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Abstract 
 

Engineered systems often operate in uncertain environments. Understanding different environments under which a 

system will operate is important in engineering design. Thus, there is a need to design systems with the capability to 

respond to future changes. This research explores designing a hybrid renewable energy system while taking into 

account long-range uncertainties of 20 years. The objective is to minimize the expected cost of the hybrid renewable 

energy system over the next 20 years. A design solution may be flexible, which means that the design can be adapted 

or modified to meet different scenarios in the future. The value of flexibility can be measured by comparing the 

expected cost without flexibility and expected cost with flexibility. The results show that a flexible design for hybrid 

renewable systems can decrease the expected cost by approximately 30%.  
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1. Introduction 
Traditional engineering design assumes that engineered systems will operate in stable environments in which the 

regulations, technologies, and usage patterns will not change [1]. In reality, designs may not succeed because the 

operating conditions or demand for a product may change. Since engineered systems constantly face changes and 

unpredictability in their operating environments, these systems should be designed with the capability to respond to 

the future changes [2]. Flexibility in design enables the designers to review the initial design of a system in the future 

and provides them with the option to take actions to modify the system. Therefore, designers should consider the 

future uncertainties in the initial design of the system. A flexible design gives designers the ability to easily modify 

the design in order to respond to changing circumstances such as increasing or decreasing demand [2]. Engineered 

system design can be viewed as a decision-making process, but complexity and uncertainty make decision making for 

systems design challenging [3, 4]. Designers need to understand the costs and benefits of designing a flexible system 

in order to determine if they should pursue a flexible design. Engineering economics can help designers evaluate those 

costs and benefits. 

 

Engineered systems, especially large-scale infrastructure, may operate for a long time. A framework is needed to 

incorporate both long-range uncertainties and computationally expensive simulations, which are used to evaluate 

engineering designs. This paper optimizes the design of a hybrid renewable energy system (HRES) when the objective 

function is evaluated using Monte Carlo simulation that incorporates uncertainties over a 20-year lifespan. Two 

models are developed to optimize the system design. The first model uses a simulation optimization algorithm that 

considers 10,000 possible future scenarios, and the design variables are selected that minimize the expected discounted 

cost. In this model, the initial design of the HRES will be fixed and unchanged during the planning horizon. The 

second model allows the decision makers to review the initial design in the future and modify the design depending 

on how the uncertainty is realized. 
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The uniqueness of this paper is to measure the value of flexibility in the complex engineered systems which require 

computationally expensive simulations to evaluate the objective function and develop a model to optimize the design 

of engineered system under highly uncertain parameters. This is the first study that uses a simulation optimization 

technique for the flexible design of HRES. The mathematical model is modified to identify the flexible design by 

considering multiple stages of decision making to minimize the expected cost of design. The optimization algorithm 

measures the value of flexibility by comparing the value of the design with and without flexibility.  

 

2. Decision Making Framework 
The high cost and uncertainty with the sources of the renewable energy technologies are the main challenges of 

renewable energy usage. To overcome these challenges, renewable energy sources can be integrated to meet energy 

demand. The HRES under consideration consists of solar panels, wind turbines, a battery, an electrolyzer, a hydrogen 

tank, and fuel cells. The mathematical model for the HRES comes from [5, 6]. The solar panel and wind turbine work 

to generate electricity. If solar and wind generation exceeds demand, then the surplus amount of energy is stored in 

the battery for future use. The battery is used if wind and solar generation is less than demand. If battery’s capacity is 

exceeded, any excess energy is converted to hydrogen by the electrolyzer and stored in the hydrogen tank. Energy 

storage systems are included in the model to overcome the mismatch between the electricity demand and supply [7]. 

If the wind, solar, and battery sources of energy cannot fulfill demand, the fuel cell can convert the stored hydrogen 

to electricity. If the combination of all these sources cannot satisfy demand, diesel fuel can be purchased to satisfy the 

remaining demand. Figure 1 depicts the energy flow inside the HRES. 

 
Figure 1: The energy flow of hybrid renewable energy system [6]. 
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The decision variables for designing the HRES are the capacity of the PV panel, the wind turbine, the battery, the 

electrolyzer, the hydrogen tank, and the fuel cell. The decision maker should choose the capacity of each component 

that minimizes the expected discounted life-cycle cost of the HRES. The cost function consists of four parts: 

investment, operations and maintenance, replacement, and diesel fuel costs. The parameters cinv, com, and crep
 are the 

investment, operations and maintenance, and replacement cost of the design components. The number of times the ith 

component will be replaced is Ri. Li is lifetime of the ith component. The planning-time horizon has T total periods, 

and λ represents the interest rate. The parameter cf  is the diesel fuel cost and pt is the amount of fuel purchased at 

period t. Since several of these parameters are uncertain, Monte Carlo simulation is used to calculate the cost function. 

The expected cost of design is calculated as the average after N different simulations. 

 

Eq. (2) shows the output power of the PV panel. S indicates the solar irradiation on the surface of the panel, and Apv 

represents the area of the solar panel. Eq. (3) shows the output power of the wind turbine where Awg is the area of the 

rotor and u is the wind velocity. Eq. (4) shows the amount of energy generated by the fuel cell. The amount of energy 

generated by electrolyzer to be stored in the hydrogen tank is calculated with Eq. (5). The amount of energy in the 

tank at time t is calculated with Eq. (6). Eq. (7) shows the battery charge at time. Batcap depicts the capacity of the 

battery. Eq. (8) states that the level of battery charge should be between Sbatmin and Sbatmax. The energy generated by 

each component at time t must not exceed the chosen capacity for each component capi. Each component also has a 

maximum capacity, capmax. 

 

The simulation optimization models can be solved with the Bayesian optimization algorithm. The Bayesian 

optimization algorithm considers the objective function as a random variable that follows a Gaussian distribution. The 

objective function is simulated for a selected set of design alternatives, which are used to update the probability 

distribution over the objective function. After calculating the posterior mean and variance for the objective function, 

Bayesian optimization selects the next decision variable for which to simulate the objective function. The algorithm 

continues until there is enough confidence that the optimal decision variable has been selected [8]. This paper uses the 

Random Embedding Bayesian Optimization (REMBO) developed by Wang et al. [9] to implement the Bayesian 

optimization algorithm. 

 

3. Application 
In this section, the design of HRES is optimized to deliver electricity for the state of California under highly uncertain 

demand. The planning horizon is the next 20 years (from 2017 to 2036) and the period of decision making is 1 month. 

The investment and replacement cost parameters follow triangular distribution function. Table 1 shows the value of 

the investment, maintenance and replacement cost parameters along with the lifetime of the components of the HRES. 

It is assumed that the hourly solar irradiation is normally distributed with the mean of 0.5 kwh/m2 and the standard 

deviation of 0.1. It is assumed that the wind velocity is normally distributed with the mean of 5 m/h and standard 

deviation of 1. The interest rate, λ, is 2% per year. 

 

 

3.1 Demand Forecast 

Renewable energy systems are designed for long-term usage. It is necessary to establish those sources of electricity 

generation considering possible future scenarios. Demand for the electricity is serially autocorrelated and time series 

analysis models autocorrelated data. The arima function in MATLAB software [10] is used to forecast the electricity 

demand using historical monthly demand data for electricity for California from 2001 to 2016 [11]. Monte Carlo 

simulation method is used to generate 10,000 paths for demand through sampling from ε (with the mean of 0 and the 

Table 1:  The cost (in millions of $ per 1 MW) and lifetime parameters of the components of the HRES [9]. 

Component L (years) cinv(×103) crep(×103) com 

 lower 

limit 

mode upper 

limit 

lower 

limit 

mode upper 

limit 

lower 

limit 

mode Upper 

limit 

- 

Wind 10 25 30 5 7 9 5 6 7.5 20 

Solar 10 20 25 1.5 2.5 3 1.2 2 2.5 75 

Battery 1 5 7 1.5 2 2.2 1.3 1.5 2.1 20 

Electrolyzer 5 10 13 1 2 3 0.9 1.5 2 25 

Fuel Tank 10 20 25 0.8 1.3 1.5 0.8 1.2 1.3 15 

Fuel Cell 0.7 1.7 2.7 1 3 4 1.9 2.5 3 172 
 

https://www.eia.gov/opendata/qb.php?category=38&sdid=ELEC.SALES.CA-ALL.M
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variance of 20,000) and applying it into the arima model. Figure 2 shows the generated scenarios for the demand for 

electricity for the next 20 years of simulation.  

 

 
Figure 2: Simulation of electricity demand for California, 2017-2036. 

 

3.2 Design without flexibility 
The simulation optimization model (Eqs. (1-10)) has been solved considering 10,000 demand future scenarios of the 

next 240 months (i.e., 2017-2036), those generated with the arima model. The Bayesian optimization algorithm finds 

the design variables (i.e., capacity of the components of the HRES) that minimizes the expected discounted cost. In 

the design without flexibility, the system is designed once at the beginning of the system operation (i.e., 2017) and the 

design will not be modified in the future. 

 

Table 2 shows the optimal result for design without flexibility. The results show that 78% of the demand during the 

10,000 simulations from 2017-2036 are fulfilled with the solar panels and wind turbines. Since the amount of energy 

generated by these two sources exceed the demand for many time periods, the surplus amount of energy will be 

conserved in the battery and hydrogen tank for future use. The results show that the battery and fuel cell satisfy 17% 

and 4% of the demand, respectively. The HRES requires diesel to meet approximately 1% of the demand. This optimal 

design has an expected discounted cost of $40.66 trillion, with $9.56 trillion investment cost, $21.66 trillion operation 

and maintenance cost, and $9.4 trillion replacement cost. 

Table 2: The optimal design of the HRES for design without flexibility. 

Plant Optimal Capacity (Giga watt) Percentage (%) 

Solar panel 

Wind turbine 

392 

146 
78 

Battery 89 17 

Electrolyzer 1041 - 

Hydrogen tank 3221 - 

Fuel cell 138 4 

 

Figure 3 shows a random simulation out of 10,000 demand simulations to illustrate how demand is fulfilled with 

different sources of energy in a random simulation. In this simulation the capacity of solar panel and wind turbine 

cannot fulfill the raising demand after 2020 so the battery and fuel cell will be utilized to supply the electricity to the 

demand.  

 
Figure 3: Demand fulfillment for a random demand scenario. 
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3.3 Design with flexibility 

A flexible design may differ from the optimal design because an optimal design will be optimal for a probability-

weighted combination of scenarios and the flexible design will allow for different designs, each of which depends on 

the realization of an individual scenario. In the design without flexibility, the decision maker designs the HRES based 

on all the future demand and cost simulations from the current time to the end of planning horizon. However, in the 

design with flexibility, the designers have the option to modify the design and decide whether to expand the capacities 

of the HRES, if it is needed to generate more electricity to meet increasing future demand. The design with flexibility 

strategy requires a smaller initial investment than the design without flexibility. This strategy defers additional costs 

to the future and takes advantage of the time value of money [12]. 

 

The proposed method for flexible design starts by optimizing the model (i.e., Eqs. (1-10)) during the first T1 periods 

by considering all the N future scenarios in the time 0 to T1. The optimal initial design will be used as an input in the 

design modifications stage. At time T1, the decision for the capacity expansion will be made. The future scenarios 

from the design modification period to the end of planning (i.e., periods T1 to T) is divided into K2 different categories. 

Given the initial optimal design, the additional capacity should be found by minimizing the expected cost for each of 

the K2 categories from T1 to T. The total expected cost of the flexible design ECF has two cost items: (1) the initial 

expected cost and (2) the average capacity expansion costs of stage 2, discounted by the interest rate λ. ECF takes the 

following form:  
2

1

2

1 2 1

12

1 1
[ ] [ ] |

(1 )

K

T
k

ECF E cost E cost cap
K  =

= +
+

   
 

(11) 

In the above equation, it is assumed that demand can be in any of regions at any stage with equal probability. 

 

In this study, one additional stage for the design modification is considered. In the stage 1, the initial design and 

expected discounted cost considering the uncertain demand profiles for 2017-2026 are calculated using Eqs. (1-10). 

The results of this first stage decision making show that the initial optimal design of the components of the HRES 

have less capacity than the optimal solution in the design without flexibility model (see Table 3). The initial optimal 

design from 2017-2026 serves as an input to decision making in stage 2, which covers 2027-2036. Given the initial 

optimal design, the Bayesian optimization determines whether or not additional capacity for the HRES should be 

constructed if demand is low, if demand is medium, and if demand is high (K2=3). Stage 2 contains three different 

sets of design variables and three different expected discounted costs, one for each demand profile. The average 

expansion costs are calculated as the expected cost of additional capacity at stage 2. The total expected cost of flexible 

design is calculated using Eq. (11). Table 3 shows the optimal design for the HRES with flexibility assuming the 

design could be modified in 2027.  

 

Table 3: The optimal design of the HRES with flexibility. 

Component Initial design 
 Stage 2  

High demand Medium Demand Low Demand 

Solar panel 263 0 0 0 

Wind turbine 31 128 98 0 

Battery 17 54 39 0 

Electrolyzer 230 0 0 0 

Hydrogen tank 616 0 0 0 

Fuel cell 68 0 0 0 

Expected Cost ($ trillion) 20.55 12.22 7.63 7.08 

 

The initial expected cost in stage 1 is $20.55 trillion. Expanding the initial design to include more capacity for wind 

and battery in stage 2 in the medium and high demand scenarios increases the expected cost, but the expected cost of 

this expansion is less than if the cost was spent immediately. The design with flexibility enables the system to defer 

the additional cost of investment and replacement to the future and takes advantage of the time value of money. It also 

avoids the operation and maintenance cost for full deployment during the first 10 years of operation. The total cost of 

design with flexibility is $27.22 trillion. The value of flexibility is measured by subtracting the expected discounted 

cost of designing with flexibility from the expected discounted cost of designing without flexibility. The value of 

flexibility is $40.66 - $27.22 = $13.44 trillion, which represents a 33% percent reduction in the cost. 
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4. Conclusion  
This paper provides a method to incorporate demand uncertainty into the flexible design of a HRES. The HRES is 

composed of six components: solar panels, wind turbines, a battery, an electrolyzer, a hydrogen tank, and a fuel cell. 

The optimal design of the HRES is identified considering 10,000 demand scenarios for electricity for California for 

the next 20 years. This optimal design without flexibility is computed with the Bayesian optimization algorithm and 

will not be modified in the future. However, a flexible design for the HRES allows the designers to modify the initial 

design in the future. The uniqueness of this paper is to measure the value of flexibility in a complex engineered system 

such as an HRES which requires computationally expensive simulations to evaluate the objective function. A design 

with flexibility is conducted where the HRES’s capacity can be expanded in the future. The results show that a single 

design modification 10 years after the system deployment can reduce the system’s expected discounted cost by 33%. 

For the future research, machine learning approaches (e.g., artificial neural networks [13, 14]) will be employed to 

make predictions on the parameters of complex engineered systems [15].  
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