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ABSTRACT 

The objective of this research is to quantify the effects of surface roughness on the 

reliability of magnetic particle inspection (MPI) when detecting sub-surface indications. 

Indications in this study refer to possible defects. The reliability of MPI can be influenced 

by factors such as process control, part and indication characteristics, and human factors 

[1], [2]. Surface roughness is known to influence the effectiveness of wet MPI as rougher 

surfaces tend to result in particles collecting in the valleys of the surface textures which 

likely result in false positives [3], [4]. The surface roughness of the steel castings poses a 

challenge as it could increase the collection of particles when performing wet MPI. The 

lack of research into the influence of surface roughness on wet MPI has led to the need 

for this research.  Three sets of experimental designs were developed. Firstly, particle 

collection due to surface roughness was tested using samples containing three levels of 

surface textures where a metric for the accumulation of fluorescent particles was 

developed by obtaining a value to represent the average green intensity. Next, the noise 

area percentage caused by four levels of surface roughness with a common sub-surface 

indication was tested. Noise area percentage in this study was determined by the 

percentage of pixels surrounding the indication which have higher green intensity 

compared to the average green intensity of the indication. This experiment was conducted 

to evaluate the relationship between noise area percentage and surface roughness when 

testing for a fixed discontinuity. Noise area percentage is a metric to determine the level 

of difficulty in identifying an indication. The higher noise area percentage, the harder it is 

to identify an indication. Lastly, the effect of surface roughness compared to depth and 

diameter with regards to the influence it has on the response variable (noise area 
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percentage) was evaluated. This research will provide a quantifiable method for the 

effects caused by factors that were not available prior to this study. Additionally, a better 

understanding of the impacts surface roughness have on the effectiveness of wet MPI was 

achieved through this investigation. 
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CHAPTER 1.    INTRODUCTION 

This chapter is broken down into three main sections which are the Overview, Research 

Motivation and Questions, and Thesis Organization.  

Overview 

In the steel casting industry, NDT methods commonly used are visual, radiograph, 

magnetic particle, dye penetrant, and ultrasonic testing [5]. Magnetic particle inspection 

(MPI) is split up into two methods: wet and dry inspection. Wet MPI is the method 

investigated in this study. Indications in this study refer to possible defects. MPI can only be 

used on ferrous parts as the component must have the ability to be easily magnetized and 

remain magnetized [6]. If an indication is on or close to the surface of the part, the magnetic 

field will bend, and flux leakage will occur around the area of the indication. The magnetic 

particles will then start collecting on the top of the flux leakage area [7]. Thus, by detecting 

these collections of particles, one is able to detect indications. However, due to the smaller 

sized particles used in wet MPI, the particles tend to catch in the surface valleys of rougher 

surface textures [8]. Since, an indication is determined by a collection of particles, particle 

collection on surface textures would create false positives or deter the human inspector from 

finding the indication. 

However, there is a lack of research into how much a given surface roughness would 

affect the dependability of MPI. Hence, three experimental designs were developed to test: 1) 

particle collection due to surface roughness, 2) the effect of surface roughness on noise area 

percentage when detecting a sub-surface indication, and 3) the effect of surface roughness, 

depth, and diameter on noise area percentage. Noise area percentage in this study was 

determined by the percentage of pixels surrounding the indication which had a higher green 
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intensity value compared to the average green intensity of the indication. Noise area 

percentage is a metric to determine the level of difficulty in identifying an indication. The 

higher noise area percentage, the harder it is to identify an indication. The effect of surface 

roughness was also compared to the effect of the size and depth of a sub-surface indication 

on noise area percentage. The first experiment was created to test for particle collection on 

the surface on different surface texture. This is important because this study is based on the 

premise that rougher surfaces tend to catch more particles leading to false positives or 

interference when detecting indication. The second experiment was conducted to test the 

extent different surface roughness interferes with the detection of a fixed sub-surface 

indication. The addition of a sub-surface indication introduces magnetic flux leakage which 

may pull particles from the area surrounding the indication. This experiment is important as 

the purpose of MPI is to detect indications so this could provide valuable insight on how 

surface roughness affects the detection of a subsurface indication. Lastly, it is important to be 

able to compare the effect of surface roughness on the detection of a sub-surface indication to 

other factors to determine the level of its influence on the reliability of wet MPI. Depth and 

diameter were the two factors chosen to be included in the third experiment. 

A program was created using C# in Visual Studio to analyze the density of 

fluorescent particles above a specified green (G) value based on the red, green, and blue 

(RGB) system which provides the noise area percentage. In addition, the program was used 

to calculate the average G value of an image which represents the average green intensity of 

the picture. The results from this investigation showed that surface roughness influences the 

collection of particles on the surface texture. When no indications were present, the results 

showed a rise in the intensity of the fluorescent coated particles in the picture as the surface 
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roughness increased. The results from the study comparing the effects of surface roughness, 

diameter, and depth showed that the depth of the indication had the biggest effect on noise 

area percentage. Overall, surface roughness was found to play the smallest role in effecting 

on noise area percentage when compared to the depth and diameter of the indication. 

However, the sample size was relatively small, and further experiments need to be completed 

to be able to increase statistical significance. Additionally, more factors need to be 

considered to fully understand which factors have an influence on the effectiveness of wet 

MPI. The surface classification method used was subjective and may cause discrepancies in 

the determination of the actual surface roughness level. 

Additionally, only one method was used to evaluate noise area percentage. This 

method may not have been the best representation of the interference experienced by a 

human inspector. Hence, using a few different method of evaluating noise area percentage 

might be useful to better simulate how the human inspector identifies an indication. Lastly, 

the results from this study provide metrics such as average green intensity and noise area 

percentage values, however, these metrics are still insufficient in the determination of 

acceptable or unacceptable criteria for the noise area percentage that makes wet MPI 

ineffective. Thus, it is necessary to conduct future research into: 1) using an objective 

measure for surface roughness, 2) bigger sample sizes, 3) a study with more factors and 

levels tested, 4) using a method for identifying interference that better represents a human 

operator’s perspective, and 5) defining acceptable or unacceptable criteria for noise area 

percentage. This investigation established a method to measure and quantify the effects of 

surface roughness on the reliability of MPI when detecting subsurface indications in steel 

castings. The technique of measuring noise area percentage created in this research provides 



4 

the groundwork for the quantification of other factors that have an influence on 

nondestructive testing methods using fluorescent coated particles.  

Research Motivation and Questions 

The motivation of this study is to contribute to the body of knowledge within the MPI 

area with regards to the influence of varying levels of surface roughness on the effectiveness 

of the method. This is a relevant issue as the steel casting industry is looking to further 

improve the NDT methods using quantifiable results. The creation of an objective method to 

quantify the effect of surface roughness on the reliability of wet MPI is the overarching goal 

of this research. The research questions driving this study are:  

1. How does surface roughness affect the collection of particles when no indications 

present? 

2. How does surface roughness affect the detection of a common sub-surface indication?  

3. How do surface roughness, depth, and diameter of an indication, affect the detection 

of a sub-surface indication? 

Thesis Organization 

This thesis consists of five chapters. Chapter 1 contains an overview of the research 

which will provide background information along with the motivation of the research. 

Chapter 2 reviews surface roughness and surface roughness classification standards as it 

pertains to the steel casting industry. Additionally, the principles behind MPI is explained, 

and the connection between surface roughness and MPI is clarified. In Chapter 3, the 

methods utilized in the experiments are outlined in detail for the ease of reproducibility. The 

results and discussion section can be found in Chapter 4. Chapter 5 concludes the thesis by 
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summarizing the discovery of the investigation, specifying its limitations, and providing 

direction for future research in this area. 
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CHAPTER 2.    LITERATURE REVIEW 

This literature review chapter is divided into two sections which cover past research 

in areas relating to surface roughness and MPI. The first section covers the background of 

surface roughness by outlining its definition, classification techniques, and industries 

measuring surface roughness. This section continues with studies pertaining to surface 

roughness classifications in the steel casting industry and the reason behind the method of 

classification used in this study. The second section begins with background information 

about the physics behind MPI and explains the two types of MPI tests that are available. 

Additionally, it elucidates the wet method of particle application in MPI which will cover the 

background of the method and will then highlight how surface roughness impacts the 

effectiveness of this method. This section then covers process control factors and indication 

characteristics that MPI is capable of detecting and its effect on flux leakage. The second 

section concludes with a review of MPI focusing on wet MPI and sub-surface defects.  

Surface Roughness 

 Surface roughness is the difference in surface heights compared to the underlying 

geometry that creates a three-dimensional structure of a surface [9]. The importance of 

surface roughness is prevalent in various industries including medical [10], sports equipment 

[11], and aviation [12] industries to name a few. The two common quantitative scales of 

gauging surface roughness are nanoscale to atomic scale typically used by the physicists for 

finer details or the microscale which is frequently used by engineers. Both methods use either 

contact or non-contact types of instruments to measure roughness [9]. Processes such as 

casting, sandblasting or electrical discharge machining use comparator plates as industry 
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standards when it comes to specifying surface roughness since there is no automated 

instrument currently available.  

Surface Roughness Classifications in the Steel Casting Industry 

The steel casting industry utilizes a variety of surface roughness classification 

methods such as The Manufacturer Standardization Society (MSS) SP-55 Visual Method, the 

Alloy Casting Institute (ACI) Surface Indicator Scale, the GAR C9 Comparator Plates, and 

the American Society for Testing and Materials (ASTM A802) A-Plates. All these methods 

are qualitative and use a physical or digital comparator to compare and match the surface to a 

set of comparators. A human operator is necessary to determine a feature by comparing a 

casting surface to comparator plates by touching the surfaces or through images to visually 

compare an image to the casting surface [13].  

In this study, the standard chosen for surface roughness classifications is the ASTM 

A802 standard. Table 1 outlines several key factors in determining which of the four surface 

classification standards should be used in this study. The ASTM A802 A-plates standard was 

selected as the surface texture classification method for this research. This standard is the 

most commonly utilized in the steel casting industries in the United States of America [13]. 

The ASTM A802 standard is also recommended by the Steel Castings Handbook for surface 

classifications when compared to the ANSI MSS SP-55 Visual Method [14]. This is because 

the ASTM A802 applies both the physical and visual inspection method whereas with the 

ANSI MSS SP-55 Visual Method only compares visually. Additionally, the ASTM A802 

comparator set is more complete when compared to the ANSI MSS SP-55 Visual Method 

[14]. Figure 1 shows the four A-plates used in this study. 
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Table 1. Studies Investigating the Common Standards for Surface Classifications in Steel Castings 

Standard Comparator 
type 

Number of 
comparators 

Number 
of 

features 
examined 

Features examined Advantages Disadvantages 

ASTM 
A802 
[15] 

Physical 62                                           
(Full set + 
Precision 

set) 

12 Surface Roughness (A), Surface Inclusions 
(B), Gas Porosity (C), Laps and Cold Shuts 
(D), Scabs (E), Chaplets (F), Surface Finish 
- Thermal Dressing (G), Surface Finish - 
Mechanical Dressing (H), Welds (J), Hot 
Tears, Mechanical Dressing -Chipping 

1. Uses plastic plates 
replicated from real 
metal castings                                                                        
2. Grouped according 
to plates                                                
3. More complete set 
when compared to 
MSS-SP-55 [14] 

1. Bulky                                                                                                 
2. Only four levels 
for each feature                                         
3. Most expensive 
standard out of the 
four 

ANSI 
MSS 
SP-55 
[16] 

Visual 60 12 Hot Tears and Cracks (I), Shrinkage (II), 
Sand Inclusions (III), Gas Porosity (IV), 
Veining (V), Rat Tails (VI), Wrinkles, 
Laps, Folds, and Cold shuts (VII), Cutting 
Marks (VIII), Scabs (IX), Chaplets (X), 
Weld Repair Areas (XI), Surface 
Roughness (XII) 

1. Defines acceptable 
and non-acceptable 
comparators                   
2. Inexpensive                                                                                  
3. Can be digitally 
stored 

1. Relies on only the 
visual aspect                                               
2. Less complete 
when compared to 
ASTM A802 

ACI 
Surface 

Indicator 
Scale 
[13] 

Physical 4 1 Surface roughness 1. Small comparator 1. Does not include 
other features that 
commonly exist in 
castings 

GAR C9 
[13] 

Physical 9 1 Surface Roughness 1. Contains most 
levels for surface 
texture 

1. Levels are difficult 
to distinguish 
between 
2. Does not include 
other features that 
commonly exist in 
castings 
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Figure 1. ASTM A802 A-Plates. 

Magnetic Particle Inspection 

MPI is a fast and relatively simple NDT method used in various industries [6]. MPI is 

frequently used in the aviation industry with about 90% of ferrous parts being tested via this 

method in its lifespan [17]. One major limitation to this method is that it is limited to only 

ferromagnetic materials such as iron, cobalt, nickel and their alloys [18]. Another limitation 

to this method is its ability to only detect surface-breaking and sub-surface flaws which 

means if a flaw is not close enough to the surface, this method will probably not work [19]. 

The main advantages to this method include its ability to detect defects that are very fine and 

its inexpensiveness when compared to the other NDT methods. 
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Figure 2. Animation of the Flux Leakage Phenomenon 

This method utilizes the occurrence of flux leakage at the area of the defect which 

attracts the collection of coated iron particles (see Figure 2). MPI can be run with either wet 

or dry particles depending on the part tested [20]. In dry particle inspection, an 

electromagnetic yoke is used to induce a magnetic field which enables the movement of the 

dry particles [21]. Dry particles come in many different colors and particle sizes. Common 

colors for visible magnetic particles are red, black, gray, and yellow which requires white 

light to be illuminated. Fluorescent magnetic particles are also commonly used but require 

ultraviolet (UV) light to be illuminated [22]. Particle sizes range from 50 µm to 150 µm and 

are typically used with a distribution of sizes because the larger particles are needed to locate 

larger discontinuity. Another reason for the distribution of sizes in the particles is to reduce 

the dusty nature of the powder, in which the smaller particles tend to catch in surface textures 

and surface contaminants [22]. In the wet method, visible or fluorescent magnetic particles 

are suspended in water or oil allowing for more particle mobility and ease of application for 

larger surfaces compared to the dry method [23]. Particles in the wet method are typically a 

mix of spherical and slender shapes with diameters around 10 µm in size which is 5 to 15 

times smaller than dry particles [22]. Iron oxide particles are most commonly used due to 

their high permeability and low retentivity allowing them to be easily magnetized and retain 
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their magnetism [24]. Table 2 summarizes the advantages and disadvantages of the wet and 

dry MPI methods. 

Table 2. Advantages and Disadvantages of the Wet and Dry MPI [25] 

Wet MPI Dry MPI 

Advantages Disadvantages Advantages Disadvantages 

Good for shallow a 
fine surface crack 

Less capable of 
detecting sub-
surface defects 

Good for locating 
surface and sub-
surface indications 

Not as sensitive as 
the wet method for 
very fine and 
shallow cracks 

Variety of different 
geometry can be 
tested 

Messy to work with Easy to use on large 
objects with a portable 
system 

Difficult to cover 
large surfaces 

Good particle 
mobility on smooth 
surfaces 

Potential fire 
hazard with the 
usage of oil and 
high levels of 
current 

Easily used for field 
inspection 

Difficult to cover 
irregular shaped 
parts 

Easy to measure and 
control the bath 
concentration 

Post-cleaning may 
be required 

Not as messy as the 
wet method 

Not as good for 
large-volume 
inspection 

Can be used in 
automated systems 

Small particles may 
get caught in rough 
surfaces [17], [22] 

Less expensive when 
compared to the wet 
method 

Difficult automate 
the system 

Wet Magnetic Particle Inspection 

In this study, wet MPI was investigated to quantify the influence of surface roughness 

on the dependability of wet MPI due to the smaller nature of the particles that have 

tendencies to catch in the surface textures [22]. Wet MPI is typically conducted on a bench 

unit that allows for various different parts to be tested with either direct or indirect 

magnetization [26]. Direct magnetization occurs when the current is induced directly into the 

part whereas indirect magnetization uses an external magnetic field to form a magnetic field 
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within the part [27]. Figure 3 illustrates an example of direct and indirect magnetization with 

the set up on the bench. The direction of the current is in purple, while the direction of the 

magnetic field is in red. In this study, direct magnetization was used as this is the most 

common method used as it has better control of the field strength when compared to indirect 

magnetization [27]. 

 

   A      B 

Figure 3. A) Direct Magnetization B) Indirect Magnetization [26] 

Although the wet inspection method is known to have more advantages than the dry 

method, the wet inspection method is known to be less successful on rougher surfaces due to 

smaller particle size that leads to lack of mobility as it tends to settle in the valleys of the 

surface [8]. The ASTM E3024 standard states that “The surface of the part to be examined 

shall be essentially smooth, clean, dry, and free of oil, scale, machining marks, or other 

contaminants or conditions that might interfere with the efficiency of the examination” which 

implies that the smoothness of the surface may affect the efficiency of the test. However, the 

lack of literature to quantify this phenomenon has led to the need for this study. The steel 

casting industry utilizes both the wet and dry methods of MPI. Due to the nature of the 
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surface texture of steel castings, the effectiveness of wet particle MPI with respect to surface 

roughness needs to be further investigated. 

Factors that Influence the Effectiveness of Wet MPI 

Several factors have impacts on the effectiveness of wet MPI. Main factors include 

process control, part and indication characteristics, and human factors [1], [2]. However, the 

lack of in-depth understanding of the method due to the combination of factors that have an 

impact on the effectiveness of MPI led to the need for this investigation [28]. This review 

focuses on two of the factors which are process control and indication characteristics. Process 

control factors which include: 1) particle concentration [29], 2) suspension contamination 

[30], 3) electrical system operation [31], 4) lighting [32], and 5) eye considerations [33]. 

Particle concentration is a critical process control factor. If the particle concentration is above 

the acceptable range, higher amounts of particles will collect on the surface which may create 

false positives. However, if the particle concentration is below the acceptable range, the areas 

of flux leakage may have fewer particles gathered hence reducing the indication’s level of 

detectability. Suspension contamination could be caused by many factors. The flow of the 

particles could be disturbed by contamination in the solution which reduces the effectiveness 

of MPI [17]. The electrical system of a bench should also be checked to ensure the unit is 

functioning properly. The sensitivity of the test is affected by the electrical system [31]. MPI 

relies on visual inspection to detect indications. Thus, lighting is an important aspect of MPI 

tests. Appropriate intensity along with uniformity of the light sources is crucial in increasing 

the likelihood of detection [32]. Since visual inspection is a part of MPI testing, eye 

considerations of the human inspector are important. This includes considering the human’s 

ability to see. Additionally, the adaptation time of the eyes must be taken into consideration 

to reduce mistakes caused by the vision. 
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Characteristics of surface-breaking and sub-surface indications have large effects on 

the detection ability of wet MPI. The characteristics of surface-breaking indications that 

affect its likelihood of detectability are: 1) depth, 2) width, 3) length to width ratio, and 4) 

depth to width ratio [34]. For sub-surface indications: 1) size, 2) shape, 3) orientation, and 4) 

depth of an indication in relation to the size of the part will determine whether an indication 

can be detected [34]. Figure 4 shows the effect that orientation has on the magnetic flux 

leakage where the coin-shaped indication at a 90-degree angle to the surface caused more of 

a disruption in the magnetic field lines, whereas, when laid horizontally, did not cause a 

disruption since the flow lines would streamline around the coin-shaped indication. If the 

coin-shaped indication went from 90 degrees to 60 or 70 degrees, there would be an obvious 

difference in the amount of flux leakage and ultimately the ability to detect that indication 

[34]. The depth is considered the most important characteristic of an indication and may 

significantly alter the reliability of MPI [17].  

 

Figure 4. The Orientation of Indication and Its Effect on the Magnetic Flux Leakage 

[35] 
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Process control and indication characteristics are two critical factors that have an 

influence on the effectiveness of wet MPI. In this investigation, process control followed 

specifications outlined by ASTM E3024 and guidelines provided by the NDT Resource 

Center are used. Indication characteristics are also crucial factors that affect the abilities of 

wet MPI. To better understand wet MPI, the impact that indication characteristics and surface 

roughness have on the reliability of wet MPI should be further investigated. In this study, the 

effect of surface roughness, along with the depth and diameter of the sub-surface indications, 

on the effectiveness of MPI was investigated.  
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CHAPTER 3.    METHODOLOGY 

The methodology was set up to investigate the effects of varying surface textures on 

the effectiveness of MPI when detecting sub-surface indications. This chapter is broken 

down into two main sections which are the Materials and Methods section and the Data 

Analysis section. In the Materials and Methods section, sample preparation is outlined with 

the methods used to identify and classify surface textures as well as the procedures and 

parameters used in MPI testing. Additionally, the samples used in this study are shown in this 

section. The Data Analysis section explains the desktop application developed by the author 

for image analysis where a method of quantification for the effect of surface roughness, 

depth, and diameter is described. The statistical methods used to examine the data is also 

elucidated in this section. 

Materials and Methods 

Sample Preparation for A1, A2, and A3 Surface Test 

The two types of samples used in this experiment are shown in Figure 5, which are 

actual castings made by typical manufacturing processes. There were 10 samples of each 

type. The casted numbers and letters on the samples were not unique to each part; therefore, 

unique identification was stamped onto each part. Surface classifications ranging from A1 to 

A3 were identified on the parts by two different people. Figure 6 shows an example of one of 

the parts stamped with “B7” which denotes the sample type and number enabling simple 

documentation of samples A and B.  

Each sample was broken down into sections with labels shown in Figure 7. The labels 

represent the general location of the section. The first letter in the label represents the left (L), 

middle (M), or right (R) section of the part in relation to the area with the cast lettering. The 
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second letter in the label represents the front (F), back (B), or side (S) of the part. The front 

section is the entire front area of the part with casted lettering. The back section is the area 

without casted lettering. Figure 7 shows the front section of the part (left image) and the back 

section of the part (right image). The sections of the part are left-side (LS), left-front (LF), 

middle-front (MF), right-front (RF), right-side (RS), left-back (LB), middle-back (MB), and 

right-back (RB). The surface classifications corresponding to the sections of each part were 

then recorded on a spreadsheet to ensure proper documentation.  

 

Figure 5. Sample A (Left) and Sample B (Right) 

 

Figure 6. An Example of an Identification Stamped on Sample 



18 
 

 

Figure 7. Labels of the Sections 

The surface textures of the casted samples were classified using the ASTM A802 

standard for textures. The A-plates, which contain four comparator plates for surface texture, 

were used to touch and compare against the sample’s casted surface. The areas of interest 

were marked in the shape of a rectangle with a permanent marker with the dimensions of 20 

mm (0.8 in) by 50 mm (2.0 in), and the roughness classification is noted above the marked 

area as shown in Figure 8. 

 

Figure 8. An Example of Marked Areas with Roughness Levels 1, 2, and 3 
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Sample Preparation for Samples with Indications 

For the second set of experiments, manufactured indications in the shape of a hole 

were introduced to the parts. A cast plate 355.6 by 174.6 mm (14.00 by 6.875 in) with the 

dimensions of which was cut into eight pieces and used for the two sets of experiments is 

shown in Figure 9. Samples were stamped based on the location of the piece when viewed 

from the cope surface. For example, the top-left corner piece as viewed from the cope side 

was labeled “TL” which stands for top-left as shown in Figure 10. All the surface textures 

were then classified, and surface roughness levels ranging from A1 to A4 were found on the 

parts. Figure 10 shows the labels for each piece and the surface classifications found on the 

cope side of the pieces. The top-left (TL), top-right (TR), and bottom-left (BL) pieces were 

the only three pieces that contained all surface textures A1, A2, A3, and A4. These three 

plates were used to test the effect of surface roughness on noise area percentage when 

detecting a sub-surface hole which was drilled at a diameter of 1.78 mm (0.07 in) and a depth 

of 0.254 mm (0.01 in). The rest of the plates were used to test the effect of surface roughness, 

depth, and diameter on noise area percentage.  

 

Figure 9. Sample Cut into Eight Pieces from Cope View 
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Figure 10. Labels and Surface Classifications on the Cope Side 

 

Figure 11. An Example of Sample with a Hole Drilled with a Diameter of 0.14 in and a 
Depth of 1.78 mm (0.07 in) 

A 2^3 design of experiment with two replicates was used with a surface roughness of 

A1 and A4, a diameter of 1.78 mm (0.07 in) and 3.56 mm (0.14 in), and a depth of 0.254 mm 

(0.01 in) and 1.78 mm (0.07 in). Depth of an indication was measured from the surface to the 

top of the hole. The surface roughness levels determined by the minimum and maximum 

levels of surface roughness according to the ASTM A802 plates. The first level for diameter 
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was determined based on the size of the holes in a ketos ring and the second level was double 

the value of the first level. The maximum depth sensitivity for detecting a sub-surface 

discontinuity in wet MPI is 2.54 mm (0.10 in) under perfect conditions [36] hence the depths 

were set with 0.254 mm (0.01 in) as the first level and 1.78 mm (0.07 in) as the second level. 

The factors and levels that were chosen for the 2^3 design of experiment are outlined in 

Table 3. 

Table 3. Factors and Levels Selected for Screening Experiment 

Factors Levels 

1. Surface roughness A1 A4 

2. Depth 0.254 mm (0.01 in) 1.78 mm (0.07 in) 

3. Diameter 1.78 mm (0.07 in) 3.56 mm (0.14 in) 

 

The surface textures of the samples were classified using the ASTM A802 A-plates. 

The four plates provided by the surface classification standard were used to touch and 

compare against the sample’s casted surface. An example of the classification of the surfaces 

is shown in Figure 10. The sides of the pieces that were not machined contained A1 surfaces. 

Experiment Setup 

To begin the tests, the bench (MD3-2060, Magnaflux, Illinois) was turned on, and the 

bath walls were scrubbed while the pump was left running for a minimum of 30 minutes to 

ensure even particle (CAS# 1309-37-1, Magnaflux, Illinois) flow [29]. The particle 

concentration, condition, and suspension contamination were monitored at the beginning of 

the testing day using a 100 ml centrifuge tube (14-A, Magnaflux, Illinois) which had a stem 

that progressed to 1.0 mm. The particle concentration was kept within a range of 0.3% to 
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0.4%, and the suspension contamination was monitored to ensure it was below 50% in 

accordance with the ASTM E3024 standard. Particles or oil were added if the particle 

concentration was outside the acceptable range.  

Once the particle concentration is within range, the tests were started. A magnetic 

Anglemeter (700, Johnson, Wisconsin) was attached to the sample on the surface of the same 

plane as the test area, and then the part was mounted on the bench at a minimum of 45 

degrees per ASTM specifications. While mounting the part, careful handling was needed to 

avoid touching the areas of interest. A stainless-steel brush (54022SP, Osborn, Indiana) was 

used to remove particle residue imparted on the part due to handling. Then, the Anglemeter 

was removed, and a Gaussmeter (5180, FW Bell, Oregon) was used with oil containing 

particles flowing on the part to detect the strength of the magnetic field close to the area of 

interest while it was magnetized during a shot of current.  

Alternating current (AC) magnetization was used for the surface roughness test 

without indications while direct current (DC) magnetization was used for the surface 

roughness test with sub-surface indications. AC was chosen for the surface texture test 

without indications due to its ability to detect indications on the surface. DC magnetization 

was chosen because of its ability to penetrate deeper into the material, and thus it will be 

better at locating sub-surface indications [37]. The strength of a magnetic field was measured 

during a shot and was considered adequate if it was within 30 ± 1 gauss as suggested by the 

ASTM E3024 standard.  

Next, magnetic particles suspended in liquid were allowed to flow over the surface as 

the part was magnetized three times in quick repetition. Afterward, pictures were taken under 

UV light to test the effect of the varying surfaces textures. For this, a camera with three 
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surrounding UV lights (PX-45, Crack Check, China) was positioned at a distance of 508 mm 

(20 in) from the part perpendicular to the back section of the camera for the test with no 

indications, and at a distance of 305 mm (12 in) for the test with indications. Prior to using 

tape on the UV lights, a bright spot was visible which would reduce the likelihood of 

detecting an indication. Hence, the bright spot of the UV light was dispersed using tape to 

ensure even illumination of the area of interest. The taped UV lights are as shown in Figure 

12.  

 

Figure 12. Camera with Three Taped up UV Lights 

After 10 surfaces of each surface classification were tested and the images were 

sorted. Since multiple images were taken, the best photograph was chosen for each treatment 

based on the quality of the image. These pictures were then cropped so that only the area 

within the 20 mm (0.8 in) by 50 mm (2.0 in) test area was left on the picture for the test with 

no indications. For the test containing indications, two parts of the photographs were 

cropped: firstly, the area containing the indication was cropped, and secondly, the area below 
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the indication with the same surface classification as the area of indication was cropped. 

Once the photos were cropped, a program produced by the author was used to analyze the 

images.  The program and its usage are further explained in the next section. 

Data Analysis 

C# Application for Image Analysis 

The average G value was used to analyze the impact surface roughness has on the 

collection of particles when no indication was present. The higher average green intensity in 

the image the higher the average G value. The average green intensity of the image 

corresponds to the collection of particles. This value helps quantify the collection of 

fluorescent particles on the surface. A desktop application was created by the author using 

the C# language in Visual Studio to analyze the pictures taken after the MPI test was 

completed. Digital pictures consist of red, green, and blue (RGB) values for each pixel. In 

this thesis, the green value from the RGB scale will be referred to as the G value.  

The user interface is shown in Figure 13, and the cropped images can be uploaded by 

clicking the “Upload photo” button. Next, the text box located under “Convert to black” 

button needs to have a value entered anywhere from 0 to 255. This value is the threshold G 

value. Once the value is entered, the “Convert to black” button must be clicked. Once the 

button is clicked, the program examines every single pixel in the uploaded image and checks 

if the G value is below the defined threshold. All the pixels below the entered threshold value 

are set to black. An example of this can be seen in the right image in Figure 13. The number 

of pixels in total and the number of pixels above the threshold are also counted. By dividing 

the total number of pixels above the threshold by the total number of pixels, one is able to 

calculate the density percentage of pixels with a G value above the threshold. The average G 

value is also obtained after the “Convert to black” button is pressed. The program sums all 



25 
 

the G values of the pixels contained in the original photo and divides the sum by the total 

number of pixels in the original photo to provide the average G value. The average G value 

and the density percentage are displayed on the bottom of the form. 

 The density percentage was used to analyze the influence of varying surface 

roughness on the noise area percentage when indications were present. Two images were 

cropped for each test; the area containing the indication and the area below the indication 

with the same surface classification as the area of indication. An example of the two cropped 

areas is illustrated by the red rectangles in Figure 14. The indication section is determined by 

cropping the smallest rectangle surrounding the visible indication as shown by a red 

rectangle in Figure 15. If the indication area is not visible, the location of the indication 

would be identified by obtaining the pixel per inch measurement for the image and using this 

to identify the approximate location of the indication. The indication image would first be 

uploaded to the software, and its average G value would be entered into a spreadsheet. Next, 

the surface below the indication would be uploaded, and the threshold G value entered would 

be the indication’s average G value above it. Hence, the density percentage would be the 

percentage of pixels above the average G value of the indication found in the surface below 

the indication. The density percentage can also be thought of as the percentage of noise in the 

area below the indication. In this thesis, the density percentage is referred to as the noise area 

percentage. The area chosen to be cropped can impact the results. For example, using the 

smallest rectangle around the indication compared to averaging five peak points will result in 

very different noise area percentages. Picking peak points would result in a lower noise area 

percentage compared to the smallest rectangle method are percentage since the threshold G 
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value would be higher. Future work into which cropping method best represents a human 

inspector when identifiying indications will be useful in improving upon this study. 
 

 

Figure 13. The Program Created to Analyze Cropped Images 

 

Figure 14. An Example of the Two Cropped Areas Used for Image Analysis for Samples 
with Sub-Surface Indications 
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Figure 15. An Example of Indication Cropped Area 

Statistical Analysis 

All the data were compiled and analyzed using R (Boston, MA, USA). Statistical 

significance was determined by performing the F-test in the one-way analysis of variance 

(ANOVA) with a type I error rate of 0.05 for data with a single factor containing multiple 

levels. For the 2^3 experimental design, the ANOVA model with a logit transform on the 

response was used to evaluate the data. The logit transform was used on the response variable 

for the 2^3 design of experiments to better fit the normality assumption. Noise area 

percentage was used as the response variable with surface roughness, diameter, and depth as 

the three categorical explanatory variables. If the interaction was insignificant, the main 

effects model was used. Tukey’s multiple comparison test was used to test for significant 

differences between the category means. The multiple comparisons test was done regardless 

of the outcome of the F-test to provide trends and conclusions for future research. The 

multiple comparisons test was accomplished via a package called “emmeans” which 

provided the estimated marginal means and contrasts of groups using Tukey’s method. 

Diagnostic plots were used to check model assumptions of normality, constant variance, and 

independence. A logarithmic scale for the Y-axis was used in Figure 21 and Figure 23 due to 

increasing variance in the data identified in the scale location diagnostics plot [38].  
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CHAPTER 4.    RESULTS AND DISCUSSION 

The results and discussion chapter presents the findings and discusses the results of 

the experiments. This chapter is broken down into four main sections. The first part shows 

the results from preliminary testing and analyzes the reason behind the large variances in the 

data. Additionally, changes to the cleaning method as a result of the preliminary testing were 

explained. The next three parts answer the following research questions: 1) How does surface 

roughness affect the collection of particles with no indications present?, 2) What is the effect 

of surface roughness on the noise area percentage when detecting a common sub-surface 

indication?, and 3) How do surface roughness, depth, and diameter affect the noise area 

percentage? Through these experiments, the effects of surface roughness on the reliability of 

wet MPI were elucidated. 

Experiments with Samples Containing No Indications 

Preliminary Testing of Surface Roughness with No Indications 

In preliminary tests for samples without discontinuities, the smaller sized sample, 

sample B, was used as they were lighter and hence easily handled. Results from initial testing 

showed no significant difference with large dispersion in the average G values across the 

different treatments as shown in Figure 16. Upon further investigation, it became apparent 

that the handling of the part plays a role in the outcome of results. Figure 17 shows an 

example of the effect of handling on the results. An area of a sample that had minimal 

fluorescent particles present under UV light was touched by the same rubber glove used in 

the preliminary tests. The red ovals marked in Figure 17 indicate the areas that had contact 

with the glove, and they have a brighter green color compared to those that were not touched. 

Even though a brush as shown in Figure 18 was used to clean the area of interest, the 
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particles in the valleys of the surface could not be removed using this brush. This means that 

the results in Figure 16 could have been affected by the handling of the part and not by the 

surface roughness.  

 

Figure 16. Boxplot for Preliminary Run with Sample B 

 

Figure 17. An Example of the Bright Green Areas of the Part After Glove Contact 
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Figure 18. Normal Brush 

 Parts used for this preliminary experiment were checked to ensure they had less than 

three gauss in residual magnetic flux from previous experiments. This helped ensure that the 

difficulty removing particle residue was not due to the magnetized particles [39]. The 

influence of glove contact was then further investigated by finding an area of the part that 

was relatively clean from contact and recording its average G value, subsequently touching it 

with the glove and recording its average G value again. This procedure was repeated using 

several different cleaning methods: first using the normal brush used in preliminary testing, 

followed by a toothbrush, a paintbrush, and a stainless-steel brush to capture the 

effectiveness of the different sizes and stiffness of bristles. The cleaning procedure entails the 

same steps in a regular MPI test by running the solution over the part while brushing with a 

selected cleaning tool. Pictures were taken before the area was touched, after it had glove 

contact, and after each method of cleaning, and the average G values were calculated as 

shown in Figure 19. The surface roughness for the area used had an A2 roughness level.  

The average G value started at 8 and jumped to 151 after being touched by the glove. 

This shows that a significant amount of particle residue from the glove was imparted to the 

area, therefore increasing the G value. Results from Figure 19 suggest that using the 

toothbrush as a cleaning method successfully reduces the average G value imparted due to 
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glove contact by approximately 11%. The normal brush and the paintbrush increased the 

average G value by approximately 2% and 18% percent, respectively. Since the normal brush 

had relatively large bristle size, it is not surprising that the average G values were close as the 

bristle size was too big to clean the particles in the valleys of the surface textures. The 

paintbrush had much smaller bristle size when compared to the normal brush; however, the 

bristles are soft hence the brush smeared more particles into the valleys rather than remove 

particle which consequently resulted in a higher average G value. 

Lastly, a stainless-steel brush was used with a bristle diameter of 0.1524 mm (0.006 

in). This brush was chosen because of its stiffer bristles when compared to the normal brush, 

toothbrush, and paintbrush which could help loosen and remove fine particles in the valley 

rather than spreading the particles on the surface as softer bristles tend to do. Figure 19 

shows that using the stainless-steel brush reduced the average G value to 66 which 

corresponds to a 57% decrease when compared to the glove contact’s average G value. It is 

important to note that the visibility of the green impression made by the glove had 

disappeared when the part was cleaned using the stainless-steel brush. Since the part was 

cleaned using a cleaning tool while the solution is being applied to the part, there is a layer of 

solution present on the part. Therefore, the average G value of an area that was relatively 

clean from contact was tested with the fluid applied to the part. The average G value of the 

area, after cleaned by the stainless-steel brush, was found to be close to the average G value 

of the fluid being allowed to flow over the part with no glove contact. This suggests that the 

stainless-steel brush was successful in removing particles imparted onto the surface via glove 

contact.  
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Figure 19. A Plot of the Average G Values for Various Conditions on Surface Roughness 
Level A2  

 

To verify that the level of surface roughness contributed to the difficulty in removing 

particles from the surface due to the valleys in the surface, the same setup was done on a 

machined surface. Pictures were taken before the area was handled, after the glove had 

contacted the area, and after it was cleaned by the normal brush. The average G values for 

the three instances are shown in Figure 20. Results indicate that before the area was handled, 

it had an average G value of 6. Once the glove touched the area, the average G value shot up 

to 156. Using the normal brush as the cleaning method, the average G value decreased by 

approximately 57% compared to after handling. It is important to note that the normal brush 

on a machined surface managed to remove the finger-shaped marks that were visible due to 
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handling. The average G value of the area after being cleaned by the normal brush was close 

to the average G value of the fluid being flown over the part with no glove contact. This 

suggests that for a machined surface, the normal brush was successful in removing particles 

imparted onto the surface via glove contact. The ASTM E3024 does not provide specific 

guidelines for which cleaning equipment should be used. Given that most of the literature is 

based on aerospace applications which are machined surfaces [40], it is not surprising that 

the issue of removing particle residue during post testing has not yet arisen.  

 

Figure 20. A Plot of the Average G Values for Various Conditions on the Machined Surface 

 

The results show that for surface roughness level A2, a stainless-steel brush was 

needed to clean the surfaces of the parts from particle residue due to handling. Additionally, 
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results show that for machined surfaces, a regular brush was sufficient in removing particles 

left due to glove contact. The preliminary test did not yield conclusive results due to the 

collection of particles from glove contact. Hence, in future experiments, stainless-steel 

brushes were chosen as the cleaning tool to remove particles imparted due to handling. 

Effect of Surface Roughness on the Collection of Particles on the Surface with No 
Indications Present 

Once the issue with handling was resolved, an experiment was designed to test for 

collection of particles due to surface roughness when no indication is present. This 

experiment was designed to test for the collection of particles in the valleys of the surface 

texture through evaluating the intensity of the green color in the image post MPI. Samples A 

and B were used in this experiment. MPI was done on surface classifications A1, A2, and 

A3, and areas used had no manufactured indications to ensure only particle collection due to 

surface texture was investigated. The logarithm of the average G value against surface 

roughness levels was plotted, and the results obtained are shown in Figure 21.  

A one-way ANOVA between surface roughness levels was conducted to compare the 

effect of surface roughness on the average G values. The results show a significant influence 

of surface roughness levels on the average G values at a significance level of 0.05 for the 

three levels, F(2,27) = 106.9, p = 1.48 x 10^(-13). The estimated marginal means of the 

average G value for A1, A2, and A3 are 26 (95% CI [22, 31]), 88 (95% CI [74, 105]), and 

148 (95% CI [124, 176]), respectively. Tukey multiple comparisons test was done between 

the surface roughness levels. The multiplicative effect on the mean from A1 to A2 and from 

A1 to A3 was significant at a significance level of 0.05. The multiplicative effect on the 

median of average G value from A1 to A2 is 3 (95% CI [2, 5]) while the multiplicative effect 

on the median of average G value from A1 to A3 is 6 (95% CI [4, 8]). Figure 22 provides a 
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visual interpretation of the multiplicative effect on the median of average G value from A1 to 

A2 and A1 to A3. 

This result supports past research concluding that the particles in the wet MPI method 

tend to settle in the valleys of the surface [17]. The higher the surface roughness the more 

particles collected in the surface texture of the area which then led to higher green intensity 

area as UV light was shone on the surface. However, the average G values computed from 

the results in Figure 21 cannot be directly used to indicate the noise area percentage that 

occurs during MPI testing when an indication is present. Flux leakage that occurs during MPI 

when a crack is present may pull the particles from the surrounding areas toward the crack, 

hence the noise (i.e., interference) in the area may not be the same as the average green 

intensity as evaluated by the average G value caused by the different levels of surface 

roughness. Further experiments with sub-surface indications were done to further understand 

the noise area percentage created by surface roughness in this situation. 

 

Figure 21. A Boxplot of the Average G Values of Three Surfaces 
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Figure 22. A Plot Illustrating Multiplicative Effect on Median 
 

Experiments with Samples Containing Indications 

Effect of Surface Roughness on Noise Area Percentage When Detecting a Common 
Sub-Surface Indication 

The results from the experiment with no indication present indicate that particle 

collection on the surface texture increases as surface roughness increases. However, the 

purpose of this study is to determine the reliability of wet MPI when detecting indications. 

To determine the reliability of wet MPI when a common sub-surface indication is present, 

this study utilizes a metric called noise area percentage. Noise area percentage is measured 

by the calculating percentage of pixels in the surrounding area near the indication that has 

higher green intensity value compared to the average G value of the indication. The presence 

of an indication introduces magnetic flux leakage around the indication. If the flux leakage 

field strength is adequate, it will attract magnetic particles to the area of the flux leakage 
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which will alter the noise area percentage [7]. Hence, the second experiment was designed to 

evaluate the effect of surface roughness on the noise area percentage when testing for a 

common indication. The indication that was manufactured was a hole with a depth of 0.254 

mm (0.01 in) and a diameter of 1.78 mm (0.07 in) where surface roughness levels A1 to A4 

were investigated. Due to the limited number of samples that were available, only three 

samples for each treatment were tested. The logarithm of noise area percentage against the 

surface roughness levels was plotted in a boxplot as illustrated in Figure 23.  

A one-way ANOVA between surface roughness levels was conducted to compare the 

effect of surface roughness on the noise area percentage. The results show no significant 

influence of surface roughness levels on the noise area percentage at a significance level of 

0.05 for the four levels, F(3,8) = 3.261, p = 0.0805. The estimated marginal means of the 

average G value for A1, A2, A3, and A4 are 16% (95% CI [7%, 36%]), 50% (95% CI [23%, 

100%]), 29% (95% CI [13%, 64%]), and 65% (95% CI [30%, 100%]), respectively. Tukey 

multiple comparisons test was done between the surface roughness groups. The 

multiplicative effect on the median of noise area percentage from A1 to A2 is 3.07 (95% CI 

[0.66, 14.40]), the multiplicative on the median of noise area percentage from A1 to A3 is 

1.81 (95% CI [0.39, 8.47], and the multiplicative on the median of noise area percentage 

from A1 to A4 is 4.03 (95% CI [0.86, 18.86]). The results of this exploratory experiment 

indicate that noise area percentage generally increases with surface roughness. The estimated 

marginal means of the noise area percentage of each surface roughness level can be found in 

Table 4. 
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Figure 23. A Boxplot of the Noise Area Percentage for the Four Classifications of Surface 
Roughness for a Sub-Surface Indication with a Depth of 0.254 mm (0.01 in) and a Diameter 

of 1.78 mm (0.07 in) 

Table 4. Estimated Marginal Means of Noise Area Percentage for Surface Roughness A1, 
A2, A3, and A4 for a Sub-Surface Indication with a Depth of 0.254 mm (0.01 in) and a 
Diameter of 1.78 mm (0.07 in) 

Surface Estimated Marginal 
Means of Noise % 

A1 16% (7%, 36%) 

A2 50% (23%, 100%) 

A3 29% (13%, 64%) 

A4 65% (30%, 100%) 
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This finding supports the hypothesis surface roughness affects the reliability of MPI 

[17], [22]. However, the median noise area percentage for surface roughness level A2 was 

higher than A3 which did not agree with the general trend. This discrepancy occurred 

because the difference between the A2 and A3 comparator plates for the ASTM A-plates 

standard were difficult to differentiate. This may have caused A2 surfaces to be classified as 

A3, and vice versa. Moving forward, an objective method for surface classification should be 

used to eliminate uncertainties between surface roughness levels. Overall, this shows a 

general increase in noise area percentage as surface roughness increases with the exception 

of A2. However, the results only indicate the effect of surface roughness on noise area 

percentage. Thus, the effect of surface roughness, depth, and diameter were investigated to 

enable comparisons between surface roughness and two main factors namely depth and size 

(i.e., diameter). The depth and diameter were chosen because past research states that the 

probability of detection of MPI depends on the depth and size of the discontinuity [41]. 

Effect of Surface Roughness, Depth, and Diameter on Noise Area Percentage When 
Detecting a Sub-Surface Indication  

The movement of particles is affected by the flux leakage produced by the size, 

shape, orientation, and depth of the sub-surface indication which may play a role in the 

overall effect of surface roughness on the reliability of MPI. A hole was drilled parallel to the 

surface and was used as the sub-surface indication hence the shape and orientation were kept 

constant. The surface roughness, depth, and diameter were chosen as explanatory variables to 

understand better their relationship with the response variable (noise area percentage). Due to 

the limited number of samples and surface textures available, a 2^3 factorial design of 

experiments was conducted. The two levels of each factor tested were A1 and A4 for surface 
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roughness, 1.78 mm (0.07 in) and 3.56 mm (0.14 in) for diameter, and 0.254 mm (0.01 in) 

and 1.78 mm (0.07 in) for depth to the top of the sub-surface indication.  

ANOVA model was used with a logit transform on the response variable (noise area 

percentage) with the surface roughness, depth, and diameter as explanatory variables. Based 

on this model, Depth was found to impact noise area percentage the most (p = 0.09), 

followed by diameter (p = 0.22), and surface roughness had the least significant effect (p = 

0.72). Table 5 shows the results from the ANOVA analysis. 

Table 5. ANOVA Table 

 Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F-value P-value 

Roughness 1 0.20 0.20 .14 0.72 

Diameter 1 2.4 2.4 1.6 0.22 

Depth 1 5.1 5.1 3.5 0.09 

Residuals 12 17 1.5   

 

The estimated marginal means of the noise area percentage for surface roughness (A1 

and A4) are 32% (95% CI [16%, 55%]) and 37% (95% CI [19%, 60%]), depth (0.01 in and 

0.07 in) are 23% (95% CI [11%, 43%]) and 48% (95% CI [27%, 70%]), and diameter (0.07 

in and 0.14 in) are 44% (95% CI [24%, 66%]) and 26% (95% CI [12%, 47%]). Tukey 

multiple comparisons test was done within categorical groups. The multiplicative effect on 

the median of noise area percentage from A1 to A4 is 1.13 (95% CI [1.04, 1.35]), the 

multiplicative on the median of noise area percentage from a depth of 0.01 in to a depth of 

0.07 in is 1.88 (95% CI [1.05, 4.96]), and the multiplicative on the median of noise area 
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percentage from a diameter of 0.07 in to a diameter of 0.14 in is 0.656 (95% CI [0.343, 

0.847]). Noise area percentage (back-transformed from logit) against each factor, surface 

roughness, depth, and diameter, were plotted in a boxplot as illustrated in Figure 24, Figure 

25, and Figure 26, respectively.  

The results show that surface roughness did not show a difference on noise area 

percentage. This means that A1 and A4 surfaces have no differences in the ease of detecting 

an indication with the depths and diameters used in this experiment. As depth increases, there 

is a general increase in noise area percentage. This indicates the deeper the indication, the 

harder it is to detect it. Lastly, as diameter increases, there is a general decrease in noise area 

percentage. This indicates the smaller the indication, the harder it is to detect it. 

 

Figure 24. A Boxplot of Noise Area Percentage versus Surface Roughness across All Depth 
and Diameter 
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Figure 25. A Boxplot of Noise Area Percentage versus Depth across All Surface Roughness 
and Diameter 

 

Figure 26. A Boxplot of Noise Area Percentage versus Diameter across All Surface 
Roughness and Depths 
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Plot A in Figure 27 shows the predicted point estimate and its prediction interval for 

all the surface roughness and diameter combinations when depth is at 0.254 mm (0.01 in). 

Plot B in Figure 27 shows the predicted point estimate and its prediction interval for all the 

surface roughness and diameter combinations when depth is at 1.78 mm (0.07 in). The wide 

prediction intervals are due to the small sample size (n=16). The plot suggests possible 

evidence of a difference in the depth and diameter. More experiments need to be done to 

increase confidence levels in the results. The larger diameter had generally lower predicted 

noise area percentage across all the combinations. Based on Figure 27, surface roughness 

does not show any trends in the predicted noise area percentage when comparing 

combinations of depths and diameters. The diameter showed a general decrease in predicted 

noise area percentage when going from 1.78 mm (0.07 in) to 3.56 mm (0.14 in) across all 

combinations of surface roughness and depths. The depth showed a general increase in 

predicted noise area percentage when going from 0.254 mm (0.01 in) to 1.78 mm (0.07 in) 

across all combinations of surface roughness and diameters. This means that the larger the 

size of the indication, the easier it is to detect the indication. Additionally, the closer an 

indication is to the surface of the part, the easier it is to detect the indication. Based on past 

research, the depth of a sub-surface indication is known to play a major role in determining 

the capability of wet MPI [4]. This result supports past findings indicating that the depth and 

size of an indication are the two main factors affecting the capability of wet MPI [37]. This 

finding illustrates the impact of surface roughness compared to depth and diameter. This 

exploratory experiment indicates that surface roughness has a minimal influence on the noise 

area percentage.  
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Figure 27. A) Predicted Values for Noise with All the Combinations of Roughness and 
Diameter at Depth of 0.254 mm (0.01 in); B) Predicted Values for Noise with All the 

Combinations of Roughness and Diameter at Depth of 1.78 mm (0.07 in) 
 

Figure 28 shows the predicted noise area percentage plotted against all the treatment 

levels. It is interesting to note that in this plot for the same combinations of depth and 

diameter, A1 had generally less predicted point estimate of noise area percentage than A4 on 

average based on the model which can be seen by the bars sharing the same shade of gray in 

Figure 28. The plot suggests that the noise area percentage of indications that have the same 

depth and diameter may be affected by surface roughness. However, with a p-value of 0.72 is 

not statistically significant. Although the plot in Figure 28 seems to indicate a difference due 
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to surface roughness, the variation of this difference remains in the variation of the error and 

combined with a small degree of freedom which resulted in a large p-value. This may 

indicate surface roughness is not significant relative to size and depth. Increasing the sample 

size would help improve confidence levels in results. Moving forward, it would be 

interesting to test surface-breaking indications where there is no depth and the width of the 

discontinuity needs to be tight-lipped for the indication to show up [34]. In this case, the 

depth will be a constant variable and the width will vary less hence surface roughness will 

have a different effect on noise area percentage.   

 

Figure 28. Predicted Noise Area Percentage versus All the Treatment Levels 
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CHAPTER 5.    CONCLUSIONS AND FUTURE WORK 

The Conclusions and Future Work chapter provides a summary of the findings, 

outlines the shortcomings of this research, displays future directions in this area, and shows 

the main contributions of this study. This chapter is broken down into three main sections 

which are the Conclusions, Limitations and Future Work, and Contributions. The Conclusion 

section highlights the important findings of this study that was conducted to explain the 

influence of surface roughness on the effectiveness of wet MPI. The Limitations and Future 

Work section shows various constraints in this investigation and recommends upcoming 

steps that could be taken to improve upon this research. Lastly, the Contributions section 

outlines the ways in which this research contributes to the area of wet MPI.   

Conclusions 

This study investigates the influence of surface roughness on the reliability of MPI 

for the detection of subsurface indications in steel castings. The findings shown in Figure 20 

suggest that surface roughness has a significant effect (p-value = 1.48 x 10 ^ (-13)) on the 

collection of particles between surface texture levels A1, A2, and A3 when no indications 

were present. When a common indication is present, although no significant difference was 

shown between groups (p-value = 0.0805), a general increase is noise area percentage was 

displayed as shown in Figure 23. However, A2 surface roughness did not follow this trend 

which could have been caused by incorrect classification of surfaces as the A2 and A3 

comparator plates are hard to tell apart. Next, two levels of depth, diameter and surface 

roughness, were investigated to compare their impact to the noise area percentage. This was 

done to compare the influence of each factor on the dependability of wet MPI. There was no 

significant differences found within the categorical variables of surface roughness (p-value = 
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0.72), depth (p-value = 0.09), and diameter (p-value = 0.22). In this investigation, the effect 

of depth and diameter of an indication were found to have more of an impact on the 

effectiveness of wet MPI when compared to surface roughness as illustrated in Figure 27.  

Limitations and Future Work 

There are several limitations in this study that should be addressed in future research. 

First, surface roughness was classified subjectively in this research due to a lack of 

automated surface roughness classification methods available for the casted surfaces. This 

created variability in the classification of surface textures in this study. Vision-based 

automated surface inspection systems for casted surfaces are still being developed to tackle 

this issue but face major challenges due to environmental and feature distinction factors [42]. 

Hence, the utilization of an objective method for surface roughness classification would yield 

better results for measuring the influence of surface roughness on the effectiveness of MPI 

tests. An objective method would provide continuous data for the measurement rather than 

categorical data for the surface texture. This would help create more distinction between 

surface textures. Second, the number of samples tested was relatively small which increased 

the variability in the results leading to less conclusive results. To address this issue, future 

researchers can increase the sample size. Furthermore, this study only looked at two levels of 

surface roughness, depth, and diameter. In the future, researchers should consider including 

more factors and levels that could affect the reliability of wet MPI. Increasing the levels of 

the factors studied would provide more clarity into the relationship between the factors and 

noise area percentage. Additionally, looking into different types of parts (e.g., composition 

and geometry) [43] and characteristics of sub-surface (e.g., shape and orientation) and 

surface breaking indications (e.g., length to width ratio and depth to width ratio) [34] would 
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provide a deeper understanding of the effects of part and indication characteristics on wet 

MPI.  

In this study, another limitation is the method of quantification. The method uses 

noise area percentage to gauge the reliability of wet MPI. However, taking the smallest 

rectangle around the visible areas as the average G value to represent the indication’s average 

green intensity to compare to its surrounding area does not give a good representation to how 

a human operator identifies defects. Future studies into different methods of identifying the 

indication’s average green intensity value could be done. For example, if the indication was 

linear, taking five linear points with the highest G values and averaging them. This could be a 

better way to simulate a human inspector doing MPI. Lastly, an acceptable and unacceptable 

criteria for noise area percentage was not established. Although a metric of noise area 

percentage was developed, which provided a measure for the reliability of wet MPI, the 

threshold for the level of noise area percentage that makes an indication undetectable was not 

determined. Multiple factors play into whether an indication can be detected, such as the 

characteristics of the part and discontinuity, human factors, and the system used (e.g., the 

equipment and process controls) [1], [2]. An experimental design to investigate which factors 

impact the ability to detect an indication should be completed to help narrow down the 

factors considered in determining the threshold for an acceptable and unacceptable criteria. 

Contributions 

Despite some limitations, this study developed a new technique for quantifying the 

influence of surface roughness, depth, and diameter on the reliability of wet MPI for the 

detection of sub-surface indications in steel castings. Previous research shows that surface 

roughness is expected to have an adverse influence on the reliability of wet MPI [17], [22]. 

However, a lack of objective data to support this belief has led to this investigation. This 
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study has taken the next step by: developing a method for quantification of the effects of 

surface roughness on the dependability of wet MPI and providing data to help understand the 

influence of surface roughness on the reliability of MPI. Advantages to the technique created 

in this research are that the program: 1) is easy to use and understand, 2) can be utilized with 

all computer operating systems with an available C compiler, 3) can be applied to other NDT 

methods that utilize fluorescent coated particles, 4) provides a visual check of results with a 

post-processed image, and 5) provides objective evidence of the impact surface roughness 

has on the reliability of wet MPI.  
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