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ABSTRACT 

Airplane manufacturing industry is a low-volume high-value industry; however, there is a 

very high uncertainty associated with it. The industry has long lead times and capacity expansion 

for such an industry requires huge capital investments. Therefore, capacity planning requires 

accurate demand forecasting based on the historical data. Various demand forecasting models 

based on the forecasted demand can serve as an influential tool for the decision making. Based on 

the profit requirements, cost saving, and the risk attitude of a decision maker, he or she may choose 

a different strategy. This primary purpose of this research is to model the uncertainty and analyze 

different decision-making approaches for long-term capacity planning for painting the Boeing 737 

airplanes. 

The first part of the research focusses on identifying the underlying demand trends for the 

Boeing 737 and Boeing 777 airplane models based on the historical data. Probabilistic models 

were evaluated for the demand based on model assumptions and statistical analysis. The stochastic 

processes Brownian motion and a modified geometric Brownian motion were used to predict the 

demand for the Boeing 737 and Boeing 777 respectively for the next 20 years. 

The second part of the research focusses on decision making based on the forecasted 

demand for the Boeing 737 airplanes. The decision is when to construct new hangars to paint new 

airplanes. Three decision-making approaches were applied to this decision: expected utility, robust 

decision making, and information gap. Since significant uncertainty exists with the number of 

airplanes, it is important to compare the decision-making methodologies for different risk 

tolerances, probabilities, and required profits. The circumstances and assumptions favoring each 

of the decision-making philosophy under deep uncertainty was discussed and, based on the 

simulation results, the optimal strategies for the capacity expansion were summarized.  
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CHAPTER 1.    GENERAL INTRODUCTION 

Airplanes have a huge variability in demand each year. This variability is an effect of 

various factors including seasonal demand, fuel prices, and increasing air travelers. However, 

the demand for commercial aircraft has largely increased during the past 30 years. Figure1.1 

represents the historical data for the orders of Boeing’s commercial airplanes (Boeing, 2018) 

for the years 2005-2017. Figure 1.2 represents the historical data for the orders of Airbus’s 

commercial airplanes (Airbus, 2018) for the years 2005-2017. Both the figures show a 

remarkably similar trend and a clear upward trend is noticeable from the year 2010. 

 

Figure1.1: Historical orders for the Boeing Commercial airplanes 

 

Given the variability in the market for commercial aircraft, companies like Boeing will 

have to make strategic decisions about its future capacity in order to maximize its profits.  
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Expanding capacity may require significant capital investment. However, due to the 

uncertainty in the demand, long-term capacity planning involves considerable uncertainty. Due 

to the risks involved, capacity planning should be decided using strategic tools and not by gut 

feeling. 

 

Figure 1.2: Historical orders for the Airbus Commercial airplanes 

Long-term capacity planning deals with various strategic issues in major production 

facilities, this causes high uncertainty. Tackling such a complex problem is not possible with 

a short-term or medium-term capacity planning techniques. The capacity planning is an issue 

in many major industries and not airplanes alone. Previously, there have been a lot of papers 

published regarding the capacity planning. Capacity planning under uncertainty using an Asian 

approach was discussed to produce beneficial results with expanding the capacity under 

average demand uncertainty and being beneficial with reducing capacity under high stochastic 

uncertainty (Driouchi et al., 2006). A cautious approach to capacity planning has been 
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described to produce robustness to likely errors. The capacity expansion problem is cast into a 

deterministic framework to avoid complexities in the non-linear stochastic formulations. Based 

on the large data, the results from the nonlinear programming capacity planning model shows 

that with an increase in the caution against demand uncertainty, the variance of the total profit 

decreases (Paraskevopoulos et al., 1991). Courtney et al. (1997) argue that traditional 

approaches could be downright dangerous for strategic planning under uncertainty. A 

traditional approach could be viewed in a binary way by the executives and assume that the 

demand prediction is precise. Various research articles have been published previously 

regarding the capacity planning in industries other than airplanes. A Simulation model for 

capacity planning under uncertainty in the food industry has been discussed by Higgins et al. 

(2005). The simulation is also applicable in biomedicine field to support decision making 

(Groothuis et al., 2001). A comprehensive capacity planning model integrating statistics, 

financial models and simulation to support decision making were proposed by Nazzal et al. 

(2006). Eppen et al. (1989) developed a mixed linear programming model to solve the capacity 

planning issue of General Motors. 

Even though there has been a significant amount of research done in the past regarding 

the capacity planning, most of it has been focused on the deterministic problems, short or 

medium-term planning. Research gaps have been found in the long-term capacity planning and 

with the introduction of uncertainty, the capacity planning poses a challenge. Graves (2008) 

discusses current practices and possible improvements to the practices that could present with 

tactical decisions to properly handle the uncertainty in production planning. Dixit et al., (1994) 

speaks about some best ways and mathematical tools to make investment decisions under 

uncertainty. A review by Mula et al. (2006) discusses the forthcomings of production planning 
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where uncertainty is accounted for and compares it to the production planning models without 

uncertainty. In the review, 87 citations related to production planning for uncertainty have been 

analyzed.  

Multi-stage stochastic programming which is a prevalent method for capacity planning 

under uncertainty has been discussed by Chen et al. (2002), Ahmed et al. (2003) and Geng et 

al. (2009). There are certain risks involved in capacity planning such as financial risk, 

downside risk and worst-case revenue (Bonfill et al., 2004) to be considered in the two-stage 

stochastic programming model. Meighem (2003) put forth the idea of incorporating the game 

theory, utility theory, financial hedging and operational hedging to provide a financial model 

for capacity planning problem. Understanding these risks is very essential to make informed 

decisions for long-term capacity planning and this gap needs to be addressed for tackling the 

planning issue in the aviation industry. 

Zhang (2017) initiated a collaborative research to overcome this challenge by 

developing a practical model for making the decision regarding the expansion of the painting 

capacity for Boeing. The model is designed to provide decision making for capacity expansion 

information 20 years into the future. The research demonstrates several approaches to long-

term production planning. Boeing 737 and 777 models have been evaluated using a modified 

geometric motion method for forecasting demand and were compared to the autoregressive 

integrated moving average method. A second study in this research demonstrates a working 

decision-making model using 3 decision-making strategies (Expected utility, Robust Decision 

making and Information Gap) and the results from each were compared. 

The current research focusses on the reviewing the previously discussed framework 

developed by Zhang (2017), and discussed the expected utility, robust decision making and 
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information gap decision-making strategies. The demand forecasting was validated with the 

updated orders data from Boeing (2018). The demand was observed to follow a Brownian 

motion trend for the 737 model and 777 model follows the modified geometric Brownian 

motion trend discussed by Zhang (2017). The forecast for demand from the Brownian motion 

model for the Boeing 737 model has been applied in the decision-making model. The variation 

among optimal alternatives from the expected utility, robust decision making, and information 

gap model have been discussed. The influence of the assumptions in the model and sensitivity 

of the model is also investigated in the current research. 
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CHAPTER 2.    PROBABILISTIC METHODS FOR LONG-

TERM DEMAND FORECASTING IN THE AVIATION 

INDUSTRY 

 2.1 Introduction 

The increase in global population and globalization has led to an increase in air travel. 

However, the demand for the airplane manufacturing is highly uncertain over long-term. 

Airplane manufacturing industry is a low-volume high value manufacturing market. Hence any 

decision regarding the investment in such an industry is difficult due to the high capital 

requirement and varying demand. Airplane manufacturers need to capitalize on the 

opportunities in this uncertain market by making proper investment decisions. Therefore, 

Boeing is analyzing its capacity to manufacture airplanes to meet the demand requirements for 

the future. Since expansion requires large capital investments, the demand for the aircraft 

orders must be predicted for a long term. 

While there are several approaches to forecasting, there is no perfect method and no 

precise forecast technique. DeCroix (2015) highlights that in an uncertain environment, the 

production can be optimized by either making improvements to the forecasting models or 

allowing for flexibility in production such as having flexible production lines or shared 

components, which would reduce the lead times and prove beneficial. Huh (2005) addresses 

the issue of highly volatile demand by developing a cluster-based algorithm that reduces 

variance along with the principles of maximum flow algorithm. Huang (2008) discusses 

Monte-Carlo simulation model to approximate stochastic process and handle path dependent 

relationship between successive demands. Several studies (Johnson et al., 1974; Caldeira et al., 

1983; Geng et al., 2009) represent demand as a probability distribution to find optimal resource 
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allocation for production planning under uncertainty. However, with the rapidly changing 

market, simple demand prediction models may not fare well for demand prediction.  

Forecasting models of demand include the autoregressive integrated moving average 

(ARIMA) method and probabilistic models such as Brownian motion and Geometric 

Browning Motion (GBM) (Zhang, 2017). Probabilistic forecasting models incorporate 

uncertainty in a better fashion then deterministic time series models (Gneiting et al., 2014).  

Zhang (2017) develops a probabilistic model with a modified Brownian motion and modified 

GBM to predict future demand for the Boeing 737 and 777 models respectively. The results 

were compared to an ARIMA model. This paper updates the Brownian motion model for the 

737 and the modified GBM for the 777.  

 

2.2 Demand Forecast Models 

 

2.2.1 Brownian Motion (BM) 

Brownian motion is a prevalent technique for probabilistic demand forecasting. 

Britannica defines the Brownian motion as any phenomenon in which some quantity is 

constantly undergoing small, random fluctuations. The amount of the randomness increases 

with increasing time.  Brownian motion is also called as Weiner process in general. Durett 

(1998), describes the characteristics of the Brownian motion as follows: 

1. Brownian motion has independent increments. The increments in a one-time 

interval are independent of increments in any other time. 

2. Brownian motion has Gaussian increments. The increments follow a normal 

distribution with a mean ‘0’ and variance of ‘u’. 

3. Brownian motion is a continuous process. 
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Brownian motion with drift assumes that the annual demand follows a normal 

distribution with mean µt+b and variance tσ2, where µ is the mean shift in demand, t is the 

number of years from the current year, b is the current demand, σ2 is the variance of demand 

at time t=1. If the demand for the Boeing Airplanes follows Brownian motion, the variance in 

demand increases in each year. The general equation for demand at time t according to 

Brownian motion is: 

𝑋(𝑡) = 𝜎𝐵(𝑡) + 𝜇𝑡 + 𝑏 (2.1) 

where B(t) ~ N (0, t) is a standard Brownian motion, meaning that it is distributed normally 

with a mean 0 and variance t. If demand follows the Brownian motion, the expected demand 

and variance of demand in each year are: 

𝐸[𝑋(𝑡)] = 𝜎𝐸[𝐵(𝑡)] + 𝜇𝑡 + 𝑏 = 𝜇𝑡 + 𝑏  (2.2) 

𝑉𝑎𝑟[𝑋(𝑡)] =  𝜎2 𝑉𝑎𝑟[𝐵(𝑡)] =  𝜎2𝑡  (2.3) 

Therefore, we can see that X(t) ~ N (µt+b, σ2t). A Quantile-Quantile (Q-Q) plot can be 

used to verify the normality assumptions for the Brownian motion. Q-Q plot displays the 

residuals for the observed data minus the mean versus the quantiles of the normal distributions. 

The data points should approximate the straight line on the Q-Q plot. Maximum likelihood 

estimation (MLE) method can be used to estimate the parameters for the model such as mean 

(i.e., drift) and variance for Brownian motion based on the historical data. 

 

2.2.2 Geometric Brownian motion (GBM) 

GBM is a continuous time stochastic process. While a Brownian motion process can 

take a positive or negative value, a random variable that follows a GBM process is always 

positive. GBM is widely preferred for predicting stock prices (Dunbar, 2016). The annual 
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demand in a GBM is Y(t) = exp (X(t)) where the logarithm of ratio 
𝑌(𝑡+1)

𝑌(𝑡)
  follows a normal 

distribution N (µ+b, σ2) (Marathe et al., 2005). The Q-Q plot can be used to check the normality 

assumptions for GBM, if the ratio 
𝑌(𝑡+1)

𝑌(𝑡)
  follows a lognormal distribution, the data points 

should approximate a straight line.  

The autocorrelation function (ACF) calculates the correlation between demands of 

different years. The difference in years is the lag.  The GBM is valid only if the correlation 

between the ratios 
𝑌(𝑡+1)

𝑌(𝑡)
 and 

𝑌(𝑡+1+𝑘)

𝑌(𝑡+𝑘)
 is not significant, where k > 0 represents the lag. The 

MLE method can be used to estimate the parameters for the model such as mean (i.e., drift) 

and variance for GBM based on the historical data. 

 

2.2.3 Modified Geometric Brownian Motion 

The variance in the GBM process can be very large. In the Brownian motion model, 

the variance increases by a factor of √1 +
1

𝑡
  each year, while in the GBM process, the variance 

increases by a factor of eµσ approximately. Such a large variance can introduce unrealistic 

values for demand in the far-distant future. This is a challenge in using the GBM process for 

predicting the future demand of the Boeing Airplanes. Therefore, a new approach to GBM was 

developed by Zhang (2017) called the modified GBM.  The modified GBM is based on the lag 

variable k. For the modified GBM, it is assumed that for each year t, the ratio R(t) = 
𝑌(𝑡)

𝑌(0)
 follows 

a lognormal distribution with mean µt and variance σ2t. This assumption can reduce variance, 

which should result in more realistic demand values for the future. Determining the year to set 

for 𝑡 = 0 for the modified GBM is critical. If this year is set far back in the past, the variance 
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will likely be too large, and if the current year is chosen, the variability for the next few years 

is too low and would exhibit too much certainty about demand.  

 

2.3 Application: Demand Forecast for Boeing Airplanes 

The demand for Boeing’s commercial airplane models 737 and 777 were predicted 

using Brownian motion and GBM. The Boeing 737 is a short-to-medium range twin jet narrow-

body airliner. It has been manufactured since 1965, and it is one of the popular commercial 

airplanes from Boeing.  The Boeing 777 is part of a family of long-range twin jet engine wide-

body airplanes. The Boeing 777 has been manufactured since 1990, and demand for the 

airplane has steadily increased. The historical demand data (Boeing, 2018) for these airplane 

models were collected. The data was analyzed to determine the appropriate demand forecasting 

models for each of these commercial airplanes and the demand was predicted for the period of 

20 years (2018-2037) into the future.  

 

2.3.1 Boeing 737 Demand Prediction 

The data obtained from the Boeing’s website for the historical orders of the Boeing 737 for the years 

1965 – 2017 has been plotted. Figure 2.1 shows the demand for each year. The demand for the years 

during the initial few years of the Boeing 737 is very low and inconsistent as it was a new model in 

the line of Boeing Commercial Airplanes, and an increasing trend has been observed starting from the 

year 1984 onwards.  Therefore, the current demand model will be considering 1984 as the starting 

point for demand. The increasing variation in demand seems to suggest a Brownian motion model 

may be appropriate. The difference in the demand between adjacent years is represented in  

Figure 2.2.  

Figure 2.2 shows that the difference in demand seems to exhibit increasing variance, 

which suggests that Brownian motion may not be appropriate for this process. 
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Figure 2.1: Annual orders for Boeing 737

 

Figure 2.2: Difference in the number of orders for the Boeing 737 in adjacent years 

Brownian motion assumes the increments each year are independent and follow a 

normal distribution. This assumption could be verified with a Q-Q plot for the change in the 

number of orders of the Boeing 737 model each year since 1984. Figure 2.3 represents the Q-
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Q plot for the quantiles of the standard normal distribution vs the quantiles for the change in 

the demand. The differences show some normality but are also more narrowly tailed than a 

normal distribution. 

 

Figure 2.3: Q-Q plot for the difference in the annual orders of Boeing 737 

 

The baseline demand, drift (µ) and sigma (σ) are obtained from the historical demand 

for the Boeing 737. Baseline demand is the last observed value of demand (b = 843). The drift 

is the mean value of the difference in the annual orders for adjacent years (µ = 21.57). Sigma 

is the sample standard deviation of the difference in the annual orders for adjacent years (σ = 

200.83). The parameters are represented in Table 2.1. 

Table 2.1: Parameters for Brownian motion – Boeing 737 

Drift (µ) Sigma(σ) Baseline(b) 

21.57 200.83 843 
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Brownian motion could lead to a negative demand, which is impossible for demand. 

To avoid this, a truncated normal distribution was used by eliminating any negative values 

simulated from the normal distribution. The demand was predicted for a period of 20 years 

into the future. 100,000 replications were run, and 90% probabilistic intervals were established 

based on the 95th percentile and the 5th percentile values from the replications. The median 

value provides the predicted demand for the Boeing 737 airplanes. Figure 2.4 represents the 

predicted demand for the Boeing 737 commercial airplane with the 95th quantile (purple 

diamonds) and 5th quantile (yellow diamonds) and the median (red stars). According to the 

prediction, the median demand for the single-aisle 737 airplanes is expected to be 21,621 units 

for the next 20 years. The median forecast is 865 airplanes in 2018 and rises to about 1,305 

airplanes in the year 2037. There is a 10% probability that demand could be less than 535 

airplanes or greater than 1,193 airplanes in 2018. In 2037, there is a 10% probability that 

demand could be less than 241 or greater than 2,761 airplanes.  

The variability in demand increases with respect to time, which indicates that more 

uncertainty exists about demand as we attempt to forecast further out into the future. In 2018, 

the range of the 90% probability interval is 658, and in 2037, the range increases to 2,520. 

Since a truncated normal distribution was used, the simulated 5th quantile of demand is 

between 241 and 535 for the 20 years. However, the 95th quantile for demand is assessed 

between 1,193 and 2,761, which is a large variability in the upper spectrum. This would 

represent a lot more 737s than Boeing has sold previously, but it seems possible. 
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Figure 2.4: Demand prediction with 90% confidence for Boeing 737 model for the next 20years 

 

2.3.2 Boeing 777 Demand Prediction 

The data obtained from the Boeing’s website for the historical orders of the Boeing 777 

for the years 1990-2017 is depicted in Figure 2.5. An important note is that the data for the 

number of orders for the Boeing 777 Airplane is missing in the observations for the year 1994 

as the data was not found in Boeing (2018). The representation suggests an increasing trend in 

the orders of Boeing 777 model, but there is also an increasing variation in the number of 

orders.  
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Figure 2.5: Annual orders for Boeing 777 

 

If demand follows a GBM process, then the ratio of orders for adjacent years should 

follow a lognormal distribution. A Q-Q plot of the logarithm of the ratio of demand for adjacent 

years 
𝑌(𝑡)

𝑌(𝑡+1)
 is depicted in Figure 2.6. Since the orders for the year 1994 is missing and as the 

initial few years after introduction into the market serves as a transition period, the log ratio 

was calculated for the years from 1995-2017. The figure suggests the ratios exhibit heavier 

tails than a lognormal distribution, which may be due in part to only have 23 points for analysis.  

The baseline for the GBM is calculated as the log of the ratio of the demand of the year 

2017 to the demand of the previous year (2016). The MLE method was used on the data from 

1995-2017 and it gives the values of the µ and σ parameters for GBM. The results from the 

MLE method for the GBM are represented in Table 2.2 along with the inputs for the prediction 
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model using GBM. The parameters were used to run the prediction model for traditional GBM. 

Figure 2.7 shows the prediction for the annual orders of the Boeing 777 airplanes. 

 

 

Figure 2.6: Q-Q plot of the log of the ratio of successive orders of Boeing 777 airplane 

 

Table 2.2: Parameters for the Geometric Brownian motion – Boeing 777 

Drift (µ) Sigma(σ) Baseline – log ratio (b) 

-0.0237 0.8912 0.416423 
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Figure 2.7: Prediction of annual orders for Boeing 777 with 90% confidence over the next 20 years – 

traditional GBM approach 

 

The demand was simulated for a period of 20 years into the future for the Boeing 777. 

100,000 replications were run, and the median and 5th and 95th percentiles were estimated 

from the simulation. The simulation displays the 95th percentile (purple diamonds), the 5th 

percentile (yellow diamonds) and the median (red stars). Figure 2.7 depicts the forecast, which 

is quite unrealistic. The expected number of orders for the Boeing 777 according to the GBM 

approach is 24,075 airplanes over the next 20 years starting from 88 orders in the year 2018 to 

2,157 orders in the year 2037. That is about 2300% increase in the next 20 years.  The 95th 

quantile varies from 384 orders in the year 2018 to 1.5 million orders in the year 2037. The 

GBM for the 777 produces results with extremely high uncertainty and some unrealistic values. 
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As discussed in the subchapter 2.2.3, the orders for the Boeing 777 could be predicted using 

modified GBM approach by verifying the modified GBM assumptions for the existing data. 

The baseline for the modified GBM is calculated as the log of the ratio of the demand 

of the year 2017 to the demand of the initial year (1990). The MLE method was used on the 

data from 1990-2017 to find the values of the µ and σ parameters for the modified GBM. The 

results from the maximum likelihood method for the modified GBM are represented in Table 

2.3 along with the inputs for the modified GBM prediction model.  The parameters were used 

to run the modified prediction model, Figure 2.8 shows the prediction for the annual orders of 

the Boeing 777 airplanes. 

 

Figure 2.8: Prediction of annual orders for Boeing 777 with 90% confidence over the next 20 years– 

modified GBM approach – (2017 as the baseline) 

 

P
re

d
ic

te
d
 D

em
an

d
 (

N
o
. 

o
f 

O
rd

er
s)

 



19 

Table 2.3: Parameters for the Modified GBM (Baseline as 2017) – Boeing 777 

Drift (µ) Sigma(σ) Baseline – log ratio (b) 

0.0499 0.2028 0.3309 

 

First, the demand for the Boeing 777 was forecasted using the modified GBM by setting 

2017 as the year where t = 0 (Figure 2.8). The median number of orders of the Boeing 777 for 

the next 20 years is 1,372 airplanes. The median demand is 41 orders in 2018 and 106 orders 

in 2037. The 95th percentile is estimated at 57 orders in 2018 and increase to 471 orders in 

2037. However, Boeing had 283 orders in 2014 and 194 orders in 2012. These values are way 

beyond the 95th percentiles for forecast before 2017. This suggests that the forecast is not as 

variable as the recent historical demand. Since the forecast is less variable than the historical 

demand, the forecast seems to exhibit too much certainty over what the future demand will be.  

To allow for more variability in the forecast, the baseline for the demand could be 

shifted to a prior year. The year 2005 is selected at the point at which t = 0. Table 2.4 depicts 

the GBM parameters, which are equivalent to the previous model (Table 2.3) except for the 

baseline value.  

Table 2.4: Parameters for the Modified GBM (Baseline as 2017) – Boeing 777 

Drift (µ) Sigma(σ) Baseline – log ratio (b) 

0.0499 0.2028 0.7375 

 

Figure 2.9 depicts the results of the simulation using 2005 as the baseline year. The 

median demand for the 777 airplanes is estimated at 3,725 units for the next 20 years. The 

median prediction is 111 airplanes for 2018 and increases to 287 airplanes in 2037. The 5th 

percentile is 34 airplanes in 2018 and is 44 airplanes in 2037. The 95th percentile is 373 
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airplanes in 2018 and increases to 1,885 airplanes in 2037. Figure 2.9 shows how 95th 

percentile matches pretty closely a large number of orders in 2012 and 2014. According to this 

modified GBM, there is a 50% probability that the demand for the Boeing 777 will exceed 111 

in 2018 and a 5% probability the demand will exceed 373 airplanes. In 2037, there is a 50% 

probability that demand will exceed 287 orders and a 5% probability that demand will exceed 

1,885 airplanes. 1,885 airplanes represent 6.5 times as many airplanes as Boeing has ever sold 

in a single year. It is an unlikely number, but it does not seem impossible. The modified GBM 

using 2005 as a baseline year seems to be a plausible forecast of demand for Boeing 777 

airplanes. 

 

 

Figure 2.9: Prediction of annual orders for Boeing 777 with 90% confidence over the next 20 years– 

modified GBM approach – (2005 as the baseline) 
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2.4 Conclusions 

This study analyzed various demand prediction models to fit the historical demand of 

the airplanes appropriately. The historical data for Boeing 737 model captures some of the 

characteristics of Brownian motion such as independent increments and increasing variance 

over time. However, the difference in demand between adjacent years (i.e., the increments) 

also exhibits increasing variance, which contradicts one of the Brownian motion assumptions. 

Nevertheless, modeling demand for the 737 as a Brownian motion seems to generate realistic 

results for the future. The drift (µ) was found to be 21.57 and sigma (σ) was found to be 200.83 

for the single-aisle Boeing 737 airplanes. These settings for the Brownian motion generates 

the demand for 20 years into the future. The predicted demand indicates that the median future 

demand begins with 865 airplanes in 2018 and rises to about 1,305 airplanes in the year 2037, 

and we could say with a 90% confidence that the demand for the year 2018 stays in between 

535 and 1,193 airplanes and the demand for the year 2037 stays in between 241 and 2,761 

airplanes. 

A modified GBM was used to model demand for the Boeing 777 model. The year 2005 

is chosen as the baseline year, and the forecast seems to produce realistic results. The actual 

demand for the years 2006-2017 lies within the 90 % confidence limits which are in alignment 

with the assumption of the geometric Brownian motion trend. For the year 2006, the actual 

demand is 76 airplanes, and the 90% confidence interval is 44-86. For the year 2017, and the 

median predicted demand is 106 airplanes and the 90% confidence interval is 34-342 airplanes. 

The demand starts for the year 2018 is predicted to be in between 34-378 with a 90% 

confidence, and the demand for the year 2037 is predicted to be in between 44-1934 with a 

90% confidence. Though the 95th percentile for future years is very large which may 
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overestimate the amount of demand for this airplane, the median demand seems to produce 

very realistic results. 

The goal of this predicted demand from these models is to help Boeing make decisions 

about its capacity expansion. Since there is considerable uncertainty in the future demand, it is 

necessary to use decision-making methodologies that can incorporate that uncertainty. Three 

decision-making frameworks will be explored: expected utility, robust decision making, and 

information-gap.  
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CHAPTER 3.    COMPARING DECISION MAKING MODELS 

FOR CAPACITY EXPANSION OF AIRPLANE 

MANUFACTURING UNDER UNCERTAINTY 

3.1 Introduction 

The demand for the Boeing 737 airplanes has an increasing trend, therefore it is very 

important to plan for the capacity expansion. Boeing currently has in-house capacity to paint 

the airplanes in 9 hangars. If the airplane demand increases over the in-house capacity, they 

out-source the panting of these additional airplanes. Outsourcing involves huge cost. To reduce 

the cost, an option is to build new hangars to increase the painting capacity. However, building 

new hangars needs a huge capital investment. This raises a decision-making problem for 

Boeing. Uncertainty around the estimation of the demand for the airplanes makes the decision 

making difficult.  

This chapter extends the work of Minxiang Zhang, a master’s student who graduated 

in 2017. He wrote an explanation of the three decision-making models for uncertainty: 

expected utility (EU), robust decision making (RDM), and information gap (info-gap). His 

explanation of the decision-making models and the equations to calculate Boeing’s profit as a 

function of the number of painting hangars to be built are found in the appendix. This appendix 

is helpful in understanding the application section which begins this chapter. Equation numbers 

provided in the application section refer to equations in the appendix. 

 

3.2 Application of Decision Making Models 

3.2.1 Model Settings 

Table 3.1 provides values for the parameters for the three models. The maximum 

number of hangars hmax that the manufacturer can build over the next T = 20 years is 2, and the 
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decision of how many hangars and in which year to construct each hangar is made in year 0.  

Equation A.11 gives the total number of strategies, N = 231. We use Monte Carlo simulation 

to generate the results for each decision-making model. Results for the EU and RDM model 

are based on 200,000 replications and results for the info-gap model are based on 100,000 

replications. The info-gap model takes longer to run, so fewer replications are simulated. If no 

hangars are built, the average profit from equation A.9 with these model parameters is $8.9 

million over 20 years.    

Table 3.1: Model Parameters 

Notation Definition Value Description 

a Model 1000 Price for 737 

b Model 800 Outsourcing Price 

d Model 104 Coefficient of Expected Production Function 

d0 Model 0 Coefficient of Expected Production Function 

dr Model 0.05 Depreciation rate 

e Model 30000 Cost of a new Hangar 

f0 Model 0 Coefficient of Fixed Cost Function 

h0 Model 9 Initial Number of Hangars 

hmax Model 2 Maximum New Hangars Allowed 

k Model 500 Coefficient of Variable Cost Function 

k0 Model 0 Coefficient of Variable Cost Function 

m EU 1 Coefficient in Risk Tolerance Estimation 

p EU 0.6 Coefficient in Risk Tolerance Estimation 

σD Model 200.83 Standard Deviation of Demand 

T Model 20 Total Years 

µD0 Model 843 Coefficient of Expected Demand Function 

µD1 Model 21.57 Coefficient of Expected Demand Function 

w1 Info-Gap 0.5 Weight Parameter for Trend 

w2 Info-Gap 0.2 Weight Parameter for Standard Deviation 
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3.2.2 Expected Utility 

The first decision model selects the alternative that maximizes the expected utility, 

where it is assumed that the parameters for demand mu and sigma are known with certainty. 

The decision-making problem is constructed with a risk-averse exponential utility function. 

We assume that the decision maker is indifferent between earning the baseline profit of $8.9 

million (if no hangars are constructed) and a 0.6 probability of earning $9.9 million and a 0.4 

probability of earning $7.9 million. From equation A.14, this point of indifference means the 

decision maker’s r = $2.47 million. After conducting 200,000 replications assuming no 

hangars are constructed, we arbitrarily assign a utility of 1 for the maximum profit and a utility 

of -1 for the minimum profit. Using these values for the utility function, we calculate the 

coefficients a1 = 1.0008 and b1 = 0.0721 based on equation A.12. These coefficients simply 

act as constants in the utility function and do not change what the optimal strategy is in the EU 

model. 

After the calculating the expected utility based on the Monte Carlo simulation, we 

calculate the certainty equivalent according to equation A.15.  The certainty equivalent for the 

strategy where no hangars are built in the next 20 years is $7.086 million. Figure 3.1 depicts 

the certainty equivalent for each of the 231 strategies. The numbers plotted at the top of each 

curve represent the year in which a hangar is built where the number 21 means not to build a 

hangar. For example, 16, 21 means the first hangar is built in year 16 and the second hangar 

should never be built. The results from the simulation suggest that for the risk tolerance of 

$2.47 million, the first hangar should be built between the years 16 and the second hangar 

should be built between the years 18 for the maximum certainty equivalence. 
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Figure 3.1: Certain equivalence for different strategies based on the expected utility model. (The 

numbers at the top of the curves represent that year in which the hangars should be built where the 

number 21 indicates a hangar should not be built.) 

 

We analyze the sensitivity of this decision to the decision maker’s risk tolerance. The 

risk tolerance is varied from $1 million to $10 million, and the optimal strategy for different 

risk tolerances is depicted in Figure 3.2.  
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Figure 3.2: Optimal strategy to build each hangar in the EU model as risk tolerance changes 

 

Figure 3.2 shows that as the decision maker becomes less risk averse (which 

corresponds to an increasing risk tolerance), he or she should build the hangars more quickly. 

If the decision maker’s risk tolerance is greater than or equal to $10 million or if he or she is 

risk neutral, the optimal strategy is to build the first hangar in Year 2 and second hangar in the 

Year 3. As the decision maker becomes more risk averse, he or she should be less willing to 

build a hangar in the early years because of the large initial cost of constructing the hangar and 

the uncertain demand for the airplanes. Due to the manner in which the cost of constructing 

new hangars is depreciated, building a hangar later has smaller upfront costs. If the risk 

tolerance is greater than $5 million, the first hangar should be built in years 2 or 3, and the 
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second hangar should be built in years 3-5. If the risk tolerance equals $4 million, the first 

hangar should be built in year 3 and the second hangar in year 9. The optimal strategies change 

drastically for risk tolerance values less than $4 million. If the decision maker is very risk-

averse (risk tolerance equal to $1 million), he or she should never build either hangar because 

the certain cost of the hangar is too large relative to the uncertain demand for the airplanes.  

 

3.2.3 Robust Decision Making 

In RDM, the decision depends on the state set which contains uncertainty around 

parameters. The strategy set for EU and RDM are the same, but the state set is different. EU 

assumes that µD1 and σD are constant, but the RDM model allows µD1 and σD to take on a wide 

range of values. In this model we assume that 0 < µD1 < 43.14. The minimum value assumes 

that there is no expected increase in demand from one year to the next, and the maximum value 

assumes the expected increase in demand in each year is twice as great as that of the EU model. 

The standard deviation for demand in each year σD ranges between 20.08 and 301.25. The 

minimum value assumes the standard deviation is one-tenth of σD in the EU model, and the 

maximum value assumes the standard deviation is 1.5 times larger than σD in the EU model. 

The state set for the RDM model is the combination of the µD1 and σD within the feasible 

region.  

Theoretically, an infinite number of probability distributions could characterize the 

state space exist within the feasible region creating an infinitely large state set. Four probability 

distributions are assumed for µD1 and σD: uniform, triangular, a right-skewed beta, and left-

skewed-beta. Table 3.2 depicts the parameters of each of the four distributions. The parameters 

of the uniform distribution are the lower and upper bound. The parameters of the triangular 

distributions are the lower bound, mode, and upper bound. The four parameters of the beta 
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distribution are 𝛼 (which increases the mean of the beta distribution), 𝛽 (which decreases the 

mean of the beta distribution), the lower bound, and upper bound. Since µD1 and σD do not 

need to follow the same distribution, there are a total of 24 = 16 combinations of probability 

distributions (or states of the world) that this RDM model considers. 

Table 3.2: Parameter for the probability distribution 

Distribution\ Parameters µD1 𝜎D 

Uniform 𝜇𝐷1~Unif(0,43.14) 𝜎𝐷~Unif(100.42,301.25) 

Triangular 𝜇𝐷1~Tri(0.21,43.14,57) 𝜎𝐷~Tri(20.08,281.16,301.25) 

Right-skewed beta 𝜇𝐷1~Beta(5,20,0,43.14) 𝜎𝐷~Beta(5,9.58,20.08,301.25) 

Left-skewed beta 𝜇𝐷1~Beta(5,1.25,0,43.14) 𝜎𝐷~Beta(5,0.30,20.08,301.25) 

 

The parameters of the distributions are selected in order to provide a viable comparison 

between the EU and RDM models. If a decision maker does not have any information about 

which state of the world or probability distribution is more likely, the decision maker could 

assume that each distribution is equally likely. With that assumption, the expected value of µD1 

= 21.57 and σD = 200.83, which are the values of these parameters assumed in the EU model. 

The expected values of the uniform and triangular distributions equal those values; the 

expected values of the right-skewed beta distributions are µD1 = 8.63 and σD = 116.48; and the 

expected values of the left-skewed beta distributions are µD1 = 34.51 and σD = 282.85. 

The RDM model can be evaluated for both risk-neutral and risk-averse attitudes. We 

calculate expected regret for each of the 16 possible states of the world. The regret for a given 

state and strategy is calculated according to equation A.16. The best and the worst regret for 

each strategy is obtained, and the expected regret is calculated according to equation A.17. The 

value of 𝑧 ∈ [0,1] represents the decision maker’s confidence that the state of the world 

corresponding to his or her minimum or best-expected regret will occur. Figure 3.3 depicts the 
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results of this simulation for a risk-neutral decision maker for different values of z. The figure 

recommends the years in which the first and the second hangars should be built to minimize 

the weighted average of the best and worst expected regret.  

 

Figure 3.3: Optimal strategy for different z in RDM model with a risk-neutral attitude 

 

Regardless of the decision maker’s optimism, the RDM model recommends that a risk-

neutral decision maker should build the first hangar between years 1 and 3 and build the second 

hangar between years 2 and 6. If the decision maker is more optimistic (𝑧 ≥ 0.85), the decision 

maker should build the first hangar immediately (year 1) and build the second hangar in year 

2. A more pessimistic decision maker should wait a little longer to build the hangars, and a 

very pessimistic decision maker (𝑧 ≤ 0.2) should build the hangars in years 3 and 6. The more 

pessimistic decision maker should act more like a risk-averse decision maker in the EU model 
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although even the most pessimistic decision maker builds the hangars much sooner than the 

most risk-averse decision maker in the EU model. This is because the RDM is based on 

minimizing expected regret rather than minimizing absolute regret (which would be more 

similar to extreme risk aversion). The optimistic decision maker in the RDM should act just as 

an expected-value, risk-neutral decision maker, at least in this instance.  

Figure 3.4, Figure 3.5, and Figure 3.6 depict the effect that different risk attitudes have 

on the recommended strategy in the RDM. If risk attitude is incorporated into the RDM, regret 

(as calculated in equation A.16) is based on the utility for each profit rather than on profit itself. 

200,000 simulations are used to calculate expected regret. Three different risk tolerance values 

are chosen: $2 million, $2.47 million, and $3 million. The figures depict the optimal strategy 

for different values of z.  

 

Figure 3.4: Optimal strategy for different z in RDM model with risk tolerance of $2 million 
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Figure 3.5: Optimal strategy for different z in RDM model with risk tolerance of $2.47 million 

 

Figure 3.6: Optimal strategy for different z in RDM model with risk tolerance of $3 million 
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Similar to the EU model, increasing risk aversion should, in general, incentivize the 

decision maker to build hangars later although the decision maker’s optimism plays a large 

role as well. Figure 3.4 suggests that for a risk tolerance of $2 million, the optimistic decision 

maker should build hangars in years 8 and 13, and the pessimistic decision maker should build 

hangars in years 18 and 20. If the risk-averse decision maker’s value for 𝑧 ranges between 0.7 

and 0.85, no hangars should be built. Unless the decision maker is really optimistic, the optimal 

strategy according to the RDM model when the risk tolerance is $2 million aligns closely with 

the EU model for the same risk tolerance.  

 Increasing the risk tolerance slightly from $2 million to $2.47 million—which is the 

original risk tolerance in the EU model—should influence the decision maker to build the 

hangars much earlier. If 𝑧 ≤ 0.4, the first hangar should be built in years 13 or 15, and the 

second hangar should be built in years 17 and 18. The decision maker becomes more 

optimistic, he or she should build the hangars more quickly with the first hangar built between 

years 6 and 12 and the second hangar between years 9 and 16. The EU model with the same 

risk tolerance recommends building the first hangar in year 15 and the second hangar in year 

18, which is the optimal strategy for the most pessimistic decision maker in the RDM model.  

If the risk tolerance is $3 million, the optimal strategy follows a similar trend to that of 

the risk tolerances as the hangars should be built earlier as the decision maker’s optimism 

increases (Figure 3.6). If 𝑧 ≤ 0.25, the decision maker should build the first hangar in years 

11 or 12 and the second hangar in year 16. If the decision maker is very optimistic (𝑧 = 1), the 

hangars should be built in years 5 and 7. For the same risk tolerance in EU model, it is 
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suggested to build the first hangar in the year 10 and the second hangar in the year 15, which 

corresponds to 𝑧 = 0.3 in the RDM model.  

 

3.2.4 Information-Gap 

The info-gap model begins with the initial state parameters in the EU model, µD1 = 

21.57 and σD = 200.83. The info-gap model continues to increase the variability α around the 

initial state until no strategy satisfies the required expected profit pc as discussed in the 

subsection A.2.3.3. The algorithm identifies the only strategy to satisfy the expected profit 

requirement for the largest possible α around both the drift µD1 and standard deviation σD. 

Figure 3.7 displays the optimal strategy for different required expected profits. 

 
Figure 3.7: Optimal strategy according to the info-gap model for different expected profit  

requirements 
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As the required expected profit increases, the decision maker should build the hangars 

earlier. If the required expected profit is $9.0-9.1 million, the decision maker should build the 

hangars in years 2 and 3. This strategy is identical to a risk-neutral decision maker. As is always 

true with the info-gap model, there is a sufficiently high expected profit requirement at which 

point the decision maker should follow a decision rule to maximize his or her expected profit. 

The relationship of variability α around the initial state and the required expected profit 

is represented in Figure 3.8 where the influence of 𝛼 on the uncertainty in µD1 and σD is shown 

in equation A.18. The amount of uncertainty or variability allowed in the parameters decreases 

as the required expected profit increases. If the expected profit requirement is relatively small 

(around $8 million), the decision maker can allow that the two parameters have a large amount 

of uncertainty. A lot of uncertainty is required in order to eliminate strategies whose expected 

profit do not meet the requirement. For the very large expected profit requirements, the 

decision maker should assume that the initial state parameters have very little uncertainty if 

any. If the required expected profit is $9.2 million or more, no strategies satisfy that 

requirement which means the problem is infeasible according to the info-gap model. 

As depicted in Figure 3.7, if the required profit is less than $8.2 million, the info-gap 

model allows for large uncertainty around the initial state. With such a large amount of 

uncertainty, the optimal strategy is not to build any hangars. This strategy is the same as an 

extremely risk-averse decision maker according to the EU model and a decision maker with a 

risk tolerance of $2 million and 0.7 ≤ 𝑧 ≤ 0.85 according to the RDM model. Decreasing the 

required expected profit, which increases the allowable uncertainty around the initial state, 

seems to have a similar effect as increasing the risk aversion of the decision maker. In this 
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situation, allowing for smaller mean values µD1 and larger standard deviations σD steadily 

decreases the expected profit. Building expensive hangars early is not as profitable.  

 

Figure 3.8: Relationship between required profit and maximum α 

 

The info-gap theory has been criticized for overestimating the importance of the initial 

state while dealing with the situation in deep uncertainty (Sniedovich, 2008, 2012, 2014). To 

check the validity of the critique for this application, sensitivity analysis on the info-gap model 

is tested. The required expected profit is fixed (pc = $8.7 million) and the standard deviation is 

fixed (σD = 200.83). Figure 3.9 displays the result of the info-gap model as the base-case mean 

drift changes, 13.6 < µD1 < 29.6. The optimal strategy does not change as the initial µD1 

changes, and the results of the info-gap model do not appear to be very sensitive to the initial 

state of the mean drift. This could be because the current problem has a limited state space and 
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fairly well-defined uncertainty. If the model had larger uncertainties around several 

parameters, perhaps the results would be more sensitive to the initial states. 

 

Figure 3.9: Sensitivity of info-gap model by varying initial µD1 

 

Performing sensitivity analysis on the base-case standard deviation while assuming the 

drift remains constant (µD1 =21.57) reveals that the info-gap model may not always provide a 

useful analysis of the uncertainty. If the mean drift remains constant, the expected profit for 

each strategy remains relatively constant even as the uncertainty set around the standard 

deviation expands according to the info-gap model. Thus, if the required expected profit is less 

than $9.3 million, multiple strategies satisfy this requirement no matter how large the 

uncertainty around σD becomes. If the required expected profit is greater than $9.3 million, the 

only strategy that satisfies that threshold is the strategy that maximizes the expected profit 
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when there is no uncertainty around σD. Thus, conducting sensitivity analysis on σD while 

keeping µD1 constant reverts to a risk-neutral, expected profit strategy for this application. 

 

3.3 Comparison between the decision-making models 

The EU model assumes the drift parameter µD1 and the standard deviation σD are 

known. If the decision maker is uncertain about these parameters, the RDM and info-gap 

models provide two different methods to make decisions while accounting for this uncertainty. 

The RDM model requires that a decision maker identifies or assumes some possible 

distributions around those parameters. The info-gap model does not require a distribution 

around those parameters but gradually increases the uncertainty around those parameters.  

The RDM model calculates regret based on profit, rather than a risk-averse utility 

function, generates results that are similar to a risk-neutral to a moderately risk-averse decision 

maker in the EU model. The optimistic decision maker in the RDM model should behave 

similarly to a risk-neutral decision maker in the EU model. The pessimistic decision maker in 

the RDM model should behave similarly to a moderately risk-averse decision maker in the EU 

model. If the RDM calculates regret based on a risk-averse utility function, the results are 

similar to an extremely risk-averse to a moderately risk-averse decision maker in the EU 

model. The risk-averse decision maker in the RDM model should follow a similar strategy as 

in the EU model for the same risk tolerance when the decision maker is fairly pessimistic (𝑧 ≤

0.3). If a risk-averse decision maker is fairly optimistic (𝑧 ≥ 0.7) in the RDM model, the 

decision maker should build hangars more quickly than if he or she followed the EU model.  

The info-gap model approaches the decision-making process differently than the EU 

and RDM models. The uncertainty set is not a fixed set in the info-gap model but is determined 
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by an uncertainty parameter α. The EU and RDM models identify the optimal alternative 

principally based on avoiding the worst outcomes, but the info-gap model identifies the optimal 

alternative based on those alternatives that exceed a required expected profit. However, the 

results of the models are similar. A very high required expected profit in the info-gap model is 

identical to a risk-neutral decision maker in the EU model and an optimistic, risk-neutral 

decision maker in the RDM model. Decreasing the expected profit requirement is similar to 

decreasing the risk tolerance (i.e., increasing the risk aversion) in the EU model. Figure 3.2 

and Figure 3.7 are remarkably similar. The EU model recommends not to build no hangars if 

the decision maker is very risk-averse (risk tolerance = $1 million), and info-gap model 

recommends not to build any hangars if the decision maker does not require very large 

expected profits (< $8.2 million).  

A risk-averse decision maker in the RDM (risk tolerance = $2 million) should only 

build one hangar if the 0.2 ≤ 𝑧 ≤ 0.85 and build the second hangar in year 20 if 𝑧 < 0.2. The 

first hangar should be built between years 18 and 20 for those values of 𝑧. These recommend 

strategies are similar to the recommend strategies if the required profit in the info-gap model 

is less than $8.25 million. Unless the decision maker is very optimistic, the very risk-averse 

RDM model and the info-gap model with the smallest required profits generate similar optimal 

strategies for this application. 

Both the RDM model and the info-gap model can help the decision maker consider 

different trade-offs that are not immediately apparent in the EU model. Computing the optimal 

strategy for different values of z is easy within the RDM model, and the decision maker can 

understand how the trade-off between planning for the worst case and planning for the best 

case should impact his or her decision. In the info-gap model, the required expected profit (or 
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more generally, the minimum required value of the objective function) correlates with how 

much uncertainty is allowed in the model. If the decision maker requires a larger expected 

profit, then the decision maker is essentially assuming the initial state of parameters has very 

little uncertainty. If the decision maker requires a smaller expected profit, then the decision 

maker can assume a lot more uncertainty exists around those parameters. The decision maker 

can choose the trade-off point between required expected profit and allowable uncertainty with 

which he or she is comfortable.  

 

3.4 Conclusions 

The goal of this analysis is to examine different decision-making methods when 

significant uncertainty exists in a long-term capacity problem. EU, RDM, and info-gap are the 

three decision-making methods selected for analysis. The models are applied to determining 

when to expand painting capacity for the Boeing 737 airplane model. Each decision-making 

method might be appropriate in different circumstances. 

In the case where the uncertainty could be modeled as a probability distribution, the 

EU model works well. It is possible to assign a probability to any uncertainty which represents 

the beliefs of a decision maker according to the subjective probability theory. However, in 

cases where there are large uncertainty and variability around several parameters, it may be 

very challenging to assign probabilities. In such a case, the optimal strategy suggested by the 

EU model can vary a lot as the parameters change. For the painting capacity problem, the 

results of the EU model will not be consistent if the estimated parameters µD1 or σD are different 

from those estimated by the demand prediction model. If the drift parameter is overestimated 

and very high demands are expected in the future, the EU model would suggest building the 
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hangars quickly and the hangars might not be utilized to the full capacity. The EU model could 

carry significant risks to the decision maker if the parameters are not properly estimated. If the 

parameters in the model are estimated with high confidence, the EU model provides a good 

method for calculating the optimal alternative while accounting for the risk attitude of the 

decision maker. 

The RDM model can generate a trade-off curve between optimality and optimism, and 

the info-gap model generates a trade-off curve between optimality and uncertainty. The RDM 

model expands the single probability distribution in the EU model into a set of probability 

distributions. The RDM model considers the severity of the positive and negative outcomes by 

assigning a regret value to the outcomes. RDM focusses on robustness rather than optimality. 

Based on the decision maker’s optimism in obtaining the strategy for the best-case regret 

versus the worst-case regret, he or she can make an informed decision about how his or her 

optimism about the future scenarios should affect the optimal strategy.  

Since RDM focuses on minimizing regret and consequently thinking about the best-

case expected regret versus the worst-case expected regret, it may be difficult for a decision 

maker to understand how the regret translates to profit (which is the ultimate objective in this 

private-sector model). The info-gap model may be more intuitive than RDM because the 

former provides a direct relation between the required profit and the best strategy. Info-gap 

also allows for dynamically changing parameters (µD1 and σD), which may allow for more 

uncertainty in the model. Info-gap provides a means for selecting a strategy under significant 

uncertainty without constructing multiple probabilistic models, as required by RDM. The info-

gap model enables a decision maker to a trade-off between uncertainty in the parameters and 

optimality according to an expected-value model. The info-gap model has been criticized 
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because it searches for local optimality. The results for info-gap could be misleading if there 

is uncertainty in the model or uncertainty around several parameters in the problem. 

 Although each decision-making requires different assumptions and has different 

definitions of an optimal decision, the decision-making models seem to result in similar 

recommendations for this application. The risk-neutral EU model, the very optimistic RDM 

model, and the info-gap model with a very large profit requirement all generate the same 

strategy. Increasing risk aversion in the EU model, increasing the pessimism in the RDM 

model, and decreasing the profit requirement in the info-gap model seem to have similar effects 

on the recommended strategy.  

Each decision-making model requires different assumptions, and perhaps the decision 

maker should choose the model that best meets what he or she is willing to assume about the 

situation. If the decision maker is confident in his or her probabilistic model of the uncertainty 

and does not want to confuse his or her risk aversion with other factors (such as uncertainty 

around the probabilities), the EU model is the best decision-making model. If the decision 

maker is confident in the initial estimation of parameters but realizes these parameters carry 

uncertainty, the info-gap model is beneficial. A decision maker does not need to assume 

probability distributions about the uncertain parameters, which may be attractive for some 

people. If the decision maker prefers to view the future in the context of distinct scenarios (e.g., 

high growth, medium growth, no growth) and wishes to avoid extremely bad outcomes, the 

RDM model might be the most appropriate. The RDM model does require the decision maker 

to choose probability distributions for each state of the world. Before choosing a decision- 

making model, it is important to decide if optimality is required or a solution that avoids the 

worst outcomes is desirable. If optimality is most important, the EU model that defines 
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optimality as the maximizing the decision maker’s expected utility is the best. If avoiding the 

worst outcomes is most important, a more pessimistic RDM model or the info-gap model with 

a smaller threshold in the objective function is preferred.  
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CHAPTER 4.    GENERAL CONCLUSIONS 

This research discusses the demand forecasting and decision making for long-term 

capacity planning for the aviation industry. While the current discussion focuses on airplane 

manufacturing, the models presented in this research could be used for the production planning 

in several other manufacturing or industry environments.   

The first part of the research, the historical data for the Boeing 737 and 777 were 

analyzed. The data for the Boeing 737 model follows a Brownian motion trend with a 

significant variability. The median demand for the Boeing 737 was predicted using a 

forecasting model based on the parameters from the Brownian motion trend. However, due to 

the large value of standard deviation, there is large uncertainty associated with the demand 

prediction. Therefore, an overview of demand prediction for the next 20 years has been 

presented with a 90% confidence interval and the observed results were realistic.  

The Boeing 777 model seems to follow a geometric Brownian motion. However, the 

demand prediction with this GBM assumption produces very unrealistic results. Therefore, a 

modified approach for the GBM model was fitted to the Boeing 777 data. The baseline year 

for the demand prediction was adjusted to the year 2005, so the 90% demand prediction from 

the year 2006-2017 includes the actual demand values. With these assumptions, the demand 

was predicted for the Boeing 777 model for 20 years. The results seem realistic. Although the 

95th quantile for the demand is large, it does not seem impossible. The predicted demand for 

the Boeing 777 also has a huge variance due to the large value of standard deviation.  

The second part of the research takes into account the predicted demand for the Boeing 

737 model in decision making for the capacity expansion problem. Even though the median 

demand was predicted, it cannot be argued that it is an accurate prediction because of the huge 
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uncertainty in the prediction. To address the uncertainty in demand, several decision-making 

methods were used to find the solution. The expected utility, robust decision making, and 

information gap are the decision-making methods that were applied to the Boeing 737 model. 

The EU model works well when the uncertainty could be modeled as probability distributions, 

therefore the EU model is highly sensitive to input probability distribution. The RDM and info-

gap methods are designed for deep uncertainty, and the performance is fairly stable. A detailed 

analysis of each method is conducted in this research.  

All the decision methods use the same strategy set, the EU model finds the optimal 

strategy for decision making by maximizing the utility function based on the risk attitude of 

the decision maker. The RDM model takes into account the risk tolerance of the decision maker 

while minimizing the actual regret of the strategies. The info-gap method is more intuitive as 

it provides a direct relation between the expected profit and the best strategy. However, as the 

required profit increases, the uncertainty allowed around the initial estimates is reduced. 

Compared to the expected utility, the optimal strategies suggested by the RDM and 

info-gap model are more robust. However, the RDM method may require intensive computing 

power and advanced optimization algorithms if the state space is larger, and the info-gap has 

been criticized to be biased towards finding local optimality. Each of the decision-making 

methods has their advantages and disadvantages, and a comprehensive discussion of the 

situations in which each method would be best applicable has been provided in chapter 3. 

The demand prediction and decision-making philosophies together provide an overall 

framework for the long-term capacity planning for the painting facilities of Boeing 737 model 

in this research. However, these models could be utilized in several other manufacturing 

applications. In future, this model could be developed further to take into account the dynamics 
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of changing demand, variation in the painting capacity, and macroeconomics for the airplane 

models and update the decision strategies every year. This dynamic model would be helpful in 

avoiding any adverse effects due to demand variation, thereby reducing the uncertainty in the 

problem, allowing for a better long-term capacity planning.   
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APPENDIX 

A.1 Background and literature review 

Uncertainty is a state of not being definitive, which involves imperfections and/ or lack 

of knowledge. Uncertainty is commonly handled by assign probability distributions based on 

the beliefs or available data. Deep uncertainty is defined by Walker et al. (2013) as 

"Uncertainties that cannot be treated probabilistically include model structure uncertainty and 

situations in which experts cannot agree upon the probabilities." Deep uncertainties extending 

over time have significant risk associated with the decision-making processes, making it 

difficult to manage. The manufacturing engineering decisions are especially prone to such 

uncertainties (Applequist, 2000; Brouthers, 2003). Mathematic models and optimizations tools 

generally provide possible answers to these uncertainties by assuming probability distributions 

for the uncertain parameters. Stochastic programming is a prominent approach to finding the 

optimal alternatives (Infanger, 1992; Ahmed, 2000; Santoso, 2005). 

Courtney (2001) categorizes uncertainty into 5 intermediate levels between complete 

certainty and total ignorance. Level 4 (multiplicity of futures) and level 5 (unknown future) are 

extreme uncertainties and it is very difficult to assign a probability distribution to the 

uncertainties. The demand prediction models discussed in Chapter 2, helps reduce the 

uncertainty for the long-term capacity planning. The demand prediction models help analyze 

the available historical data and reduce the uncertainty of the long-term capacity problem. The 

demand prediction models are not very accurate and often there is uncertainty around the 

estimated parameters. Therefore, this problem could be considered as a level 3 uncertainty 

problem. This chapter provides a comparison of different decision-making models to address 

the issue of capacity planning based on the predicted demand from Chapter 2.   
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Previously, several decision-making methods have been developed and proposed to 

deal with uncertainty, including expected utility (Fishburn, 1970; Rabin, 2000), prospect 

theory (Tversky, 1992), interval analysis (Moore, 1979, 2003), mean-variance analysis 

(Epstein, 1985), robust decision making (Lempert, 2003), information gap (Ben-Haim, 2004, 

2006, 2015), preserving flexibility (Mandelbaum, 1990), and the precautionary principle 

(Steele, 2006).  Most papers discuss one decision-making models and very little work has gone 

into exploring when these decision-making models produced different results and what 

assumptions are necessary to implement a specific decision-making method. Lempert et al. 

(2007) compared robust decision making, expected utility and precautionary methods under a 

hypothetical environment. Hall (2012) made a comparison between robust decision-making 

and Info-gap for climate policies problem. A similar comparison was done in water resource 

system planning (Matrosov, 2013). However, to the best knowledge of the authors, not much 

research has been done to compare the decision-making models in a manufacturing capacity 

planning setting. Zhang (2017) compared the expected utility model (EU), robust decision 

making (RDM) and information gap (Info-gap) model for Boeing 737 by assuming a Brownian 

motion trend for the demand of the airplanes, however, the parameters for the demand 

estimation are assumed. This paper addresses the incorporation of demand forecast into 

decision making and analyzes the results from the EU, RDM and Info-Gap model.   

Expected utility is probably the oldest and still one of the most popular decision-making 

philosophies under uncertain circumstances. EU is an optimality theory that maximizes the 

decision makers expected utility while incorporating the risk attitude of the decision maker. 

EU requires a probability for each potential outcome, and the probabilities represent the 

decision maker’s subjective beliefs about the future.  It can be tricky to ascertain the decision 
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maker’s utility function, but there are a few papers which provide some useful guidance 

(Samuelson, 1937; Parzen, 1962; Alt, 1971). 

Bell (1982) argues that incorporating regret into expected utility theory would improve 

the quality of the decision-making. The idea of robust decision framework is first proposed by 

Jonathan Rosenhead (Mingers & Rosenhead, 2001). In 2003, RDM framework was developed 

(Lempert, 2003). RDM is designed for deep uncertainty where probability distributions could 

not be easily modeled. It does not rely on the prior probability distribution which is a key input 

parameter for most decision-making models (Lempert et al., 2007). Even if the decision maker 

believes the uncertainty can be described by a probability distribution, there may be uncertainty 

around the parameters informing the probability distribution. RDM provides a solution to 

incorporate uncertainty in the parameter estimation. Generating all the plausible scenarios 

remains a challenge in applying RDM. RDM resembles regret-based decision making in which 

the decision maker seeks to minimize the regret from a bad outcome.  

The info-gap method also provides scope for incorporating severe uncertainty around 

the probability distribution in decision-making (Ben-Haim, 2006). Info-gap uses a state space 

instead of a probability distribution, it allows for uncertainty around the initial state by 

dynamically changing the uncertain parameters to obtain the maximum reward. Info-gap has 

been criticized to be not applicable under severe uncertainty (Sniedovich, 2007).  

This research compares these different decision-making methods by utilizing a 

stochastic process over time and comparing the results obtained from EU, RDM, and Info-gap. 

Simulation is used to generate the results and compare the methods. It is found that EU method 

is the best method if the probability distribution can be assigned to represent uncertainty with 

a high confidence level. If we have little information about the initial state and there is deep 
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uncertainty associated with it, then RDM model is the best decision-making method, however, 

it requires more efforts on scenario exploration and computational optimization. Info-gap 

model has more practical application in the industry as it provides critical reward information 

for level 2 or level 3 uncertainty problems.  

 

A.2 Decision-Making Models for Aviation Industry with Deep Uncertainty 

 In the aviation industry, building a new facility for assembling and painting aircraft is 

expensive. Therefore, capacity planning is an important strategic decision for manufacturers. 

Although it is evident from the demand prediction model that the demand for the Boeing 737 

airplane is likely to increase in the future, there is still large uncertainty associated with the 

demand prediction. Several factors including economic growth rate, global competition, fuel 

price, and the currency exchange rate influence the demand. Considering the uncertainty in the 

demand, it is important for the manufacturer to decide if and when to build the hangars. In the 

following sections, different decision-making theories which captures the essential factors and 

variables in the decision problem have been discussed. 

 

A.2.1 Capacity Planning Model with Uncertain Demand 

Table A.1 and Table A.2 list all the notations used in this chapter. An airplane 

manufacturer can plan to construct hangars on an annual basis, and I(t) is defined as the number 

of new hangars at time t years, where t is an integer representing years into the future. In this 

model, it is only considered to build new hangars and removing hangars in not an option, 

therefore  I(t) ≥ 0, Ɐt. 

Table A.1: Notification of functions 
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Notation Definition Description 

A Model Maximum production capacity 

D Model Demand 

DC Model Depreciation cost 

DC Model Fixed cost 

G Model Profit function 

Ĝ Model Total profit 

H Model Capacity 

I Model Investment decision 

M Model Actual production 

MC Model In-house painting cost 

OC Model Outsourcing cost 

Ps RDM Reward 

R Model Revenue 

RTs RDM Regret 

θ RDM Probability distribution 

U EU Utility function 

VC Model Variable cost 

Table A.2: Notation of variables and sets 

Notation Type Definition Description 

α Variable Info-gap Horizon of uncertainty 

CE Variable EU Certainty equivalent 

g Variable EU Additional profit beyond baseline 

n Variable Model Number of decision options 

N Variable Model Number of strategies 

Ф Set Info-gap Uncertainty space 

r Variable EU Risk tolerance 

s Variable Model Strategy 

S Set Model Strategy set 

s0 Variable EU Default strategy 

t Variable Model Time 

ṱ Set Model Time set 

Θ Set RDM Probability distribution set 

µA Variable Model Expected annual production 

µD Variable Model Expected annual demand 

x Variable Model State 

X Set Model State set 

z Variable Model Confidence level of best distribution 
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It is assumed that the manufacturer cannot influence the demand and for the year t, it 

is represented as D(t). Based on the previous analysis of aviation industry in Chapter 2, the 

demand for the Boeing 737 airplanes follows Brownian motion trend. Mathematically it is 

represented as demand D(t) ~ Nor (µD, σ2
Dt), where µD = µD0 + µD1t,  µD0 is the mean of 

demand at t=0, µD1 is the annual trend coefficient, σ2
D is the variance in demand at t = 1. The 

production of airplanes by the manufacturer is assumed to be equal to the demand of the 

airplanes at each time t. 

The manufactured planes could be painted in-house or outsourced. The revenue for the 

airplanes is calculated as: 

𝑅(𝑡) = 𝑎 ∗ 𝐷(𝑡) (A.1) 

where a is the selling price of the aircraft. Boeing 737 is the only model of the aircraft 

considered with a fixed selling price without adjusting the inflation. 

The number of hangars in the year t is defined as H (t). The hangar capacity can only 

change at the beginning of a year and remains constant through the rest of the year. The number 

of hangars I the year t is given by: 

𝐻 (𝑡)  = ∑ 𝐼(𝑖) + ℎ0

𝑡−1

𝑖=1

 (A.2) 

where h0 is the number of hangars at time t = 0. H (t) is the total number of hangars up to time 

t, therefore it never decreases if I(t) ≥ 0, Ɐt. 

Straight-line depreciation method was used to calculate the depreciation cost of the new 

hangars at time t. The depreciation cost is given by DC (t): 

𝐷𝐶(𝑡) = 𝑒 ∗ 𝑑𝑟 ∗ [𝐻(𝑡) − ℎ0] (A.3) 
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where e is the cost to build a new hangar and dr ≤ 1 is the depreciation rate. The capital cost is 

considered to be depreciated evenly over time t, then dr = 
1

𝑇
 where T is the total number of 

years in the problem. For this problem, it is considered that the hangars can be used beyond 

the total number of years examined in this problem.  Therefore, the manufacturer will not be 

penalized for building a hangar in the year T due to the depreciation factor. In reality, if a 

manufacturer builds a hangar in the year T, it would be used into the future years as well. 

The maximum number of airplanes that can be painted in a year t is A(t) which is 

uncertain. A(t) is assumed to follow a Gaussian distribution A(t) ~ Nor(µA, σ2
A), where µA(H) is 

the average number of planes that could be painted given the number of hangars and σ2
A is the 

variance. The average number of planes painted in a year is µA = d*H (t) + d0, where d and d0 

are positive parameters. Given the demand and maximum capacity, the actual number of planes 

at time t is given by: 

𝑀(𝑡) = min {𝐷(𝑡), 𝐴(𝑡)} (A.4) 

Painting the airplanes in-house is cost-efficient and it also has lower lead times when 

compared to outsourcing them. However, if the actual demand exceeds the maximum capacity, 

the manufacturer will choose to outsource the painting operations. Assuming the outsourcing 

capacity to be infinite, the outsourcing cost can be written as: 

𝑂𝐶(𝑡) = 𝑏 ∗ 𝑚𝑎𝑥 { [𝐷(𝑡) − 𝑀(𝑡)], 0 } (A.5) 

where b  is the cost of outsourcing. The in-house painting cost is decomposed into two parts: 

fixed Cost FC (t) and the variable cost VC (t). Fixed cost in the maintenance cost of the capital, 

which is based on the number of hangars, it is obtained by: 

𝐹𝐶(𝑡) = 𝑓 ∗ 𝐻(𝑡) +  𝑓0 (A.6) 
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where f and f0 are fixed-cost coefficients. Variable cost is the operational cost based on the 

number of jobs. 

𝑉𝐶(𝑡) = 𝑘 ∗ 𝑀(𝑡) +  𝑘0 (A.7) 

where k and k0 are coefficients. The total in-house painting cost is the sum of the fixed cost 

and variable cost: 

𝑀𝐶(𝑡) = 𝐹𝐶(𝑡) + 𝑉𝐶(𝑡) = 𝑓 ∗ 𝐻(𝑡) + 𝑘 ∗ 𝑀(𝑡) + 𝑓0 + 𝑘0 (A.8) 

The profit function G (t) at time t is expressed as: 

𝐺(𝑡) = 𝑅(𝑡) − 𝑀𝐶(𝑡) − 𝑂𝐶(𝑡) − 𝐷𝐶(𝑡) = 𝑎 ∗ 𝐷(𝑡) − 𝑓 ∗ 𝐻(𝑡) − 𝑓0 −

    𝑘 ∗ 𝑀(𝑡) − 𝑘0 − 𝑏 ∗ 𝑚𝑎𝑥{ [𝐷(𝑡) − 𝑀(𝑡)], 0 } − 𝑒 ∗ 𝑑𝑟 ∗ [𝐻(𝑡) − ℎ0]   

(A.9) 

The manufacturer has to choose an investment strategy s in order to maximize the total 

profit over a period of T years. An investment strategy s is a unique collection of I (ṱ) where ṱ 

= {0, 1, 2, ….T}. The objective function is calculated as: 

Ĝ (𝑇, 𝑠)  = ∑ 𝐺(𝑡, 𝑠)

𝑇

𝑡=1

 

(A.10) 

  where G (t,s) is the profit function in year t given an investment strategy s. 

 

A.2.2 Decision Space 

The decision space depends on the number of alternatives available to the decision 

maker and the total number of years. If there are n different alternatives in each year for T 

years, the number of strategies in the decision space is nT. With the increase in the number of 

alternatives or years, the number of strategies increases exponentially. Therefore, for this 

decision problem, it is assumed that the maximum number of hangars that could be built over 
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T years is hmax and the hangars are identical. These assumptions reduce the total strategies N 

which could be calculated as:   

𝑁 = ∑ (
𝑇 + 1

𝑖
)

ℎ𝑚𝑎𝑥

𝑖=1

 

(A.11) 

 

 

A.2.3 Decision-making Models 

The framework for the three decision-making models: Expected Utility (EU), Robust 

decision making (RDM), Information gap (Info-gap) is discussed in this section. 

A.2.3.1    Expected Utility 

Expected utility theory assumes a single decision exhibits a risk-averse or risk-neutral 

behavior. Due to the large uncertainty in this problem, a risk-averse decision would be a 

realistic approach. An exponential utility function is used to compute the utility of profit. The 

general form of the exponential utility function is: 

𝑈(𝑔) =  𝑎1 −  𝑏1exp (− 𝑔 𝑟⁄ ) (A.12) 

where r > 0 is the risk tolerance; a1 and b1 define the scale of utility function; g = Ĝ(T, s) – 

E[Ĝ(T, s0)] which is the additional profit over T years given strategy s after removing the 

baseline expected profit. The baseline profit E[Ĝ(T, s0)] is the expected profit over T years 

given strategy s0 (no additional hangars). If the decision maker is indifferent between obtaining 

the expected baseline profit and a p probability of gaining an additional $ m million and 1 – p 

probability of losing $ m million, then the decision maker’s risk tolerance r can be calculated 

as: 

�̃� = (
𝑝

1 − 𝑝
)

1
𝑚 

(A.13) 
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𝑟 =  
1

ln �̃�
 

(A.14) 

The parameters a1 and b1 could be calculated by assuming values for the best case 

and worst case in the utility function. The decision maker should choose the strategy that 

maximizes the expected utility. The certainty equivalent (CE) is the profit equivalence based 

on the expected utility, it is calculated as the inverse of the utility function. The results of CE 

could be used for comparison and judgment. CE is calculated as: 

𝐶𝐸 = 𝑈−1(𝐸[𝑈(𝑔)]) (A.15) 

 

A.2.3.2    Robust Decision Making 

RDM incorporates several uncertainties into the model to support decision making. 

Uncertainty is represented as “a set of multiple, plausible future states of the world” (Hall et 

al., 2012). RDM assumes three sets: strategy set S, a plausible future state set X, and a 

probability distribution set Θ. The expected regret of strategy s ∈ S contingent on distribution 

θi(x) ∈ Θ is given by (Lempert et al., 2007): 

𝑅𝑇̅̅ ̅̅
𝑠,𝑖 =  ∫ 𝑅𝑇𝑠(𝑥) 

 

𝑥

𝜃𝑖(𝑥)𝑑𝑥 
(A.16) 

where RTs (x) = Maxs’[Ps’(x)]- Ps(x) is the regret of strategy s in the state x and i  is the index 

of the probability distribution in the set Θ. The reward function Ps(x) is the expected utility of 

profit E [U (g)] given state x. 

Given a strategy s, there is a probability distribution θbest(x) in the set Θ which 

minimizes the expected regret 𝑅𝑇̅̅ ̅̅
𝑠,𝑏𝑒𝑠𝑡. Similarly, a probability distribution θworst(x) yields the 

maximum expected regret 𝑅𝑇̅̅ ̅̅
𝑠,𝑤𝑜𝑟𝑠𝑡. The true expected regret, given the true probability 

distribution, should lie in the interval [𝑅𝑇̅̅ ̅̅
𝑠,𝑏𝑒𝑠𝑡, 𝑅𝑇̅̅ ̅̅

𝑠,𝑤𝑜𝑟𝑠𝑡]. RDM suggests a way to a trade-off 
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between the optimal performance and model sensitivity. Mathematically, the trade-off is 

written as a weighted average of the best and worst expected regret: 

𝑉𝑠 = 𝑧 𝑅𝑇̅̅ ̅̅
𝑠,𝑏𝑒𝑠𝑡 + (1 − 𝑧)𝑅𝑇̅̅ ̅̅

𝑠,𝑤𝑜𝑟𝑠𝑡 (A.17) 

where 0 ≤ z ≤ 1. 

The parameter z can be interpreted as the level of confidence of the decision maker in 

the probability distribution θbest(x). According to RDM, the decision maker should select the 

strategy s that minimizes Vs given the value of z. For example, if the decision maker has 100% 

confidence that θbest(x) is the exact representation of truth, then z =1 and the result would be 

the same as the expected utility because, the expected regret of a strategy is the difference 

between its expected utility and maximum expected utility over all the strategies. Conversely, 

if z =0, the decision maker believes there is a high uncertainty in the probability distribution 

over the future state X and should prepare for the worst case.  

 

A.2.3.3    Information Gap 

The info-gap model treats the uncertainty as a family of nested sets (Ben-Haim, 2004), 

unlike the EU and RDM models which assume that the uncertainty can be measured with 

probabilities. Info-gap model utilizes a dynamic uncertainty Ф and does not assume any 

probability distribution over the uncertainty set, whereas the RDM model tries to measure a 

fixed uncertainty set with a branch of plausible probability distributions. The dynamic 

uncertainty set Ф is defined by a variable α. Given a fixed α, the set Ф (α, �̂�) states a degree of 

variability around �̂� which is interpreted as the most likely state. The parameter α is called the 

“horizon of uncertainty” (Ben-Haim, 2015) and explains the variability of x. the greater the 
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value of α, the larger the size of the set Ф (α, �̂�) and higher the variation. If α = 0, then there is 

no uncertainty in the model.  

There are several types of uncertainty models for Ф (α, �̂�), and the fraction error model 

is one of the most common models (Hayes et al., 2013). The fraction error model creates an 

interval based on an initial estimation for each uncertain parameter (µD1, 𝜎D ∈ X) in the demand 

model: 

Ф (α, �̂�) =  Ф (α, (µ𝐷1̂, 𝜎�̂�)) 

= { (µ𝐷1, 𝜎𝐷): |
µ𝐷1 −  µ𝐷1̂

µ𝐷1̂
|  ≤ 𝑤1𝛼, |

𝜎𝐷 − 𝜎�̂�

𝜎�̂�
|  ≤ 𝑤2𝛼  

(A.18) 

where weight parameter w1, w2 ∈ [0, 1] and (µ𝐷1̂, 𝜎�̂�) are initial estimates. Therefore, Ф 

represents the uncertainty space for this problem. 

The decision space for the info-gap is also defined by the strategy set S similar to the 

RDM model. A reward function Ps(x) measures the expected utility given the strategy s and 

state x. The decision maker selects pc, which is the minimum requirement for the reward 

function. In the painting decision problem, pc is the required profit. In the info-gap model, 

robustness is defined as the maximum α that still maintains the critical requirement for a 

strategy s, and opportuneness is defined as the minimum α (Ben-Haim, 2006). The 

opportuneness function focusses on sweeping success, which might not be appropriate for 

situation examined in this paper. Hence, we focus on the robustness function �̂�(s, pc) which 

calculates the greatest level of uncertainty that satisfies the minimum profit requirement. 

�̂�(𝑠, 𝑝𝑐)  = max {𝛼: 𝑚𝑖𝑛⏟ 
𝑥∈  Ф (α,�̂�)

𝑃𝑠(𝑥)  ≥  𝑝𝑐} (A.19) 

The decision maker should select the strategy s that meets the critical requirement with 

largest �̂�(s, pc). 
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