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ABSTRACT 

Bettors on National Basketball Association (NBA) games commonly place wagers 

concerning the result of a game at time points during that game. We focus on the Totals 

(Over/Under) bet. Although many forecasting models have been built to predict the total number 

of points scored in an NBA game, they fail to provide bettors engaged in live-betting with 

predictions that are based on the game currently being played. We construct an Expert Bayesian 

Network to sequentially, as the game progresses, update the probability that the total points scored 

by both teams will exceed that set by the oddsmakers, and then use this probability to influence 

our wager at the end of the first, second, and third quarters. Research methods include data 

collection of team statistics over the last five NBA seasons, discretization of features, filter-based 

feature selection and specification of the network structure using domain knowledge and statistical 

tests. We compare the profit of our live-betting strategy against amateur betting strategies, wagers 

informed by a Naïve Bayes classifier, and wagers informed by a Bayesian Network whose 

structure is specified using a greedy search algorithm. When applied to games played during the 

early 2018-2019 NBA regular season, the Expert Bayesian Network and the Naïve Bayes model 

provide the most accurate predictions. Wagers informed by these two models yield profits of over 

10% and 6%, respectively, but the other models and strategies are not profitable. 



 

1 
 

CHAPTER I 

INTRODUCTION 

1.1 Background and Motivation 

With a total of 1,230 games each regular season, there are far more opportunities to wager 

on a National Basketball Association (NBA) game than most other sports leagues. The outcome 

of NBA games is moderately predictable and, therefore, betting on the conclusion of a game yields 

little to no profit due to low-risk wagers (Stern, 2008). The three most common bets placed on an 

NBA game are Point Spread, Moneyline and Totals (bettingexpert, 2018). Point Spread is defined 

as the differential of the points scored between the two teams, whereas the Moneyline is a simple 

win/lose bet. For Totals (also known as the Over/Under), oddsmakers (also known as bookmakers) 

set a total number of points for any given NBA game and bettors place their wagers on whether 

the combined teams’ scores are more points (over) or fewer points (under) than the number of 

points set by the oddsmakers. Although intuition suggests that bets should be placed on the end 

result only at the beginning of the game, bettors commonly place wagers during specific time 

points in the game such as the ends of quarters (Williams 2010). With the risk of wagering on the  

total points in basketball games, one can see how predictive models can aid bettors in decision 

making. To better illustrate the three common types of betting options in an NBA game, we provide 

an example in Table 1 of a hypothetical game matchup between the Los Angeles Lakers (LAL) 

and the Toronto Raptors (TOR).  

Table 1: Typical Example of the Three Betting Options 
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In Table 1, at the beginning of the game, the bettor can wager on any of the three options. 

For point spread, the bettor can wager on whether the underdog, as denoted by the positive (+) 

sign, Toronto Raptors will win the game or lose by fewer than five points, or the Los Angeles 

Lakers will win the game by more than five points.  For the Moneyline option, the bettor can 

choose to either bet that the Los Angeles Lakers will win the game or, if they want to maximize 

their potential earnings (and risk), bet that the Toronto Raptors will win the game. For the 

Over/Under option, the oddsmakers set the total points for both teams to be 169 and the bettor has 

the option to wager on whether the total points scored by both teams will be Over or Under that 

number. Unless specified by the bookmakers, the payout for an accurate wager is, if denoted by 

the positive (+) sign, how much money the bettor wins if they wager $100 and, if denoted by the 

negative (-) sign, how much money the bettor must wager to win $100.  

Due to basketball’s high and volatile scoring nature, Point Spread and Totals betting 

approaches are more difficult to predict than Moneyline; however, the payoff is larger in most 

cases (Williams, 2010). In fact, the difficulty with predicting winning probabilities (Moneyline) is 

well-known as there is a lack of context within the game, no measure of prediction uncertainty and 

no publicly available data sets or models against which researchers and analysts can compare their 

results (Ganguly & Frank, 2018).  Due to the risk involved in wagers, a tool for bettors that 

estimates the joint probability distribution of scoring totals given a set of variables, uses this 

distribution to estimate the probability that the score is greater than that value set by the 

oddsmakers, and is updated as the game proceeds would be valuable to users.  

1.2 Research Problem 

Although many forecasting models have been built to predict the total number of points, 

these models’ predictions are primarily based on data from previously completed games. This 
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method fails to provide bettors with predictions also based on the current game being played. 

Specifically, there does not exist a publicly available model that estimates the probability that the 

score total is greater than the total number of points set by the oddsmakers using in-game data. In 

this thesis, we aim to sequentially update this probability through a machine learning-based 

network and use it to make wagering decisions at the end of each of the first three quarters as the 

game progresses. 

1.3 Proposed Solution  

The machine learning-based network we propose is a Bayesian network (BN). Given a set 

of conditional probability tables, computed on random variables, the BN captures all existing 

knowledge about its inputs (random variables of interest) and converts it into a directed acyclic 

graph (Jensen, 2009). This is a graph which consists of a set of nodes, a set of directed arcs that 

pair distinct nodes to each other and contains no cycle (Bertsekas, 1998). The knowledge is then 

used to predict outcomes or diagnose causal effects (if the structure is known), or to discover causal 

relationships (if the structure is unknown). As with every sport, basketball possesses a vast array 

of statistics that are collected in every game which are correlated and can be used as inputs, or 

predictors, within the Bayesian network.   

1.4 Organization of Thesis  

The remaining chapters of this thesis are organized as follows. In Chapter II, we review 

the related studies in the literature. In Chapter III, we give an extensive overview of Bayesian 

Belief Networks and describe how one can be used to solve the research problem presented in this 

thesis. In Chapter IV, we provide a description of the data collected for both the training and testing 

sets and how feature selection was conducted. In Chapter V, we detail the experiment which was 

designed in hopes of building a profitable Bayesian Network which can estimate the probability 
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that the score total is greater than the total number of points set by the oddsmakers. In Chapter VI, 

we evaluate the networks constructed in the study and compare them to amateur betting strategies 

as well as a Naïve Bayes classifier. Finally, concluding remarks are provided in Chapter VII.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, we review the sources and documentation that relate to the topic and pave 

the way for future research work. While reviewing them, we give a critical evaluation of these 

works with respect to the research problem being investigated. This whole review consists of two 

main parts. The first is an overview of data mining followed by the role it plays in sports predictive 

modeling. Then, we review the data mining techniques applied to making predictions in basketball.  

2.2 Data Mining and its Role in Sports Predictive Modeling 

2.2.1 Data Mining Concept 

Aggarwal (2015) describes data mining, a complex and multistage process, as “the study 

of collecting, cleaning, processing, analyzing and gaining useful insights from data.” Colloquially, 

data mining starts when a method to collect data is employed and ends when results and 

recommendations for a specific system are given through the analysis of said data. An 

interdisciplinary process, data mining requires fluency in the quantitative disciplines of statistics, 

mathematics, decision science and computer science (Dhar, 2013). Not to be confused with the 

data extracted from statistics, the data often collected in the process of data mining are 

heterogeneous and unstructured. One may argue that the most important part in the process of data 

mining is transforming these conglomerated data into a standardized format one can comprehend 

more easily (Mikut & Reischl, 2011). After the data collection and pre-processing step, it is 

important to specify a training and a testing data set. Typically, most of the data collected are used 

as a training set from which the model can learn, and a smaller portion of data is then used for 

testing and evaluating the corresponding data mining model. 
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After the data sets have been determined, the analysis phase begins. One of the most 

common ways of analyzing the data is using a machine learning algorithm. These algorithms, as 

explained by Alpaydin (2014), “involve collecting a large sample of data and programming 

computers to optimize a performance criterion using these samples.” Essentially, the goal of 

machine learning is to “teach” the computer to extract an algorithm for a specific task (Alpaydin, 

2014). There are two types of machine learning algorithms: supervised learning and unsupervised 

learning. Although the machine learning concept remains the same, the clear distinction between 

these types involve whether the data collected combine input variables with an associated output 

variable (supervised learning) or if it is a collection of input data with no corresponding output 

data (unsupervised learning).  

In supervised machine learning the goal is to learn, from a training data set, all the input 

variables and their corresponding output variable in such a way that when given new input data, 

the machine can predict the value of the output variable for the data. If this output variable is 

discrete, then it becomes a classification problem. On the other hand, if the output variable is a 

continuous real value, it is referred to as a regression problem (Kotsiantis, 2007). The machine 

learning-based network in this thesis is an example of a supervised machine learning algorithm. 

To be specific, we focus on a classification problem where, given a set of input variables such as 

effective field goal percentage and pace, we estimate the total points scored by both teams, our 

output variable. Then, using the constructed network, we find the probability that the total number 

of points is greater than the value specified by the oddsmakers. 
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2.2.2 Sports Predictive Modeling  

Sports predictive modeling, also known as sports analytics, is an emerging field that 

involves data management, predictive models and information systems to predict specific sport-

related outcomes in hopes of improving sporting performance (Gerrard, 2014). Due to the vast 

amount of statistics and metrics collected for each player and team every game, the practicality of 

data mining tools and techniques in sports analytics is evident. To name a few examples, if sports 

organizations can perform machine learning algorithms on the data collected from every game 

they would be able to correctly predict which of their players will be stars, successful coaching 

and training strategies and how well they will do in the upcoming season. 

Because Operations Research in sports has been around for more than 50 years (Wright, 

2009), using data mining tools and techniques to make predictions is not a novel idea (Haghighat 

et al., 2013). Forecasting models have been used to determine the outcome of sports for years. 

What drives a lot of these models, just like the one constructed in this thesis, is the sports betting 

market. In Section 2.3, we examine some of these models. Specifically, we describe those models 

used to predict the outcome or find the joint probability distribution of total points scored in a 

basketball game, whether it be a National Collegiate Athletic Association (NCAA) basketball 

game or an NBA game. For an in-depth comparison that explains the similarities and differences 

of predictions in both leagues, refer to Zimmerman (2016).  

2.3 Data Mining Techniques Applied to Basketball Predictive Modeling  

2.3.1 Naïve Bayes Classifier  

Naïve Bayes (NB) is a simple machine learning algorithm used for classification. Before 

using the NB algorithm, one must understand its underlying assumptions. It assumes that all the 

input variables are equally important and that they are all independent of one another. These 
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assumptions are quite strong and, therefore, it is difficult to find a data set where they hold true. 

Nevertheless, the NB classifier works surprisingly well despite its unrealistic assumptions. 

Essentially the NB classifier is centered on Bayes’ theorem. Bayes’ theorem, depicted in Eq. (2.1), 

describes how to update the probability of a hypothesis (ܪ) when given evidence (ܧ). It follows 

the axioms of conditional probability and it is a common technique on which many modern 

machine learning algorithms, including Bayesian Networks, rely. Using Bayes’ Theorem, NB 

finds the most likely hypothesis (ܪெ௅ሻ given the data and its evidence.                                                                  

ሿܧ|ܪሾ݌                                                            ൌ ௣ሾா|	ுሿ	௣ሾுሿ

௣ሾாሿ
                                                            (2.1) 

Rigorously, given a problem instance to predict, represented by a vector ܺ ൌ ሺݔଵ, . . . ,  ௡ሻݔ

representing n input variables, the NB assigns to this instance a probability ݌ሺ ௞ܻ|ݔଵ, . . . ,  ௡ሻ forݔ

each of ݇ possible outcomes for an output variable	 ௞ܻ. Using Bayes’ theorem to calculate the 

posterior probability, one can reformulate the model with ܺ	as our evidence and ௞ܻ as our 

hypotheses to make it more manageable for computing probability tables involving a large number 

of input variables such that ݌ሺ ௞ܻ|ܺሻ ൌ
௣ሺ௒ೖሻ௣ሺ௑|௒ೖሻ

௣ሺ௑ሻ
. Afterwards, following the assumption that all 

the input variables are independent of one another, one can assume each feature	ݔ௜ is independent 

of every other feature. This means that the probability of a feature given the other features and its 

output variables becomes simply the probability of the feature given the output variables, that 

is	݌ሺݔ௜|ݔ௜ାଵ	, . . . , ,௡ݔ ௞ܻሻ ൌ |௜ݔሺ݌ ௞ܻሻ. Finally, by creating a joint model, one can then calculate each 

hypothesis’ maximum likelihood such that ܪெ௅ ൌ ݔܽ݉݃ݎܽ
௞∈ሼଵ,...,௄ሽ

ሺ݌	 ௞ܻሻ∏ |௜ݔሺ݌ ௞ܻሻ
௡
௜ୀଵ  and make their 

prediction (Raschka, 2014).  

In their research study, Miljković et al. (2010) use the NB classifier to build a model and 

predict the outcome of 778 NBA games. They are interested in the point spread betting option. 
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The system has an accuracy of 10%, as only 78 out of the 778 games’ spread (or point difference) 

are correctly determined (in the sense of the point spread wager in Table 1). As mentioned 

previously, due to the volatility of scoring, it is extremely difficult to predict the point differential 

of an NBA game. In fact, de Saá Guerra et al. (2011) studies the volatility of these games 

thoroughly and proves how dynamic and how dependent on phase transitions the scoring of an 

NBA game is. However, Miljković et al. clearly violate one of the assumptions of the NB classifier, 

as the input variables they use are obviously dependent upon one another. An example of this 

dependence is when they use field goals made and field goals attempted as one cannot make more 

field goals than those attempted. Although the authors use input variables that violate the 

assumptions of the NB, they claim that the results are satisfactory and in line with expectations. 

One important limitation is that Miljković et al. use end-game summary statistics to build their 

model. Although a common practice, it limits the practicality of their model as it can only be 

applied after the game has concluded, when bets have already been decided, and cannot be used 

for live-betting.  

2.3.2 Logistic Regression 

Developed by statistician David Cox (1958), logistic regression is an example of a 

supervised machine learning algorithm where the output variable is categorical. A clear distinction 

to make is that logistic regression in itself is not a classification algorithm. It only becomes a 

classification algorithm when combined with a decision rule that associates the output variables’ 

outcomes with dichotomous predicted probabilities. There are different types of logistic regression 

such as binary logistic regression, multinomial logistic regression where the dependent variable 

has more than two outcome categories, ordinal logistic regression where there are multiple ordered 

(in terms of nature of information within the values assigned to variables) categories and many 
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more (Norris et al., 2006). Nonetheless, all types of logistic regression models can be used to 

estimate the probability distribution of one or more random variables following a cumulative 

logistic distribution. These algorithms measure the relationship between the categorical dependent 

variable and the independent variables by estimating probabilities of outcomes using the standard 

logistic function depicted in Eq. (2.2). 

ሻݐሺܨ	                                                     ൌ ଵ

ଵା௘ష೟
ݐ	݁ݎ݄݁ݓ	 ∈ Թ                                                   (2.2) 

The best way to understand logistic regression is that one is finding the ߚ (intercept and 

slope) parameters that best fit the data and describe the relationship between the dichotomous 

characteristic of interest and the input variables. The regression tactic itself, just like in simple 

linear regression, generates the coefficients, standard error and significance levels of a formula to 

predict a logit transformation of the probability of the output variable. That is, given a vector of n 

input variables ܺ ൌ ሺݔଵ, . . . ,  ௡ሻ, logistic regression intends to generate a formula of the formݔ

ሻ݌ሺݐ݅݃݋݈ ൌ ଴ߚ ൅ .	ଵ൅ݔଵߚ . . ൅ߚ௡ݔ௡ ൅ ߳ where ݌ is the probability that the output variable takes on 

a particular value and ߳  is the standard error. The logit transformation itself can be defined in terms 

of log odds by solving for ݐ in Eq. (2.2) such that, ݏ݀݀݋ ൌ ௣

ଵି௣
 and	݈ݐ݅݃݋ሺ݌ሻ ൌ ln	ሺ ௣

ଵି௣
ሻ. Rather 

than minimizing the sum of squared errors, logistic regression chooses parameters that maximize 

the likelihood of observing the sample values and uses this likelihood to make its prediction 

(Gortmaker et al., 1994). Just like the NB classifier, before modeling the data using a logistic 

regression algorithm, one must understand its underlying assumptions. These assumptions are not 

as strong as the NB ones (independence between variables) but can hamper performance if 

violated. Logistic regression assumes that all the observations in the data set are independent of 
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one another and that the independent variables are linearly correlated with the logistic 

odds,	݈ݐ݅݃݋ሺ݌ሻ.  

Kvam and Sokol (2006) developed a logistic regression/Markov chain model to predict the 

outcome (win/loss) of the NCAA basketball tournament matches. They used a Markov chain to 

build the transition probability matrix within games and considered the location of the game and 

the margin of victory in previous games. Their model yielded promising results as it outperformed 

the most prevalent ranking systems and paved the way for future research work combining the two 

methods. 

In their research work, Štrumbelj and Vračar (2012) use a multinomial logistic regression 

algorithm in combination with a Markov model approach to estimate the outcome (win/loss) of 

NBA games. Their main goal is to see if they can simulate and calculate the winning percentage 

over time. Their model correctly predicts the outcome of about 70% of the games they sample. 

Although it yields fruitful results, the authors acknowledge the model’s limitations. The proposed 

Markov model used is homogeneous, meaning that the transition probabilities do not change as 

the match progressed, which is a strong assumption. The authors emphasize the importance of 

having an unbiased model that is non-homogeneous and conclude that, for future research work, 

the transitional conditional probabilities should be more focused on the point spread and the 

specific time point in the game. 

Lopez and Matthews (2015) built two logistic regression models to help predict the 

outcome (win/loss) of NCAA basketball tournament matches. The first was a point-spread-based 

logistic regression model. The second was an efficiency model built using logistic regression on 

game outcomes. The authors later combined these two models using an ensemble, where individual 

produced models are merged using a weighted average, based on a Log Loss score. Their combined 
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model won the first college basketball competition hosted by Kaggle, a website that organizes 

analytics and modeling competitions, as it correctly predicted more tournament matches than the 

other models submitted. The authors proved that by using the right input variables, point 

differential, and efficiency metrics, they could outperform complex models that were shown to be 

more accurate than the logistic regression. The authors emphasized the need to include these 

predictors in more advanced predictive models that used Bayesian statistics.  

2.3.3 Neural Networks  

According to machine learning principles, it is often worth understanding models that are 

known to be wrong. However, we must remember what makes these models wrong to begin with. 

By learning and understanding what the model predicted incorrectly, we can then make more 

accurate assessments. That is what artificial neural network algorithms hope to accomplish. A 

neural network consists of elements called neurons (or nodes) and directed weighted arcs. Each 

neuron receives input from a prior node or data input (depending on the number of hidden layers) 

and then an activation function is computed based on the weighted arc (Mao, 1996). These weights, 

as well as the activation of the nodes, can be modified by specific learning rules that help the 

algorithm make its prediction. What makes neural networks popular is their ability to perform both 

supervised and unsupervised learning. For the purpose of this thesis, we will restrict ourselves to 

an overview of supervised learning neural networks as it is the only one that relates to the problem 

at hand.  

One can think of an artificial neural network as a typical function,	݂: ܺ → ܻ, which maps 

a set of inputs (ܺ) to their corresponding output	ሺܻሻ. We proceed to define this function ݂ሺݔሻ as a 

composition of other functions ݃௜ሺݔሻ where ݃ is a vector of functions, ݃ ൌ ሺ ଵ݃, ݃ଶ, . . . , ݃௡ሻ,	that 

can further be decomposed into other functions. Then we represent these functions as a network 
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structure with arcs depicting the dependencies between functions. The most widely used type of 

composition is the nonlinear weighted sum (Kennedy & Chua, 1988), where	݂ሺݔሻ ൌ

∑ሺܭ ሻ௜ݔ௜݃௜ሺݓ ሻ and	ܭ, the activation function, is some predefined function. This activation 

function provides a smooth transition to a new corresponding output as input values change. To 

learn from this network, we then define a cost function ܥ: ܨ → Թ	 where F is a function space such 

that, for the optimal solution	݂∗,	ܥሺ݂∗ሻ ൑ ݂∀	ሺ݂ሻܥ ∈  Learning algorithms then search through .ܨ

the feasible region to find a function that has the smallest possible cost. There are many cost 

functions; however, a commonly used one is the mean-squared error (Kennedy & Chua, 1988).  

Although an extremely powerful machine learning approach, neural networks have their 

share of disadvantages. For one, artificial neural networks’ prediction performance is inconsistent 

as there is a plethora of decisions that must be made within the network such as: the number of 

layers, the number of nodes in each layer and the activation function (Tu, 1996). These vary 

slightly for each iteration and, thus, the final result may not always be the same. Another 

disadvantage is the need for lots of data. Although this is a drawback of most algorithms, it is 

especially relevant to artificial neural networks because of the vast number of weights and 

connections within them (Tu, 1996).  

In their research work, Loeffelholz et al. (2009) use the statistics of 620 NBA games to 

train a variety of neural networks. They later fuse these networks, using Bayesian strategies, to 

predict the winning team for NBA games that have yet to be played. They are most interested in 

the Moneyline betting market, and they successfully predict 72% of the NBA games on which they 

test their model. The authors make a significant breakthrough by showing that neural networks are 

capable of using common box score statistics to accurately classify the outcome of a game that has 

yet to be played. Although insightful, their model does not change its prediction as the game is 
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being played (as this was not the authors’ intent), and one can theoretically just predict the 

winningest team and have an accuracy of 67% (Lopez et al., 2017). However, their model can still 

be used to predict upsets and win a substantial amount of money by picking the underdog.  

2.3.4 Review of Bayesian Networks Applied to Sports 

 Exhaustive details on BNs will be discussed in-depth in Chapter III. For now, we limit our 

discussion on the relevant literature involving BNs in the context of sports predictive modeling. 

As previously mentioned, applying data mining techniques to perform sports analytics has been 

around for more than 50 years. Therefore, applying Bayesian Networks to make predictions in 

sports games is not a novel approach. Although the resources are scarce when it comes to building 

a Bayesian Network to make predictions on the outcome of basketball games, there have been 

numerous attempts of constructing such a network in the context of other sports.  

Min et al. (2008) develop a framework (which they call Football Result Expert System) for 

making predictions in soccer games using rule-based reasoning in combination with a BN 

approach. Due to the highly stochastic nature of the sport, the authors combine this framework 

with an in-game time-series approach for the model to yield more accurate and realistic 

predictions. In essence, the rule-based reasoner determines a teams’ strategy and simulates the role 

of the head coach while the BNs sample the stages of the game progression. This is a significant 

breakthrough as the authors can successfully predict the outcomes of the games (win or lose) more 

realistically and with higher accuracy than models that do not use in-game statistics. The authors 

are also among the first to take into consideration multiple factors as opposed to just the score of 

the game to make their predictions all while displaying the versatility of BNs and how they can be 

used in situations where there is insufficient data. Min et al. conclude that such a framework can 

be readily applied to other sports but acknowledge that their method is lacking a more formal 
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machine learning approach and that the BN can be further used for parameter learning methods to 

tune their system automatically.  

In their research study, Joseph et al. (2006) compare the performance of an expert 

constructed BN to other machine learning techniques when predicting the outcome (win, lose, or 

draw) of football matches. The authors use their specialty domain knowledge to determine the 

structure of the BN and compare its performance to a decision tree learner, the Naïve Bayes 

classifier, the k-nearest neighbor algorithm, and a BN which learns (presumably) a different 

structure from the data itself. The authors’ contribution yields some fruitful results as they show 

that the BN whose structure is specified using their domain knowledge outperforms all other 

machine learning algorithms used in the study. Perhaps more insightful is the fact that their Expert 

BN has an overall average accuracy of 59.21%, which is significantly higher than the accuracy of 

the BN that learns the structure from the data (39.69%). The authors show that having expert 

knowledge is crucial when building a reliable BN. It is important to note that, when given data of 

full seasons, the BNs perform roughly the same. However, when the models are given less data, 

the data-driven BN does not learn a structure as reliable as the one built using domain knowledge. 

Moreover, the Expert BN predicts the outcomes significantly faster than the one that learns the 

structure from the data. 

Like Min et al. in 2008, Constantinou et al. (2013) present a novel BN model called pi-

football for forecasting soccer match outcomes. This model encompasses both objective (learned 

on the data) and subjective (using specialty domain knowledge) information to make its 

predictions, in which time-dependent data is weighted using degrees of uncertainty. The 

predictions are made on the games before they are played and evaluated on both accuracy and 

profitability measurements. The authors build the first publicly available model that demonstrates 
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profitability against all of the available published bookmaker odds. Furthermore, they show that 

the specialty domain knowledge (not acquired from the data) improves the forecast capability of 

their model. Their results once again suggest that BNs, coupled with domain knowledge, are 

extremely potent and sophisticated machine learning algorithms. They further show that their 

model beats all the bookmakers’ odds over a long period of time when it comes to profitability. 

The authors acknowledge that their model might not be the most precise as they are not the most-

informed experts and that the results are inconsistent. To remedy this inconsistency, the authors 

claim that they should add more subjective information on team strength in their future work. 

Nevertheless, the authors’ inconsistency may result from using past games’ data as opposed to in-

game data. This inconsistency illustrates our point that using in-game summary statistics to train 

our model is crucial when making betting decisions. 

2.3.5 Conclusion and Research Gap 

 Although there have been numerous machine learning algorithms applied to basketball 

games, these models were built to predict the outcome (win/loss) or point spread of the game as 

opposed to the total points scored by both teams. All these models have avoided predicting the 

team-winning probability or point differential at the end of the game sequentially as it is being 

played. This lack hinders their practicality when it comes to sports betting as, in basketball, one is 

allowed to bet at specific time points in the game such as the ends of quarters. Additionally, some 

authors (Štrumbelj & Vračaras in 2012 and Lopez & Matthews in 2015) have even hinted at using 

a Bayesian model to determine the point spread of a game. The Bayesian Network models 

described in Section 2.3.4 do not have the capabilities of updating predictions (although they do 

update other phenomena) as the game progresses, but these models do show the versatility of 

Bayesian Networks as they focus more on framework approaches. Although we restrict ourselves 
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to determining the total points scored by both teams using a Bayesian Network, one could also use 

a variation of the approach detailed in this thesis to predict the total point differential as the game 

is being played.  
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CHAPTER III 

BAYESIAN NETWORK DETAILS AND JUSTIFICATION 

3.1 Introduction to Bayesian Networks 

Bayesian (belief) networks are a class of graphical models that structure probabilistic 

information in a systematic and intuitive way using graphs (Darwiche, 2010). As mentioned in the 

Introduction, BNs consist of a set of conditional probability tables computed on all random 

variables and use these tables to form a directed acyclic graph (DAG). Specifically, given a set of 

random variables ܼ ൌ ሼܼଵ, ܼଶ	, . . . , 	ܼ௡ሽ describing the quantities of interest, a DAG is created such 

that each node is associated with one variable ܼ௜ and the arcs that connect them represent direct 

probabilistic dependencies between the variables. It is reasonable to assume that if there is no arc 

connecting two nodes, the corresponding variables are either independent or conditionally 

independent (⫫) given a subset of the remaining variables (Scutari & Denis, 2014). The 

corresponding graph is then used to predict outcomes or diagnose causal effects (if the structure is 

known), or to discover causal relationships (if the structure is unknown). One can think of Bayesian 

networks as an extension of the Naïve Bayes classifier. Whereas the NB classifier assumes all 

(input) variables to be independent of one another and, thus, makes the technique somewhat 

impractical for applications where variables are highly dependent on one another such as in sports, 

BNs can model the dependencies between these variables and estimate the joint probabilities 

whenever variables are not independent.  

3.2 The Importance of the Directed Acyclic Graph Structure 

Before understanding the importance of the DAG, there is some terminology that requires 

clarification. A node is called an ancestor of another node if it is connected to it by a direct path. 

On the other hand, a node is called a descendant (ߜ) of another node if it can be reached on a direct 
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path from that other node. A node is said to be the parent (ߩሻ	of another node if it immediately 

precedes it on the path from the root node to this other node. Because Bayesian networks model 

the dependencies using a directed acyclic graph, one is guaranteed that there is no node that can 

be its own ancestor or its own descendant. This, in turn, guarantees that computation of probability 

values converges. The BN uses this structure to aid in computing the conditional probability tables 

over all random variables. Specifically, a Bayesian Network assumes that each variable is 

conditionally independent of its non-descendants in the graph given the state of its parents. Thus, 

the unique joint probability distribution (JPD) of the random variables can be computed by 

following Eq. (3.1) for each random variable	ܼ௜ and its corresponding realization	ݖ௜.  

                	ܲሺݖଵ, . . . , 	௡ሻݖ ≡ ܲሺܼଵ ൌ ,ଵݖ ܼଶ ൌ ,ଶݖ . . . , ܼ௡ ൌ ௡ሻݖ ൌ ∏ ܲ ቀݖ௜ቚ൛ݖ௝ൟ௝∈ఘሺ௜ሻቁ
௡
௜ୀଵ              (3.1) 

Then one can just repeatedly apply the probability rule relating joint and conditional probabilities 

to calculate the conditional probability tables. Given two random variables ܼଵ and	ܼଶ, 

	ܲሺܼଵ ൌ ,ଵݖ ܼଶ ൌ ଶሻݖ ൌ ܲሺܼଶ ൌ ଶ|ܼଵݖ ൌ ଵሻܲሺܼଵݖ ൌ ଵሻݖ ൌ ܲሺܼଵ ൌ ଵ|ܼଶݖ ൌ ଶሻܲሺܼଶݖ ൌ  .ଶሻݖ

3.3 Bayesian Network Learning 

 There are two characteristics that one can learn regarding a Bayesian Network. The first, 

structure learning, involves learning the structure of the corresponding DAG associated with the 

network. This implies specifying which random variables are conditionally dependent on one 

another and which are conditionally independent given the state of the parents of the corresponding 

random variables. The task of structure learning from a given data set can be accomplished either 

by performing constraint-based algorithms or score-based algorithms (Scutari & Denis, 2014). 

Score-based algorithms represent the application of heuristic optimization techniques to the 

problem of learning the structure of a BN. This approach first defines how well the BN fits the 
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overall data and then searches over the space of the DAG for a structure with the maximal score. 

On the other hand, constraint-based algorithms specify which pair of variables are connected by 

an arc, regardless of its direction, and then identify the connection between two adjacent nodes to 

see if they are not conditionally independent on a third one among all the pairs of non-adjacent 

nodes with a common neighbor (Scutari & Denis, 2014). Although specifying the DAG structure 

is often impossible, one who has specialty domain knowledge can accurately model the 

phenomenon and completely specify the graph structure. The network built following this 

approach is known as an Expert BN. For this thesis, the author has specialty domain knowledge 

acquired through numerous (11+) years of being an avid basketball, specifically NBA, fan and 

thus the structure can already be specified when the attributes to learn from have been selected. 

 The second characteristic that one can learn from a BN is called parameter learning. This 

involves, after learning the structure of the BN, decomposing the joint distribution of the random 

variables into local distributions associated with each observed sample to update and estimate the 

corresponding parameters (Faltin & Kenett, 2007). Maximum likelihood estimation is the most 

common approach used in the literature to accomplish this task. Given a set of ݊ random variables 

ሺܼଵ, . . . , ܼ௡ሻ and a directed acyclic graph, one can compute the associated joint distribution by 

following Eq. (3.1). Thus, the parameter vector ߠ that needs to be learned is the conditional 

distributions of the specific realization of the random variable given its parent nodes; that is, 

௭೔|൛௭ೕൟೕ∈ഐሺ೔ሻߠ
ൌ ܲ ቀݖ௜ቚ൛ݖ௝ൟ௝∈ఘሺ௜ሻቁ. Specifying a training data set,	ܵ, with ݏ	independent observations; 

that is,	ܵ ൌ ሼሺݖଵ
௥, 	. 	. 	. 	, ,௡௥ሻݖ	 ݎ	 ൌ 1, 	. 	. 	. 	,  ሽ, the log-likelihood function can be defined as seen inݏ	

Eq. (3.2).  
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     ݈ሺߠ|ܵሻ ൌ  ሻሻߠ|ሺܲሺܵ	݃݋݈

                                                    	ൌ ∑ log	ሺܲሺ௦
௥ୀଵ ଵݖ

௥, . . . ,  ሻߠ|௡௥ሻݖ

                                                     ൌ ∑ log	ሺ௦
௥ୀଵ ∏ ܲ ቀݖ௜

௥ቚ൛ݖ௝
௥ൟ
௝∈ఘሺ௜ሻ

ቁ௡
௜ୀଵ  ሻߠ|

                                                     ൌ ∑ ∑ log ቆߠ௭೔ೝ|ቄ௭ೕೝቅೕ∈ഐሺ೔ሻ
ቇ௡

௜ୀଵ
௦
௥ୀଵ                                                            (3.2) 

3.4 Why a Bayesian Network? 

 Bayesian networks are ideal when dealing with larger data sets, missing values, discrete 

variables, many variables and where there exist dependencies between the random variables (Faltin 

& Kenett, 2007). All these qualities suggest that constructing a BN for the task at hand is the best 

option. Not only are we working with a large data set (which will be explained in Chapter IV), but 

there exists a dependency between some of the random variables (i.e., effective field goal 

percentage and total points scored). Moreover, there is a need to predict, given the observed values 

of multiple random variables, the probability that the total points scored in a game is greater than 

the value set by the oddsmakers. It is also worth noting that we are interested in a probability value 

and not the most likely value. In this regard, the BN is one of the few machine learning algorithms 

that can be used for the intended purpose. As previously mentioned, BNs allow one to learn the 

JPD over all the variables in a data set. This, in turn, provides a more versatile model where one 

can run queries conditioned on multiple predictor variables. It is this JPD learning which interests 

us as we can use this distribution to aid in the decision-making process.  

3.5 Bayesian Network Limitations 

BNs are extremely powerful and potent in addressing inferential processes. However, just 

like every other machine learning algorithm, BNs have their fair share of limitations. For one, 

learning the structure of a BN is an NP-complete problem and computationally expensive (Jensen, 
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2009). Additionally, if a categorical predictor variable has a new category which was not observed 

as part of the training data set, then the model will assign a zero probability. Thus, one must be 

extremely careful when selecting attributes for the training data set. 

3.6 Simple Bayesian Network Example 

 To give an illustration as to how one can use a BN to predict the probability that the total 

points in a basketball game is greater than the value set by the oddsmakers, we consider a 

hypothetical training data set of ten game instances as depicted in Table 2. The data set consists 

of four variables: 3P%, eFG%, PACE and the TOTAL POINTS scored by one team. 3P% is 

associated with how many 3-pointers were made in the game divided by the number of 3-pointers 

attempted by that team. The eFG% of a team is an adjusted value of total shots made divided by 

total shots attempted by a team that takes into consideration the fact that 3-point field goals are 

worth 50 percent more than 2-point field goals. Moreover, PACE is a statistic that represents the 

number of possessions per 48 minutes of a team. It is worth noting that 3P%, eFG%, and PACE 

can take infinite values as they are all continuous variables and can cause problems when building 

the simple Bayesian Network. To maneuver this, it is not unreasonable to bin these values and 

make them categorical as we do not want to reduce the effects of minor observation errors.  
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Table 2: Data Used for Simple Bayesian Network Example 

 

As previously mentioned eFG% is a function of how many three-pointers a team makes 

in a game; thus, one can assume that this variable is dependent on 3P%. Moreover, for this 

example, let us assume PACE is conditionally independent of the aforementioned variables 

(eFG% and 3P%). Finally, it is common knowledge that these variables affect the total points 

scored by the team as the better a team shoots and the more possessions they have, the more likely 

the team is to score. By possessing this specialty domain knowledge, one can specify the BN 

structure. After specifying the BN’s structure, it is time to learn the conditional probability 

distributions. In this example, we model total points as a continuous variable, as opposed to in our 

experimentation where we model it as a discrete variable that has over 100 distinct values and all 

the other random variables as discrete. Thus, we have created what we call a Hybrid Bayesian 

Network. The most natural way to build these kinds of networks is to start with the categorical 

variables (3P%, eFG%, and PACE) and make the distribution of the continuous variables 

(TOTAL POINTS) depend on it. Again, this is not a representation of the network built in this 

thesis; it is just for the readers to have an idea on how to build a Hybrid Bayesian Network as it 
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will not be covered later on. For this example (given that we have a limited data set) let us assume 

that TOTAL POINTS always follow a Normal Distribution. The BN’s structure along with the 

dependence relationships linking the variables can be seen in Figure 1. 



 

25 
 

 

 

 

 

 

Figure 1: Simple Bayesian Network Example 
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Now suppose that we are trying to bet on the outcome of a game between the Indiana Pacers 

and the Cleveland Cavaliers and the oddsmakers set the betting line, after the third quarter, for the 

total points (TOTAL POINTS) scored to 106.5. This leaves the bettor with no option other than 

to choose to bet Over or Under the points set by the oddsmakers. Moreover, let us assume that, 

currently, the PACE of the game is 103.3, the 3P% is 0.38, and the eFG% is 0.42. Then one can 

calculate, using the conditional probability distributions depicted in Figure 1, the probability that 

the score is greater than that set by the oddsmakers by following Eq. (2.3) to get the JPD of both 

outcomes normalizing the values.  

ܲሺࡱ࡯࡭ࡼ ൌ ሾ100 െ 105ሻ, ૜ࡼ% ൌ ሾ0.35 െ 0.40ሻ, %ࡳࡲࢋ ൌ ሾ0.40 െ 0.45ሻ, ࡼࢀ ൐ 106.5ሻ 

        	ൌ ሺ0.5ሻሺ0.4ሻሺ0.5ሻ ൬1 െ 	ܲ ቀଵ଴଺.ହିଵଵଶ.ହ଴
ଵସ.଼ହ

ቁ൰ 

        	ൌ ሺ0.5ሻሺ0.4ሻሺ0.5ሻሺ0.65725ሻ 

                ൌ 	0.065725 

ܲሺࡱ࡯࡭ࡼ ൌ ሾ100 െ 105ሻ, ૜ࡼ% ൌ ሾ0.35 െ 0.40ሻ, %ࡳࡲࢋ ൌ ሾ0.40 െ 0.45ሻ, ࡼࢀ ൑ 106.5ሻ 

         	ൌ ሺ0.5ሻሺ0.4ሻሺ0.5ሻ ൬	ܲ ቀ
ଵ଴଺.ହିଵଵଶ.ହ଴

ଵସ.଼ହ
ቁ൰ 

         	ൌ ሺ0.5ሻሺ0.4ሻሺ0.5ሻሺ0.34275ሻ 

                 ൌ 	0.034275 

Thus, the probability that the total points is greater than that set by the oddsmakers 

is	 ଴.଴଺ହ଻ଶହ

	଴.଴଺ହ଻ଶହା଴.଴ଷସଶ଻ହ
ൌ 0.65725. Likewise, the probability that the total points is less than or equal 

to that set by the oddsmakers is 
଴.଴ଷସଶ଻ହ

	଴.଴଺ହ଻ଶହା଴.଴ଷସଶ଻ହ
ൌ 0.34275. Note that these probabilities sum up 

to one. Therefore, our decision at this point in time would be to bet Over the value set by the 

oddsmakers. In an all-continuous case, BNs act as simple regression models; thus, they are 



 

27 
 

 

rendered obsolete in such applications when compared to the already existing regression models. 

In an all-discrete case, such as the one built in this thesis, we would compute the probabilities of 

both teams scoring the distinct values of TOTAL POINTS and, given the value set by the 

oddsmakers, would split the probabilities (into Over/Under that value) and add them together 

before normalizing them.  

3.7 Guide on Computing Probabilities in this Study 

 As mentioned in the Introduction, our goal is to sequentially update the probability that the 

total points scored by both teams is greater than the value set by the oddsmakers and be able to use 

this probability to make live wagering decisions at the end of each of the first three quarters. In 

Section 3.2, we described the importance of the DAG structure and why it is needed to compute 

the conditional/joint probability distributions of the in-game statistics used in our model. We hope 

to define a data set on which to train our BN to compute and store the conditional probability 

distributions of specific in-game statistics before the game is played. Then, at the end of each of 

the first three quarters, the bettor can collect the in-game statistics’ values and, along with the value 

set by the oddsmakers, input them into our model to quickly estimate the joint probability 

distribution by using the stored conditional probability distributions. If the model predicts the joint 

probability distribution quickly enough, this procedure would allow the bettor to participate in live 

betting.  
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CHAPTER IV 

DATA COLLECTION AND PREPARATION 

4.1 Collection of Data Sets and Additional Features Constructed 

 In this section, we detail the procedure for collecting the data for our training and testing 

sets. Additionally, we provide an exhaustive list of the features that were scraped and constructed 

to compose our data sets. For the features constructed, we briefly explain why we chose to 

construct them. Throughout this section and the rest of the thesis, we use the terms “attributes” 

and “features” interchangeably.  

4.1.1 Training Data Set 

 Having the objective of placing wagers at the end of the first, second and third quarters, 54 

in-game team statistics or features for each team (108 total features) recorded at the end of each of 

the first three quarters were scraped from the official NBA website. The scraping was conducted 

using these Python packages: Selenium, Pandas, and NumPy. The in-game team statistics were 

collected for every non-overtime game in the five most recent regular seasons of the NBA (2013-

2014 through 2017-2018). Overtime games were not considered because they accounted for only 

7.804% of the games played during this stretch and, if included, could bias our performance. This 

bias is because the oddsmakers do not change their value for total points after the fourth quarter 

has ended, causing these games typically to go Over the value set. Only five recent regular seasons 

were selected for the training set because of the paradigm shift that has occurred in the association. 

In recent years, there has been an increase in the pace (average number of possessions for both 

teams scaled to 48 minutes) of the game and three-point shots attempted (3PA) as shown in Figure 

2. The game is now shifting to lineups where all players can space the floor (not clog the area near 
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the basket of the basketball court) and shoot. Despite these restrictions, our training set consisted 

of 17,361 instances or 5,787 games per each of the three quarters.  

 

Figure 2: Average Pace and Three-Point Shots Attempted for Individual Teams Last 10 NBA 

Regular Seasons (Source data from: https://www.basketball-reference.com/leagues) 

4.1.2 Test Data Set 

 As with the training set, 54 in-game statistics were collected for each team (108 total 

features) by scraping the official NBA website. However, unlike the training set, the games 

collected to compose the test set were of the unseen (by the BN) 2018-2019 NBA regular season. 

This was done to have a completely independent and, therefore, unbiased test set on which we can 

evaluate our network after fitting the probability distributions from our training data. In total, 100 

early non-overtime regular season game statistics were scraped at the end of the first, second and 

third quarters. Thus, our test set consisted of 300 instances or 100 games for each of the three 

quarters of interest. Moreover, the value set by the oddsmakers for the total points scored by both 

teams and the Over/Under odds for these values at the end of each of the first three quarters were 
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collected manually from Bovada, one of the most trusted and efficient gambling websites (Sports 

Betting Dime, 2018), as each game was being played. Although, as aforementioned, the test set 

should be roughly 50% as large as the training set, our test set is limited as the oddsmakers do not 

publish historical odds, and collecting the data manually takes a considerable amount of time. 

Additionally, having a large data set on which to train our model may give it enough predictive 

power to outweigh the higher variability we may observe in performance estimation by having a 

smaller test set (Kotsiantis, 2007). Nevertheless, because the oddsmakers try their best to set 50/50 

odds, we consider 300 instances in our test set enough to provide an accurate measure of 

performance. 

4.1.3 Features Scraped and Additional Constructed Features 

 After collecting both the training and test data sets, we looked into constructing additional 

features. Most of the in-games statistics that were collected to predict the probability that the total 

points scored by both teams is greater than the value set by the oddsmakers pertain to individual 

teams. This is by no means detrimental to our model as we want to consider the flexibility of using 

both teams’ individual statistics to better predict these probabilities. Not having any features, 

including the total points scored at the end of the game, that describe the game as it pertains to the 

collective effort of both teams may sway our predictions undesirably. Thus, we constructed seven 

attributes, in both the training set and the test set, that consider the collective efforts of both teams. 

All the attributes scraped (S) and constructed (C) are depicted in Table 3. Attributes pertaining to 

teams are recorded both for the home team (no suffix) and the visiting opponent (denoted with 

_OPP). The interpretations of the in-game statistics depicted in Table 3 are elaborated in Table 

A1 of Appendix A.    
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Table 3: Exhaustive List of Attributes in the Data Sets 

 

4.2 Discretization of Data Sets 

 Some of the features scraped are continuous quantities. As aforementioned, Bayesian 

Networks work best with discrete attributes because they simplify the computation of probabilities. 

If the data set includes only continuous attributes, the supervised learning problem becomes a 

regression problem which renders a BN impractical when compared to the existing regression 

models. Thus, discretization is imperative to ensure a successful model. 

 When discretizing the variables, it is crucial that the same discretization, in terms of bins 

used for the continuous attributes, is used in both the training set and the test set. This is because 
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the levels present in the test set had to be observed when the model was learning the distribution 

from the training set to be predicted. Moreover, to ensure our model does not assign a zero 

probability to any values of TOTAL POINTS, the bins must be wide enough to encompass the 

values of the features in the test set. This makes discretizing the features one of the most difficult 

steps in our data pre-processing as we cannot observe the instances in the independent test set to 

discretize our attributes and, thus, have no idea how to effectively discretize them. At the same 

time, we need to discretize our features before selecting the attributes we are going to use in the 

model as it is going to be composed of these discretized features.  

Some sophisticated discretization methods have been developed and were considered, such 

as the Class-Attribute Interdependence Maximization (CAIM) method (Kurgan & Cios, 2004). 

The goal of this method of discretization is to maximize the dependence relationship between the 

class (attribute/feature we are trying to predict; response feature) labels and the continuous-valued 

attributes while minimizing the number of levels (discrete intervals) of each of these attributes. 

This method uses the advantage of knowing how the attributes affect the class attribute in our 

training set to perform the discretization. However, this method (along with many others) was 

ultimately not used because it did not fit the model we are trying to build. The CAIM discretization 

algorithm is primarily used to determine singular values for the class attribute, which in our case 

is TOTAL POINTS, and transforms the training data accordingly. However, in our model, we 

want to see all the values that this feature can take and use the value set by the oddsmakers to 

compute the probability that it is greater than that value.  Performing the CAIM discretization 

method yielded too many levels for each feature which would have made it difficult to find the 

probability of more than one value of TOTAL POINTS for a game. Thus, discretization was 

performed by observing the minimum as well as the maximum value each feature took in the 
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training set and using our specialty domain knowledge to determine how wide the intervals should 

be, which yielded a more desirable number of levels for the features. All features were discretized 

into equal interval widths of length five from their minimum value to their maximum value except 

for those features depicted in Table 4, which were chosen to be of less or greater width due to their 

maximum/minimum value being too small or too large, respectively. Table 5, in Section 4.3.3, 

depicts the discretization intervals as well as the minimum and maximum values of the features 

ultimately selected to train our model. 

Table 4: Attributes Discretized into Different Bin Widths than Five 

 

4.3 Feature Selection  

 Although collecting a vast number of attributes is generally beneficial, it may be 

worthwhile to train a model on only a subset of these (Aggarwal, 2015). This is especially true in 

this work, as a Bayesian Network assumes each variable is conditionally independent of its non-

descendants in the graph given the state of its parents. As part of our job is to specify the structure, 
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it would be impractical to determine which attributes are conditionally independent of one another 

when there are so many. Not only will the network have an enormous number of arcs, but 

computing the conditional probabilities will be computationally expensive and, thus, impractical 

as we need to predict the probabilities as the game is being played. Moreover, although not 

common knowledge, a lot of the attributes that have been scraped are duplicates such as 

MINUTES PLAYED and MINUTES PLAYED_OPP; OFFRTG and DEFRTG_OPP; and 

PACE and PACE_OPP.  Many of these attributes are also related such as FGM and FGA with 

FG%.  Involving only one member of each such set of features is enough as those selected features 

provide our model with the same kind of information as the whole collection. Including redundant 

features may bias our Bayesian Network’s performance.  

Generally, there are two types of methods one can use when performing feature selection: 

filter-based methods and wrapper-based methods (Dhar, 2013). Filter-based methods are 

independent of a learning algorithm and are based on individual scores such as statistical 

correlation and information gain in relation to the class attribute. On the other hand, wrapper-based 

methods involve creating multiple models using a learning algorithm with different subsets of 

features and adding/subtracting some features until the best model is found. This task is essentially 

a search problem. There have been well-regarded wrapping approaches for feature selection using 

Bayesian Networks (Inza et al., 2000 and Drugan, M. M., & Wiering, 2010).  Although, if directly 

related to the learning algorithm, wrapper-based methods generally perform better than filter-based 

approaches, the number of features in our training data set makes them extremely time-consuming 

because the wrapper-based method must consider all possible combination of features. Thus, we 

perform feature selection using a combination of filter-based methods and specialty domain 
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knowledge. The filter-based methods used are the information gain ratio and the chi-square test of 

independence.  

4.3.1 Information Gain Ratio 

 Originally developed to select the attribute at each node in the decision tree, information 

gain describes the amount of information gained about an attribute from observing another 

attribute (Karegowda et al., 2010). Rapidly becoming one of the most widely-used filter-method 

approaches for feature selection in discrete sets (classification), information gain is independent 

of the learning algorithm, computationally fast and can be used for a large dimensional data set. 

Rigorously, let ܵ be a data set consisting of ݏ instances with ܿ distinct classes/values (which can 

be mapped to integers). The entropy of the whole data set is then given by Eq. (4.1), where ݌௜ is 

the probability that a sampled instance belongs to a specific class	݅	and is estimated by 
௦೔
௦
 where ݏ௜ 

is how many times that specific class value appears in the data set.  

ሺܵሻܪ                                                           ൌ 	െ∑ ௜݌ logଶሺ݌௜ሻ
೎
௜ୀଵ                                              (4.1) 

 Then, given a specified attribute denoted by ܣ, let ܣ௩	denote the instances in the data set 

where ܣ takes value ݒ. To compute the information gained from the attribute on a specific class ݅, 

follow Eq. (4.2). Specifically, let ܪሺ ஺ܵሻ be the entropy of a specific value for the attribute found 

by partitioning the data to instances where ܣ takes value ݒ. 

,ሺܵ݊݅ܽܩ                                                   ሻܣ ൌ ሺܵሻܪ െ ∑
௦ಲೡ
௦
ሺܪ ஺ܵሻ௩∈஺                                      (4.2) 

Although insightful, information gain is biased towards the number of distinct values each 

attribute can take in a data set (Quinlan, 1986). Thus, information gain ratio takes this into account 
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by normalizing the information gain of the attributes according to the intrinsic value formulation 

depicted in Eq. (4.3).  

ሺܸܫ		                                            ஺ܵሻ ൌ െ∑
௦ಲೡ
௦௩∈஺ logଶሺ

௦ಲೡ
௦
ሻ                                                       (4.3) 

After acquiring the intrinsic value formulation for each attribute and calculating its 

information gain for the whole data set, the information gain ratio for each attribute can be 

computed by following Eq. (4.4).  

,ሺܵ	݋݅ݐܴܽ	݊݅ܽܩ                                               ሻܣ ൌ ீ௔௜௡ሺௌ,஺ሻ

ூ௏ሺௌಲሻ
                                                        (4.4) 

This technique was applied to our data set after the features had been discretized. The 25 

features with the highest information gain ratio in relation to our class attribute are depicted in 

Figure 3. As can be seen in the chart, some of the attributes that we constructed are the top features 

by this measure. It is also important to note that some features provide our model with the same 

information and, thus, the figure includes multiple redundant features.  
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Figure 3: Top 25 Features by Information Gain Ratio in Relation to TOTAL POINTS 

4.3.2 Chi-Square Test of Independence for Feature Selection 

 The chi-square test is a statistical test that measures the dependence or association between 

categorical or nominal data. Generally, the chi-square statistic compares the tallies or counts of 

observed categorical responses in a data set between two or more independent groups. Then, these 

categorical responses’ expected counts are approximated by assuming independence. By 

quantifying how much the observed responses deviate from the expected ones, a statistical test can 

be conducted to infer whether the two variables are related (Chernoff & Lehmann, 1954). In the 

context of feature selection, the independent groups for which we approximate the expected count 

are the different values for a specific feature in a data set and the different values for a specific 
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class in the data set. Thus, we essentially test whether the values the feature takes and the values 

the class takes are independent (Guyon & Elisseeff, 2003). We calculate the chi-square statistic 

between each attribute and our class attribute by following Eq. (4.5). Given a data set S with s 

instances and ܿ distinct classes and an attribute ܣ	with v distinct levels, we compute ௜ܱ௝ as the 

number of observations where class ݅ and feature value ݆  coincide in the data set. We also compute 

௜௝ܧ ൌ
௦೔௦ೕ
௦

, which is the expected number of observations if feature value ݆ were independent of 

class ݅, where ݏ௜,  ,௝ are the number of times class value ݅ and feature value ݆ appear in the data setݏ

respectively. We then use the limiting distribution, ߯ଶ with ሺܿ െ 1ሻሺݒ െ 1ሻ degrees of freedom, to 

acquire a p-value and help us determine if that feature is independent of the class attribute by 

setting this independence assumption as our null hypothesis. If it is, then we can discard the feature. 

On the other hand, if the feature and the class attribute are dependent on each other, the feature is 

selected in the model.  

                                              ߯ௌ௧௔௧௜௦௧௜௖
ଶ ൌ ∑ ∑

൫ை೔ೕିா೔ೕ൯
మ

ா೔ೕ

௩
௝ୀଵ

௖
௜ୀଵ 	                        (4.5) 

When the two events are independent, the observed count is close to the expected count; 

thus, a small ߯௦௧௔௧௜௦௧௜௖
ଶ  value is obtained. A high value of this quantity indicates that the hypothesis 

of independence is incorrect. Therefore, the higher the chi-square statistic, the more likely the 

feature should be selected for model training (Sarkar & Goswami, 2013). Figure 4 depicts the 25 

attributes that had the highest chi-square statistic score in relation to the class attribute TOTAL 

POINTS. We can again observe that the constructed features are among the top. However, just as 

when using information gain, many features listed are redundant and do not provide more 

information to our model. 
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Figure 4: Top 25 Features by Chi-Square Statistic in Relation to TOTAL POINTS 

4.3.3 Final Learning Features and Validation    

 When performing feature selection using filter-based methods, it is important to conduct 

more than one of these methods. Specifically, we always want at least one statistical correlation 

method, such as the chi-square statistic, and a method that relies solely on the data set we are trying 

to learn from and not on theoretical quantities, such as information gain ratio. By learning from 

these two methods to perform feature selection, we avoid selecting attributes based on only one 

metric. As can be seen in the results in Figure 3 and Figure 4, both methods list the constructed 

attributes for points by both teams in the current quarter and previous quarters to be important. 

This is not coincidental, as our class attribute itself is a value that is acquired from adding these 
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attributes. Nevertheless, by observing which features were selected by both methods and using 

domain knowledge to determine if the feature was redundant or if any other features were 

important, we selected the 17 attributes to be used for our model. These attributes along with their 

discretization bins are depicted in Table 5.  Each bin’s right value is not inclusive unless it includes 

the overall maximum value (i.e. The bins for 3PM are ሾ0,5ሻ, ሾ5,10ሻ, ሾ10,15ሻ, ሾ15,20ሻ and 

ሾ20,25]).  Note MINUTES PLAYED was already a factor/discrete attribute with three levels: 12, 

24 and 36. These represent the minutes played at the end of the first three quarters, respectively.  

Table 5: Description and Discretization of Features Selected 

 

Perhaps the most surprising decision with regard to the attributes selected is the inclusion 

of MINUTES PLAYED, as neither of our two methods identifies it as a top 25 attribute. It is 

important to remember that, when using filter-based methods, we only consider the attributes in 

relation to our class attribute, TOTAL POINTS. When collecting data, the time remaining in the 

game does not affect the total points scored by both teams according to our measures, as it will list 

the same value of TOTAL POINTS for the game regardless of the quarter being played. But, the 
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time remaining impacts the total points scored by both teams significantly because the pace of the 

game slows down with each passing quarter as the players get more fatigued and more 

concentrated on the defensive side of the game. Also, if we do not include this attribute it is very 

unlikely that our model will update its predictions as the game is being played. Moreover, the 

attributes selected accumulate over time, which means they have a strong dependence with 

MINUTES PLAYED and it is important to model this dependency.   

Features that were not included and may surprise some are the AWAY TEAM and HOME 

TEAM for the game. Although selected as top 25 attributes using both measures, having the 

probabilities dependent on teams itself is quite detrimental to our model. Each team plays 82 games 

a season and, as soon as which team is playing becomes a factor when computing the conditional 

probabilities, we have fewer games to learn from for each team. Additionally, in every season 

teams trade players, players leave to go to other teams, or new star players emerge. Although some 

teams remained consistent the last five seasons, as is the case with the Golden State Warriors, most 

teams fluctuate in terms of performance and overall statistics every year, like the Miami Heat did 

when LeBron James returned to the Cleveland Cavaliers in the 2014-2015 regular season. For 

these reasons, we believe that the in-game statistics will be enough to make our model profitable 

without having to specify the teams matched up in the game.  

Although the need for feature selection was evident and it was performed to the best of our 

knowledge, it must be validated to ensure that the model in fact performs better by learning from 

only the selected features than from all of them. Therefore, we created two Bayesian Networks 

using the R bnlearn package’s (Scutari, 2010) hill-climbing algorithm. A score-based algorithm, 

the hill-climbing method is a greedy search on the whole space of complete directed graphs. Given 

a starting point, it adds, deletes, or reverses a possible arc in a graph and computes the score of the 
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graph successively until it optimizes the graph for a specific scoring measure. Clearly, there are 

too many attributes to set each arc and test all possible combinations until finding the optimal one. 

Thus, the algorithm follows a heuristic approach where it uses score caching, score 

decomposability and score equivalence to reduce the number of performance tests (Daly and Shen, 

2007).  

The score we used to perform the hill-climbing algorithm and, then, compare the networks 

learned from different set of features was the Bayesian Information Criterion (BIC). Originally 

developed by Schwarz, BIC acts as a model selection tool. If a model is built on a training set, the 

BIC score gives an estimate of the model performance on an unseen testing set (Schwarz, 1978). 

The criterion reduces the risk of over-fitting by introducing a penalty term that grows with the 

number of parameters to filter out unnecessarily complicated models. BIC is usually given by the 

formula depicted in Eq. (4.6), where n is the number of parameters (features) we are trying to fit, 

s is the number of instances in our training set and ݈ሺߠ|ܵሻ௠௔௫  is the maximized value of the log-

likelihood function of the model previously described in Section 3.3. A smaller BIC indicates a 

better model; however, the R package bnlearn’s BIC is given by the formula depicted in Eq. (4.7) 

which is the classical definition rescaled by -2 and, thus, a higher (less negative) BIC indicates a 

better model.  

௖௟௔௦௦௜௖ܥܫܤ                                  	ൌ െ2݈ሺߠ|ܵሻ௠௔௫ ൅ ݊	ሺlnሺݏሻሻ                                             (4.6) 

௕௡௟௘௔௥௡ܥܫܤ                                  ൌ ݈ሺߠ|ܵሻ௠௔௫ െ ݊ ୪୬ሺ௦ሻ

ଶ
                                                    (4.7) 

The BIC for the Non-Expert Bayesian Networks that were constructed by not using feature 

selection and by using feature selection can be compared in Table 6. As aforementioned, these 

networks’ structures were both specified by the hill-climbing algorithm and, therefore, we can 
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compare their scores without bias. It is important to note that the BIC itself is calculated using the 

training set and it gives an estimation for model performance on the test set.  

Table 6: BIC Comparison of Non-Expert Bayesian Networks 

 

 As depicted in Table 6, the BIC of the Non-Expert Bayesian Network whose structure 

was specified using the features selected is significantly greater (by 70%) than that of the network 

that uses all the attributes to specify its structure. Although not surprising, it means that our initial 

assumption of having too many redundant features was most likely the case. Nevertheless, this 

proves, quite crudely, that the 17 features selected do a better job at mirroring the dependence 

structure of the data (Scutari & Denis, 2014). The DAG associated with the Non-Expert Bayesian 

Network for the features selected, which from now on will be referred to as NEBN_FS, can be 

seen in Figure 5.  
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Figure 5: Directed Acyclic Graph of the Non-Expert Bayesian Network 
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CHAPTER V 

EXPERIMENTAL DESIGN 

5.1 Introduction 

In this chapter, we explain how we use an association measure derived from the chi-square 

test to help us model, along with our specialty domain knowledge, the dependence of the directed 

acyclic graph constructed in this study. We detail the statistical test used to specify the structure 

of the Expert Bayesian Network and make an initial comparison to the network built in Section 

3.3.4 using the BIC measure detailed in the same section. Finally, we explain how we compute the 

probability that the total points scored by both teams is greater than the value set by the oddsmakers 

before evaluating the model in Chapter VI.  

5.2 Cramer’s V Measure of Association 

 Cramer’s V is a measure of association between two discrete variables. It is derived from 

the chi-square statistic described in Section 3.3.3 and it assigns a value of association between the 

two variables of interest within the range ሾ0,1ሿ where 0 indicates no association and 1 indicates 

that, if we know the value of an attribute, we can perfectly predict the other corresponding 

attribute’s value (Cramer, 1946). Although it provides the same information as the chi-square 

statistic, it allows us to compare intuitively how much more an attribute is dependent on another 

one (like a correlation measure). Cramer’s V measure of association between two attributes can be 

computed by following Eq. (5.1) where ߯ௌ௧௔௧௜௦௧௜௖
ଶ  is obtained from two attributes by following Eq. 

(4.5), s is the number of instances in a data set ܵ and ݒଵ, ݒଶ are the number of distinct values for 

the two attributes, respectively.  

                                              ܸ ൌ ට ఞೄ೟ೌ೟೔ೞ೟೔೎
మ

௦	୫୧୬	ሺ௩భ,௩మሻ
	                                                (5.1) 
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Figure 6 depicts a heat map of Cramer’s V measure of association between the features 

selected to construct the Expert Bayesian Network. As can be seen, MINUTES PLAYED has a 

comparatively strong association with some of the other features; therefore, it shows that our 

assumption for why we selected it to construct our final model was adequate. This heatmap helps 

show the dependency between the features and was one of the main tools used to specify the 

structure of the BN. 

 

Figure 6: Cramer’s V Measure of Association Between Pairs of Selected Features 
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5.3 Chi-Square Test for Conditional Independence  

 We modeled Bayesian Networks by assuming that each node is conditionally independent 

of its non-descendants given the state of its parents. Thus, it would be wise to run tests of 

conditional independence to make sure we are not violating this assumption. By running 

conditional independence tests on the arcs of the Bayesian Network, we can assess the probabilistic 

dependence encoded in each arc and determine whether this dependence is supported by the data 

(Scutari & Denis, 2014). Namely, we define the two attributes (nodes) connected by a directed arc 

as ܣଵ and ܣଶ, where ܣଵ is the tail and ܣଶ is the head, and let ߏ ൌ ሼߩଵሺܣଶሻ, . . . ,  ଶሻሽ be a setܣ௡ሺߩ

containing all the other n parent nodes or features of ܣଶ, thus ܣଵ ∉  We can then set up a test .	ߏ

using a variation of the chi-square test of independence previously detailed in Section 4.3.2 to test 

for conditional independence between the two nodes. By setting our null hypothesis to test whether 

 ଶ is conditionally independent of its non-descendants given the state of its parents (not includingܣ

:௢ܪ ,ଵ), that isܣ ሺܣଶ ⫫ Aଵሻ|ߏ and having the alternative hypothesis be the opposite, that is, 

:஺ܪ ൫ܣଶ	⫫\		ܣଵ൯|ܲ, we can determine whether an arc should be included in the directed acyclic 

graph. Clearly, we want to reject the null hypothesis with respect to each arc to make sure all the 

children of the nodes in the network are dependent on their parents.  

We compute the ߯ௌ௧௔௧௜௦௧௜௖	
ଶ for conditional independence testing by following Eq. (5.2). For 

the context of this thesis, let us assume again that there is an arc directed from ܣଵ to ܣଶ. 

Specifically, given a data set ܵ  with ݏ instances, attributes ܣଵ and ܣଶ with ݒଵ and ݒଶ distinct levels, 

respectively, and all ߬ of the configurations of all possible combinations of the parent variables of 

 ଶܣ  ,݅ ଵ valueܣ we compute ௜ܱ௝௞, which is the number of instances where ,(ଵܣ	not including) ଶܣ

value ݆	and the ݄݇ݐ	configuration of the parent nodes of ܣଶ are observed in the data set. We also 
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compute ܧ௜௝௞	 ൌ
∑ ௦೔ೕೖ
ೡమ
ೕసభ ∑ ௦೔ೕೖ

ೡభ
೔సభ

∑ ∑ ௦೔ೕೖ
ೡమ
ೕసభ

ೡభ
೔సభ

, which is the expected number of observations if ܣଶ value ݆ were 

independent of ܣଵ value ݅ given the ݄݇ݐ	configuration of ܣଶ’s parent nodes where ݏ௜௝௞ is the 

number of times ܣଵ value i, ܣଶvalue  j, and this ݄݇ݐ configuration appear in the data set.  

                                       ߯ௌ௧௔௧௜௦௧௜௖
ଶ ൌ ∑ ∑ ∑

൫ை೔ೕೖ	ିா೔ೕೖ൯
మ

ா೔ೕೖ

ఛ
௞ୀଵ

௩మ
௝ୀଵ

௩భ
௜ୀଵ 	            (5.2)            

 This test, just like the previous chi-square test, has an asymptotic ߯ଶ distribution under the 

null hypothesis (Scutari & Denis, 2014). Unlike the previous one, however, the degrees of freedom 

of this test also depend on the parent nodes of the attribute to which the arc is directed. Namely, 

let the parent nodes, ߩଵ, . . . , ,ଵݑ ଶ haveܣ ௡, ofߩ . . . ,  ௡ levels. The degrees of freedom for the testݑ

will then be ሺݒଵ 	െ 1ሻሺݒଶ െ 1ሻሺ∏ ௜ݑ
௡
௜ୀଵ ሻ. Thus, by setting a significance level, we can find the 

critical values of the distribution and then use the ߯ௌ௧௔௧௜௦௧௜௖
ଶ  to test the dependence of the attributes 

connected by the arcs.  

5.4 Expert Bayesian Network 

5.4.1 Methodology  

 With a foundation as to which attributes are dependent on each other through Cramer’s V 

measure of association, we constructed the Bayesian Network with a specified structure. By 

running the conditional independence test on the arcs illustrated in Figure 5, we found out that all 

the parent-child pairs of the NEBN_FS are indeed dependent. The maximum p-value of the test 

detailed in Section 5.3 over all the arcs was ൏ 2.2 ∗ 10ିଵ଺; therefore, we reject the null hypothesis, 

that these nodes are independent of their parent nodes given all their other parent nodes, as there 

is enough evidence to suggest that they are dependent on them. After verifying that the hill-

climbing algorithm constructed reasonable arcs, we examined these arcs and the heatmap in 
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Figure 6 to specify the Expert Bayesian Network’s structure. After considering many 

combinations and tinkering with the arcs to match our assumptions, the structure of its DAG was 

finalized as illustrated in Figure 7.  

 

Figure 7: Directed Acyclic Graph of the Expert Bayesian Network 

5.4.2 Initial Comparison to NEBN_FS 

 First, the same conditional independence test was performed on all arcs in the Expert 

Bayesian Network, and they all gave a p-value ൏ 2.2 ∗ 10ିଵ଺. Therefore, as was the case for 

NEBN_FS, we reject the null hypothesis, that each node at the head of an arc is independent of 

that parent node given the state of all their other parent nodes. When comparing the arcs of the 

Non-Expert Bayesian Network using feature selection whose structure was specified using the hill-

climbing algorithm (shown in Figure 5) to our Expert Bayesian Network’s arcs (seen in Figure 

7), some similarities but also some major differences are noted.  

Some arcs are included in both networks but reversed in the Expert Bayesian Network, as 

is the case with the arcs from DEFRTG to FGM_OPP, eFG% to TS%, FGM to PSUTP and 
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FGM_OPP to PSUTP. The direction of these arcs was reversed based on specialty domain 

knowledge, knowing how attributes depend on each other. The arc from eFG%_OPP to 

TS%_OPP stayed the same. A major difference in the structure of the networks results from the 

decision to remove all the arcs from MINUTES PLAYED to the other variables and add an arc 

from MINUTES PLAYED to TOTAL POINTS in the Expert Bayesian Network. Adding the 

latter arc is not surprising as we want TOTAL POINTS to be directly dependent on the end of the 

quarter when we are making our wager, but the removal of the others can be questioned. Although 

one of the primary reasons to include MINUTES PLAYED in our final set of features was because 

of the dependence of other attributes on it, the data proved, through statistical tests, that an arc 

from MINUTES PLAYED to these other attributes is not needed, as these attributes are 

independent of the time given their new parents. One last, unorthodox, approach to specifying our 

structure was that, instead of having the points at the end of each quarter be dependent on PSUTP, 

we had the total points scored by both teams at the end of the game, TOTAL POINTS, depend 

on PSUTP and these attributes be dependent on TOTAL POINTS. This was done because of how 

we calculate the probabilities to aid in our decision-making process, as we are finding the 

probability distribution of TOTAL POINTS instead of just predicting the attribute’s value. This 

was the only change to the network’s structure driven by the purpose of the BN rather than the 

data. 

 We computed the BIC of both networks, seeing how this measure was used to validate 

feature selection, to see which network was better supported by the data. The BIC values for both 

networks can be seen in Table 7. Unsurprisingly, the BIC of the Non-Expert Bayesian Network is 

greater than that of the Expert Bayesian Network, which indicates that the latter is a better model 
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for our data. Obviously, because the Non-Expert Bayesian Network was constructed using an 

algorithm that maximizes this score, we expect it to perform better according to this metric.  

Table 7: BIC Comparison of Bayesian Networks 

 

Although the BIC score of the Non-Expert Bayesian Network is greater than that of the 

network whose structure we specified, this is just one measure used to compare the networks. 

Moreover, the BIC score considers all the attributes in the data set and how likely we are to predict 

all those attributes given a new unseen data set (Scutari & Denis, 2014). For our purpose, we are 

interested in seeing how well we can predict only one of those attributes, namely TOTAL 

POINTS, given an unseen set. If we use a different measure that is not directly related to how 

either of the networks were built and is therefore unbiased, we can see that our Expert Network 

does a better job at predicting the value of TOTAL POINTS. Using the same package (bnlearn) 

as before, with the same rescaling factor of -2 from the classical definition, we computed the 

Akaike Information Criterion (AIC) according to Eq. (5.3).  

௕௡௟௘௔௥௡ܥܫܣ                                            ൌ ݈ሺߠ|ܵሻ௠௔௫ െ ݊                                                             (5.3) 

Table 8 shows that, using this unbiased measure on the specific node for TOTAL 

POINTS, the Expert Bayesian Network is a better predictor of this attribute than the Non-Expert 

Bayesian Network. Although the Non-Expert Bayesian Network yields a more favorable overall 

BIC score, the Expert Bayesian Network yields a more favorable (higher valued) AIC score for 
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the attribute in question. While the improvement in AIC for the class attribute is encouraging, the 

real question is whether either network can provide information for profitable betting.  

Table 8: AIC Comparison on the Class Node 

 

5.5 Calculating the Probabilities 

 To answer the question posed in Section 5.4.2, we needed to see which network was better 

in terms of performance. This, as aforementioned, involves estimating the probability that TOTAL 

POINTS is greater than the value set by the oddsmakers. We modeled this task as a classification 

problem where the class attribute, TOTAL POINTS (ܻ), could take any of over 100 different 

values. Given the value of our in-game statistics, ሼݖଵ, . . . ,  ௡ሽ, and the value for TOTAL POINTSݖ

set by the oddsmakers, ݕ∗, we estimated  ߶ீ ൌ ܲሺܻ ൐ ,ଵݖ|∗ݕ . . . ,  ௡ሻ using the Bayesian Networkݖ

constructed. To accomplish this, we obtained the JPD of all the attributes, including the class 

attribute, and extracted the probabilities with the values of ݖଵ, . . . ,  ௡ fixed. Then, we summed upݖ

the probabilities for those values of TOTAL POINTS, denoted by ݕ, that were greater than the 

value set by the oddsmakers; that is ߶෠ீ ൌ ∑ ,ଵݖሺ݌ . . . , ,௡ݖ ∗ሻ௬வ௬ݕ . Next, we estimated ߶௅ by ߶෠௅ ൌ

∑ ,ଵݖሺ݌ . . . , ,௡ݖ ∗ሻ௬ஸ௬ݕ . Finally, we calculated the probability that TOTAL POINTS is greater than 

the value set by the oddsmakers by normalizing ߶෠ீ and ߶෠௅ to sum to one. For our decision process, 

if the derived probability of TOTAL POINTS being greater than the value set by the oddsmakers, 

Ψ෡ீ depicted in Eq. (5.4), was greater than 0.5, we wagered Over. If not, we wagered Under.  

                                                                Ψ෡ீ ൌ
థ෡ಸ

థ෡ಸାథ෡ಽ
                                                                (5.4) 
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CHAPTER VI 

MODEL EVALUATION 

6.1 Results 

 The results of the models were evaluated according to both the accuracy and profitability 

of bets placed. Moreover, the time it took for the BN to predict the probability that the total points 

scored by both teams at the end of the game was greater than the value set by the oddsmakers was 

examined. In this chapter, we provide an in-depth discussion on the comparison of results for the 

BNs constructed, a Naïve Bayes classifier, and three amateur betting strategies.  

6.1.1 Accuracy Results 

 Before evaluating the Non-Expert Bayesian Network built with the features selected and 

the Expert Bayesian Network, we wanted to simulate typical amateur betting strategies. 

Specifically, for each matchup, we calculated the average points scored by each team during the 

previous 3, 5, and 15 games and summed the two teams’ averages to decide our wagering decision 

for those bets at the end of each of the first three quarters. If the total of the average points scored 

in the last ݊ games by each team was greater than the value set by the oddsmakers, we would 

wager Over. Otherwise, we would wager Under for the respective amateur betting strategy. It is 

important to note that the BNs’ probability changed as the game progressed because the value set 

by oddsmakers usually shifted at the end of each quarter, while the amateur betting strategies’ 

prediction for the total points scored by both teams did not. Thus, our comparison is not fair, but 

there is no better way to compare these amateur betting strategies to the BNs.  

Moreover, to compare the BNs to another model that could update the probability that the 

total points scored by both teams was greater than the value set by the oddsmakers, a Naïve Bayes 

classifier was built using the bnlearn’s package naive.bayes function on the final discretized 
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training set, which contained only the 17 features selected as detailed in Section 4.3.3. This 

function constructs the star-shaped DAG form of a Naïve Bayes classifier, which contains only 

arcs directed from the class attribute (which needs to be specified within the function), TOTAL 

POINTS, towards each of the other features. The Naïve Bayes classifier’s performance was 

evaluated in the same way as the BNs, which is described in Section 5.5.  

Figure 8 depicts the results of the overall accuracy (if the favorable option decided by the 

strategy was correct) of Over/Under bets at the end of all three quarters for all the different methods 

applied to the test set games. For the Expert Bayesian Network and the Naïve Bayes classifier, 

there were some instances (four for the Expert BN and two for the NB classifier) where the model 

returned an “N/A” value for the probability that the total points scored by both teams would be 

greater than that set by the oddsmakers. We decided to omit these instances by assuming the bettor 

would not wager on a game if they did not obtain a probability value.  

 

Figure 8: Overall Accuracy of Over/Under Prediction (%) 

 As can be seen in Figure 8, the Expert BN provides, only marginally (compared to the 

Naïve Bayes classifier), the best betting strategy when it comes to predicting Over/Under. We can 
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observe in Figure 8 that the Expert BN and Naïve Bayes classifier yield promising results. But, 

perhaps more importantly, the Non-Expert BN’s accuracy is worse than one of the amateur betting 

strategies. This is, presumably, because the Non-Expert BN did not have any parents of TOTAL 

POINTS identified. Thus, it did not provide any useful information on TOTAL POINTS beyond 

its empirical distribution based on the training set.  Moreover, for the sum of average points scored 

by each team during the last ݊ games (or amateur betting strategies), it appears that the fewer 

games we average over, the more accurate is the prediction. 

6.1.2 Profitability Results 

 The odds for the Over/Under corresponding to the value for total points scored by both 

teams set by the oddsmakers were collected at the end of each of the first three quarters for each 

game in the test set. For this thesis, we assumed that the bettor either wagered $100, if a prediction 

was obtained from the BNs, on the more favorable outcome (Over or Under) or wagered $0, if an 

“N/A” value was obtained for the probability that the total points scored by both teams was greater 

than the value set by the oddsmakers. Table 9 depicts all the values observed for the odds (whether 

it be Over or Under) with their implied probability percentage and profit amount if the bettor were 

to wager $100 for the corresponding odds and win. If the bettor wagered on a bet and lost, their 

net loss would be -$100.  

Table 9: Description of Odds When Wagering $100 
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 As evident in Table 9, all of the values for the Over/Under odds collected make it 

impossible to obtain a profit if our model is less than 50% accurate as we would wager more money 

than what we would be paid if we won a bet. Because of this, we restrict our analysis of quarterly 

predictions to the Expert BN and Naïve Bayes model as they were the only potentially profitable 

models. Table 10 shows the monetary results for each of the three quarters as well as the overall 

profit amount of the Expert Bayesian Network. Again, we decided to omit those instances where 

the probability value returned was “N/A” by assuming the bettor would not wager any money on 

a game if they did not obtain a probability value. 

Table 10: Total Profit Amount Overall and per Quarter (Expert BN) 

 

 As seen in Table 10, our Expert Bayesian Network is quite profitable as it yields a 10.04% 

profit margin for 296 predicted instances. For comparison, the average savings account has a 

measly 0.09% annual percentage yield (Moon, 2019). It appears that betting after the second 

quarter, in particular, is significantly more profitable (and presumably more accurate) than the first 

and third quarters. Although further sensitivity analysis is needed, this may be because our model 

is not as sensitive to new information about the game when compared to the models used by the 

oddsmakers to set the value of total points scored by both teams. Although more information is 

indeed obtained after the third quarter, the uncertainty is not as great, and the value set by the 

oddsmakers at the end of that quarter is probably more accurate.  It may also just be a coincidence 

given the small number of games observed. Nevertheless, our model is profitable in all three 
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quarters which is an indication that using our Expert Bayesian Network to make live-betting 

decisions is a viable option.  

 Table 11 shows the monetary results for each of the three quarters as well as the overall 

profit amount of the Naïve Bayes classifier model. As with the BN, we decided to omit those 

instances where the probability value returned was “N/A” by assuming the bettor would not wager 

any money on a game if they did not obtain a probability value. 

Table 11: Total Profit Amount Overall and per Quarter (Naïve Bayes Classifier) 

 

As seen in Table 11, the Naïve Bayes model is quite profitable as it yields a 6.78% profit 

margin for 298 predicted instances. Just like our Expert BN, it appears that betting after the second 

quarter, in particular, is more profitable than betting after the first and third quarters. Although 

promising, our Naïve Bayes model is outperformed by the Expert BN, as its overall profit margin 

(and accuracy) is less even though the model returns a probability value in more instances. This is 

not surprising, as the BN can model dependencies between attributes while the Naïve Bayes 

classifier assumes all attributes are independent of each other. However, even with this handicap, 

the Naïve Bayes performs only slightly worse than the Expert BN. This may be an indication that 

the final attributes constructed provide enough information to predict the total points scored by 

both teams without having to consider the interactions with other attributes. Nevertheless, because 

the Expert BN dominates the Naïve Bayes model in both accuracy and profitability measures, we 

restrict our other analyses to only the Expert BN.  
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6.1.3 Time Results 

 Because the whole purpose of this thesis is to provide a tool to aid in making wagering 

decisions in real-time, the time it takes for the Expert BN to compute the joint probability 

distributions and use these to estimate the probability that the total points scored by both teams is 

greater than that value set by the oddsmakers is critical. Because of this, we analyzed the time it 

took for the Bayesian Network to predict an outcome (Over/Under) at the end of each of the first 

three quarters for a given game. Table 12 shows the mean, standard deviation, and maximum time 

it took the BN to predict the probability that the total points scored by both teams is greater than 

that value set by the oddsmakers over all 300 instances.   

Table 12: Summary Statistics of Prediction Time Over All 300 Instances 

 As evident by Table 12, it took the Expert BN only a total of 642.32 (2.14 multiplied by 

300 instances) seconds to estimate the probability that the total points scored by both teams was 

greater than the value set by the oddsmakers for all 300 instances. On average, this equates to 2.14 

seconds per instance. Moreover, the most amount of time the BN took to provide a probability 

estimate was 3.32 seconds. The average and maximum values, coupled with the small standard 

deviation value of 0.55 seconds, ensures that the bettor using this tool has plenty of time between 

the end of each quarter and the subsequent quarter (which is around two minutes) to collect the in-

game statistics and input them into the model.  

  



 

59 
 

 

6.2 Discussion of Results 

 To draw further conclusions from our model, a more in-depth analysis is needed. 

Specifically, we must understand how the proportions of Over vs. Under outcomes differ for each 

quarter between our model’s predictions and the value set by the oddsmakers. Table 13 depicts 

the confusion matrices by quarter for the Expert Bayesian Network constructed in the study.  

Table 13: Expert Bayesian Network’s Confusion Matrices by Quarters 

 

 As illustrated in Table 13, it appears that our model predicts Under more frequently at the 

end of each quarter than Over. Moreover, it is worth noting that, overall, the oddsmakers are 

performing their job splendidly, as the outcome proportions when using their estimated value, 

51.67% Over and 48.33% Under, is close to their goal of a 50% even split for each outcome. 

Although a larger sample would be needed to make a statistically significant conclusion, one can 

infer that the reason there is a slight discrepancy in proportions in the first quarter (54% Over and 

46% Under) is due to a lack of information, as not enough time has elapsed in the game at that 

point. Although our model was consistent in predicting the game outcomes at the end of the first 

and third quarters, it was significantly more accurate (as presumed in Section 6.1.1) when placing 
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wagers at the end of the second quarter. Again, this may be due to the oddsmakers’ models used 

to set the value for total points being more sensitive to the in-game statistics than our model, which 

also could explain their inconsistent outcome proportions at the end of the first quarter. Although 

one may be tempted to conclude that our model is drastically overfitting, it is important to analyze 

the training and test data sets further to understand the reason we are predicting Under more 

frequently than Over. The distributions of TOTAL POINTS in the training and test data sets are 

depicted in Figure 9.  

 

Figure 9: Distribution of TOTAL POINTS in the Training (left) and Test (right) Data Sets 

As seen in Figure 9, the distributions of the total points scored by both teams for the 

training and test data sets differ greatly from one another. Specifically, the training data set’s 

distribution is centered around a mean of 205.29 total points while the test set’s distribution is 

centered around a mean of 223.14 total points. Although one might attribute this to the test set only 

being comprised of 100 games, it is important to note that the standard deviation for both set’s 
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distribution was roughly the same (19.33 for training and 20.91 for test). This means that we cannot 

attribute the difference of the distributions merely to the difference in the number of games 

between both sets. Additionally, when observing our results in Table 13, we can see that our 

Expert Bayesian Network is significantly more accurate when it predicts Over (74.19%) than when 

it predicts Under (54.70%). Therefore, we are not necessarily overfitting. For comparison, the 

Naïve Bayes model correctly predicts Over 67.09 % of the time and Under 53.42% of the time. 

 As aforementioned, in recent years, there has been an increased volume in the pace of the 

game. The 2018-2019 NBA regular season, in particular, has been historically unprecedented as 

of the writing of this thesis. Not only are the pace per game, number of three-point shots attempted 

(3PA) per game by individual teams, and points per game scored (PPG) by individual teams at an 

all-time high, but the average increase from the previous year is significantly higher than it was in 

the past. Figure 10 shows these statistics’ increase and peak over the last six regular seasons (recall 

that games played during the 2013-2014 through 2017-2018 season compose the training set, and 

games played during the 2018-2019 season compose the test set).  

 

Figure 10: Offense-Driven Statistics’ Average over the Last Six Regular Seasons 
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 From our analysis, we can conclude that the reason our model predicts Under much more 

frequently than Over is because our training set is not an adequate set to learn from that will 

generalize to the unseen (by the BN) instances in the test set. This also explains why we only 

obtained predictions for 296 out of the 300 instances on which we tested our model. Although we 

assumed the bettor would not wager on these games, the difference between the training and test 

sets may mean that the values of the quarterly in-game statistics of the games in the test set were 

not observed in the corresponding quarter of the games in our training set. Thus, the model 

assigned a zero probability for ߶෠ீ and  ߶෠௅ (detailed in Section 5.5). Then, when we normalize 

these values to obtain the probability that the score is greater than that value set by the oddsmakers, 

a “N/A” resulted. Nevertheless, we are profitable in all quarters, and our model exhibited a strong 

overall accuracy performance (58.78%). Without ignoring the limitations of our model, we deem 

our model successful.  
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CHAPTER VII 

CONCLUSIONS 

 Although many forecasting models have been built to predict the total number of points 

scored in NBA games, these models’ predictions are primarily based on data from previously 

completed games. They fail to provide bettors with predictions also based on the current game 

being played. In turn, this lack hinders their practicality when it comes to sports betting as, in 

basketball, one is allowed to bet at specific time points in the game such as the end of quarters. 

We presented a new classification approach to estimate and sequentially update the probability 

that the total points scored by both teams is greater than the total number of points set by the 

oddsmakers (inspired by the Totals betting strategy) given a set of in-game statistics as input 

variables. We estimated this probability to make wagering decisions at the end of each of the first 

three quarters by calculating the joint probability distribution of scoring totals. This was achieved 

through a Bayesian Network constructed by using filter-based feature selection, conditional 

independence tests, and domain knowledge.  

 The Bayesian Networks and Naïve Bayes models built in the study were trained on every 

non-overtime game in the last five regular seasons of the NBA (2013-2014 through 2017-2018) 

and evaluated on 100 early non-overtime games of the 2018-2019 NBA regular season. 

Specifically, the models were evaluated through collecting the same in-game statistics as in the 

training set, the value set by the oddsmakers for total points at the end of each of the first three 

quarters, and the Over/Under odds corresponding to these values. The Expert Bayesian Network 

and, to a lesser extent, the Naïve Bayes model demonstrated an ability to beat the oddsmakers, 

generating a profit of over 10% and over 6%, respectively, by providing estimates for use in 

making wagering decisions in real-time despite an unprecedentedly high-scoring 2019 NBA 
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regular season. Specifically, our Expert BN’s average (2.14 seconds), maximum (3.32 seconds), 

and standard deviation (0.55 seconds) statistics for computation time over all 300 instances 

ensured that the bettor using this tool has plenty of time between quarters to collect the in-game 

statistics, as well as the value set by the oddsmakers, and input them into our model. We showed, 

in line with previous work, that a BN’s structure works best when domain knowledge is 

incorporated, as the Expert BN had a higher overall accuracy (58.78%) than the BN (44.8%) that 

learned the structure from the training data set. Moreover, we showed that the amateur betting 

strategies did not generate a profit when applied to the values set by the oddsmakers at the end of 

each quarter in our test set. Lastly, we showed that, even with all the dependencies present between 

the in-game statistics, the Naïve Bayes model was successful but was dominated by the Expert 

BN. Although we deemed the Expert BN successful for its high profitability and strong overall 

accuracy performance, the model is not without its flaws. 

 The training data set used for our model was inadequate as we did not foresee the increase 

in point production of the new NBA season. Although we tried to mitigate the risk by considering 

only the last five NBA regular seasons, it might have been wise to use part of our testing set or to 

collect more data from the 2018-2019 NBA regular season and use it as a validation set to tune our 

DAG. Another limitation of our model is that it does not incorporate historical odds, as the 

oddsmakers do not archive them, to make its predictions. If we can somehow find a correlation 

between the in-game statistics and the change in the value set by the oddsmakers for total points 

scored by both teams at the end of each of the first three quarters, our model can make better-

informed decisions. Moreover, although it is common in the literature to not consider overtime 

games for these types of problems, it is important to note that when the bettor is wagering on a 

game in real-time, they do not know whether the game will go to overtime. Therefore, it is likely 
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(given how much more frequently our Expert BN predicted Under than Over) that our estimates 

for total overall accuracy were biased in our favor (though not by much, as when manually 

collecting data only 5 out of 105 games were discarded due to overtime). Nonetheless, all these 

limitations provide us with great opportunities for future research.  

 Future research aims to improve upon the limitations of our Expert Bayesian Network 

mentioned above. One idea is to construct an ensemble model that incorporates the Expert BN 

along with other probabilistic models (such as logistic regression and the random forest) and 

obtains a weighted average of these probabilities (preferably the other models will be biased 

towards predicting Over) to influence our wagering decisions. Additionally, we might want to 

consider, as previously mentioned, how the value set by the oddsmakers will shift in relation to 

the change of the in-game statistics at the end of each quarter by collecting more data and 

estimating conditional probability distributions for these shifts. Currently, our model is 

dynamically updating as it possesses information on the total minutes played in the game and the 

accumulation of the in-game statistics but cannot model the same game progressively (that is, it 

does not store in-game statistics of previous quarters to make its predictions). This is a crude way 

of making the BN time-dependent and, therefore, it may be worthwhile to build a multi-stage BN 

that consists of three stages (one for the end of each quarter) and feeds information from one stage 

to another for our model to learn game progression. Lastly, one of the future research ideas lies 

within the realm of decision analysis. In our model, we assumed that the bettor would wager either 

$100 or $0 on the more favorable outcome, but this may not be the best way to go about making 

wagering decisions. In the future, we might explore obtaining steady-state conditional probabilities 

for the result of the game given the outcome predicted at the end of each quarter by the Expert 

Bayesian Network to build a multi-stage decision model that maximizes a bettor’s utility function 
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obtained from an analysis of their risk aversion.  Instead of a static decision to wager a fixed 

amount each quarter, this model could allocate a fixed budget per game to wager at the end of each 

of its first three quarters. A conference paper summarizes the methodology described in this thesis 

along with some of the results (Alameda-Basora & Ryan, 2019).  
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APPENDIX A: Interpretations of In-Game Statistics 

Table A1: Interpretation of In-Game Statistics (from: https://stats.nba.com/help/glossary) 
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Table A1: (continued) 
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APPENDIX B: R Program to Estimate Probabilities for All Game Instances (BNs) 
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