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ABSTRACT 

This dissertation focuses on three new methods for calculating visibility and 

accessibility, which contribute directly to the precise planning of setup and toolpaths in a 

Computer Numerical Control (CNC) machining process. They include 1) an approximate 

visibility determination method; 2) an approximate accessibility determination method and 3) 

a hybrid visibility determination method with an innovative computation time reduction 

strategy. All three methods are intended for polyhedral models. 

First, visibility defines the directions of rays from which a surface of a 3D model is 

visible. Such can be used to guide machine tools that reach part surfaces in material removal 

processes. In this work, we present a new method that calculates visibility based on 2D slices 

of a polyhedron. Then we show how visibility results determine a set of feasible axes of 

rotation for a part. This method effectively reduces a 3D problem to a 2D one and is 

embarrassingly parallelizable in nature. It is an approximate method with controllable 

accuracy and resolution. The method’s time complexity is linear to both the number of 

polyhedron’s facets and number of slices. Lastly, due to representing visibility as geodesics, 

this method enables a quick visible region identification technique which can be used to 

locate the rough boundary of true visibility.  

Second, tool accessibility defines the directions of rays from which a surface of a 3D 

model is accessible by a machine tool (a tool’s body is included for collision avoidance). In 

this work, we present a method that computes a ball-end tool’s accessibility as visibility on 

the offset surface. The results contain all feasible orientations for a surface instead of a 

Boolean answer. Such visibility-to-accessibility conversion is also compatible with various 

kinds of facet-based visibility methods. 
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Third, we introduce a hybrid method for near-exact visibility. It incorporates an exact 

visibility method and an approximate visibility method aiming to balance computation time 

and accuracy. The approximate method is used to divide the visibility space into three 

subspaces; the visibility of two of them are fully determined. The exact method is then used 

to determine the exact visibility boundary in the subspace whose visibility is undetermined. 

Since the exact method can be used alone to determine visibility, this method can be viewed 

as an efficiency improvement for it. Essentially, this method reduces the processing time for 

exact computation at the cost of introducing approximate computation overhead. It also 

provides control over the ratio of exact-approximate computation.  
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CHAPTER 1.    INTRODUCTION 

1.1 Multi-axis CNC Machining 

Milling is a machining process that uses rotary cutters to remove material from a 

workpiece. The cutter is advancing in a direction that is perpendicular to the axis of the cutter 

(Fig. 1-1a). The capability of making parts to precise dimensions and shapes and creating 

complex features has made milling one of the most commonly used manufacturing processes 

in industry. The advent of Computer Numerical Control (CNC) in the 1950s, by which a 

machining tool’s movement is controlled by computers, has upgraded traditional milling 

machines to machining centers with accurate control and complex mechanical systems, 

making milling much more automated and precise (Fig. 1-1b). Based on the kinematic 

capability of the machine, CNC machines are categorized into 3-axis, 4-axis and 5-axis. 3-

axis CNC machines have 3 linear axes. 4-axis CNC machine provide one extra freedom by 

adding a rotary axis. 5-axis CNC machines introduce two rotary axes which, if not for a 

machine’s rotation limits, can pose the tool in arbitrary orientations (Fig. 1-1c). 

 

Fig. 1-1 Multi-axis CNC milling and machine centers [1-3] 

 

(a) (b) (c)
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Tool Access Directions 

A workpiece must be fixated on the machine mounting table before it can be 

machined. Tool Access Directions (TAD) are, in the mounting table coordinates system, all 

the directions the table can be approached by the tool (definition and part of the subfigures 

are from [4]).  Since 5-axis CNC machines represent the most general case of tool access 

scenario, we use them as the example to illustrate TAD. 

 

Fig. 1-2 Five-axis trunnion table and its tool access directions [5] 

There are many different configurations of rotary axes for 5-axis CNC machines. One 

common configuration is the A-C table where the platter (mounting table) can rotate around 

its center line (C-axis) by 0-360 degrees (Fig. 1-2a).  This platter is on another rotary axis (A-

axis) that can rotate in a range specified by the machine limits. The cutter can move linearly 

in X, Y or Z axis. Under such configuration, in the mounting table coordinate system, the 

direction space where the tool can orient (i.e. TAD)  is a spherical cap (Fig. 1-2b). TAD 

defines a machine’s reorientation capability. 

Setup Planning 

As machining is a subtractive manufacturing process, material is gradually removed 

from a workpiece (e.g. a cylindrical block) and eventually what is left is the desired part. 

1
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Before machining, a machinist must decide how the part should be oriented and positioned in 

the workpiece. Because the workpiece is fixated on a mounting table, it is equivalent to 

deciding how the part should position and orient with respect to the mounting table. Such a 

posture is called a setup of the part (Fig. 1-3a). The choice of the setup affects whether 

specific surfaces of the part can be accessed by the machine tool, considering the machine 

tool usually cannot approach the mounting table from all directions (namely TAD is smaller 

than a unit sphere). The choice of what setup to use and how many setups to use in order to 

completely machine a part is decided in setup planning. It is important as it determines 

whether all surfaces of a part can be accessible by the machine tool and, if a setup is fixed, 

from what directions a surface can be accessed by a machine tool (Fig. 1-3b). The latter 

would affect the available toolpath choices for a surface.  

 

Fig. 1-3 Setup and tool path planning 

1.2 Visibility Concept 

To help solve the setup planning problem, the visibility concept is introduced. We 

define the visibility of a point as the collection of directions of a ray that is casting from this 

point while not colliding with any obstacle (Fig. 1-4a). Similarly, we define the visibility of a 

surface as the collection of directions of parallel rays that are casting from every point in this 

1
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surface while not colliding with any obstacle (Fig. 1-4b). An alternative but equivalent 

definition is given below: We define a surface of a part as visible from a direction if and only 

if there exists an infinite distant point in that direction can see the entirety of the surface 

without obstruction by the part itself. Such a direction is called a visible direction. The 

visibility of a surface is defined as the collection of such visible directions. Because we are 

only concerned with polyhedral models in this dissertation, the smallest surface of a part is a 

polygon (e.g. a triangle). In such case, the visibility of a polygon surface (a facet) has a more 

intuitive definition. Suppose we extrude a 3D beam from this facet along a direction where 

all side edges of this 3D beam are parallel. We define the facet as visible from a direction if 

and only if the extruded 3D beam in this direction does not collide with any obstacle (Fig. 

1-4c). The visibility of a facet is the collection of such directions. 

 

Fig. 1-4 Definition of visibility 

Visibility is usually represented on a unit sphere as spherical points because they are 

essentially a set of directions. Because the boundary of these points creates spherical 

polygon(s), we use the term visibility polygon(s) to refer to the visibility’s exact shape.  

Visibility is used in many technological fields where there is a requirement that an 

object’s surfaces be accessed from various directions by tools specific to that field.  Such 

1
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technologies include Coordinate Measurement Machines (CMMs), where visibility 

determines the accessibility of the contact probe [6]; CNC machining, where visibility serves 

as the necessary condition for the accessibility of the cutting tools [7-9] and also where 

accessibility has been addressed by the “C-Space” method [10]; Laser scanning, where 

visibility helps determine a sufficient set of the scanning orientations [11] and molding 

design, where visibility is used to determine parting lines [12-14]. Also, visibility is widely 

used in the field of computer graphics, where shadow computation, global illumination, 

point-based rendering and view-dependent mesh-simplification are good examples [15, 16]. 

It is necessary to point out, although visibility is not explicitly addressed in some literature 

tackling CNC process planning, it is the prerequisite and efficiently narrows down the design 

space of more advanced planning strategies. For example, optimization of the toolpath 

smoothness [17] and optimization of the workpiece setups for 5-axis CNC machining for 

energy-saving purpose [18]. Moreover, with the advancement of AM technologies, 

innovative methods using multidirectional deposition processes are emerging [19]. Unlike 

conventional AM processes that use a single building direction, multidirectional deposition 

has increased degrees of freedom and therefore visibility will play an important role in 

facilitating the process planning of these new systems. 

1.3 Tool Accessibility Concept 

Tool accessibility of a part’s surface is the collection of directions from which a tool 

can access the entirety of the surface without colliding with the part. It is different from 

visibility in that it includes the body of the tool in collision requirements instead of a line as 

in visibility.  
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Fig. 1-5 Visibility vs. Accessibility 

Tool accessibility is based on a more accurate modelling of a machining tools’ 

movement than visibility. The limitation of using visibility for feasible tool orientations is 

obvious: a surface that is visible from a direction is not necessarily accessible by the tool 

(Fig. 1-5). This is because visibility only provides accessibility for the center line of the tool. 

Thus, the other space that the tool occupies could easily collide with the part. As such, 

visibility is in fact an overestimate of feasible tool orientations. Accordingly, the setups 

derived from visibility results do not necessarily expose the entire part surface to the cutting 

tool; an incomplete cutting situation. To solve this problem, the tool body must be considered 

in collision, as is in accessibility. However, the two concepts are also related. One can treat 

visibility as an extreme case of tool accessibility where the tool is infinitely thin. In fact, 

accessibility can be derived from visibility for ball-end tools, as will be shown in Chapter 4. 

 

1.4 Motivation 

Using Accessibility in Setup Planning 

Intuitively, the more complex the part geometry is, the more difficult it is to make; 

accessibility of a part is one of the useful indicators of difficulty. It provides a requirement of 

tool orientations for the machine to match. Because a machine has its orientation limits, 

defined by Tool Access Directions (TAD), it is therefore straightforward that we want to 

1
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match a part’s accessibility with a machine’s TAD. Because of the setup, a part’s 

accessibility is in different coordinate system from a machine’s TAD ((Workpiece 

Coordinate System (WCS)) versus Table Coordinate System (TCS)). We can compare them 

by transforming the TAD into the WCS (Fig. 1-6, some subfigures are from [4]). In WCS, 

the overlapped region represents the tool directions that are required by the part’s surface and 

also satisfied by the machine.  We can see that one specific setup leads to one specific 

orientation of TAD in WCS. Changing the setup, the TAD may overlap with accessibilities 

from different surfaces. Therefore, we can determine whether a setup renders some surfaces 

accessible or whether a collection of setups render all part surfaces accessible.  

In summary, a part’s accessibility results can help determine its feasible setups which 

is why we are interested in accessibility (and visibility) computation methods. 

 

Fig. 1-6 A part's accessibility and a machine's Tool Access Directions 

 

 As part models are becoming increasingly complicated today, the efficiency of 

computing visibility and accessibility is emphasized. An efficient visibility/accessibility 
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determination method will also facilitate rapid prototyping processes that use CNC 

machining, 3D printing or both. Therefore, it is highly desirable that we can compute 

visibility and accessibility under reasonable time cost while maintaining some degree of 

accuracy. 
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CHAPTER 2.    LITERATURE REVIEW 

2.1 Visibility Computation 

There has been a considerable amount of work addressing the problem of visibility 

computation. Among them, the seminal work in this field is attributed to Chen and Woo [1] 

where a Gaussian Map was described. The basic idea is to compute a dual image of the 

Gaussian map on a unit sphere. Later, methods using the Gaussian Map were then applied to 

compute setup orientations for 4 and 5 axis machining [2, 3]. However, visibility obtained 

from a Gaussian map is local, ignoring the fact that the visibility of a designated surface 

might be occluded by other surfaces. Therefore, such methods are limited to the visibility of 

certain features of the component [4]. Suh and Kang obtained a global visibility map by 

discretizing the visibility sphere into spherical triangles and using an occupation test to 

obtain the visibility cone [5]. One drawback of this method is that it uses the centroid to 

approximate the triangle, resulting in an approximated visibility. Besides, the occupation test 

leads to inefficient computation due to the enumeration of discretized directions. Li and 

Frank introduced a boundary tracing method that computes non-visibility between a pair of 

polyhedral facets [6]. Though global visibility is obtained, the computation time complexity 

of  (𝑛 ) remains a challenge, where n is the number of facets of the model. 

The methods to compute visibility can be classified into two categories: approximate 

methods and exact methods. An approximate method calculates visibility in finite resolution 

at a reasonable computational cost. On the other hand, an exact method calculates the exact 

visibility image using sophisticated geometry, usually at a relatively more expensive 

computational cost.  
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Among the approximate category, there is one type of method that uses the hidden 

surface removal technique. They create two discretized surfaces, one for the part and one for 

the visibility space. Then, a mapping from the discrete surface of the part to the discrete 

space of visibility is built. One way to build such a mapping is by ray-casting [7]. Some 

others use a Z-buffer method, created through graphics hardware [8]. Another approximate 

method makes use of the slice geometry, where the 3D part is sliced into a set of 2D cross 

sections. The visibility of the 3D part is then derived from the visibility of the 2D slices [9-

11]. The drawbacks of the approximate methods include inaccuracy and incompleteness of 

visibility results. The approximation in computation might lead to an underestimate or 

overestimate of visibility and the discretization might render the results incomplete.  

Within the exact category, Dhaliwal et al. proposed a method that essentially 

conducts an occlusion calculation between a pair of triangular facets [12]. Liu and Ramani 

extended the work to the occlusion calculation between a pair of convex facets [13]. A 

similar method by Li and Frank computes pairwise occlusion using a boundary tracing 

technique [6]. These approaches share a common bottleneck: due to the pairwise occlusion 

computation, the algorithm’s time complexity is quadratic to mesh size. Besides, the union 

operation among all spherical polygons (pairwise occlusion results) before generating the 

final visibility is an expensive computational task. To improve the latter’s efficiency, Liu and 

Ramani further extended their work by introducing the use of Minkowski sum [14]. 

 

2.2 Tool Accessibility Computation 

Miller investigated the application of surface accessibility on the visual effect of 

shading [15]. In which, accessibility is defined as radius of a sphere which may touch a 

surface point and not intersect any surface. The results highlight the inaccessible surface by a 
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spherical probe. However, the method only gives a Boolean answer to whether a surface is 

accessible; it does not provide actual access orientations. Elber proposed a method to 

determine the inaccessible surface induced by flat-end tools in 5-axis machining [16]. 

However, the method is restricted to inaccessibility of convex surfaces due to other check 

surfaces and does not provide feasible tool orientations for the accessible surfaces. Tang et al. 

proposed a surface offset/upper envelope method that solves gouging for 3-axis multi-surface 

Numerical Control (NC) machining [17]. Kim et al. proposed a triangular mesh offset 

algorithm for tool path planning of generalized cutters in NC machining [18]. However, both 

Tang and Kim’s work focuses on 3-axis NC machining where tool orientation is not 

considered. Xu et al. proposed a method that determines feasible tool orientations for each 

predefined cutter contact (CC) point in 5-axis NC machining [19].  However, CC points and 

CC paths must be provided first. This is not desirable if we want to optimize the tool path 

choice. This method works better in the case where a CC path is already determined, and CC 

points are used to generate gouge-free and collision-free tool orientations. Alternatively, it 

can be used to verify if a given toolpath is gouge and collision free. 

 

2.3 Research Problem and Objectives 

Research Problem 

 After reviewing the literature, there does not exist a visibility method that has the 

capacity to incorporate both exact and approximate visibility computations. Such flexibility 

enables the balancing between processing time and accuracy.  Besides, there is no work that 

derives accessibility directly from visibility. With such a method, we can adopt various 

existing visibility methods for accessibility. 
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Research Objectives 

To solve these research problems, the objective of this dissertation is to develop three 

new computational methods: 

1. A method that computes the approximate visibility map efficiently.  

2. A method that computes the tool accessibility map based on visibility results. 

3. A method that computes the near-exact visibility map while balancing processing 

time and accuracy using an approximate visibility method for preprocessing. 
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Abstract 

This paper introduces a new method that uses slice geometry to compute the Global 

Visibility Map (GVM). Global Visibility Mapping is a fundamentally important process that 

extracts geometric information about an object which can be used to solve hard problems; for 

example, the setup and process planning in CNC machining. In this work, we present a 

method for creating the GVM from slice data of polyhedron models, and then show how it 

can help determine around which axis of rotation a part can be machined. There have been 

various methods of calculating the GVM to date, tracing back to the well-known seminal 

methods that use Gaussian Mapping. Compared to the considerable amount of work in this 

field, the proposed method has an advantage of starting from feature-free models like STL 

files and has adjustable resolution. Moreover, since it is built upon slicing the model, the 
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method is embarrassingly parallelizable in nature, thus suitable for high-performance 

computing. Using the GVM obtained by this method, we generate an axis of rotation map to 

facilitate the setup planning for 4-axis CNC milling machines as one implementation 

example. 

 

Keywords: Global Visibility Map (GVM), Slice Geometry, Axis of rotation, Setup Planning, 

CAD/CAM, 4-axis CNC Machining, Parallel Computing 

 

3.1 Introduction 

Conceptually speaking, visibility is the quantified measurement of the extent that a 

geometric entity (point, surface, object, etc.) can be viewed or accessed from a distance 

considering other entities as obstacles. Specifically, it is a set of all possible lines of sight that 

are able to reach the geometric entity. Since only the orientations of these lines of sight 

matter to describe visibility, visibility is often depicted on a unit sphere, using a portion of 

the spherical surface to denote the visible 

area, as shown in Fig. 3-1. If the center of the 

sphere is connected to the boundary of the 

spherical visible area with radii, the resultant 

3D geometry is referred to as a visibility cone 

in some literature.  

Visibility is used in many 

technological fields, especially where the 

geometry of the surface is critical to their applications. Such technologies include Coordinate 

Measurement Machines (CMMs), where visibility determines the accessibility of the contact 

Fig. 3-1 An example showing the visibility 

cone of a facet on the pocket of the cube 
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probe [1]; CNC machining, where visibility serves as the necessary condition for the 

accessibility of the cutting tools [2-4] and also where accessibility has been addressed by the 

“C-Space” method [5]; Laser scanning, where visibility helps determine a sufficient set of the 

scanning orientations [6] and molding design, where visibility is used to determine parting 

lines [7-9]. Also, visibility is widely used in the field of computer graphics, where shadow 

computation, global illumination, point-based rendering and view-dependent mesh-

simplification are good examples [10, 11]. It is necessary to point out, although visibility is 

not explicitly addressed in some literature tackling CNC process planning, it is the 

prerequisite and efficiently narrows down the design space of more advanced planning 

strategies. For example, optimization of the toolpath smoothness [12] and optimization of the 

workpiece setups for 5-axis CNC machining for the energy-saving purpose [13]. Moreover, 

with the advancement of AM technologies, innovative methods using multidirectional 

deposition processes are emerging [14]. Unlike conventional AM processes that use a single 

building direction, multidirectional deposition has increased degrees of freedom and 

therefore visibility will play an important role in facilitating the process planning of these 

new systems. 

 

3.2 Related Work 

There has been a considerable amount of work addressing the problem of visibility 

computation. Among them, the seminal work in this field is attributed to Chen and Woo [15] 

where a Gaussian Map was described. The basic idea is to compute a dual image of the 

Gaussian map on a unit sphere. Later, methods using the Gaussian Map were then applied to 

compute setup orientations for 4- and 5- axis machining [16, 17]. However, visibility 

obtained from a Gaussian map is local, ignoring the fact that the visibility cone of a 
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designated entity might be occluded by other surfaces. Therefore, such methods are limited 

to the visibility of certain features of the component [18]. Suh and Kang [19] obtained a 

global visibility map by discretizing the visibility sphere into spherical triangles and used an 

occupation test to obtain the visibility cone. One drawback of this method is that it uses the 

centroid of the triangle to approximate the triangle, resulting in an approximated visibility. 

Also, the occupation test leads to an inefficient computation. Li and Frank [20] introduced an 

approach that computes visibility by an occlusion computation between a pair of polyhedral 

facets. Though global visibility is obtained, the time complexity of  (𝑛 ) remains a 

challenge, where 𝑛 is the number of facets. 

The methods to compute visibility can be classified into two categories; approximate 

solution methods and exact solution methods. The approximate solution methods attempt to 

capture most of the visibility area at a reasonable computational cost. On the other hand, 

exact solution methods compute the exact visibility image using sophisticated geometry, 

usually at an expensive computational cost.  

Among the approximate solutions category, hidden surface removal methods create 

two discretized surfaces, one for the component and one for the visibility space. Then, a 

mapping from the discrete surface of the component to the discrete visibility space is built. 

One technique to build such a mapping is to use ray-casting [21], while others use a z-buffer 

method, created through graphics hardware [22]. Another approximation method makes use 

of the slice geometry, where the 3D component is sliced into a set of 2D cross sections. The 

visibility of the 3D component is then derived from the visibility of the 2D slices [23-26]. 

One drawback of the approximated methods is their impaired visibility accuracy. The 

discretization impacts visibility accuracy and the visibility cone is often underestimated. 
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Within the exact solution category, Dhaliwal, Gupta et al. [27] proposed a method 

that essentially conducts an occlusion calculation between a pair of triangle facets. Liu and 

Ramani [28] extended the work to the occlusion calculation between a pair of convex facets. 

A similar method by Li and Frank [20] computes pairwise occlusion using a boundary 

tracing approach. These approaches share a common bottleneck: due to pairwise occlusion 

computing, the algorithm’s time efficiency is driven by the size of the mesh. Also, the union 

operation among all spherical polygons before generating the GVM is an expensive 

computational task. To improve efficiency in the latter problem, Liu and Ramani [29] further 

extended their work by introducing the Minkowski sum. 

 

3.3 Methodology 

The proposed method assumes a triangulated model (STL) as input. Thus, the 

objective is to determine the visibility cone of each triangular facet. The visibility of any 

polyhedron surface is easily derived from its constituent facets; a simple intersection. The 

method is an approximate solution method in that the 

visibility will only be evaluated at a finite number of 

positions: the unit visibility sphere is discretized into a 

set of intensely distributed points located at the 

intersections of evenly spaced longitude and latitude 

lines (Fig. 3-2). The angular spacing between both 

longitudinal and latitudinal lines is set to one degree by 

default. Thus, a total of 64,442(=179*360+2) points are 

Fig. 3-2 The discretization of 

the visibility sphere 
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sampled to represent the entire visibility sphere. As the resolution is controlled by the 

number of sampling points, it is easily adjustable.  

 

Fig. 3-3 An example of a 3D visibility cone built up by a set of 2D visibility arcs. (a) an 

actual visibility cone is approximated by a set of arcs/points, (b) a visibility arc is 

represented by a set of visibility points, (c) a sweep of the visibility arcs yields the 

visibility cone. In this paper, the continuous visibility arcs are showed by a set of points 

To compute the visibility cone, the method uses the fact that, as an approximation, a 

3D visibility cone can be discretized into a finite set of 2D visibility arcs (Fig. 3-3a). Thus, 

the task is further simplified to compute a set of visibility arcs. In general, the visibility cones 

can appear anywhere and may exist 

disconnected in multiple places on 

the sphere, so do the constituent 

visibility arcs. Therefore, the 

visibility arcs should be evaluated 

in places that cover the entire 

sphere. To do this, the 2D 

visibility arcs are chosen to be 

evaluated on 360 uniformly 

Fig. 3-4 The distribution of sampling longitude lines 

where visibility arcs are evaluated. (a) top view 

showing evenly spaced sampling longitude lines 

captures multiple visibility cones, (b) isometric view 

showing five visibility arcs of a visibility cone 

discovered by the densely angular spaced sampling 

longitude lines 
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spaced longitude lines throughout the sphere (Fig. 3-4a). Because of this dense sampling, 

most visibility cones can be accurately captured (Fig. 3-4b). This sampling scheme of 

visibility arcs matches with the former discretization of the visibility sphere. 

With the visibility arcs’ sampling scheme determined, the next critical step is to 

actually compute the visibility arcs on the sampling longitude lines, namely determining the 

visible portion of the longitude lines. It is obvious that each visibility arc resides on the plane 

defined by the longitude line. When such plane rotates, the visibility arcs should change 

accordingly. The solution to the problem can then be simplified into two phases. The first 

phase is to compute the 2D visibility arcs on each sampling plane and the second phase is to 

assemble these 2D visibility arcs from all sampling planes. 

 

Fig. 3-5 The slice-based visibility computation showed by an example. (a) an example 

part, (b) the slice geometry, (c) one slice for demonstration, (d) visibility computation 

for a segment on the slice chain, (e-f) example where sliced segments changes with the 

slicing direction, (g) example showing the visibility arc resides on the plane 

perpendicular to the slicing direction 

To obtain the 2D visibility arcs, this paper utilizes the visibility algorithm developed 

by Frank et al. [23], and further extends it to a facet-based visibility algorithm. The earlier 

version of this visibility algorithm represents the 3D object as multiple 2D slices. It assumes 
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the viewer resides on a plane parallel to those 2D slices. It then computes the visibility within 

such plane for all segments in the slices (Fig. 3-5a-d). The reason that the visibility scope is 

restricted in a plane is that in applications like 4-axis CNC milling machine, once the 4th axis 

(rotation axis) is chosen, the accessibility of the cutting tools is restricted in a plane (in 

workpiece coordinate system). Thus, such visibility is sufficient to tell whether the 

component is visible from the cutting tool. 

In the algorithm mentioned above, the plane where visibility arcs lie is perpendicular 

to the pre-defined slicing direction (Fig. 3-5g). To apply it to the method in this paper, where 

we evaluate visibility arcs on planes containing longitude lines, the slicing vectors must lie in 

the XY-plane. Consequently, when we rotate the slicing vector in the XY-plane with a one-

degree interval, the visibility arcs can then be computed on uniformly angular-spaced 

longitude lines as planned earlier. However, segment-based visibility exposes its limitations 

when we try to assemble such results: because the sliced segments of a given facet changes 

while slicing direction changes (Fig. 3-5e and Fig. 3-5f), the two visibility results cannot 

combine directly. To solve this, we need a fixed geometry whose visibility result can be 

divided and computed in different planes separately and combined in 3D afterward. This 

requirement leads to the facet-based visibility.  

In this paper, the visibility of a facet is defined as the intersection of visibility of its 

containing segments – a necessary condition (Fig. 3-6). Such definition is an approximation: 

since in the ideal situation, the number of containing segments should reach infinity to be 

exact. In fact, because of the finite number of segments, this definition assumes the visibility 

bounds remains constant for a certain distance in the slicing direction (Fig. 3-6a). Therefore, 



23 

 

 

the visibility bounds of a segment are equivalent to the visibility bounds of a corresponding 

area. 

 

Fig. 3-6 The definition of facet visibility. (a) an example showing segment’s visibility is 

constant for a distance due to approximation, (b-d) the formation of the facet visibility 

by intersecting visibility ranges of its containing segments 

Using a facet as the visibility source enables us to combine visibility arcs resulting 

from different sampling planes. The facet remains fixed while the slicing plane (or vector) 

rotates. Nevertheless, such facet-based visibility erases certain visibility conveyed by 

segments due to the intersection operation. For example, if one out of ten segments is 

invisible and the other nine are visible, the intersection of visibility indicates the facet is 

invisible. Clearly, visible area, no matter the proportion, is ignored due to the intersection. To 

retain as much visibility as possible, it is necessary to reduce the difference of visibility 

among segments in a facet. In general, the smaller the facet, the less likely this kind of 

visibility loss occurs since segments in a smaller facet have more similar geometric 

surroundings. However, smaller facets lead to a denser mesh, thus a higher computational 

cost. A threshold should be set to balance the trade-off. To estimate the visibility loss due to 
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intersection operation, we introduce the “weighted visibility.” Weighted visibility is defined 

as the product of 2D visibility range and the area it is on. Thus, before the intersection 

operation, the aggregate weighted visibility of a facet is  

                                                                    
1

n

ii
i

A
=

                                                          ( 1 )           

Where 𝑛 is the number of segments in a facet; 𝜃𝑖,  𝑖 are the 2D visibility range and the 

effective area of segment 𝑖, respectively. After the intersection operation, the weighted 

visibility of a facet is 𝜃𝑖𝑛 𝑒𝑟𝑠𝑒𝑐 ∙  𝑓𝑎𝑐𝑒 . Therefore, the ratio 

𝝆 = int sec

1

1
faceter t

n

ii
i

A

A




=


−


                               ( 2 ) 

is used to define the loss of visibility due to the intersection. In our implementation, we deem 

a facet’s visibility is “under representative” if 𝜌 > 0.2. If the total area of under 

representative facets is greater than 5% of the model’s surface area, a global mesh refinement 

can be implemented. The choice of the thresholds 0.2 and 5% are empirical values with the 

consideration of computational 

capability. Theoretically, the 

smaller the thresholds, the better 

the result is expected (closer to 

real visibility). However, to keep 

the size of the mesh (thus the 

computational cost) to an 

Fig. 3-7 An example of improved visibility after mesh 

refinement. (a) visibility loss ratio of the original facet 

is 1.0, (b) visibility loss ratio of the equivalent facets 

after refinement is 0.36. Assuming visibility range θ is 

constant for all visible segment 
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acceptable value (e.g. less than 20,000 facets), the proposed thresholds have been found to be 

reasonable. An example is given in Fig. 3-7 to show that mesh refinement reduces the 

amount of visibility loss due to visibility conversion from segment to facet. 

Now consider a facet-based visibility arc is obtained in the YZ-plane using a slicing 

vector aligned with the X-axis. Rotating the slicing vector around the Z-axis gradually at a 1° 

interval through 179° will correspondently create visibility arcs around the globe (Fig. 3-8b-

d). The union of these visibility arcs reveals the complete visibility cones (Fig. 3-8e). Note 

that for each individual slicing direction, visibility arcs are generated for all facets 

simultaneously. Thus, after the rotation, visibility cones are created for all the facets, namely 

the Global Visibility Map (GVM). In fact, the starting and ending slicing vector can be 

randomly chosen as long as they sweep 179 degrees. In this paper, the rotation is around the 

Z-axis and counterclockwise. The X-axis is the starting vector and the slicing vectors are 

chosen at 0, 1, 2 … 179 degrees (Fig. 3-8a). 

 

Fig. 3-8 Examples showing the union of visibility arcs from different slicing planes. (a) 

the orientations of slicing vectors, (b–d) visibility arcs generated from different slicing 

planes, (e) the union of visibility arcs from 180 sampling planes results in a complete 

visibility cone 
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The parallel planes challenge 

One of the challenges using slice geometry is to address the “missing plane” problem 

caused by the model planes that are parallel to the slicing planes. These parallel planes are 

ignored in the slicing process. For example, in 3D printing, a part’s physical planes parallel 

to the slicing planes are always approximated by the cross-sections near them (less than a 

slice spacing above or below). Similarly, parallel 

planes fail to be captured and counted in the 

visibility computation since no segment is 

generated to represent those planes. Specifically, 

such deficiency may lead to an incomplete 

visibility cone that misses some constituent 

visibility arcs. One solution is to use a second set 

of slicing planes to slice the parallel planes 

specifically [30]. The second set of slicing planes 

(B-planes) are chosen to be perpendicular to the 

first set of slicing planes (A-planes), thus also perpendicular to the unsliced facets (Fig. 3-9). 

This ensures the facets missed by A-planes are properly sliced by B-planes. Here, we define 

“A-segments” as the segments sliced by A-planes and “B-segments” as the segments sliced 

by B-planes. The visibility computation for B-segments is different from that of A-segments. 

First, an obstacle chain has to be found for B-segments. Second, since a B-segment belongs 

to no chain in the parallel plane, it can be accessed from both sides.  

In this paper, we introduce a new method to compute the visibility of facets on 

parallel planes. Instead of using B-segments, which could be too many if the slicing interval 

Fig. 3-9 The use of two sets of slices 

(perpendicular to each other) to solve 

the missing parallel planes (in red) 

problem 
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is small, we use the three edges of the triangular facet. An example part is shown in Fig. 

3-10a. The non-visibility for a triangle with respect to one obstacle chain is computed as the 

maximum angle difference of six bounding rays sent from the three vertices (Fig. 3-10c). 

Since the vertices of a triangle are shared by its neighboring triangles, the bounding rays are 

also shared (Fig. 3-10b). Ultimately, the task is simplified to obtaining the bounding rays of 

each vertex on the parallel plane with respect to the obstacle chains. Compared to B-

segments, this method greatly saves computational time and is inherently an exact method 

(since we no longer approximate a triangle’s visibility by its containing segments). 

 

Fig. 3-10 An example of parallel plane visibility computation using the three edges of a 

triangle; (a) a demonstration part with its parallel planes marked, (b) a triangular facet 

on a parallel plane showing its vertices are shared by its neighboring triangles, (c) 

obstacle range obtained by finding the maximum angle difference among six bounding 

rays. Rays of the same color come from the same vertex. 

Though efficient, this method should be implemented carefully considering the 

complex boundary cases. Ideally, the triangle in the parallel planes should always be on the 

exterior of the obstacle chain. In other words, none of the triangle’s three vertices should be 

in the obstacle chain (as in Fig. 3-11a-e). However, in the boundary cases where at least one 

vertex is on the obstacle chain (Fig. 3-11b-d), due to numerical error in slicing (to obtain the 

obstacle chain), some of the triangle’s vertices could get into the obstacle chain by some 

small value ∆ (Fig. 3-11f-h). In such case, we call this vertex “false” interior with respect to 
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the obstacle chain. “False” interior vertices lead to the problem that the bounding rays 

sending from such vertex will be erroneously computed. As can be seen in Fig. 3-11𝑖, if the 

triangle’s vertex is on the exterior of the obstacle chain, the bounding rays are defined as rays 

of min and max accumulated angle (the triangle’s vertex to each vertex on the obstacle chain 

forms a ray). However, for a “false” interior vertex, the rays of min and max accumulated 

angle fail to capture the obstacle chain’s boundary. For example, in Fig. 3-11𝑗, if we start 

counting angle from 𝑝  and traverse the obstacle chain counterclockwise, then after visiting 

all the vertices, the min and max rays will go through 𝑝  and 𝑝0 respectively, which is an 

incorrect boundary. To solve this problem, all “false” interior vertices must be corrected. A 

vertex is identified as a “false” interior if it is contained by an outer obstacle chain 

meanwhile quite near the chain. It must be near because otherwise it could be an exterior 

vertex surrounded by the obstacle as seen in Fig. 3-11e. The extent of nearness is defined by 

the constant 𝜖  (namely if ∆ < 𝜖 , the vertex is near the chain). 𝜖  should be large enough to 

tolerate numerical errors and small enough so that the vertex does not cross the obstacle and 

become an exterior vertex contained by the inner obstacle chain (Fig. 3-11k). In this paper, 𝜖  

is set to 10−6 because it is very rare that a part has a wall feature thinner than 10−6 inch and 

10−6 detects most “false” interior vertices in implementation. Once “false” interior vertices 

are found, either the vertex is offset to the exterior of the outer obstacle chain or such triangle 

is offset inward by a small value 𝜖  depending on how many of the three vertices are deemed 

“false” interior (Fig. 3-11k and Fig. 3-11l).  The choice of 𝜖  has more freedom, where 𝜖  

should be greater than zero to make the vertex exterior, but small enough so that the angles of 

bounding rays are computed as if from a vertex on the obstacle chain. In practice, setting 𝜖  
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to 10−6 has achieved both goals in implementation.

 

Fig. 3-11 The possible position relations of a triangle facet and its obstacle chains 

together with the solution to numerical error. The triangle’s edges are in yellow. The 

obstacle chain is in blue. The triangle (a) is out of-, (b) has one vertex on-, (c) has two 

vertices on-, (d) has three vertices on-, (e) is contained by-, the obstacle chain. (f-h) due 

to numerical error, at least one vertex is contained in the obstacle chain, (i) the rays of 

min and max accumulated angle give the correct bounding rays if vertex is on the 

exterior, (j) the rays of min and max accumulated angle give the wrong bounding rays if 

vertex is in the interior, (k) offset the triangle's “false” interior vertex to the exterior by 

a small value 𝝐𝟐, (l) offset the triangle inward to its centroid by a small value. The 

vertex is deemed “false” interior if ∆< 𝝐𝟏. 

3.4 Axis of Rotation Map 

In CNC machining, it is necessary to determine a set of “setups” with which to fixture 

an object. Simple rectangular parts may require as few as one setup; however, in multiple 

setups, or even multi-axis setups, the problem is more challenging.  For this work, we show 

how a GVM can lead to possible “axes of rotation” for an object. That is, if a 4th axis rotary 

(indexer) was available, what are the possible rotations of the part geometry about that axis 

yielding a potentially feasible solution? An example is given in Fig. 3-12 to show the 

correspondence between a visibility point in GVM and feasible axes of rotation. The rule is 

that a visibility point in GVM corresponds to axes on a great circle in the plane perpendicular 

to the visibility vector. A detailed explanation of this property has been properly shown in 
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[31].  A simple explanation 

begins by noting that the cutting 

tool is always perpendicular to 

the axis of rotation. If the 

visibility vector is also 

perpendicular to the axis of 

rotation, then they are co-

planar. Thus, the cutting tool 

can align with the visibility 

vector by a rotation. 

Accordingly, the tool and 

visibility point coincide, leading to the facet being seen by the tool. Granted, further analysis 

would need to ascertain whether the part workpiece can be clamped, whether the swept 

diameter is reachable, and whether the machine’s envelope/travel can handle the part in a 

particular orientation.  However, the mapping of “potential” axes of rotations is invaluable, 

as one could avoid re-clamping and re-positioning the workpiece if a singular axis could be 

found.  If not, the mapping could still be valuable in determining a minimum set of axes with 

which a part can be machined. Given the GVM, such an axis of rotation map could be 

generated [31]. This axis of rotation map provides a feasible design space of the rotation axes 

for 4-axis CNC milling machines.  

For a facet, the feasible axis of rotation provides how the facet should be oriented to 

align with the CNC machine’s 4th axis for it to be visible from the cutting tool. The first step 

is to find the corresponding axes of rotation for each visibility point on the visibility cone. As 

Fig. 3-12 The correspondence between a visibility point 

and feasible axes of rotation. (a) a real 4-axis CNC 

machine setup, (b) the feasible axes of rotation are any 

axes perpendicular to the visibility vector. Assuming the 

component is fixed while two indexers rotates to align 

with different axes 
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shown in Fig. 3-13a, a region of feasible axes of rotation is generated for one visibility cone 

in the GVM. Note that a facet might have multiple visibility cones. Thus, its corresponding 

axes of rotation region could be very complex (e.g. in the shape of a union of multiple rings). 

Clearly, if an axis of rotation is shared by all the facets of the model, it is the axis that makes 

the entire model visible – a feasible axis for the model. In other words, intersecting the axes 

regions obtained from all facets of the model yields the feasible axes for the model (Fig. 

3-13b shows an example of axes region intersection between two facets).

 

Fig. 3-13 The procedure of finding feasible axes of rotation from the GVM. (a) find 

corresponding axes of rotation region of a visibility cone, (b) an example showing 

intersecting axes’ regions of two facets to obtain the share axes of rotation region 

In summary, the GVM provides the map from facets to visibility cones. Using the 

rule in Fig. 3-13a provides the map from the visibility cones to the axes of rotation. A 

concatenation of the two maps generates the “facets to axes of rotation” map. To see how 

many facets each axis reveals, a reverse mapping on the “facets to axes of rotation” map is 

generated (resulting in an “axes to facets” map shown in Fig. 3-14a). For each axis, the 

reverse mapping collects every facet that maps to it in the original map.  It is different from 

an inverse function because our map is one-to-many.  It is also convenient to see the surface 

area each axis reveals by summing the corresponding facet areas. Such axes to visible surface 

areas mapping is the “axes of rotation” map for the model where the visible surface area is 

normalized by the model’s total surface area (thus with range [0,1]). For display purpose, 

color is used to show the visibility of each axis, where red and blue denotes the highest and 
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lowest visibility respectively, an example is given in Fig. 3-14b. As such, all axes of rotation 

are represented as 3D dots on the upper hemisphere. The color of the 3D dot indicates the 

visibility of the corresponding axis. Only the upper hemisphere is used because axes are 

symmetric about the origin.

 

Fig. 3-14 The formation of the "axes of rotation" map. (a) facets to axes map and its 

reverse map (For each axis, the reverse mapping collects every facet that maps to it in 

the original map), (b) an example of “axes of rotation” map where visibility is the 

normalized visible surface area showed by gradient color 

3.5 Implementation 

The method in this paper was implemented using the C++ programming language in 

Visual Studio 2010 on a PC of the following configuration: Intel Quad-Core i5-2300 CPU 

@2.8GHz, 6GB RAM running Windows 7/64bit on an SSD. The display of the models, 

GVM and the axis of rotation map were executed in OpenGL. A flowchart is used to 

illustrate the procedure of GVM computation (Fig. 3-15a). Together with the flowchart, Fig. 

3-15b is used to illustrate some of the most critical steps in GVM computation. 

As can be seen from the flowchart, GVM computation involves a loop structure. 

Using slice geometry, visibility computations among different slicing directions are 

completely independent of each other. This makes computing the GVM an embarrassingly 
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parallel procedure. To take advantage of this, the code was written to support OpenMP, an 

API for shared-memory multiprocessing programming.  

 

Fig. 3-15 An overview of the computational procedure (a) the flowchart showing entire 

computational flow, (b) the corresponding detailed illustration showing five critical 

steps in the flowchart 

The program was tested with a set of models (Fig. 3-16). Model 1 is a cube with one 

cylindrical pocket; Model 2 is a cube with three connecting square pockets; Model 3 is a 

cube with one square pocket; Model 4 is a ring with the engraved text “RMPL”; Model 5 is a 

bracket with two through-holes; Model 6 is a toy jack. The facets of interest are denoted as 

yellow dots in model 1-4 as they are too small. The facets of interest are indicated with black 

arrows while the visibility cones are represented by a set of yellow points. 

 
Fig. 3-16 The resulting visibility cones for various models 
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The concave cylindrical pocket of model 1 is specially designed so that the radius is 

equal to the depth. Therefore, the visibility cone is expected to have a 90-degree opening 

angle. The program collects each point at the boundary of the visibility cone and gives a 

resulting opening angle of 90°~94°. Similarly, the square pocket of part 3 has the depth to 

width ratio of 0.8 whose visibility cone is expected to have an opening angle in the range 

51°~60°. Program results show the opening angle is 54°~63°. The error between the expected 

value and program results can be attributed to the following reasons; 1) The facet 

investigated is not small enough to be treated as a point; 2) Since it is an STL mesh, the 

cylindrical pocket of model 1 does not have continuous curves; 3) the visibility computation 

has errors (which will be discussed later). The result for model 2 shows the method’s ability 

to capture multiple visibility cones, while the results for model 4 shows the method’s ability 

to capture small features (text lettering). Results for model 5 and 6 show the method’s 

performance on representative industrial components.  

 

Fig. 3-17 The time on computing Global Visibility Map for various models. Sample 

parts 5-8 are from the source in [32-35] 

The results in Fig. 3-17 provides a comparison of computational time among models 

ranging from those with simple geometry to those with freeform surfaces. The slicing 

Part name Sample1 Sample2 Sample3 Sample4
Sample5 

[32]

Sample6 

[33]

Sample7 

[34]

Sample8 

[35]

Part 

preview

# of facets 60 176 1152 2088 3174 7922 10668 26402

Dimension 

(inch)
2.0x2.0x2.0 2.0x2.0x2.0 3.7x3.5x4 2.8x3.3x2.3 1.2x0.7x1.9 4.2x2.0x2.6 3.7x4.2x4.4 3.5x2.2x3.6

Dimension 

(cm)
5.1x5.1x5.1 5.1x5.1x5.1

9.4x8.9x10.

2
7.1x8.4x5.7 3.1x1.8x5.0

10.7x5.1x6.

6

9.4x10.7x11

.1
8.8x5.6x9.1

Time (s) 6 10 25 56 47 220 410 727
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interval is set to be the model’s diagonal length divided by 200. This setting ensures the 

computational time is not affected by the dimensions of the model. 

The nature of the algorithm causes its computational time be largely affected by two 

factors, the number of 

slices 𝑘 and number of 

facets 𝑛. To see their 

influences, an example 

model has been tested 

under various settings 

of 𝑘 and 𝑛. The 

results are shown in 

Table 3-1 and plotted 

in Fig. 3-18. Note that the 𝑘 slices are evenly spaced and the mesh is subdivided at the edge’s 

middle point to increase size. This test was conducted on a PC of the following 

configuration: Intel Core i7-6700HQ CPU@2.6GHz, 16GB RAM, running windows 10/64bit 

on an SSD. The results show the computational time is approximately linear to both 𝑘 and 𝑛.  

Table 3-1 The statistics of computational time(s) for the model in Fig. 3-18a under 

various settings of slice number k and facets number n 

        Slices# (𝑘) 
 

Facets # (𝑛) 
50 100 150 200 250 

2690 5 7 9 11 14 

7836 13 22 29 35 42 

22194 37 61 80 98 121 

53374 85 150 210 258 301 

 

Fig. 3-18 The statistics of computational time on a various 

number of slices and facets for an example model. (a) the example 

model, (b) line chart where the number of facets is used as 

horizontal axis (Data from Table 3-1) 
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A time complexity analysis is given below, where we suppose a slice has 𝑐 contours. 

These contours have  = {𝑛 , 𝑛 , 𝑛 …𝑛𝑐} vertices respectively. For a contour 𝑢, visibility is 

computed on each of its vertices. In the worst case, the visibility computation for a vertex 

requires traversing all vertices on its own contour (local visibility) and all vertices on its 

obstacle contours (global visibility). This gives the time complexity 

 (𝑛𝑢
 + ∑ 𝑛𝑢 ∙ 𝑛𝑣
𝑣= … 𝑐,𝑣≠𝑢

). 

Therefore, for all contours in this slice, the time complexity is: 

 ( ∑ 𝑛𝑖
 

𝑖= … 𝑐

+ 2 ∙ ∑ 𝑛𝑗 ∙ 𝑛𝑘
𝑗= … 𝑐− ,𝑘=𝑗+ … 𝑐

) =  ( ∑ 𝑛𝑖
𝑖= …𝑐

 

). 

Denote 𝑚𝑙 = ∑ 𝑛𝑖𝑖= …𝑐  which is the total number of vertices in slice 𝑙. Now, considering all 

slices, the computational complexity is: 

 (∑𝑚𝑙
 

∀𝑙

). 

Suppose there are 𝑘 slices and 𝑚̅ is the root mean square (generalized mean with exponent 2) 

of the set {𝑚𝑙} (the set of vertices numbers of slices), then the above time complexity can be 

rewritten as: 

 (𝑘 ∙ 𝑚̅ ). 

Now imagine an arbitrarily shaped polyhedron whose surface area is 𝑆 and number of facets 

is 𝑛. The average area for a triangular facet is 
𝑆

𝑛
 (assuming a homogeneous meshing of the 

model). Then, the characteristic edge length of an average facet is on the order of √
𝑆

𝑛
 . 

Meanwhile, the perimeter of an average slice is on the order of √𝑆. Therefore, on average, 
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the number of facets a slice may cross is 
average perimeter of a slice

characteristic edge length of a facet
 , which is on the 

order of  (
√𝑆

√
𝑆

𝑛

) = √𝑛 . Consider the number of facets a slice crosses as roughly the number 

of vertices in a slice, we have 𝑚̅ ≈  𝑡 ∙ √𝑛 , where 𝑡 is some constant coefficient. 

Accordingly, the time complexity for visibility computation on all slices is: 

 (𝑘 ∙ 𝑛). 

Until now, the analysis only considers the time spent on one slicing direction. Suppose we 

conduct visibility computation in ℎ  different slicing directions, then the overall time 

complexity is:  

 (𝑘 ∙ 𝑛 ∙ ℎ). 

In this paper, we have a fixed number of slicing directions (h = 180). This time complexity 

is in accordance with the test results (Fig. 3-18). 

 

Fig. 3-19 The method to obtain total area of the visibility cone from discrete visibility 

arcs; (a) example part and visibility cone, (b) total area of visibility cone is computed as 

the area summation of spherical triangles determined by corresponding visibility arcs, 

(c) example showing the spherical triangle determined by the visibility arc could either 

overestimate or underestimate the portion of the cone area 

 The accuracy of this method is affected by two major factors: the number of slices and 

the number of slicing directions. The number of facets does not affect accuracy per se, although 

number of facets affects the geometric approximation of the original CAD model. Also, the 
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visibility will be closer to point visibility for smaller facets. Since a facet is approximated by 

its containing segments in visibility computation, putting more evenly spaced segments in a 

facet gives a more accurate representation. Increasing the number of slices effectively increases 

the number of segments generated for each facet. Hence, a better visibility result is expected. 

The other major approximation in this method is the use of a finite number of slicing directions. 

This causes that only a subset of the visibility cone is covered by the visibility arcs. Hence, 

increasing the number of slicing directions (thus number of visibility arcs) is expected to 

improve visibility results. To facilitate the accuracy estimation, we use the area of the visibility 

cone as the indicator. In this test, the area of a visibility cone is computed as the area summation 

of a set of spherical triangles where the spherical triangles are determined by the corresponding 

visibility arcs (Fig. 3-19). To see how the cone area is affected by the number of slices 𝑘 and 

number of slicing directions 𝑚, the sample from Fig. 3-19a is tested with various settings of 𝑘 

and 𝑚 (Fig. 3-20). Please note, the analytical solution of this cone area is approximated by a 

nearly converged result which all other results are compared to. The results show that with 

increasing number of slices, the cone area decreases monotonically and trends to converge. 

The cone area decreases because the more segments a facet has, the more restricted the 

visibility (consider the intersection operation). When the number of segments in a facet is 

considerably large, the visibility for a facet will hardly change since the segments populate 

much of the area of the facet. Therefore, the visibility converges with increasing slice number. 

On the other hand, the results also show that with increasing number of slicing directions, the 

cone area becomes more accurate. The number of slicing directions determines how many 

visibility arcs are used to approximate the cone. The more visibility arcs, the better the 

geometry of the cone is captured. Hence, the visibility improves with increasing slicing 
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directions. Depending on the positions of the visibility arc, it could either overestimate or 

underestimate a certain portion of cone area (Fig. 3-19c). Thus, both positive and negative 

errors exist in the results. However, in general, the absolute errors tend to decrease as the 

number of slicing directions increases, which is expected for arbitrary shaped cones. 

 

Fig. 3-20 The results showing areas of visibility cone for (a) errors of areas of visibility 

cone versus the number of slices, (b) errors of areas of visibility cone versus the number 

of slicing directions (Data from Table 3-2) 

Table 3-2 The results of visibility cone area (assuming 𝑹 = 𝟏) for the model in Fig. 

3-19a under various settings. All area results are compared to the nearly converged 

result under the setting (180 slicing directions & 10,000 slices) 

Number of slice directions = 180 

# of 

slices 
10 50 100 200 300 400 500 600 1000 2000 10000 

cone 

area 
0.7493 0.6807 0.6606 0.6506 0.6476 0.6468 0.646 0.6463 0.6449 0.6446 0.6441 

error 

(%) 
16.3 5.7 2.6 1.0 0.54 0.42 0.29 0.34 0.12 0.078 0 

Number of slices = 10,000 

# of 

planes 
12 18 30 36 45 60 90 108 135 180  

cone 

area 
0.6568 0.6335 0.6397 0.6497 0.6387 0.6481 0.6429 0.6458 0.6429 0.6441  

error 

(%) 
2.0 -1.6 -0.68 -0.06 -0.82 0.62 -0.19 0.26 -0.18 0  

 

Once the GVM is available, an axis of rotation map can be generated. In Fig. 3-21, 

three different cubes with one, two and three orthogonal pockets plus a cube with a 

cylindrical through-hole were tested. Note in Fig. 3-21a-c and e, only axes that make the 
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model 100% visible are shown in red; whereas, in Fig. 3-21d, axes with incomplete visibility 

are also shown. In addition, the distance from the 3D dots to the origin is scaled by visibility 

(thus, an axis’ visibility is reflected by a dot’s color as well as a dot’s distance to the origin). 

The results show that cubes with one pocket and two pockets find feasible axes of rotation. 

They can be machined by a 4-axis CNC milling machine. However, cubes with three 

orthogonal pockets are at most 96% visible for a 4-axis CNC machine. Thus, it cannot be 

machined fully. Such results actually reflect the general case where features like pockets 

inflict strong restrictions on machinability. Compared to a cube with one square pocket, a 

cube with a cylindrical through-hole finds more feasible axes (Fig. 3-21e). This is because 

the through-hole can possibly be reached from two opposite directions, making it more 

accessible. The cube with a through-hole is designed in a way that the diameter of the 

cylinder is half of the cube’s edge length. The expected opening angle of this axes region can 

be derived from simple geometry (26.57°). The result from the program is 26°. 

 

Fig. 3-21 Examples of the computed feasible axes of rotation and the “axis of rotation” 

map. (a) a cube with one pocket has feasible axes on a great circle, (b) a cube with two 

orthogonal pockets has only one feasible axis, (c) a cube with three orthogonal pockets 

has no feasible axis, (d) the axis of rotation map for a cube with three orthogonal 

pockets, (e) a cube with a cylindrical through-hole has a feasible axes region of a ring 

shape 

Additionally, the axis of rotation region that reveals more than 99% of surface area is 

shown for two industrial parts in Fig. 3-22.As can be seen in both parts, in additional to the 

principle axes, which we normally consider, many more unconventional axes are also found 

to be feasible. More choices of axes imply a more manufacturable part. On the other hand, as 
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some previous un-machinable parts may become machinable by choosing an unconventional 

axis now, more choices of 

axes also give the part 

designer more freedom in 

choosing geometries. 

As can be seen in Fig. 

3-22a, the part’s Y-axis is a 

feasible axis of rotation for 

the industrial bracket. This 

component was further analyzed for toolpath planning via an automated machining software 

called CNC-RP, developed in the Rapid Manufacturing and Prototyping Lab at Iowa State 

University, by selecting the part’s Y-axis as the axis of rotation. The component was 

machined via a 4-axis 

HAAS VF2ss CNC 

mill from cylindrical 

aluminum stock (Fig. 

3-23a). After the 

supports were 

removed, the finished 

part is shown in Fig. 

3-23b, clearly showing that the computed axis of rotation is feasible for the machining of this 

bracket. 

Fig. 3-23 An example of an industrial bracket machined by a 4-

axis CNC machine where the axis of rotation is chosen as the 

part’s Y-axis. (a) the bracket with supports on after CNC-RP 

machining, (b) The finished bracket with all supports removed 

Fig. 3-22 The axes of rotation region which reveals more 

than 99% of component’s surface area. Axes are shown in 

red dots. (a) an industrial bracket with two cylindrical 

through-holes, (b) an industrial linkage 
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3.6 Conclusion 

This paper introduces a new method to compute the Global Visibility Map (GVM). 

The method starts with polyhedron models and creates visibility cones by assembling 

visibility arcs computed from a set of planes. Parallel computing is implemented to take 

advantage of the embarrassingly parallel nature of the slice geometry and saves a 

considerable amount of computational time. Results have shown that the computed visibility 

cone has good accuracy and captures small features. Given the GVM, an axis of rotation map 

is developed to determine the feasible axes of rotation for parts to be machined by 4-axis 

milling. Results have shown that the computed feasible axes are valid and many more 

solutions in additional to the conventional ones like the principle axes are discovered. In the 

case that no feasible axis exists, the axis of rotation map still provides valuable information 

for part designers by showing the best axes for visibility. However, there are still challenges 

in the proposed method. One is that in actual setup planning for machining, satisfying 

visibility requirement is only a necessary condition, while not sufficient to obtain true 

accessibility since the tool’s geometry should also be considered. Previous work addresses 

this problem for 3-axis flat end milling [36], which could be extended to 5-axis ball end 

milling. Also, the proposed approach is an approximated method, where the computational 

effort increases dramatically when the visibility resolution and accuracy requirements raise. 

Other than increasing the number of slices for better accuracy, one could also apply an 

adaptive slicing strategy [37] for a better approximation of the original model, since reducing 

the staircase error would also benefit visibility accuracy. Moreover, due to the facet 

visibility’s definition, the size of a facet affects the extent its visibility is explored. In the 

future, effort should be made to find a tool’s true accessibility on the foundation of the 
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current visibility results. Besides, a more efficient way of building up the visibility cone from 

arcs other than the exhaustive method should be explored. Furthermore, we are actively 

looking for opportunities to extend the current method to facilitate the setup planning of 

advanced 5-axis CNC machines where a more comprehensive set of machining factors 

including the tools’ orientations, lengths and diameters can be optimized.  
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CHAPTER 4.    COMPUTING THE ACCESSIBILITY OF A POLYHEDRON USING 

A THREE-DIMENSIONAL OFFSET FOR BALL-END MILLING 

Abstract 

Accessibility of a surface is the set of directions that a cutting tool follows to reach 

the entirety of a surface from a distance without collision. Compared to visibility, where a 

surface is visible from a direction if a set of parallel rays in that direction can reach the 

entirety of it without collision, accessibility accounts for the body of the cutting tool (tool end 

and tool shank) in collision. Thus, accessibility is a more accurate modelling of the 

machining constraints. As visibility is relatively easier to compute, we propose a method that 

generates accessibility results from visibility on the offset surface for ball-end tools. Putting 

cutter locations on the offset surface avoids a tool’s local gouging. Visibility results on the 

offset surface provides a tool’s feasible orientations that are globally collision-free. A one-to-

many facets mapping from part surface to offset surface is created, such that a part’s surface 

can find its cutter locations on the offset surface. The results have shown that the tool body is 

effectively accounted for in collision. The method provides more than a Boolean answer of 

accessibility – it provides all feasible tool orientations. In this paper, we are concerned with 

triangular polyhedral models only, where the smallest surface is a triangle. 

 

4.1 Introduction 

Accessibility of a surface is the set of directions that a cutting tool follows to reach 

the entirety of this surface from a distance without collision. Accessibility recognizes a tool’s 

body (a tool end and a tool shank) in collision. Visibility, on the other hand, simplifies the 

cutting tool with a line (infinitely thin tool). 
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Visibility for a polyhedron 

Visibility for a part consists of visibility for each surface of the part. As we represent 

a part’s surface using a triangulated (tessellated) polyhedron, each surface is a triangular 

facet. Thus, computing the visibility for a part is equivalent to computing the visibility for 

each facet of the part. 

The visibility of a polyhedral facet is a set of directions. Along each direction, a set of 

parallel lines can reach every point in this facet without intersecting the polyhedron. A 2D 

example is given in Fig. 4-1. Notice, the 2D counterpart of a facet is a segment.   

 

Fig. 4-1 The visibility of a segment on a polygon 

 

Accessibility for a polyhedron 

 Tool accessibility of a polyhedral facet is a set of directions. Along each direction, a 

set of tools whose central lines are parallel can reach every point of this facet without 

colliding with the polyhedron. Both visibility and accessibility are widely used for setup and 

toolpath planning in Computer Numerical Controlled (CNC) machining. However, visibility 

has its limitation in that: a surface that is visible from a direction is not necessarily accessible 

by the tool (Fig. 4-2 leftmost subfigure). This is because visibility only provides accessibility 

Department of IMSE

Visible orientation 1 Visible orientation 2

Segment in question

Not visible orientation Visibility

visibility
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for an infinitely thin tool; space in the tool other than the center line can easily collide with 

the part. This makes visibility an overestimate of actual tool accessibility. Accordingly, using 

visibility as accessibility is either unsafe or will render incomplete cutting of the part. To 

solve this problem, the tool body must be accounted for in accessibility computation.  

 

Fig. 4-2 The accessibility of a segment on a polygon 

 

Using an Offset Surface for Ball-end Tool for Accessibility  

In this paper, we propose that a tool body can be accounted for in collision by 1) 

using the three-dimensional (3D) offset surface of the part as the cutter locations and 2) 

treating the offset surface as obstacles in feasible tool orientations computation (Fig. 4-3). 

Cutter locations are where the center of the tool’s ball-end locates. Using an offset surface as 

cutter locations avoids local gouging of the tool. Treating the offset surface as an obstacle in 

feasible tool orientations computation avoids global collision between the tool and part. 

Lastly, the method calculates accessibility on the part surface as visibility on the offset 

surface.  

accessibility

Inaccessible surface Access orientation 1 Access orientation 2 Accessibility

Segment in question
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Fig. 4-3 The observation that accessibility of a part surface can be derived from the visibility 

of its offset surface 

 

4.2 Related Work 

Miller investigated the application of surface accessibility on the visual effect of 

shading. In that work, accessibility was defined as radius of a sphere which may touch a 

surface point and not intersect any surface [1]. The results highlighted the inaccessible 

surface by a spherical probe. However, the method only provides a Boolean answer to 

whether a surface is accessible by the probe; not actual access orientations. Elber proposed a 

method to determine the inaccessible surface induced by a flat-end tool in 5-axis machining. 

However, the method is restricted to inaccessibility of convex surfaces due to other check 

surfaces. Also, it does not provide feasible tool orientations for the accessible surfaces [2]. 

Tang et al. proposed a surface offset/upper envelop method that solves gouging for 3-axis 

multi-surface NC machining [3]. Kim et al. proposed a triangular mesh offset algorithm for 

tool path planning of a generalized cutter in NC machining [4]. However, both Tang and 

Kim’s work focuses on 3-axis NC machining where tool orientation was not considered. Xu 

et al. proposed a method that determines feasible tool orientations for each predefined cutter 

contact (CC) point in 5-axis NC machining [5].  However, CC points and CC paths must be 

(a) Offset contour by tool radius (b) The rightmost feasible orientation 
for ball end mill on point 𝑝

𝑝

 

𝑝

 

(c) The leftmost feasible orientation 
for ball end mill on point 𝑝
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(a) Offset contour by tool radius (b) The rightmost feasible orientation 
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on point 𝑝
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provided first. This is not desirable if we want to optimize the tool path choice. This method 

works better in the case where CC paths are already determined and used to generate gouge-

free and collision-free tool orientations.  

In conclusion, a method that can determine accessible and inaccessible part surfaces 

for ball-end cutter in 5-axis machining environment while also providing feasible tool 

orientations for each surface is needed. In addition, we propose a new method that can 

evaluate accessibility by reusing visibility results. 

 

4.3 Methodology 

4.3.1 Overview of the Methodology 

The method consists of four steps (Fig. 4-4):  

• The part surface is offset outward by the ball-end tool radius. The 3D offset is 

realized by conducting a 3D Minkowski Sum between two polyhedra: one sphere 

representing the tool-end and one representing the part;  

• Visibility is computed on the offset surface using an approximate visibility 

method;  

• A mapping between part surfaces and offset surfaces is generated (facets to facets 

mapping); 

• And finally, accessibility of a part facet is obtained by intersecting visibilities of 

its mapped facets on the offset surface. 
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Fig. 4-4 The four steps to compute accessibility 

 

4.3.2 Computing the 3D Offset Surface 

We first explain the rationale behind “Surface Offsetting for Accessibility” – why the 

use of an offset surface leads to the gouging-free and collision-free directions of ball-end 

tools. 

Ball Centered on Offset Surface to Avoid Local Gouging  

For the rest of the analysis, it is assumed we use a ball-end tool of a fixed radius. The 

offset surface has divided the 3D space into two subspaces for cutter locations; an inner 

subspace and outer subspace (subspace does not include the boundary, i.e. offset surface). 

The inner subspace is the collision space where a ball-end must collide with the part if it is in 

this subspace. The outer subspace is the collision-free space that guarantees no ball-end to 

part intersection.  If the ball-end’s center is positioned on the offset surface, it might be 

tangent to some part surfaces, but it will never gouge into any. Since a part surface can only 

be machined if the tool end is tangent to it, the offset surface becomes the only feasible space 

for cutter locations (locations for the ball-end’s center). 
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A surface of the part can be machined if and only if every point in this surface can 

find its corresponding cutter location on the offset surface. Thus, the accessibility of a part 

surface can be solved on its offset surface.  

Using Offset Surface as the Obstacle to Avoid Global Collision 

Although placing a tool’s ball center on the offset surface avoids local gouging, this 

location being the travel destination of the ball-end might not be reachable due to tool-part 

collision. Even if it is reachable, the tool’s access directions are still to be determined.  

More formally, the problem to solve is this: Given a point on the offset surface, from 

what directions can a tool’s ball center approach this point without any tool-part collision 

(Assuming the tool always approaches the part surface in a straight line and the tool is 

infinitely long)? Considering the tool’s approaching as a dynamic process, at any time, the 

travelling ball should be collision-free with the part. Notice the offset surface has created an 

outer subspace that guarantees no ball-part intersection and an inner subspace that guarantees 

ball-part intersection. Thus, the trace of the travelling ball (a ray) must lie within the outer 

subspace. This is equivalent to shooting a ray from said point without colliding with the inner 

subspace. In fact, this is effectively a visibility problem; finding the set of rays which start 

from a fixed point on the offset surface that do not interest with the offset surface (Notice the 

offset surface is the boundary of the inner subspace). 

In conclusion, the visibility results of a point on the offset surface (Cutter Location 

(CL) point) provide directions that render the ball-end tool globally collision free (i.e. tool 

shank does not collide with the part). Meanwhile, the visibility results also provide the 

feasible tool orientations of a part point corresponding to this CL point. 
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Using the 3D Minkowski Sum for Surface Offset 

 

Fig. 4-5 Comparison between (a) Simple offset and (b) a Minkowski Sum with disk 

To simulate ball-end tool machining (assuming the ball-end’s radius is R), we require 

the offset surface to have the following property: First, any sphere of radius R centered on 

the offset surface does not collide with the part except for tangentially touching; Second, the 

offset surface must contain the exact sphere-part collision space, no larger or smaller. The 

first one guarantees there is no part gouge if cutter locations are on the offset surface. The 

second one guarantees an accurate boundary of the sphere-part collision space which affects 

the accuracy of visibility computation where the offset surface is treated as an obstacle. 

The commonly used offset strategy in most CAM software (offset face-by-face, then 

extend and trim) does not satisfy the second requirement (Fig. 4-5a). However, the surface 

generated by a 3D Minkowski Sum of the part and a sphere of radius R does meet the 

requirement (Fig. 4-5b). Minkowski sum of two geometry objects is the space occupied by 

both objects when traversing one object along every point in the other object (Fig. 4-6). The 

3D Minkowski Sum of a part and a sphere simulates the process of traversing a ball-end in 

the interior and on the surface of the part. The sum is the union of the spaces where tool-part 

collision occurs. Therefore, the interior of the sum is the part-tool collision space where the 

exterior of the sum is the part-tool collision-free space. 

(a) (b)
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Fig. 4-6 2D and 3D Minkowski Sum [6, 7] 

There are many computer programs that can compute the 3D Minkowski Sum, a 

commonly used one is by CGAL [6]. However, the time complexity of its implementation is 

 (𝑚 𝑛 ) making it a very slow process, where m and n are the complexities of the two input 

polyhedra. Complexity of a polyhedron is the sum of its vertices and edges. Lien has 

proposed a much faster algorithm to compute 3D Minkowski Sum using collision detection, 

though some results might be problematic (low dimensions) [8]. Li has proposed a fast 

voxel-based 3D Minkowski Sum using GPU [7]; however, the results are not exact. In this 

work, we choose OpenSCAD, an open source software based on Constructive Solid 

Geometry (CSG) and a CGAL kernel that provides basic Boolean operations of solids and 

3D Minkowski Sum [9]. Though it is somewhat computationally expensive, we prefer the 

accuracy of the offset surface in this work. 
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Inaccessible Part Surfaces Determination 

 

Fig. 4-7 Inaccessible surface (red) and residual material (yellow) 

 We first find the part surfaces that are completely inaccessible by the ball-end cutter 

to save computation time for the facet mapping from part surface to offset surface. 

Inaccessible surfaces can be determined using a two-offsetting technique (Fig. 4-8): 

1. Offset the part surface outward by distance R (using 3D Minkowski Sum); the offset 

surface defines Cutter Locations (CL) on the surface (Fig. 4-8b). 

2. Offset the CL surface inward by distance R (using 3D Minkowski Sum); the resulting 

surface defines the Maximal Cut (MC) surface (Fig. 4-8c). 

3. Subtract the solid represented by the MC surface by the part to get residual volume; 

which represents the material left by Maximal Cut (Fig. 4-8c). 

4. Calculate the part surfaces that are tangent to the residual material; these part surfaces 

are not accessible (Fig. 4-8d). 

Note that in OpenSCAD, there is no Minkowski Sum that goes inward. To achieve 

the same effect of inward offsetting, we can subtract a model from a bigger cube (big enough 

to cover the model). The resulting solid has an inner surface that is the exterior surface of the 

model. Since it is an exterior surface, we can then conduct Minkowski Sum on it which 

effectively realizes inward offsetting of the model. 
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Fig. 4-8 The two-offsetting method to find inaccessible surfaces 

 

4.3.3 Mapping from Part Surface to Offset surface 

 Cutter Locations Determination for a Part Surface 

To calculate a part facet’s feasible tool orientations, its cutter locations must be 

found. Cutter location for a point on the part surface is its normal projection on the offset 

surface. We define such projection as an image of the part vertex/surface. Because the offset 

surface has a different triangulation from that of the part surface, the image of a part facet (on 

the offset surface) could intersect multiple offset surface facets. We define the offset facets 

that intersect with the part facet’s image as the mapped facets. In this way, the accessibility 

of a part facet is the intersection of the visibilities of its mapped facets.  

6
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Fig. 4-9 Locating cutter locations; (a) Locating the cutter location of a point on part 

surface (b) Locating the cutter locations for a part facet (c) Searching all mapped facets 

by a graph traversal (Breadth First Search is chosen). 

To find the mapped facets for a part facet 𝑓0, a segment starting from the centroid of 

𝑓0, extended in the normal direction of 𝑓0, of a length R (R is ball-end tool’s radius) is 

created. The facet on the offset surface intersected by this segment must be one of the 

mapped facets (denoted as 𝑓0
 ). Because the mapped facets must be connected (thus in a 

connected component), we can conduct a graph traversal starting from 𝑓0
  to enumerate all 

mapped facets. In each step of the traversal, we test if the current offset facet intersects with 

the image facet, if yes, we proceed to explore its neighbor facets, else we stop exploring this 

facet. 

To speed up the collision detection which finds 𝑓0
 , we create an Axis Aligned 

Bounding Box (AABB) tree for quick intersection query on the offset surface. This AABB 

tree is reused for locating cutter locations of other part facets. 

4.3.4 Computing the Visibility for Facets on the Offset Surface 

 In this paper, we use a slice geometry-based method from our previous work to 

compute visibility  (Fig. 4-10) [10].  A brief review of the four main steps is as follows: 
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First, we select a set of parallel planes cutting the part into a set of slices. Each slice 

consists of a set of segments. A 2D visibility algorithm is conducted on each slice to compute 

visibility for each segment. The direction perpendicular to these parallel planes is called a 

slicing direction.  Second, for each facet sliced by a set of segments, intersect the visibility 

from those segments to generate visibility for the facet. This process is repeated for all facets.  

Third, we repeat step one and two for other slicing directions. These directions should be 

comprehensive (normal planes of slicing direction span the entire space). Fourth, we gather 

the visibility results from different slicing directions (a set of arcs) to form the final visibility 

results.  

 

Fig. 4-10 The slice-geometry based visibility method 

 

(a) Compute segments’ visibility

(b) Convert segment visibility to facet visibility

(c) Compute visibility on differently oriented planes 
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4.4 Implementation 

4.4.1 Surface Offsetting Results 

 
Fig. 4-11 Surface offset results for three models (via OpenSCAD) 

 

Fig. 4-12 Inaccessible surface results (yellow) 

 

 

Implementation, Surface Offsetting
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Fig.24 Surface offset results for three models (OpenSCAD)
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4.4.2 Cutter Location Determination (for a Part Facet) Results 

 

Fig. 4-13 Mapping from part faces to offset surface faces (four cases of mapping) 

The example part shown in Fig. 4-13 is a cube with a tapered pocket on the top. In all 

5 subfigures, the offset surface (using 3D Minkowski Sum, offset distance 0.5 inch) is shown 

in transparent mesh. The four subfigures on the right show four pairs of mapping. In each, 

the orange facet indicates the facet on the part surface while red facets indicate mapped 

facets on the offset surface, respectively. Depending on the size and position of the part facet, 

its mapped facets’ count varies.  

As we will conduct the intersection of visibility on the mapped facets, the more the 

mapped facets resemble the part facet, the more accurate the result is for the part facet. To 

better approximate the part facet, the polyhedron of the offset surface can be re-meshed to 

generate smaller facets. 
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4.4.3 Accessibility Results 

 

Fig. 4-14 A part facet    and its image 

 To show accessibility results, we use the part shown in Fig. 4-14a as an example. The 

part is a cube with a tapered pocket on the top. The offset surface of the part is shown as 

transparent which is offset outward by a tool radius of 0.5 inch (offset using 3D Minkowski 

Sum). We choose a facet 𝑓0 on the part surface as an example (Fig. 4-14b). In the cross-

section view, 𝑓0 is shown as a yellow segment while in the 3D view, 𝑓0 is shown as yellow 

triangle. In both views, we can see 𝑓0’s mapped facets (on the offset surface) are shown in 

red. Notice, the image of 𝑓0 has intersected with 6 facets on the offset surface. 

 We then use the slice geometry-based visibility method to compute visibility for each 

of the mapped facets (Fig. 4-15). The visibility results for the six mapped facets are shown in 

six different colors. The leftmost subfigure represents visibility results on the unit sphere. For 

(a) Part and offset surface (b) Facet of interest and its mapped facets on offset surface
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mapped facets
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Offset 
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clarity, we separate these visibility results and show them one by one in the top view. The 

results show that the six different mapped facets have different visibility regions.  

 To obtain accessibility of 𝑓0, we conduct an intersection of these six visibility regions 

(rightmost subfigure). 

 

Fig. 4-15 Visibility results of six mapped facets and their intersection 

Intuitively, accessibility, which considers tool body for collision, should be more 

restricted than visibility. To verify this, we compute the visibility of 𝑓0 and compare it with 

𝑓0's accessibility (Fig. 4-16). It can be seen that the accessibility region is considerably 

smaller than the visibility region which agrees with our expectation. The difference is 

partially attributed to the extra collision induced by the tool body and partially attributed to 

the intersection of visibility (namely approximating the image of 𝑓0 as the union of mapped 

facets). 

 
Fig. 4-16 Comparison between accessibility and visibility 
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4.5 Conclusion 

This paper presented a new method to calculate the accessibility of a machine tool to 

a part surface.   Instead of directly evaluating accessibility, we propose that the equivalent 

can be found through considering the visibility of an offset surface.   This offset surface, 

found using a Minkowski Sum, allows us to consider an exact solution to visibility, and then 

map the visibility of the offset surface facets to the original part surface facets.  It was shown 

that the use of an offset surface effectively accounts for the body of the tool in collision for 

accessibility computation. The method provides more than a Boolean solution to 

accessibility, rather, it calculates all feasible orientations of a ball-end tool. The results can be 

used for setup and toolpath planning in multi-axis CNC machining.   

The method essentially reuses the visibility results, making it possible to adopt other 

visibility methods in the future. However, the 3D Minkowski Sum is computationally 

expensive. Computing the offset surface of a complex model with a fine resolution sphere 

mesh may take too long to process, making it less practical for rapid manufacturing efforts. 

Since the sphere mesh is always an approximation of the true sphere, the offset surface is 

always an approximation which leads to some inaccuracy of the results. Also, due to the 

triangulation difference between the offset surface and part surface, the accessibility results 

are always computed from the intersection of the mapped facets which is always 

conservatively approximated, making it less accurate. Moreover, this method only applies to 

ball-end cutter.  In the future, work can be done on developing a more efficient surface offset 

algorithm considering the geometry of the specific type of tool used. In addition, a re-

triangulation on the offset surface that guarantees each accessible part facet has an identical 

cutter location image should be developed to make the accessibility results more accurate. 
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CHAPTER 5.    A HYBRID APPROACH TO COMPUTE THE VISIBILITY MAP OF 

A POLYHEDRON 

Abstract 

This paper proposes a new visibility determination method that combines two 

independent visibility methods to balance computational cost and accuracy. One of them is 

an approximate method that computes a facet’s visibility on a set of selected planes. The 

other is an exact method that uses a boundary tracing technique to determine the exact 

boundary of non-visibility of one facet due to the other. The complete non-visibility of a 

facet will consider all other facets as obstacles. To speed up the exact computation which has 

a higher time complexity than the approximate, we create an obstacle filter that generates 

considerably fewer candidate obstacles for the exact method. This filter is created using the 

approximate method’s Quick Visible Region Identification functionality. In this way, we 

incorporate both methods in visibility determination that generates near-exact results. This 

hybrid method also provides easy control over the approximate-exact computation ratio. By 

adjusting this ratio, we realize a balance between computational cost and accuracy.  

 

 

5.1 Introduction 

Toolpath planning for Computer Numerical Control (CNC) machining has been a 

long-term research focus in the field of high precision manufacturing. Its intricacy is driven 

by the complex geometry of the CAD model, the mechanical characteristics of cutting, the 

optimization considering multiple parameters and the choice among a variety of toolpath 

strategies. Generating a feasible toolpath for an arbitrary model is no easy work. Some 

researchers still rely on the recognition of features to generate specific types of toolpaths [1]. 
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Others consider a freeform surface and develop their toolpath strategy based on the concept 

of visibility or reachability [2]. In which, visibility determination becomes a prerequisite step 

in a toolpath’s generation.  

The methods to compute visibility divide into two categories in general: approximate 

and exact methods. Although an approximate method is usually faster because of adjustable 

resolution and approximation ratio, the inexactness may not be preferred in certain cases. The 

exact methods generate accurate visibility boundaries but are usually high in time 

complexity. This dilemma leads to choices that either sacrifice accuracy for processing time 

or vice versa. Often, engineers and researches choose one type that fits better into their 

immediate needs.  This work attempts to merge the two approaches in a hybrid method that 

accomplishes both goals. 

 

5.2 Related Work 

There has been considerable research that addresses visibility computation, including 

the seminal method by Chen and Woo that used a Gaussian map [3], the Z-buffer method [4], 

discrete avoidance method [5], Minkowski Sum method [6], exact visibility methods using 

pairwise occlusion [7], and sliced geometry-based methods [8]. As modern machine’s 

computational performance rises, researchers nowadays tend to use the GPU for scientific 

computation. Some researchers make use of the “occupation query” of GPU for visibility 

computation [2]. Some use the GPU for accessibility testing, which considers both the tool 

body and the tool holder [4]. In general, the time complexity of exact visibility computation 

that use pairwise occlusion is  (𝑛 ). The time complexities of approximate methods vary 

but they are more efficient than exact method in most cases. 
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One slice geometry-based approximate method first creates cross sections (slices) of 

the model using multiple parallel planes, then computes visibility on these 2D slices [8, 9]. It 

obtains 3D visibility by merging visibility from 2D slices which essentially reduces a 3D 

problem to a 2D one. The time complexity of this method is  (𝑘 ∙ 𝑛), where 𝑛 is the part 

mesh size, 𝑘 is the total number of slices (among all directions). It has better time complexity 

than an approximate method that discretizes the visibility space (whose time complexity is 

 (𝑚𝑛 ), where 𝑚 is the discretization size of visibility space) and the exact methods 

mentioned above. Although efficient, it is still computationally costly if accuracy and 

resolution requirements are high. Besides, it generates inexact visibility results compared to 

exact methods. 

In summary, a method that can generate exact or near-exact visibility results while 

also balancing processing time and accuracy is highly desirable. In this paper, we will 

introduce one such method by using an approximate method to preprocess the visibility and 

filter out unlikely obstacles for the exact method; which eventually reduces the processing 

time for the latter. 

 

5.3 Methodology 

The following analysis uses an example facet 𝑓0 to illustrate the visibility 

determination process. We denote the approximate visibility method V1 as in [8]; denote the 

exact visibility method V2 as in [7].  

5.3.1 Method Overview 

The method has four steps (as illustrated in Fig. 5-1). And they are described in detail 

in the following paragraphs. 
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1. Visibility Evaluation on Selected Circles. This computes the visibility of facet 𝑓0 

on two sets of sampling great circles using V1. The first set are coaxial about the 

Z-axis. The second set are coaxial about the Y-axis. Both sets of great circles span 

the unit sphere homogeneously. 

2. Visible Region Classification. The visibility results are represented as a set of 

geodesics on the unit sphere. We divide the unit sphere into three regions based 

on whether an area is enclosed or partially enclosed by geodesics. These three 

regions are marked as Visible (V), Nonvisible (N) and Undetermined (U), 

respectively.  

3. Candidate Obstacles Determination.  We extrude a 3D beam from base 𝑓0 

following a direction 𝑟, where 𝑟 is the line connecting the centroid of 𝑓0 and a 

point 𝑝 in the Undetermined region (U). Then, we move 𝑝 in region U while 

finding all part facets that intersect the beam. These part facets 𝑆𝑜𝑏𝑠 are the 

obstacles of 𝑓0 that will contribute to the visibility boundary in region U.  

4. Non-visibility Computation and Final Non-visibility Merging. Finally, we 

compute the non-visibility for each facets pair (𝑓0, 𝑓𝑖), ∀𝑓𝑖 ∈ 𝑆𝑜𝑏𝑠 using V2 and 

then union the results, denoted as 𝑁 . The final non-visibility is the union of 𝑁 

and 𝑁 . The complement of (𝑁⋃𝑁 ) gives the final visibility of 𝑓0. 
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Fig. 5-1 Overview of the hybrid visibility method 

 

5.3.2 Undetermined Visible Region Determination  

5.3.2.1 The Slice Geometry-based Visibility Method 

In this paper, we use a slice geometry-based visibility method from our previous work to 

compute visibility (Fig. 5-2) [8]. Following is a review of the four main steps:   

First, we select a set of parallel planes cutting the part into a set of slices. Each slice 

consists of a set of segments. A 2D visibility algorithm is conducted on each slice to compute 

visibility for each segment. The direction perpendicular to these parallel planes is called a 

slicing direction. Second, for each facet sliced by a set of segments, we intersect the visibility 

from those segments to generate visibility for the facet. This process is repeated for all facets.  

Third, we repeat step one and two for other slicing directions. These directions should be 

comprehensive (normal planes of slicing direction span the entire space). Fourth, we gather 

the visibility results from different slicing directions (a set of arcs) to form the final visibility 

results.  

O

y

z

y

x

x

O

O

x

z

y

z

x

U

NV

U

U

𝑓0

𝑓0𝑟 

𝑟 

𝑝

𝑝

𝑓0

U

N

𝑁 

non-visibility polygon

candidate 

obstacle

non-visibility polygons

V

(a) Step1:

Visibility computation 

on sampling circles

(b) Step 2:

Region classification 

by visible geodesics

(c) Step 3:

Candidate obstacles 

determination by intersection

(d) Step 4:

Non-visibility computation for 

all obstacles against 𝑓0

Sampling circles

visibility polygon 

to determine visible geodesics

𝑓0

part 

facets

part 

facets



71 

 

 

 

Fig. 5-2 The slice geometry-based visibility method 

 

5.3.2.2 Visibility Sampling Grid on Unit Sphere and Visible Region Classification 

Assuming a part is single-bodied, we introduce a special property of its visibility 

polygons: A visibility polygon must be simple polygon without holes (a hole is a nonvisible 

region).  

 
Fig. 5-3 A special property about visibility polygons 
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This property can be proven by contradiction. Suppose the visibility polygon contains 

a hole, then the visibility is in a ring shape (Fig. 5-3b) where the hole is a non-visibility area. 

By the definition of visibility, the 3D beam extruded from face 𝑓, directed at points in the 

visibility ring, will sweep out a collision-free volume in space (Fig. 5-3c, d). Therefore, this 

swept volume contains no solid. On the other hand, there must exists a solid above the swept 

volume, acting as an obstacle that generates the non-visibility area. The swept volume has 

divided the 3D space into two subspaces where the base 𝑓 and obstacle solid are on different 

subspaces. Because we assume our part is single-bodied, this separation of base 𝑓 and 

obstacle solid introduces a contradiction. Therefore, the visibility polygon for a single-bodied 

part contains no (non-visibility) holes.   

This special property leads to a corollary: A spherical region whose boundary is 

visible is also visible in the interior (Fig. 5-4). 

 

Fig. 5-4 A corollary for spherical region closed by visible geodesics 

Using this corollary, we could quickly identify the visible regions given visible 

geodesics on the unit sphere that form closed regions. We call this the Quick Visible Region 

Identification (QVRI) technique.  

One unique feature of the slice geometry-based visibility method (V1) is that 

visibility can be evaluated on selected great circles on the unit sphere. Doing so will generate 

a set of visible geodesics on the unit sphere. We can use this feature for QVRI. If a true 
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visibility polygon is sampled by great circles and contains regions closed by visible 

geodesics, we can mark those regions visible and leave the remaining area to be determined 

later. 

To create regions closed by visible geodesics, we establish a grid made by two sets of 

great circles on unit sphere where one set intersects the other. This grid subdivides the unit 

sphere into multiple small regions which we call cells. In this paper, we choose the first set of 

great circles to align with meridians (suppose north pole is to the positive Z direction); and 

the second set of great circles to be coaxial about Y-axis. This layout is shown in Fig. 5-5. 

The angle between adjacent great circles in a set is uniformly set to 5 degrees (adjustable). 

We then use V1 to evaluate visibility on these great circles. We define these two sets of great 

circles as sampling circles or simply a sampling grid together. 

 

Fig. 5-5 Two sets of great circles to compute visibility using V1 

The intersections of these sampling circles create two types of spherical polygons: 

spherical triangles and spherical rectangles. In the following analysis, we use spherical 

rectangles for illustration. 
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After visible geodesics are determined on the sampling grid, we classify the unit 

sphere into three regions: 

• Visible Region where a cell’s boundary is visible.  

• Undetermined Region where a cell’s boundary contains at least one visible 

geodesic but is not completely visible.  

• Nonvisible Region which covers all the remaining cells. 

An example of the Visible Region Classification process is shown in Fig. 5-6. 

 
Fig. 5-6 Visible Region Classification. (a) Sampling circles and the visibility polygon to 

determine; (b) Locating Visible and Undetermined regions. Not all visible geodesics are 

shown; (c) The final Visible, Undetermined and Nonvisible regions. 

 After Visible Region Classification, the visibility results in Visible and Non-visible 

region are fully determined. The visibility in the Undetermined region is unclear. The cells in 

the Undetermined region could be either partially visible or completely invisible. In fact, the 

Undetermined region contains the boundary of the true visibility polygon of 𝑓0. To determine 

this boundary, we use the exact visibility method V2. The boundary separate visibility and 

non-visibility. Thus, there must exist some obstacle facets whose occlusions establishes the 

exact shape of this boundary. In the following section, we will find such obstacle facets. 
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5.3.3 Exact Visibility Boundary Determination in the Undetermined Region 

5.3.3.1 Candidate Obstacles Determination for the Undetermined Region 

 

Fig. 5-7 Intersection test between the 3D extruded beam and part to discover obstacles 

that contribute to the forming of visibility boundary in Undetermined region  

To find the obstacles (part facets) that contribute to the forming of visibility boundary 

of 𝑓0 in the Undetermined region, an intersection test between the part and a 3D beam is 

conducted. Any part facet that intersects with the 3D beam (extruded from 𝑓0 following 

direction 𝑟 where 𝑟 starts from the centroid of 𝑓0 and point at any point 𝑝 in the 

Undetermined region U) will contribute to the forming of a visibility boundary in the 

Undetermined area U. 

The intersection between a triangle and a 3D extrusion beam has three scenarios.  

First, at least one vertex of the triangle is in the beam (Fig. 5-7b). This can be checked by 

testing if any triangle vertex is in all negative spaces of the side planes of the 3D beam. 

Second, no triangle vertex is in the 3D beam, but at least a triangle edge intersects with the 

3D beam (Fig. 5-7c). In the projected view (projecting everything in the 𝑟 direction onto a 

plane that is parallel to 𝑓0), the edge of 𝑓0 has divided the plane into 6 subspaces. These 

subspaces can be categorized into two types; Type one: any point in this subspace that is in 
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the positive space of side plane and negative space of the other two side plane, and Type two: 

any point in this subspace that is in the positive space of two side planes and negative space 

of the other side plane (Fig. 5-7f). For any 3D segment  ⃗, one vertex of  ⃗ must fit into the 

two categories above. For  ⃗ to interest with the 3D beam, the other vertex of  ⃗ must lie in the 

space bounded by the planes shown in (Fig. 5-7(d-e)). The subfigure in Fig. 5-7(g-h) 

illustrates the respective projected view. Essentially, it is testing whether the other vertex of  ⃗ 

is in the bounded space of corresponding planes. We can conduct this test for each edge of 

the obstacle triangle. If any edge intersects with the beam, the triangle intersects with the 

beam. 

The third case is neither a vertex nor an edge of the triangle intersects with the 3D 

beam. In this case, we denote the projected image of 𝑓0 as  𝑓  and projected image of 

obstacle triangle 𝑓𝑜𝑏𝑠 as  𝑓   .  Then, the obstacle triangle 𝑓𝑜𝑏𝑠 intersects the 3D beam if and 

only if  𝑓  is contained by  𝑓    or  𝑓  contains  𝑓    (Fig. 5-7j). To determine if a triangle is 

contained by another triangle, we can test whether all the vertices of one triangle is in the 

other triangle. 

In conclusion, the time complexity for testing whether an obstacle facet intersects 

with a 3D beam is linear to the number of edges of 𝑓0 and number of edges of 𝑓𝑜𝑏𝑠. Because 

both facets are triangles in this paper, the edges count are 3 for both. Therefore, the time 

complexity of the intersection test is constant.  

The above intersection test describes how to find the intersected part facets for one 

3D beam direction 𝑟. To account for all directions of 𝑟, we need to traverse the endpoint of 𝑟 

in the undetermined region U. Since the undetermined region consists of many cells, we can 

traverse 𝑟 for each cell and repeat the traversal for all cells. Although it is ideal to enumerate 
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𝑟 for all points in U, this is not practical. In this paper, we only consider the boundary 

vertices of each cell, assuming the intersecting facets introduced by these 3D beams captures 

all potential obstacle facets for that cell (Fig. 5-8). This is reasonable because our sampling 

great circles have small angle interval, the 3D beams introduced by the boundary vertices are 

heavily overlapped and occupy most of the swept volume if 𝑟 is traversed for the entire cell. 

Therefore, the chance that an actual obstacle facet does not intersect with any of the 

boundary 3D beams is negligible.  

 

Fig. 5-8 Enumerate directions 𝒓⃗⃗ at cell boundary vertices in the Undetermined region 

 In summary, the 3D beam intersection tests will be conducted for all cell’s boundary 

vertices in the Undetermined region. The resulting part facets (candidate obstacle facets) will 

be used to compute non-visibility which will form the boundary of 𝑓0’s visibility polygon(s). 

 

5.3.3.2 The Boundary Tracing Method for Exact Visibility Boundary 

From the previous section, we have a base facet 𝑓0 and a set of other facets that are 

obstacles of 𝑓0. The goal is to compute the non-visibility polygon(s) of 𝑓0 due to this set of 

obstacles. It can be realized in two steps. First, we compute the non-visibility of 𝑓0 due to 

each obstacle facet; Second, we union the non-visibility regions due to each obstacle.   

Given a pair of facets (one being the base facet whose visibility is to be determined 

the other being an obstacle), how can we determine the space that is obstructed by the 
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obstacle for the base facet? The problem can be reformulated as follows: First, translate the 

base facet in space and form a 3D light beam by connecting the translated facet and the 

original base facet vertex-by-vertex. Second, extend the 3D light beam so it is infinite in 

length. Third, move the translated facet while keeping the infinite long 3D beam moving at 

the same time. Forth, if at any time, the 3D beam intersects with the obstacle facet, the 

direction determined by the segment connecting the centroid of the base facet and translated 

facet, is an invisible direction. The goal is to find the boundary between visible and invisible 

directions. 

To solve this problem, we make use of a boundary tracing visibility method that 

determines the non-visibility region of one facet due to the other by computing sliding planes 

[7]. This method gives the exact non-visibility results in the form of spherical polygons on 

the unit sphere for a pair of facets. However, it does not address how to obtain the complete 

non-visibility for a facet, which essentially requires us to union the non-visibility polygons, 

either on the unit sphere or on a plane. To this end, a modified method is implemented from 

scratch using the CGAL and s2Geometry library [10, 11]. We use s2Geometry library for its 

capability of conducting Boolean operations of spherical polygons on the unit sphere.  

An example of an exact visibility boundary represented as spherical polygons on the 

unit sphere is shown in Fig. 5-9. Following is the detail of this method. 

 
Fig. 5-9 The exact visibility boundary shown as spherical polygon on unit sphere 
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In order to compute the non-visibility of a base facet due to an obstacle facet, a 

boundary tracing approach is used (Fig. 5-10). This approach extrudes a 3D light beam from 

the base facet where all the side edges are parallel. Then the top cap of 3D light beam is 

pushed against the obstacle facet until touching (vertex/edge, vertex/vertex or edge/edge). 

Once touching, we trace the 3D beam along the boundary of the obstacle facet. The trace (of 

the beam’s center line) results in a 3D cone which defines the boundary of directions where 

the 3D beam will collide with the obstacle. This 3D cone can be projected to a plane parallel 

to the base facet, creating a non-visibility polygon. It can also be projected to a unit sphere, 

creating a non-visibility spherical polygon. 

 
Fig. 5-10 Boundary tracing algorithm for a pair of faces 

To quantify the 3D cone, we exam the tracing process. Notice, the tracing is based on 

the contact of the cap and obstacle facet. The contact pair, namely a vertex or edge from the 

cap and a vertex or edge from obstacle could change over the tracing process. The 3D beam 

can move if the contact pair contains an edge. In fact, the 3D beam can slide along the plane 

determined by the contact pair that contains an edge. These planes are called sliding planes. 
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A sliding plane, due to the boundary tracing nature, subdivides the 3D space into two 

subspaces where the obstacle facet and base facet are in different subspaces. Therefore, 

sliding planes can be found by examining planes defined by contact pairs (formed by the cap 

and obstacle’s vertices and edges). The planes that separate the cap and obstacle facet are the 

sliding planes (Fig. 5-11). 

 

 
Fig. 5-11 Contact pair and sliding planes 

Once sliding planes are determined, the 3D cone for non-visibility is determined (the 

3D cone can be created by intersecting the negative subspace of each plane, assuming 

negative space is where the obstacle facet is, denoted as 𝐼𝐼 subspace). To represent non-

visibility results on a plane, we could intersect the 3D cone with a plane   parallel to base 

facet. Or equivalently, we could intersect sliding planes with plane   first (creating a set of 

oriented 2D lines) and intersect the negative space of these 2D lines to generate non-visibility 

polygon in 2D (Fig. 5-12).  
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Fig. 5-12 Half spaces intersection for non-visibility. 𝑺𝒊 denotes sliding plane i; 𝑰𝒊 denotes 

visible half-space i; 𝑰𝑰𝒊 denotes the complementary half-space of 𝑰𝒊.  

As an example, Fig. 5-13 shows the non-visibility cone of a base facet (on x-y plane) 

due to an obstacle facet above. The results are represented on the  = 1 plane as well as on 

the unit sphere. 

 
Fig. 5-13 Non-visibility polygon of a base facet due to an obstacle. (a) Represented on 

the plane 𝒛 = 𝟏, intersection is in blue, (b) Represented on unit sphere, intersection is in 

green. (c) Same as (b), but different view. 

Now, the algorithm to compute non-visibility for one obstacle is complete. The next 

is to compute non-visibility for a set of obstacles and union them. Because the visibility 

space for a facet is at most a hemisphere and the images on a hemisphere can always be 

projected to the same plane, we could then represent the non-visibility results of a facet due 
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to different obstacles to a plane that is parallel to the base facet. Fig. 5-14 shows an example 

of representing non-visibility results of a base facets due to five different obstacles. 

 

Fig. 5-14 Non-visibility polygons for a base face (in red) against five obstacle faces (in 

yellow). Non-visibility Polygons are in blue. (a) Five obstacle facets. (b) The non-

visibility polygons for the corresponding face pair in isometric view. (c) Same as (b), but 

in front view. 

 
Fig. 5-15 A collection of non-visibility polygons (in green) for a facet (in red); The union 

of non-visibility polygons (in purple).  

After we have the non-visibility polygons generated from different obstacles, we 

conduct a union of these 2D polygons. The union is the final non-visibility result of the base 
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facet due to a set of obstacles (example given in Fig. 5-15). Notice, once we get the non-

visibility results on a plane, we can project them onto the unit sphere for a better view. 

 

5.3.3.3 Visibility Boundary Computation in Undetermined Region 

 
Fig. 5-16 Compute non-visibility in the Undetermined region; Union and complement 

for visibility polygon 

Applying the boundary tracing visibility algorithm to the candidate obstacles for facet 

𝑓0, we get a set of non-visibility polygons on the unit sphere for 𝑓0, defined as 𝑁 . Now, we 

union the Nonvisible region 𝑁 with 𝑁 which results in the complete nonvisible region. By 

conducting a complement to 𝑁⋃𝑁 , we get the final visibility polygon (Fig. 5-16). 

 

5.4 Implementation 

The implementation will be shown using the example model in Fig. 5-17 for clarity. It 

is a cube with a slot on the top face. The base facet to evaluate visibility is highlighted and 

referred to as 𝑓0 in the following discussion. All other part facets are potential obstacles to 

this base facet. 
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Fig. 5-17 Test model 

 First, the visibility is computed for the entire model on sampling circles using 

visibility method V1. Recall that the sampling circles have an angle interval of 5 degrees. 

The visibility results for 𝑓0 is shown in Fig. 5-18a. The results from V1 is in fact a set of 

continuous geodesics; therefore, they are represented as geodesics shown in Fig. 5-18b. 

 
Fig. 5-18 The visibility results on sampling circles 

Recall the visibility space for any facet is a hemisphere above it and any image in the 

hemisphere can be one-to-one mapped to the plane parallel to the facet 𝑓0. We can therefore 

represent visibility on this parallel plane (referred to as plane  , Fig. 5-18c). Such plane 

projection makes it easier to find visible cells and geodesics that are not boundary to any 
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visible cell (referred to as dangling geodesics). Now, the counterpart of geodesics are line 

segments on plane   (Fig. 5-18d). To distinguish the three visibility regions, namely 

Undetermined, Visible and Nonvisible, we also project the sampling circles to plane   (blue 

lines in Fig. 5-18e). Next, we will locate the dangling geodesics and the Undetermined 

region.  

The line segments on the plane   form an arrangement which we can compute and 

represent using a Doubly-Connected Edge List (DCEL) data structure. The intersection of 

these line segments creates a set of vertices, segments and faces. It also creates an outermost 

unbounded face. We claim that all faces other than the unbounded face are visible cells. We 

also claim that if a line segment is surrounded by only the unbounded face, it is mapped from 

a dangling geodesic, referred to as a dangling segment in the following discussion. 

Traversing the segments on the inner hole of the unbounded face and conducting the check 

mentioned above will locate all dangling segments (red line segments in Fig. 5-19a). As the 

sampling interval is fixed and a dangling segment always connects to a vertex of some 

visible cell (referred to as 𝑣0), we can find the two neighbor vertices of 𝑣0, referred to as 𝑣  

and 𝑣 . Following the direction of the dangling segment, we can find the other three vertices 

𝑣 , 𝑣  and 𝑣 . These six vertices define the left and right undetermined cell of the dangling 

segments (Fig. 5-19b). Repeating this for all dangling segments, we can find the 

Undetermined region. We claim that any cell that is neither a Visible cell nor an 

Undetermined cell, is a Nonvisible cell. The Visible Region Classification results are shown 

in Fig. 5-19c. 
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Fig. 5-19 Locating dangling segments and Undetermined region 

To find the candidate obstacles contributing to the formation of the visibility 

boundary in the Undetermined region, we extrude a 3D beam from the base facet 𝑓0, pointing 

to the vertices we obtained in the Undetermined region. The part facets that intersect with 

these 3D beams become the candidate obstacles for exact boundary computation using 

visibility method V2. Fig. 5-20 shows the results of the intersection between 3D beams and 

part facets. The final candidate facets are shown in Fig. 5-20f. Notice not all intersecting 

facets are counted, as useful obstacles must be in the same concave region with 𝑓0. 
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Fig. 5-20 Intersection between the part and 3D beams along different orientations; (a-e) 

Results in 5 different orientations; Intersecting facets are shown in red; 3D beam are 

shown in yellow. (f) The candidate obstacles considering useful obstacles must be in the 

same concave region.  

Now, we have the candidate obstacle facets and we conduct the exact non-visibility 

computation on them against 𝑓0 using V2. The subfigures in Fig. 5-21a shows the non-

visibility results for 𝑓0 against four candidate obstacles. The non-visibility results are then 

merged to create the non-visibility boundary in the Undetermined region (Fig. 5-21b), 

denoted as 𝑁 . 
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Fig. 5-21 Non-visibility results. (a) Non-visibility results for each obstacle; Blue lines 

denote the results on a plane, green arcs denote the result on unit sphere (b) The union 

of non-visibility results for all obstacles. 

Lastly, we combine this non-visibility result 𝑁  with the Non-visible region 𝑁 

obtained earlier to generate the final non-visibility polygon (Fig. 5-22a). We can easily 

obtain the visibility polygon by conducting a complement to the non-visibility polygon (Fig. 

5-22b). 

 

Fig. 5-22 Final visibility results; (a) Merging of Non-visibility results 𝑵′ and Nonvisible 

region N. Purple boundary: 𝑵′. (b) Final visible and non-visible regions. 
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5.5 Conclusion 

This paper has proposed and implemented a new hybrid visibility computation 

method that takes advantage of two independent visibility methods: an approximate method 

(V1) of time complexity  (𝑘 ∙ 𝑛) and an exact method (V2) of time complexity  (𝑛 ) where 

𝑘 is the number of slices and 𝑛 is the part mesh size. It reduces the processing time for exact 

computation at the cost of introducing approximate computation overhead. It also introduces 

an easy control over the approximate-exact computation ratio, making it possible to balance 

processing time and accuracy. The results have shown V1’s output (computed once and 

available for all facets) has served as a good filter of obstacles for exact computation in V2.  

However, the visibility computation in V1 and candidate obstacle determination has 

introduced time cost. If the time benefit gained from reducing obstacles for V2 does not 

offset the time cost on generating obstacle filter using V1, this method has no advantage in 

terms of computational efficiency. Also, we can only gain efficiency advantage on parts with 

large facets count, as can be seen from the time complexities of the two methods. Therefore, 

future work should be focused on investigating the impact of exact-approximate ratio and 

mesh granularity on the performance of the hybrid visibility method. 
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CHAPTER 6.    CONCLUSION 

This dissertation has introduced three new computation methods for visibility and 

accessibility:  

1. An approximate slice geometry-based visibility method with controllable accuracy and 

resolution, and time complexity  (𝑛∙𝑘); 𝑛: facets count; 𝑘: slices count. 

2. A tool accessibility method for ball-end cutters based on visibility results and surface 

offsetting. 

3. A hybrid visibility method with controllable exact-approximate computation ratio and 

innovative processing time reducing strategy.  

This collection of contributions introduce new approximation strategies for visibility 

computation; explain relations between visibility and accessibility; and take advantage of 

both approximate and exact visibility computation.  In the future, work could be done on 

solving the limitations of each methods, investigating the notion of partial visibility, 

accessibility of general type cutters, and the applications of accessibility, like the setup and 

toolpath optimization for multi-axis CNC machines. 

 


