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Abstract 

Disruptions are significant events that cause a disturbance in the normal operations of communities and 

can result in thousands of fatalities, millions of dollars lost, and significant infrastructure and ecological 

damage. It is difficult to model the different decision makers in a disruption and express the decisions 

made in a form that all decision makers understand and can act upon. In disruption response planning, it is 

necessary to have specific allocation strategies in place, rather than just a set of guidelines, so that budgets 

can be created, and effective distribution pathways can be established. Therefore, models need to 

incorporate both specific spending strategies and multiple decision makers. The resource allocation model 

developed allows for the objectives of four different independent decision makers to be combined into a 

single computational metric of economic production measured in U.S. dollars. The model provides 

insight into areas where decision makers may benefit from cooperation to yield larger overall gains in the 

reduction of production losses from a disruption. The identification of overlaps shows the potential effect 

of shared decision making in a complex decision environment. The model is applied to a hurricane with 

magnitude akin to Hurricane Katrina in the context of the 2015 economy of the U.S. Gulf Coast. Results 

from the application illustrate that there is likely double spending and overspending in some industries in 

the impacted economic region, and shared decision making between decision makers is highly 

encouraged. Shared decision making between decision makers allows for a greater benefit to the 

economic region than when the federal government acts alone. 
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Chapter 1. Introduction and Literature Review 

 Disruptions come in many forms and can be minor like traffic jams and unexpected power 

outages or major like tsunamis or volcanic eruptions. These disruptions cost individuals and organizations 

time, money, resources, and even lives, making the study of disruptions of high interest to many 

researchers, enterprises, and government officials. Carter (2008) defines a disruption or disaster as “an 

event which impacts with such severity that the affected community has to respond by taking exceptional 

measures.” Proper risk mitigation strategies help to prevent some of these disruptions such as terrorist 

attacks or incidents caused by human error. Other disruptions, like earthquakes and hurricanes, cannot be 

prevented but risk mitigation strategies can help reduce the consequences from these disruptions. This 

thesis will focus on non-preventable disruptions like natural disasters although the general model can be 

applied to preventable disruptions.  

 Prevention, preparedness, and response have received significant attention in the homeland 

security and emergency preparedness literature. Some decision makers prefer general strategies that help 

frame the situation and give rough and flexible guidelines that can be applied to any situation. Farazmand 

(2001) develops a handbook that is a collection of the various risk management strategies applied over the 

years. Others attempt to address disruptions by using the classical risk management paradigm (Haimes 

1998, Kaplan and Garrick 1981) which emphasizes the identification, measurement, and mitigation of 

potential risks. Disruptions are not just the focus of researchers and companies but also of the various 

government organizations across the world. The Disaster Mitigation Act of 2000, which requires all state, 

local, and Indian Tribal governments within the United States to have written disaster plans in place, and 

the Federal Emergency Management Agency (FEMA) teaching guide (McEntire 2004), which is required 

training literature on the theory of emergency management for all FEMA employees, are a few examples. 

These documents provide general guidelines and strategies without providing a lot of concrete examples 

backed with empirical data. Seeing the need for more in-depth explanation, researchers have developed 

specific strategies for individual groups like physicians (Hick 2012) and the tourism industry (Ritchie 



 
8 

2004). Although these strategies provide specifics, they lack the scope of a real disruption. This scope and 

specificity have been addressed from three different approaches: computational models, qualitative 

models, and game theory models, all of which have their own strengths and weaknesses to be discussed. 

 Atlay and Green (2006) examine the disaster operations management literature. They find that 

approximately 60 of the 109 journal articles analyzed used either mathematical programming, statistics 

and probabilities, or simulation during their analysis. These approaches make up what are known as 

computational models, which typically involve data sets, parameterized inputs, or mathematical theory to 

create a model that gives numerical output. Computational models are often viewed as being empirical, 

more exact, and better supported than qualitative approaches, but many computational models have the 

same issue when compared with one another. The vast majority of these computational models assume a 

single decision maker, usually for the purpose of model or computational simplification. Some models 

tackle the entire scope of the disruption, but they assume a single, all-powerful decision maker who 

manages all of the resources and distributes them (Sherali et al. 1991; Barbarosoǧlu and Arda 2004). 

Since every large disruption involves multiple individuals and organizations, modeling a disruption with a 

single decision maker can provide challenges for applying these disaster operations management models. 

Other models view resource allocation during disasters as a supply-chain issue (Caunhy 2012, Alp Ertem 

2011, Papadakis and Ziemba 2001) or opportunities to minimize death and injury (Friedrich 2000), which 

may not cover some of the other important aspects of disruptions like housing, utilities, and restoration. 

Golany (2009) attempts to integrate multiple models in order to solve a resource allocation model, but 

these models are all to be utilized by a single decision maker, the government. It remains an open research 

question of how to design operations management models that includes the different perspectives of 

multiple decision makers.  

 When trying to model a decision with multiple decision makers, it is important to note that each 

decision maker has his or her own objectives, motivations, and influences. Multi-Criteria Decision 

Analysis (MCDA) may be a method to incorporate these elements from multiple decision makers by 
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gathering scores from different decision makers and combining those scores via categorizing, summing, 

weighting, or multiplying to give an overall utility or value for each consequence (Guitouni and Martel 

1998). Other tools are based on the Analytic Hierarchy Process (Saaty 1980). These MCDA techniques 

have been applied to dealing with disruptions since the attacks of September 11. Applications include 

using fuzzy optimization and scale factors for resource allocation (Sheu 2005), the Group Analytic 

Network Process for chemical spills (Levy and Kouichi 2007), and the Analytic Network Process with 

flooding in Tokai, Japan (Levy et al. 2007). These scores may contain a lot of subjectivity based on the 

manner in which they are gathered. For example, Geldermann (2009) uses multi-attribute value theory to 

decide on the optimal alternative for a proposed nuclear/radiological event in Europe, but the inputs were 

decided as a group rather than the traditional comparison of individual weights. This result touches on one 

of the two key issues that found within group decision making: weighting leading to subjectivity and 

inaccuracy as well as evolving an effective group consensus out of different judgements (Yu and Kin 

2011). A second open research question that remains is how to design operations management models 

that incorporate the qualitative aspects of multiple decision makers within introducing bias and 

subjectivity into the model. 

Group dynamics are something that are not discussed in depth in most group decision-making 

models, but they contain psychological relationships of which modelers should be aware. Barry and 

Stewart (1997) find that when studying small groups, as the proportion of extroverts increases, the 

group’s focus on the given task decreases. As a result, the group takes longer to make a decision, which 

can cost large amounts of lives and money during the response phase of disruption management. The 

mode of communication in a group discussion also influences the decision (Dubrovsky et al. 1991). They 

discovered that when meeting in person, the status of the group members had a large effect on the 

direction the group went. Organizations like the federal government that have a large amount of resources 

may tend to get more of a say in the decisions for disruptions even when smaller organizations and 

entities may be able to make more effective use of those resources.  
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 Game theory provides another modeling approach to integrate multiple decision makers. Coles 

and Zhuang (2011) create a decision support framework for the decision-makers during the recovery 

phase from a disaster. Much of the game theory literature in disaster management focuses on intentional 

attacks from a terrorist organization that have specific targets or goals in mind. Shan and Zhuang (2013) 

discuss strategic versus non-strategic attackers with a decision-maker’s objective to minimize total 

impact. Chittaro and Sioni (2015) use psychological theories of group dynamics to explore multiple 

decision makers acting as a group in reaction to a terrorist incident. All of the people in the decision group 

have the same end goal, which is not always representative of a real decision when multiple entities are 

involved. 

 Communication between decision makers and from the decision makers to other entities in the 

environment is also very important in disaster management. A main struggle, even in case studies, is 

creating a decision-making model that involves everyone more so than the actual solving of the problem 

(Smith and Dowell 2000). Heath (1995) discusses the issues that can arise when communication is poor 

during the planning phase of disruption response. Poor communication in the wake of the Kobe 

earthquake in Japan in 1995 led to less effective response efforts. Consensus driven decision making may 

not be feasible given the time constraints of a disaster situation when considering all of the entities that 

may have a stake in the decision. This is the basis of a decision made in the application section of this 

thesis to only include decision makers that have a large amount of influence or resources. 

 Both preparedness and response decisions are important for properly analyzing disruptions. 

Response activities are often more expensive than preparation activities because of the scarcity of 

resources and the difficulty of getting those resources to the intended location. Between 1985 and 2004, 

the U.S. federal government spent almost 16 times more on response activities than preparation activities 

(Healy and Malhotra, 2009). Response spending heavily outweighs preparedness spending in several low 

and middle-income countries at risk for multiple disasters, but preparedness spending in those countries is 

also on the rise (De la Fuente 2010). This is a promising observation because several other studies have 
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shown the benefits of spending resources on preparedness can greatly outweigh the costs (Rose et al., 

2007, Garrett and Sobel, 2003, Healy and Malhotra, 2009, Godschalk et al., 2009). 

 This thesis combines elements from the several of the models discussed previously in order to 

create a more realistic decision-making model for allocating resources to prepare and respond to a 

disruption. Resource allocation models for four different decision makers will be constructed. The first 

decision maker is the federal government, the second decision maker is the state government, the third 

decision maker is the private sector, and the fourth decision maker is a non-governmental organization 

(NGO). Each resource allocation model is presented as optimization model in which a decision maker 

seeks to minimize or maximize an objective subject to a resource budget constraint. Each decision maker 

can allocate resources before a disruption and after a disruption. An economic model translates each of 

the allocation decisions to quantify the economic losses from the disruption. The thesis has three unique 

contributions to the field of disaster management. The first is the incorporation of four decision makers 

with different objectives, resources, and effectiveness into a single mathematical model. The second is 

combining the decisions of each entity into a single economic measure of production to facilitate 

comparison. The final contribution is quantifying the effect of shared decision making and 

communication between decision makers. If the decision makers do not coordinate, there will likely be 

multiple entities allocating resources to the same area, which may be globally inefficient.  

 The remainder of this thesis will proceed as follows. Chapter 2 will present each of the four 

resource allocation models. Chapter 3 will apply these decision-making models to a severe hurricane 

similar to that of Hurricane Katrina in the context of the 2015 economy. This chapter will also discuss the 

effect that shared decision making between decision makers on the total production losses for the Gulf 

Coast region. The fourth and final chapter will contain conclusions, insights, and suggestions for future 

extensions and research. 
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Chapter 2. Methodology  

 Each of the decision-making models assumes the allocation of resources are independent, 

meaning there is no communication between decision makers. This allows for different perspectives 

within the decision environment with the same end goal in mind. The four perspectives that will be 

addressed are a federal or overarching government, a smaller state or local government, a large private 

for-profit entity, and a non-governmental organization (NGO). The federal government entity is 

characterized by having the most resources and is able to affect all of the industries in the entire economic 

region. Similarly, the state government entity has a large amount of resources but can only affect the 

industries within a specified state or locality. The private for-profit entity has the goal of maximizing 

profits via minimizing the impact of the disaster in its industry. Although private sector companies do 

have some corporate social responsibility to assist the general public and other industries, quantifying 

those actions is difficult. Therefore, the private entity can only allocate resources to their specific 

industry. Lastly the NGO is categorized as a non-profit entity that has humanitarian goals that can affect 

all of the industries in the entire economic region. This NGO effects the total production losses by using 

their resources to increase the working population in order to avert further production losses. These four 

perspectives will come in the form of four different resource allocation models whose results will all be 

translated into terms of total production losses in the economic region. The following subsections will 

discuss each of the decision maker models in detail. 

The losses that arise from a major disruption may include lost wages, damaged infrastructure, and 

casualties. The models derived for this analysis will focus on production losses in a region due to a 

disruptive event such as a natural disaster. The definition of production loss varies from industry to 

industry, but each of those definitions can be defined in terms of dollars. For instance, Oerke and Dehne 

(2004) define production losses for crops as crops that have been planted but are unable to be harvested, 

while Chi et al. (2002) defines production losses in the cattle industry as milk loss, reduced slaughter 
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value, mortality loss, and reproductive loss. Therefore, the model will take these losses only in general 

terms of dollars lost for purposes of model simplification and flexibility of application.  

All four models will be based on the relationships formed in the Interoperability Input-Output 

Model (IIM). The IIM translates direct production losses in a specific industry as a result of a disruption 

to the total production losses for the entire economy of interest (Santos and Haimes, 2004, Santos, 2006). 

Applications of the IIM include damage to the Italian infrastructure (Setola and De Porcellinis, 2007), 

Hurricane Katrina (Crowther et al., 2007), and the Deepwater Horizon oil spill (MacKenzie et al., 2016). 

Crowther et al. (2007) and MacKenzie et al. (2016) incorporate the IIM into the objective functions of 

their optimization models, which is the base construct of the decision-making models in this thesis. For 

the purpose of model simplification and scope, not all of the industries within the IIM can be directly 

impacted by the decision makers. A focus has been placed on the larger industries in terms of total 

production in the economic region, but the indirect impact to the smaller industries is still expressed 

within the IIM. This means that there may be a smaller number of directly impacted industries than there 

are total industries in the economic region. 

 All four of the resource allocation models will consider a single disruptive event. The models also 

assume the disruptive event will occur at most once per year. The disruption directly impacts 𝑚 

industries, where 𝑚 ≤ 𝑛 and 𝑛 signifies the total number of industries within the economic region. The 

normalized interdependency matrix of the IIM is represented by 𝐀∗, which notes all the interdependency 

connections between all 𝑛 industries. This matrix 𝐀∗ is used to create the square matrix 𝐁 = (𝐈 − 𝐀∗)−1, 

which is used to form 𝐁(𝑛×𝑚) allowing for the selection of only the columns in 𝐁 that correspond to the 

𝑚 directly impacted industries. The total production losses, via the IIM, is calculated when  𝐱T𝐁(n×m) is 

multiplied by a vector 𝒄∗ that summarizes the direct impact the decision maker will have on the 

industries. Here 𝒙 is a vector of length 𝑛 that represents the normal production of each individual industry 

in the economic region. When the base IIM structure, 𝐱T𝐁(n×m), is taken by itself, the dollar loss for each 
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of the 𝑚 industries if each industry is completely inoperable. Thus the 𝒄∗ term signifies the impact that 

the decision maker has on reducing the consequences of the disruption. 

2.1 Federal Government Model 

 The resource allocation model for the federal government decision maker comes from MacKenzie 

and Al-Kazimi (2017). Equations 1-1 to 1-4 depicts this model where the decision maker’s objective is to 

minimize the expected production losses if a disruption occurs and maximize production gains if no 

disruption occurs. The annual probability of the disruption is 𝑝. A resource budget constraint 𝑍 represents 

the total budget in dollars available to the decision maker to allocate before or after the disruptive event. 

The decision maker can allocate resources before the disruption (called preparedness) 𝑧𝑝 and choose to 

spend resources to respond to or recover from a disruption if it occurs.  

 Preparedness will reduce the overall consequences if the disruption occurs. In this model, the 

consequences of the disruption are expressed by the vector 𝒄∗ of length 𝑚 which accounts for the direct 

impacts in the 𝑚 industries. The total production losses due to the disruption is expressed when 𝒄∗ is 

multiplied by the base IIM structure, 𝐱T𝐁(n×m)𝐜∗. If the disruption occurs, the decision maker chooses to 

allocate the remaining resources not spent on preparedness on response and recovery. The decision maker 

can distribute those resources equally to all the directly impacted industries 𝑧0 with effectiveness 𝑘0, and 

to an individual industry 𝑖 via 𝑧𝑖 with effectiveness 𝑘𝑖. Resources that would benefit all industries include 

activities such as clearing roads of debris, establishing telecommunications, and ensuring the supply of 

electricity and other utilities to the industries. If no resources are allocated to response and recovery, the 

direct impact to each industry 𝑖 is expressed via 𝑐̂𝑖
∗. This 𝑐̂𝑖

∗ can be reduced by allocating resources to 𝑧𝑝, 

𝑧0, or 𝑧𝑖 which will reduce the direct impact to the new value 𝑐𝑖
∗, where 𝑐𝑖

∗ ≤ 𝑐̂𝑖
∗ (Equation 1-2). Equation 

1-3 states the assumption that the sum of the resources allocated for preparation, allocated to all 

industries, and allocated to each industry 𝑖 must be less than the established budget 𝑍. Equation 1-4 is the 
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non-negative constraint illustrating that the resources allocated within the model must be greater than or 

equal to zero. 

 If the disruption does not occur, the resources that would have gone for response and recovery 

can be redistributed elsewhere within the economy. In the case of the federal government, these resources 

could be devoted to other government programs or be returned to the taxpayers in order to strengthen the 

economic region. This economic benefit if no disruption occurs is illustrated in the function 𝑔(𝑧𝑝, 𝑍). If 

all of the resources are spent on preparedness, then 𝑔(𝑍, 𝑍) = 0 since no more resources are available. 

We assume the function 𝑔(𝑧𝑝, 𝑍) is strictly decreasing in 𝑧𝑝, strictly increasing in 𝑍, and non-negative for 

𝑧𝑝 ≤ 𝑍. Since the decision maker desires to minimize the expected production losses within the target 

economy if a disruption occurs and maximize the production gain if no disruption occurs, a negative sign 

is required in front of (1 − 𝑝)𝑔(𝑧𝑝, 𝑍) in order to minimize the objective function. Given the described 

parameters, the resource allocation model is expressed as: 

Minimize 𝑝𝒙𝑇𝑩(𝑛×𝑚)𝒄∗ − (1 − 𝑝)𝑔(𝑧𝑝, 𝑍)  (1-1) 

subject to 𝑐𝑖
∗ = 𝑐̂𝑖

∗ exp (−𝑘𝑞𝑝𝑧𝑝 − 𝑘0𝑧0 − 𝑘𝑖𝑧𝑖) 𝑖 = 1, … , 𝑚 (1-2) 

 
𝑧𝑝 + 𝑧0 + ∑ 𝑧𝑖

𝑚

𝑖=1
≤ 𝑍 

 (1-3) 

 𝑧𝑝, 𝑧0, 𝑧𝑖 ≥ 0 𝑖 = 1, … , 𝑚 (1-4) 

 The model can be applied to any length of time, but we solve the model for a single calendar 

year. The model also assumes that the consequences of the disruption are reduced via an exponential 

function. This approach mimics other applications from the risk management literature (MacKenzie et al., 

2016) that explore the benefits and drawbacks of various allocation functions. The exponential function is 

used because it encompasses the concept of diminishing marginal returns. The first dollar spent to reduce 

𝑐𝑖
∗ produces more benefit than the next dollar.  

2.2 State or Local Government Model 

 The state government model has the same form as that of the federal government as depicted in 

Equations 2-1 to 2-4. However, the parameter values may differ, and we write a superscript (𝑠) to 
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represent the parameters for the state decision maker. Since the size of state economy is smaller than the 

regional economy (which is of concern to the federal decision maker), the values in the IIM matrix 

𝐁(𝑠)(𝑛×𝑚) and the production vector 𝐱(𝑠) will change. The municipal and federal spending in Switzerland 

differs, which suggests there is a difference in the effectiveness of spending between the federal and state 

governments (Joumard and Giorno 2002). Since state governments are presumably closer to the impacted 

areas, they may have special programs and agencies that are in a better situation to assist in disaster 

management. The state government model will still contain the same 𝑛 total industries and 𝑚 directly 

impacted industries, but the output results of the model will be different. 

minimize 𝑝(𝑠)𝐱(𝑠)𝑇
𝐁(𝑠)(𝑛×𝑚)𝐜∗(𝑠) − (1 − 𝑝(𝑠))𝑔(𝑠)(𝑧𝑝

(𝑠)
, 𝑍(𝑠))  (2-1) 

subject to 𝑐𝑖
∗(𝑠)

= 𝑐̂𝑖
∗(𝑠)

 exp (−𝑘𝑝
(𝑠)

𝑧𝑝
(𝑠)

− 𝑘0
(𝑠)

𝑧0
(𝑠)

− 𝑘𝑖
(𝑠)

𝑧𝑖
(𝑠)

) 𝑖 = 1, … , 𝑚 (2-2) 

 
𝑧𝑝

(𝑠)
+ 𝑧0

(𝑠)
+ ∑ 𝑧𝑖

(𝑠)
𝑚

𝑖=1
≤ 𝑍(𝑠) 

 (2-3) 

 𝑧𝑝
(𝑠)

, 𝑧0
(𝑠)

, 𝑧𝑖
(𝑠)

≥ 0 𝑖 = 1, … , 𝑚 (2-4) 

 

2.3 Private Sector Model 

 The private sector model allocates resources to maximize system resilience (MacKenzie and 

Zobel 2016). Since the private sector entity is categorized as a for-profit entity, we assume the private 

sector decision maker desires to maximize the resilience of its firm or industry. Resilience is defined as 

the ability to withstand a disruption and bounce back or recover from a disruption. The measure of 

resilience is based on the resilience triangle (Bruneau et al., 2003) where 𝑅 = 1 −𝑋𝑇 𝑇∗⁄  where 𝑅 is the 

resilience (ranges between 0 and 1.0), 𝑋 is the initial loss in system performance in proportional terms, 𝑇 

is the time to recovery, and 𝑇∗ is the maximum time to recovery (Zobel and Khansa, 2012).  

The decision maker can allocate resources for hardening activities 𝑧𝑋 or response activities 𝑧𝑇, 

and these resources would be allocated before a disruption occurs. Resources allocated for hardening 

activities reduce the initial losses according to the function 𝑋(𝑧𝑋) = 𝑋̂ − 𝑎𝑋 log(1 + 𝑏𝑋𝑧𝑋̅) where 𝑋̂ is 

the initial losses if no resources are allocated to hardening, and 𝑎𝑋 and 𝑏𝑋 are parameters describing the 

effectiveness of allocating resources. Resources allocated for recovery reduce the time to full performance 



 
17 

in a similar manner, 𝑇(𝑧𝑇) = 𝑇̂ − 𝑎𝑇 log(1 + 𝑏𝑇𝑧𝑇) where the parameters 𝑇̂, 𝑎𝑇, and 𝑏𝑇 have a similar 

meaning as the hardening resource allocation function. Interested readers are referred to MacKenzie and 

Zobel (2016) for further details. Any money not allocated to increase resilience 𝑍(𝑃) − 𝑧𝑋 − 𝑧𝑇, where 

𝑍(𝑃) is the overall budget for the private sector entity, can be reinvested to help the private sector entity 

improve its profitability. The function describing the effect of the private sector’s reinvestment option is 

𝑔(𝑃)(𝑧𝑋 + 𝑧𝑇 , 𝑍(𝑃)). Like the previous models, the annual probability of the disruption is 𝑝(𝑃), which 

could be different than the probability for the state or federal government. Therefore, the resource 

allocation model for the private sector model is expressed as: 

maximize 
𝑝(𝑃) (1 −

(𝑋̂ − 𝑎𝑋 log(1 + 𝑏𝑋𝑧𝑋̅))(𝑇̂ − 𝑎𝑇 log(1 + 𝑏𝑇𝑧𝑇))

𝑇∗ ) + (1 − 𝑝(𝑃))𝑔(𝑃)(𝑧𝑋

+ 𝑧𝑇 , 𝑍(𝑃))  

(3-1) 

subject to 𝑧𝑋 + 𝑧𝑇  ≤ 𝑍(𝑃)  (3-2) 

 𝑧𝑋 , 𝑧𝑇  ≥ 0 (3-3) 

 After this optimization is solved, we can calculate the private sector’s resilience 𝑅. Because we 

desire to translate the private sector’s allocation of resources to the economic impacts of the region, we 

translate the private sector’s resilience to direct impacts in order to assess the economic impact and 

combine the private sector’s allocation with the state and federal governments. We assume that resilience 

𝑅 is a linear function of 𝑐𝑖
∗ so that 𝑅 = 𝛽0 + 𝛽1𝑐𝑖

∗ where 𝛽0 and 𝛽1 are parameters and 𝑐𝑖
∗ are the direct 

impacts for industry 𝑖 that corresponds to the private sector industry. Since perfect resilience 𝑅 = 1 

corresponds to no direct impacts, i.e., 𝑐𝑖
∗ = 0, then 𝛽0 = 1. We solve 𝛽1 =

𝑅̂−1

𝑐𝑖
∗  where 𝑅̂ is the private 

sector’s initial resilience before any resources are allocated. After resources are allocated, the direct 

impacts are calculated 𝑐𝑖
∗𝑛𝑒𝑤 =

𝑅−1

𝛽1
. Incorporating this value into the IIM model reveals that the 

production losses from the disrupted private sector are: 𝐱T𝐁(n×1)𝑐𝑖
∗𝑛𝑒𝑤 where 𝐁(𝑛×1) is a column vector 

of length 𝑛 taken from 𝐁(𝑛×𝑚) where the column corresponds to industry 𝑖. 

2.4 Non-Governmental Organization Model 
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 Non-profit NGOs are often neglected when planning for disruption preparedness, response, and 

recovery. These organizations devote resources, aid, and personnel to a region impacted by a disruption in 

the hopes of minimizing deaths and injuries while maximizing the welfare of the citizens within the 

region. An NGO is not interested in maximizing its profit, and it can be difficult to quantify the NGO’s 

contribution to specific industries as in the federal and state government models. The NGO’s 

contributions do make a difference in the recovery efforts of a disruption. These differences come in the 

form of increased public welfare, reduced time to full recovery, and helping the impacted region’s 

workforce. Therefore, the model representing the NGO decision makers will have the objective of 

maximizing the available workforce through the allocation of resources like food, relief items, and 

overnight shelter stays. This is based on the assumption that as the amount of available resources 

increases, the available workforce will also increase although that may not always be the case in reality. 

 The model for the NGO assumes a multi-attribute value function, where the decision maker 

receives value from providing food, relief items, and shelter to the populace impacted by a disruption 

(Keeney and Raiffa, 1976; Keeney,1996). The NGO determines: 𝑦1 the amount of food procured before 

the disruption, 𝑦2 the number of relief items procured before the disruption, 𝑦3 the amount of food 

procured after the disruption, 𝑦4 the number of relief items procured after the disruption, and 𝑦5 the 

number of shelters provided after the disruption. Food and relief items can be procured before and after 

the disruption, but shelter can only be procured after the disruption occurs. The NGO’s value from 

distributing food is given the function 𝑣1(𝑦1 + 𝑦3), the value from distributing from relief items is 

𝑣2(𝑦2 + 𝑦4), and the value from providing shelter is 𝑣3(𝑦5). The range of each value function is [0,1]. 

We assume to the total value to the NGO from providing this relief is given by Equation 4 

𝑓(𝑦1 + 𝑦3, 𝑦2 + 𝑦4, 𝑦5)  

=  𝑤1𝑣1(𝑦1 + 𝑦3)  + 𝑤2𝑣2(𝑦2 + 𝑦4)  +  𝑤3𝑣3(𝑦5) + (1 − 𝑤1 − 𝑤2

− 𝑤3)𝑣1(𝑦1 + 𝑦3)𝑣2(𝑦2 + 𝑦4)𝑣3(𝑦5) 

(4) 
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where 𝑤1, 𝑤2,  and 𝑤3 are the trade-off weights—where each weight ranges between 0 and 1—for each of 

the three value functions. The product term at the end of Equation 4 recognizes that providing food, relief, 

and shelter could be complements or substitutes for each other. Typically, 𝑤1 + 𝑤2 + 𝑤3 < 1, which 

signifies that food, relief, and shelter are complements and that an NGO should be incentivized to have 

value for each attribute (Clemen and Reilly, 2001).  

As given in Equation 5-1, the NGO seeks to maximize the expected value of providing relief after 

the disruption where the annual probability of the disruption for the NGO is 𝑝(𝑁). If no disruption occurs, 

the NGO’s value ℎ(𝑦1, 𝑦2) is a function of the food and relief items procured before the disruption. Each 

of the decision variables has a cost in dollars as depicted by 𝑎𝑗 ≥ 0 where 𝑗 = 1,2, … , 5. We assume the 

cost of procuring a resource after the disruption has occurred is more than procuring the resource before 

the disruption. Equation 5-3 calculates the NGO’s value if no disruption occurs ℎ(𝑦1, 𝑦2) =

(𝑍(𝑁) − 𝑎1𝑦1 − 𝑎2𝑦2) 𝑍(𝑁)⁄  where 𝑍(𝑁) is the NGO’s budget. This linear value function assumes that the 

NGO’s value equals 1 if no money is spent preparing for a disruption that does not occur and the NGO’s 

value equals 0 if the entire budget is spent preparing for a disruption that does not occur. Equation 5-4 

illustrates that the cost of the resources must be less than or equal to the NGO’s budget 𝑍(𝑁). Equation 4-

5 reflects the assumption that the number of resources procured and distributed must be greater than or 

equal to zero. The NGO determines the food, relief items, and shelter to procure and distribution in order 

to maximize its total expected value.  

maximize 𝑝(𝑁)𝑓(𝑦1 + 𝑦3, 𝑦2 + 𝑦4, 𝑦5) + (1 − 𝑝(𝑁))ℎ(𝑦1, 𝑦2) (5-1) 

subject to 𝑓(𝑦1 + 𝑦3, 𝑦2 + 𝑦4, 𝑦5)  
=  𝑤1𝑣1(𝑦1 + 𝑦3)  +  𝑤2𝑣2(𝑦2 + 𝑦4)  +  𝑤3𝑣3(𝑦5) +  (1 − 𝑤1

− 𝑤2 − 𝑤3)𝑣1(𝑦1 + 𝑦3)𝑣2(𝑦2 + 𝑦4)𝑣3(𝑦5) 

(5-2) 

 
ℎ(𝑦1, 𝑦2) =  

𝑍(𝑁) − 𝑎1𝑦1 − 𝑎2𝑦2

𝑍(𝑁)
 

(5-3) 

 
∑ 𝑎𝑗𝑦𝑗

5

𝑗=1
≤ 𝑍(𝑁) 

(5-4) 

  𝑦𝑗  ≥ 0                  𝑓𝑜𝑟 𝑗 = 1, … ,5 (5-5) 
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 As with the previous three models, we desire to map the NGO’s decisions to economic impact in 

the region. Since the NGO’s decisions provide support and relief to people, we assume the NGO’s efforts 

increase the availability of the workforce, or reduces the unavailability of the workforce, after the 

disruption. As described by Orsi and Santos (2010), 𝛾𝑖 represents the number of people days of labor 

made available to industry 𝑖, and 𝑊𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒𝑖 is the size of the workforce in industry 𝑖 in the economic 

region. This value of 𝛾𝑖 is calculated as a function of how much food, relief items, and shelter stays can 

be distributed given the initial NGO budget. For instance, six meals, two relief items, or a shelter stay 

may be required in order to contribute two people days of labor, depending on how his/her life was 

affected by the disruption. In this case, 𝛾𝑖 would be calculated as the sum of 1/6 of the food distributed, ½ 

of the relief items distributed, and each of the shelter stays provided. The local area personal income 

(LAPI) is the income of all the people working in each industry 𝑖, and 𝑥𝑖 remains the production of 

industry 𝑖 (as in the IIM). Equation 6 uses these parameters to calculate 𝑑𝑖, the economic benefit of the 

increased working population in proportional terms for industry 𝑖.  

𝑑𝒊 =
(

𝛾𝒊
365

)

 𝑊𝑜𝑟𝑘𝑓𝑜𝑟𝑐𝑒𝑖
∗

𝐿𝐴𝑃𝐼𝑖

𝑥𝒊
 

 

(6) 

After calculating 𝑑𝑖 for each of the 𝑚 industries to obtain the vector 𝐝, the economic benefits (or the 

production losses averted) from the NGO’s decision can be calculated 𝐱𝑇𝐁(𝑛×𝑚)𝐝. 
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Chapter 3. Application to Hurricane Katrina 

 The models are applied to a hypothetical hurricane of the approximate size and scope of 

Hurricane Katrina. Hurricane Katrina was a Category 5 hurricane that hit the Gulf Coast region of the 

United States in 2005. It was one of the deadliest and most costly hurricanes in U.S. history. Between 

1,245 and 1,836 people died as a result of the hurricane (Beven et al., 2008, Brunkard et al., 2008) with a 

majority of those deaths being recorded in New Orleans. Hallegatte (2008, 2011) estimates the losses 

from Hurricane Katrina between $74 and $149 billion to local business and recovery and reconstruction 

of the area to cost the federal government between $75 and $110 billion. 

 The federal government will consider the five states surrounding the Gulf of Mexico, Alabama, 

Florida, Louisiana, Mississippi, and Texas. The state government decision maker is Louisiana, which was 

the state that was most impacted by Hurricane Katrina. The private sector decision maker is the utilities 

industry (which will be assumed to be a single decision maker), and the NGO is the American Red Cross. 

As was mentioned in the introduction, the results from Heath (1995) suggest that only the decision 

makers with a large amount of resources or influence should be considered in decision-making models. 

This is because the smaller entities are not always able to get their voice heard and can introduce more 

complications and time to the decision. Although it is possible to apply the developed models to any sized 

entity. The results of each of these models are expressed in terms of expected economic losses from the 

disruptions. These economic losses ignore casualties and environmental damage, except to the extent that 

those factors influence the economic loss in individual industries and the economic region as a whole. 

The parameters in each of the models are estimated from government databases, media stories, 

and journal articles and have been brought into terms of 2015 dollars via the general inflation rate if 

needed. The IIM is populated with data from the U.S. Bureau of Economic Analysis (2015). This data 

results in an aggregated target economy for the Gulf States with 𝑛 =63 industries which are used to 

populate the 𝐱 and 𝐁 vectors considered in all four models. We assume the hurricane directly impacts 

𝑚=32 of those industries. The data used in the following models for parameters like losses due to the 
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disruption, the recovery time of each industry, and the impact of each industry on the other industries in 

the decision environment are based on data gathered in MacKenzie and Al-Kazimi (2017). In most cases 

where solid recovery time data is not available, it is assumed that it would take each industry 10 years to 

fully recover from the hurricane if no resources were allocated to the region. It is possible that some 

industries might never recover from such an event, but this assumption helps to simplify the calculations. 

Comparisons between the models are made in an attempt to simulate a situation in which the individual 

decision makers collaborate with one another to reach a better end result. 

3.1 Application of the U.S. Federal Government 

 The parameter estimations that are used for the federal government resource allocation model are 

described in this section along with the results that these parameters yield. Tourism makes up the first 

four industries in this model, seeing as they were so severely impacted by the hurricane. The industries in 

the middle of the matrix,  𝑖 = 5,6, … ,25, represent the industries that were directly impacted by the 

hurricane due to damage to raw materials, production facilities, offices, etc. (Hallegatte, 2008). These 21 

middle industries make up a large portion of the private sector in this model. The reminder of the 

industries are illustrated in Table 1 with a description of each industry and its associated index 𝑖. Since the 

model for the federal government is derived from the model in MacKenzie and Al-Kazimi (2017), the 

origins of the impact parameters 𝑐̂𝑖
∗ and effectiveness parameters 𝑘𝑖 for each of the industries is explain in 

detail in that paper. The Gross Domestic Product (GDP) values from their analysis has been substituted 

with the GDP values from 2015 and the cost values have been inflated to 2015 costs using the general 

inflation equation. 

Table 1: Input Parameters for Federal Government Model 

𝒊  Industry  𝒄̂𝒊
∗ 𝒌𝒊 (per $1 million)  

1  Retail trade  0.0032 0.0149 

2  Amusements  0.0193 0.0262 

3  Accommodations  0.0128 0.0259 

4  Food services  0.0119 0.00904 

5  Farms  0.0225 0.000912 

6  Fishing and forestry  0.0225 0.005915 
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7  Construction  0.0225 0.000172 

8  Wood products  0.0225 0.00306 

9  Nonmetallic minerals  0.0225 0.002043006 

10  Primary metals  0.0225 0.001514286 

11  Fabricated metals  0.0225 0.000871633 

12  Machinery  0.0225 0.000718841 

13  Computer and electronics  0.0225 0.000933636 

14  Electrical equipment  0.0225 0.004205973 

15  Motor vehicles  0.0225 0.000505622 

16  Furniture  0.0225 0.00421429 

17  Miscellaneous manufacturing  0.0225 0.00313142 

18  Food and beverage  0.0225 0.000478338 

19  Textile  0.0225 0.007987559 

20  Apparel  0.0225 0.015357594 

21  Paper  0.0225 0.001654325 

22  Printing  0.0225 0.005544869 

23  Chemical products  0.0225 0.000280555 

24  Plastics and rubber products  0.0225 0.001674454 

25  Wholesale trade  0.0225 0.000154338 

26  Utilities  0.0023 0.014402372 

27  Water transportation (ports)  0.0171 0.003557337 

28  Education  0.0270 0.010977419 

29  Oil and gas  0.0662 0.000259584 

30  Petroleum products  0.0402 0.000259584 

31  Federal government  0.0257 0.000411337 

32 State government 0.0370 0.000411337 

Prevention 𝑘𝑝 = 0 

Preparedness 𝑘𝑞 = 1.6 × 10−4 

All industries simultaneously 𝑘0 = 1.0 × 10−5 

Initial probability 𝑝 = 0.56 

 

 The probability of a hurricane occurring is estimated as p, and was derived from the Hurricane 

Research Division (2015) report that 25 hurricanes of Category 2 or more struck at least one of the Gulf 

States between 1970 and 2014, with the remaining 21 hurricanes being weaker than a Category 2. 

Considering that the consequences of this federal government model attempt to replicate the scale of 

Hurricane Katrina, the probability of a hurricane occurring is likely overestimated. The values of 𝑘𝑞 and 

𝑘0 are estimated by the comprehensive cost-benefit analysis of preparedness and response money by 

Healy and Malhotra (2009), which estimates that money spent on preparedness is 15 times more effective 

than on response. 
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 With the model parameters set, the resource allocation model is solved for budgets ranging from 

Z = $0 to $50 billion. The fmincon function within Matlab is used to solve the optimization problem. The 

results of this optimization are illustrated in Table 2. The results of the model show that it is most of the 

money spent by the federal government should be spent on preparing for the disruption in order to reduce 

the impact of the disruption. This is not a surprising result considering the large difference in 

effectiveness between preparedness spending and response spending. Spending on individual industries 

does not start to become highly advised until the budget exceeds $25 billion. At that point, the money 

spent on preparation starts to decrease because the budget gets so large that it is more beneficial to 

reinvest the resources into the economic region and respond to the disruption if it occurs. 

Table 2: Optimal Federal Resource Allocation for Different Budgets (millions of dollars) 

Industry 
Budget 

5,000 10,000 20,000 30,000 40,000 50,000 

Pre-disruption 4918 9851 14223 12933 11156 9365 

All industries 0 0 0 0 0 0 

Retail trade  18 32 126 174 194 213 

Amusements  13 21 74 102 113 124 

Accommodations  11 19 73 100 112 123 

Food services  40 63 217 297 330 362 

Farms  0 0 0 255 592 900 

Fishing and forestry  0 0 0 0 31 78 

Construction  0 0 0 652 2310 3977 

Wood products  0 0 0 106 204 296 

Nonmetallic minerals  0 0 0 97 245 378 

Primary metals  0 0 0 205 401 593 

Fabricated metals  0 0 0 278 620 949 

Machinery  0 0 0 347 774 1141 

Computer and electronics  0 0 0 0 168 500 

Electrical equipment  0 0 0 43 114 180 

Motor vehicles  0 0 0 741 1320 1866 

Furniture  0 0 0 62 137 192 

Miscellaneous manufacturing  0 0 0 38 129 238 

Food and beverage  0 0 0 604 1209 1791 

Textile  0 0 0 33 70 106 

Apparel  0 0 0 15 34 53 

Paper  0 0 0 194 373 543 

Printing  0 0 0 32 86 137 

Chemical products  0 0 0 588 1666 2705 

Plastics and rubber products  0 0 0 173 352 517 

Wholesale trade  0 0 0 0 1423 3121 
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Utilities  0 0 14 64 85 104 

Water transportation (ports)  0 0 3 206 290 372 

Education  0 14 142 207 235 261 

Oil and gas  0 0 0 765 1933 3058 

Petroleum products  0 0 2811 5594 6777 7892 

Federal government  0 0 0 1013 1718 2404 

State government 0 0 2317 4079 4798 5462 

 

 Figure 1 depicts the expected production losses as a function of federal budget ranging from $0 to 

$50 billion. The expected production losses appear to follow an exponential curve where increases in 

budgets past $20 billion have little effect on further decreasing the expected production losses. Since most 

of the allocation functions in the model are exponential based on the exponential model with diminishing 

marginal returns and the aggregate of many exponential functions is also an exponential function. 

 

Figure 1: Expected Production Losses to Gulf States 

3.2 Application of the State of Louisiana 

 Table 3 depicts the input parameters for the Louisiana state government resource allocation 

model. We assume the state government’s effectiveness parameters for industry 𝑖, 𝑘𝑖
(𝑠)

, is two times 
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larger than that of the federal government, i.e., 𝑘𝑖
(𝑠)

= 2𝑘𝑖. This assumption reflects that Louisiana has 

more knowledge than the federal government about what individual industries require and can more 

easily help those industries recover. The choice of Louisiana being twice as effective as the federal 

government is arbitrary considering that there is no published number definitively stating the difference in 

effectiveness between governments. Any reasonable number between 0.5 and 4 could have been used in 

this situation, but 2 allows for a differentiation between the state and federal government models other 

than the size of their respective available budgets. Since the direct impacts for industry 𝑖 𝑐̂𝑖
∗ is a proportion 

of the damage to the industry’s entire production, 𝑐̂𝑖
∗(𝑠)

> 𝑐̂𝑖
∗ because an industry’s entire production in 

Louisiana is less than the industry’s entire production in the five Gulf states and most of the direct 

impacts from the hurricane occur in Louisiana. Since Louisiana is one of the five Gulf States, the 

probability that a hurricane hits is taken as one fifth the overall probability of a hurricane hitting the Gulf. 

Table 3: Input Parameters for State Government Model 

𝒊  Industry  𝒄̂𝒊
∗ 𝒌𝒊 (per $1 million)  

1  Retail trade  0.041788 0.029835 

2  Amusements  0.253523 0.052305 

3  Accommodations  0.123939 0.05184 

4  Food services  0.164857 0.018087 

5  Farms  0.196876 0.002795 

6  Fishing and forestry  0.196876 0.009038 

7  Construction  0.196876 0.000331 

8  Wood products  0.196876 0.003933 

9  Nonmetallic minerals  0.196876 0.004927 

10  Primary metals  0.196876 0.004061 

11  Fabricated metals  0.196876 0.001586 

12  Machinery  0.196876 0.00168 

13  Computer and electronics  0.196876 0.024414 

14  Electrical equipment  0.196876 0.022839 

15  Motor vehicles  0.196876 0.018653 

16  Furniture  0.196876 0.042128 

17  Miscellaneous manufacturing  0.196876 0.013764 

18  Food and beverage  0.196876 0.000876 

19  Textile  0.196876 0.029433 

20  Apparel  0.196876 0.132251 

21  Paper  0.196876 0.001218 

22  Printing  0.196876 0.017431 

23  Chemical products  0.196876 0.000243 

24  Plastics and rubber products  0.196876 0.005817 
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25  Wholesale trade  0.196876 0.000431 

26  Utilities  0.021222 0.028805 

27  Water transportation (ports)  0.058827 0.007115 

28  Education  0.286347 0.021955 

29  Oil and gas  0.04 0.000519 

30  Petroleum products  0.062126 0.000519 

31  Federal government  0.026 0.000823 

32 State government 0.464904 0.000823 

Prevention 𝑘𝑝 = 0 

Preparedness 𝑘𝑞 = 1.6 × 10−4 

All industries simultaneously 𝑘0 = 1.0 × 10−5 

Initial probability 𝑝̂ = 0.11 

 

Table 4 depicts the optimal allocation for budgets ranging from $5 to $50 billion. The results 

show that the state government will start to spend on individual industries sooner than the federal 

government. The results also show that the state government should not spend any money on preparation 

for the hurricane. This is a very surprising result considering that the state effectiveness is only two times 

more effective than that of the state. It is possible that since the state budget will likely be much smaller 

than the federal government it is better to target individual industries so that the economic region can start 

to generate income faster. This could allow the overall impact to the state to be much smaller. It may also 

be the case that since the economy of Louisiana is so much smaller than the entire Gulf Coast economy 

that there may not have been as much damage to recover from. 

Table 4: Optimal State Resource Allocation for Different Budgets (Millions of Dollars) 

Industry 
Budget 

5,000 10,000 20,000 30,000 40,000 50,000 

Pre-disruption 0 0 0 0 0 0 

All industries 0 0 0 0 0 0 

Retail trade  95 106 124 143 156 181 

Amusements  56 61 72 83 93 99 

Accommodations  55 61 72 83 95 97 

Food services  163 180 211 243 269 295 

Farms  36 146 346 529 774 921 

Fishing and forestry  0 15 77 139 197 305 

Construction  4 929 2645 4392 6041 7445 

Wood products  60 138 280 420 546 599 

Nonmetallic minerals  17 79 193 298 424 529 

Primary metals  33 108 247 381 510 563 

Fabricated metals  58 251 604 967 1364 1617 
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Machinery  40 223 560 892 1313 1535 

Computer and electronics  0 1 24 47 70 99 

Electrical equipment  1 14 39 63 88 176 

Motor vehicles  0 17 47 74 104 121 

Furniture  2 9 23 36 51 65 

Miscellaneous manufacturing  0 20 61 103 134 242 

Food and beverage  160 509 1152 1763 2297 3066 

Textile  4 14 33 52 68 86 

Apparel  0 3 7 11 15 21 

Paper  193 445 901 1380 1709 2171 

Printing  3 21 53 91 128 144 

Chemical products  323 1585 3884 6121 8198 9864 

Plastics and rubber products  30 83 179 279 386 512 

Wholesale trade  0 286 1587 2955 4276 5436 

Utilities  23 34 54 71 93 116 

Water transportation (ports)  138 181 260 339 399 478 

Education  115 129 155 182 223 229 

Oil and gas  0 0 0 0 0 187 

Petroleum products  1033 1623 2693 3791 5002 6436 

Federal government  0 0 0 0 72 547 

State government 2356 2728 3416 4073 4907 5817 

 

 Figure 2a depicts the expected production losses in the state of Louisiana as budget increases 

from $0 to $50 billion. The shape of the line is similar to that of the federal government model, which is 

expected since the model calculations are based on the same exponential principals. However, the 

magnitude of the losses is only 2/3 of the federal government. The diminishing marginal returns also 

appears to take effect much quicker than in the federal government case. This is a promising result since 

the budget of the state government would likely be much smaller than the federal government. As 

mentioned at the start of this subsection, there is some ambiguity in the relative effectiveness between the 

state and federal governments. Figure 2b depicts the results of the model if the effectiveness of state 

spending is considered to be equal to that of the federal government, given all other model inputs remain 

the same. When comparing Figures 2a and 2b, the impact of effectiveness on production losses becomes 

clearer. Having an increased effectiveness brings the knee of the curve closer to the y-axis and the 

asymptote of the curve approaches the x-axis. This means that as effectiveness increases, smaller budgets 

have a slightly larger impact and more production losses can be averted as budgets become large. If the 

state is less effective than the federal government, the opposite result is expected. 
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Figure 2a: Expected Production Losses to State of Louisiana Double Effectiveness 

 

Figure 2b: Expected Production Losses to State of Louisiana Nominal Effectiveness 
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3.3 Application of the Utilities Companies 

 Many private sector companies were impacted by Hurricane Katrina from small businesses that 

employ a handful of people to large businesses that employ thousands. The private sector model described 

earlier can be applied to any type of business, but the goal of this specific application is to use a company 

that has a large scope and impacts many of the other industries within the economy. Therefore, a utility 

company that services all of Louisiana was selected due to the revenue it produces and its ability to assist 

the other industries and entities. Although utilities companies are part of a regulated industry, their use 

within this model works because they remain a for profit entity that has a large number of resources and 

can affect multiple other industries. Their regulation also allows for more data being available on the 

quantity of resources and the use of those resources when compared to other privately held for profit 

entities. This allows for the creation of a more accurate model and decision environment.  After Hurricane 

Katrina hit the Gulf Coast, as much as 30% of Louisiana was without power along with smaller portions 

of neighboring Mississippi and Alabama (Crowther et al., 2007). It took three to four months for power to 

be restored to all of the customers in the region. 

 The input parameters for the resilience of the utilities’ companies model are taken from 

MacKenzie and Zobel (2016), and the impact of the disruption in the utilities’ industry are taken from 

Crowther et al. (2007). Based on these papers, the initial post-disruption resilience of the utilities sector in 

Louisiana is estimated as 0.737, and the maximum budget a utilities company would have available for 

this situation is $1 billion. The remainder of the input parameters used in Equations (3-1) to (3-3) are 

depicted in Table 5. 

Table 5: Input Parameters for Utilities Model 

𝑋̂ = 0.63 𝑎𝑋 = 0.055 𝑏𝑋 = 30 

𝑇̂ = 45 𝑎𝑇 = 0.9 𝑏𝑇 = 3.6 
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 Table 6 depicts the allocation of resources for hardening 𝑧𝑋 and recovery 𝑧𝑇 activities for a 

budget ranging from $0 to $1 billion, the resilience of the system, and 𝑐𝑖
∗𝑛𝑒𝑤 that is generated from the 

utilities’ resilience. The results show that although the budget continues to increase, once the budget 

reaches $150 million the spending on hardening activities and response stops increasing. At that point, it 

is better to spend any of the remaining budget on other priorities not related to resilience for the utility 

company. 

Table 6: Results of Utilities Model  

Budget (millions) Hardening 

(millions) 

Recovery (millions) Resilience 𝒄𝒊
∗𝒏𝒆𝒘 

$0  $0.00 $0.00 0.6850 0.0254 

$50 $46.16 $3.84 0.8902 0.0088 

$100 $93.26 $6.74 0.9095 0.0073 

$150 $115.60 $7.92 0.9153 0.0068 

$200 $115.60 $7.92 0.9153 0.0068 

$250 $115.60 $7.92 0.9153 0.0068 

$300 $115.60 $7.92 0.9153 0.0068 

$350 $115.60 $7.92 0.9153 0.0068 

$400 $115.60 $7.92 0.9153 0.0068 

$450 $115.60 $7.92 0.9153 0.0068 

$500 $115.60 $7.92 0.9153 0.0068 

$550 $115.60 $7.92 0.9153 0.0068 

$600 $115.60 $7.92 0.9153 0.0068 

$650 $115.60 $7.92 0.9153 0.0068 

$700 $115.60 $7.92 0.9153 0.0068 

$750 $115.60 $7.92 0.9153 0.0068 

$800 $115.60 $7.92 0.9153 0.0068 

$850 $115.60 $7.92 0.9153 0.0068 

$900 $115.60 $7.92 0.9153 0.0068 

$950 $115.60 $7.92 0.9153 0.0068 

$1,000 $115.60 $7.92 0.9153 0.0068 

  

 Figure 3 depicts the resilience of the system as the budget increases from $0 to $1 billion. The 

shape of the graph aligns with the idea of diminishing marginal returns in the as the budget increase the 

amount the system resilience increases grows at a decreasing rate until the budget reaches approximately 

$150 million. This leveling off of the resilience reflects the results shown in Table 6 and is caused by a 

limitation in the production of the utilities company in the state of Louisiana. The production used in this 

model is based on the Gross Domestic Product (GDP) of the utilities company in Louisiana. If this value 
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was increased in the model to the GDP of the entire five state region, the resilience of the system was able 

to get closer to 0.95 before reaching a similar plateau before the budget reaches $1 billion. System 

resilience is related to overall system reliability which means that resilience can never exceed 1. 

 

Figure 3: System Resilience as a Function of Budget 

 Figure 4 depicts the production losses to the Gulf Region from a hurricane as a function of the 

utilities sector’s budget. As the budget increases, the production losses decrease but at a diminishing rate 

due to the logarithmic nature of the allocation functions for 𝑋(𝑧𝑋) and 𝑇(𝑧𝑇). The production losses 

represent the economic losses to the region because of the inoperability or lack of resilience in the utilities 

sector and ignores the different impacts caused by the hurricane on the other industries. If the budget is 

more than $100 million, the marginal decrease in production losses is less than the marginal increase in 

the budget, which suggests that spending a large amount of money (more than $100 million) on the 

utilities sector may not be cost effective. Since the expected production losses to the utilities sector is 
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based on the resilience of the system, the plateau effect shown in Figure 3 also shows in Figure 4 when 

the budget exceeds approximately $150 million. 

 

Figure 4: Expected Production Losses to Utilities Sector 

 

3.4 Application of the American Red Cross 

 When a disruption occurs, countless numbers of organizations and individuals donate their time 

and resources to recovery. Some of these contributions can be difficult to quantify, which is something 

that is needed for the NGO model presented earlier. In order to see the impact that a NGO can have, the 

organization selected for this application is able to operate on a large scale throughout the entire impacted 

region and also has the resources to cause a significant effect on the working population. The American 

Red Cross was selected due to the historical data they provide on how many meals, relief items, and 

shelter stays they have distributed during similar disruptions as well as an estimated budget for their 
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actions during those disruptions. During Hurricane Harvey, the Red Cross distributed millions of meals 

and relief items as well as assisting in the evacuation and rebuilding of the impacted region. 

 The input parameters for the NGO model are depicted in Table 7. They show the cost of 

allocating a single unit of food, relief item, and shelter stay both before and after the disruption as well as 

the weights associated with those variables. These per-unit cost values were determined by analyzing Red 

Cross reports to previous large disasters like Hurricane Harvey (American Red Cross, 2018). The weights 

for the variables was based on the importance of each variable relative to the other variables. The three 

weights sum to 0.9, which means that there is a 0.1 weight assigned to the product of the three value 

functions as depicted in Equation (5-3). This encourages the Red Cross to contribute to all three relief 

products (food, relief items, shelter).  

Table 7: Input Values for Red Cross Model 

 Pre-disruption 

food 

Post-disruption 

food 

Pre-disruption 

relief items 

Post-disruption 

relief items 

Post-disruption 

shelter stays 

Cost $1.33 $2.60 $1.87 $3.70 $40 

Weight 0.6 0.2 0.1 

 

 Table 8 depicts the allocation of resources to food, relief items, and shelter for a budget ranging 

from $300 to $500 million. The results show that the total number of food and relief items distributed will 

continue to increase as the budget increases, but the number of shelter stays provided remains constant at 

550,000. This behavior indicates that shelter stays might not be valued very highly due to their unit price, 

but the model incentivizes the Red Cross when providing at least some shelter stays. It is more valuable 

and cost effective to provide more food and relief items due to their higher weight when compared to 

shelter stays. If the cost of shelter stays were lower, the resources saved would likely go to providing 

more food and relief items rather than on more shelter stays. The fluctuation in values like pre-disruption 

food are likely due to the way the model is constructed. The model is run as a set of discrete points based 

on the desired budget, therefore the distribution of resources when the budget is $400 million has no 

effect on how the resources are distributed when the budget it $390 million or $410 million. It does, 
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however, remain consistent that more resources are allocated to the post-disruption options than the pre-

disruption options due to the low probability of the event occurring. If the disruption were more likely to 

occur, the model would reflect a larger emphasis on preparation. 

Table 8: Optimal Red Cross Allocation (Millions of Units) 

Budget  Pre-disruption 

food  

Pre-disruption 

relief  

Post-disruption 

food  

Post-disruption 

relief  

Post-disruption 

shelter stays  

$300 16.52 5.76 43.92 33.75 0.55 

$310 18.16 4.07 45.95 35.30 0.55 

$320 18.81 11.11 45.38 34.88 0.55 

$330 19.95 0.05 45.58 41.76 0.55 

$340 21.32 0.71 47.18 43.37 0.55 

$350 22.71 1.44 48.77 43.82 0.55 

$360 23.14 2.58 48.43 46.14 0.55 

$370 24.63 3.67 50.48 45.94 0.55 

$380 26.26 4.80 52.87 45.99 0.55 

$390 25.41 0.16 57.20 45.76 0.55 

$400 28.98 7.12 56.75 46.42 0.55 

$410 30.08 8.31 58.30 46.73 0.55 

$420 31.17 9.52 59.99 47.29 0.55 

$430 32.20 10.74 61.66 47.91 0.55 

$440 33.09 11.99 63.14 48.44 0.55 

$450 32.12 1.28 73.29 51.92 0.55 

$460 34.85 14.53 66.39 49.77 0.55 

$470 35.37 16.00 68.08 49.93 0.55 

$480 35.64 10.92 75.05 52.67 0.55 

$490 36.60 18.69 71.40 51.21 0.55 

$500 37.22 20.09 73.06 51.84 0.55 

 

 Figure 5 depicts the expected production losses averted as a result of Red Cross spending. These 

production losses are a result of the workforce days saved being translated into an economic value for the 

region. The relationship between budget and production losses averted appears to be linear with 

approximately $18,500 averted per million dollars spent by the Red Cross. The value functions that were 

used in this model along with the linear conversion of food, relief items, and shelter stays makes it a little 

surprising that the relationship between budget and production losses averted is also linear. If the values 

of the weights and the minimum and maximum goals from the decision maker were adjusted, the 

relationship is expected to remain linear but with a higher slope as minimums are decreased. However, 

the purpose of placing weights and values on the three resource types is to ensure that the needs of the at-
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risk population are met so it is not advised that these values be reduced to zero. It should be expected that 

the industries that receive the most benefit from the Red Cross resource distributions are the industries 

with the largest working population. 

 

Figure 5: Expected Production Losses Averted Due to Red Cross 

3.5 Shared Decision Making Among Decision Makers 

For the federal government and state government models, there was an exponential relationship 

of decreasing marginal returns as the budget increased from zero. This resulted in the reduction of 

expected production losses by 80% in both cases as the budget reached its maximum point. Although this 

is a favorable result, government entities are usually focused on spending less rather than on spending 

more, and governments would like to achieve better results from the money they do spend. When private 

sector entities like a utilities company are able to spend their own resources to reduce the impact of a 

disruption, the economic production losses can also be reduced. If the contributions of NGOs can be 

quantified, even more production losses can be averted. By introducing the idea of shared decision 

making between all of the entities in a disruption environment, the same number of resources can be 

allocated more effectively and the overall impact to the entire region can be further reduced. 
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Up to this point, the decision makers in all four of the models are assumed to be making their 

decisions independent of each other. If the decision makers instead would share their decisions, the results 

of these models could be drastically different. Since the state government is more effective at assisting 

individual industries, it may be possible for the federal government to provide some of their response 

resources to the state government so that the federal government can focus on preparing for the 

disruptions. If the actions of the private sector are communicated to the entities that have wider scopes of 

influence like the state and federal government, less government money could be provided to that specific 

industry. This would help to reduce the amount of double spending and overspending that can occur when 

multiple entities are attempting to handle a disruption. If the impact that the NGOs will have is known to 

all decision makers, it is possible that their resources could be devoted to repairing the buildings and 

infrastructures themselves rather than spending on the working population. 

This shared decision making can be quantified by calculating the effectiveness of all the decision 

makers on the regional level instead of at their respective levels, which has been done up to this point. 

This means that the impact of the state model, utilities model, and Red Cross model must be translated to 

the regional production level. By bringing all of the decision makers to the same level, the impact of the 

shared decision making can be expressed with 𝐱𝑇𝐁(𝑛×𝑚)𝐜∗, where 𝐜∗ is a vector of length 𝑚 that 

represents the direct impacts after accounting for the resources allocated by each decision maker. The 

total impacts for industry 𝑖 𝑐𝑖,𝑅𝑒𝑔
∗  can be calculated with the following equation: 

𝑐𝑖,𝑅𝑒𝑔
∗ = 𝑐̂𝑖,𝑅𝑒𝑔

∗ exp(−𝑘𝑞𝑧𝑝 − 𝑘𝑖𝑧𝑖 − 𝑘𝑖,𝐿𝐴𝑡𝑜𝑅𝑒𝑔𝑧𝑖,𝐿𝐴 − 𝑘𝑖,𝑃𝑟𝑖𝑣𝑡𝑜𝑅𝑒𝑔𝑧𝑖,𝑃𝑟𝑖𝑣 − 𝑘𝑖,𝑁𝐺𝑂𝑡𝑜𝑅𝑒𝑔𝑧𝑁𝐺𝑂)  (7) 

where 𝑘𝑖,𝐿𝐴𝑡𝑜𝑅𝑒𝑔 represents the effectiveness of spending in Louisiana translated to a regional level, 𝑧𝑖,𝐿𝐴 

is the state’s spending for industry 𝑖, 𝑘𝑖,𝑃𝑟𝑖𝑣𝑡𝑜𝑅𝑒𝑔 represents the effectiveness of private-sector spending 

translated to a regional level, 𝑧𝑖,𝑃𝑟𝑖𝑣 is the private sector’s spending for industry 𝑖, 𝑘𝑖,𝑁𝐺𝑂𝑡𝑜𝑅𝑒𝑔 represents 

the effectiveness of the NGO spending translated to a regional level, and 𝑧𝑁𝐺𝑂 is the spending by the 

NGO. When 𝐱T𝐁(n×m)𝑐𝑖,𝑅𝑒𝑔
∗  is evaluated, it calculates the production losses for the entire region given 
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the spending for each decision maker. Production losses from this shared decision making model should 

be less than the production losses from the federal government model alone. 

 Suppose that the total budget between the four decision making entities is $13 billion. Without 

shared decision making, this budget must be allocated within the economic limitations of the decision 

makers. For instance, it is impossible for the American Red Cross to be able to allocate a budget of $13 

billion to a single disruption considering their total budget for the 2016 fiscal year was only about $2.7 

billion (American Red Cross, 2016). If the federal government had a budget of $10 billion, the state 

government had a budget of $2.5 billion, the utilities company had a budget of $100 million, and the Red 

Cross had a budget of $400 million, the total production losses would be $20.35 billion. If the federal 

government spends $10 billion and no other entities allocate any money for preparedness or response, the 

production losses would be $27.08 billion. Including the effect of the other entities can significantly 

lessen the production losses. If the federal government realizes that total production losses could decrease 

if it provides money out of its budget to the other entities, this action could reduce the production losses 

even more. If the federal government’s budget is just $7 billion, and the other $3 billion was distributed to 

the other entities, the state government’s budget might be $5 billion, the utilities company’s budget might 

be $500 million, and the Red Cross’s budget might be $500 million. With this new budget allocation 

strategy brought about by the federal government providing more money to the state, the private sector, 

and NGOs, the production losses would be $19.96 billion. The difference between these two allocation 

strategies is only on the order of hundreds of millions of dollars, but having the federal government spend 

less in favor of more state and local spending can reduce production losses more. This result is due in 

large part to the state government being more effective in allocating money. 

Therefore, by allowing the decision makers to communicate with one another, the resulting 

savings could justify the time it would take for the decision makers to work together and further illustrate 

the importance of communication during disruptions. This effect could be further increased if the other 

four state governments, other large private entities, or other large NGOs like Habitat for Humanity were 
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included in the decision environment. Based on the results of the models, it is true that if the entire $13 

billion budget was allotted to the federal government the production losses could be less than the $20.35 

billion of the shared decision making model due to the larger effect that the federal government can have 

on the entire five state region. However, this is not a realistic application because it is very unlikely that 

all of the decision makers could be convinced to give all of their resources to a single entity. Each of the 

decision makers has their own set of expectations that they want to achieve and would not allow all of 

their resources to be taken before they can achieve at least some of those expectations. 

As mentioned previously, the Red Cross’s goal is not economic recovery. Red Cross efforts 

during a disruption such as a hurricane often focus on those people who are most devastated by the event. 

These people need the basic necessities such as food, clothing, and shelter to survive. Often, the people 

who need these basic necessities after a disruption are the most vulnerable or at-risk populations before 

the disruption occurs. The most vulnerable populations may be the elderly or the socio-economically 

disadvantaged such as those living below the poverty line and those that did not have a home before the 

disruption. Neglecting the at-risk population can increase the number of injured that go unaided or even 

increase the number of casualties as a result of the disruption. With a limited budget, decision makers 

may need to determine how to fairly divide a budget for economic recovery and to assist the most 

vulnerable populations. The resource allocation model can be used to understand this possible trade-off 

between helping the most vulnerable and economic recovery.  

Assume there is only $1 billion available for the federal government and the American Red Cross 

to share. The federal government spends money to help the regional economy recover and the Red Cross 

spends money to provide food, shelter, and relief items to the most vulnerable populations. Figure 6 

displays the relationship between the production losses due to the federal government’s spending and the 

person-days helped by the Red Cross. The far right portion of the curve illustrates when the Red Cross 

receives the entire $1 billion budget while the far left point of the curve illustrates when the federal 

government receives the entire $1 billion budget. There is a slight logarithmic curve to the data which 
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indicates that there may be a point where the largest mutual benefit could be selected. This point balances 

the trade-off between helping the economy and helping the at-risk population. 

 

Figure 6: Tradeoff Between Person Days and Production Losses
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Chapter 4. Conclusions and Insights 

 Major disruptions are events that cannot always be prevented even with an unlimited budget. It is 

important that proper resource allocations plans are in place before those disruptions occur. The 

preparation for those disruptions can reduce the consequences of the disruption and help to reduce the 

amount of resources need to respond to and recover from those disasters. This thesis approached a 

resource allocation problem from the perspective of four independent decision makers, each with different 

objectives and resources. Each decision maker could also operate with different effectiveness. Those four 

different perspectives were illustrated by four computational models that provided results in terms of 

production losses in an economic region. The models developed here were applied to a disruption on the 

scale of Hurricane Katrina in the context of the 2015 U.S. Gulf Coast economy. Combining the results of 

the four different decision-making models into a single metric of production losses enables us to analyze 

the effect of shared decision making among the four decision makers. By allowing the federal government 

to redistribute some of its budget to the other decision makers via shared decision making, production 

losses could be reduced by hundreds of millions of dollars with the same overall budget. The unique 

contributions of this thesis are modeling four decision makers with different objectives and resources, 

including the distinct decision makers each with their own decision problem, converting the output from 

each decision model into a single computational measure that is shared by all the models, and analyzing 

how collaborating among the decision makers can improve the overall result of a resource allocation 

problem. 

 There are many applications for each of the models discussed. Each of the models can be used by 

a decision maker to run any number of “what if” situations based on their own data for events that have 

already happened to see where they could have been more effective. The models can also be used as 

predictive models for events that a decision maker feels could happen in the near future to anticipate 

losses and devise ways to reduce those anticipated losses. The shared decision-making model can be used 
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to illustrate the importance of communication in disruption situations to make the most effective use of 

the finite resources that each decision maker has available. 

 Some of the values used in the creation of these models to establish parameters and quantify loss 

are based on the best estimates that could be obtained from other research papers and information 

accessible on the entities. A future step for this research is the further validation of the input parameters 

used in order to provide the most accurate model possible. The relationship between smaller decision 

makers and the entire decision environment to better illustrate the connections between industries can also 

be done. The model can be modified and applied to any number of potential disruptions and should be fit 

to multiple decision maker archetypes. 
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