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ABSTRACT 

The widespread availability of internet and mobile devices has made crowdsourced 

reports a considerable source of information in many domains. Traffic managers, among 

others, have started using crowdsourced traffic incident reports (CSTIRs) to complement 

their existing sources of traffic monitoring. One of the prominent providers of CSTIRs is 

Waze. In this dissertation, first a quantitative analysis was conducted to evaluate Waze data 

in comparison to the existing sources of Iowa Department of Transportation. The potential 

added coverage that Waze can provide was also estimated.  

Redundant CSTIRs of the same incident were found to be one of the main challenges 

of Waze and CSTIRs in general. To leverage the value of the redundant reports and address 

this challenge, a state-of-the-art cluster analysis was implemented to reduce the 

redundancies, while providing further information about the incident. The clustered CSTIRs 

indicate the area impacted by an incident and provide a basis for estimating the reliability of 

the cluster. Furthermore, the challenges with clustering CSTIRs were described and 

recommendations were made for parameter tuning and cluster validation.  

Finally, an open-source software package was offered to implement the clustering 

method in near real-time. This software downloads and parses the raw data, implements 

clustering, tracks clusters, assigns a reliability score to clusters, and provides a RESTful API 

for information dissemination portals and web pages to use the data for multiple applications 

within the DOT and for the general public.  
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With emerging technologies such as connected vehicles and vehicle-to-infrastructure 

(V2I) communication, CSTIRs and similar type of data are expected to grow. The findings 

and recommendations in this work, although implemented on Waze data, will be beneficial to 

the analysis of these emerging sources of data.  
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CHAPTER 1.    INTRODUCTION 

The role of road transportation and its challenges  

Road transportation constitutes the distinct majority of passenger traveled miles in the 

United States and an indispensable part of our daily lives. According to the American Bureau 

of Labor Statistics, on average each individual spends about 79.5 minutes on road travel in 

weekdays (Bureau of Transportation statistics, 2016). Moreover, transportation forms a 

considerable portion of personal and governmental expenditures. $1,184 billion of all 

personal expenditures were on transportation, making it the fourth largest category in 

personal expenditures (U.S. Department of Transportation, Bureau of Transportation 

Statistics, 2016). Similarly, in the freight sector, road transportation is the most common 

mode among all others. Both the value and weight of the total shipments through road 

transportation are considerably higher than all other modes and are projected to remain the 

highest to 2040 (Bureau of Transportation Statistics, 2015). The significant influence of road 

transportation in the economy and personal life indicates the broad impact of research in this 

field.  

The challenges in the field of transportation are proportionate to its significance. 

Crashes are one of the major sources of fatality and are projected to remain in the top ten 

causes of death and injury worldwide, by 2030 (Mathers & Loncar, 2006). Plans for timely 

detection of crashes and responding to them, allocating first responders appropriately, and 

plans for reducing the risk of crashes are some of the life-saving research problems in this 

field.  

In addition to crashes, traffic congestion is another significant issue in road 

transportation. Road congestions cause travel time delays and adversely impact the reliability 
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of transportation systems. In the urban areas in the United States, 6.9 billion hours of 

commuters’ time was spent in congestions resulting in the waste of 3.1 billion gallons of fuel 

in year 2014 (U.S. Department of Transportation, Bureau of Transportation Statistics, 2016). 

These are some statistics that indicate the direct impact of traffic related issues. There are 

several indirect aspects to this as well. For instance, the environmental impact of the road 

transportation is significant. 27% of the greenhouse gas emissions (GHG) are produced by 

the transportation sector, from which passenger cars have the largest share (“United States 

Environmental Protection Agency,” n.d.). Another example is that studies have shown that 

congestions lead to higher stress levels (Gyawali & Sharma, 2013; Hennessy & Wiesenthal, 

1999), which in long term can cause heart disease (Steptoe & Kivimäki, 2012). With the 

extensive impact of congestion on several aspects of our public health, economy, 

environment, and general life quality, any improvements will benefit the public greatly.  

Intelligent Transportation Systems (ITS) 

In order to manage traffic incidents (crashes and congestion/jams), real-time 

information about traffic conditions is necessary. The technological advancements in 

telecommunication networks and computer science in the 20th century sparked the ideas of 

leveraging these technologies for broad situational awareness of traffic conditions on national 

highways. ITS Canada defines ITS as: “the application of advanced and emerging 

technologies (computers, sensors, control, communications, and electronic devices) in 

transportation to save lives, time, money, energy and the environment” (Ministry of 

Transportation Ontario, 2007). Based on this definition, improved mobility, safety, and 

productivity of the transportation system are the main goals of ITSs. These goals are in 
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alignment with the main challenges in road transportation, based on the statistics discussed in 

the prior section. 

The US Department of Transportation (USDOT) has defined its four-year strategic 

plan for 2015-2019. The priorities are based on five main themes (Barbaresso et al., 2014): 

- Enable Safer Vehicles and Roadways 

- Enhance Mobility 

- Limit Environmental Impacts 

- Promote Innovation 

- Support Transportation System Information Sharing 

The strategic plan and the ITS goals are designed to serve several stakeholders. 

Drivers and passengers expect to experience safer transit and lower travel times. In addition, 

real-time information and reliable prediction of traffic patterns are highly desirable. For the 

businesses, reliable delivery time of their procurement as well safety are some of the main 

expectations. The themes and strategic plans for the traffic managers and ITS re derived 

based on mutual interest of the several stakeholders.  

The goals of ITS cover a breadth of applications which contains several subsystems. 

Each subsystem is designed to help traffic managers with actionable decision in 

accomplishing their goals. One of the most effective subsystems of an ITS is an Advanced 

Traffic Management System (ATMS). The first computerized traffic signal management 

systems were implemented about 60 years ago (Ministry of Transportation Ontario, 2007). 

However, new technology and machine learning techniques have made new features 

possible. Some of the main objectives of ATMS are (Ministry of Transportation Ontario, 

2007): 
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- Information collection: To be able to inform the passenger and first responders of the 

road conditions and potential hazards, it is crucial to broad, real-time, and reliable 

coverage of the traffic conditions. Data is collected on metrics such as traffic flow or 

volume, vehicle speed, traffic density, occupancy, incidents, and weather.   

- Controlling traffic and highways: Leveraging the collected data and camera feeds, 

traffic managers decide on actions such as lane control signs or ramp metering on the 

highways, to improve the traffic flow. On the other hand, the historical data collection 

will be valuable in defining the design requirements of surface street control systems. 

- Traffic information dissemination: This functionality directly serves the motorists by 

providing them real-time information about traffic conditions and advisory messages. 

This information provides motorists to select the best road based on the current traffic 

situations, either directly based on the information provided by the ATMS or through 

navigation applications that leverage the publicly available ATMS report. Furthermore, 

information about road closures and construction plans help travelers and fleet 

managers to plan for the upcoming events, accordingly. To inform the motorists on the 

road, roadside Dynamic Message Signs (DMS), are one of the common means of 

communicating. Apart from the information provided to traveler, the detected incidents 

are reported to appropriate response agency (e.g., police, ambulance, fire) with the 

necessary information to help with the incident. This feature is particularly valuable for 

rural or less congested areas, where there might not be a direct phone call to 911 to 

report incidents.  
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Some of the common sources of data at the Iowa DOT and at the DOTs across the 

U.S. include: 

- Camera imagery: Camera images installed at multiple locations throughout the state 

provide real-time and visible understanding of traffic situations.  

- Radio calls: Incidents reported to 911 or highway helpers are recorded to the ATMS.  

- Radar: Using radio wave signals to detect presence, speed, and size of the vehicle. 

- Speed and occupancy data acquired from third party providers, e.g. INRIX. 

In addition, to the conventional sources that are run and maintained by the DOT, 

more recently crowdsourced data has become available. Detecting events from social media 

(e.g., Twitter) or from mobile phone applications both have been shown to be viable 

(D’Andrea, Ducange, Lazzerini, & Marcelloni, 2015; Gu, Qian, & Chen, 2016; Santos, Davis 

Jr., & Smarzaro, 2016a; Steiger, de Albuquerque, & Zipf, 2015; Van Dyke, Walton, & 

Ballinger, 2016). Some of the mobile phone navigation applications, provide crowdsourced 

traffic incident reports to traffic agencies. A review study on the main providers of 

crowdsourced traffic incident reports indicated that Waze, a mobile navigation application, is 

among the most popular applications among the users and provides most coverage (Van 

Dyke et al., 2016). Waze offers a partnership with cities and traffic agencies called 

Connected Citizens Program (CCP). This partnership is an information exchange where the 

agencies provide Waze with road closures and detected incidents, and in return, Waze shares 

their data with the agencies (“Waze Connected Citizens Program (CCP),” n.d.). The 

increasing number of state and city traffic agencies that have started using Waze (Pack & 

Ivanov, 2017) has raised an interest in understanding the characteristics of this source of data. 
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Crowdsourced data is available for free or at low cost, however, the quality, coverage and 

validity of these reports need to be studied.  

Challenges of using crowdsourced data in the ATMS 

Before using crowdsourced data for traffic operations and in the ATMS, the traffic 

managers must study the characteristics of this new source of data. Once the characteristics 

of these data are known, the raw crowdsourced data require significant preprocessing to fit 

the ATMS requirements. Some of the main challenges that traffic agencies are faced with 

regarding crowdsourced data, particularly from Waze, are discussed in this section. 

Characteristics of crowdsourced data 

The pros and cons of conventional traffic data sources (e.g., sensors, cameras, and 

probe data) has been studied by many researchers. However, there are very few works that 

have quantitatively compared the characteristics of crowdsourced data with these existing 

sources. Knowing the strength and weaknesses as well as the potential additional coverage 

that crowdsourced data would provide to the existing sources is critical for interpreting the 

derived findings. This challenge is to determine the coverage and value of crowdsourced 

reports in general.  

Dealing with redundant reports and reliability of reports 

Crowdsourced data is notorious for redundant reports (Gu et al., 2016). The traffic 

operations managers are already loaded with incident reports from multiple sources. 

Overwhelming the operators with redundant reports of the same incident, not only makes the 

operators prone to error, it is also detrimental to their trust of the system (Dixon, Wickens, & 

McCarley, 2007; Madhavan, Wiegmann, & Lacson, 2006a, 2006b). On the other hand, the 
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multiple reports of a single incident provide valuable information about the intensity and 

reliability of the reported incident. Moreover, it provides information about the impacted area 

by the incident. Therefore, a real-time solution to handle redundant reports is while 

leveraging the redundant reports for further information is one of the most critical challenges 

of crowdsourced data.  

Once the potential value is crowdsourced data is generally accepted and the redundant 

reports are handled, the critical decision for the traffic managers is whether the incident 

report they have at hand is reliable. Various sources provide information about incidents on 

the road. The challenge is to find ways to leverage the existing sources to provide traffic 

managers and ATMS administrators with an estimate the validity of the crowdsourced 

reports. This challenge has been recognized by researchers in the field (Amin-Naseri, 

Chakraborty, Sharma, Gilbert, & Hong, 2018; Pack & Ivanov, 2017; Van Dyke et al., 2016). 

Fusing this new feed with existing sources 

For each source of data, diverse types of instruments are used for data collection. 

Data coming from several sources, each with their own format, accuracy, and limitations, 

poses additional challenges to the ITS administrators to match these diverse sources. Data 

fusion in the ATMS application is one of the active fields of research. The attempt is to 

match the sources of data together, to provide a broader perspective of the traffic conditions 

and improve the reliability in the detected incidents.  

Research topics 

To this point, some of the main challenges and active fields of research have been 

discussed. In this section the three research topics with regards to these challenges are 

introduced, each composing a chapter of this dissertation. 
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Chapter 2 - Evaluating the Reliability, Coverage, and Added Value of Crowdsourced 

Traffic Incident Reports from Waze 

To study the characteristics of Waze data, this work evaluated the quality of 

crowdsourced incident reports from Waze and compared Waze as a data source with the 

existing sources of data in the Iowa ATMS. The findings described the reliability of Waze 

reports and the additional coverage that it can provide to the ATMS. Moreover, the factors 

that impact the Waze coverage such as time and location were investigated.  

Chapter 3 – Online clustering of Waze reports and reliability estimation 

The findings in Chapter 2 confirmed the issue of redundant reports in Waze data. This 

chapter applied a state of the art near real-time spatiotemporal clustering technique to 

efficiently group redundant Waze reports. In addition to addressing redundancies, this 

grouping provided insight about the impact area of the incident, as well as the duration of the 

impact. Finally, a reliability score was assigned to each cluster of crowdsourced reports to 

assist ATMS administrators in prioritizing their operations. Cluster validation is known as 

the most difficult step in cluster analysis. To this end, this work offers customized 

suggestions and metrics for evaluating the quality of clusters using the conventionally 

sourced data in the ATMSs.  

Chapter 4 – WazeClustR: An R-based program to enhance Waze crowdsourced traffic 

reports for traffic management applications 

This chapter provides a software package that allows traffic agencies to implement 

the clustering and reliability estimation described in Chapter 3. To mitigate the challenge of 

data fusion from multiple sources, the enhanced Waze feed is presented in a format that suits 
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the requirements of ATMSs. This chapter describes the software architecture as well as the 

functions for estimating reliability of clusters over time.  

Chapter 5 – Discussion and conclusion 

This work targeted three of the main challenges facing ATMSs, each with state of the 

art data used in the Iowa Department of Transportation (IDOT). This research quantifies the 

value in one of the major sources of crowdsourced incident reports and implements a 

customized unsupervised learning method to clean the data. Moreover, methods for 

validating the clusters and tuning the parameters were offered. Finally, an open-sourced 

software package is presented to implement the proposed clustering method on Waze 

crowdsourced data. Although this work was particularly applied to Waze data for the state of 

Iowa, the methods as well as some of the general findings are applicable to many other 

sources of data and locations. Regardless of the actual source of data, validation and fusion 

techniques implemented in this research are generalizable to other spatiotemporal data sets.  
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CHAPTER 2.    EVALUATING THE RELIABILITY, COVERAGE, AND ADDED 

VALUE OF CROWDSOURCED TRAFFIC INCIDENT REPORTS FROM WAZE 

In press at the Journal of Transportation Research Record 

Authors: Mostafa Amin-Naseri, Pranamesh Chakraborty, Anuj Sharma, Stephen Gilbert, 

Mingyi Hong 

This work was performed and described by Mostafa Amin-Naseri with guidance by Anuj 

Sharma, Stephen Gilbert, and Mingyi Hong. Co-author Chakraborty provided the INRIX 

incident detection data and drafted the INRIX incident detection section. 

 

Abstract 

Traffic managers strive to have the most accurate information on road conditions, 

normally by using sensors and cameras, to act effectively in response to incidents. The 

prevalence of crowdsourced traffic information that has become available to traffic managers 

brings hope and yet raises important questions about the proper strategy for allocating 

resources to monitoring methods. Although many researches have indicated the potential 

value in crowdsourced data, it is crucial to quantitatively explore its validity and coverage as 

a new source of data. This research studied crowdsourced data from a smartphone navigation 

application called Waze to identify the characteristics of this social sensor and provide a 

comparison with some of the common sources of data in traffic management. Moreover, this 

work quantifies the potential additional coverage that Waze can provide to existing sources 

of the Advanced Traffic Management System (ATMS). One year of Waze data was 

compared with the recorded incidents in the Iowa’s ATMS in the same timeframe. Overall, 

the findings indicated that the crowdsourced data stream from Waze is an invaluable source 

of information for traffic monitoring with broad coverage (covering 43.2% of ATMS crash 
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and congestion reports), timely reporting (on average 9.8 minutes earlier than a probe-based 

alternative), and reasonable geographic accuracy. Waze reports currently make significant 

contributions to incident detection and were found to have potential for further 

complementing the ATMS coverage of traffic conditions. In addition to these findings, the 

crowdsourced data evaluation procedure in this work provides researchers with a flexible 

framework for data evaluation. 

 

Introduction 

Traffic managers aim for increased mobility and safety on the roads. Real-time 

information on road conditions is necessary for taking proper actions. However, relying on 

the sensors and cameras for monitoring traffic conditions at all locations and times is neither 

possible nor economically justifiable (Yoon, Noble, & Liu, 2007). Moreover, many sensors 

detect incidents based on speed changes, while in less populated areas, a crash may present a 

high-risk zone for secondary crashes without an immediate significant speed drop. These 

circumstances point to the insufficiency of the existing means for full road condition 

monitoring.  

Recent research has demonstrated the potential value in leveraging social media to 

detect traffic incidents (D’Andrea et al., 2015; Gu et al., 2016; R. Li, Lei, Khadiwala, & 

Chang, 2012; Seeger, Lillehoj, Wilson, & Jensen, 2014). Thus, crowdsourced data, have 

recently gained attention in traffic management. To this end, many cities and departments of 

transportation (DOTs) have incorporated data from a crowdsourced smartphone application 

called Waze into their ATMS. Using crowdsourced data, however, poses several questions to 

the traffic managers. In this research, a quantitative analysis is implemented to provide data-
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driven answers to some of the common concerns of traffic managers with regards to Waze 

data.   

Iowa Department of Transportation (IDOT) has used Waze data as a source of 

incident detection since September 2015. One year of data (2016) was used to address 

questions in three primary areas. 

 How does Waze compare to existing sources? 

o Are Waze reports reliable? 

o What percentage of the current recorded incidents were detected by Waze? 

o How does Waze compare to other common sources of data collection in the 

ATMS? 

 What are the characteristics of Waze data? 

o How does Waze coverage compare to other sources? 

o How does Waze coverage vary by time and location? 

 What is the estimated potential additional coverage that Waze can provide to the 

ATMS? 

o In the locations where ATMS is unable to verify Waze reports, can Waze be 

trusted? 

This last question is a critical topic. In current ATMS settings, crowdsourced data 

needs validation by a second source before being trusted. This is not available in all locations 

and times, however. Thus, an estimation of the potential added coverage in Waze provides a 

ground for justifying allocating resources to developing methods that assess crowdsourced 

reports using historical data. One of the ultimate goals of studying crowdsourced data is to 

understand its characteristics profoundly enough to know when and where to rely on 
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crowdsourced reports in locations where there are no other means for validation. Hence, this 

work seeks answers to the above questions in the process of finding the response to Question 

c. Moreover, some of the main challenges in utilizing Waze data for traffic monitoring were 

identified and discussed for future work. 

Background 

Crowdsourced data and social media have been widely used in many areas. For 

instance, tweets have been used to detect earthquakes in real-time (Sakaki, Okazaki, & 

Matsuo, 2010) or predict influenza outbreaks (Aramaki, Maskawa, & Morita, 2011; 

Signorini, Segre, & Polgreen, 2011). More closely related to traffic, the Twitter-based Event 

detection and Analysis System (TEDAS) has been proposed by Li and colleagues (R. Li et 

al., 2012). Another work utilized Twitter to detect traffic incidents in real time (D’Andrea et 

al., 2015). To increase the percentage of useful tweets, Gu et al. have implemented a method 

to extract geolocation from the text of traffic-related tweets (Gu et al., 2016). Furthermore, 

the validity of the traffic information acquired from social media was approved by comparing 

to the recorded traffic situation in London (Steiger, Resch, de Albuquerque, & Zipf, 2016a). 

These applications demonstrate the potential wealth of information in crowdsourced data. 

Regardless of how the data are collected, however, there are challenges in using 

crowdsourced data that require consideration.  

Although crowdsourced data usually come at a relatively inexpensive price, there are 

challenges in understanding and interpreting this type of data. The crowdsourced data are 

reported by users who might be slightly inaccurate in time or location. For users traveling on 

the roads at the speed of 60 miles per hour, 30 seconds’ delay in reporting an incident is a 

0.5-mile distance. Moreover, users might falsely assume the causes of irregular congestion 

and report a crash while simply stuck in traffic.  
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Creating a clean dataset by reconciling the variation in crowdsourced user reports of 

the same incident and matching these reports to incidents recorded in the ATMS represents 

one of the primary challenges. The matching procedures as explored in the literature are 

known as  matching or conflation methods (Goh et al., 2012; Ruiz, Ariza, Ureña, & 

Blázquez, 2011; Sester, Arsanjani, Klammer, Burghardt, & Haunert, 2014; Xavier, Ariza-

López, & Ureña-Cámara, 2016; Yang & Zhang, 2015). As summarized Xavier et al. (Xavier 

et al., 2016), similarity measures for point data (like the incident data in this study) are 

generally a combination of the following:  

Geometric: Distance or area overlap 

Semantic: Measures of non-geometric properties. 

Context: the special relationship between objects.  

Ruiz et al. added the temporal criteria into their categories as well. For point 

matching, using geographic distance (Euclidian distance is most common) is the most classic 

approach (Beeri, Doytsher, Kanza, Safra, & Sagiv, 2005; Beeri, Kanza, Safra, & Sagiv, 2004; 

Safra, Kanza, Sagiv, Beeri, & Doytsher, 2010). Adding extra information about the points 

when available, such as road names and direction, adds additional power to the matching 

function. The hybrid approach of geographic and semantic information has shown high 

accuracy in matching crowdsourced information (McKenzie, Janowicz, & Adams, 2014). 

Considering the problem at hand and the available data in this research, a hybrid approach 

was used to leverage geographic as well as semantic matching methods.   

Data 

Waze Data 

Waze is a navigation application that leverages crowdsourced user reports for 

providing service. Users can report traffic crashes, congestion, hazards, or police traps on the 
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road (www.waze.com/about). The Iowa Department of Transportation (IDOT) joined the 

Connected Citizen Program (CCP), which is an agreement in which the city or state 

managers provide Waze with information on road closures and constructions and, in return, 

Waze provides user reports to the managers. However, since the raw Waze data contain 

duplicate reports for a single incident and all reports may not have high reliability, data 

preprocessing is necessary (Pack & Ivanov, 2017). IDOT’s ATMS implements stringent 

acceptance criteria for Waze reports before considering them for validation (filtering criteria: 

type = crash or reliability>=6 or report rating >=4). The reports that meet the criteria are sent 

to ATMS operators to verify the incident. If the incident is verified, it will be recorded in the 

ATMS database.  

ATMS Data 

The Iowa ATMS records all incidents, hazards, and congestion detected by various 

sensors and cameras or the reports by the highway helpers or police. The incidents in this 

dataset are validated by ATMS operators and thus serve as a reference for evaluating other 

sources of data. However, not all incidents, particularly congestion, are recorded in this 

dataset.  

Incidents Detected from Third-Party Traffic Services Vendors  

Third-party traffic services vendors such as INRIX (www.inrix.com) gather 

anonymized position data, which in turn provide rural and urban system-wide traffic data 

with reasonable accuracy (Haghani, Hamedi, & Sadabadi, 2009). Iowa ATMS applies a state 

of the art method for detecting incidents from INRIX data. This method utilizes interquartile 

range (IQR) of the historical speed data in each timeframe to detect outliers as described by 

Chakraborty and colleagues (Chakraborty, Hess, Sharma, & Knickerbocker, 2017). 

Threshold speeds are computed for each segment, day of the week, and 15-minute period of 

http://www.inrix.com/
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the day utilizing the last 8 weeks of data. More specifically, threshold = (Median - 2 × IQR) 

is computed for each period and an incident alarm is triggered when the real-time speed is 

below the corresponding threshold. The data generated from this process are another feed of 

data to the ATMS and a basis for comparison with Waze data. 

Traffic Camera Images 

Cameras mounted in various locations across Iowa are one of the main means for 

traffic monitoring in the ATMS. To estimate false alarms in Waze reports, this study uses 

screenshots of the camera video feed that are captured every five minutes. Cameras in the 

Des Moines, Iowa metropolitan area (56 cameras) were selected for manual labelling of road 

conditions. Since labeling the road conditions (particularly congestion) based on a single 

image is a subjective decision, the images were labelled “clear” when the road was obviously 

clear and no congestion or incidents were observed. The labelled road images were used to 

detect the false alarms in Waze reports.  

Anticipated Coverage of Data Sources 

In practice, each of these sources cover a portion of the true incidents; they have some 

overlaps, and may have false alarms as well. The Venn diagram of our data sources depicted 

in Figure 1 illustrates this relationship (circles are not drawn to scale); the characteristics of 

the overlapping areas are of primary interest. Iowa ATMS captures a subset of the true 

incidents which is validated and free from false alarms. Waze and INRIX are expected to 

cover some of the true incidents while having a portion of false alarms. This study is mainly 

focused on estimating the potential additional contribution of Waze to the ATMS (region D). 

It is worth noting that the exact findings of this work are applicable to states and locations 

like Iowa, and that depending on the number of Waze users and penetration rates, the results 

may vary.  
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Figure 1 - Venn diagram of the sources of traffic monitoring data, pointing to region of 

interest (D), the potential contribution of Waze. 

 

Evaluation Procedure  

Region (D) on the Venn diagram of our data sources (Figure 1) marks the potential 

contribution of Waze to the ATMS. However, since data on true incidents in all locations and 

times are not available, the existing sources were used to quantify the potential contribution 

and value in Waze feed. Hence, the estimation of (D) was achieved in four main steps which 

are explained in this section using notations from Figure 1. The four steps are:  

1. Match Waze and ATMS incidents (A) 

2. Match Waze and INRIX incidents (B) 

3. Estimate the false alarms (C) 

4. Estimate Waze’s contribution D = Waze – (A  B  C) 

This study focused on two main type of incidents, congestion and crashes, as the 

sources that most directly impact traffic. To accomplish these steps, a matching function was 

necessary, which is described below.  
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Table 1 - Event Matching Procedure for Step 1 (ATMS and Waze matching) 

Matching  

Levels 
Criterion Logic 

Matching 

method 

Action 

category 

First Time 

Waze reports 20 minutes before the 

start and after the end time of an 

ATMS record   

Temporal Preprocessing 

Second Location 
Crashes in a 2.5-mile radius, 

Congestion in 1-mile radius 
Geographic Preprocessing 

Third 
Road name and 

direction 

Grouped into: 

Matching both and opposite direction 
Semantic Preprocessing 

Fourth 

Type of 

incident 
Type, road name, and direction match  Semantic 

Full/exact 

Match 

Type of 

incident 

ATMS event is a crash,  

Jam reported in Waze, 

No full match exists 

Semantic 
Secondary Jam 

of a crash 

Road direction 

Everything matches, 

Opposite direction, 

1-mile radius 

Semantic 
Opposite 

direction 

 

Matching Function  

For matching incidents between sources, a hybrid method leveraging geographic and 

semantic matching methods was implemented. In both data sources, the road name and 

direction, as well as the type of the incident (i.e., crash, congestion, or stalled vehicle) were 

recorded. Table 1 presents the levels of the matching function as well as the criteria and 

method used in each level. The matching function first selects incidents in the temporal 

vicinity, then the geographic distance is examined. From spatiotemporal neighboring 

incidents, semantic information such as road names, direction, and type of the incident were 

used to mark matching incidents. The matching function introduced for this step (Match 

Waze and ATMS incidents) is the most comprehensive one. In the next steps, when matching 

with INRIX data and detecting false alarms, the match function was slightly modified to fit 

the semantic features of the respective data fields. Table 2 provides a summary of the 

evaluation procedure in this work and the data used in each step.  
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Table 2 -Summary of the Waze Evaluation Procedure Steps 

Step Name 

Venn 

diagram 

segment 

Research motivation 
Data 

Time Location 

0 Exploratory analysis - 

Waze and ATMS reports based 

on: 

- Time of day 

- Region 

- Road type 

- Etc. 

2016 entire 

year 

entire state 

of Iowa 

1 
match  

Waze and ATMS  
A 

- Waze and ATMS overlap 

- Redundancies 

- Influential factors in Waze 

coverage  

2016 entire 

year 

entire state 

of Iowa 

2 
match  

Waze and INRIX 
B 

- ATMS and INRIX overlap 

- Waze vs INRIX contribution 

to ATMS  

October 

2016 

entire state 

of Iowa 

3 

Estimate the 

false alarms in 

Waze 

C 

- % of Waze reports when road 

is clear (False alarms) October 

2016 

Des Moines 

Area 

4 
Estimate Waze’s 

contribution 
D 

- The information that Waze 

can add 

 

 

Results 

Exploratory Waze Data Analysis 

To initiate the evaluation, an exploratory data analysis was performed to better 

understand the Waze and ATMS data. The exploratory analysis looked into the pure number 

of reports regardless of the matching percentages or potential duplicates, to provide a high-

level understanding of the two sources of data. 

Sources of Incident Detection in the ATMS 

Waze has been used as a source of incident detection in the IDOT ATMS since 

September 2015. As depicted in Figure 2, part (a), among the 23 sources of detection in the 

Iowa ATMS, law enforcement (which includes 911 calls, County Sheriff, State Patrol, etc.) 

contributes the highest number of incidents in the ATMS. Interestingly, Waze reports 
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(detection source for 13.4% of the ATMS records) rank fourth in detection sources, after law 

enforcement, CCTV, and highway helpers. Comparing the operation and maintenance cost of 

each of the first three sources, Waze has a considerable contribution as a “free” detection 

source. However, in the current ATMS settings, the Waze reports need to be verified, usually 

by one of the top three sources before being trusted.  

Incident Reports in Distinct Locations and Road Types 

The location of each report was mapped to the demographics of the region based on 

2010 census data (United States Census Bureau, 2010). Every county is grouped by their 

population as either metropolitan (>50,000), micropolitan (10,000-50,000), urban cluster 

(2,500-50,000), or rural (any non-urban region is considered rural). This analysis provides an 

insight into the spread and coverage of each source of data. As depicted in Figure 2 part (b), 

the ATMS has recorded almost no congestion incidents (jams) outside of the metro area. This 

is while there are many congestion incidents reported in Waze from the urban clusters and 

rural areas (even off the interstates). In addition, the considerably larger numbers of reports 

on the interstates show the concentration of reports in both sources. This chart indicates the 

type of incident and locations where Waze could best contribute to the ATMS.  

Impact of Time on the Waze Reports 

To evaluate how the crowdsourced data reflect the reality on the roads, the number of 

reports in each hour of the day were compared and it was expected that the crowdsourced 

data resemble the ATMS records. As observed in Figure 2 part (c), both data sources tend to 

have a higher frequency of crash records during the rush hours. However, between midnight 

and 6 a.m., although ATMS shows 50-100 crash records, there are less than 10 Waze crash 

reports in the same time. The proportion of the number of Waze to ATMS crash reports 

during these hours (mean 9%) showed a statistically significant difference from the same 
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proportion for other hours of the day (mean 37%). This indicates that Waze is not be a 

reliable detection source during midnight to 6 a.m. This observation aligns with the fact that 

during these hours there are fewer drivers on the roads and consequently fewer Waze users 

that might observe and report an incident.  

Otherwise, the number of crashes reported in each hour of the day (from 6 a.m. to 11 

p.m.) was highly correlated (R2=0.9) between ATMS and Waze; as depicted in Figure 2part 

(d). Thus, the number of Waze crash reports during the day follow the reality of the roads. 

Evaluation and Comparison 

Step 1: The ATMS incidents that were reported in Waze (Estimating A: Waze ∩ 

ATMS) 

This step compares Waze reports to the ATMS reports as source of validated events. 

The percentage of matching incidents in both sources answers questions regarding the 

reliability of Waze reports, while leading to the estimation of the potential contribution of 

Waze.  

Using the described matching function, overall the congestion and crashes reported in 

Waze covered 43.2% of the ATMS records. The matching percentage by each type of 

incident is presented in Table 3.



 

 

2
3
 

 

Figure 2 - Exploratory data analysis results, comparing number of reports in Waze and ATMS. All data are from 2016

(a) (b) 

(d) (c) Total crash counts in all weekdays of year 2016 per hour of the 

day 
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R² = 0.9002
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In Iowa, similar to many other Midwestern U.S. states, traffic is not a daily concern 

for most people, and thus fewer people are familiar and active users of Waze, compared to 

more populated cities and states. Yet, the number of matched reports are interesting, 

considering a single crowdsourced feed of data has captured 43.2% of ATMS records. 

 

 

Table 3 - ATMS-Waze Matching Percentage by Report Type 

Type of 

incident 

Total reports in 

ATMS 

% matched with 

Waze 

Crashes 3713 42.1 % 

Congestion 456  58.5 % 

Stalled vehicles 12552   43.0 % 

 

What factors contribute to an incident being reported in Waze in the Metro 

area? 

To find the variables which have a statistically significant influence in determining 

whether an ATMS incident is reported in Waze, a binomial logistic regression was 

conducted. The binomial logistic regression was performed to ascertain the effects of day of 

the week, hour of the day, incident type, and the road type on the likelihood that an event 

covered by an ATMS record would be covered by Waze as well. The logistic regression 

model was statistically significant, χ2(31) = 450.2, p<< .001. The model explained 20.0% 

(Nagelkerke R2) of the variance in the matched instances and correctly classified 63.6% of 

cases. Of the thirty-one predictor variables (factors converted to dummy variables), the 

statistically significant ones were related to time and road type (as shown Table 4). The 

incident type did not indicate a significant impact in this model. 

Since the road type turned out to be a significant contributing variable to the model, 

another logit model was tested using the interstate road names (9 variables) in the metro area 
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as new variables, to investigate if a certain road significantly impacts the chance of an ATMS 

report being covered in Waze. None of the major interstates indicated a significant impact.  

 

Table 4 - Significant Influencers in ATMS-Waze Matching (** indicates significance level of 

0.001) 

Variable 

group 

Variable Estimate P-Value 
Variable definition 

Time of the 

Day 

07:00-08:00 1.5444 < .0001 ** 
07:00 – 09:00 

Morning 

rush hour 08:00-09:00 0.9143 .0003 

11:00-12:00 0.6435 .0267 
11:00 – 13:00 Lunch time 

12:00-13:00 0.7137 .0135 

14:00-15:00 0.9792 .0004 

14:00 – 19:00 Afternoon 
15:00-16:00 0.8815 .0006 

16:00-17:00 1.5484 < .0001 ** 

17:00-18:00 1.5602 < .0001 ** 

18:00-19:00 0.8350 .0015 

20:00-21:00 0.7376 .0333 20:00 – 21:00 Evening 

Road type 
Interstate or 

not 
0.9083 < .0001 ** Interstate/Freeway or not** 

 

What Percentage of Waze Was Covered in ATMS? And Were There Redundant 

Reports? 

Only 14.6% of the total Waze reports were matched with incidents in the ATMS 

records (36.8% for the crashes and 10.0% of the congestion). Thus, it is critical to investigate 

the unmatched Waze data to estimate the potential added coverage of Waze.  

It was also found that on average, each ATMS report matched to 1.9 Waze reports, 

indicating the redundancy rate in Waze data. The median is 1 report, mean is 1.9, and 80% of 

the reports have two or fewer matches in Waze.  

To examine the accuracy of the matching in distance, the 95% confidence interval for 

the distance between the matched Waze report and the ATMS record was calculated as .36 to 

.39 miles. Evaluating the time accuracy of the matches, the time difference (latency of the 

reports) was calculated. As depicted in Figure 3 (a), the time difference forms a bell-shaped 

distribution around –0.22 minutes (95% CI, –1.3 to .8 minutes), which is slightly skewed to 
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left. Slightly more than half of the matched incidents were detected earlier in Waze than the 

ATMS record. 

 

Figure 3 - Waze incident detection time compared with ATMS and INRIX. 

 

Step 2: Estimating the Common Incidents in INRIX and Waze (B)  

Although the INRIX reports are not all validated, the overlap of Waze and INRIX 

reports increases the plausibility of an actual incident occurrence in the same time and 

location. To control for weather effects in our results, one month with relatively stable 

weather and about average matching percentages from Waze and ATMS incidents, was 

desired. October fulfilled the desired properties; therefore, October 2016 data was used for 

this part. Having applied incident detection method in Iowa ATMS, as described by 

Chakraborty et al. (Chakraborty et al., 2017), the incidents were detected from INRIX.  

Using the described matching function in Table 1, 48% of Region A of Figure 1 

(Waze ∩ ATMS) was also matched with INRIX. This result implies that the INRIX feed had 

detected about half of the common incidents in Waze and ATMS, adding to the validity of 

the INRIX detected incidents.  
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To estimate Region B on the Venn diagram, the overlap of the Waze reports with the 

INRIX data was evaluated. The results indicated 16.8% of Waze reports were matched to 

INRIX. The time difference between Waze reports and matched incidents demonstrated that 

on average, INRIX reports were detected 9.8 minutes later (95% CI, 8.25 to 11.36) than 

Waze reports  

(Figure 3 (b)).  

Step 3: Estimating the False Alarms in the Metro Area (C) 

Region C of Figure 1 represents false alarms from Waze, i.e., reports of incidents that 

did not actually exist. To estimate the number of false alarms in Waze, manually labelled 

images from IDOT cameras in the Des Moines metro area were used. The results indicated 

that overall, only one of the 319 Waze reports in October 2016 and locations was a false 

alarm. This accounts for 0.3% of the reports. 

Although our false alarm definition is not strict (a false alarm is when the road is 

visibly clear and there is a Waze incident report), the false alarm rate is interestingly lower 

than expectations. It is worth mentioning a great portion of Waze reports are congestion 

reports that DOT is not particularly interested in recording. Yet, this is an important finding 

to understand the validity of these crowdsourced Waze reports.  

Step 4: Estimating the Waze Contribution (D) 

The final step in the process is to estimate the Waze contribution, or Region D on the 

Venn diagram of FIGURE 1. Based on the following calculations, 68.3% of the Waze 

incidents were estimated to be the additional information that Waze can contribute. Once 

accounting for the number of redundant reports (1.9 redundant reports was rounded up to 2.0 

for a more conservative estimation), 34.1% of the Waze’s crash and congestion reports (7387 
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instances which are mainly congestion reports) were potential incidents that were not 

recorded by the current sources of the ATMS. 

𝐷 = (𝐴 ⋃ 𝐵 ⋃ 𝐶)′ = 100% − (14.6% +  16.8% + 0.3%) = 68.3% 
 

𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑖𝑒𝑠:
68.3%

2
= 34.1% 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠: 34.1% (𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑟𝑎𝑠ℎ 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑖𝑛 𝑊𝑎𝑧𝑒) =    
. 341 × 21662 ≅ 7,387 

To further estimate the potential additional crash coverage in Waze data, the 

proportion of crash reports among Region D within the 2016 data was 12% of all Region D 

incidents. Assuming this percentage is uniform in the unmatched Waze reports, this yields 

about 904 crashes in year 2016 (12% × 7,387 reports) which are either potentially missed or 

recorded with different labels by the ATMS. These numbers provide an estimate of Waze’s 

potential contribution to traffic coverage in the state of Iowa.  

Note that the Waze congestion reports don’t come with the recurring or non-recurring 

labels. Thus, many of the congestion reports might be recurring traffic patterns. Although the 

ATMS operators are not concerned with the recurrent congestions, the Waze reports still 

provide invaluable information about the traffic conditions. Moreover, records on all types of 

traffic incidents provide training data for classification models that can distinguish recurring 

and non-recurring congestion. 

 

 Comparing Waze with Findings about Twitter 

Now that the contribution of Waze has been estimated, it is worth examining its 

performance with other data sources of data. The work of Gu et al. (Gu et al., 2016) provided 

information about traffic incidents extracted from Twitter in Pennsylvania. Comparing some 

of the findings about Twitter with Waze was insightful. Like the present results with Waze, 
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Gu et al.’s analysis showed Twitter to be less reliable during night hours. Also, most of the 

tweets were during the peak traffic hours. Gu et al. reported an average of 1.6 Twitter-

reported incidents per unique incident. This number was estimated 1.9 reports for Waze, 

indicating that redundant reports are a common challenge in other crowdsourced data feeds.   

Summary of the Findings 

Based on the quantitative analysis of Waze data, Figure 4 is an updated view of the 

Venn diagram that better illustrates the relationship and overlap of the three sources of data. 

In this another aspect of the challenge is demonstrated. Although there exists a set of true 

incidents (the yellow circle), not all of them are known through the existing means. Thus, 

when evaluating the potential of Waze this challenge should be acknowledged. Note that the 

(D) region in the figure is now split into sections [3] and [4]. The overlap of (D) and 

Verifiable incidents [3] shows the incidents that are verifiable through other existing means 

(particularly CCTV cameras). Part [4] in region (D) are reports that can potentially be valid 

incidents, and there are currently no cameras or other means to verify their accuracy. Based 

on this work, it is believed that a considerable percentage of the potential incidents in (D) 

provide invaluable information to the ATMS. 

Figure 4 - Updated Venn diagram based on the analysis, the regions are drawn closer 

to scale. Region D, the estimated contribution of Waze to the ATMS, is divided into 

verifiable and non-verifiable regions. 
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Discussion and Conclusion 

This research evaluated crowdsourced traffic incident reports from Waze, to study its 

characteristics as a data source. This section provides a summary of the findings.  

 

How does Waze compare to the existing sources? 

The reliability of crowdsourced incident reports from Waze was affirmed with the 

matching percentages between Waze and validated ATMS (42.3% of ATMS records) and 

INRIX data. In the Iowa ATMS, 13.4% of the recorded congestion and crashes were initially 

detected by Waze reports, making it the fourth most contributing source of incident 

detection. These findings indicate the reliability and competent coverage of crowdsourced 

traffic incident reports like Waze. 

[1] Verifiable Incidents.  
(transparent blue-green 

circle)  
[2] True Incidents 

(yellow circle)  

[3] Verifiable 
potential Waze 

Contribution (marked 

with black line)  

[4] Waze  

potential 

Contribution – 

Marked with 

Red line  
(not-verifiable with 

current means) 
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What are the characteristics of Waze data? 

Waze incident reports indicated a wide spread coverage of instances in most locations 

and road types, particularly for reported congestion. The quality of the reports did not depend 

on the day of week or a specific roadway. On the other hand, the analysis indicated in the less 

crowded hours of the day (12 a.m. to 6 a.m.), Waze reports are not a reliable source for 

monitoring road conditions.  

What is the estimated potential additional coverage that Waze can provide to the 

ATMS? 

The potential additional coverage that Waze can provide to the ATMS was estimated 

to be 34.1% of Waze reports, which accounts for 7387 incidents per year (from which 904 

were estimated to be crash reports), making it a valuable source for traffic managers to 

invest.  

Overall, it can be concluded that crowdsourced reports like Waze are invaluable 

sources of information for traffic monitoring with broad coverage, timely response time, and 

reasonable accuracy. Integrating this source of data into the ATMS feeds provides significant 

contributions to the traffic monitoring coverage.  

However, there are challenges in working with this crowd-based data, including 

redundancies, inaccuracies, and mismatches in report types, as well as the need for report 

reliability estimation. Therefore, preprocessing and validating such data is necessary and 

requires resource investment. The crowdsourced data, on the other hand, are typically 

provided freely (or at a low cost) to the ATMS managers. Compared to the immense cost of 

installation and maintenance of other data sources (sensors, third party probe data, or even 

law enforcement reports), raw Waze data is available for free. This analysis indicated 

potential valuable incident information from cleaned and processed Waze data. Therefore, a 
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short-term investment in human resources to establish an infrastructure for eliciting valuable 

information from Waze data seems economically justifiable. This infrastructure would 

include models to address the redundancy issue and to automatically estimate the reliability 

of the reports, which are directions for future work.  

Although the exact value of Waze data would vary for different regions and over 

time, these numbers in a less congested U.S. state seem impressive, and the techniques used 

in this research for Waze data evaluation could be applied to any region. Moreover, knowing 

the number of active Waze users in different regions would add a valuable basis for 

comparative across multiple regions. 
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Abstract  

Crowdsourced traffic incident reports (CSTIRs) have been shown to complement 

existing sources in traffic management systems. However, crowdsourced data has its 

limitations. Its greatest limitation is the redundant reports. The redundancies overload the 

traffic managers with redundant information, increasing the chance of error. Clustering 

CSTIRs is a solution which reduced the redundancies, while providing extra information 

about the impacted area by an incident and the reliability of the cluster. The greatest 

challenge with clustering is validation. This work explores a procedure for selecting the 

pertinent clustering method, selecting the validation measures, and tuning the parameters for 

the desired clusters. The external sources of cluster valuation which are commonly available 

to traffic agencies are discussed, and customized measures are offered to validate clusters. 

Moreover, a discussion of the challenges and tradeoff decisions are provided to assist 

decision making. An implementation of the clustering is demonstrated using Waze CSTIRs 

in the state of Iowa. The measures and challenges discussed in this work are applicable to 

CSTIRs as well as to the emerging data from connected vehicles in the transportation 

domain.  
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Introduction 

Real-time information about traffic conditions is the fuel for a successful Intelligent 

Transportation System (ITS) (Barbaresso et al., 2014). While sensors and cameras provide 

valuable inputs to the ITS, it is not economically feasible to have data collection means in 

every location across the roads. The increasing availability of crowdsourced traffic data 

(generally through Twitter and Waze) have provided traffic agencies with a free source of 

data to complement their coverage. Technologies like the Internet of Things, connected 

vehicles, wearable devices, and voice commands facilitate reporting incidents, which is 

expected to increase the availability of crowdsourced traffic information. The value of 

crowdsourced data has been shown in a variety of studies (Amin-Naseri et al., 2018; 

D’Andrea et al., 2015; Gu et al., 2016; Santos et al., 2016a; Steiger, Resch, de Albuquerque, 

& Zipf, 2016b). More specifically, Waze data in Iowa was found to cover 43% of the Iowa 

ATMS records (Amin-Naseri et al., 2018). In addition, Waze had a consistent coverage 

across various locations, while DOTs' or city officials' incident coverage might be focused in 

certain locations (Amin-Naseri et al., 2018; Santos, Davis Jr., & Smarzaro, 2016b), making 

Waze a proper complement to the existing means of data collection. To this end, many cities 

and state agencies have partnered with Waze (www.waze.com) to gain access to this source 

of data (“Waze,” 2017). The findings, as well as the fact that more than 72 cities and state 

agencies in North America have joined Waze, reiterate the value in this data (Pack & Ivanov, 

2017).  

Despite the value in Waze, there are challenges in using this data in practice. One of 

the main challenges with crowdsourced data (Gu et al., 2016) and particularly with Waze 

(Amin-Naseri et al., 2018; Pack & Ivanov, 2017) is redundant reports, meaning multiple 

people reporting the same incident (average 1.9 per recorded incident in Iowa (Amin-Naseri 

http://www.waze.com/
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et al., 2018)). Traffic managers are already loaded with several feeds of information; 

exposure to an overwhelming feed of redundant data would not only cause distraction but 

would also be detrimental to managers' trust in Waze reports (Dixon et al., 2007; Madhavan 

et al., 2006a). Addressing the redundancy issue is thus necessary for using Waze data in 

practice.  

Cluster analysis (also referred to as unsupervised classification) is a well-known 

approach for grouping similar observations based on their similarities. A successful 

implementation of clustering both reduces redundancies and provides information about the 

area which is impacted by an incident. Moreover, a cluster of reports about the same incident 

increases the reliability in the reported incident. However, cluster validation is known to be 

the most challenging step in the process (Craenendonck & Blockeel, 2015; Jain & Dubes, 

1988). Thus, parameter tuning and cluster validation have been heavily reliant on human 

assistance (Rosalina, Salim, & Sellis, 2017). Selecting the right clustering method, suitable 

cluster validation measures, and making trade-off decisions in setting clustering parameters 

are the main challenges in clustering crowdsourced traffic incident reports (CSTIRs). 

Although several works have proposed general cluster validations measures to reduce the 

human role in the process e.g., (Craenendonck & Blockeel, 2015; Jaskowiak et al., 2016; 

Moulavi, Jaskowiak, Campello, Zimek, & Sander, 2014; Rodríguez, Medina-Pérez, 

Gutierrez-Rodríguez, Monroy, & Terashima-Marín, 2018), the unique shape of clusters in 

traffic applications (line centered) limits the applicability of such measures.  

To this end, this work explored applicable validation measures for crowdsourced 

traffic report data particularly from Waze. External sources were used to validate clusters 

using the commonly available data to traffic agencies. Finally, the main challenges and 
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tradeoff decisions in the process are discussed to provide the decision maker with objective 

inputs. The process is demonstrated in an implementation of clustering on Waze 

crowdsourced incident reports from the state of Iowa.  

Background 

Clustering methods 

Determining the clustering method is key to the cluster analysis. Prior knowledge 

about the shape of the true clusters as well as the characteristics of the data help narrow down 

the suitable clustering methods. In the case of crowdsourced traffic data, the clusters are 

expected to form along the roads and thus be elongated shapes. Moreover, since 

crowdsourced data is expected to have noise (false or inaccurate reports) the clustering 

method should be able to handle it.  

Density based methods are less sensitive to outliers and are flexible with various 

cluster shapes. Among the density-based methods, Density Based Spatial Cluster of 

applications with noise (DBSCAN) (Ester, M., Kriegel, H. P., Sander, J., & Xu, 1996) or 

DBSCAN-based methods have been widely applied or proposed for various applications 

including crowdsourced data (Kwak, Liu, Kim, Nath, & Iftode, 2016; M Roriz Junior, 

Endler, & Silva, 2014; Rosalina et al., 2017). DBSCAN does not require a priori knowledge 

of the number of clusters. The method takes two inputs: mpts, which defines the minimum 

number of observations that can form a cluster, and ε, which is the scanning neighborhood. 

Points that have at least mpts other points in their ε-neighborhood are designated part of a 

cluster. To expand DBSCAN to spatiotemporal data, Space-Time DBSCAN (ST-DBSCAN) 

was offered as an extension of DBSCAN  (Birant & Kut, 2007). This method takes two 

epsilon inputs, one for time and another one for location.  
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DBSCAN results are highly sensitive to the value of both parameters, and while a 

general heuristic is suggested for mpts = ln(N) where N is the number of observations (Birant 

& Kut, 2007), the optimal ε needs to be found. To this end, modifications have been made to 

reduce the number of parameters or simplify the process, such as OPTICS (Ankerst, Breunig, 

Kriegel, & Sander, 1999), HDBSCAN (Campello, Moulavi, & Sander, 2013; Sun, 2012), and 

RNN-DBSCAN (Bryant & Cios, 2017). Moreover, DBSCAN uses a single ε parameter for 

the entire space. However, for non-homogeneous density of data, adaptable epsilon values 

are more desirable in some applications. Thus, some extensions have been made to 

accommodate for varying density (Campello et al., 2013; Elbatta & Ashour, 2013; Liu, Zhou, 

& Wu, 2007; Sun, 2012). Among these methods, Hierarchical-DBSCAN (HDBSCAN) has 

attracted more attention in application. HDBSCAN runs DBSCAN with all possible epsilon 

values and generates a density-based clustering hierarchy of all points. This clustering 

method, applies an optimization algorithm to find the optimal cut in the dendrogram based on 

a stability measure to gain best cluster solution. This method allows for detecting nested 

clusters with higher granularity (Rosalina et al., 2017). Campello, et al. have described the 

HDBSCAN algorithm in detail (Campello et al., 2013). Based on our data, cluster types, and 

similar works (Kwak et al., 2016; Rosalina et al., 2017), DBSCAN, ST-DBSCAN, and 

HDBSCAN were considered for further analysis. 

Tuning parameters and cluster validations measures  

To decide on the exact clustering method and the values of the parameters, proper 

cluster validation measures are needed. Cluster validation measures are generally divided 

into three groups: external, Internal, and relative measures (Jain & Dubes, 1988; Moulavi et 

al., 2014; Rosalina et al., 2017). External measures use pre-specified information about the 

data (i.e., ground truth) which is outside the original dataset to validate clusters (e.g., in this 
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application domain, camera images or speed sensor data). The most common external 

measures are Rand Index (Hubert & Arabie, 1985), Adjusted Rand Index (ARI), and Jaccard 

(Jain & Dubes, 1988; Rousseeuw & Kaufman, 1990; Vendramin, Campello, & Hruschka, 

2010a), which were used in this research.  

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =  
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
𝑎

𝑎 + 𝑐 + 𝑑
 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =  
𝑖𝑛𝑑𝑒𝑥−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑥

max 𝑖𝑛𝑑𝑒𝑥−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑥
  

𝑎 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑖𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠 

𝑏 (𝑇𝑟𝑢𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒): 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑖𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠 

𝑐 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑖𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑎𝑛𝑑  

𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

𝑑 (𝐹𝑙𝑎𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒): 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑖𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑎𝑛𝑑 𝑎𝑟𝑒 

𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

However, external validation sources are not always available. In cases where 

external data sources of validation are not available, internal and relative measures use 

intrinsic information about the data without any external labels (e.g., dissimilarity matrices) 

for evaluating clusters. Internal measures are used for determining the best clustering 

method, while relative measures are used for tuning the parameters of the same method.  

Some of the common internal and relative measures are Dunn’s measure (Dunn, 1974) and 

Silhouette Width Criterion and its variations (Hruschka, Campello, & de Castro, 2004; 

Hruschka, Campello, & De Castro, 2006; Rousseeuw & Kaufman, 1990; Rousseeuw, 1987; 

Vendramin, Campello, & Hruschka, 2009) (refer to (Vendramin, Campello, & Hruschka, 

2010b) for further reference). However, most of the mentioned internal measures were found 
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insufficient for evaluating density-based clusters. Density Based Cluster Validation (DBCV) 

(Moulavi et al., 2014) has been proposed to address this challenge and was implemented in 

multiple applications (Bryant & Cios, 2017; Cagnini & Barros, 2016; Craenendonck & 

Blockeel, 2015). Yet, Rosalina et al. found DBCV insufficient for the specific characteristics 

of spatial urban data clustering (Rosalina et al., 2017). Thus, the authors suggest customized 

internal validation criteria for evaluating clusters when external data set is not available.  

Final decision 

To compare clustering methods, three strategies were explored by Rosalina, et al. 

(Rosalina et al., 2017). More variations have been reviewed in reference (Jaskowiak et al., 

2016). Three forms of comparison were used. The first was overall comparison, in which 

comparing all combinations of the method and parameters are explored and the best is 

selected for each validation measure. Second was indices best comparison, in which for each 

approach, only the best run according to the validation measures is considered for further 

analysis. Third was default comparison, in which methods are compared with the default 

parameter values and the best method is tuned for the best parameter. In this research, the 

best indices comparison was used for comparing the clustering methods. 

Despite all the proposed internal and relative measures, there is no measure that out 

performs all others. Each measure captures certain aspects of a cluster while missing others. 

Therefore, to coalesce the findings from all measures, multiple strategies have been 

proposed. In applications with limited knowledge about the true clusters, ensemble methods 

(Jaskowiak et al., 2016) and voting schemas have been proposed (Rosalina et al., 2017). 

However, when general information about the desired clusters, as well as the implications of 

each validation measure are available, using multi-criteria decision making (MCDM) 

techniques has been applied to find the solutions that maximized the utility for the decision 
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makers (Kou, Peng, & Wang, 2014; Peng, Zhang, Kou, Li, & Shi, 2012). In evaluating Waze 

clusters, the knowledge about the clusters and the trade-off decisions exist. Thus, the authors 

recommend MCDM methods for this application. 

Method 

The process of clustering is an iterative approach of modeling, exploring, evaluating, 

and making decisions. Throughout this process, the clustering method, the distance 

calculations, and the parameters for the method are defined. Moreover, to properly validate 

the data, the external sources as well as informative internal measures need to be selected. 

This section describes the process of this work.  

The raw Waze data feed is first preprocessed to add three primary features to the raw 

data. Next, the stream clustering method is implemented to enhance the feed. Finally, the 

clusters are evaluated, and parameter tuning is performed.  

Data preprocessing 

The raw data was downloaded as a JSON or XML file and was parsed into a data 

frame. The end time for each report is extracted based on the last time it appeared in the feed. 

In the analysis, the end time of the event is also critical for determining real-time road 

conditions.  

On the other hand, information about the road name or direction is occasionally 

missing in the Waze feed. Moreover, the type of roads (municipal or freeways) are not 

reported explicitly in the feed. Linear Referencing System (LRS) is commonly used among 

the traffic agencies, particularly for highways and freeways. Therefore, the geo-coordinates 

provided by Waze were mapped to the LRS information to provide information about the 

mile markers as well as the missing road name and directions. The processed data is ready 

for distance calculations and clustering.  
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Clustering method 

In the literature background section, a breadth of pertinent clustering methods were 

discussed. According to the desired cluster shapes and the functionalities of the clustering 

methods, DBSCAN, ST-DBSCAN, and HDBSCAN were considered as the most desirable 

methods for this type of data.  

Distance calculation 

Another important factor in clustering crowdsourced reports is distance calculations. 

The incident reports have space and time dimensions. Some methods like Spatial-Temporal 

DBSCAN (ST-BDCAN) consider two epsilon values, one for time and another one for 

location (Birant & Kut, 2007). Others use combined distance measure of time and location, 

such as DBSCAN (Rosalina et al., 2017) and HDBSCAN.  

Distance between CSTIRs must be calculated from a variety of features. In this work 

we used an additive distance measure which adds distance in several features. These features 

can be grouped into three categories: spatial, temporal, and contextual.  

Spatial features 

Spatial features are: geolocation (latitude and longitude), road name, and the direction 

of the road. First, the Euclidian distance was calculated between the reports and was 

converted to miles. Then a penalty was added for a mismatch between the road names and 

directions. The value of the distance should be defined based on the epsilon in the DBSCAN 

method. Lower penalty values allow for road or direction mismatch clustering, while higher 

values would prevent the algorithm from clustering such reports with each other. In this 

work, direction mismatch was not allowed, thus a large value was added to distance for 

direction mismatch. However, road mismatch was considered with different penalties in 

cluster validation. Moreover, in the DBSCAN and HDBSCAN method, time and spatial 
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distances were combined, while in ST-DBSCAN they were considered independently. 

Further details about the distance calculation and the clustering method are provided in 

Chapter 4. 

Temporal distance 

Each CSTIR, after pre-processing, has a start time as well as an estimate of its end 

time. Thus, when calculating the time distance, there needs to be a calculation of distance 

between time intervals. In general, events may completely overlap with one another, partially 

overlap, or not overlap at all, as depicted in Figure 5. When events overlap, a larger time 

distance between the start or end of events is allowed than when not overlapping.  

Event T1 T2 T3 T4 T5 T6 T7 T8 T9 

1          

2          

3          

4          

5          

6          

Figure 5: Events across time may completely overlap (E2, E4), partially overlap (E2, E3), or 

have no overlap (E2, E6). The overlap status affects the temporal distance metric. 

In addition to the calculation method, when using combined space time distance, time 

distance needs to be scaled. In this research, 10 minutes between the end and start of non-

overlapping events constructed one unit of distance in time. Moreover, for overlapping 

events, 1-hour time difference between start or end of incidents was considered a unit of 

distance in time. 

In this research, only crash and congestion reports were considered for analysis. 

There is a minor distance penalty (0.5 units) added for mismatch in type to avoid clustering 

E1 

 

E3 

 

E2 

 

E4 

 
E5 

 
E6 
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two irrelevant incidents.  In addition to the general type of the incident, Waze users can 

provide subtypes that determine the severity of the incident. However, since these reports are 

subjective and may vary by different users’ perception of the incident, the subcategories were 

not considered in the distance calculations. Based on the report types in each cluster, a cluster 

can be marked with a label of Congestion, Crash, or Crash/Congestion. The category of 

Crash/Congestion is valuable for exploring secondary crashes from congestion.  

Thus, the total distance between incidents was measured according to the following 

equation: 

𝑑 = 𝑑𝑡𝑖𝑚𝑒 +  𝑑𝑠𝑝𝑎𝑐𝑒 + 𝑤𝑟 𝑑𝑟𝑜𝑎𝑑 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑤𝑡 𝑑𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 

𝑤𝑟 ∶ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑟𝑜𝑎𝑑 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 

𝑑𝑟𝑜𝑎𝑑 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝐴 𝑏𝑖𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 

𝑤𝑡 ∶ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 

𝑑𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑦𝑝𝑒: 𝐴 𝑏𝑖𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 

 

External sources of validation 

In the application of traffic incident clustering, there are external sources to validate 

clusters. However, generally none of the sources provide definitive cluster labels. Rather, 

each provide partial information about road conditions and incidents, which together 

construct a basis for external cluster validation. The external sources used to create a 

validation set, as well as their limitations, are briefly discussed below.  

a) CCTV cameras 

Closed-circuit television camera (CCTV) recordings provide valuable information 

about the traffic conditions. Recent improvements in deep learning and object detection have 
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unlocked further opportunities to automatically detect incidents or estimate speed from 

videos (Chakraborty et al., 2018; Fung, Yung, & Pang, 2003; Poddar et al., 2018; Redmon, 

Divvala, Girshick, & Farhadi, 2016). However, cameras are not available in all locations. 

Moreover, the camera might be faced at the opposite direction at the time of an incident. 

Thus, cameras are a valuable yet not sufficient source for validation.  

b) Speed sensors 

Most traffic agencies and state DOTs have speed sensors mounted along major roads 

to track the traffic speed (Haghani et al., 2009; Sharma, Ahsani, & Rawat, 2017). Like 

cameras, sensors are not available in all locations.  

c) Probe-based speed data 

Probe-based data consists of traffic speed estimation by a third-party provider based 

on probe vehicles in the area. Unlike cameras and sensors, probe data is not limited to a 

certain area, however, probe-based speed data does not provide real-time data for all 

locations and times (Adu-Gyamfi, Sharma, Knickerbocker, Hawkins, & Jackson, 2017; Kim 

& Coifman, 2014; Sharma et al., 2017).  

d) Congestion reports detected by Waze 

In addition to the crowdsourced reported incidents, Waze reports congestion based on 

their own models of travel times. However, these congestion reports only consider incidents 

with a certain level of severity and may not include all clusters of incidents reported.  

e) DOT or traffic agency incident management records 

Lastly, the database of traffic incidents recorded by DOTs or traffic agencies provides 

another source for cluster validation. It has been shown that there are incidents reported in 

Waze that are not recorded in these sources (Amin-Naseri et al., 2018; Santos et al., 2016b). 

Yet they provide information on a portion of the ground truth.  



46 

 

Cluster validation measures and parameter tuning 

Prior to tuning the parameters, the plausible ranges for the time and location distance 

were determined using a subject matter expert’s knowledge and historical data. These two 

questions defined this range: 1) if two CSTIRs appear at the same time, what is the furthest 

distance for considering them reports of a single event? 2) For two reports of the same type 

and location, how distant in time can they be before being considered two separate events?  

Using these guiding questions, the furthest apart two reports can be to be considered 

the same incident were defined between 1.5-2.0 miles. The mpts was set to two points to 

capture smallest clusters while filtering the noise or less notable reports. This was also 

proposed by Kwak, et al. (Kwak et al., 2016) for clustering visual navigation tweets within 

their proposed platform of social vehicular navigation. 

Comparison strategies 

To tune the clustering parameters, the most common external validation measures, 

ARI and Jaccard coefficient, were used to compare the performance of clustering methods. 

These indexes are further described in (Prieto, Rodríguez-Triana, Kusmin, & Laanpere, 

2017). Moreover, to compare methods, the best indices approach was utilized, meaning the 

best performing method from each clustering method was compared with other methods.   

Data 

Several sources of data were used in this study. Data was collected in December 2017 

from freeways surrounding the Des Moines, IA metro area (Figure 6). The sources and data 

types are introduced in this section. 
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Figure 6 - The location of study and the segment and sensors used for validation. 

Waze data 

Waze raw data was obtained through Iowa DOT’s partnership with Waze, called 

connected citizens partnership (CCP). The raw data were downloaded every 5 minutes and 

processed in real-time. 

CCTV Camera recordings 

For each clustered report in the enhanced Waze feed, the two closest cameras were 

located. The video feed was manually observed and marked for the observability of the 

reported incident, the start, and the end of the incident based on the camera feed. These 

manually labeled video recordings were used as a source of validation and evaluation for the 

clustered events. Data collection for this source was conducted from Dec. 1-19th, 2017. 

Sensor data from Wavetronix sensors 

The sensor dataset used in this research was obtained from Wavetronix smart sensors, 

which utilizes radar technologies for data collection. Although we acknowledge that sensors 

might have some inherent errors, Wavetronix Smart Sensors have been commonly utilized as 
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ground truth for comparison purposes, e.g. (Sharifi, Hamedi, Haghani, & Sadrsadat, 2011; 

Sharma et al., 2017). Each Wavetronix sensor unit consists of a Doppler radar sensor, a 

wireless modem, solar panel, and on-board processors for real-time processing of traffic data 

such as speed, volume, etc. High-resolution (20 second) traffic speed data was provided by 

Wavetronix sensors. 

Congestion detection method 

After data processing, a congestion detection method was implemented to detect and 

classify the onset of congestion throughout the network for the study period. Congestion was 

identified as when the speed data of the segment or the mean of the 1-minute aggregated 

speed data of the Wavetronix sensor for that location indicated that the speed dropped below 

45 mph. According to the Highway Capacity Manual (version 6) [65], LOS (level of service) 

on basic freeway segments is defined by density. Although speed, as it relates to service 

quality, is a major concern of drivers, describing LOS on the basis of speed is difficult, as it 

remains constant up to high flow rates [i.e., 1,000 to 1,800 pc/h/ln for basic freeway 

segments (depending on the free flow speed)]. There are six levels of service defined for 

basic freeway segments (levels A–F). The minimum speed of around 50 mph for LOS E is 

almost constant for different free flowing speeds (from 75 to 55 mph). With an 

approximately 5 mph average speed bias, 45 mph is considered the threshold for traffic 

congestion.  

The congestion detection process is depicted in Figure 7.The blue line represents the 

original traffic speed, and red line represents the fixed threshold of 45 mph. The congestion 

start time is when the speed drops below 45 mph, and the congestion end time is when the 

speed rises above 45 mph. 
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Figure 7 - Congestion detection example 

Cluster analysis implementation 

Utilizing the external data sources, a validation set was created for comparison. For 

each epsilon, the ARI and Jaccard coefficients were calculated as presented in Figure 8 and 

Figure 9. As presented in Table 5, the best performing DBSCAN result was achieved with 

epsilon value of 1.75 using the combined distance measure and the ARI was equal to 0.81. 

The ST-DBSCAN method with 1.6 and 0.8 for space and time epsilon respectively, 

performed closest to the validation set. The ARI for STDBSCAN was higher than DBSCAN 

(ARI=0.87).  
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Figure 8 - Parameter tuning for ST-DBSCAN and DBSCAN. For DBSCAN, the ARI and 

Jaccard coefficient measures were calculated for epsilon values between 0.5 and 2.5.  

 

Figure 9- Parameter tuning for ST-DBSCAN. 273 combinations of space epsilon between 1 

and 2 (21 values), as well as time epsilon of values between 0.3 and 1.5 (13 values) 

increments were tested and the CV measures were calculated.  

DBSCAN 
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HDBSCAN does not require tuning epsilon. However, the ARI value for HDBSCAN 

was 0.24, which is significantly less than the other two alternatives. HDBSCAN partitioned 

the 99 ground truth clusters into 168 clusters, which contributed to the low ARI (Table 5).  

Table 5 - Summary of the best performing method from each clustering method. 

 

 

 

 

 

 

As explained in the introduction of HDBSCAN, using the hierarchy of clusters, it 

detects nested clusters. In other words, while DBSCAN and ST-DBSCAN can merge nearby 

clusters, the clusters from HDBSCAN are all dense and do not allow merging neighboring 

clusters when there is not enough density in time and location.  

Characteristics of each method 

In general, both DBSCAN and ST-DBSCAN performed well in detecting the true 

clusters, and ST-DBSCAN performed better. Yet it is important to know the characteristics 

of each method. Figure 10 is a useful illustration of the characteristics of these three methods. 

In each case, a single cluster according to DBSCAN and the validation set was divided into 

three and two clusters by HDBSCAN and ST-DBSCAN, respectively. Exploring the clusters, 

it was observed that HDBSCAN forms clusters with less time variation, while the other two 

methods were more flexible with time and distance variations. Thus, the tradeoff decision is 

between the space-time accuracy of the clusters and the number of redundant reports. 

HDBSCAN provides clusters with higher density, which consequently are more accurate in 

time and location. However, the feed might still contain redundant reports. On the other 

DBSCAN ST-DBSCAN HDBSCAN 

# of 

clusters 
102 

# of 

clusters 
101 

# of 

clusters 
168 

Epsilon 1.75 
Space Eps 1.6 

Epsilon NA 
Time Eps 0.8 

ARI .81 ARI .87 ARI .24 
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hand, DBSCAN and ST-DBSCAN clusters might be grouping two distinct incidents and 

inaccurately over estimating the impacted area of an incident. Thus, each method can be 

beneficial in certain applications. 

 

 

Figure 10 - A single cluster in the validation data and DBSCAN which has been partitioned 

into three and two clusters by HDBSCAN and ST-DBSCAN. HDBSCAN has also marked one 

report as noise (far right). The clusters in HDBSCAN have less variation in time or location; 

the other two methods allow for more variation in a cluster. 

Internal cluster validation measures 

As discussed in the literature, most of the common internal validation measures do 

not perform well with CSTIR data (Craenendonck & Blockeel, 2015; Rosalina et al., 2017). 

Figure 11 demonstrates the performance of the DBSCAN model using Average Silhouette 

Width and Dunn2 method, using the same range of epsilon values with the external 

measures. Contrary to the external measures (both with a max value of 1) these measures 

deem the results incompetent (close to 0.0), while the match with the true clusters is 

considerable, thus not very helpful for validating the quality of clusters.  

ST-DBSCAN HDBSCAN 
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Figure 11 - Classic internal cluster validation measures for epsilon values in DBSCAN. The 

results confirm the mismatch between these measures and the external measures in Figure 8.  

To explore clusters with internal measures, the summary statistics in each cluster of 

the time and space distance between consecutive CSTIRs in a cluster were explored. Large 

distances between consecutive CSTIRs indicate potential chaining of clusters, i.e., two 

unrelated clusters are merged. Thus, large values of mean, standard deviation, and the 

maximum value are signs of potential undesirable chaining of clusters.  

Challenges 

Considering the external validation measures, although a significant majority of the 

clusters were matched the desired ground truth, none of the clustering methods were able to 

perform exactly as the validation set. Part of this mismatch is due to the complicated nature 

of nested clusters and the limited means to verify them. Yet there are some special cases that 

regardless of the parameters can impact the quality of clusters. It is important to understand 

the characteristics of these cases to be able to inform decision making based on the 

organization’s priorities. Some of these special cases are discussed in this section. 
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a) Reports on adjacent roads 

As depicted in Figure 12- Part (a), a severe crash on a major interstate (I-80 E) can 

cause congestion on a ramp and the adjacent road (I-235 E). Therefore, it is desirable to 

cluster these reports as the same event. However, allowing events on adjacent roads to be 

clustered can be problematic in cases like Figure 12 – Part (b). Severe congestion was 

reported on I-80 E and a crash was reported on US-6 E as well. Although they were close in 

time and location, there isn’t a ramp between US-6 E and I-80 E.   

 

Figure 12 – Challenges with reports on adjacent roads. Part (a) shows severe crash and 

congestion on I-80E that has impacted I-235E as well. It is desirable to cluster these two 

incidents together. Part (b), severe congestion is reported on I-80E and a minor crash is 

reported on Highway 6E. These two incidents had no relation to one another and should not 

be clustered together.   

The challenge of adjacent roads as well as its pros and cons must be well considered 

for a clustering analysis. In this work, since the cluster results were meant to be used for the 

traffic managers, the adjacent roads were not allowed to be in a cluster. The assumption was 

that human managers are able to connect two adjacent clusters that are meaningfully 

connected. However, we don’t want to deceive the managers by reporting a cluster of 

incidents over multiple roads which are in fact not related. To include this feature, knowledge 

of the road network is necessary to adjust the distance calculations accordingly.  

I-80 E 

US-6 E 

I-235 E 

I-80 E 
(b) (a) 
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b) Inaccurate incident end/recovery time 

The end time of Waze reports (last time reported in the feed) is calculated using 

feedback from other users as well as Waze’s internal models. Since Waze’s model depends 

on the contribution of active users in the time, there might not be sufficient real-time data for 

Waze’s model to accurately estimate the end time. This means the end times of reports are 

not always reliable. The uncertainty with the end times is the root cause of cluster mismatch 

in many cases. For instance, Figure 13 is a depiction of clusters in time and location. Each of 

the green and purple arrows represent a CSTIR. The arrows of same color have close time 

overlap. However, report 1 is the last CSTIR reported among the purples. Shortly before the 

purple is removed from the feed, CSTIR 2 is reported and a new set of reports flow into the 

feed. In this case it is hard to decide whether the CSTIR 1 was actually cleared from the road 

and had falsely stayed longer on the map or the green cluster was truly a continuation of the 

purple CSTIRs and no active Waze users had been there to report. Such cases make the 

clusters complicated, and the traffic agency must decide based on their priorities to accept the 

risk of chaining unrelated clusters or avoid it at the risk of receiving multiple clusters from a 

single incident.  

c) Reports of an incident on the opposite direction 

It was observed that when an incident significantly impacts the road, drivers on the 

opposite side report the same incident as well. Thus, a cluster of the same incident is created 

on both directions. Generally, from the size of the cluster, the original direction of the 

incident is detectable. However, this is a rare case where clustering incidents from the 

opposite directions of a freeway is desirable.  
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Figure 13 - A depiction of report clusters over time. This example illustrates the challenge of 

inaccurate end time of incidents from Waze that could falsely group two distinct clusters.  

 

d) Space and time on separate scales or on the same scale? 

When clustering spatiotemporal events, the distance can be calculated as a single 

measure (time and location combined) or two distinct distances used in the ST-DBSCAN. 

Each have pros and cons. When using combined distance, time and location can compensate 

for the other, i.e., in the same epsilon CSTIRs which are closer in time can be further apart in 

location. Similarly, events which are distant in time need to be closer in location to be 

considered as a cluster. However, in some applications this might not be a desirable or 

meaningful feature. For instance, a stalled vehicle or pothole might be present for several 

days and thus, there will be several Waze reports which may be days apart. If time and 

location could compensate one another. In this case, two pothole reports in distant locations 

which were reported around the same time could be falsely clustered together. Therefore, in 

such cases using distinct time and location measures is preferred. 
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Conclusion 

In this work CSTIR clustering was demonstrated and some of its main challenges 

were discussed. The resulting cluster characteristics, as shown in Table 6, have enhanced the 

feed, significantly reduced the redundant reports, and provided valuable information to the 

traffic managers. Feed enhancement on Waze data allows DOTs and traffic agencies to 

further benefit this valuable source of information to improve their operations in the interest 

of the public. 

Table 6 - The enhanced feed characteristics 

 
Raw feed Enhanced feed 

1 No event end time Time when removed from the map 

2 No LRS location LRS added 

3 

Redundant reports (many 

Unique IDs referring to the 

same incident) 

# of reports reduced to 39% through clustering  

(61% were redundant) 

4 No impact area for an incident Impact area defined by the cluster shapes 

5 
Reliability based on a single 

report 

Reliability based on a group of reports (higher 

confidence) 

 

Furthermore, similar reports from connected vehicles and images from wearable 

devices will soon become an indispensable part of the ATMS data sources (Budde, De Melo 

Borges, Tomov, Riedel, & Beigl, 2014; Joy, Rabsatt, & Gerla, 2018; Kwon, Park, & Ryu, 

2017; Lee, Gerla, Pau, Lee, & Lim, 2016). Therefore, solutions to reliable CSTIR clustering 

are necessary utilizing this emerging source of data.  

The parameter tuning and validation measures and procedures discussed in this work 

are applicable in domains of connected vehicles, vehicular social networks(Kwak et al., 

2016), and disaster relief organizations (Barbier, Zafarani, Gao, Fung, & Liu, 2012).  
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Clustering efficiency for real-time implementation 

The analysis in this work was implemented in batches for tuning and validation. 

However, once the clustering method is selected and the parameters are tuned, the model is 

set to run in near real-time (batch processing every 1 minute). A near real-time 

implementation of this work is presented in Chapter 4 of this dissertation. Moreover, to 

further speed the clustering, a plethora of density based models have been proposed that can 

be utilized for this problem (Amini, Saboohi, Herawan, & Wah, 2016; Amini, Wah, & 

Saboohi, 2014; M Roriz Junior et al., 2014).  

Limitations and future directions 

The region of this study encompassed mostly urban areas where cameras and sensors 

were more densely located. Although, studying this region provided the basis for better 

validation of cluster parameters, to expand the results to less populated regions, further 

parameter tuning and data collection is needed. 

Moreover, methods to automatically fuse crowdsourced reports with the existing 

sourced data are an interesting direction for exploration. Finally, once the clusters are 

validated and satisfactory, it is important to investigate approaches to integrate this feed of 

data into the traffic management operations, considering the users' mental workload and 

constraints to best inform the process.  
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Abstract 

Traffic agencies have recently started using crowdsourced traffic incident report 

(CSTIR) data to complement their existing information on road conditions. However, there 

are several challenges in using CSTIRs in traffic management operations, such as the 

redundant CSTIRs and the unknown reliability of each group of reports. Moreover, the raw 

data from CSTIR data providers is usually not compatible with the requirements of traffic 

agencies. This work provides an open-sourced code that enables traffic agencies to download 

and parse raw data from a prominent CRTISR provider called Waze. Moreover, it allows for 

near real-time clustering of the reports to address the redundant report issue. The shape and 

characteristics of clusters are then used to provide information on the reliability, area of 

impact, and duration of incidents. The results are presented in a compatible format with the 

common needs of traffic agencies through a RESTful API. 

Motivation and significance 

Improving traffic safety and operations have long been areas of motivation among 

researchers and traffic engineers. Traffic incidents, are of great interest due to the huge delay 

and costs that traffic injuries and fatalities impose on society. To this end, traffic agencies 
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around the world thrive for collecting the most accurate data on traffic conditions to respond 

optimally. Crowdsourced traffic incident reports have been shown to complement the 

existing sourced of traffic agencies, particularly in locations where there are fewer 

conventional means for collecting traffic data (Amin-Naseri et al., 2018; Santos et al., 

2016a). CSTIRs are available from multiple applications as reviewed in (Van Dyke et al., 

2016). Many cities and traffic agencies around the world (72 city and state agencies in North 

America) have partnered with the navigation application provider Waze (www.waze.com) to 

access the CSTIRs in their jurisdiction, making Waze one the most popular vendors for 

CSTIRs. In this partnership, traffic agencies share their traffic records with Waze for the 

public benefit and in return, receive the CSTIRs from Waze users (“Waze Connected 

Citizens Program (CCP),” n.d.).  

The raw data from Waze, although very informative, requires significant 

preprocessing to suit the regular activities of traffic agencies (Pack & Ivanov, 2017). This has 

hindered traffic agencies from benefitting from the potential in Waze data. The main 

challenge with using CSTIR data are redundant reports (Amin-Naseri et al., 2018; Gu et al., 

2016; Pack & Ivanov, 2017). Presenting redundant reports to the already loaded traffic 

operators not only increases the risk of human error, it also reduces human trust (Dixon et al., 

2007; Madhavan et al., 2006a) in Waze reports. Moreover, features like the end time of an 

incident, the impacted area by an incident, and the reliability of a group of reports is not 

explicitly available in the raw data. Table 7 presents a summary of the enhancements made to 

Waze raw data by the current work.  

This work presents a web-based program tailored to the raw Waze data feed, which 

downloads and parses the data, applies clustering to leverage the redundant reports to 

http://www.waze.com/
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enhance the feed, reduce redundancies, and remove noise or less significant reports in near 

real-time. The clusters are updates and tracked in a server which provide a feed of data to the 

online traffic information dissemination portals such as 511 traffic websites in the United 

States. 

Theoretical basis 

Clustering CSTIRs have been suggested by several works (Amin-Naseri et al., 2018; 

Kwak et al., 2016; Marcos Roriz Junior, Endler, & Silva, 2017; Rosalina et al., 2017). Most 

of these works suggest density-based clustering algorithms for this application. The models 

that best fit Waze data were considered for this application; namely Density Based Spatial 

Analysis of Clusters with Noise (DBSCAN) (Ester, M., Kriegel, H. P., Sander, J., & Xu, 

1996), Space-Time DBSCAN (ST-DBSCAN) (Birant & Kut, 2007), and Hierarchical 

DBSCAN (HDBSCAN) (Campello et al., 2013; L. Li & Xi, 2011; Sun, 2012). DBSCAN 

does not require a priori knowledge of the number of clusters. The method takes two inputs: 

𝑚𝑝𝑡𝑠, which defines the minimum number of observations that can form a cluster, and ε, 

which is the scanning neighborhood. The general idea is that points which have at least 

𝑚𝑝𝑡𝑠 points in their ε-neighborhood are considered part of a cluster. For the purpose of 

clustering CSTIRs, 𝑚𝑝𝑡𝑠 = 2 is recommended in the literature (Kwak et al., 2016), however 

other values can be used by the user. The other two models are based on the notion of 

DBSCAN. ST-DBSCAN takes two epsilon values, one for space and another one for time. 

HDBSCAN does not require an epsilon value; rather it finds the optimal epsilon value based 

on the hierarchy of all clusters. The present code allows all three methods for clustering. 
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Table 7 - Waze feed enhancement 

 
Raw feed Added in the enhanced feed 

1 No event end time Time when removed from the map 

2 
No Linear Referencing System 

(LRS) information 
LRS added 

3 
Several redundant reports of a 

single incident 

Reducing the number of raw reports by 

clustering 

4 No impact area for a report Impact area defined by the cluster shapes 

5 
Reliability based on a single 

report 

Reliability based on a group of reports 

(higher confidence) 

 

For the clustering there are decisions to be made regarding the distance calculations. 

The presented code allows for combining space and time as a single measure, as well as 

using space and time independently. The distance matrix is an additive model which 

accumulates space distance (in miles) with other distances as penalties. Mismatch in road 

name, direction, and the report type impose penalties to restrict certain reports from being 

clustered (e.g., reports on opposite sides of a freeway should not be clustered together, thus 

road direction penalty should be selected greater than the epsilon to avoid these events from 

being clustered). Finally, the time distance is calculated can be added to the distance matrix 

for DBSCAN clustering.  

𝑑 = 𝑑𝑡𝑖𝑚𝑒 +  𝑑𝑠𝑝𝑎𝑐𝑒 + 𝑤𝑟 𝑑𝑟𝑜𝑎𝑑 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑤𝑡 𝑑𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 

 

To apply ST-DBSCAN, space and time distance are treated separately. The preferred 

applications of each clustering method and distance penalty are discussed in Section 4.   

Validating cluster qualities is the most challenging step in the cluster analysis process 

(Jain & Dubes, 1988; Moulavi et al., 2014). For some of the most common cluster 

validations, refer to these works (Moulavi et al., 2014; Rosalina et al., 2017; Vendramin et 
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al., 2010b). Moreover, the authors have discussed the challenges and tailored measures for 

validating Waze CSTIRs in their work, as discussed in chapter 4 of this dissertation.  

Waze provides reliability measures for the CSTIRs. Once the clusters are defined, a 

general score is generated for each cluster based on the reliability scores of each report. The 

cluster score uses the average of the reliability score from each report in the cluster. 

Moreover, to account for the number of reports in a cluster, a logarithmic function increases 

the score of the cluster. On the other hand, a decay function reduces the reliability score of a 

cluster once the cluster stops receiving new members. Finally, since there are clusters that 

contain congestion and crashes, a separate reliability score is assigned to accident reports in 

each cluster. The cluster reliability score function can be customized based on the user’s 

needs. Equations (1) and (2) explain the function that estimates the reliability score of the 

cluster.  

𝑟�̅� =  
∑ 𝑟𝑖𝑗

𝑘
𝑖=1

𝑘
                       (1) 

𝑅𝑗 = min(10 , 𝑟�̅� + log(𝑘, 𝐾𝑚𝑎𝑥 ) × (10 −  𝑟�̅�) − log( max(𝑡𝑛𝑜𝑤 −  𝑡𝑙𝑎𝑠𝑡 + 20, 1)) /2)     (2) 

𝑟𝑖: 𝑇ℎ𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑒𝑝𝑜𝑟𝑡, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑊𝑎𝑧𝑒. 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 1 − 10 

𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝑟�̅�: 𝑇ℎ𝑒 𝑚𝑒𝑎𝑛 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑆𝑇𝐼𝑅𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 

𝑅𝑗: 𝑇ℎ𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 

𝐾𝑚𝑎𝑥: 𝑈𝑠𝑒𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝑇𝐼𝑅𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑡 𝑚𝑎𝑘𝑒𝑠 𝑖𝑡 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝑡𝑛𝑜𝑤: 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒  

𝑡𝑙𝑎𝑠𝑡 + 20: 𝑇𝑤𝑒𝑛𝑡𝑦 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝐶𝑆𝑇𝐼𝑅 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑤𝑎𝑠 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 
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Software description 

WazeClustR (V1.0) is an open source code of which its core is written in R. The code 

consists of three main modules. The first module is for downloading and preprocessing. The 

second module applies the clustering method and distance calculation approach as provided 

by the user and posts the clusters to a Mongo DB database. The third module keeps track of 

clusters and updates them overtime. The results are posted to the fourth module, which is a 

Shiny application that visualizes the clusters. Several R packages were used in this work 

(Chang, Cheng, Allaire, Xie, & McPherson, n.d.; Hahsler & Piekenbrock, 2017; Kahle & 

Wickham, 2013; Munir, 2015; Vavrek, 2011; Wickham & Francois, 2015).  

Module 1: Data preprocessing 

The user inputs the download link that provides access to Waze data, as well as the 

interval at which she/he wishes to update the data. The WazeDownloadR function downloads 

the data and parses the XML into a data frame. The end time for each report is updated using 

the last time when the incident was included in the feed. Moreover, for visualization 

purposes, points which have been removed from the feed are marked as inactive in the data.   

A portion of Waze CSTIRs have missing values on the road names and direction. To 

unify the road naming convention and add LRS information, a Python script is used to add 

the route IDs and the mile markers. The Python code is tailored to Iowa DOTs application; 

however, it uses ArcGIS conventions, and thus is applicable to other agencies. In case that a 

linear referencing system is not available to the agency, the code removes reports with 

missing road or directions from the analysis.  

Module 2: Cluster implementation 

This module calculates the distance matrix between CSTIRs and implements 

clustering based on the user’s preference. The CSTIRs are updated, the distances are 
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calculated, and the clustering is implemented. Once the clusters are defined, based on the 

reliability of the reports in each cluster, a general reliability score is assigned to the cluster. 

The clusters with the new labels are posted to the Mongo DB. The clusters are defined in 

three forms: Congestion, Crash, or Crash/Congestion. In a Crash/Congestion cluster, the 

location of the crash reports are also marked on the map.  

Module 3: Track and store clusters 

One of the challenges when implementing clustering models on batches of data is to 

track clusters. The cluster labels generated for each cluster may change over time. Moreover, 

two clusters might merge as new reports emerge. Thus each cluster must be tracked using the 

members of the clusters. The server consumes Waze reports with cluster labels provided by 

the R code to track them over time. 

The tracking on the server is composed of three main tasks: 

 

a) Data Storage 

For tracking, the server maintains two tables. The first table stores all Waze reports 

with their unique IDs and updates the information on end time or reliability score. The 

second table maintains information about the clusters. It generates a unique ID for each 

cluster that is formed, as well as the member of that cluster. Moreover, the reliability score of 

the clusters is stored in the table as well. If two clusters were merged together, the smaller (or 

more recent) is closed and the members are added to the larger or older cluster.  

b) Processing 

When a new update is received from the R code and stored to the Waze reports table, 

if any other member of a cluster matches with an existing cluster, all members of that cluster 

are added to the existing cluster. If all members of the cluster are new to the clustered tables, 

a new cluster is generated and added to the cluster table.  
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c) Data Feed 

The server provides a RESTful service to retrieve the active clusters and un-clustered 

information along with the points (active points are CSTIRs which are live in Waze feed). 

Moreover, a supplementary Python code is provided that enables connection to ArcGIS LRS 

services to connect the points in the cluster according to the shape of the road. 

Visualization 

This part is mainly used for parameter tuning, cluster validation, and exploring the 

cluster shapes. The cluster results are visualized in an R Shiny application. Figure 14 

demonstrates a general overview of the code architecture and each module.  

 

Figure 14 - The architecture of the Waze feed enhancement code 

Illustrative examples 

Iowa Department of Transportation (IDOT) uses Waze data as a source of incident 

detection. This example demonstrates the application of the presented code to download and 

process the data. The data was collected for the Des Moines, IA during Dec 1-21, 2017. The 

validity of these clusters has been verified using IDOT highway cameras and speed sensors. 

Examples of the cluster results using different distance measures as well as different 

clustering methods are presented.  
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Distance calculations 

The code allows the user to decide on decision metrics. In the following some of the 

decisions and their implications are demonstrated along with the resultant clusters.  

Allow adjacent roads to be clustered  

If the penalty for the road mismatch is set to a value smaller than epsilon, reports 

which are in a certain vicinity on different roads can be clustered together. As depicted in 

Figure 15, both desirable and undesirable cases for clustering CSTIRs on adjacent roads are 

discussed. The decision must be made based on user’s application and priorities in this 

regard.  

 

 

Figure 15 - The distance penalty for road name mismatch is determined such that incident 

reports on adjacent roads can be clustered. As observed in (a) A major incident on I-80 East 

has caused congestion on I-35 E as well as I-235 E, thus the clustering method has correctly 

been able to cluster these reports. On the other hand, in (b) congestion was reported on I-80 

E, and an unrelated minor crash was reported on US-6 E. The current penalty allows the 

model to falsely cluster these reports together.   

Time distance penalty  

Since CSTIRs have time durations, the distance calculation is calculated as the time 

between the end and start of two consecutive reports when the durations don’t overlap. The 

maximum allowable time distance (time epsilon) should be specified by the user to calculate 

Congestion 

on 

I – 35 E 

Congestion 

on 

I – 235 E 

Non-related 

crash on 

US – 6 E 
(b) 

Crash/ 

Congestion 

on 

I – 80 E 
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the time distance unit. For example, as demonstrated in Figure 16, changing the maximum 

time between the start and end of two consecutive events from 10 minutes to 14 minutes 

results in one and two clusters respectively.   

 

Figure 16 - Sensitivity of clusters to maximum allowable time distance. When the allowable 

time is set to 10 minutes, all CSTRIRs (which are on the same road and direction) are 

considered a single incident. With 14 minutes (shown above), there are two distinct clusters. 

Clustering method 

The results of the clusters can vary when using DBSCAN or ST-DBSCAN. In 

general, when the variation in time distance in the true clusters is significantly larger than 

location distance, it is better to use ST-DBSCAN.  

Cluster reliability score 

The reliability score is calculated for a Crash/Congestion cluster over lifetime of the 

cluster, as presented in Figure 17. The function demonstrated the way that accounting for the 

cluster size as well as the time decay makes the reliability score more smooth and 

meaningful. As observed in Figure 17 (a), using the mean reliability score for the cluster does 

not reflect the number of CSTIRs on the cluster. Moreover, towards the end when the 

number reports in the cluster drops from 6 to 4, undesirably the mean reliability score is 

increased. Part (b) of the figure, demonstrates the reliability score calculated using the 

proposed reliability score function which reflects the cluster size and the decay in reliability 

score as reports stop to join the cluster. 
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Figure 17 - Comparing the reliability score of a congestion cluster over time using mean 

CSTIR reliability and the customized reliability score. Part (a) compares the average 

reliability score of the cluster with the number of active CSTIRs in that cluster. Part (b) 

shows the reliability score using the proposed reliability estimation function. As observed, 

the number of CSTIRS in the cluster over time, indicates the impact of size in the score. 

Moreover, the overall score of the cluster decreases when new CSTIRs stop appearing in the 

feed. 

Cluster visualization 

The shape and length of clusters can change over time. The feed for cluster shapes 

only reports the live events in the Waze feed. That is, if a cluster lasts longer than some of its 

reports, only the live CSTIRs are posted to the live visualization system (e.g., 511). 

Conclusion and future directions  

This code presents a remedy to some of the main challenges in adopting Waze 

CSTIRs in traffic monitoring. The enhanced data reduced the raw data significantly (61% for 

Iowa) and added information on the duration as well as the impacted area and the reliability 

of the cluster over time. Further directions and discussions about validation and parameter 

tuning strategies have been discussed by the authors in chapter 4.  

a b 
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Although the number of clusters is sensitive to the parameters in the algorithm, using 

the reliability score, mitigates the risk of chaining two distinct incidents as a single cluster. If 

the reliability score of a cluster starts increasing significantly after it had dropped, an alert is 

sent to the operator, to relook into the incident, as a new incident might have happened. This 

feature, reduces the risk in parameter tuning so that decision makers can choose their 

strategies more easily.   

The current DBSCAN method work is updated every minute and for 1000 CSTIRs 

the processing time is less than a second on a regular PC. However, there are options to 

improve the efficiency of the distance calculation for large scale data. Several grid-based 

stream clustering methods have been proposed in the literature that are claimed to closely 

resemble the DBSCAN results with significantly less calculation time (Amini et al., 2016, 

2014; Marcos Roriz Junior et al., 2017; Roriz & Endler, 2014). Applying such methods or 

using geo-hashes would allow the code to scale better to much larger data sets.  

The existing version of this code is tailored to the characteristics of Waze data. 

However, expansion of this work to other CSTIR data providers such as Here, INRIX, and 

Beat the Traffic are possible and encouraged. 
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CHAPTER 5.     CONCLUSION AND FUTURE WORK 

This work targeted some of the main challenges facing ATMSs regarding the use of 

crowdsourced traffic data, each with state of the art data used in the Iowa Department of 

Transportation (IDOT). This work quantified the value in one of the major sources of 

crowdsourced incident reports through comparison with existing sources of IDOT.  

Moreover, to tackle the challenge of redundant reports, a tailored unsupervised learning 

method to clean the data was implemented, while offering approaches to validate the quality 

of clusters and tune the parameters. The clusters enhanced the raw data feed by adding 

information about the impacted area by an incident. Furthermore, based on the shape and 

number of reports in each cluster, the reliability of each cluster was estimated to assist the 

operators in prioritizing their decisions. Finally, an open-sourced software package was 

presented to implement the proposed clustering method on Waze crowdsourced data. 

Although this work was particularly applied with Waze data for the state of Iowa, the 

methods as well as some of the general findings are applicable to many other sources of data 

and locations. Regardless of the actual source of data, validation and fusion techniques 

implemented in this work are generalizable to other spatiotemporal data sets. A summary of 

the general finding of this dissertation are presented in the following.  

Characteristics of Waze data 

Crowdsourced traffic incident reports from Waze demonstrated a considerable 

coverage (43%) of the existing record in the Iowa ATMS, while offering significant potential 

in additional coverage, particularly in incident types and location where ATMS has limited 

coverage. The exact percentage is subject to change over time as the market penetration rate 
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changes and is expected to improve. However, the additional coverage as well as the timely 

reports for incidents are rather confirmed for this source of data.  

On the other hand, Waze was shown to have less coverage between midnight and 6 

am, due to fewer users on the streets in these times. Moreover, similar to other crowdsourced 

data sources, Waze was found to have redundant reports for each incident. These redundant 

reports of a single incident, however, add valuable information about the reliability of the 

report and the impacted area by that incident. Understanding these characteristics enables the 

decision makers to allocate their resources to this source of data accordingly with reasonable 

expectations about its quality and coverage. 

Dealing with redundancies and reliability 

A near-real-time method was proposed for clustering the raw feed Waze to tackle the 

redundancy challenge. The results enhanced the feed by providing reliability score for each 

cluster as well as the impacted area by the incident. Moreover, approaches for validating the 

quality of clusters and tuning parameters were proposed and demonstrated using data from 

IDOT. Although, this work provides a basis for initiating the Waze clustering process, in 

more complex transportation networks, there are yet significant challenges that need to be 

discussed. This work elaborated on some of the challenges and the trade-off decision that 

need to be made in this process, as directions for future work.  

Data feed integration 

One of the challenges with adopting any new source of data in the ATMS is 

compatibility of the data feeds. In this work, an open-sourced software package was offered 

to implement the proposed clustering method, in a way that suits the needs of most 

applications in traffic agencies and DOTs. The aim is to provide traffic agencies with a tool 

that enables them to get started with adopting crowdsourced data like Waze into their 
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ATMSs and customize it to their own applications. This work was mainly targeted at Waze 

data which is the prominent provider of crowdsourced data to traffic agencies. However, 

most functionalities can be used for data from any other provider.  

Future directions 

Based on each chapter of this work, there are directions for future research and 

investigation that would add value to the understanding of characteristics of crowdsourced 

data. 

Data coverage and quality 

To learn more about what factors influence the quality and coverage of CSTIRs data 

such as Waze, it is interesting to find the impact of time, location, and market penetration 

rate on these findings. Thus, conducting similar studies in various locations and in multiple 

years is desired. Moreover, information about the number of active users in the location of 

study and the way it changes over time sheds light onto the characteristics of crowdsourced 

data reports.  

Challenges with clustering CSTIRs 

Although the demonstrated solution has shown promising results for adopting Waze 

data into the ATMS, there are yet challenges. Clustering reports on connecting roads was 

shown to be one of the challenges in this work. Practical strategies for this problem, 

particularly in urban areas, is a direction which needs further investigation. 

Moreover, a reliability score for cluster has been offered which provides some insight 

to the ATMS operators. However, once the real-time clustering is implemented in the ATMS, 

the feedback from operators would provide an invaluable source of training data for tuning 

this function.  



82 

 

Furthermore, to scale this work to large datasets in real-time the computation of 

clusters can be further improved. Leveraging proper stream clustering algorithms that fit the 

characteristics of crowdsourced traffic incident reports is another direction future 

investigation.  

User interaction and visualization 

This work focuses on the methods and approaches in processing and analyzing the 

data. Yet, the findings of these methods are intended to inform operators in the traffic 

operations center. Thus, various aspects of information presentation, user experience, and 

human factors must be considered to best present these findings to the operators. An ideal 

presentation would reduce the mental workload of the operators while reducing the chance of 

error through understanding the needs of the users.  
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