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ABSTRACT 

     Additive Manufacturing (AM) is known for its ability to manufacture complex parts 

layer by layer using 3D design data. AM brings significant freedom in design, yet it can 

get hard to produce the same parts with identical dimensional tolerances, a.k.a. 

reproducibility problem. Reproducibility, the ability to produce the same part again under 

same conditions, is one of the major challenges in AM as it plays an important role in the 

replacement of worn-out/damaged parts in an assembly. Ceramics, metals, alloys, and 

plastics are being used for the biomedical implants in which the concept of 

reproducibility is crucial. To obtain quality products and maintain consistency, this study 

is conducted to analyze the effects of most common and critical factors – layer thickness, 

printing speed, orientation angle on dimensional accuracy and surface roughness of AM 

parts. A full-factorial Design of Experiment (DOE) involving these factors with three 

levels each is implemented to determine their effect on overall length, height, width, 

middle height, and surface roughness, which are the response parameters. A dog-bone 

shaped tensile testing specimen is printed with Poly Lactic Acid (PLA) polymer using 

Fused Filament Fabrication (FFF) technology. Dimensional features and surface 

roughness of parts are then measured to determine the variability in output for different 

levels of input. The results of ANOVA analysis are used to conclude about the significant 

factors and their levels. The ANOVA results show that the response parameters are 

affected by main effects, 2-way interactions, and 3-way interactions in different 

combinations. The optimal conditions obtained from ANOVA analysis are used to print 

some more parts to plot control charts and conduct capability analysis. Control charts are 

used to monitor the process variability and capability analysis is conducted to check if the 
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process is in statistical control and can produce parts within specifications. The small size 

of the parts allows the results of this study to be applicable in biomedical and industrial 

sectors. This study containing three input parameters with three levels each considers 

main effects along with interaction effects which have not been considered previously in 

our literature review. Also, the combination of factors is unique and their effect combined 

has not been focused in previous studies. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

     Additive manufacturing (AM), contrast to the traditional material 

removing/subtractive manufacturing is a process in which parts are built in layer by layer. 

The data for depositing the layers is obtained from the 3D CAD model, which is 

converted into STL (standard triangulation) file format. The 3D model is divided into a 

number of two-dimensional layers which form a reference for the 3D printing process. 

The first 3D printer which used the concept of stereo lithography was created by Charles 

W. Hull in the mid-1980’s. Unlike conventional manufacturing, AM is known for its 

freedom in design, reduction in supply chain cost, support for green manufacturing 

initiatives etc. In AM, 3D-printing and rapid prototyping can be used interchangeably to 

describe the process [1]. 

 

     Additive manufacturing has begun to capture its place only recently though it has been 

around for more than two decades. In recent years, the overall market situation for AM 

was characterized by significant growth rates. The financial crisis of 2007–2008, also 

known as the global financial crisis, is considered by many economists to have been the 

worst financial crisis. The 2008 global economic crisis has resulted in unprecedented 

declines in output and exports from both industrialized and newly-industrializing 

economies. After the 2008 crisis, there was significant growth from services as well as 

products and worldwide numbers surpassed the value of $5 billion USD in 2015 which 

spurred a lot of interest in AM-related activities [1]. Different AM technologies are 

available right now for different applications. 
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      In 2010, the American Society for Testing Materials (ASTM) formulated a set of 

standards that classify the range of AM processes into seven categories as presented in 

Table 1. They are vat photopolymerization, material jetting, binder jetting, material 

extrusion, powder bed fusion, sheet lamination and direct energy deposition. AM 

technologies differ in application, the initial condition of processed products, the 

principle of working, workable materials, processing times and many more advanced 

features.  

Table 1: Categories of AM and their principles [1] 

 

Categories Principle 
Vat Photo 
polymerization 

Process in which liquid photopolymer is selectively 
cured by light-activated polymerization. 2PP(2 photon 
polymerization), digital light processing (DLP), and 
stereo lithography (SLA) come under this category. 

Material Jetting Process in which droplets of build material (such as 
photopolymer or thermoplastic materials) are 
deposited as per the geometry of the part. Inkjet-
printing falls into this category. 

Binder Jetting Process in which a liquid bonding agent is deposited to 
fuse powder materials. 

Material Extrusion Process in which material is dispensed through a 
nozzle as per the geometry of the part. Fused 
deposition modeling (FDM), fused filament fabrication 
(FFF), 3D dispensing, and 3D bio plotting fall into this 
category. 

Power bed Fusion Process in which heat energy (from laser or electron 
beam) fuses regions of a powder bed. Selective laser 
sintering (SLS) & Electrical discharge machining 
(EDM) come under this category. 

Sheet Lamination Process in which sheets of material are bonded 
together to form an object. 

Direct Energy 
Deposition 

Process in which focused thermal energy is used to 
fuse materials by melting as they are being deposited. 
This process is currently only used for metals. 
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     Fused filament fabrication (FFF) technology, developed by Scott Crump in the late 

1980s, is a popular rapid prototyping technology widely used in industries to build 

complex geometrical functional parts in a short time due to its advantages on cost, 

material use efficiency, and time [1]. FFF shows great potential in mold fabrication, bio-

medical device design, tissue engineering, and other industrial fields. However, many 

problems such as reproducibility, post-processing, being limited to low-volume 

production are still unsolved [2]. These drawbacks decrease its comparability across 

traditional manufacturing processes. Reproducibility, ability to produce the replicas of the 

same part under same conditions with high dimensional accuracy, is one of the major 

challenges in AM.  

 

     AM is not widely accepted in the industrial sector yet, however their applications in 

different industries are continuously evolving and they will be one of the popular 

technologies of future production. AM at present is suitable for the manufacturing 

complex parts in smaller quantities as it is expensive, takes significant amount of time, 

and might need post-processing operations [3]. When such complex parts are damaged or 

worn out, they need to be replaced with newer ones. Lack of reproducibility may cause 

serious problems as one has to come up new tooling setup and adapt to conventional 

manufacturing which can be daunting for intricate parts. Since AM involves various 

complex factors that do not exist in conventional manufacturing, producing same parts 

with same dimensional tolerances strictly depends on determining the optimal setting of 

these factors. Some of those factors in AM are layer thickness, temperature gradient, tool 
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path generation, build orientation, printing speed, etc. [2,4,5,6,7]. It is important to find 

the extent to which these factors affect reproducibility of AM.  

 

      FFF process applications range from prototypes to functional parts [2]. Despite AM 

being able to manufacture complex parts that cannot be produced by conventional 

manufacturing, many problems such as cost, restriction of materials, being limited to low 

volume productions, reproducibility, post-processing, etc. are still unsolved [2]. Due to its 

advantages of cost, convenience in printing and material use efficiency, FFF shows great 

potential in mold fabrication, bio-medical device design [8], tissue engineering [1] and 

other industrial fields. In efforts to increase FFF’s adoption in industry, some of the major 

concerns like dimensional accuracy and surface quality needs improvement [9,10]. Post-

processing techniques, process and fabricating parameters, virtual model processing 

methods are the factors affecting dimensional accuracy and surface roughness [2,4].  

 

     There are several attempts in the literature to understand the cause of variation in 

dimensional accuracy for AM parts printed by material extrusion approach. Dimensional 

accuracy is the measure of how close the dimensions of a product is to that of the ideal 

product dimensions. Surface roughness is a good predictor of the performance of a 

mechanical component, since irregularities on the surface may form nucleation sites for 

cracks or corrosion. On the other hand, roughness may promote adhesion as well, 

however high values of roughness are undesirable. From our thorough literature review, it 

is observed that the factors layer thickness, printing speed, orientation angle and raster 

width are the major cause for dimensional inaccuracy, whereas the surface roughness is 
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affected by the type of equipment, the direction of build and the process parameters used 

[11]. Further research is needed to investigate the validity of these factors for specific 

technology, material and process parameters, and geometric complexity. The possible 

factors responsible for variation may vary depending on the material, technology, and the 

complexity of the part.  

 

     The objective of this thesis is to understand the effect of layer thickness, printing 

speed and orientation angle on dimensional accuracy and surface finish of PLA parts 

printed using FFF technology. The effect of these factors on dimensional accuracy and 

surface roughness is investigated by adopting a full-factorial design of experiment 

(DOE). The outcomes of this research will provide optimal levels of factors that can be 

used to produce more accurate products using AM. Once the optimal factor settings are 

determined, more parts are printed with at those levels to see if the process can produce 

consistent results. Capability analysis is conducted to assess if the FFF technology is 

statistically able to meet the production requirements under optimal level of factors.  

 

1.2 Motivation 

     Reproducibility, being able to produce the same results every time under same 

conditions, is one of the many challenges which needs wide research and serious 

attention for AM to be widely accepted in the industrial sector. There are various reasons, 

which cause variation in the process such as the material type and AM printing 

technologies. Therefore, there is a need for increased research in this area for different 

materials and AM technologies. Additive manufactured parts should be reproducible to 
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replace the worn out or broken parts. Failure to reproduce the same part causes 

complications in the delivery process and assembly. Thus, there is a need to assess the 

reasons causing variability and optimize them before manufacturing.  

 

     Most of the studies related to reproducibility of parts considers metals [11,12], 

however, polymers are also commonly used in AM. Polymers are interesting and 

attractive materials in AM because they are economical, provide a large range of 

properties and cooperate with low energy fabrication technologies [1]. In 2016, the 

revenues from material sales for AM passed the value of 900 million USD (Fig 1) of 

which the largest fraction were into photopolymers (350 million USD) [8]. As such there 

is need to understand the efficiency and properties of polymers used for AM.  

 

 

Fig 1: Worldwide revenues from AM material sales between 2000 and 2016 adopted from 
[13] 
 

     In this thesis, reproducibility of polymers is assessed by manufacturing polymeric 

parts using FFF technology. There are challenges involved with additive manufacturing 
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of polymer e.g., life cycle and sustainability, printer and equipment variability, and 

inferiority in mechanical features when compared to conventional manufacturing [14]. 

All these challenges must be given significant consideration along with the present 

problem. The overall goal of this study is to find the factors that cause variability in 

production of polymer parts and thereby help produce more standardized parts each time. 

We performed full-factorial DOE to determine the optimal factor levels with minimum 

dimensional accuracy and better surface finish. With regards to the Analysis of Variance 

(ANOVA) results, the optimal factor levels are determined. Then, under the optimal 

factor settings, parts are printed for which the control charts are plotted to monitor the 

variability in the process. Apart from control charts, capability analysis is also conducted 

to check for the process capability (Cpk). If a process has a desirable Cpk value, that means 

it is under statistical control and can produce conforming products. If the Cpk values are 

below the specified level, then the process must be revised to improve the response 

quality.  

 

1.3 Thesis Organization 

Chapter 2 covers the detailed literature review on material extrusion technology, DOE, and 

control charts.  

Chapter 3 discusses the importance of DOE, its principles and types of factorial designs 

that will be used in this thesis along with the specific choices of factors, levels, responses, 

and hypotheses for this experiment.  

Chapter 4 discusses data collection, grouping and the results of the ANOVA analysis for 

the response parameters.  
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Chapter 5 discusses conclusions for the entire thesis research, gives recommendations for 

future work, and shares some details of planned future work on this project. 
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CHAPTER 2. LITERATURE REVIEW 
 

     This chapter includes four sections. Chapter 2.1 discusses studies that consider 

dimensional accuracy and surface roughness as the response parameters and studies that 

worked on improving these features. Chapter 2.2 focuses on DOE applications in AM. 

Chapter 2.3 presents the studies about control charts. Lastly, Chapter 2.4 points out the 

research gap and points to the potential contribution of the research. 

 

2.1. Dimensional Accuracy and Surface finish in AM 

     Dimensional accuracy and resolution of finished parts made with extrusion AM 

processes depend on the process (e.g., layer thickness, printing speed, raster angle) and 

product design parameters, as well as the properties of the feedstock filament properties. 

Aside from aesthetic considerations, these properties of the finished part can be critical 

for applications where fit and form are important or when parts have very small feature 

sizes [15]. Fused Deposition Modeling (FDM), Fused Filament Fabrication (FFF), 3D 

dispensing, and 3D bio plotting are the examples of the material extrusion technology. 

 

     Gorski et al. [16] studied the effect of process parameters (e.g., layer thickness, part 

orientation and filling strategy) on dimensional accuracy and reported that orientation 

angle directly influences reproducibility of FFF technology. Tensile test specimens which 

contain both straight and curved profiles are used to evaluate shape accuracy. Dul et al. 

[17] built dumbbell and rectangular specimens along three different orientations i.e., 

horizontal, vertical and perpendicular. The direction of filament deposition changes with 

the orientation. The importance of orientation effect was highlighted by the FDM process 
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while comparing 3D printed and compression molded parts. Moroni et al. [18] 

determined that optimal part orientation is crucial for considering functional assembly in 

case of a universal joint. Results show that the final recommended orientation angle is 

different for individual part and assembly of universal joint. Ippolito et al. [5] 

manufactured benchmark parts in FDM machine and showed that geometrical deviations 

may reach up to +0.7 mm. Poor tessellation accuracy leads to inaccuracy in parts due to 

errors in the data source. Hällgren et al. [19] compared the results of tessellation from six 

different CAD systems, which showed that tessellation effects may be visible even when 

dimensional requirements are fulfilled. Tessellation is the process of tiling a surface with 

one or more geometric shapes such that there are no overlaps or gaps. They proposed a 

method for 3D data exchange using traditional file format and geometric requirements. 

AMF (Additive Manufacturing File Format) and 3MF (3D Manufacturing Format) are 

still under development but can facilitate different materials and different densities in the 

same part.  

 

     Giovanni et al. [18] proposed a methodology to estimate dimensional and geometric 

deviation of features apart from its STL format by simulating the AM process 

incorporating confounding errors from volumetric and material-related errors, such as 

material flow and shrinkage. The cylindrical feature was selected in the study due to its 

fundamental functionality in mechanical components. The case study considers the FDM 

technology. The results show that it is reasonable to estimate the dimensional feature’s 

deviation of the part from its STL file before fabrication given that the different types of 

STL files have different effects on the response. 
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     Lieneke et al. [2] developed a new method to analyze geometrical accuracies and 

influencing factors based on the knowledge obtained by reviewing the dimensional 

accuracies of FDM parts      and observed the lack of geometric tolerances. This method 

defines relevant geometries and influencing factors for the experimental tolerance 

development. The derived tolerance values were also compared to values reached by 

conventional manufacturing technologies. It was  

concluded that the specifications of the key factors need to be varied to expand the 

methodical procedure and determine the deviations for several geometrical shapes.  

 

     Unfortunately, FDM shows its main limits when the mechanical properties must go 

hand in hand with surface finish [20]. Galantucci et al. [21] presented an in-depth 

knowledge of the process that can improve the surface finish of FDM printed parts. The 

author treated the FDM prototypes treated with a solution of 90% dimethyl ketone and 

10% water to improve the surface finish and observed an increase in ductility and a 

decrease in tensile strength. It was also observed that the angle of the filaments loses its 

influence on the mechanical properties, probably due to an improved isotropy (uniformity 

in all orientations) after the treatment. 

 

     Nourghassemi [22] studied the effect of build angle and layer thickness on the surface 

finish of the parts to establish a relation between the factors and surface finish. An 

equation relating them was developed and is shown below: 
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𝑅 =

⎩
⎪
⎨

⎪
⎧(69.28 ~ 72.36)

𝑡

𝑐𝑜𝑠𝜃
,                                                0° ≤ 𝜃 ≤ 70°

ଵ

ଶ
(90𝑅° − 70𝑅ଽ° +  𝜃(𝑅ଽ° −  𝑅°)), if 70° < 𝜃 < 90°

117.6 X t,                                                                                       if θ = 90°
𝑅(ఏିଽ)°(1 + 𝑤)                                                       if 90° < 𝜃 < 180°

                                   

(1) 

 

Where θ is the build angle and t is the layer thickness, Ra is the arithmetic-mean-surface 

roughness in micron and w is a dimensionless adjustment parameter for supported facets 

and chosen to be 0.2 for FDM system. One more interesting thing is that, when parts are 

printed with the same specifications on a different printer, a difference was observed in 

the values of surface finish. 

 

     Garg et al. [23] investigated the effect of part orientation on surface finish and 

dimensional accuracy of FDM parts built at seven different part orientations (00, 150, 300, 

450, 600, 750 & 900 about Y-axis) with and without post-building chemical vapor 

treatment. From the results, it has been observed that a reasonable low surface finish is 

obtained at 900  part build orientation for each primitive surface of the FDM part. To 

obtain a minimum dimensional deviation of parts, surfaces of the FDM part should be 

orientated either in parallel or in a perpendicular direction with respect to the axis of a 

part. Post-built treatment with cold vapors of acetone yielded a dramatic improvement in 

the surface finish due to a reduction in staircase effect present on surfaces. Surface 

roughness values as low as 0.02 mm can be achieved. Chemical treatment of the 

specimen causes a very minimal change in dimensional accuracy, and in many cases 

reduction in dimensional deviation is achieved. Chemical treatment also leads to 

rounding of the corners i.e., radius less than 1 mm is obtained. Thus, chemical treatment 
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with cold vapor could be used as an excellent alternative for FDM parts to improve 

surface quality without much sacrifice in dimensional or geometry loss.  

 

     Sheydaeian et al. [24] manufactured Titanium structures for orthopedic applications 

using the principle of Binder jet 3D printing multi-scale 3D printer by varying layer 

thickness during the process. The specimens are cylindrical samples, designed with 5 mm 

diameter and 8 mm height and are grouped in to four categories. The first two categories 

were printed with a single layer thickness of 20 µm throughout and in the second two 

categories, the layer thickness was varied from high to low and then to high 

(150 μm/80 μm/150 μm) (Category A) and from low to high (80 μm/150 μm/80 μm) 

(Category B) in each batch, respectively. The latter two were designed with a 

symmetrical distribution of layer thickness with similar weight (0.5) to investigate the 

effect of layer thickness arrangement on mechanical properties of the specimens. Height 

and diameter of each sample were measured three times with digital caliper before and 

after sintering.  ANOVA analysis revealed that there is a significant difference in both 

height and diameter shrinkage among the categories. The first two categories showed a 

lot more height difference compared to the next two categories. 

      A summary of all relevant studies is presented below in Table 2 from which we can 

conclude that the layer thickness, orientation angle, printing speed, fill angle, shell 

thickness, raster angle and power level did have significant effect on the response 

parameters. Main effects and interaction effects of printing speed and layer thickness 

have significant effect on overall length and height which were published in ISERC 

conference paper [63].   
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 Table2: Summary of relevant studies 

  

Author Material  Technology  Factors  Responses  
Significant 

factors  

Galantucci e
t al. 2010  

ABS  FFF  
Chemical 
treatment  

Surface finish  -  

Ranga et 
al. 2010  

ABSP400  FDM  

layer thickness, 
orientation, 

raster angle & 
width  

Dimensional 
accuracy  

Thickness 
and raster 

angle  

Chang et 
al. 2011  

ABS  FDM  

Layer 
thickness, fill 

angle, 
orientation  

Manufacturing 
time, surface 

finish and 
tensile strength  

Layer 
thickness, 
fill angle  

Nourghasem
mi et 

al. 2011  
PLA  FDM  

Build 
orientation and 
layer thickness  

Relation betwee
n factors and 

surface finish  

Orientation 
angle, thick

ness  

Singh 2014  ABS  FDM  Orientation  Length, height  
Orientation 

angle  

Nidagundi et 
al. 2015  

ABS-PA-
747   

FDM  
Layer thickness 

fill angle  

Dimensional 
accuracy, 
Surface 

roughness  

Layer 
thickness  

Tateno et 
al. 2015  

PLA  FDM  Thickness  
Cylindricity, 
Squareness  

Thickness  

Garg et 
al. 2016  

ABS (P430)  FDM  Orientation  
Surface finish 

and dimensional 
accuracy  

Orientation  

      

Fahad et 
al. 2017  

Duraform pol
yamide (Nyl

on 12) 

High-
speed sintering 
(HSS)/Selectiv
e laser sintering 

(SLS)  

Layer 
thickness, 

printing speed, 
power level  

Flatness, 
Squareness  

Layer 
thickness, 
printing 
speed  

Sheydaeian 
et al. 2017  

Titanium  Binder jet  
Layer 

thickness  

Dimensional 
accuracy & 

tensile strength 
tensile strength  

Thickness  

Vishwas et 
al. 2017  

ABS  FDM  
Shell thickness, 
layer thickness  

Dimensional 
accuracy, 

Time took  

Layer and 
shell 

thickness  

Velineni et 
al. 2018  

PLA  FDM  

Layer 
thickness, 

printing speed, 
orientation angl

e  

Dimensional 
features, surface 

roughness  

Different 
combination
s of factors 
for different 
responses  
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Different parameters effect differently in the presence of other factors and at different 

levels. Therefore, the combination of layer thickness, printing speed and orientation angle 

which has not been studied is considered to determine the effect on dimensional accuracy 

and surface finish. 

 

2.2 Design of Experiments and applications 

     Before setting up a new manufacturing process to produce parts, it is necessary to 

study the effect of process variables on the output. When a process involves multiple 

factors, there is more chance for the output to be inconsistent as there is no fixed trend for 

variability. It is necessary to consider the effect of both individual effects and interaction 

effects and the latter is believed to have a significant influence on the response 

parameters yet are often ignored. DOE is an efficient procedure to investigate the effect 

of process parameters on the output so that the obtained results can be analyzed to yield 

valid conclusions. It is used to determine the factors that causes the variation in response 

and find the optimal conditions under which desirable response (minimum or maximum) 

is achieved [25].  

 

     Several DOE studies focus on determining the optimal factor levels for the AM 

process parameters in order to print the parts in desired quality. Albert [26] adopted 25 

full factorial experiment with 5 factors being laser power, laser spot diameter, laser scan 

speed, feature thickness and support structure. Melt pool stress and center feature stress 

are the response parameters. There was a total of 64 runs including a complete set of 

cases for each of two materials. Vishwas et al. [7] used Taguchi approach for design 
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optimization method as it provides a systematic and efficient procedure within a reduced 

number of runs. As this approach involves a reduced number of experiments, cost and 

time will be relatively less compared to a full-factorial design. With layer thickness, 

orientation, and shell thickness as the three factors and with three levels each, Taguchi 

orthogonal array with 9 runs (27 runs in case of full factorial) is used. ANOVA analysis 

was used for Signal-to-Noise ratios to interpret the results. The results showed that the 

best results were obtained with 0.3mm layer thickness, 300 orientation angle and 0.8 mm 

shell thickness. Nidagundi et al. [8] adopted the same Taguchi approach for a 3-level 3 

factor experiment. Three factors being layer thickness, orientation angle, and fill angle 

with three levels each used the L9 orthogonal array. The advantages of this approach 

include simplification of the experimental plan and feasibility of a study of the interaction 

between various process parameters. The response parameters are surface roughness, 

ultimate tensile strength, and dimensional features [5]. It is observed that higher ultimate 

strength and optimal dimensional accuracy were observed at 0.1mm layer thickness, 0 ° 

orientation angle and 0° fill angle. Minimum surface roughness was observed at 0.3 mm 

layer thickness, 150 orientation angle and 00 fill angle. 

     There are studies that considered the effect of layer thickness, part build orientation 

angle, raster angle, raster to raster gap, and raster width on the dimensional accuracy of 

FDM printed parts [27]. Raster angle is measured from x-axis on the bottom layer of the 

part to the angle at which the layer is deposited. Both main effects and interaction effects 

are considered to comment on the significance of factors. Process parameters were 

optimized by using Taguchi’s L9 orthogonal array on the tensile testing specimen. 

Significant process parameters were identified using ANOVA. The main effect plots for 
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signal-to-nose ratios for dimensional accuracy and manufacturing time are plotted. By 

observing the experimental results, dimensional accuracy is maximum at 0.3 mm layer 

thickness, 30° orientation angle, and 0.8 mm shell thickness. It is concluded that the 

thinner layer thickness gives better bonding strength and gives good axial loading 

capability. Upon varying layer thickness and orientation angle, the bonding strength 

changes between the layers. Chang and Huang [28] considered layer thickness, fill angle, 

orientation angle with three levels each to print specimens with ABS material using FDM 

technology. They used the Taguchi method to select a specific set of runs instead of 

selecting all 27. The response parameters were an ultimate tensile strength, surface finish 

and manufacturing time. One of the limitations with this study is that authors did not 

incorporate interaction effects between factors on each response since they implemented 

the Taguchi method.   

2.3 Control charts and capability studies 

     Control charts, a crucial tool in statistical quality control, can be classified as 

control charts for variables and control charts for attributes [29]. The first category 

contains control charts for individual measurements that are common in 3D printing. 

However, such control charts are designed for identical products, which seldom 

happen in 3D printing. The second category contains control charts for attributes that 

have great potential to be applied to 3D printing. For example, the number of defects on a 

3D-printed object is a critical problem. Under the assumption that the number of defects 

on a unit of surface follows a Poisson distribution, control charts for nonconformities 

(defects) can be constructed to minimize the number of defects [29]. They also check the 
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sample to sample variation to determine the variation is within the established stable 

range. 

     X-R charts are ideal for smaller sample sizes and S charts are typically used for larger 

sample sizes. The "chart" consists of a pair of charts: One to monitor the process standard 

deviation and another to monitor the process mean. The Xand R chart plots the mean 

value for the quality characteristic across all units in the sample Xi plus the range of the 

quality characteristic in the sample as R=Xmax-Xmin, where Xmax shows the maximum 

value of the quality characteristic while Xmin shows the minimum. 

     Process capability analysis entails comparing the performance of a process against its 

specifications. It is a statistical measurement of a process’s ability to produce parts 

within specified limits on a consistent basis. Cp (Process Capability), Cpk (Process 

Capability Index), or Pp (Preliminary Process Capability) and Ppk (Preliminary Process 

Capability Index) can be calculated to monitor how the processes are operating. The Cp 

and Cpk calculations use sample deviation or deviation mean within rational subgroups. 

Cp tells if your process is capable of making parts within specifications and Cpk shows if 

your process is centered between the specification limits. They can be calculated using 

the following formula [30]: 

C୮ =
USL − LSL

6σ
 

C୮୩ = Min ൬
USL −  μ

3σ
,
μ − LSL

3σ
൰ 

 

Where USL and LSL are the upper and lower specification limits, μ is mean of the 

process, σ is the standard deviation of the process. 
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     Rupender Singh [6] plotted X and R charts for the feature groove width (10mm) of 

parts produced by FDM, a highly capable process which helps us determine if a process 

is stable and predictable. The X-bar chart shows how the mean or average changes over 

time and the R chart shows how the range of the subgroup's changes over time. 

Graphically, we assess process capability by plotting the process specification limits on 

a histogram of the observations. If the histogram falls within the specification limits, then 

the process is capable. It is observed that the Cpk value of 1.33 or greater is considered to 

be the industry benchmarks. The response parameters being hardness, surface finish and 

nominal dimensions had Cpk value greater than 1.33, so this process will produce 

conforming products if it remains in statistical control. Also, the control chart of these 

features had response values within the upper and lower control limits. 

2.4 Research gap and contribution of the study 

     From the review of past potential studies, various studies considering different 

factorial designs, factors, and responses are compared and it is observed that most of the 

studies either considered one or two factors at a time and only very few studies 

considered three factors at a time. We set up a full factorial design of experiment with 

three factors layer thickness, printing speed and orientation angle and considered 

interaction effects along with main effects. Our goal is to determine if the significant 

factors still remain the same when both main effects and interaction effects are 

considered. Once the significant factors are determined, a capability analysis is conducted 

to test if the FFF process can produce PLA parts within specifications. Not only factors 

but changing the 3D printer also affects the dimensional features. From literature review 

on dimensional accuracy and surface finish studies, there is a need to examine the effect 
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of multiple factors on the response parameters. Different combination of factors has a 

different effect on the output parameters of parts. This thesis is an effort made to 

understand the effect of the three mentioned factors on dimensional accuracy and surface 

finish. In this thesis, the full factorial design is used to avoid data loss about output 

variability. As the specimens are smaller in size, the cost factor didn’t play a major role in 

our study. Since the FFF process is one of the most important and widely used 

technologies, it has been closely studied regarding the relationship between mechanical 

properties, dimensional features, surface finish and process parameters [31].  
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CHAPTER 3. METHODOLOGY 

     In a production environment, it is important to manage the variation in the process in 

order to maintain a specified level of quality. There are many reasons of variation due to 

controllable factors and uncontrollable factors. Controllable factors are the ones which 

we may set their levels during the process; however, the levels of uncontrollable factors 

cannot be set. The general view of a process showing the cause of variations is presented 

in Fig 2.   

 

Fig 2: General model of a process [32] 

     Different applications of additive manufacturing may require different levels of input 

variables/process parameters. It is necessary to study the effect of various levels of 

factors on the output parameters to improve productivity and quality. All engineering 

processes in a manufacturing organization are subject to variation, sources of which may 

be combinations of materials, equipment, method or environmental conditions [33]. 

Because of the limited resources available, experimentation is the best choice to [34] 

 reduce time to design/develop new products & processes 

 improve the performance of existing processes 
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 improve reliability and performance of products 

 achieve product & process robustness 

 perform an evaluation of materials, design alternatives, setting component & 

system tolerances, etc. 

     It is beneficial to work beforehand in selecting the suitable levels of controllable 

factors rather than working for a solution after sensing the problem. To finalize optimal 

conditions for a process, the factors are varied within a reasonable range and the response 

parameters are measured and analyzed to conclude the effect of different levels of factors. 

Response parameters are the output of the process which shows the quality level of 

interest. When two or more variables are involved in an experimental study, there is more 

to consider than simply the main effect. The effect of one independent variable may 

depend on the level of the other independent variables [35]. Often interaction effects are 

ignored to avoid the complexity which shouldn’t be the practice.  

 Main effect - the effect of a single independent variable on the response ignoring 

all other process variables. 

 Interaction effect – When the effect of a factor on the product or process is 

altered due to the presence of one or more other factors, that relationship is called 

an interaction effect. 

 

     DOE plays an important role in Design for Reliability (DFR) programs, allowing the 

simultaneous investigation of the effects of various factors and thereby 

facilitating design optimization.  
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3.1 Design of Experiments (DOE) 

     DOE is one such methodology that can involve multiple factors in a process. It is 

defined as a series of tests in which purposeful changes are made to the input variables of 

a system or process to observe and identify the reasons for changes in responses [36]. The 

response values are analyzed by ANOVA using statistical packages like Minitab, JMP, 

Stat graphics, R, SPC XL, etc. DOE can also be understood as a crucial technique that is 

used to find if the key inputs are related to key outputs based on statistical analysis [37]. 

DOE can accommodate experiments where multiple factors can be varied at once. DOE 

is more beneficial and convenient because it involves fewer runs, less time, and less 

material usage, it includes the effect of interactions, estimated effects of variables are 

more precise, and it maximizes the amount of information gained while minimizing the 

amount of data to be collected [38]. 

3.2 Important Principles of DOE 

 3.2.1 Randomization  

     An essential component of every experiment that needs to be validated. Generally, it is 

extremely difficult for researchers to eliminate unknown potential bias using only their 

expert judgment or literature review, so a deliberate process which randomizes the 

experiment to eliminate these biases from the conclusions is required. In a randomized 

experimental design, objects or individuals are randomly assigned to an experimental 

group [39,40]. Using randomization is the most reliable method of creating homogeneous 

treatment groups, without involving any potential biases or judgments. From various 

types of randomizations available, two types of it are discussed below: 
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a) Completely randomized design 

     In a completely randomized design, objects or subjects are assigned to groups 

completely at random. One standard method for assigning subjects to treatment groups is 

to label each subject, then use a table of random numbers to select from the labeled 

subjects. This may also be accomplished using a computer [41]. In MINITAB, the 

"SAMPLE" command will select a random sample of a specified size from a list of 

objects or numbers. 

b) Randomized block design 

     If an experimenter is aware of specific differences among groups of subjects or objects 

within an experimental group, the experimenter may prefer a randomized block design to 

a completely randomized design. In a block design, experimental subjects are first 

divided into homogeneous blocks before they are randomly assigned to a treatment group 

[42]. For easy understanding, let us assume that an experimenter had reason to believe 

that a factor in an experiment might have a significant effect on the response, he might 

choose to first divide the experimental subjects into groups based on the levels of factors 

considered. Then, the segregated groups would be assigned to treatment groups using a 

completely randomized design [43]. In a block design, both control 

and randomization are considered. In our present study, we used the completely 

randomized experiments using MINITAB to randomize the experiment runs as there was 

no potential grouping of factors was seen. 

3.2.2 Replication  

     To understand the concept of replication, let’s revise the definition of the standard 

error of the mean. It is the square root of the estimate of the variance of the sample mean. 
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The width of the confidence interval is determined by this statistic. The estimates of the 

mean become less variable as the sample size increases. Replication is the basic issue 

behind every method used to estimate or control the uncertainty in our results [44]. But it 

is important to note the difference between replicated runs and repeated runs, although 

the multiple response readings are taken at the same factor levels for both. However, 

repeated runs are response observations taken at the same time or in succession whereas 

replicated runs are response observations recorded in a random order. Therefore, 

replicated runs include more variation than repeated runs [45]. 

 

3.3 Factorial Designs 

     A factorial design is one of the important principles examining several factors 

simultaneously. The factorial experiments, where all combinations of the levels of the 

factors are run, are usually referred to as full factorial experiments.  

3.3.1 Two-level factorial design 

      Full factorial two-level experiments are also referred to as 2K designs 

where K denotes the number of factors in the experiment. A full factorial two-level 

design with K factors requires 2K runs for a single replicate [46]. For example, a two-

level experiment with three factors will require 23 = 8 runs. The first level, i.e. lower 

level, of the factors are usually represented as -1, while the second level, i.e. higher level, 

is presented as +1.  

3.3.2 Three-level factorial design 

     Similar to two-level, three-level factorial designs are referred to as 3K designs, where 

K shows the number of factors. For instance, a three-level experiment with three-factor 
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requires 33=27 runs. The runs are usually represented as in the table below. In our study, 

we have three factors which are layer thickness, printing speed, and orientation angle. 

The notations A, B, and C represent these factors respectively. The experimental set is 

tabulated in Table 3, where 1, 2, and 3 show the levels of each factor. For instance, “111” 

shows that all the factors should be set at “Level 1” and “211” shows that Factor A 

should be set at “Level 2” while both Factor B and C are set at “Level 1”. 

Table 3: Possible combination of runs with three factors and three levels [47] 

             

 

 

 

 

 

 

3.3.3 Taguchi factorial design 

     Taguchi envisaged a new method of conducting the design of experiments which are 

based on well-defined guidelines. Taguchi approach uses a special set of arrays called 

orthogonal arrays. These arrays stipulate the way of conducting a minimal number of 

experiments which could give almost the full information of all the factors affecting the 

response parameter. To make the best of this approach, the experimenter should be 

careful in selecting the factors and response parameters. Steps involved are the same as 

that of DOE except for the selection of orthogonal arrays [48]. 

 

Factor A Factor B 
Factor C 

1 2 3 
1 1 111 211 311 
1 2 112 212 312 
1 3 113 213 313 
2 1 121 221 321 
2 2 122 222 322 
2 3 123 223 323 
3 1 131 231 331 
3 2 132 232 332 
3 3 133 233 333 
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     To determine the effect each variable has on the output, the signal-to-noise ratio needs 

to be calculated for each experiment conducted. Taguchi's method for experimental 

design is straightforward and easy to apply to many engineering situations, making it a 

powerful yet simple tool. It can be used to quickly narrow down the scope of a research 

project or to identify problems in a manufacturing process from data already in existence. 

Also, the Taguchi method allows for the analysis of many different parameters without a 

prohibitively high amount of experimentation [49]. One of the disadvantages is that the 

results obtained do not exactly indicate which parameter has a highest significant effect 

on output. Also, since orthogonal arrays do not test all variable combinations, this method 

should not be used if there’s no room for risk of losing data. Another limitation is that the 

Taguchi methods are offline, and therefore inappropriate for a dynamically changing 

process such as a simulation study [49]. 

 

     Some uncontrollable noise factors cause the quality characteristics to deviate from the 

target values. The factors can be classified into three categories: 1) external factors, 2) 

manufacturing imperfections, and 3) product deterioration. The unstable environment 

conditions, such as power supply, temperature, humidity and vibrations of nearby 

machinery, are the external factors. The Orthogonal Array (OA) is used as part of the 

Taguchi Method to design the experiments. OA is a systematic, statistical way of testing 

pair-wise interactions. It provides representative (uniformly distributed) coverage of all 

variable pair combinations. 
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a) Signal-to-Noise Ratio and Analysis of Variance 

     The sample signal to noise ratio is defined as the ratio of the mean to the standard 

deviation. It shows the variability as defined by the standard deviation relative to the 

mean. This definition of the signal to noise ratio should typically only be used for data 

measured on a ratio scale. That is, the data should be continuous and have a meaningful 

zero. Typically, there are three S/N ratios: the lower-the-better (people desire the quality 

characteristic value to be small, such as surface roughness), the higher-the-better (such as 

mechanical strength), and the nominal-the-better (such as the dimension). The unit of S/N 

is dB, the lower-the-better S/N calculation [50] is presented in Equation (1). 

S

N
=  −10 x logଵ(

1

n
 Y୧

ଶ)

୬

୧ୀଵ

 
(2) 

 

where n is the number of measurements and Yi is the observed performance 

characteristic value. After the S/N value is calculated, a statistical method called analysis 

of variance (ANOVA) will be performed. ANOVA is used to evaluate the influence of 

the control factors on the experimental results and to determine which control factors are 

statistically significant [51]. 

 

3.4. Development of the Experiment 

     Having understood the importance of main effects and interaction effects, we can 

determine significant factors by running a full complement of all factor combinations, 

i.e., a full factorial design. We have adopted a full factorial design in our study to avoid 

missing any information about output variability, main effects, and interaction effects. 

Research is conducted in order to determine the factors that are responsible for 
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dimensional accuracy and surface finish for material extrusion technology when 

polymers are used. 

     Even though studies exist tackling the effect of printing speed on surface finish [17, 

52, 53,54], there is a need to investigate its effect on dimensional accuracy. Moreover, 

the interaction effect of build orientation between factors layer thickness and printing 

speed has not been investigated for FFF technology and polymers. In order to address 

these gaps in the literature, we investigate the main and interaction effects of printing 

speed, layer thickness, and build orientation for FFF technology and PLA material. The 

levels of these three factors are presented in Table 4, 

 
Table 4: Three factors with three different levels each 

 

     With regards to the findings of the literature review, the goal of this study is to 

investigate the effect of layer thickness, printing speed, and orientation angle on 

dimensional accuracy and surface roughness. Therefore, our hypothesis is that the part’s 

dimensional accuracy for overall length, height, width, middle height, and surface 

roughness might be affected by all the three factors. We consider three factors: layer 

thickness, printing speed and orientation angle with three levels constituting 27 different 

experiments. All the experiments were replicated thrice, summing to a total of 81 runs. 

Factor Factor labels Level 1 Level 2 Level 3 

Layer thickness(mm) A 0.1 0.2 0.3 

Printing 
Speed(mm/s) 

B 60 80 100 

Orientation angle C 00 450 900 
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The full factorial method was used to investigate the main effects of factors, and 

interaction effects between the factors.  

 

     We ran all 81 experiments randomly without following any order so that the machine 

can be set to different process parameters rather than replicating the same parts thrice in a 

row. All experiments are run under the same conditions; all other factors except layer 

thickness, printing speed, and orientation angle were kept constant for all experiments. 

We used PLA polymer to build the parts on the FFF machine. The FFF 3D printer that we 

used is Monoprice Maker Select V2 (Fig 3) with build volume 8"x8"x7", 100-micron 

resolution, 1.75mm filament diameter, 100mm/sec print speed and max temperature of 

2600C. The price of PLA coil 1.75mm thickness, 1kg spool was 15$. As PLA material is 

relatively cheap compared to other polymers, full factorial DOE is considered instead of 

reduced factorial methods. The price of the 3D printer, Monoprice maker select V2 was 

200$. 

 

Fig 3: Monoprice maker select V2 3D printer 

     Monoprice maker in Fig 3 is the 3D printer used to print PLA parts. A memory card is 

used to load the STL file to the printer. The building part in Fig 5(a) is a dog bone shaped 



31 
 

 
 

tensile testing specimen (9.00X1.00X0.4cm) taken from the literature [45, 59, 60]. The 

CAD model of the part Fig.5(b) was created using SOLIDWORKS which is then 

converted into STL file in Fig.6(a, b, c) using CURA 15.04 software. With CURA, we 

could vary the levels of factors such as layer thickness and shell thickness, traction, 

density, bed temperature, support structure and many more advanced features. Fig 4 

shows the picture of a build platform of the printer with manual leveling mechanism. The 

circular discs underneath the platform are screws used to adjust the level and tightness of 

the platform. 

 

Fig 4: Build platform with a manual levelling mechanism 

 

 

 

 

 

 
     Fig 5(a): 2D and Isometric sketch of the part                   Fig 5(b): 3D model of the part 
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Fig 6(a): Part Orientation in CURA15.04 
software with 00 
 

 

 

 

 

 

 

 
Fig 6(c): Part Orientation in CURA15.04 software with 900 

 

 
     The printing duration for building each part varies with the levels of factors. Though 

the factors layer thickness and printing speed are kept constant, the building time of each 

part varies when the build orientation is changed. The depositing direction, i.e build 

orientation, changes to horizontal, inclined or vertical depending on the angle. The setup 

of Factor A in Level 3, Factor B in Level 3 and Factor C in Level 2 took the least time of 

5 min per part. The set up with Factor A in Level 1, Factor B in Level 1 and Factor C in 

Level 1 took the longest printing time of 18 min per part. Table 5 shows the time taken to 

   
 

Fig 6(b): Part Orientation in 
CURA15.04 software with 450 
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print each part at different levels of factors. In Table 5, 1, 2, 3 refer to the levels of each 

factor. 

 

Table 5: Manufacturing time required for each run 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The methodology, experimental set up, and equipment are clearly discussed in this 

chapter. The results and the effects of input on output parameters will be explained in 

chapter 4 

Factor Levels  

A B C 
Time 
(Min) 

1 

1 
1 18 
2 17 
3 18 

2 
1 16 
2 15 
3 16 

3 
1 14 
2 13 
3 14 

2 

1 
1 10 
2 10 
3 10 

2 
1 9 
2 8 
3 9 

3 
1 8 
2 7 
3 8 

3 

1 
1 7 
2 7 
3 7 

2 
1 6 
2 6 
3 6 

3 
1 6 
2 5 
3 6 



34 
 

 
 

CHAPTER 4. RESULTS & DISCUSSIONS 

     All the parts with different levels of factors are printed according to the DOE plan and 

procedures discussed in Chapter 3. A full factorial design of experiment is performed for 

each level of layer thickness, printing speed, and orientation angle. Layer thickness is the 

thickness of the material being deposited on the build platform from the nozzle of a 3D 

printer. Printing speed is the speed at which the nozzle moves with respect to the 

stationary bar of the 3D printer. Orientation angle is the angle which can be set through 

CURA software so that the part will be printed in that angle on the build platform, i.e. the 

angle at which the layers are deposited will change for different orientations.  

     After experiments, the end products are measured. Overall length is the horizontal 

length of the part from extreme right to extreme left point of the part. Height is the 

vertical distance from top most point to lowest point of the part when its placed as the top 

part as shown in the Fig 5(a). Width is the thickness of the part and middle height is the 

vertical distance of the part in the middle section.  Instead of considering the actual 

measured dimensional values for analysis, the values are subtracted from the nominal 

dimensions of the part to provide a direction and aim to the analysis. The aim is to 

minimize the deviation of the response values from target values. All four dimensions are 

measured at the same location on each part using digital Vernier calipers with an 

accuracy of 0.001mm. Table 6 shows the actual measured values whereas Table 7 shows 

the absolute value of difference of measured response parameters from nominal values. 

The percentage change in each dimension i, i=length, width, height, is calculated based 

on Eq. (2), where 𝑋 shows the measured value for dimension i, and 𝑋 shows the 

respective CAD dimension of the part. The term %∆𝑋, stands for the percentage change 
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according to the CAD value for each dimension i. It should be noted that the higher 

percentage deviations refer to lower dimensional accuracy. R1, R2, and R3 presents to 

1st, 2nd, and 3rd replicas of the experiment.  

%∆𝑋 =
|𝑋 − 𝑋|

𝑋
× 100 

(3) 

 

     A, B, C columns in Table 6 and Table 7 are used to represent the factors and 

corresponding levels. Since the full-factorial design was repeated thrice, R1, R2, and R3 

represent each replication for all the responses. The surface finish of all parts is measured 

using Profilometer at the same location. Fowler surface roughness gage Ra; Rz with 

stylus tip (Universal product code - 646795168008). Fig 7 shows the picture of equipment 

used to measure the surface roughness. 

 

 

 

 

 

Fig 7: Fowler surface roughness 

     Table 8 shows the surface finish values of all parts. In this study, a design which 

consists of three factors with three levels each can be expressed as 3 x 3 x 3 = 27 runs and 

its model can be represented as  

Yijk = µ + Ai + Bj + Ck + ABij + ACik + BCjk + ABCijk + 𝜀ijk 

Where Yijk shows the predicted response, A, B, and C are the factors labelled for layer 

thickness, printing speed and orientation angle for easy representation in equation. i, j, k 
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are the levels of factors respectively and 𝜀 shows the error term. These terms are used for 

all regression equations in this study. In this case, main effects have 2 degrees of 

freedom, two-factor interactions have 4 degrees of freedom and similarly, k-factor 

interactions have 2K degrees of freedom. This model contains a total of 26 degrees of 

freedom. 
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Table 6: Measured values of dimensional response parameters in mm. 

 
 

        Overall Length (mm) Height (mm) Width (mm) Middle height (mm) 
Run LT PS OA R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

1 

0.1 

60 0 8.960 8.983 8.970 1.006 1.010 1.004 0.382 0.389 0.389 0.512 0.516 0.514 
2 60 45 8.950 8.950 8.959 1.005 1.000 1.003 0.378 0.385 0.370 0.507 0.509 0.506 
3 60 90 8.981 8.967 8.960 1.000 1.000 1.003 0.374 0.391 0.354 0.505 0.505 0.503 
4 80 0 8.980 8.971 8.980 1.000 1.000 0.994 0.372 0.362 0.360 0.508 0.511 0.515 
5 80 45 8.976 8.985 8.974 1.002 1.003 1.004 0.372 0.387 0.335 0.510 0.503 0.505 
6 80 90 8.970 8.960 8.975 1.010 1.000 1.005 0.388 0.392 0.389 0.512 0.511 0.512 
7 100 0 8.970 8.968 8.967 0.993 0.996 0.994 0.399 0.395 0.395 0.507 0.503 0.503 
8 100 45 9.000 8.976 8.997 0.990 1.000 0.989 0.394 0.373 0.404 0.496 0.501 0.499 
9 100 90 8.986 8.984 8.950 0.990 0.998 0.998 0.391 0.368 0.368 0.504 0.507 0.506 
10 

0.2 

60 0 8.980 8.966 8.970 0.995 0.995 1.000 0.398 0.396 0.400 0.509 0.504 0.509 
11 60 45 8.990 8.982 8.976 1.000 0.993 0.992 0.408 0.404 0.408 0.497 0.499 0.494 
12 60 90 8.970 8.973 8.966 0.997 0.992 0.993 0.409 0.406 0.408 0.499 0.499 0.497 
13 80 0 8.960 8.980 8.983 0.992 0.980 0.984 0.361 0.385 0.322 0.488 0.499 0.496 

14 80 45 8.983 8.925 8.980 0.993 0.990 0.994 0.397 0.385 0.397 0.495 0.484 0.493 
15 80 90 8.979 8.971 8.980 0.996 0.992 0.993 0.400 0.378 0.371 0.487 0.494 0.492 
16 100 0 8.958 8.959 8.962 0.989 0.973 0.987 0.404 0.406 0.409 0.485 0.485 0.490 
17 100 45 8.954 8.954 8.946 0.976 0.975 0.984 0.410 0.370 0.367 0.476 0.479 0.480 
18 100 90 8.952 8.973 8.969 0.995 0.979 0.984 0.374 0.377 0.384 0.488 0.486 0.483 
19 

0.3 

60 0 8.960 8.960 8.938 0.980 0.980 0.989 0.377 0.381 0.375 0.494 0.486 0.494 
20 60 45 8.988 8.997 9.000 0.979 0.984 0.992 0.400 0.410 0.411 0.483 0.494 0.498 
21 60 90 8.965 8.960 8.960 0.976 0.978 0.981 0.392 0.390 0.392 0.483 0.486 0.486 
22 80 0 8.966 8.967 8.970 0.988 0.984 0.988 0.389 0.389 0.388 0.498 0.496 0.500 
23 80 45 8.961 8.937 8.992 0.977 0.981 0.979 0.369 0.388 0.385 0.478 0.481 0.483 
24 80 90 8.969 8.971 8.965 0.986 0.984 0.988 0.339 0.340 0.386 0.490 0.479 0.483 
25 100 0 8.977 8.980 8.978 0.980 0.990 0.998 0.381 0.336 0.334 0.517 0.506 0.507 
26 100 45 8.981 8.970 8.994 0.993 0.990 0.976 0.388 0.352 0.391 0.484 0.485 0.491 
27 100 90 8.960 8.942 8.940 0.976 0.992 1.000 0.368 0.363 0.360 0.560 0.522 0.520 
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Table 7: Absolute deviation values of dimensional features in mm
  Overall Length (mm) Height (mm) Width (mm) Middle height (mm) 

Run LT PS OA  R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

1 

0.1 

60 0° 0.040 0.017 0.030 0.006 0.010 0.004 0.018 0.011 0.011 0.012 0.016 0.014 

2 60 45° 0.050 0.050 0.041 0.005 0.000 0.003 0.022 0.015 0.030 0.007 0.009 0.006 

3 60 90° 0.019 0.033 0.040 0.000 0.000 0.003 0.026 0.009 0.046 0.005 0.005 0.003 

4 80 0° 0.020 0.029 0.020 0.000 0.000 0.006 0.028 0.038 0.040 0.008 0.011 0.015 

5 80 45° 0.024 0.015 0.026 0.002 0.003 0.004 0.028 0.013 0.065 0.010 0.003 0.005 

6 80 90° 0.030 0.040 0.025 0.010 0.000 0.005 0.012 0.008 0.011 0.012 0.011 0.012 

7 100 0° 0.030 0.032 0.033 0.007 0.004 0.006 0.001 0.005 0.005 0.007 0.003 0.003 

8 100 45° 0.000 0.024 0.003 0.010 0.000 0.011 0.006 0.027 0.004 0.004 0.001 0.001 

9 100 90° 0.014 0.016 0.050 0.010 0.002 0.002 0.009 0.032 0.032 0.004 0.007 0.006 

10 

0.2 

60 0° 0.020 0.034 0.030 0.005 0.005 0.000 0.002 0.004 0.000 0.009 0.004 0.009 

11 60 45° 0.010 0.018 0.024 0.000 0.007 0.008 0.008 0.004 0.008 0.003 0.001 0.006 

12 60 90° 0.030 0.027 0.034 0.003 0.008 0.007 0.009 0.006 0.008 0.001 0.001 0.003 

13 80 0° 0.040 0.020 0.017 0.008 0.020 0.016 0.039 0.015 0.078 0.012 0.001 0.004 

14 80 45° 0.017 0.075 0.020 0.007 0.010 0.006 0.003 0.015 0.003 0.005 0.016 0.007 

15 80 90° 0.021 0.029 0.020 0.004 0.008 0.007 0.000 0.022 0.029 0.013 0.006 0.008 

16 100 0° 0.042 0.041 0.038 0.011 0.027 0.013 0.004 0.006 0.009 0.015 0.015 0.010 

17 100 45° 0.046 0.046 0.054 0.024 0.025 0.016 0.010 0.030 0.033 0.024 0.021 0.020 

18 100 90° 0.048 0.027 0.031 0.005 0.021 0.016 0.026 0.023 0.016 0.012 0.014 0.017 

19 

0.3 

60 0° 0.040 0.040 0.062 0.020 0.020 0.011 0.023 0.019 0.025 0.006 0.014 0.006 

20 60 45° 0.012 0.003 0.000 0.021 0.016 0.008 0.000 0.010 0.011 0.017 0.006 0.002 

21 60 90° 0.035 0.040 0.040 0.024 0.022 0.019 0.008 0.010 0.008 0.017 0.014 0.014 

22 80 0° 0.034 0.033 0.030 0.012 0.016 0.012 0.011 0.011 0.012 0.002 0.004 0.000 

23 80 45° 0.039 0.063 0.008 0.023 0.019 0.021 0.031 0.012 0.015 0.022 0.019 0.017 

24 80 90° 0.031 0.029 0.035 0.014 0.016 0.012 0.061 0.060 0.014 0.010 0.021 0.017 

25 100 0° 0.023 0.020 0.022 0.020 0.010 0.002 0.019 0.064 0.066 0.017 0.006 0.007 

26 100 45° 0.019 0.030 0.006 0.007 0.010 0.024 0.012 0.048 0.009 0.016 0.015 0.009 

27 100 90° 0.040 0.058 0.060 0.024 0.008 0.000 0.032 0.037 0.040 0.060 0.022 0.020 
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Table 8: Measured values of surface roughness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ‘-‘Device gave no reading at those level of factors 

     Table 8 lists the values of surface finish of eighty-one parts measured using 

profilometer at same location. Ra is the arithmetic average of the absolute values of the 

profile height deviations from the mean line, recorded within the evaluation length. Table 

  R1 R2 R3 

Run LT PS OA Ra Ra Ra 

1 

0.1 

60 0 2.90 4.10 7.90 

2 60 45 11.21 1.41 1.76 

3 60 90 7.14 5.92 7.02 

4 80 0 6.12 12.01 7.22 

5 80 45 12.08 15.21 9.11 

6 80 90 1.58 3.97 5.13 

7 100 0 13.35 16.78 15.09 

8 100 45 1.56 3.12 1.76 

9 100 90 9.36 10.00 10.30 

10 

0.2 

60 0 9.37 8.07 11.89 

11 60 45 3.71 21.53 1.46 

12 60 90 5.13 8.23 5.10 

13 80 0 15.18 17.41 5.56 

14 80 45 19.78 2.63 13.12 

15 80 90 21.22 14.25 21.22 

16 100 0 7.00 12.11 24.17 

17 100 45 34.27 39.01 45.26 

18 100 90 24.76 19.81 21.08 

19 

0.3 

60 0 36.12 7.41 15.11 

20 60 45 3.01 1.18 2.09 

21 60 90 21.52 8.22 10.55 

22 80 0 45.28 21.22 15.55 

23 80 45 - 12.58 27.61 

24 80 90 37.81 49.44 - 

25 100 0 - - 51.16 

26 100 45 56.01 61.01 39.03 

27 100 90 - 40.36 - 
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8 has some cells with ‘-’, which means the profilometer couldn’t give a reading at those 

factor levels because of too large values. Simply put, Ra is the average of a set of 

individual measurements of a surface’s peaks and valleys [56].  

      The Figures 8 (a) and 8 (b) show the resolution obtained at different factor levels. 

Clearly, the Fig 8(a) is much finer when compared to 8(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Full factorial design of experiment is beneficial when considering multiple factors and 

interaction effects between them. To examine the statistical significance of factors on 

each response, we performed analysis of variance (ANOVA) method using Minitab 18 

statistical software. Our hypothesis in this study is that the layer thickness, printing speed, 

orientation angle and their interactions might have a significant effect on the deviation 

Fig 8(a): Specimen with 0.1mm layer thickness, 60mm/s printing speed & 00 
   

Fig 8(b): Specimen with 0.3mm layer thickness,100mm/s printing speed & 00 
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from nominal dimensions. A brief explanation of ANOVA interpretation is discussed 

followed by the ANOVA results for deviation of all the responses.  

4.1 Interpretation of ANOVA 

     Significant factors are those which cause a change on the output not due to chance. 

Statistical evidence is used to comment on significance level of factors. ANOVA analysis 

is used to determine the p-values which are used to assess the null hypothesis by 

comparing them with the significance level. A significance level indicates the probability 

of rejecting the null hypothesis given that it is true [57]. In our current example, we have: 

Null Hypothesis (H0) – Response parameters are not affected by the input variables. 

Alternative Hypothesis (H1) – Response parameters are affected by the input variables. 

     Small p-values (<=0.05) are counted as evidence against H0 and in favor of H1 in 95% 

confidence. However, a p-value may not be interpreted as a "probability that H0 is true," a 

quantity that is simply without a rational definition. So, even if we fail to reject the null 

hypothesis, it does not mean the null hypothesis is true [58]. That's because 

a hypothesis test does not determine which hypothesis is true, or even which is most 

likely, it only assesses whether available evidence exists to reject the null hypothesis.  

     The following sections discuss about the results from the 81 experiments in Table 7 

and Table 8. The basic summary statistics were calculated, an Analysis of Variance 

(ANOVA) was performed, and model validation is done for each of the five responses. A 

multivariate analysis of variance (MANOVA), is an analysis of variance except that there 

are more responses involved. This is used in studies where more than one dependent 

variables are affected by one or more factors. Various methods related to analysis of 

variance like hypothesis testing, partitioning of sum of squares, additive models and 
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experimental techniques have been around the since the beginning of the 19th century. 

ANOVA tests the differences between three or more groups means and it can assess only 

one dependent variable at a time. ANOVA analysis is adopted in this study to test the 

effects of dependent variables at a time and then study the effects of multiple factors from 

interaction effects. ANOVA analysis for each response parameter is conducted separately 

and is discussed simultaneously with main effect and interaction plots.  

4.2. Optimal factor determination for overall length 

       The first step in the ANOVA process is to identify the potentially significant factors 

and interactions. Factors/combinations affecting overall length will be discussed in this 

section as each response parameter is analyzed separately. Before proceeding with the 

ANOVA analysis, data must be checked for normality, because like other parametric 

tests, ANOVA assumes that the data fits the normal distribution. If the measurement 

variable (response parameter) is not normally distributed, there may be an increase in the 

chance of a false positive result if analyzed with an ANOVA or another test that assumes 

normality. If data is not normally distributed, many practitioners suggest that a non-

parametric version of the test which does not assume normality should be conducted.  

 

Fig 9: Normality test for overall length 
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     Anderson-Darling test is used to test the normality of the data. In this test, null 

hypothesis is H0: Data follows normal distribution and alternative hypothesis is H1: Data 

does not follow normal distribution. In Fig 9, the p-value for Anderson-Darling test is 

0.284. Thus, the decision is not to reject the null hypothesis in 90% confidence level. We 

cannot conclude that the data is not normally distributed. 

     Our hypothesis is that all the factors and their interactions do not have significant 

effects on the deviation in overall length.  The ANOVA results are presented in Table 9.  

Table 9: ANOVA results for deviation in overall length 

 

     According to the ANOVA results in Table 9, we observe that the interaction effect of 

LT X PS, layer thickness and printing speed (p-value = 0.008), interaction effect of LT X 

OA, layer thickness and orientation angle (p-value = 0.031) and interaction effect of all 

three factors LT X PS X OA, (p-value = 0.001) have significant effects on the overall 

length. The rest of the factors do not have significant effects on the response based on the 

statistical evidence. 

     The Pareto chart is used to determine the magnitude and the importance of the effects.  

On the Pareto chart, bars that cross the reference line are statistically significant [62]. 

With regards to the Pareto chart in Fig 10, the bars that represent factors LT X PS, LT X 

Source DF SS MS F-Value P-Value 
LT 2 0.000003 0.000002 0.98 0.383 
PS 2 0.000001 0.000000 0.27 0.767 
OA 2 0.000008 0.000004 2.2 0.121 
LT X PS 4 0.000026 0.000007 3.87 0.008 
LT X OA 4 0.000020 0.000005 2.88 0.031 
PS x OA 4 0.000012 0.000003 1.75 0.153 
LTX PS X 
OA 

8 
0.000056 0.000007 

4.09 0.001 

Error 54 0.000092 0.000002   
Total 80 0.000218      
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OA and LT X PS X OA cross the reference line that is 2.005. These factors are 

statistically significant at the 0.05 level with the current model terms. 

 

Fig 10: Pareto chart of standardized effects for overall length 

 

4.2.1 Accuracy of the model 

     A very important part of an analysis is to test model validity, as an invalid model 

produces invalid conclusions. Model adequacy is tested by examining the validity of 

three assumptions for the residuals using a 4-in-1 residual plot: normality, equal 

variances, and data independence [59]. A residual plot is a graph that is used to examine 

the goodness of fit in regression and ANOVA. First, the normality of the residuals was 

tested using a normal probability plot (please see Fig 11). This plot shows no outliers, 

significant gaps or clear tails. Similarly, the histogram at the bottom left of Fig 11 clearly 

displays a bell-shaped distribution indicating that the normality assumption of residuals is 

satisfied. 
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Fig 11: Residual plots of overall length 

 

     The versus-fits plot in Fig 11 indicates the validity of the constant variance 

assumption. In this case, the assumption is satisfied because the residual data had a nice 

random spread, except for a couple of outliers right to the center but they don’t seem to 

follow a specific pattern, so the independence assumption cannot be rejected. The versus 

order plot (bottom right of Fig 11, “Versus Order”) is used to validate the independence 

assumption. This plot is appropriate if you know the order in which the data is collected. 

There is nothing extremely different about the plot except few points shooting long from 

the center. In order to check the equal variance assumption, we plot variation in residuals 

at different levels of treatment in Fig 12. The distribution of residual is very similar at all 

three levels, so we can assume equality of variance between the levels. After all the 

assumptions for the residuals are met, we identify the optimal factor settings in Section 

4.2.2. 
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Fig 12: Residual versus layer thickness 

4.2.2 Main effect and interaction plots 

     Main effects and interaction plots will assist us in finding the optimal level of 

significant factors on the mean response, i.e., deviation in the overall length. Fig 13 

illustrates the main effect plots of all the three factors on the mean response of overall 

length. Since the individual main effects do not have significant impacts to explain the 

variation in the length, we only focus on the two-way interaction plot in Fig 14. The 

lowest point on the graph indicates the factor levels that has minimum deviation in the 

response.  

     From Fig 14, for LT X PS, lowest point of deviation is found at 0.1mm of layer 

thickness and 100mm/s of printing speed. For LT X OA, lowest point of deviation is 

found at 0.3mm of layer thickness and 45 deg of orientation angle.  
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Fig 13: Main effects plot of factors for deviation in overall length(%L) 

 

  

Fig 14: Interaction plot of factors for deviation in overall length 
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Fig 15: Three-way interaction plot for deviation in overall length 

 

     Since there is also three-way interaction, optimal factor levels cannot be determined 

only considering main effects and two-way interaction plots. From the three-way 

interaction plots in Fig 15, AXB vs C and AXC vs B, 0.3mm of layer thickness, 60mm/s 

of printing speed and 450 of orientation angle are found to be the optimal levels. The 

desired value is the smallest mean value of deviation in responses. The final optimal 

levels of significant factors for overall length are 0.3mm, 60mm/sec and 450. 

 

     Regression model for the predicted mean response at the optimal condition is 

estimated only from the significant main or interaction effects. The selection of factor 

levels to be used in the prediction equation is dependent on the nature of chosen quality 

characteristic for the experiment. General form of regression model for 3 factor and 3 

levels is: 

Yijk = µ + Ai + Bj + Ck + ABij + ACik + BCjk + ABCijk + εijk 
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     For deviation from overall length LT X PS, LT X OA, and LT X PS X OA are the 

significant factors, thus the regression equation reduces to: 

Deviation from overall length = 0.03040 - 0.00657 A1B3- 0.00794 A3C2 -0.01006 A3B1C2 

4.3 Optimal factor determination for height 

     In this section, only factors affecting height will be discussed. Before ANOVA test, 

the data should be checked against normality. Normality test for deviation in height data 

is presented in Fig 16. In Fig 16, the p-value (0.067) is greater than 0.05. Thus, the 

decision is not to reject the null hypothesis for 95% confidence level. We cannot 

conclude that the data is not normally distributed. 

 

Fig 16: Normality test for height 

      The ANOVA results are represented in Table 10. Our hypothesis is that all the factors 

and their interactions might have significant effects on deviation in height.  In Table 10, 

we observe that the main effect LT (p-value = 0.00), interaction effect LT X PS (p-value 

= 0.00) have significant effects on the response parameter, deviation in height. The rest of 

the factors do not have significant effects on the response. 
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Table 10: ANOVA results for deviation in Height 

Source DF SS MS F-Value P-Value 
LT 2 0.010375 0.005187 29.19 0.000 
PS 2 0.000771 0.000385 2.17 0.124 
OA 2 0.000185 0.000093 0.52 0.597 
LTXPS 4 0.005288 0.001322 7.44 0.000 
LTXOA 4 0.000386 0.000097 0.54 0.704 
PSXOA 4 0.000623 0.000156 0.88 0.484 
LTXPSXOA 8 0.001869 0.000234 1.31 0.256 
Error 54 0.009596 0.000178   
Total 80 0,029094    

 

4.3.1 Accuracy of the model 

     Model adequacy is tested by examining the validity of three assumptions using a 4-in-

1 residual plot in Fig 17, normality, equal variances, and data independence. First, the 

normality of the data was tested using a normal probability plot of Fig 17. The data points 

could be covered by a pencil lying on top of the fitted red line; thus, the residuals could 

be considered as normally distributed. Moreover, the histogram at the bottom left 

displays a bell-shape like distribution. Therefore, we can conclude that the response is not 

non-normal. 

 

Fig 17: Residual plots of height 
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     The plot in Fig 17 is appropriate if you know the order in which the data is collected. 

Except few residuals, we could conclude that data meets independence assumption. From 

the versus-fits plot, the assumption is satisfied since the residual data had a random 

spread, except for a couple of outliers left to the center but they don’t seem to follow a 

specific pattern, so the independence assumption cannot be rejected.  

4.3.2 Main effect and interaction plots 

     Having identified the significant factors, the next step is to determine optimal setting 

of the factors. Main effects and interaction plots will assist us in finding the optimal level 

of significant factors on the mean response, i.e., deviation in height. Fig 18 illustrates the 

main effect plots of all the three factors on the mean response of height. From ANOVA 

table, we observed that the factor LT has significant effect on height. We need points 

closer to zero on the graph indicating the minimum deviation from target value. 

  

Fig 18: Main effects plot of factors for deviation in height (%H) 

     Looking at main effects in Fig 18, we see that the least deviation in height is observed 

at 0.1mm of layer thickness. 
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Fig 19: Interaction plot of factors for deviation in height 

 

     Fig 19 shows the two-way interaction plot of the factors for the height. The interaction 

LT X PS is presented at the top right part of Fig 19. The lowest deviation occurs at 

0.1mm of layer thickness and 80mm/sec of printing speed. As orientation angle alone has 

no significant effect, any level can be used with above optimal levels. Final optimal 

levels of significant factors for height are 0.1mm, 80mm/sec, any level of OA. 

 

     The optimal levels of LT and PS from main effect plots are 0.1mm and 60mm/sec 

respectively, similarly interaction effect LT X PS has 0.1mmx80mm/sec as the optimal 

level. With LT, and LT X PS as the significant factors, the regression equation reduces 

to:  

        Deviation from height = 0.008654 - 0.008543 A1 - 0.00135 A1B2 
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4.4. Optimal factor determination for width 

     Factors effecting width will only be discussed this section. Before ANOVA test, 

normality check of the data is performed by Anderson-Darling test in Fig 20. With 

regards to the p-value (p-value=0. 689) in Fig 20, we cannot conclude that the data is not 

normally distributed in 95% confidence level. 

 

Fig 20: Normality test for width 

     Our null hypothesis is that all the factors and their interactions do not have significant 

effects on deviation in width. The ANOVA results are represented in the Table 11.  

Table 11: ANOVA results for deviation in Width 

Source DF SS MS F-Value P-Value 
LT 2 0.001237 0.000618 3.29 0.045 
PS 2 0.002143 0.001072 5.70 0.006 
OA 2 0.000299 0.000150 0.80 0.456 
LTXPS 4 0.002614 0.000653 3.47 0.013 
LTXOA 4 0.000912 0.000228 1.21 0.316 
PSXOA 4 0.000503 0.000126 0.67 0.617 
LTXPSXOA 8 0.006638 0.000830 4.41 0.000 
Error 54 0.010155 0.000188       
Total 80 0.024501          

 

     From Table 11, we observe that the main effect A (p-value = 0.045), B (p-value = 

0.006), interaction effect AXB (p-value = 0.013) and three-way interaction effect 
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AXBXC (p-value = 0.00) have significant effects on the deviation in width. The rest of 

the factors do not have significant effects on the response based on the statistical 

evidence. 

4.4.1. Accuracy of the model 

     The model accuracy is evaluated in terms of normality, equal variance, and 

independence assumption of the residuals. In Fig 21, normal probability plot (at the top 

left of the graph) shows a smooth curve but no outliers, significant gaps or clear tails. 

Additionally, the histogram, at the bottom left displays a bell-shaped distribution. Thus, 

the normality assumption for the residuals is satisfied. 

 

Fig 21: Residual plots for width 

     Like previous cases, the assumption in this case is satisfied since the residual data had 

a random spread, except for a couple of minor outliers. In residual vs order graph, the 

data on left side of the graph is above the center line whereas the data on the right side is 

mostly below the center line but no regular trend. 
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4.4.2 Main effect and interaction plots 

     Having identified the significant factors, the next step is to determine optimal setting 

of the factors. Main effects and interaction plots will assist us in finding the optimal level 

of significant factors on the mean response, i.e., deviation in width. Fig 22 illustrates the 

main effect plots of all three factors on the mean response of width. Factor A and Factor 

B have significant main effects on the response. The lowest point on the graph indicates 

less deviation from the response; therefore, the factor levels are determined by 

considering the minimum deviation point.  

  

Fig 22: Main effects plot of factors for deviation in width(%W) 

     Looking at main effect plots Fig 22, we see that the lowest point of deviation is found 

at 0.2mm of layer thickness and 60mm/s of printing speed. 
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Fig 23: Two-way interaction plot of factors for deviation in width 

     According to the two-way interaction plot of LTXPS in Figure 23, i.e., top right part 

of the above graph, the lowest deviation occurs at 0.2 mm of layer thickness and 

60mm/sec of printing speed.   

 

  

Fig 24: Three-way interaction plot for deviation in width 
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     Since there is a three-way interaction, the optimal factor levels could not be decided 

by main effects and two-way interaction plots, three-way interaction plot should also be 

considered. In Fig 24, the optimal factor levels that satisfy minimum deviation for width 

are 0.2mm layer thickness, 60mm/sec printing speed, and 00 orientation angle.  

     The predicted mean response at the optimal condition is estimated only from the 

significant main or interaction effects. The selection of factor levels to be used in the 

prediction equation is dependent on the nature of chosen quality characteristic for the 

experiment. The design model equation for this study reduces to: 

Yijk = µ + Aj + Bi + ABik + ABCijk + 𝜀ijk. 

With LT, PS, LT XPS and LT X PS X OA as the significant factors, the regression 

equation reduces to: 

        Deviation from width = 0.01773 - 0.00947A2 - 0.00804B1 - 0.00709 A2B1 
- 0.00254A2B1C1 

 
 
 

4.5 Optimal factor determination for middle height 

     Factors/combinations affecting middle height will only be discussed in this section. 

First, we perform a normality test to check if the normality assumption of the data is 

satisfied. With p-value of 0.07, we can conclude that data is normal at 0.1 significance 

level. Our hypothesis is that all the factors and their interactions might have significant 

effects on the deviation in middle height. In 95% confidence, any factor with p-value less 

than or equal to 0.05 is considered to have a significant effect on the output.  The 

ANOVA results are represented in Table 12. 
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Fig 25: Normality test for middle height 

In Table 12, we observe that the main effect A (p-value = 0.00), main effect C (p-value = 

0.000), interaction effect AXB (p-value = 0.00), interaction effect AXC (p-value = 

0.018), interaction effect BXC (p-value = 0.000) and three-way interaction AXBXC (p-

value = 0.00) have significant effects on the deviation in the middle height. The rest of 

the factors do not have significant effects on the response based on the statistical 

evidence. 

Table 12: ANOVA results for deviation in middle height 

Source DF Adj SS Adj MS F-Value P-Value 

    A 2 0.003277 0.001639 52.21 0.000 

    B 2 0.000149 0.000074 2.37 0.103 

    C 2 0.001199 0.000599 19.10 0.000 

    AXB 4 0.004284 0.001071 34.13 0.000 

    AXC 4 0.000409 0.000102 3.26 0.018 

    BXC 4 0.001413 0.000353 11.26 0.000 

    AXBXC 8 0.001568 0.000196 6.25 0.000 
S R-sq R-sq(adj) R-sq(pred) 
0.0056 87.89% 82.06% 72.75% 

DF: Degrees of freedom; SS: Sum of squares; MS: mean square of error 

0.0500.0250.000-0.025-0.050-0.075

99.9

99

95
90

80
70
60
50
40
30
20

10
5

1

0.1

Mean 0.001716
StDev 0.01323
N 81
AD 0.688
P-Value 0.070

Middle height

Pe
rc

en
t

Probability Plot of Middle height
Normal 



59 
 

 
 

 

Fig 26: Pareto chart of standardized effects for middle height 

     On the Pareto chart in Fig 26, bars that cross the reference line are statistically 

significant. In the above Pareto chart, the bars that represent factors A, C, AB, AC, BC & 

ABC cross the reference line that is at 2.005. These factors are statistically significant at 

the 0.05 level with the current model terms.  

 

4.5.1. Accuracy of the model 

     The normality of the data was tested using a normal probability plot (bottom left of 

Fig 27) and the Anderson-Darling test. This plot shows no outliers, significant gaps or 

clear tails, thus the normality assumption is satisfied. 

     In this case, the assumption of constant variance is obviously good because the 

residual data had a nice random spread, except few outliers on the left side of the plot. 

From the versus order plot (Fig 27), we can say that there are three points that have 

extended a little far when compared to other residuals, thus independence assumption is 

satisfied as most of the points remain intact with respect to center line. After checking the 

normality, constant variance, and independence of the errors, it has been concluded that 

the model is adequate. 
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Fig 27: Residual plots for middle height 

 

4.5.2 Main effect and interaction plots 

     Having identified the significant factors, the next step is to determine the optimal 

setting of the factors. Main effects and interaction plots will assist us in finding the 

optimal level of significant factors on the mean response, i.e., deviation in middle height. 

Fig 28 illustrates the main effect plots of all the three factors on the mean response of 

middle height. Main effects LT and OA have significant effect on the response. The 

lowest point that is close to zero on the graph indicates less deviation of the response. In 

Fig 28, the factor levels that achieves minimum deviation from the middle height 

according to the main effect plots are circled.  
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Fig 28: Main effects plot of factors for middle height 

 

     In Fig 28, we see that the minimum deviation in middle height is observed at level 3 

of layer thickness i.e., 0.3mm and for factor C, lowest point at observed at an orientation 

angle of 900.          The point is circled for easy observation. Factor B does not have any 

significant effect on the deviation from middle height. 

 

Fig 29: Two-way interaction plot of factors for middle height 
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     In Fig 29, for the two-way interaction LTXPS, the lowest deviation occurs at 0.1 mm 

of layer thickness and 100mm/sec of printing speed. For two-way interaction of PSXOA, 

the lowest deviation occurs at 80 mm/sec of printing speed and 00 of orientation angle. 

For two-way interaction of LTXOA, a lowest deviation occurs at the 0.1 mm of layer 

thickness and 450 of orientation angle. The lowest deviation points of all interactions are 

circled for easy observation in Fig 30.  

 

 

 

Fig 30: Three-way interaction plot of middle height 

     Three-way interaction plot in Fig 30 is also checked in order to determine the optimal 

factor levels. In review of the results of the three-way interaction, the least deviation is 

obtained at 0.3mm, 80mm/sec, 00.  

     The predicted mean response at the optimal condition is estimated only from the 

significant main or interaction effects. With LT, OA, LTXPS, LTXOA, PSXOA and 

LTXPSXOA  as the significant factors, the regression equation reduces to: 
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Deviation from middle height = 0.02763 - 0.00947A3 – 0.00267C3 

- 0.00426A2B1- 0.00709A3C3 - 0.00105B2C1 - 0.00436A3B2C1 

 

4.6 Surface roughness 

     Factors/combinations affecting surface finish will only be discussed in this section. 

Our hypothesis is that all the factors and their interactions might have significant effects 

on the deviation in surface finish. Any factor with p-value less than or equal to 0.05 is 

considered to have a significant effect on the output in 95% confidence. The ANOVA 

results are represented in Table 13. With regards to adjusted R2 , 76.45% of variation on 

the response, i.e., the deviation in surface finish can be explained by our model. 

Table 13: ANOVA results for deviation in surface roughness 

Source DF Adj SS Adj MS F-Value P-Value 

    LT 2 5321.9 2660.94 54.03 0.000 

    PS 2 3977.7 1988.85 40.38 0.000 

    OA 2 21.7 10.85 0.22 0.803 

    LTXPS 4 1917.4 479.35 9.73 0.000 

    LTXOA 4 594.9 148.73 3.02 0.027 

    PSXOA 4 558.1 139.53 2.83 0.034 

    LTXPSXOA 8 1528.9 191.11 3.88 0.001 

S R-sq R-sq(adj)    

7.01789 84.73% 76.45%   
DF: Degrees of freedom; SS: Sum of squares; MS: a mean square of the error 

 

     In Table 13, we observe that all the combinations of factors have significant effects on 

the surface finish except for the main effect of the orientation angle.  
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Fig 31: Pareto chart of Standardized effects for surface finish 

     Fig 31 shows the normal effect plot of standardized effects that help us examine the 

magnitude and direction of effects as Pareto chart displays only the absolute value of the 

effects.   On the Pareto chart in Fig 31, bars that cross the reference line are statistically 

significant. In the above Pareto chart, the bars cross the reference line that is at 2.011ARE 

significant. These factors are statistically significant at the 0.05 significance level with 

the current model terms.  

 

4.6.1. Main effect and interaction plots 

     Having identified the significant factors, the next step is to determine the optimal 

settings of the factors. Main effects and interaction plots will assist us in finding the 

optimal level of significant factors on the mean response, i.e., surface finish. Fig 32 

illustrates the main effect plots of all the three factors on the mean response of surface 

finish. Only factors A and B have significant main effects on the response. The output 

values of surface roughness are not deviated values as dimensional features. The desired 

surface roughness value of the part depends on the application. As this is a study to 

investigate how varying parameters affect the surface roughness, the lesser the surface 
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roughness values the better is the finish on the parts. In Fig 32, we see that 0.1mm of 

layer thickness alone and 60mm/s of printing speed seem to have produced parts with 

lesser surface roughness.  

 

Fig 32: Main effect plots of factors for surface finish 

     Two-way interaction of factors has a significant effect on the surface finish. In Fig 33, 

for LTXPS, 0.1 mm of layer thickness and 60mm/s of printing speed, for LTXOA, 

0.1mm of layer thickness and 45 deg of orientation angle, for PSXOA, 60mm/s of 

printing speed and 45 deg of orientation angle achieve minimum surface roughness. 

 

Fig 33: Two-way interaction plot of factors for surface finish 
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Fig 34: Three-way interaction for surface finish 

     The lowest values of surface finish are usually desirable; the points located closer to 

the 0 are considered. From Fig 34, the optimal factor levels are 0.1 mm layer thickness, 

100mm/s printing speed and 450 orientation angle. As only the factor C doesn’t have any 

effect on surface finish, the model design equation reduces to:  

Yijk = µ + Ai s Bk + ABij + ACik + BCjk + ABCijk + 𝜀ijk 

Surface finish = 0.001716+ 0.002580 A1 - 0.000605 B1- 0.01391 A1B1 - 0.00362 A1C2 

+ 0.00568 B1C2 - 0.00738 A1B2C3 

 

4.7 Control charts 

     Control charts are plotted from the data of 30 parts to study how a process changes 

over time as the data will be plotted in a timely manner. The optimal level of factors 

obtained from ANOVA analysis are used to print another 30 parts to test if the process is 

in statistical control. Table 14 shows the measured height values of 30 parts. A control 
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chart always has a central line for the average, an upper line for the upper control limit 

(UCL) and a lower line for the lower control limit (LCL) [60]. 𝑋തchart is one of the most 

common chart to monitor the change on the average of the process and the central 

tendency.  If the process is under control, which means that the process is capable of 

producing an acceptable quality of interest, we expect the mean of the process to range 

between upper control limit (UCL) and lower control limit (LCL) of the 𝑋ത chart. If the 

sample mean 𝑋ത will fell beyond the control limits, the process average for the specified 

dimension is changed, and the process is incapable of printing the parts under desired 

tolerances. UCL and LCL of the 𝑋ത chart can be calculated as 𝑈𝐶𝐿 = 𝜇 + 𝑘
ఙ

√
 and 𝐿𝐶𝐿 =

𝜇 − 𝑘
ఙ

√
, where 𝜇 is the process mean, 𝜎 is the process standard deviation, n is the size of 

the sample which is taken to monitor if the process is in control, and k is the control 

limits distance from the process mean. A common choice for k is 3. The difference 

between a run chart and a control chart is that the run chart can help you spot upward and 

downward trends but lack the benefit of statistical control limits. However, a control 

chart plots a single line of data over time and it includes upper and lower control limit 

lines with a centerline.  
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Table 14: Height measurement of 30 parts 

Sample no Height (mm) 
1 0.998 
2 0.999 
3 0.998 
4 0.996 
5 0.997 
6 1.000 
7 1.001 
8 1.006 
9 1.002 

10 1.000 
11 1.003 
12 1.000 
13 1.001 
14 1.009 
15 1.000 
16 0.998 
17 1.002 
18 0.992 
19 0.998 
20 1.000 
21 0.999 
22 1.000 
23 1.000 
24 1.007 
25 1.002 
26 1.000 
27 1.003 
28 0.998 
29 1.003 
30 0.999 

 

Fig 35 shows the control chart of height measurement for 30 parts. 
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Fig 35: Control chart for the height measurements of 30 parts (UCL – 1.0101, LCL – 

0.9904) 

 

     The purpose of a control chart is to monitor a process for the special causes of 

variation and to remove them when they occur. From Fig 34, the green line shows the 

average of the process. The process is under control because the sample averages lay 

between UCL and LCL and also they are equally distributed between UCL and average 

and the LCL and the average.  

 

4.8 Process Capability Analysis  

     We have observed the factors/combination of factors that have significant effects on 

the response parameters based on ANOVA and main effects/interaction plots. In this 

section, we finalize the optimal levels of factors to print more parts to conduct capability 

analysis. The purpose of capability analysis is to check if the process is within the 

statistical control and the process is capable of meeting production specifications. Of all 
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the response parameters available, optimal levels of factors having significant effects on 

height are considered to print 30 parts.  

     Recalling the analysis discussion of height, the optimal levels of factors from the main 

effect and interaction plots are 0.1mm of layer thickness, 80mm/s of printing speed. As 

the orientation angle doesn’t have a significant effect on the height, any level of 

orientation angle can be used. Therefore, horizontal orientation i.e., 00 has been the 

chosen level.  

 

4.8.1 Capability Studies 

      No two products are alike as the processes have many sources of variability. Different 

sources cause different changes - some cause short term, piece-to-piece and some cause 

changes over a long period. There are two types of causes responsible for variation, 

common causes, and special causes. Common causes produce a stable distribution in the 

system due to which the process is said to be in a state of statistical control. It affects the 

process output in predictable ways. Special causes refer to factors causing variation that 

affect only some of the process output in an intermittent and unpredictable way. 

Capability must be less than the tolerance to be acceptable for the production.  If no 

special cause variation is found to be present, statistical process control (SPC) helps 

define the capability of the stable process to judge whether it is operating at an acceptable 

level. A process will produce conforming products as long as it remains in statistical 

control.  
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     The first step was to find the optimal level of factors capable of giving accurate results 

which are discussed in chapters 1 and 2. We printed 30 parts at optimal level of factors- 

0.1mm layer thickness, 80mm/s printing speed, and 00 orientation angle. Ppk (potential 

process capability) accounts for the overall variation of all measurements taken and it 

includes both the variation within subgroups and also the shift and drift between them. 

Capability analysis was conducted to determine the values of Cpk and Ppk, which are 

desired to be 1.33 or higher. Cpk is an index (a simple number) that measures how close a 

process is running to its specification limits, relative to the natural variability of the 

process. Cpk measures how close you are to your target and how consistent you are to 

around your average performance [60]. Ppk basically tries to verify the sample we 

generated from the process is capable to meet customer requirements. A capability 

analysis is conducted using the MINITAB software to find if the process is in statistical 

control. Fig 36 shows the capability analysis of height measurement of 30 PLA parts. 

 

Fig 36: Capability histogram of 30 parts for height 

     Cpk values of 1.33 or greater are considered to be industry benchmarks [60]. By 

observing the Fig 35, Cpk and Ppk values are greater than 1.33, this process will produce 

1.0201.0141.0081.0020.9960.9900.984

LSL 0.98
Target *
USL 1.02
Sample Mean 1.0006
Sample N 30
StDev(Overall) 0.00408192
StDev(Within) 0.00351553

Process Data

Pp 1.63
PPL 1.68
PPU 1.58
Ppk 1.58
Cpm *

Cp 1.90
CPL 1.95
CPU 1.84
Cpk 1.84

Potential (Within) Capability

Overall Capability

PPM < LSL 0.00 0.22 0.00
PPM > USL 0.00 1.00 0.02
PPM Total 0.00 1.23 0.02

Observed Expected Overall Expected Within
Performance

LSL USL
Overall
Within



72 
 

 
 

conforming products as long as it remains in statistical control.  When a process is in 

statistical control, it means that the adopted procedure is better for prototyping and also 

for the new product development, for which the cost of production for dies and other 

tooling is more expensive (like for biomedical applications) [61]. In the context of quality 

control, PPM stands for the number of parts per million that lie outside the tolerance 

limits. Cpk 1.00 means that 2700 PPM (0.27%) of the manufactured parts are out of 

tolerance, while Cpk 1.33 means that 63 PPM (0.0063%) are rejected.  
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CHAPTER 5. CONCLUSION 

     The main objective of this thesis is to investigate the effect of factors on the 

dimensional features and surface finish of PLA parts printed using FFF technology. 

Literature review was done on studies that focused on factors affecting the dimensional 

accuracy and surface roughness of 3D printed parts. The review included different AM 

technologies, materials, part geometry, process parameters and different experiment set 

up. We chose FFF technology to print PLA parts (dog bone shaped specimen) with layer 

thickness, printing speed and orientation angle as the process parameters with three levels 

each. The optimal level of factors obtained from the experiment are used to print some 

more parts to check whether the process is in control. Then capability analysis is 

conducted to determine if the process can produce consistent conforming results. As a 

part of the literature review, extensive research was done before setting up an experiment. 

Various studies considering variability in dimensional accuracy, surface finish, 

mechanical properties, DOE’s, and different experiment strategies were thoroughly 

reviewed. A literature review of different AM technologies and workable materials were 

very useful in setting up the experiment.  

 

     After an intensive literature review, we could conclude that layer thickness, fill angle, 

shell thickness, printing speed, orientation angle, AM technology, type of response 

parameters, type of material influenced the output parameters of printed parts such as 

dimensional accuracy. We attempted to combine most common factors from above which 

have not been done before to see if one factor might effect other factors i.e., to see if they 

are dependent on each other. Layer thickness, printing speed, and orientation angle are 
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the factors that have been considered with three levels each in this study and are 

replicated thrice to study the consistency of the results. A full factorial DOE experiment 

was set up to investigate the effects of process parameters individually and in 

combination with rest of the factors. The output of this experiment considered the effect 

of these factors on dimensional accuracy and surface finish of parts built with PLA 

material(polymer) using FFF technology. Each set of experiments was replicated thrice, 

yielding 81 runs/prints.  

 

     As we focus on dimensional accuracy, measured values were subtracted from the 

desired nominal values and presented in Table 7. Considering “smaller the better” quality 

characteristics, the deviation is minimized to be able to comment on the effectiveness of 

the process parameters. We conclude that the 0.3mm layer thickness, 60mm/sec printing 

speed, and 450 orientation angle are the optimal levels for overall length. For height, 

0.1mm layer thickness, 80mm/sec printing speed, and any level of orientation angle are 

found to be the optimal levels. For width, 0.2mm layer thickness, 60mm/sec printing 

speed and 00 orientation angle and for middle height, 0.3mm layer thickness, 80 mm/sec 

printing speed and 00 orientation angle are the optimal levels at which least deviation 

from the targeted values is observed. 

 

     Apart from the dimensional accuracy, the surface finish of the parts is measured and 

almost all the factors and their combinations have significant effects on the response 

parameter. An in-depth study and understanding are required to decide the levels of 

factors to achieve the desired accuracy in surface finish. For this particular response 
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parameter, the values are not subtracted from any nominal value, because the parts are 

tensile testing specimens and they do not have a standard finish specification to get the 

deviated values. As such we just calculated how the values are affected by different 

levels of factors. From the response values of surface finish, we   desired the least surface 

roughness values to determine the significant factors. The ideal factors in this study to 

achieve better surface finish is 0.1 mm layer thickness, 100 mm/s printing speed and 450 

orientation angle. 

     After finding the significant factors and their levels for each response parameter, we 

printed 30 more parts to conduct capability studies and plot control charts to see the if the 

process with our concluded optimal levels will be in statistical control and capable of 

producing parts within specifications. We worked on parts focusing on height as the 

response parameter with optimal levels as 0.1mm layer thickness, 80mm/s of printing 

speed and 00 orientation angle. MINITAB software was used to conduct the process 

capability studies and we were able to achieve Cpk and Ppk values higher than 1.33 

implying that the optimal levels we found were responsible for the process to be stable 

and acceptable. The control chart shows that the measured height values are within the 

upper control and lower control limits. 

 

     PLA parts are not just limited to prototypes, they have wide range of applications. 

Some of them include plastic films, bottles and biodegradable medical devices like 

screws, pins, rods. Also, PLA contracts under heat, so it can be used as shrink material. 

Therefore, experimental studies on PLA will provide better understanding of various 

design applications. Design of experiments are used to design an experiment with 
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different variables to study their effect on the desirable output parameters. Once you 

understand the effect of factors, you optimize the experiment to prevent the variability 

caused by those factors. Process capability studies are conducted to check the consistency 

in bulk productions. The samples considered in this study may be different from actual 

requirement of samples in an industry. To test for accuracy and consistency of the results, 

capability analysis is conducted on the parts produced with optimal levels of factors from 

DOE. Work done as a part of this thesis is useful and can be applicable in different 

industrial sectors. The fact that it considers multiple factors and studies their effect on the 

output makes it applicable in real life complex manufacturing problems. 

 

     To optimize all the response parameters at once, one can extend this study by 

generating and minimizing the mathematical equations that incorporate the absolute 

deviated values of all the response parameters.  Also, one can choose complex part 

geometry e.g., holes, threads, curvy surfaces etc., that might vary with different levels of 

factors and investigate how different the effects when compared to linear parts. 
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