IOWA STATE UNIVERSITY

Department of Industrial and Manufacturing Systems Engineering

A Multiple Decision-Maker Approach to Allocating Resources for Disruptive Events

Brandon Landowski, Cameron MacKenzie Industrial and Manufacturing Systems Engineering

INFORMS Annual Meeting November 6, 2018

Resource allocation models in emergency preparedness and response

- Mathematical / operations research models: assume single decision maker (Altay and Green 2006, Golany 2009, MacKenzie et al., 2016)
- Multiple decision makers
 - Qualitative studies (Heath 1995, Smith and Dowell 2000)
 - Game theory models (Coles and Zhuang 2011, Shan and Zhuang 2014)
 - Group dynamics (Chittaro and Sioni 2015)
- Allocating resources before a disruption versus after a disruption (Rose et al. 2009, Healy and Malhotra 2009, MacKenzie and Al Kazimi 2018)

IOWA STATE UNIVERSITY

Research goals

- Incorporate four decision makers with different responsibilities and objectives in a disaster context
- Combine decisions of separate entities into overall economic measure of production
- Quantify effect of shared decision making

IOWA STATE UNIVERSITY

Hurricane Katrina

MacKenzie and Al Kazimi (2018) applies resource allocation model to determine resources that should be allocated before a hurricane and after a hurricane

IOWA STATE UNIVERSITY

Four decision makers

IOWA STATE UNIVERSITY

Federal government's resource allocation model

- Minimize expected economic losses in a region (5 states)
- Allocate pre-disruption resources to prepare for a disruption
- Allocate post-disruption resources to help individual economic sectors recover from a disruption
- Budget constraint

Economic losses in the Gulf region from a hurricane

IOWA STATE UNIVERSITY

State government's resource allocation model

- Minimize expected economic losses in a state
- Allocate pre-disruption resources to prepare for a disruption
- Allocate post-disruption resources to help individual economic sectors recover from a disruption
- Budget constraint
- Assumption: state government's resources are more effective than federal government (Journard and Giorono, 2002)

IOWA STATE UNIVERSITY

Private sector's decision model

- Maximize private sector's resilience to disruptive event (MacKenzie and Zobel 2016)
- Allocate resources for hardening (reduces initial impacts) and recovery (reduces time until full recovery)
- Budget constraint
- → Translate resilience to economic losses in private sector industry

IOWA STATE UNIVERSITY

Non-governmental organization (NGO) decision maker

- Maximize multi-objective utility function
 - Food
 - Shelter
 - Relief items
- Allocate resources for each item type before and after disruption
- Budget constraint

IOWA STATE UNIVERSITY

NGO results (millions of dollars)

Budget	Pre-disruption allocation		Post-disruption allocation		
	Food	Relief	Food	Relief	Shelter
300	16.5	5.8	43.9	33.8	0.6
350	22.7	1.4	48.8	43.8	0.6
400	29.0	7.1	56.8	46.4	0.6
450	32.1	1.3	73.3	51.9	0.6
500	37.2	20.1	73.1	51.8	0.6

Translate effect of NGO decisions to economic productivity (using person-days of work)

10

IOWA STATE UNIVERSITY

Shared decision making

- Combine combined economic losses based on 4 decision-making models
- Budgets
 - Federal government = \$10 billion
 - State government (Louisiana) = \$2.5 billion
 - Electric utilities = \$100 million
 - NGO (Red Cross) = \$400 million
- Total production losses = \$43.5 billion

- Budgets
 - Federal government = \$7 billion
 - State government (Louisiana) = \$5 billion
 - Electric utilities = \$500 million
 - NGO (Red Cross) = \$500 million
- Total production losses = \$29.9 billion

IOWA STATE UNIVERSITY

Conclusions

- Operations research model of four different decision makers with different resources, objectives, effectiveness
- Allocating resources before a disruption (e.g., hurricane) and after a disruption
- Input-output economic model translates resource allocation decisions to economic losses from a disruption
- Combine four decision makers: economic production losses from a hurricane can be reduced by \$13 billion if budget is divided differently

camacken@iastate.edu

IOWA STATE UNIVERSITY

References

- Altay, N. & Green III, W. G. (2006). OR/MS research in disaster operations research. European Journal of Operational Research, 175, 475-493.
- Chittaro, L., & Sioni, R. (2015). Serious games for emergency preparedness: Evaluation of an interactive vs. a non-interactive simulation of a terror attack. *Computers in Human Behavior*, 50, 508-519.
- Coles, J., & Zhuang, J. (2011). Decisions in disaster recovery operations: a game theoretic perspective on organization cooperation. *Journal of Homeland Security and Emergency Management*, 8(1).
- Golany, B., et al. (2009). Nature plays with dice-terrorists do not: Allocating resources to counter strategic versus probabilistic risks. *European Journal of Operational Research*, 192(1), 198-208.
- Heath, R. (1995). The Kobe earthquake: Some realities of strategic management of crises and disasters. *Disaster Prevention and Management: An International Journal*, 4(5), 11-24.

IOWA STATE UNIVERSITY

References

- Healy, A., & Malhotra, N. (2009). Myopic voters and natural disaster policy. American Political Science Review, 103, 387-406.
- Joumard, I., & Giorno, C. (2002). Enhancing the effectiveness of public spending in Switzerland.
- MacKenzie, C.A., & Al Kazimi, A. (2018). Optimal resource allocation model to prevent, prepare, and respond to multiple disruptions, with application to the *Deepwater Horizon* oil spill and Hurricane Katrina. To appear in *Applied Risk Analysis for Guiding Homeland Security Policy and Decisions* Wiley.
- MacKenzie, C.A., Baroud, H., & Barker, K. (2016). Static and dynamic resource allocation models for recovery of interdependent systems: Application to the *Deepwater Horizon* oil spill. *Annals of Operations Research*, 236(1), 103-129.
- MacKenzie, C.A., & Zobel, C.W. (2016). Allocating resources to enhance resilience, with application to Superstorm Sandy and an electric utility. *Risk Analysis*, 36(4), 847-862.

IOWA STATE UNIVERSITY

References

- Rose, A., Porter, K., Dash, N., Bouabid, J., Huyck, C., Whitehead, J., Shaw, D., Eguchi, R., Taylor, C., & Mclane, T. (2007). Benefit-cost analysis of FEMA hazard mitigation grants. Natural hazards review, 8, 97-111.
- Shan, X., & Zhuang, J. (2013). Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender—attacker game. *European Journal of Operational Research* 228(1), 262-272.
- Smith, W., & Dowell, J. (2000). A case study of co-ordinative decision-making in disaster management. *Ergonomics* 43(8), 1153-1166.

IOWA STATE UNIVERSITY