface

(transparent)

Mapping: Part facet (yellow) Offset surface facets (red)Part and offset surfaces

Mapping pair 1 Mapping pair 2 Mapping pair 3 Mapping pair 4

62

4.4.3 Accessibility Results

Fig. 4-14 A part facet and its image

 To show accessibility results, we use the part shown in Fig. 4-14a as an example. The

part is a cube with a tapered pocket on the top. The offset surface of the part is shown as

transparent which is offset outward by a tool radius of 0.5 inch (offset using 3D Minkowski

Sum). We choose a facet 𝑓0 on the part surface as an example (Fig. 4-14b). In the cross-

section view, 𝑓0 is shown as a yellow segment while in the 3D view, 𝑓0 is shown as yellow

triangle. In both views, we can see 𝑓0’s mapped facets (on the offset surface) are shown in

red. Notice, the image of 𝑓0 has intersected with 6 facets on the offset surface.

 We then use the slice geometry-based visibility method to compute visibility for each

of the mapped facets (Fig. 4-15). The visibility results for the six mapped facets are shown in

six different colors. The leftmost subfigure represents visibility results on the unit sphere. For

(a) Part and offset surface (b) Facet of interest and its mapped facets on offset surface

Cross section view 3D View

𝑓0

mapped facets

Part

Offset

surface

part facet

mapped

facet

63

clarity, we separate these visibility results and show them one by one in the top view. The

results show that the six different mapped facets have different visibility regions.

 To obtain accessibility of 𝑓0, we conduct an intersection of these six visibility regions

(rightmost subfigure).

Fig. 4-15 Visibility results of six mapped facets and their intersection

Intuitively, accessibility, which considers tool body for collision, should be more

restricted than visibility. To verify this, we compute the visibility of 𝑓0 and compare it with

𝑓0's accessibility (Fig. 4-16). It can be seen that the accessibility region is considerably

smaller than the visibility region which agrees with our expectation. The difference is

partially attributed to the extra collision induced by the tool body and partially attributed to

the intersection of visibility (namely approximating the image of 𝑓0 as the union of mapped

facets).

Fig. 4-16 Comparison between accessibility and visibility

 𝑖

=

Intersection of visibility results on the offset surface

Accessibility of 𝑓0

Visibility results of

six offset facets

Visibility

Accessibility versus Visibility for 𝑓0

Accessibility

64

4.5 Conclusion

This paper presented a new method to calculate the accessibility of a machine tool to

a part surface. Instead of directly evaluating accessibility, we propose that the equivalent

can be found through considering the visibility of an offset surface. This offset surface,

found using a Minkowski Sum, allows us to consider an exact solution to visibility, and then

map the visibility of the offset surface facets to the original part surface facets. It was shown

that the use of an offset surface effectively accounts for the body of the tool in collision for

accessibility computation. The method provides more than a Boolean solution to

accessibility, rather, it calculates all feasible orientations of a ball-end tool. The results can be

used for setup and toolpath planning in multi-axis CNC machining.

The method essentially reuses the visibility results, making it possible to adopt other

visibility methods in the future. However, the 3D Minkowski Sum is computationally

expensive. Computing the offset surface of a complex model with a fine resolution sphere

mesh may take too long to process, making it less practical for rapid manufacturing efforts.

Since the sphere mesh is always an approximation of the true sphere, the offset surface is

always an approximation which leads to some inaccuracy of the results. Also, due to the

triangulation difference between the offset surface and part surface, the accessibility results

are always computed from the intersection of the mapped facets which is always

conservatively approximated, making it less accurate. Moreover, this method only applies to

ball-end cutter. In the future, work can be done on developing a more efficient surface offset

algorithm considering the geometry of the specific type of tool used. In addition, a re-

triangulation on the offset surface that guarantees each accessible part facet has an identical

cutter location image should be developed to make the accessibility results more accurate.

65

4.6 References

[1] Miller, G., 1994, "Efficient algorithms for local and global accessibility shading,"

Proceedings of the 21st annual conference on Computer graphics and interactive

techniques, ACM, pp. 319-326.

[2] Elber, G., 1994, "Accessibility in 5-axis milling environment," Comput Aided Design,

26(11), pp. 796-802.

[3] Tang, K., Cheng, C. C., and Dayan, Y., 1995, "Offsetting surface boundaries and 3-axis

gouge-free surface machining," Comput Aided Design, 27(12), pp. 915-927.

[4] Kim, S.-J., and Yang, M.-Y., 2005, "Triangular mesh offset for generalized cutter,"

Comput Aided Design, 37(10), pp. 999-1014.

[5] Xu, X. J., Bradley, C., Zhang, Y. F., Loh, H. T., and Wong, Y. S., 2002, "Tool-path

generation for five-axis machining of free-form surfaces based on accessibility

analysis," Int J Prod Res, 40(14), pp. 3253-3274.

[6] TheComputationalGeometryAlgorithmsLibrary, 2017, "3D Minkowski Sum of

Polyhedra," https://doc.cgal.org/latest/Minkowski_sum_3/index.html.

[7] Li, W., and McMains, S., 2014, "A sweep and translate algorithm for computing

voxelized 3D Minkowski sums on the GPU," Comput Aided Design, 46, pp. 90-100.

[8] Lien, J.-M., 2010, "A Simple Method for Computing Minkowski Sum Boundary in 3D

Using Collision Detection," Algorithmic Foundation of Robotics VIII: Selected

Contributions of the Eight International Workshop on the Algorithmic Foundations of

Robotics, G. S. Chirikjian, H. Choset, M. Morales, and T. Murphey, eds., Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 401-415.

[9] OpenSCAD, 2017, "The Programmers Solid 3D CAD Modeller,"

http://www.openscad.org/downloads.html.

[10] Hou, G., and Frank, M. C., 2017, "Computing the Global Visibility Map Using Slice

Geometry for Setup Planning," Journal of Manufacturing Science and Engineering.

https://doc.cgal.org/latest/Minkowski_sum_3/index.html
http://www.openscad.org/downloads.html

66

CHAPTER 5. A HYBRID APPROACH TO COMPUTE THE VISIBILITY MAP OF

A POLYHEDRON

Abstract

This paper proposes a new visibility determination method that combines two

independent visibility methods to balance computational cost and accuracy. One of them is

an approximate method that computes a facet’s visibility on a set of selected planes. The

other is an exact method that uses a boundary tracing technique to determine the exact

boundary of non-visibility of one facet due to the other. The complete non-visibility of a

facet will consider all other facets as obstacles. To speed up the exact computation which has

a higher time complexity than the approximate, we create an obstacle filter that generates

considerably fewer candidate obstacles for the exact method. This filter is created using the

approximate method’s Quick Visible Region Identification functionality. In this way, we

incorporate both methods in visibility determination that generates near-exact results. This

hybrid method also provides easy control over the approximate-exact computation ratio. By

adjusting this ratio, we realize a balance between computational cost and accuracy.

5.1 Introduction

Toolpath planning for Computer Numerical Control (CNC) machining has been a

long-term research focus in the field of high precision manufacturing. Its intricacy is driven

by the complex geometry of the CAD model, the mechanical characteristics of cutting, the

optimization considering multiple parameters and the choice among a variety of toolpath

strategies. Generating a feasible toolpath for an arbitrary model is no easy work. Some

researchers still rely on the recognition of features to generate specific types of toolpaths [1].

67

Others consider a freeform surface and develop their toolpath strategy based on the concept

of visibility or reachability [2]. In which, visibility determination becomes a prerequisite step

in a toolpath’s generation.

The methods to compute visibility divide into two categories in general: approximate

and exact methods. Although an approximate method is usually faster because of adjustable

resolution and approximation ratio, the inexactness may not be preferred in certain cases. The

exact methods generate accurate visibility boundaries but are usually high in time

complexity. This dilemma leads to choices that either sacrifice accuracy for processing time

or vice versa. Often, engineers and researches choose one type that fits better into their

immediate needs. This work attempts to merge the two approaches in a hybrid method that

accomplishes both goals.

5.2 Related Work

There has been considerable research that addresses visibility computation, including

the seminal method by Chen and Woo that used a Gaussian map [3], the Z-buffer method [4],

discrete avoidance method [5], Minkowski Sum method [6], exact visibility methods using

pairwise occlusion [7], and sliced geometry-based methods [8]. As modern machine’s

computational performance rises, researchers nowadays tend to use the GPU for scientific

computation. Some researchers make use of the “occupation query” of GPU for visibility

computation [2]. Some use the GPU for accessibility testing, which considers both the tool

body and the tool holder [4]. In general, the time complexity of exact visibility computation

that use pairwise occlusion is (𝑛). The time complexities of approximate methods vary

but they are more efficient than exact method in most cases.

68

One slice geometry-based approximate method first creates cross sections (slices) of

the model using multiple parallel planes, then computes visibility on these 2D slices [8, 9]. It

obtains 3D visibility by merging visibility from 2D slices which essentially reduces a 3D

problem to a 2D one. The time complexity of this method is (𝑘 ∙ 𝑛), where 𝑛 is the part

mesh size, 𝑘 is the total number of slices (among all directions). It has better time complexity

than an approximate method that discretizes the visibility space (whose time complexity is

 (𝑚𝑛), where 𝑚 is the discretization size of visibility space) and the exact methods

mentioned above. Although efficient, it is still computationally costly if accuracy and

resolution requirements are high. Besides, it generates inexact visibility results compared to

exact methods.

In summary, a method that can generate exact or near-exact visibility results while

also balancing processing time and accuracy is highly desirable. In this paper, we will

introduce one such method by using an approximate method to preprocess the visibility and

filter out unlikely obstacles for the exact method; which eventually reduces the processing

time for the latter.

5.3 Methodology

The following analysis uses an example facet 𝑓0 to illustrate the visibility

determination process. We denote the approximate visibility method V1 as in [8]; denote the

exact visibility method V2 as in [7].

5.3.1 Method Overview

The method has four steps (as illustrated in Fig. 5-1). And they are described in detail

in the following paragraphs.

69

1. Visibility Evaluation on Selected Circles. This computes the visibility of facet 𝑓0

on two sets of sampling great circles using V1. The first set are coaxial about the

Z-axis. The second set are coaxial about the Y-axis. Both sets of great circles span

the unit sphere homogeneously.

2. Visible Region Classification. The visibility results are represented as a set of

geodesics on the unit sphere. We divide the unit sphere into three regions based

on whether an area is enclosed or partially enclosed by geodesics. These three

regions are marked as Visible (V), Nonvisible (N) and Undetermined (U),

respectively.

3. Candidate Obstacles Determination. We extrude a 3D beam from base 𝑓0

following a direction 𝑟, where 𝑟 is the line connecting the centroid of 𝑓0 and a

point 𝑝 in the Undetermined region (U). Then, we move 𝑝 in region U while

finding all part facets that intersect the beam. These part facets 𝑆𝑜𝑏𝑠 are the

obstacles of 𝑓0 that will contribute to the visibility boundary in region U.

4. Non-visibility Computation and Final Non-visibility Merging. Finally, we

compute the non-visibility for each facets pair (𝑓0, 𝑓𝑖), ∀𝑓𝑖 ∈ 𝑆𝑜𝑏𝑠 using V2 and

then union the results, denoted as 𝑁 . The final non-visibility is the union of 𝑁

and 𝑁 . The complement of (𝑁⋃𝑁) gives the final visibility of 𝑓0.

70

Fig. 5-1 Overview of the hybrid visibility method

5.3.2 Undetermined Visible Region Determination

5.3.2.1 The Slice Geometry-based Visibility Method

In this paper, we use a slice geometry-based visibility method from our previous work to

compute visibility (Fig. 5-2) [8]. Following is a review of the four main steps:

First, we select a set of parallel planes cutting the part into a set of slices. Each slice

consists of a set of segments. A 2D visibility algorithm is conducted on each slice to compute

visibility for each segment. The direction perpendicular to these parallel planes is called a

slicing direction. Second, for each facet sliced by a set of segments, we intersect the visibility

from those segments to generate visibility for the facet. This process is repeated for all facets.

Third, we repeat step one and two for other slicing directions. These directions should be

comprehensive (normal planes of slicing direction span the entire space). Fourth, we gather

the visibility results from different slicing directions (a set of arcs) to form the final visibility

results.

O

y

z

y

x

x

O

O

x

z

y

z

x

U

NV

U

U

𝑓0

𝑓0𝑟

𝑟

𝑝

𝑝

𝑓0

U

N

𝑁

non-visibility polygon

candidate

obstacle

non-visibility polygons

V

(a) Step1:

Visibility computation

on sampling circles

(b) Step 2:

Region classification

by visible geodesics

(c) Step 3:

Candidate obstacles

determination by intersection

(d) Step 4:

Non-visibility computation for

all obstacles against 𝑓0

Sampling circles

visibility polygon

to determine visible geodesics

𝑓0

part

facets

part

facets

71

Fig. 5-2 The slice geometry-based visibility method

5.3.2.2 Visibility Sampling Grid on Unit Sphere and Visible Region Classification

Assuming a part is single-bodied, we introduce a special property of its visibility

polygons: A visibility polygon must be simple polygon without holes (a hole is a nonvisible

region).

Fig. 5-3 A special property about visibility polygons

(a) Compute segments’ visibility

(b) Convert segment visibility to facet visibility

(c) Compute visibility on differently oriented planes

Overview

3

Department of IMSE

slicing

plane

N

Obstacle

V

obstacle

(b) Visibility polygon

with a hole

(a) Visibility polygon

with no hole(s)

Interior

of the cone

Swept volume/

Collision-free space

Part

surface

𝑓
𝑓

𝑓

(c) Swept volume/Collision-

free space

(d) Cross section view of sweep

volume

72

This property can be proven by contradiction. Suppose the visibility polygon contains

a hole, then the visibility is in a ring shape (Fig. 5-3b) where the hole is a non-visibility area.

By the definition of visibility, the 3D beam extruded from face 𝑓, directed at points in the

visibility ring, will sweep out a collision-free volume in space (Fig. 5-3c, d). Therefore, this

swept volume contains no solid. On the other hand, there must exists a solid above the swept

volume, acting as an obstacle that generates the non-visibility area. The swept volume has

divided the 3D space into two subspaces where the base 𝑓 and obstacle solid are on different

subspaces. Because we assume our part is single-bodied, this separation of base 𝑓 and

obstacle solid introduces a contradiction. Therefore, the visibility polygon for a single-bodied

part contains no (non-visibility) holes.

This special property leads to a corollary: A spherical region whose boundary is

visible is also visible in the interior (Fig. 5-4).

Fig. 5-4 A corollary for spherical region closed by visible geodesics

Using this corollary, we could quickly identify the visible regions given visible

geodesics on the unit sphere that form closed regions. We call this the Quick Visible Region

Identification (QVRI) technique.

One unique feature of the slice geometry-based visibility method (V1) is that

visibility can be evaluated on selected great circles on the unit sphere. Doing so will generate

a set of visible geodesics on the unit sphere. We can use this feature for QVRI. If a true

3

Department of IMSE

V V

V

visible geodesics

corollary

73

visibility polygon is sampled by great circles and contains regions closed by visible

geodesics, we can mark those regions visible and leave the remaining area to be determined

later.

To create regions closed by visible geodesics, we establish a grid made by two sets of

great circles on unit sphere where one set intersects the other. This grid subdivides the unit

sphere into multiple small regions which we call cells. In this paper, we choose the first set of

great circles to align with meridians (suppose north pole is to the positive Z direction); and

the second set of great circles to be coaxial about Y-axis. This layout is shown in Fig. 5-5.

The angle between adjacent great circles in a set is uniformly set to 5 degrees (adjustable).

We then use V1 to evaluate visibility on these great circles. We define these two sets of great

circles as sampling circles or simply a sampling grid together.

Fig. 5-5 Two sets of great circles to compute visibility using V1

The intersections of these sampling circles create two types of spherical polygons:

spherical triangles and spherical rectangles. In the following analysis, we use spherical

rectangles for illustration.

O

y

z

y

x

x

O

O

x

z

(a) Two sets of great circles for

visibility computation

Planes where visibility is computed on

visibility polygon

to compute visibility geodesics

𝑓0

y

z

x

(b) The cubic projection of the two sets

of great circles

74

After visible geodesics are determined on the sampling grid, we classify the unit

sphere into three regions:

• Visible Region where a cell’s boundary is visible.

• Undetermined Region where a cell’s boundary contains at least one visible

geodesic but is not completely visible.

• Nonvisible Region which covers all the remaining cells.

An example of the Visible Region Classification process is shown in Fig. 5-6.

Fig. 5-6 Visible Region Classification. (a) Sampling circles and the visibility polygon to

determine; (b) Locating Visible and Undetermined regions. Not all visible geodesics are

shown; (c) The final Visible, Undetermined and Nonvisible regions.

 After Visible Region Classification, the visibility results in Visible and Non-visible

region are fully determined. The visibility in the Undetermined region is unclear. The cells in

the Undetermined region could be either partially visible or completely invisible. In fact, the

Undetermined region contains the boundary of the true visibility polygon of 𝑓0. To determine

this boundary, we use the exact visibility method V2. The boundary separate visibility and

non-visibility. Thus, there must exist some obstacle facets whose occlusions establishes the

exact shape of this boundary. In the following section, we will find such obstacle facets.

visible

nonvisible

Boundary

(a) (b)

z

y

Sampling circles

Visibility polygon to determine

Nonvisible

Unit sphere

Undetermined

Visible

Visible geodesics not boundary

of any visible cell

Boundary of

Undetermined

region
Nonvisible

Unit sphere

(a) (b) (c)

75

5.3.3 Exact Visibility Boundary Determination in the Undetermined Region

5.3.3.1 Candidate Obstacles Determination for the Undetermined Region

Fig. 5-7 Intersection test between the 3D extruded beam and part to discover obstacles

that contribute to the forming of visibility boundary in Undetermined region

To find the obstacles (part facets) that contribute to the forming of visibility boundary

of 𝑓0 in the Undetermined region, an intersection test between the part and a 3D beam is

conducted. Any part facet that intersects with the 3D beam (extruded from 𝑓0 following

direction 𝑟 where 𝑟 starts from the centroid of 𝑓0 and point at any point 𝑝 in the

Undetermined region U) will contribute to the forming of a visibility boundary in the

Undetermined area U.

The intersection between a triangle and a 3D extrusion beam has three scenarios.

First, at least one vertex of the triangle is in the beam (Fig. 5-7b). This can be checked by

testing if any triangle vertex is in all negative spaces of the side planes of the 3D beam.

Second, no triangle vertex is in the 3D beam, but at least a triangle edge intersects with the

3D beam (Fig. 5-7c). In the projected view (projecting everything in the 𝑟 direction onto a

plane that is parallel to 𝑓0), the edge of 𝑓0 has divided the plane into 6 subspaces. These

subspaces can be categorized into two types; Type one: any point in this subspace that is in

U

𝑓0

𝑟

𝑝

𝑓0 𝑓0 𝑓0 𝑓0

①

②

①

①②

②

②

①

(b) (c)

(f)

(d) (e)

Projected

view

3D

view

(g) (h)

(a)

𝑓0

(i)

𝑓0

(j)

𝑓o s

 ⃗

 ⃗
𝑟

𝑟

 𝑓

 𝑓

V

N

76

the positive space of side plane and negative space of the other two side plane, and Type two:

any point in this subspace that is in the positive space of two side planes and negative space

of the other side plane (Fig. 5-7f). For any 3D segment ⃗, one vertex of ⃗ must fit into the

two categories above. For ⃗ to interest with the 3D beam, the other vertex of ⃗ must lie in the

space bounded by the planes shown in (Fig. 5-7(d-e)). The subfigure in Fig. 5-7(g-h)

illustrates the respective projected view. Essentially, it is testing whether the other vertex of ⃗

is in the bounded space of corresponding planes. We can conduct this test for each edge of

the obstacle triangle. If any edge intersects with the beam, the triangle intersects with the

beam.

The third case is neither a vertex nor an edge of the triangle intersects with the 3D

beam. In this case, we denote the projected image of 𝑓0 as 𝑓 and projected image of

obstacle triangle 𝑓𝑜𝑏𝑠 as 𝑓 . Then, the obstacle triangle 𝑓𝑜𝑏𝑠 intersects the 3D beam if and

only if 𝑓 is contained by 𝑓 or 𝑓 contains 𝑓 (Fig. 5-7j). To determine if a triangle is

contained by another triangle, we can test whether all the vertices of one triangle is in the

other triangle.

In conclusion, the time complexity for testing whether an obstacle facet intersects

with a 3D beam is linear to the number of edges of 𝑓0 and number of edges of 𝑓𝑜𝑏𝑠. Because

both facets are triangles in this paper, the edges count are 3 for both. Therefore, the time

complexity of the intersection test is constant.

The above intersection test describes how to find the intersected part facets for one

3D beam direction 𝑟. To account for all directions of 𝑟, we need to traverse the endpoint of 𝑟

in the undetermined region U. Since the undetermined region consists of many cells, we can

traverse 𝑟 for each cell and repeat the traversal for all cells. Although it is ideal to enumerate

77

𝑟 for all points in U, this is not practical. In this paper, we only consider the boundary

vertices of each cell, assuming the intersecting facets introduced by these 3D beams captures

all potential obstacle facets for that cell (Fig. 5-8). This is reasonable because our sampling

great circles have small angle interval, the 3D beams introduced by the boundary vertices are

heavily overlapped and occupy most of the swept volume if 𝑟 is traversed for the entire cell.

Therefore, the chance that an actual obstacle facet does not intersect with any of the

boundary 3D beams is negligible.

Fig. 5-8 Enumerate directions 𝒓⃗⃗ at cell boundary vertices in the Undetermined region

 In summary, the 3D beam intersection tests will be conducted for all cell’s boundary

vertices in the Undetermined region. The resulting part facets (candidate obstacle facets) will

be used to compute non-visibility which will form the boundary of 𝑓0’s visibility polygon(s).

5.3.3.2 The Boundary Tracing Method for Exact Visibility Boundary

From the previous section, we have a base facet 𝑓0 and a set of other facets that are

obstacles of 𝑓0. The goal is to compute the non-visibility polygon(s) of 𝑓0 due to this set of

obstacles. It can be realized in two steps. First, we compute the non-visibility of 𝑓0 due to

each obstacle facet; Second, we union the non-visibility regions due to each obstacle.

Given a pair of facets (one being the base facet whose visibility is to be determined

the other being an obstacle), how can we determine the space that is obstructed by the

U

𝑝

(a)

U

𝑝

U

𝑝

U

𝑝

One cell of undetermined region

U

𝑝

(b)

𝑟

78

obstacle for the base facet? The problem can be reformulated as follows: First, translate the

base facet in space and form a 3D light beam by connecting the translated facet and the

original base facet vertex-by-vertex. Second, extend the 3D light beam so it is infinite in

length. Third, move the translated facet while keeping the infinite long 3D beam moving at

the same time. Forth, if at any time, the 3D beam intersects with the obstacle facet, the

direction determined by the segment connecting the centroid of the base facet and translated

facet, is an invisible direction. The goal is to find the boundary between visible and invisible

directions.

To solve this problem, we make use of a boundary tracing visibility method that

determines the non-visibility region of one facet due to the other by computing sliding planes

[7]. This method gives the exact non-visibility results in the form of spherical polygons on

the unit sphere for a pair of facets. However, it does not address how to obtain the complete

non-visibility for a facet, which essentially requires us to union the non-visibility polygons,

either on the unit sphere or on a plane. To this end, a modified method is implemented from

scratch using the CGAL and s2Geometry library [10, 11]. We use s2Geometry library for its

capability of conducting Boolean operations of spherical polygons on the unit sphere.

An example of an exact visibility boundary represented as spherical polygons on the

unit sphere is shown in Fig. 5-9. Following is the detail of this method.

Fig. 5-9 The exact visibility boundary shown as spherical polygon on unit sphere

79

In order to compute the non-visibility of a base facet due to an obstacle facet, a

boundary tracing approach is used (Fig. 5-10). This approach extrudes a 3D light beam from

the base facet where all the side edges are parallel. Then the top cap of 3D light beam is

pushed against the obstacle facet until touching (vertex/edge, vertex/vertex or edge/edge).

Once touching, we trace the 3D beam along the boundary of the obstacle facet. The trace (of

the beam’s center line) results in a 3D cone which defines the boundary of directions where

the 3D beam will collide with the obstacle. This 3D cone can be projected to a plane parallel

to the base facet, creating a non-visibility polygon. It can also be projected to a unit sphere,

creating a non-visibility spherical polygon.

Fig. 5-10 Boundary tracing algorithm for a pair of faces

To quantify the 3D cone, we exam the tracing process. Notice, the tracing is based on

the contact of the cap and obstacle facet. The contact pair, namely a vertex or edge from the

cap and a vertex or edge from obstacle could change over the tracing process. The 3D beam

can move if the contact pair contains an edge. In fact, the 3D beam can slide along the plane

determined by the contact pair that contains an edge. These planes are called sliding planes.

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

Department of Computer Science

base

obstacle

80

A sliding plane, due to the boundary tracing nature, subdivides the 3D space into two

subspaces where the obstacle facet and base facet are in different subspaces. Therefore,

sliding planes can be found by examining planes defined by contact pairs (formed by the cap

and obstacle’s vertices and edges). The planes that separate the cap and obstacle facet are the

sliding planes (Fig. 5-11).

Fig. 5-11 Contact pair and sliding planes

Once sliding planes are determined, the 3D cone for non-visibility is determined (the

3D cone can be created by intersecting the negative subspace of each plane, assuming

negative space is where the obstacle facet is, denoted as 𝐼𝐼 subspace). To represent non-

visibility results on a plane, we could intersect the 3D cone with a plane parallel to base

facet. Or equivalently, we could intersect sliding planes with plane first (creating a set of

oriented 2D lines) and intersect the negative space of these 2D lines to generate non-visibility

polygon in 2D (Fig. 5-12).

obstacle

base

edge

vertex

Subspace 1

Subspace 2

obstacle

base

vertex

obstacle

base

edge

edge

Subspace 1

Subspace 2
Subspace 1

Subspace 2

vertex/edge edge/vertex edge/edge

81

Fig. 5-12 Half spaces intersection for non-visibility. 𝑺𝒊 denotes sliding plane i; 𝑰𝒊 denotes

visible half-space i; 𝑰𝑰𝒊 denotes the complementary half-space of 𝑰𝒊.

As an example, Fig. 5-13 shows the non-visibility cone of a base facet (on x-y plane)

due to an obstacle facet above. The results are represented on the = 1 plane as well as on

the unit sphere.

Fig. 5-13 Non-visibility polygon of a base facet due to an obstacle. (a) Represented on

the plane 𝒛 = 𝟏, intersection is in blue, (b) Represented on unit sphere, intersection is in

green. (c) Same as (b), but different view.

Now, the algorithm to compute non-visibility for one obstacle is complete. The next

is to compute non-visibility for a set of obstacles and union them. Because the visibility

space for a facet is at most a hemisphere and the images on a hemisphere can always be

projected to the same plane, we could then represent the non-visibility results of a facet due

Non-visibility
= 𝐼𝐼𝑖

𝐼 𝐼

𝐼

𝐼

𝐼

𝐼𝐼 𝐼𝐼

𝐼𝐼

𝐼𝐼

𝐼𝐼

𝑆

𝑆

𝑆

𝑆

𝑆

(a) (b) (c)

base

obstacle

 = 1 planeunit

sphere

unit sphere

base

obstacle

82

to different obstacles to a plane that is parallel to the base facet. Fig. 5-14 shows an example

of representing non-visibility results of a base facets due to five different obstacles.

Fig. 5-14 Non-visibility polygons for a base face (in red) against five obstacle faces (in

yellow). Non-visibility Polygons are in blue. (a) Five obstacle facets. (b) The non-

visibility polygons for the corresponding face pair in isometric view. (c) Same as (b), but

in front view.

Fig. 5-15 A collection of non-visibility polygons (in green) for a facet (in red); The union

of non-visibility polygons (in purple).

After we have the non-visibility polygons generated from different obstacles, we

conduct a union of these 2D polygons. The union is the final non-visibility result of the base

(c) Front view (from x-axis)

(b) Isometric view

(a) Face pair in query

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

obstacle obstacle obstacle obstacle
obstacle

y

z

y

z

y

z

y

z

y

z

Isometric view Front view

Non-visible region

In green: A set of

non-visibility

polygons

In purple: union of

a set of non-visibility

polygons

Infinity

In
fi

n
it

y

Infinity

In
fin

ity

83

facet due to a set of obstacles (example given in Fig. 5-15). Notice, once we get the non-

visibility results on a plane, we can project them onto the unit sphere for a better view.

5.3.3.3 Visibility Boundary Computation in Undetermined Region

Fig. 5-16 Compute non-visibility in the Undetermined region; Union and complement

for visibility polygon

Applying the boundary tracing visibility algorithm to the candidate obstacles for facet

𝑓0, we get a set of non-visibility polygons on the unit sphere for 𝑓0, defined as 𝑁 . Now, we

union the Nonvisible region 𝑁 with 𝑁 which results in the complete nonvisible region. By

conducting a complement to 𝑁⋃𝑁 , we get the final visibility polygon (Fig. 5-16).

5.4 Implementation

The implementation will be shown using the example model in Fig. 5-17 for clarity. It

is a cube with a slot on the top face. The base facet to evaluate visibility is highlighted and

referred to as 𝑓0 in the following discussion. All other part facets are potential obstacles to

this base facet.

𝑓0

U

N

𝑁

V

N 𝑁 + 𝑁

V

non-visibility polygon

a candidate

obstacle

non-visibility polygons

84

Fig. 5-17 Test model

 First, the visibility is computed for the entire model on sampling circles using

visibility method V1. Recall that the sampling circles have an angle interval of 5 degrees.

The visibility results for 𝑓0 is shown in Fig. 5-18a. The results from V1 is in fact a set of

continuous geodesics; therefore, they are represented as geodesics shown in Fig. 5-18b.

Fig. 5-18 The visibility results on sampling circles

Recall the visibility space for any facet is a hemisphere above it and any image in the

hemisphere can be one-to-one mapped to the plane parallel to the facet 𝑓0. We can therefore

represent visibility on this parallel plane (referred to as plane , Fig. 5-18c). Such plane

projection makes it easier to find visible cells and geodesics that are not boundary to any

Base facet 𝑓0

(a) View angle 1 (b) View angle 2

y

z

x

(a) (b) (c)

(d)
(e)

85

visible cell (referred to as dangling geodesics). Now, the counterpart of geodesics are line

segments on plane (Fig. 5-18d). To distinguish the three visibility regions, namely

Undetermined, Visible and Nonvisible, we also project the sampling circles to plane (blue

lines in Fig. 5-18e). Next, we will locate the dangling geodesics and the Undetermined

region.

The line segments on the plane form an arrangement which we can compute and

represent using a Doubly-Connected Edge List (DCEL) data structure. The intersection of

these line segments creates a set of vertices, segments and faces. It also creates an outermost

unbounded face. We claim that all faces other than the unbounded face are visible cells. We

also claim that if a line segment is surrounded by only the unbounded face, it is mapped from

a dangling geodesic, referred to as a dangling segment in the following discussion.

Traversing the segments on the inner hole of the unbounded face and conducting the check

mentioned above will locate all dangling segments (red line segments in Fig. 5-19a). As the

sampling interval is fixed and a dangling segment always connects to a vertex of some

visible cell (referred to as 𝑣0), we can find the two neighbor vertices of 𝑣0, referred to as 𝑣

and 𝑣 . Following the direction of the dangling segment, we can find the other three vertices

𝑣 , 𝑣 and 𝑣 . These six vertices define the left and right undetermined cell of the dangling

segments (Fig. 5-19b). Repeating this for all dangling segments, we can find the

Undetermined region. We claim that any cell that is neither a Visible cell nor an

Undetermined cell, is a Nonvisible cell. The Visible Region Classification results are shown

in Fig. 5-19c.

86

Fig. 5-19 Locating dangling segments and Undetermined region

To find the candidate obstacles contributing to the formation of the visibility

boundary in the Undetermined region, we extrude a 3D beam from the base facet 𝑓0, pointing

to the vertices we obtained in the Undetermined region. The part facets that intersect with

these 3D beams become the candidate obstacles for exact boundary computation using

visibility method V2. Fig. 5-20 shows the results of the intersection between 3D beams and

part facets. The final candidate facets are shown in Fig. 5-20f. Notice not all intersecting

facets are counted, as useful obstacles must be in the same concave region with 𝑓0.

(a) (c)

Non-visible Region

Undetermined

Region

Dangling segments

𝑣0

𝑣

𝑣

𝑣

𝑣

𝑣

dangling segment

visible cells

undetermined

cells

(b)

Visible Region

87

Fig. 5-20 Intersection between the part and 3D beams along different orientations; (a-e)

Results in 5 different orientations; Intersecting facets are shown in red; 3D beam are

shown in yellow. (f) The candidate obstacles considering useful obstacles must be in the

same concave region.

Now, we have the candidate obstacle facets and we conduct the exact non-visibility

computation on them against 𝑓0 using V2. The subfigures in Fig. 5-21a shows the non-

visibility results for 𝑓0 against four candidate obstacles. The non-visibility results are then

merged to create the non-visibility boundary in the Undetermined region (Fig. 5-21b),

denoted as 𝑁 .

(a)
(b) (c)

(d) (e) (f)

88

Fig. 5-21 Non-visibility results. (a) Non-visibility results for each obstacle; Blue lines

denote the results on a plane, green arcs denote the result on unit sphere (b) The union

of non-visibility results for all obstacles.

Lastly, we combine this non-visibility result 𝑁 with the Non-visible region 𝑁

obtained earlier to generate the final non-visibility polygon (Fig. 5-22a). We can easily

obtain the visibility polygon by conducting a complement to the non-visibility polygon (Fig.

5-22b).

Fig. 5-22 Final visibility results; (a) Merging of Non-visibility results 𝑵′ and Nonvisible

region N. Purple boundary: 𝑵′. (b) Final visible and non-visible regions.

(a) non-visibility due to each obstacle face

(b) non-visibility due to all obstacle faces

(planar and spherical view)

Merge of Non-Visibility

1

Department of IMSE

Fig.41 (a) Union Non-visibility in Undetermined region with Nonvisible region;

(b) Final Visibility and Non-visibility

(a) (b)

Visible Region

Non-visible

Region

Undetermined

Region

Visible Region

Non-visible

Region

89

5.5 Conclusion

This paper has proposed and implemented a new hybrid visibility computation

method that takes advantage of two independent visibility methods: an approximate method

(V1) of time complexity (𝑘 ∙ 𝑛) and an exact method (V2) of time complexity (𝑛) where

𝑘 is the number of slices and 𝑛 is the part mesh size. It reduces the processing time for exact

computation at the cost of introducing approximate computation overhead. It also introduces

an easy control over the approximate-exact computation ratio, making it possible to balance

processing time and accuracy. The results have shown V1’s output (computed once and

available for all facets) has served as a good filter of obstacles for exact computation in V2.

However, the visibility computation in V1 and candidate obstacle determination has

introduced time cost. If the time benefit gained from reducing obstacles for V2 does not

offset the time cost on generating obstacle filter using V1, this method has no advantage in

terms of computational efficiency. Also, we can only gain efficiency advantage on parts with

large facets count, as can be seen from the time complexities of the two methods. Therefore,

future work should be focused on investigating the impact of exact-approximate ratio and

mesh granularity on the performance of the hybrid visibility method.

5.6 References

[1] Sheen, B.-T., and You, C.-F., 2006, "Machining feature recognition and tool-path

generation for 3-axis CNC milling," Comput Aided Design, 38(6), pp. 553-562.

[2] Balasubramaniam, M., Sarma, S. E., and Marciniak, K., 2003, "Collision-free finishing

toolpaths from visibility data," Comput Aided Design, 35(4), pp. 359-374.

90

[3] Woo, T. C., 1994, "Visibility Maps and Spherical Algorithms," Comput Aided Design,

26(1), pp. 6-16.

[4] Bi, Q.-Z., Wang, Y.-H., and Ding, H., 2010, "A GPU-based algorithm for generating

collision-free and orientation-smooth five-axis finishing tool paths of a ball-end

cutter," Int J Prod Res, 48(4), pp. 1105-1124.

[5] Suh, S. H., and Kang, J. K., 1995, "Process Planning for Multiaxis Nc Machining of Free

Surfaces," Int J Prod Res, 33(10), pp. 2723-2738.

[6] Liu, M., Liu, Y. S., and Ramani, K., 2009, "Computing global visibility maps for regions

on the boundaries of polyhedra using Minkowski sums," Comput Aided Design,

41(9), pp. 668-680.

[7] Li, Y., and Frank, M. C., 2007, "Computing non-visibility of convex polygonal facets on

the surface of a polyhedral CAD model," Comput Aided Design, 39(9), pp. 732-744.

[8] Hou, G., and Frank, M. C., 2017, "Computing the Global Visibility Map Using Slice

Geometry for Setup Planning," Journal of Manufacturing Science and Engineering.

[9] Frank, M. C., Wysk, R. A., and Joshi, S. B., 2006, "Determining setup orientations from

the visibility of slice geometry for rapid computer numerically controlled machining,"

J Manuf Sci E-T Asme, 128(1), pp. 228-238.

[10] CGAL, 2019, "The Computational Geometry Algorithms

Library,"https://www.cgal.org/, p. software library of computational geometry

algorithms.

[11] Google, 2019, "S2Geometry,"http://s2geometry.io/, p. A Geographic information

systems.

https://www.cgal.org/
http://s2geometry.io/

91

CHAPTER 6. CONCLUSION

This dissertation has introduced three new computation methods for visibility and

accessibility:

1. An approximate slice geometry-based visibility method with controllable accuracy and

resolution, and time complexity (𝑛∙𝑘); 𝑛: facets count; 𝑘: slices count.

2. A tool accessibility method for ball-end cutters based on visibility results and surface

offsetting.

3. A hybrid visibility method with controllable exact-approximate computation ratio and

innovative processing time reducing strategy.

This collection of contributions introduce new approximation strategies for visibility

computation; explain relations between visibility and accessibility; and take advantage of

both approximate and exact visibility computation. In the future, work could be done on

solving the limitations of each methods, investigating the notion of partial visibility,

accessibility of general type cutters, and the applications of accessibility, like the setup and

toolpath optimization for multi-axis CNC machines.

