
Solution methods and bounds for two-stage risk-neutral and multistage risk-averse

stochastic mixed-integer programs with applications in energy and manufacturing

by

Ge Guo

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Minor: Statistics

Program of Study Committee:

Sarah M. Ryan, Major Professor

Guiping Hu

Lizhi Wang

Farzad Sabzikar

James D. McCalley

Iowa State University

Ames, Iowa

2018

Copyright © Ge Guo, 2018. All rights reserved.

ii

DEDICATIONS

In dedication to my beloved parents, husband, and my son coming on the way.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

ACKNOWLEDGMENTS ... viii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ... 1

1.1 Problem Statement .. 5

1.2 Literature Review .. 7

1.2.1 Solution Algorithms for Stochastic Integer Programs 7

1.2.2 Risk-averse Stochastic Programs .. 8

1.2.3 Mixed-Model Assembly Line Sequencing Problems 10

1.3 Research Gap... 10

1.4 Outline of Dissertation .. 11

REFERENCES .. 12

CHAPTER 2. INTEGRATION OF PROGRESSIVE HEDGING AND DUAL

DECOMPOSITION IN STOCHASTIC INTEGER PROGRAMS .. 15

Abstract ... 15

2.1 Introduction ... 15

2.2 Scenario Decomposition Algorithms for Stochastic Mixed Integer Programs . 16

2.2.1 Two-Stage Stochastic Mixed-Integer Program .. 17

2.2.2 Dual Decomposition ... 18

2.2.3 Progressive Hedging ... 21

2.3 Integration of PH and DD ... 22

2.3.1 Lower Bounds for PH ... 23

2.3.2 Information Exchange between PH and DD .. 23

2.4 Implementation.. 24

2.4.1 DDSIP – Implementation of DD .. 25

2.4.2 PySP – Implementation of PH .. 25

2.4.3 Weight Exchange between PySP and DDSIP .. 26

2.5 Numerical Results ... 27

2.5.1 Server Location ... 28

2.5.2 Unit Commitment ... 29

iv

Acknowledgments ... 32

REFERENCES .. 33

CHAPTER 3. PROGRESSIVE HEDGING LOWER BOUNDS FOR TIME CONSISTENT

RISK-AVERSE MULTISTAGE STOCHASTIC MIXED-INTEGER PROGRAMS 36

Abstract ... 36

3.1 Introduction: .. 36

3.2 Multistage Stochastic Mixed-Integer Programs .. 38

3.3 Risk Measures ... 40

3.4 Time Consistency of Risk-Averse Multistage Stochastic Programs 41

3.4.1 Risk-Averse Multistage Stochastic Programs .. 41

3.4.2 Time Consistency ... 43

3.4.3 Time Consistency for Risk-Averse Multistage Stochastic Programs 43

3.5 Scenario Reformulation for Expected Conditional Risk Measures 44

3.6 Lower Bounding Approach for Risk-Averse Problems 49

3.6.1 Progressive Hedging (PH) Algorithm .. 49

3.6.2 Lower Bounds from PH on Multistage Stochastic Mixed-Integer Programs

 ... 51

3.6.3 Scenario Bundling in Progressive Hedging .. 52

3.6.4 Lower Bounds on E-CVaR Stochastic Mixed-Integer Programs 53

3.6.5 Lower Bounds on E-EP Stochastic Mixed-Integer Programs 55

3.6.6 Lower Bounds on E-EE Stochastic Mixed-Integer Programs 56

3.7 Numerical Results ... 56

3.7.1 Portfolio Optimization Problem ... 57

3.7.2 Lot Sizing Problem ... 60

3.7.3 Generation Expansion Planning Problem ... 62

3.8 Conclusions ... 66

REFERENCES .. 67

CHAPTER 4. TIME CONSISTENT MULTISTAGE RISK-AVERSE STOCHASTIC

MIXED-INTEGER PROGRAMMING APPLIED TO A MIXED-MODEL ASSEMBLY

LINE SEQUENCING PROBLEM ... 70

Abstract ... 70

4.1 Introduction ... 70

4.2 Formulation of Mixed-Model Assembly Line Sequencing Problem 74

v

4.3 Time Consistent Multistage Risk-Averse Stochastic Mixed-Integer Formulation

 ... 77

4.3.1 Multistage Risk-Neutral Programs for Model Sequencing Problem 77

4.3.2 Time Consistent Multistage Risk-Averse Programs with CVaR Risk

Measure ... 81

4.4 Lower Bounding Approach for Time Consistent Risk-Averse Programs......... 82

4.4.1 Progressive Hedging Algorithm ... 82

4.4.2 Progressive Hedging Lower Bounds on Stochastic Mixed-Integer Programs

 ... 84

4.4.3 Lower Bounds on Time Consistent Risk-Averse Programs with CVaR Risk

Measure ... 86

4.5 Computational Study ... 87

4.6 Conclusions ... 95

REFERENCES .. 96

CHAPTER 5. SUMMARY AND DISCUSSION .. 98

vi

LIST OF FIGURES

Figure 3.1 Lower bounds from PH and optimal value from solving extensive from for MPO

instance with (a) different penalty parameter values; (b) different scenario

bundling strategies with  310FX  ... 60

Figure 3.2 Lower bounds from PH and optimal value from solving extensive form for MLS

instances with (a) 3-stage, 5-branch; (b) 3-stage, 10-branch; (c) 4-stage, 5-

branch; (d) 4-stage, 10-branch .. 62

Figure 4.1 Scenario tree to represent realizations of part delivery lateness for instance

MMALS-1.5 ... 90

Figure 4.2 Lower bounds from PH and optimal value by solving extensive form for

MMALS-2.3 with (a) different penalty parameter values; (b) different scenario

bundling strategies with 310 .. 92

vii

LIST OF TABLES

Table 2.1 DDSIP run-time results on a set of SSLP instances. .. 29

Table 2.2 DDSIP run-time with different ConicBundle parameters for the 5-bus instance. 30

Table 2.3 DDSIP run-time with starting multipliers from PH using different  computation

strategies for the 5-bus instance. .. 31

Table 2.4 DDSIP run-time and optimality gap on WECC-240 stochastic instance with

various starting information. The symbol * denotes failure to converge within

24 hours. ... 32

Table 3.1 Mean values of normal distributions of return rates of assets for MPO test

instance ... 58

Table 3.2 Input parameters for MPO test instance ... 58

Table 3.3 Computation time for MPO test instance with different scenario bundles 60

Table 3.4 Input parameters for MLS test instance .. 61

Table 3.5 PH run-time and optimality gap on 8-stage GEP instance with 48-hour time limit 65

Table 3.6 First-stage variable solutions for different values of  ... 65

Table 4.1 Input parameters of due time for the finished products on MMALS instances 90

Table 4.2. Input parameters of the number of part assumptions on MMALS instances 91

Table 4.3. Input parameters of the number of delivered good parts on MMALS instances 91

Table 4.4 Lower bounds and run-time (in seconds) from PH and optimal objective and run-

time (in seconds) from EF for a set of MMALS-P. instances 93

viii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to those who have helped me

throughout my research and the writing of this dissertation and made my five-year Ph.D.

program an unforgettable experience.

I would like to thank my committee chair, Dr. Sarah Ryan, for her constant guidance

throughout my Ph.D. study. Her conscientious scholarship and academic integrity has set a role

model for me and has inspired me to pursue my career in academia. Her understanding and

support in both academic and personal lives has made my years at ISU an enjoyable experience.

I would like to express my very sincere gratitude to my committee members, Dr. Guiping

Hu, Dr. Lizhi Wang, Dr. Farzad Sabsikar, Dr. James D. McCalley, and Dr. Mingyi Hong for

their great efforts and valuable feedbacks on my research.

I would like to offer my sincere appreciation to my co-authors, Dr. David Woodruff at

University of California Davis, Dr. Jean-Paul Watson and Dr. Gabriel Hackebeil at Sandia

National Laboratories for their support in the software implementation with Pyomo and their

assistance on the computational experiments.

I would also like to thank my colleagues, my instructors, department faculty and staff for

making my time at Iowa State University a wonderful experience.

ix

ABSTRACT

This dissertation presents an integrated method for solving stochastic mixed-integer

programs, develops a lower bounding approach for multistage risk-averse stochastic mixed-

integer programs, and proposes an optimization formulation for mixed-model assembly line

sequencing (MMALS) problems.

It is well known that a stochastic mixed-integer program is difficult to solve due to its

non-convexity and stochastic factors. The scenario decomposition algorithms display

computational advantage when dealing with a large number of possible realizations of

uncertainties, but each has its own advantages and disadvantages. This dissertation presents a

solution method for solving large-scale stochastic mixed-integer programs that integrates two

scenario-decomposition algorithms: Progressive Hedging (PH) and Dual Decomposition (DD).

In this integrated method, fast progress in early iterations of PH speeds up the convergence of

DD to an exact solution.

In many applications, the decision makers are risk-averse and are more concerned with

large losses in the worst scenarios than with average performance. The PH algorithm can serve

as a time-efficient heuristic for risk-averse stochastic mixed-integer programs with many

scenarios, but the scenario reformulation for time consistent multistage risk-averse models does

not exist. This dissertation develops a scenario-decomposed version of time consistent multistage

risk-averse programs, and proposes a lower bounding approach that can assess the quality of PH

solutions and thus identify whether the PH algorithm is able to find near-optimal solutions within

a reasonable amount of time.

The existing optimization formulations for MMALS problems do not consider many real-

world uncertainty factors such as timely part delivery and material quality. In addition, real-time

x

sequencing decisions are required to deal with inevitable disruptions. This dissertation

formulates a multistage stochastic optimization problem with part availability uncertainty. A

risk-averse model is further developed to guarantee customers’ satisfaction regarding on-time

performance.

Computational studies show that the integration of PH helps DD to reduce the run-time

significantly, and the lower bounding approach can obtain convergent and tight lower bounds to

help PH evaluate quality of solutions. The PH algorithm and the lower bounding approach also

help the proposed MMALS formulation to make real-time sequencing decisions.

1

CHAPTER 1. INTRODUCTION

In many applications where decisions are made without full information, stochastic

programs are introduced to hedge against consequences of the possible realizations of random

parameters so that the expected value of the objective is the best possible. Unlike deterministic

programming, stochastic programming describes the uncertain parameters with probability

distributions instead of specific values. In two-stage stochastic programs, two categories of

decisions are considered. First-stage decisions have to be taken without full information on some

random events while recourse actions are taken in response to a particular realization in the

second stage. In multistage stochastic programs, the decisions made at each stage can only

depend on information revealed before that stage but not after.

Stochastic integer programs are formulated when some of the decisions are required to be

integers. For example, unit commitment problems make on and off decisions for thermal electric

power generators to minimize the cost of serving unpredictable electricity load; server location

problems decide on the optimal server locations to minimize the cost of serving uncertain

potential clients; lot sizing problems determine a minimum cost setup, production and inventory

schedule to satisfy a stochastic demand over time; and assembly line model sequencing problems

yield an optimal production sequence of models subject to unreliable part delivery and quality.

The combination of stochastic parameters and discrete decisions leads to great difficulty

in solving stochastic mixed-integer programs. Integer programming is NP-complete. Integer

variables make an optimization problem non-convex which is far more difficult to solve than a

convex optimization problem is. The solution time grows exponentially in the instance size.

When many discrete realizations of the uncertain parameters are possible, a stochastic mixed-

2

integer program may be formulated as the extensive form of the deterministic equivalent, which

is a very large mixed integer program, and therefore even more difficult to solve.

Due to the large scale of extensive forms of stochastic integer programs, decomposition

algorithms are widely applied to speed up computation. Generally, the decomposition methods

for stochastic integer programs fall into two groups: stage-based methods and scenario-based

methods. The exemplary stage-based decomposition method, the L-shaped method, or Benders

decomposition [1], is limited to instances with binary variables only in the first stage and easily

computable recourse costs. However, the size of the master problem, which is solved for first-

stage decisions, keeps increasing as Benders cuts pertaining to later stages are added in each

iteration. In contrast, scenario-based decomposition methods display advantages in solving the

large-scale instances when many realizations are present. Paradigms of scenario-based

decomposition include the Dual Decomposition (DD) algorithm for two-stage stochastic integer

programs [2] and the Progressive Hedging (PH) algorithm [3]. The PH algorithm has been

proven to converge when all decision variables are continuous and can serve as a heuristic in the

mixed-integer case. Computational studies have shown that it can find high-quality solutions

within a reasonable number of iterations. To assess the quality of the solutions generated by PH

relative to the optimal solution, Gade et al. [4] presented a lower bounding technique for the PH

algorithm and showed that for convex problems, the lower bound obtained by PH is as tight as

the lower bound from the Lagrangian dual. Furthermore, the PH algorithm can easily extend to

multistage formulations with integers in any stage.

Traditional stochastic programming is risk-neutral and optimizes the expected

performance across all scenarios. The optimal solutions to the risk-neutral models perform well

in the long run over repeated instances. But for non-repetitive decision-making problems under

3

uncertainty, the risk-neutral solutions may perform poorly under certain realizations of the

uncertain parameters. Therefore, risk-averse models have recently attracted attention in

stochastic programming for decision makers who are more concerned with the large losses in the

worst scenarios rather than average performance.

Among a selection of risk measures to include in risk-averse programs, some coherent

measures possess suitable mathematical properties to construct efficient algorithms. Two broad

categories of coherent risk terms are quantile and deviation based risk measures [5]. Quantile

risk-measures are based on the quantiles of the probability distributions of the random objectives.

Types of quantile based risk-measures include Excess Probability (EP), which measures the

probability of exceeding a prescribed target level; and Conditional Value-at-Risk (CVaR), which

measures the expectation of the  1 % worst outcomes for a given probability . Deviation

risk measures are based on the deviation of the expected value from a prescribed target, and they

include Expected Excess (EE), which measures the expected value of the excess over a given

target; and Semi-Deviation (SD), which measures the expected value of the excess over the

mean.

When risk measures are extended to multiple stages, however, there is no natural way of

measuring risk and one key issue of time consistency arises. Generally speaking, re-solving the

problem at later stages yields the same optimal objective given the solutions from previous

stages if an optimization problem is time consistent. In general, the property of time consistency

does not hold for multistage risk-averse models and depends on how the risk measures are

computed. Homem-de-Mello and Pagnoncelli [23] proposed a class of expected conditional risk

measures (ECRMs) which prove to be time consistent and, for some risk measures, allow for

risk-neutral reformulations. The scenario-decomposed reformulations with various risk measures

4

allow for the employment of scenario decomposition solution algorithms, such as the PH

algorithm, to efficiently solve multistage risk-averse problems. However, approaches to assess

PH solution quality for risk-averse models have not been explored. An approach to obtain lower

bounds from the PH algorithm, if found, not only can evaluate the PH solution quality, but also

can integrate the PH algorithm with exact algorithms that rely on lower bounds such as the DD

algorithm for two-stage problems. Most importantly, the lower bounding approach can help the

PH algorithm to find near-optimal solutions within a reasonable amount of computational time.

A novel application of multistage stochastic mixed-integer programs arises in shop floor

control. Mixed-model assembly line manufacturing systems have become popular in recent years

as an important part of the just-in-time production system, in which several models of the same

basic product are manufactured on the same production line. The optimal design and operation of

mixed-model assembly lines must address a long-term assembly line balancing problem to assign

tasks to stations and a short-term model sequencing problem to determine the production

sequence of a given set of models within the planning horizon.

A number of optimization models have been proposed for the model sequencing problem

in mixed-model assembly line manufacturing system. Some formulations also considered

uncertainty factors such as demand from customers and operation times. In the real world,

however, mixed-model assembly lines are faced with more challenging uncertainties including

timely part delivery, material quality, upstream sub-assembly completion and availability of

other resources. In addition, assembly lines must meet deadlines imposed by customers or

downstream stations. All those uncertainties play an important role in making sequencing

decisions, but are not yet addressed in existing formulations.

5

In just-in-time manufacturing systems such as mixed-model assembly lines, the

schedulers are most concerned with the on-time performance in worst scenarios rather than

average performance when large losses are resulted from unreliable part availability. There are

two open issues in this context. First, the objective of on-time performance has not been

explored in existing optimization models. Second, risk-neutral models yield the optimal

performance across all the scenarios while the optimization of performance in worst scenarios

requires risk-averse models, which have not been explored either.

The formulation of optimization models to make sequencing decisions was motivated by

a project aimed at developing a shop floor decision support system in collaboration with

industrial partners. The optimization model could serve as a decision-support tool in the

sequencing module of this system. Real-time resequencing decisions are required in this project

to avoid wastage in time and costs of downtime caused by inevitable disruptions. Therefore, a

time efficient solution algorithm is desired to find near-optimal solutions within a reasonable

amount of time.

1.1 Problem Statement

This dissertation addresses the following interrelated questions.

First, the PH algorithm and the DD algorithm are two paradigms of scenario-based

decomposition solution algorithms for two-stage stochastic programs and have both displayed

computational advantages for solving stochastic mixed-integer programs with a large number of

scenarios. However, both of these two solution algorithms have their own deficiencies. Although

the PH algorithm can find high-quality solutions within a reasonable number of iterations, the

solutions are not guaranteed to converge to global optimality in the case of mixed-integer

problems. The DD algorithm, on the other hand, can achieve global convergence but the branch

and bound process may be slow. Therefore, a question is brought up: can we combine the

6

advantages of the PH and DD algorithms by proposing an integrated approach? Given the PH

lower bounding approach presented by Gade et a. [4] and the fact that for convex problems, the

lower bound from PH is as tight as the lower bound from the Lagrangian dual, we are seeking a

way to exchange the information of solutions and objectives between the PH algorithm and the

DD algorithm through their lower bounds.

Second, the classical formulation of stochastic programs assumes that the decision maker

is risk-neutral such that he or she will not mind large losses in some scenarios as long as those

are offset by large gains in other scenarios. This formulation, however, does not reflect the

situation where the decision maker is more concerned about large losses, that is, the decision

maker is risk-averse. It is natural to consider risk-averse formulations of stochastic programs.

Time consistency is an important issue in modeling multistage risk-averse models. In general,

time consistency for multistage risk-averse stochastic programs is not guaranteed. Therefore, we

are seeking a time consistent scenario-decomposed version of reformulations for multistage risk-

averse models that allow for the application of scenario decomposition solution algorithms such

as the PH algorithm. Essentially, we want to propose a lower bounding approach from the PH

algorithm for multistage risk-averse programs to assess the PH solution quality and thus identify

whether the PH algorithm is able to find near-optimal solutions within a reasonable amount of

computational time.

Third, as the most important short-term problem in mixed-model assembly line

manufacturing system, the model sequencing problem has been studied extensively as seen in a

variety of optimization formulations to determine the optimal production sequence. However, the

existing formulations are incomplete and do not model many real-world uncertainties such as

timely part delivery and material quality. To incorporate those uncertainties in our decision-

7

making process, we would like to propose an optimization model with part availability modeled

as a stochastic process. In addition, in just-in-time manufacturing systems such as mixed-model

assembly lines, the schedulers tend to worry more about the on-time performance in worst

scenarios. For such decision makers concerned with large losses in worst scenarios, a risk-averse

model is preferred. The critical question is, which risk measure should be selected to represent

the on-time performance in worst scenarios? Furthermore, can this risk-averse model provide us

with near-optimal sequencing decisions in real time to decrease the downtime of assembly lines?

1.2 Literature Review

1.2.1 Solution Algorithms for Stochastic Integer Programs

The presence of discrete decision variables leads to great difficulty in solving stochastic

integer programs due to the NP-hard nature of integer programming. Until now much progress

has been made in developing algorithms, extending from special instances to more general

stochastic mixed-integer programs. Stage-based decomposition algorithms were studied for

various classes of two-stage stochastic integer programs. Laporte and Louveaux [1] proposed

integer L-shaped methods for stochastic integer programs so long as the first-stage decisions are

binary. Sen and Sherali [6] presented branch-and-cut approaches for two-stage stochastic integer

programs. Ahmed [7] introduced a branch-and-bound algorithm for two-stage stochastic integer

programs. As for multi-stage stochastic integer programs, several scenario decomposition

methods were proposed. Lulli and Sen [8] presented a branch-and-price (B&P) algorithm for

multi-stage stochastic integer programs. Carøe and Schultz [2] developed a dual decomposition

(DD) algorithm based on scenario decomposition and Lagrangian relaxation. Lubin et al. [9]

demonstrated the potential for parallel speedup by addressing the bottleneck of parallelizing dual

decomposition. Originally proposed by Rockafellar and Wets [3] for stochastic programs with

only continuous variables, progressive hedging (PH) has been successfully applied by Listes and

8

Dekker [10], Fan and Liu [11], Watson and Woodruff [12], and many others as a heuristic to

solve stochastic mixed-integer programs. To assess the quality of the solutions generated by PH

relative to the optimal solution, Gade et al. [4] presented a lower bounding technique for the PH

algorithm and showed that for convex two-stage problems, the lower bound obtained by PH is as

tight as the lower bound obtained from the Lagrangian dual.

1.2.2 Risk-averse Stochastic Programs

Extensive studies have been performed in the formulation and solution algorithms for

two-stage risk-averse models. Schultz and Tiedemann [13] presented a mixed-integer linear

programming formulation of a mean-risk model involving CVaR as risk measure in the

framework of two-stage stochastic mixed-integer programming. Fábián [14] proposed

decomposition frameworks for handing CVaR objectives and constraints in two-stage stochastic

models. Miller and Ruszczynski [15] developed a nested formulation of a risk-averse two-stage

program and presented a risk-averse multicut decomposition method. Noyan [16] developed

decomposition algorithms for a risk-averse two-stage stochastic programming model with CVaR

as the risk measure. Venkatachalam and Ntaimo [17] presented a stage-wise decomposition

method for stochastic programs with binary variables in the second-stage with absolute semi-

deviation risk measure.

For multi-stage stochastic programs, however, there is no obvious way of measuring risk.

The difficulty in extending risk measures to the multistage setting has been discussed in several

papers. Some papers discuss how to adapt existing algorithms from the risk-neutral case to the

risk-averse case, often with the CVaR as the risk measure. Collado and Papp [18] introduced a

partial bundle method for risk-averse multistage stochastic optimization. Eichhorn and Römisch

[19] defined a class of polyhedral risk measures with favorable properties and proposed

multiperiod extensions of the CVaR as polyhedral risk measures for multistage stochastic

9

programs. Guigues and Sagastizábal [20] proposed a risk-averse rolling-horizon time consistent

approach and showed the risk-averse formulations of stochastic linear programs are numerically

tractable. Kozmik and Morton [21] proposed a new approach of upper bound estimator for

minimization problems in risk-averse multi-stage stochastic programs using CVaR as risk

measure. Pflug and Pichler [22] proposed a time consistent formulation of multi-stage stochastic

program with CVaR and presented a stage-wise dynamic decomposition.

It has been observed that one very important issue in modeling risk-averse multi-stage

stochastic programs is that of time consistency. It is a desirable property for multi-stage

stochastic programs. Shapiro [23] defines a problem to be time consistent if the solution at a

node in the scenario tree does not depend on children of other nodes. Carpentier et al. [24]

formulated the property of time consistency such that the optimal strategies obtained when

solving the original problem remain optimal for all subsequent-stage problems. Pflug and Pichler

[25] claim a multistage stochastic program to be time consistent if, when resolving the problem

at later stages, the original solutions remain optimal for those stages. Homem-de-Mello and

Pagnoncelli [26, p.189] define time consistency informally as “if you solve a multi-stage

stochastic program and find solutions today, you should find the same solutions if you re-solve

the problem tomorrow given what was observed and decided today”.

Given that the property of time consistency is not guaranteed for multistage risk-averse

models, significant efforts are initiated to find time consistent risk measures for multistage

stochastic programs. Ruszczynski and Shapiro [27] proposed a nested conditional risk measure

for multistage optimization problems which proves to be time consistent. The nested conditional

risk measure is formulated in a recursive function which is not given in explicit form. Homem-

de-Mello and Pagnoncelli [26] addressed this drawback by proposing a class of expected

10

conditional risk measures which prove to be time consistent and can lead to a risk-neutral

reformulation.

1.2.3 Mixed-Model Assembly Line Sequencing Problems

Modeling of sequencing problems has been studied in recent papers with the

development of mixed-model assembly line manufacturing systems. Rahimi-Vahed [28]

considered three objectives to be minimized in a mixed-model assembly line sequencing

problem: total utility work, total production rate variation, and total setup cost. Rabbani et al.

[29] developed a bi-objective optimization model to find the optimal sequence of products to

minimize the total cost as well as to maximize levels of customer satisfaction. In addition, some

studies are performed on the optimization modeling with a variety of uncertainties. Boysen [30]

discussed three major sequencing approaches including mixed-model sequencing, car sequencing

and level scheduling considering two major uncertainties of stochastic demand and task times.

Zhao [31] formulated an optimization problem of daily scheduling to minimize the expected

system cost including the inventory cost of holding products and the penalty cost of backorders

with stochastic demand. Dong [32] proposed a stochastic programming formulation to minimize

the expected work overload time for a mixed-model assembly U-lines with stochastic task times.

As the problem is NP-hard, a simulated annealing algorithm is proposed to solve this problem.

1.3 Research Gap

Based on the current literature review, the existing gaps studied in this research are as

follows:

(1) Given the advantages of two scenario decomposition solutions algorithms, there did

not exist an approach to combine the computational efficiency of the PH algorithm and the

global optimality of the DD algorithm. Now that the lower bound from PH is as tight as the

lower bound from the Lagrangian dual for convex problems, it is yet unrevealed how the

11

information can be exchanged between the PH algorithm and the DD algorithm through their

lower bounds. This gap has been filled in our research work [33].

(2) It is natural to consider risk-averse models for decision makers who are more

concerned with large losses in worst scenarios. For multistage risk-averse models, the property

of time consistency is desired. There did not exist scenario reformulations for time consistent

multistage risk-averse stochastic programs to allow for the application of scenario decomposition

solution algorithms such as the PH algorithm. Furthermore, a lower bounding approach is not

available for multistage risk-averse models to help the PH algorithm to find near-optimal

solutions within a reasonable amount of time. This gap has been filled in our research work [34].

(3) The existing formulations for model sequencing problems in mixed-model assembly

line manufacturing systems are incomplete and do not model some important real-world

uncertainties such as timely part delivery and material quality. In addition, the schedulers tend to

be more concerned with on-time performance in worst scenarios. Thus, a risk-averse model with

part availability uncertainty is to be proposed to find optimal sequencing decisions. Besides, a

time efficient solution algorithm is to be identified to find near-optimal solutions in real time for

a just-in-time manufacturing system. This gap has been filled in our research work [35].

1.4 Outline of Dissertation

Chapter 2 presents a method for integrating PH and DD algorithm for solving stochastic

integer programs based on the correspondence between lower bounds obtained with PH and DD

algorithm [33]. In chapter 3, we propose a scenario-decomposed version of risk-neutral

reformulation for time consistent multistage risk-averse models, and present an approach to

obtain convergent and tight lower bounds from the PH algorithm for time consistent multistage

risk-averse models [34]. A multistage stochastic model for mixed-model assembly line

sequencing problem is formulated in chapter 4 to increase on-time performance with part

12

availability uncertainty. The lower bounding approach from [34] is applied to its risk-averse

version as the solution algorithm in the context of real-time resequencing [35]. Chapter 5

concludes this dissertation with its contributions, limitations, and future studies.

REFERENCES

[1] G. Laporte, F.V. Louveaux. (1993) The integer L-shaped method for stochastic integer

programs with complete recourse, Operations Research Letters, 13, 133-142

[2] C.C. Carøe, R. Schultz. (1999) Dual decomposition in stochastic integer programming,

Operations Research Letters, 24 (1-2), 37-45

[3] R.T. Rockafellar, R.J.-B. Wets. (1991) Scenarios and policy aggregation in optimization

under uncertainty, Mathematics of Operations Research, 16 (1), 119-147

[4] D. Gade, G. Hackebeil, S.M. Ryan, J.P. Watson, R.J. Wets, D.L. Woodruff. (2016) Obtaining

lower bounds from the progressive hedging algorithm for stochastic mixed-integer

programs, Mathematical Programming, 157 (1), 47-67

[5] R. Schultz. (2010) Risk aversion in two-stage stochastic integer programming, International

Series in Operations Research & Management Science, 150, 165-187

[6] S. Sen, H.D. Sherali. (2002) Decomposition with branch-and-cut approaches for two-stage

stochastic integer programming, Mathematical Programming, 106 (2), 203-223

[7] S. Ahmed, M. Tawarmalani, N.V. Sahinidis. (2004) A finite branch and bound algorithm for

two-stage stochastic integer programs, Mathematical Programming, 100, 355-377

[8] G. Lulli, S. Sen. (2002) A branch-and-price algorithm for multistage stochastic integer

programming with application to stochastic batch-sizing problems, Management Science, 50 (6),

786-796

[9] M. Lubin, K. Martin, C. Petra, B. Sandikçi. (2013) On parallezing dual decomposition in

stochastic integer programming, Operations Research Letters, 41 (3), 252-258

[10] O. Listes, R. Dekker. (2005) A scenario aggregation based approach for determining a

robust airline fleet composition, Transportation Science, 39 (3), 367–382

[11] Y. Fan, C. Liu. (2010) Solving stochastic transportation network protection problem using

the progressive hedging-based method, Networks and Spatial Economics, 10 (2), 193–208

[12] J.-P. Watson, D.L. Woodruff. (2011) Progressive hedging innovations for a class of

stochastic mixed-integer resource allocation problems, Computational Management Science, 8

(4), 355-370

http://www.sciencedirect.com/science/article/pii/S0167637798000509
http://link.springer.com/bookseries/6161
http://link.springer.com/bookseries/6161

13

[13] R. Schultz, S. Tiedemann. (2006) Conditional value-at-risk in stochastic programs with

mixed-integer recourse, Mathematical Programming, 105 (2), 365-386

[14] C.I. Fábián. (2008) Handling CVaR objectives and constraints in two-stage stochastic

models. European Journal of Operational Research, 191 (3), 888–911

[15] N. Miller, A. Ruszczynski. (2011) Risk-averse two-stage stochastic linear programming:

modeling and decomposition, Operations Research, 59 (1), 125-132

[16] N. Noyan. (2012) Risk-averse two-stage stochastic programming with an application to

disaster management, Computer and Operations Research, 39 (3), 541-559

[17] S. Venkatachalam, L. Ntaimo. (2016) Absolute semi-deviation risk measure for ordering

problem with transportation cost in supply chain, arXiv preprint arXiv:1605.08391

[18] R.A. Collado, D. Papp. (2011) Scenario decomposition of risk-averse multistage stochastic

programming problems, Annals of Operations Research, 200 (1), 147-170

[19] A. Eichhorn, W. Römisch. (2005) Polyhedral risk measures in stochastic programming.

SIAM Journal on Optimization, 16 (1), 69-95

[20] V. Guigues, C. Sagastizábal. (2013) Risk-averse feasible policies for large-scale multistage

stochastic linear programs, Mathematical Programming, 138 (1-2), 167-198

[21] V. Kozmík, D.P. Morton. (2015) Evaluating policies in risk-averse multi-stage stochastic

programming, Mathematical Programming, 152 (1-2), 275-300

[22] G.C. Pflug, A. Pichler. (2016) Time-inconsistent multistage stochastic programs: Martingale

bounds, European Journal of Operations Research, 249 (1), 155-163

[23] A. Shapiro. (2009) On a time consistency concept in risk averse multistage stochastic

programming, Operations Research Letters, 37 (3), 143-147

[24] P. Carpentier, J.P. Chancelier, G. Cohen, M.D. Lara, & P. Girardeau. (2012) Dynamic

consistency for stochastic optimal control problems. Annals of Operations Research, 200 (1),

247-263

[25] G.C. Pflug, & A. Pichler. (2016) Time-inconsistent multistage stochastic programs:

martingale bounds. European Journal of Operational Research, 249 (1), 155-163

[26] T. Homem-de-Mello, B.K. Pagnoncelli. (2016) Risk aversion in multistage stochastic

programming: A modeling and algorithmic perspective, 249, 188-199

[27] A. Ruszczynski, & A. Shapiro. (2006) Conditional risk mappings. Mathematics of

Operations Research, 31 (3), 544-561

14

[28] A. Rahimi-Vahed. (2007) A hybrid multi-objective shuffled frog-leaping algorithm for a

mixed-model assembly line sequencing problem, Computers and Industrial Engineering, 53 (4),

642-666

[29] M. Rabbani, R. Heidari, and H. Farrokhi. (2018) A bi-objective mixed-model assembly line

sequencing problem considering customer satisfaction and customer buying behavior,

Engineering Optimization, 1-20

[30] N. Boysen, M. Fliedner, A. Scholl. (2009) Sequencing mixed-model assembly lines:

Survey, classification and model critique, European Journal of Operations Research, 192, 349-

373

[31] X. Zhao. (2006) Sequence-to-customer goal with stochastic demands for a mixed-model

assembly line, International Journal of Production Research, 44 (24), 5279-5305

[32] J. Dong. (2014) Balancing and sequencing of stochastic mixed-model assembly U-lines to

minimize the expectation of work overload time, International Journal of Production Research,

52 (24), 7529-7548

[33] G. Guo, G. Hackebeil, S.M. Ryan, J.-P. Watson, D.L. Woodruff. (2015) Integration of

progressive hedging and dual decomposition in stochastic integer programs, Operations Research

Letters, 43, 311-316

[34] G. Guo, S.M. Ryan. (2017) Progressive hedging lower bounds for time consistent risk-

averse multistage stochastic mixed-integer programs, Available at:

http://works.bepress.com/sarah_m_ryan/93/

[35] G. Guo, S.M. Ryan. (2017) Risk-averse stochastic integer programs for mixed-model

assembly line sequencing problems. Industrial and Manufacturing Systems Engineering Annual

Conference Proceedings, 98.

15

CHAPTER 2. INTEGRATION OF PROGRESSIVE HEDGING AND DUAL

DECOMPOSITION IN STOCHASTIC INTEGER PROGRAMS

A paper published in Operations Research Letters

Abstract

We present a method for integrating the Progressive Hedging (PH) algorithm and the

Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer

programs. Based on the correspondence between lower bounds obtained with PH and DD, a

method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in

early iterations of PH speeds up convergence of DD to an exact solution. We report

computational results on server location and unit commitment instances.

Keywords: Stochastic programming; Mixed-integer programming; Progressive hedging;

Dual decomposition; Lower bounding

2.1 Introduction

Stochastic mixed-integer programs find a broad application in energy, facility location,

production scheduling and other areas where a set of decisions must be taken before full

information is revealed on some random events and some of the decisions are required to be

integer [1]. The combination of uncertainty and discrete decisions leads to the difficulty in

solving stochastic mixed-integer programs.

Until now much progress has been made in developing algorithms to solve these

problems, extending from special instances [12, 13, 23] to more general stochastic mixed-integer

programs [2, 20]. Carøe and Schultz [3] developed a dual decomposition (DD) algorithm based

on scenario decomposition and Lagrangian relaxation. Lubin et al. [14] demonstrated the

potential for parallel speedup by addressing the bottleneck of parallelizing dual decomposition.

Originally proposed by Rockafellar and Wets [19] for stochastic programs with only continuous

http://www.sciencedirect.com/science/article/pii/S0167637798000509
http://www.sciencedirect.com/science/article/pii/S0167637798000509

16

variables, progressive hedging (PH) has been successfully applied by Listes and Dekker [17],

Fan and Liu [6], Watson and Woodruff [25], and many others as a heuristic to solve stochastic

mixed-integer programs. To assess the quality of the solutions generated by PH relative to the

optimal solution, Gade et al. [8] presented a lower bounding technique for the PH algorithm and

showed that the best possible lower bound obtained from PH is as tight as the lower bound

obtained using DD.

The PH algorithm can find high-quality solutions within a reasonable number of

iterations, but is not guaranteed to converge to a globally optimal solution in the case of mixed-

integer problems. The DD algorithm, on the other hand, will achieve convergence combined with

branch and bound but may be slow. This paper combines advantages of both scenario

decomposition methods. By transforming PH weights into Lagrangian multipliers as a starting

point for DD, the convergence of DD can be sped up considerably.

The remainder of this paper is organized as follows. In Section 2 we describe the PH and

DD algorithms, two scenario-based decomposition algorithms for stochastic mixed-integer

programs. Our integration approach to transfer information from PH to DD is developed in

Section 3. In Section 4, we document the implementation of our integration method and in

Section 5, provide experimental results on a set of stochastic server location instances and two

stochastic unit commitment instances.

2.2 Scenario Decomposition Algorithms for Stochastic Mixed Integer Programs

Decomposition methods for stochastic programs generally fall into two groups: stage-

based methods and scenario-based methods [18]. The exemplary stage-based decomposition

method is the L-shaped method, or Benders decomposition [21]. Paradigms of scenario-based

decomposition include the PH algorithm [19] and the DD algorithm [3]. One advantage of

scenario-based decomposition methods over the stage-based ones is their mitigation of the

17

computational difficulty associated with large problem instances by decomposing the problem by

scenario and solving the subproblems in parallel. In practical applications, PH can easily be

implemented as a “wrapper” for existing software for large-scale implementation of the

deterministic scenario problems. In this section, we will discuss these two scenario-based

decomposition methods for stochastic mixed-integer programs in detail.

2.2.1 Two-Stage Stochastic Mixed-Integer Program

We consider the following two-stage stochastic mixed-integer program:

 min () : ,z cx Q x Ax b x X    , (1)

where () (,)Q x x  and  (,) min () : () () ,x q y Wy h T x y Y        . Here

1nTc  and 1mb are known vectors, while 1 1m n
A


 and 2 2m nW  are known matrices.

The vector  is a random variable defined on some probability space (, ,)P  and for each

  , the vectors 2() nTq   and 2() mh   and the matrix 2 1()
m n

T 


 . The sets 1n
X 

and 2n
Y  denote the mixed-integer requirements on the first-stage and second-stage

variables. The decisions are two-stage in the sense that first-stage decisions x have to be taken

without full information on some random events while second-stage decisions y are taken after

full information is received on the realization of the random vector  . The notation  denotes

expectation with respect to the distribution of  .

To avoid complications when computing the integral behind  we assume that we have

only a finite number of realizations of  , known as scenarios
j , 1,...,j r , with corresponding

probabilities
jp . Then problem (1) can be written as a large-scale deterministic mixed-integer

linear program with a block-angular structure called the extensive form of the deterministic

equivalent:

18

1

min : (,) , 1,...,
r

j j j j j

j

z cx p q y x y S j r


 
    

 
 , (2)

where  (,) : , , ,j j j j j jS x y Ax b x X Wy h T x y Y      .

The block-angular structure of Eq. (2) enables the decomposition methods to split it into

scenario subproblems by introducing copies of the first-stage variables. This idea leads to the so-

called scenario formulation of the stochastic program:

1

1

min () : (,) , 1,..., ,
r

j j j j j j j r

j

z p cx q y x y S j r x x


 
      

 
 (3)

The subproblems are coupled by the non-anticipativity constraints, 1 ... rx x  , which

force the first-stage decisions to be scenario-independent.

2.2.2 Dual Decomposition

The dual decomposition (DD) algorithm of Carøe and Schultz relaxes the non-

anticipativity constraints and uses branch and bound to restore non-anticipativity. DD obtains

lower bounds on the optimal value of problem (3) by solving the Lagrangian dual obtained by

relaxing the non-anticipativity constraints.

The non-anticipativity requirement of problem (3) can be expressed by several equivalent

representations. Lulli and Sen [15] as well as Lubin and Martin [14] introduce an additional

variable .x and model non-anticipativity as

. 0, 1,...jx x j r   , (4)

while Carøe and Schultz represent non-anticipativity by

1

0,
r

j j

j

H x


 (5)

where the matrix 1 1(1)n r njH   .

http://www.sciencedirect.com/science/article/pii/S0167637798000509

19

Using non-anticipativity representation (4), the Lagrangian relaxation of non-

anticipativity constraints may be written as

1

() min [(, ,) .] : (,) ,
r

j j j j j j j

j

j

P R x y x x y S  


 
   

 
 (6)

where (, ,) ()j j j j j j j j j

jR x y p cx q y x    for 1,...,j r and the parameter

1() nj T  . The Lagrangian (6) is separable into 1

1

(,...,) (),
r

r j

j

j

P P  


 where

 () min (, ,) : (,)j j j j j j j

j jP R x y x y S   , (7)

with the condition
1

0
r

j

j




 required for boundedness of the Lagrangian. The

Lagrangian dual is expressed as

1

1

,...,
1

max (,...,) : 0 .r

r
r j

LD

j

c P
 

  


 
  

 
 (8)

The non-anticipativity representation (5), on the other hand, leads to the Lagrangian

relaxation in the form

1

() min (, ,) : (,) ,
r

j j j j j

j

j

D L x y x y S 


 
  

 
 (9)

where (, ,) () ()j j j j j j j j

jL x y p cx q y H x    for 1,...,j r , where the vector

1 1(,...,)r    and the vector 1()
nj T  . The Lagrangian (9) is separable into

1

() (),
r

j

j

D D 


 where

 () min (, ,) : (,) .j j j j j

j jD L x y x y S   (10)

The Lagrangian dual problem then becomes the problem

20

max ().LDz D  (11)

The Lagrangian dual (11) is a convex non-smooth program and can be solved using

subgradient methods.

Due to the integer requirements in Eq. (2), a duality gap may occur between the optimal

value of the Lagrangian dual (11) and the optimal value of Eq. (2) as described in the proof of

Proposition 2 in [3]. The Lagrangian dual (11) provides lower bounds on the optimal value of

Eq. (2) and the optimal solutions of the Lagrangian relaxation. In general, these first-stage

solutions will not coincide unless the duality gap vanishes. The DD algorithm employs a branch

and bound procedure that uses Lagrangian relaxation of non-anticipativity constraints as lower

bounds [3].

STEP 1 Initialization: Set *z   and let P consist of problem (2).

STEP 2 Termination: If P and *z   , then *x with
* * *()z cx Q x  is optimal.

STEP 3 Node selection: Select and delete a problem P from P , solve its Lagrangian

dual (11). If the associated optimal value ()LDz P equals infinity go to STEP 2.

STEP 4 Bounding: If ()LDz P is greater than *z go to STEP 2. Otherwise proceed as

follows; if the first-stage solutions , 1,..., ,jx j r of the subproblems are

(1) identical, then set  * *: min , ()j jz z cx Q x  .

(2) not identical, then compute a suggestion
1ˆ (,...,)rx Heu x x using some heuristic. If x̂

is feasible then let  * * ˆ ˆ: min , ()z z cx Q x  . Go to Step 5.

STEP 5 Branching: Select a component
()kx of x̂ and add two new problems to that

differ from P by the additional constraint () ()
ˆ

k kx x    and () ()
ˆ 1k kx x    , respectively, if

()kx

P

21

is integer, or
() ()

ˆ
k kx x   and

() ()
ˆ

k kx x   , respectively, if
()kx is continuous. The value of

0  must be chosen such that the two new problems have disjoint subdomains. Go to STEP 3.

2.2.3 Progressive Hedging

Proposed by Rockafellar and Wets [19], the progressive hedging (PH) algorithm is a

scenario decomposition method for stochastic programs motivated by augmented Lagrangian

theory. By decomposing the extensive form into scenario subproblems, the PH algorithm

effectively reduces the computational burden of solving extensive forms directly, especially for

large-scale problem. Solving scenario subproblems separately can also take advantage of any

special structures that are present.

A scenario solution is said to be admissible if it is feasible in one scenario; a scenario

solution is said to be implementable or non-anticipative if its first-stage decision is scenario-

independent; a solution is feasible if it is both admissible and implementable. The idea of the PH

algorithm is to aggregate the admissible solutions of modified scenario subproblems, which

progressively causes the aggregated solution to be non-anticipative and optimal. The modified

scenario subproblem comes from scenario decomposition of the augmented Lagrangian as a

close approximation of problem (3). The modified cost function includes a penalty term relative

to the non-anticipativity constraint and a proximal term that measures the deviation of the

scenario solution from the aggregated solution for first-stage decisions. The weight vector

1n sw  is updated by the penalty parameter (vector) 0  in each iteration. This weight

update rule is essential to the proofs of the convergence theorems [19].

The PH algorithm has been proven to converge when all decision variables are

continuous and can serve as a heuristic in the mixed-integer case. The basic PH algorithm for

two-stage stochastic mixed-integer programs proceeds as follows [8]:

22

STEP 1 Initialization: Let : 0v  and : 0j

vw  , 1,...,j r . For each 1,...,j r , compute

 1 1 ,
(,) : arg min : (,)j j

j j j j j j j j

v v x y
x y cx q y x y S    

STEP 2 Iteration update: 1v v 

STEP 3 Non-anticipative policy:
1

:
r

j j
v v

j

x p x




STEP 4 Weight update: 1: (), 1,...,j j j
vv v vw w x x j r   

STEP 5 Decomposition: For each 1,...,j r , compute

2

1 1 ,
(,) : arg min : (,)

2
j j

j j j j j j j j j
vv v vx y

x y cx q y w x x x x y S


 

 
      

 

STEP 6 Termination: If all the first-stage scenario solutions
1

j

vx 
 agree, then stop.

Otherwise, return to Step 2.

While convergence is not guaranteed for mixed-integer problems, computational studies

have shown that the PH algorithm can find high-quality solutions within a reasonable number of

iterations [25]. The PH algorithm also applies to multi-stage stochastic programs with discrete

variables in any stage.

2.3 Integration of PH and DD

In view of the fact that the PH algorithm can find high-quality solutions within a

reasonable number of iterations but is not guaranteed to converge in the mixed-integer case and

the DD algorithm is exact but may be slow, fast progress in early iterations of PH could speed up

convergence of DD to an exact solution if the PH algorithm can be combined with the DD

algorithm. We now demonstrate how PH and DD can be integrated through their lower bounds.

We first review the lower bounding technique for the PH algorithm proposed by Gade et al. [8]

and recall equivalence between the best lower bounds obtained by the PH algorithm and the

23

Lagrangian dual from the DD algorithm. Finally, we establish relationships between PH weights

and DD multipliers.

2.3.1 Lower Bounds for PH

Although the PH algorithm has been successfully applied as a heuristic to solve multi-

stage stochastic mixed-integer programs, it is limited by the lack of convergence guarantee as

well as the lack of information to evaluate solution quality relative to the optimal objective. Gade

et al. [8] corrected this deficiency of the PH algorithm by presenting a method to compute lower

bounds in PH for two-stage and multi-stage stochastic mixed-integer programs. This not only

allows us to assess the quality of the solutions in each iteration, but also can provide lower

bounds for solution methods, such as branch-and-bound, that rely on them. We restate

Proposition 1 of [8], which shows that the weights w define implicit lower bounds, ()D w , on

the optimal objective value of denoted by z .

Proposition 1 [8]. Let , 1,... ,jw j r satisfy
1

0
r

j j

j

p w


 . Let

 () : min () : (,)j j j j j j j j j j

jD w p cx q y w x x y S    . (12)

Then
1

() : () .
r

j

j

j

D w D w z



 

It can be verified
1

0
r

j j

j

p w


 is maintained in every iteration by the weight update rule.

Proposition 1 indicates that one can compute a lower bound on z in any iteration of the PH

algorithm using the current weights with approximately the same effort as one PH iteration.

2.3.2 Information Exchange between PH and DD

24

Theorem 5.1. of Rockafellar and Wets [19] states that, in the convex case, the sequence

1

1
ˆ{(,)}v v

vx w  


 from PH converges to a pair

* 1 *(,)x w 
 such that *x solves the primal problem

and *w solves the dual problem. In the mixed-integer case, however, a duality gap may occur

because of the introduced nonconvexity. We restate Proposition 2 in [3], which follows from

Theorem II.3.6.2 in [27], to provide insight into why this duality gap arises.

Proposition 2. The optimal value LDz of the Lagrangian dual (11) equals the optimal

value of the linear program

min p j (cx j + q j y j)
j=1

r

å : (x j , y j)Îconv S j , j = 1,...,r,x1 = ... = xr
ì
í
îï

ü
ý
þï

, (13)

where conv denotes convex hull.

Gade et al. [8] show that by applying the PH algorithm to the linear program (13), one

can recover both primal and dual optimal solutions to (13) and (11), respectively. Furthermore,

the best PH lower bound ()D w obtained from (12) equals the Lagrangian dual LDz from (11)

and LDc obtained from (8). Since both PH and DD can decompose by scenario, the equivalence

between ()D w and LDz can be realized by the equivalence for each scenario, that is, ()j

jD w

from (12) equals ()j

jQ  from (7) and ()jD  from (10). Based on this observation, the

equivalence can be established by letting
j j jp w  for the non-anticipativity representation of

Lulli and Sen and Lubin et al. and
j j jp w H for that of Carøe and Schultz. More generally,

this information exchange can be applied in any iteration of the PH algorithm to obtain a starting

point for solving the Lagrangian relaxation in the DD algorithm. We will illustrate a software

implementation of the weight exchange method in detail in the next section.

2.4 Implementation

http://www.sciencedirect.com/science/article/pii/S0167637798000509

25

2.4.1 DDSIP – Implementation of DD

DDSIP [16] is a C package for the Dual Decomposition algorithm of Carøe and Schultz

for two-stage stochastic mixed-integer programs. Its main idea is the Lagrangian relaxation of

the non-anticipativity constraints and it uses a branch-and-bound algorithm to reestablish non-

anticipativity. The dual optimization employs ConicBundle [10] provided by C. Helmberg as an

implementation of the proximal bundle method [11]. The mixed-integer scenario subproblems in

the branch-and-bound tree are solved using CPLEX [28].

2.4.2 PySP – Implementation of PH

PySP [26] is an open-source software package for modeling and solving stochastic

programs by leveraging the combination of a high-level programming language (Python) and the

embedding of the base deterministic model in that language (Pyomo [9]). It provides an

implementation of PH for stochastic programs. One must specify both the deterministic base

model and the scenario tree model to formulate a stochastic program in PySP. The PySP library

also provides a generic implementation of the lower bounding method for the PH algorithm in a

plugin called phboundextension.py.

In the application of PH, a significant trade-off in terms of the speed of convergence and

quality of the solution is observed as the PH parameter,  , is varied, indicating that larger values

of a scalar  can accelerate the convergence of PH while lower values of  can improve the

quality of solutions and lower bounds [8]. Watson and Woodruff [25] developed a heuristic

method for selecting per-element ()i called SEP that will allow the updates to proceed more

quickly to a “good” value *w of the weight w . The value of the  component for an integer

variable with index i is determined after PH iteration 0 by setting
max min() () (1)i c i x x    ,

where ()c i is the corresponding cost coefficient,    max

1max j

jx i x i and    min

1min j

jx i x i .

26

The primary advantage of the SEP selection heuristic is its problem-independent nature.

However, there is a high likelihood that more effective methods exist for any specific problem.

For instance, Watson and Woodruff [25] have observed that the best performing alternative for a

class of stochastic mixed-integer resource allocation programs is a straightforward yet effective

“cost-proportional” method that sets ()i equal to a multiple 0k  of the element unit cost ()c i .

This method is denoted by ()CP k . As a control measure in our computational results, various

fixed, global values of  denoted by ()FX  are used. The FX stands for fixed and the argument

gives the scalar value of  .

2.4.3 Weight Exchange between PySP and DDSIP

DDSIP allows three ways to represent the non-anticipativity constraints in problem (3):

NONANT1:
1 2 1 3 1, ,..., rx x x x x x   (14)

NONANT2:
1 2 2 3 1, ,..., r rx x x x x x   (15)

NONANT3:
1

, 1,..., 1
r

i j j

j

x p x i r


    (16)

By writing the three sets of equalities in the form
1

0
r

j j

j

H x


 as in Lagrangian

relaxation (5), the matrices jH for representation (14) are 𝐻1 = [

𝐼𝑛1

⋮
𝐼𝑛1

] , 𝐻2 = [

−𝐼𝑛1

0𝑛1

⋮
0𝑛1

] , … , 𝐻𝑟 =

[

0𝑛1

⋮
0𝑛1

−𝐼𝑛1]

, the matrices jH for representation (15) are 𝐻1 = [

𝐼𝑛1

0𝑛1

⋮
0𝑛1

] , 𝐻2 =

[

−𝐼𝑛1

𝐼𝑛1

0𝑛1

⋮
0𝑛1]

, … , 𝐻𝑟 =

[

0𝑛1

⋮
0𝑛1

−𝐼𝑛1]

27

and the matrices jH for representation (16) are 𝐻1 =

[

𝑑𝑖𝑎𝑔(𝑝1 − 1)

𝑑𝑖𝑎𝑔(𝑝1)
⋮

𝑑𝑖𝑎𝑔(𝑝1)]

, 𝐻2 =

[

𝑑𝑖𝑎𝑔(𝑝2)

𝑑𝑖𝑎𝑔(𝑝2 − 1)

𝑑𝑖𝑎𝑔(𝑝2)
⋮

𝑑𝑖𝑎𝑔(𝑝2)]

, … , 𝐻𝑟−1 =

[

𝑑𝑖𝑎𝑔(𝑝𝑟−1)
⋮

𝑑𝑖𝑎𝑔(𝑝𝑟−1)

𝑑𝑖𝑎𝑔(𝑝𝑟−1 − 1)]

 and 𝐻𝑟 = [

𝑑𝑖𝑎𝑔(𝑝𝑟)
⋮

𝑑𝑖𝑎𝑔(𝑝𝑟)
] where 𝑑𝑖𝑎𝑔(𝑥) is a

(𝑛1 × 𝑛1) matrix with 𝑥 on the main diagonal.

Motivated by the equivalence between the best PH lower bound and the Lagrangian dual

of the linear programming relaxation, we equate the corresponding objective function

coefficients in the bounding subproblems for each scenario; i.e., 𝑝𝑗𝑤𝑗 = 𝜆𝐻𝑗. This equation

enables the information exchange between PH and the Lagrangian dual. Given a weight 𝑤 from

PH, the corresponding Lagrangian multiplier vector 𝜆 = [−𝑝2𝑤2, … , −𝑝𝑟𝑤𝑟] for representation

(14), 𝜆 = [∑ 𝑝𝑗𝑤𝑗1
𝑗=1 , ∑ 𝑝𝑗𝑤𝑗2

𝑗=1 , … , ∑ 𝑝𝑗𝑤𝑗𝑟−1
𝑗=1] for representation (15) and 𝜆 =

[𝑝1(𝑤1 − 𝑤𝑟),… , 𝑝𝑟−1(𝑤𝑟−1 − 𝑤𝑟)] for representation (16).

A model-dependent user-defined PySP extension called ddextension.py is used to create

input files for DDSIP from the PySP input files and the PH results. While DDSIP allows the

specification of various types of starting information such as an initial feasible solution or cost

bound, in this paper we focus on providing starting values of the multipliers for solving the

Lagrangian dual.

2.5 Numerical Results

In this section, we study the impact of DDSIP starting multipliers on the run-time of

DDSIP for stochastic mixed-integer instances. We consider summary results of the performance

of DDSIP starting multipliers on a number of stochastic server location instances. We investigate

28

the interaction between the strategies for choosing the PH  parameter and the quality of

DDSIP starting multipliers on a stochastic unit commitment problem. We further examine

various types of starting information such as multipliers combined with initial solutions for

DDSIP on a stochastic modified WECC-240 instance. All the experiments are conducted on

Linux Mint 13 running as a virtual machine (3.7 GB RAM with one core at 3.1 GHz).

2.5.1 Server Location

The stochastic server location problem (SSLP) is a two-stage stochastic mixed-integer

program widely applied in a variety of domains such as network design of electric power,

internet server and telecommunications systems. The goal is to find the optimal server locations

to minimize the investment costs minus the revenue while satisfying the clients’ demand and not

exceeding the servers’ capacities. First-stage variables decide whether to locate a server at each

potential position and second-stage variables assign the clients to the servers. A “scenario”

specifies a subset of potential clients that are present. As we examine the following empirical

results, SSLP instances are named m.n.s, where m is the number of potential server locations, n

is the number of potential clients and s is the number of scenarios. The data for each instance are

available as three text files in SMPS format

(http://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html).

We compare DDSIP run-times required to reduce the relative duality gap below 0.001

with and without starting multipliers on a set of SSLP instances. Several parameters can be set to

tune the performance of DDSIP for a particular problem or instance, including the frequency

with which the Lagrangian dual is solved in the branch-and-bound tree and the number of

iterations for which ConicBundle is allowed to run. We first experimented with these DDSIP

parameters. The DDSIP performs the best with regard to the running time without starting

http://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html

29

multipliers when the Lagrangian dual is solved in every 10th node and the Lagrangian dual is

allowed to run for 2 iterations for each SSLP instance. Therefore, this DDSIP parameter setting

is used for each run of SSLP instances. The PH  parameter selection methods are explored for

each SSLP instance and the PH algorithm is allowed to converge. The DDSIP run-time results in

Table 4 are obtained using the best PH  parameter selection method for each instance, which is

specified in the second column of Table 1. As demonstrated in Table 1, starting multipliers

derived from PH weights can reduce DDSIP run-time by up to 50% in stochastic server location

instances.

Table 2.1 DDSIP run-time results on a set of SSLP instances.

DDSIP run-time (seconds)
Non-anticipativity representation

NONANT1 NONANT2 NONANT3

SSLP instance
 selection

method

With or without starting multipliers from PH

Without With Without With Without With

5.50.500 FX(10) 181 140 148 133 154 81

5.50.1000 FX(10) 651 534 700 500 567 342

5.50.1500 FX(10) 1088 974 1060 959 1071 963

10.50.50 CP(1) 112 74 98 77 99 78

10.50.100 CP(1) 238 175 238 200 240 193

10.50.500 CP(1) 1777 1221 1367 1033 1476 1122

15.45.10 CP(1) 96 46 95 46 95 45

15.45.15 CP(1) 259 123 246 169 281 235

2.5.2 Unit Commitment

The unit commitment problem to schedule electricity generating units over a given time

horizon is extensively used in daily system operation. The uncertainty in net load associated with

inaccurate demand forecasts and unpredictable power output from variable generation units has

traditionally been managed by deterministically derived reserve margins [18]. Stochastic unit

commitment explicitly accounts for the uncertainty via probabilistic scenarios. The objective is

30

to minimize the expected total operational cost such that load is satisfied in all scenarios, subject

to operational constraints such as ramp rate limits, minimum startup and shutdown times, and

power flow limits on transmission lines. The first-stage variables are on/off decisions for the

generators which incur startup, no-load and shutdown costs. The second-stage variables include

scenario-specific power output levels. We use the model of Carrión and Arroyo [4] as our core

deterministic optimization model [7].

We first execute on a 5 bus test case of the AMES wholesale power market test bed

system [22], augmented with additional unit commitment extensions [5]. The instance includes 5

generators, 5 buses and 6 transmission lines with a scheduling horizon of 24 hours in hourly

increments. We consider 10 equally likely scenarios for the sequence of hourly loads. The

extensive form of this instance has 16,194 variables (1,200 binary) and 24,092 constraints.

Table 2 shows the running times required for DDSIP to reduce the relative duality gap

below 0.001 for different parameter values, both without any starting information and with

starting multipliers obtained from the final weights obtained by fixing the PH penalty parameter

1  and allowing the PH algorithm to converge. In Table 2, CBFREQ specifies the frequency

of solving the Lagrangian dual using ConicBundle, and CBITLI specifies the limit for the

number of descent steps in solving the Lagrangian dual.

Table 2.2 DDSIP run-time with different ConicBundle parameters for the 5-bus instance.

DDSIP running time

(seconds)

Non-anticipativity representation

NONANT1 NONANT2 NONANT3

ConicBundle parameter

(CBFREQ, CBITLI)

With or without starting multipliers from PH

Without With Without With Without With

(1, 5) 2164 237 2179 249 2624 278

(1, 1000) 714 203 2014 263 477 165

(100, 20) 527 156 603 139 149 141

(50, 10) 271 73 426 102 654 102

31

Table 2 displays only a selection of the DDSIP parameters we have explored. Among all

the DDSIP parameters we have experimented with, the DDSIP parameters of (50, 10) perform

the best with regard to DDSIP run-time without starting multipliers. Therefore, we adopt (50, 10)

as the DDSIP parameter setting for further experiments on this 5 bus test case.

Next, we consider the interaction between the value of PH parameter  and the quality

of DDSIP starting multipliers derived from PH weights. We vary the strategy to compute PH 

values for DDSIP starting multipliers. The results are shown in Table 3, where data in the row

labeled FX(1) are repeated from Table 2. Even though we chose the DDSIP parameters with the

shortest DDSIP running time without starting multipliers, the starting multipliers transformed

from PH weights can reduce the DDSIP running time by roughly an order of magnitude in this

instance as demonstrated by Table 2.

Table 2.3 DDSIP run-time with starting multipliers from PH using different  computation

strategies for the 5-bus instance.

DDSIP running time (seconds) Non-anticipativity representation

PH  value selection method NONANT1 NONANT2 NONANT3

No starting multipliers 271 426 654

FX(1) 73 102 102

FX(10) 94 85 48

FX(30) 77 90 69

CP(10) 32 163 40

SEP(10) 75 121 76

To assess the performance of DDSIP starting multipliers on utility-scale systems, we test

on a stochastic WECC-240 instance with 5 scenarios. The WECC-240 instance is introduced in

[24], which provides a simplified description of the western US interconnection. This instance

consists of a single bus and 85 generators with a scheduling horizon of 48 hours in hourly

increments. Because it was originally introduced to assess market design alternatives, we have

32

modified this instance to capture characteristics more relevant to reliability assessment, including

startup, shutdown, and nominal ramping limits, startup cost curves, and minimum up and down

times. The full set of modifications and the case itself can be obtained by contacting the authors.

The instance has 31,674 variables (4,080 binaries) and 59,374 constraints for a single scenario

problem.

Table 4 reports the DDSIP run-time required to reduce the optimality gap below 2% and

the optimality gap of the resulting solution with or without DDSIP starting multipliers on the

WECC-240 stochastic instance. The DDSIP parameter is set to be (50, 10) for each run.

Moreover, we study various types of DDSIP starting information by providing both starting

multipliers and initial solutions for solving the Lagrangian dual from the final iteration of PH.

Based on extensive exploration of  -setting strategies, in the PH run we choose CP(0.1) to

compute PH parameter  value and limit the number of PH iterations to 100. Without starting

information, DDSIP cannot reduce the optimality gap below 99% within 24 hours. Supplying

starting multipliers derived from PH weights, however, allows DDSIP to converge to a near-

optimal solution within minutes. By also supplying the primal solution from PH, the DDSIP run-

time is further reduced by up to an order of magnitude.

Table 2.4 DDSIP run-time and optimality gap on WECC-240 stochastic instance with various

starting information. The symbol * denotes failure to converge within 24 hours.

DDSIP run-time (seconds)

and optimality gap

Non-anticipativity representation

NONANT1 NONANT2 NONANT3

DDSIP Starting information Run-time Opt. Gap Run-time Opt. Gap Run-time Opt. Gap

None * - * - * -

Multipliers only 877 1.98% 1937 1.82% 5056 1.82%

Both multipliers and solutions 671 1.88% 777 1.99% 646 1.94%

Acknowledgments

33

This work was funded by the US Department of Energy’s Advanced Research Projects

Agency – Energy. We are grateful to Ralf Gollmer for his consistent assistance with DDSIP

software. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy’s National Nuclear Security

Administration under Contract DE-AC04-94-AL85000.

REFERENCES

[1] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, second ed., Springer, New

York, 2011

[2] C.C. Carøe, J. Tind, L-shaped decomposition of two-stage stochastic programs with integer

recourse, Technical Report, Institute of Mathematics, University of Copenhagen, 1995

[3] C.C. Carøe, R. Schultz, Dual decomposition in stochastic integer programming, Operations

Research Letters 24 (1-2) (1999) 37-45

[4] M. Carrión, J.M. Arroyo, A computationally efficient mixed-integer linear formulation for

the thermal unit commitment problem, IEEE Trans. Power Systems 21 (2006) 1371-1378

[5] E. Ela, M. Milligan, M. O’Malley, A flexible power system operations simulation model for

assessing wind integration, Power and Energy Society General Meeting, 2011 IEEE

[6] Y. Fan, C. Liu, Solving stochastic transportation network protection problem using the

progressive hedging-based method, Networks and Spatial Economics 10 (2) (2010) 193–208

[7] Y. Feng, S.M. Ryan, Solution sensitivity-based scenario reduction for stochastic unit

commitment, Computational Management Science (2014) 1-34

[8] D. Gade, G. Hackebeil, S.M. Ryan, C. J.-P. Watson, R.J.B. Wets, D.L. Woodruff, Obtaining

lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs,

under review

[9] W.E. Hart, J.-P. Watson, D.L. Woodruff, Pyomo: Modeling and solving mathematical

programs in Python, Mathematical Programming Computation 3 (3) (2011) 219-260

[10] C. Helmberg, The ConicBundle library for convex optimization, Available at: http://www-

user.tu-chemnitz.de/helmberg/ConicBundle/

[11] K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable

optimization, Mathematical Programming 46 (1990) 105-122

http://www.sciencedirect.com/science/article/pii/S0167637798000509
http://www.sciencedirect.com/science/article/pii/S0167637798000509

34

[12] G. Laporte, F.V. Louveaux, The integer L-shaped method for stochastic integer programs

with complete recourse, Operations Research Letters 13 (1993) 133-142

[13] A. Løkketangen, D.L. Woodruff, Progressive hedging and tabu search applied to mixed

integer (0,1) multi-stage stochastic programming, Journal of Heuristics, 2 (2) (1996) 111-128

[14] M. Lubin, K. Martin, C. Petra, B. Sandıkçı, On parallezing dual decomposition in

stochastic integer programming, Operations Research Letters 41 (3) (2013) 252-258

[15] G. Lulli, S. Sen, A branch-and-price algorithm for multistage stochastic integer

programming with application to stochastic batch-sizing problems, Management Science 50 (6)

(2004) 786-796

[16] A. Märkert, R. Gollmer, User’s Guide to ddsip – A C Package for the Dual Decomposition

of Two-Stage Stochastic Programs with Mixed-Integer Recourse, Available at:

http://plato.asu.edu/ddsip-man.pdf

[17] O. Listes, R. Dekker, A scenario aggregation based approach for determining a robust

airline fleet composition, Transportation Science 39 (3) (2005) 367–382

[18] S.M. Ryan, C. Silva-Monroy, J.P. Watson, R.J.B. Wets, D.L. Woodruff, Toward scalable,

parallel progressive hedging for stochastic unit commitment, in Proceedings of the 2013 IEEE

Power and Energy Society General Meeting

[19] R.T. Rockafellar, R.J.-B. Wets, Scenarios and policy aggregation in optimization under

uncertainty, Mathematics of Operations Research 16 (1) (1991) 119-147

[20] S. Sen, Algorithms for stochastic mixed-integer programming models, in: K. Aardal, G.L.

Nemhauser, R. Weismantel (Eds.), Discrete Optimization, Elsevier, 2005, pp. 515-558.

[21] R. Van Slyke, R.J.B. Wets, L-Shaped Linear Programs with Applications to Optimal

Control and Stochastic Programming, SIAM Journal of Applied Mathematics 17 (4) (1969) 638-

663.

[22] J. Sun, L. Tesfatsion, Dynamic testing of wholesale power market designs: An open-source

agent-based framework, Computational Economics 30 (3) (2007) 291-327

[23] S. Takriti, J.R. Birge, E. Long, A stochastic model for the unit commitment problem, IEEE

Trans. Power Systems 11 (1996) 1497-1508

[24] J.E. Price, J. Goodin, Reduced network modeling of WECC as a market design prototype,

Proceedings of the 2011 IEEE Power and Energy Society General Meeting

[25] J.-P. Watson, D.L. Woodruff, Progressive hedging innovations for a class of stochastic

mixed-integer resource allocation problems, Computational Management Science 8 (4) (2011)

355-370

http://link.springer.com/search?

35

[26] J.-P. Watson, D.L. Woodruff, W.E. Hart, PySP: Modeling and solving stochastic programs

in Python, Mathematical Programming Computation 4 (2) (2012) 109-149

[27] L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization, Wiley-

Interscience, New York, 1988

[28] IBM ILOG CPLEX Optimization Studio V12.6, Available at: http://www-

03.ibm.com/software/products/en/ibmilogcpleoptistud

36

CHAPTER 3. PROGRESSIVE HEDGING LOWER BOUNDS FOR TIME CONSISTENT

RISK-AVERSE MULTISTAGE STOCHASTIC MIXED-INTEGER PROGRAMS

A paper submitted to Annals of Operations Research

Abstract

Risk-averse models have attracted attention in stochastic programming in situations

where the decision maker is more concerned about large losses than average performance. When

the risk-averse stochastic program is multistage, however, one key issue of time consistency

arises. While definitions of time consistency vary, overall this property multistage stochastic

programs is not guaranteed and depends on how the risk measure is computed. Expected

conditional risk measures, which extend single-period risk measures to multiple stages, have

been proved to be time consistent by Homem-de-Mello and Pagnoncelli (2016) according to

their definition and, for some risk measures, allow for risk-neutral reformulations. . We propose

scenario-decomposed versions of these risk-neutral formulations for a variety of risk measures

and present an approach to obtain convergent and tight lower bounds from the Progressive

Hedging (PH) algorithm. For mixed-integer programs where convergence is not guaranteed, this

method can assess the quality of PH solutions and also integrate with exact algorithms that rely

on lower bounds. We report computational results on financial portfolio optimization, lot sizing

and a realistic-scale generation expansion planning problem and show that convergent and tight

lower bounds are found.

Keywords: Risk-averse stochastic optimization; Scenario decomposition; Progressive

Hedging algorithm; Time consistency; Expected conditional risk measures; Lower bounding

3.1 Introduction:

Traditional stochastic programming is risk-neutral in the sense that it is concerned with

the optimization of an expectation criterion. This may yield solutions that are good in the long

37

run over repeated instances. But for non-repetitive decision making problems under uncertainty,

the classical stochastic programming approach may perform poorly under certain realizations of

the uncertain parameters. Thus, risk-averse models have attracted attention in the stochastic

programming literature.

The two-stage risk-averse stochastic program can extend from the risk-neutral model in a

straightforward way (Schultz ,2006). In the multistage case, however, the picture is quite

different and there is no natural or obvious way of measuring risk (Homem-de-Mello and

Pagnoncelli 2016). Time consistency is an important issue in modeling multistage risk-averse

models. Risk-neutral stochastic programs are time consistent, which means the solutions for later

stages found originally remain optimal if the probem is resolved in the later stages (Pflug and

Pichler 2016). In general, time consistency for multistage risk-averse stochastic programs does

not hold true. Significant efforts have been made to achieve time consistency for multistage risk-

averse problems. One popular way is to adopt the nested conditional risk measure proposed by

Shapiro and Ruszczynski (2006), which has a drawback that the problem must be solved

according to the recursive Bellman equations. Homem-de-Mello and Pagnoncelli (2016) extend

single-period coherent risk measures to a class of multi-period risk measures called expected

conditional risk measures (ECRMs) and show they are time consistent according to their broader

definition, which allows for multiple optimal solutions. One advantage of ECRMs is that its

resulting risk-averse problem can be reformulated as risk-neutral model with some additional

variables and constraints.

In this paper, we show that the risk-neutral reformulations of several ECRMs are scenario

decomposable. The resulting scenario formulations enable the use of existing scenario

38

decomposition approaches such as the progressive hedging (PH) algorithm to efficiently solve

the risk-averse problems.

The PH algorithm is a scenario decomposition method developed by Rockafellar and

Wets (1991) for stochastic programs with continuous decision variables. It has been explored by

Watson and Woodruff (2011) as an effective heuristic for solving stochastic mixed-integer

programs. Gade et al. (2016) presented a lower bounding technique for the PH algorithm and

showed that, in two-stage convex problems, the best lower bound obtained from PH algorithm is

as tight as the lower bound obtained from using Dual Decomposition developed by Caroe and

Schultz (1999). In many applications where computational efficiency is valued, near-optimal

solutions are desired within a reasonable amount of computation time. This lower bounding

approach can assess solution quality in any iteration of the PH algorithm and can also integrate

with exact algorithms that rely on lower bounds (Guo et al. 2015). This lower bounding

technique, however, is restricted to risk-neutral models.

In this paper, we show how to obtain PH lower bounds for time-consistent multistage

risk-averse stochastic integer programs with scenario-decomposable ECRMs. In the case of

expected conditional value-at-risk, the optimization problems solved to obtain the bounds may

be unbounded. . To overcome this hindrance, we find bounds for the optimal values of the

additional decision variables introduced to obtain the risk-neutral reformulation, which also help

speed up the convergence of PH algorithm. Our numerical results show that convergent and tight

lower bounds are found.

3.2 Multistage Stochastic Mixed-Integer Programs

Suppose T is the number of stages. We denote the uncertain parameters by

2(,...,)T   , whose probability distributions are known. The decision vectors are represented

39

as 1 2(, ,...,)Tx x x x . The realization of t at stage 2,...,t T is known only when decisions 1tx 

have been made. The history of the data process up to stage t is denoted as
[] 2(,...,)t t   . The

decisions and realizations are sequenced as

   1 2 2 1 2 3 3 1 2 1 13
, , (,), , (, ,), , (, , ,)T T T

x x x x x x x x x     .

We write the risk-neutral multi-stage stochastic mixed-integer program as

  1 1 1

2
1

1 1 2 1 2 1 1
, ,

min [(,)] : ,
T

p n pT

x x
z c x Q x Ax b x  

      (1)

For 2,...t T ,
1 [](,)t t tQ x 

 is defined recursively as

 
1 []1 [] [] | 1 [1]

[] 1 [1] []

(,) min () [(,)]

() () ()

t t
t

t t t

T

t t t t t t t t t
x

t t t t t t t t

p n p

t

Q x c x Q x

T x W x h

x

   

  

  

 



 

 

 

 

Here 1 1

1 ,
n m

c b  and () , ()t tn m

t tc h   are given vectors, while 1 1m n
A




and 1() , ()t t t t
m n m n

t tT W 
 

  are given matrices. The sets t t tp n p

tx


   denote the integer

requirements on the variables at each time stage. The decisions are non-anticipative in the sense

that a decision can depend on information revealed before the stage but not after.

The notation  denotes expectation with respect to the distribution of random variable

 . To avoid complications when computing the integral behind  we assume that we have

only a finite number of realizations  with corresponding probabilities p . Let tn be a scenario

node that belongs to the set of all scenario tree nodes tN at stage t T . Let ()tn be a scenario

that belongs to the set of scenarios ()tn that define the node t tn N . Let ()tn  be the

corresponding tree node for scenario   at stage t T . Let ˆ(())tx n  be the non-anticipative

decision made at scenario tree node ()tn  . Then problem (1) is decomposable by scenario and

40

can be written as its so-called scenario reformulation of the multistage stochastic mixed-integer

program:

     

      

1
1 1

, ,
2

min () :

ˆ, () 0, , 1,...,

T

T
TT

t t t
x x

t

t t t

p c x q n x

x X p x p x n t T




  

  

   

 

  
  

 

      

 
 (2)

where

       

           

1 1 1

1

1 1

ˆ: , , () , 1,...,

() , , 2,...,

p n p

t t t

t t t t t t t t

x Ax b x x n t T
X

T n x W n x h n t T


   

     



 

 

      
  

       

The above problem (2) can decompose into scenario sub-problems

        
1

1 1
, ,

2

min : , 1,...,
T

T
TT

t t t t
x x

t

c x q n x x X t T   


 
    

 
 for scenarios  

which are coupled by the non-anticipativity constraints    ˆ () 0t tp x p x n    .

3.3 Risk Measures

We distinguish between two classes of risk measures according to whether they are

defined via quantiles or via deviation measures. Quantile risk measures are based on the

quantiles of the probability distributions of the costs. Types of quantile based risk-measures

include conditional value-at-risk (CVaR), which measures the expectation of worst outcomes for

a given probability; and excess probability (EP), which measures the probability of exceeding a

prescribed target level. Deviation risk measures are given by expectations of deviations of the

relevant random variable from its mean or from some prescribed target. Examples of deviation

based risk-measures include expected excess (EE), which measures the expected value of the

excess over a given target; and semi-deviation (SD), which measures the expected value of the

41

excess over the mean. We use the definitions and notations for two-stage problems from Schultz

(2006) where  (,)f x   is the objective function for a two-stage stochastic program.

Definition 3.1. The   conditional value-at-risk ( CVaR) reflects the expectation of

the (1) 100%  worst outcomes for a given probability level (0,1)  , and can be expressed by

the following minimization formula:

    min , ,CVaRQ x g x





 (3)

where     
1

, : max (,) ,0 .
1

g x f x    


    

Definition 3.2. Excess probability (EP) is the probability of exceeding a prescribed

target level   , and is defined as:

    : (,) .Q x f x         (4)

Definition 3.3. Expected excess (EE) reflects the expected value of the excess over a

given target  , and is defined as:

     max (,) ,0 .
D

Q x f x       (5)

Definition 3.4. Semi-deviation (SD) is similar in spirit to the expected excess, but with

the prefixed target replaced by the mean, and is defined as:

       max (,) ,0 .
D

Q x f x Q x 
    (6)

3.4 Time Consistency of Risk-Averse Multistage Stochastic Programs

3.4.1 Risk-Averse Multistage Stochastic Programs

Risk-averse models have attracted considerable attention in stochastic programming in

situations where the decision maker is more concerned about large losses than average

performance. Risk aversion is addressed by replacing the expectation in traditional stochastic

42

programs with risk measures to identify the best decisions. Another way to handle risk is to

include risk measures in the constraints with important applications, such as in portfolio

optimization with CVaR constraints. Krokhmal, Palmquist, and Uryasev (2002) is the first paper

to deal with optimization approach with CVaR constraints. Fabian (2008) studies and proposes

solution schemes for two-stage CVaR-minimization and CVaR-constrained problems. Guigues

and Sagastizábal (2013) propose a risk-averse rolling-horizon time consistent approach with

CVaR constraints. In this paper, however, we focus on the stochastic programs to handle risk

measures in the objective.

For two-stage stochastic programs, the risk-averse model extends immediately from the

risk-neutral model by replacing the expectation of the second stage cost with some risk measure.

Ahmed (2006) provides two classes of mean-risk two-stage stochastic linear programs involving

the semi-deviation risk measure and the quantile deviation risk measure, and proposes a

decomposition algorithm. Schultz and Tiedemann (2006) present a mixed-integer programming

formulation of a two-stage stochastic mixed-integer model involving CVaR. Miller and

Ruszczynski (2011) formulate a risk-averse two-stage stochastic linear programming problem

with a composition of conditional risk measures and demonstrate improvement over the existing

decomposition approaches. Noyan (2012) develops two Benders-based decomposition

algorithms for a risk-averse two-stage stochastic linear programming model with CVaR risk

measure.

When it comes to multistage models, however, there is no natural way of measuring risk,

as risk measures can be applied at every stage additively or to the complete scenario path or be

measured in a nested form (Homem-de-Mello and Pagnoncelli 2016). The challenges in

extending risk measures to the multistage case have been discussed extensively. Collado and

43

Papp (2011) introduce a scenario decomposition method for risk-averse multistage stochastic

linear programs by using the dual properties of dynamic measures of risk.

3.4.2 Time Consistency

The definitions of time consistency differ by their focus. Some focus on the sequences of

random variables (Ruszczynski 2010; Kovacevic and Pflug 2014), some are defined for

continuous time dynamic models (Detlefsen and Scandolo 2005; Cheridito et al. 2006; Bion-

Nadal 2008), while others take the point of view of optimization and decision making at every

stage (Shapiro 2009; Carpentier et al. 2012; Rudloff et al. 2014). Here, we are most interested in

time consistency for multistage stochastic programs. Shapiro (2009) claims that for time

consistency of a problem, the solution at a node in the scenario tree must not depend on children

of other nodes. Carpentier et al. (2012) formulate the property of time-consistency such that the

optimal strategies obtained when solving the original problem remain optimal for all subsequent-

stage problems. Pflug and Pichler (2016) consider a multistage stochastic decision problem to be

time consistent if, when resolving the problem at later stages, the original solutions remain

optimal for those stages. . Homem-de-Mello and Pagnoncelli (2016) define time consistency in

terms of an inherited optimality property. Here we use the same definition of time consistency as

Homem-de-Mello and Pagnoncelli (2016) such that given the optimal solutions from previous

stages, resolving the problem results in the same solutions for the later stages if the optimal

solutions are unique. If the optimal solutions are not unique, resolving the problem at the later

stages gives the same optimal objective as computed by the original optimal solutions.

3.4.3 Time Consistency for Risk-Averse Multistage Stochastic Programs

Risk-neutral and two-stage risk-averse stochastic programs are time consistent. For

multistage risk-averse stochastic programs, however, time consistency is not guaranteed and

depends on how the risk measure is computed. The risk-averse models with risks measured at

44

every stage separately or measured for the complete scenario path are shown to be time

inconsistent (Pflug and Pichler 2016). To enforce time consistency for decision problems,

significant efforts and investigations have been initiated to identify classes of time consistent

multistage risk measures. Shapiro and Ruszczynski (2006) propose a nested conditional risk

measure for multistage optimization problems which proves to be time consistent. The nested

conditional risk measure is formulated in recursive function which is not given in explicit form.

Homem-de-Mello and Pagnoncelli (2016) address this drawback by proposing a class of

expected conditional risk measures (ECRMs) which prove to be time consistent. One important

advantage of ECRMs is that their resulting risk-averse problem can be formulated by a risk-

neutral model for a modified problem with some additional variables and constraints. We will

show in the next section that the risk-averse multistage stochastic program of ECRMs, based on

a variety of single-period risk measures, can be decomposed by scenario.

3.5 Scenario Reformulation for Expected Conditional Risk Measures

Here, we will use the notations from Homem-de-Mello and Pagnoncelli (2016). Consider

a probability space  , , P F , and let 1 2 ... T  F F F be sub sigma-algebras of F such that

each tF corresponds to the information available up to stage t , with  1 ,  F and T F F .

Let tZ denote a space of tF -measurable functions from  toR , and let 1: T  Z Z Z . A

multi-period risk function F is defined as a mapping from Z toR .

Homem-de-Mello and Pagnoncelli (2016) define the following multi-period risk

measures F as expected conditional risk measures (ECRMs):

    
 

   
 

   2 1

2 11 1 2 2 3 3,..., T

TT T TZ Z Z Z Z Z
 

    



       
   

F (7)

45

where the subscript in indicates that the expectation is taken with respect to the

corresponding variables. Homem-de-Mello and Pagnoncelli (2016) prove that any F defined as

in (7) is time consistent, provided that each  1t

t


  satisfies some basic properties that

automatically hold, for example, for coherent risk measures.

Homem-de-Mello and Pagnoncelli (2016) use a particular case of ECRMs with

tt CVaR  denoted as -CVaR and show that -CVaR has the appealing property that any

risk-averse multistage stochastic program defined with -CVaR can be written as a risk-neutral

model with some additional variables. Thus, existing algorithms can be adopted to solve the -

CVaR problems. The other risk measures, however, are not yet investigated. Besides, the

scenario decomposition of risk-averse multistage stochastic programs are not explored. In the

next section, therefore, we will discuss the scenario reformulation of multistage stochastic

programs with ECRMs based on various risk measures.

Homem-de-Mello and Pagnoncelli (2016) write the optimization formulation for -

CVaR as follows:

     
   

       

      

2

2 2 3
1

3

3 4

1

1

1 1 2 [2] 2 3 [3] 3
,...,

4 [4] 4

[] 2 2

min () ()

()

() | | ,

ˆ, () 0, , 1,...,

T

T

T T

T T T

x x

T

T

T T T T

t t t

c x CVaR c x CVaR c x

CVaR c x

CVaR c x

x X p x p x n t T



  



 



 

  

 



  

   



 

 


 


 
  

      

 (8)

By substituting the CVaR representation of Rockafellar and Uryasev (2000), we write the

optimization formulation of -CVaR in the form of a dynamic program:

 

2

1 2

1 1 2 2 1 2 2

,
1

, , :
min

t

T

E CVaR
x

c x Q x
z

Ax b






  


        
  

 (9)

46

For 2, 1t T  , we have:

  

 

     

 

1

1

1 1 1 1

11
, ,

1
, , :

1

, , min

0

t

t t t

t t t t t t

t

t t t t t t t tt t t t
x v

T

t t t t t

t

v Q x

T x W x hQ x

v c x

v





  


   

 





   



 
     

 
    
 

  
  

For the last period t T we have:

        

 

11
,

1
:

1

, , min

0

T T

T

T

T T T T T T T TT T T T
x v

T

T T T T T

t

v

T x W x hQ x

v c x

v



   

 



 
 
 
    
 

  
  

Given t for stage t , the auxiliary variable t is a “  1t  -stage variable” to represent

the value-at-risk (VaR); i.e. the minimum t -quantile such that the probability that the t -stage

cost exceeds it is at least t . Another auxiliary variable tv is a “ t -stage variable” to represent

the excess of t -stage cost of above t . As can be seen from formulation (9), the -CVaR

optimization problem can be formulated as a risk-neutral model with two new variables (t and

tv) and two additional constraints in stages 2,...,t T .

For this formulation, existing algorithms can be readily adapted to solve the -CVaR

optimization problem such as stochastic dual dynamic programming (SDDP) algorithm

developed by Pereira and Pinto (1991) for continuous variables and stochastic dual dynamic

integer programming (SDDIP) algorithm developed by Zou, Ahmed and Sun (2016) for integer

variables. When the number of possible realizations are significant, however, the scenario

decomposition algorithms display advantages in computational efficiency via parallel computing.

47

In order to realize the scenario decomposition in -CVaR problem, we propose the scenario

reformulation of -CVaR in the following Proposition 5.1.

Proposition 5.1. Consider the case with finitely many realizations  and corresponding

probabilities p . Let (0,1)  . Then the scenario reformulation of -CVaR optimization can be

represented as:

           

       

     
1

2

2

1 1 2 2

2

, , ,
, , ,
, ,

1 1
:

1 1

min , 2, ,

ˆ, () 0, , 1,...,
T

T

T

T

T T

T

T

CVaR t t t t t
x x

v v t t t

p c x v v

z v c x t T

x X p x p x n t T






 

  

       
 

    

   





  
     

   
 

     
 

       
 
 



 (10)

where

       

         

1 1 1

1

1

ˆ: , , () , 1,...,

, , 2, ,

p n p

t t t

t t t t t

x Ax b x x n t T
X

T x W x h t T


   

     



 



      
  

       

Similarly, we write the scenario reformulation for the risk-averse multistage stochastic

program for the ECRM based on
tt EP  , denoted as -EP, as follows.

Proposition 5.2. Consider the case with finitely many realizations  and corresponding

probabilities p . Given a prescribed target level t  for each stage 1, ,t T . Then there

exists a constant 0M  such that the scenario reformulation of -EP optimization is

equivalent to the following program:

 

     

     
1

1, ,

, ,

:

min , 1, ,

ˆ, () 0, , 1,...,

t
T

t

t T

T

EP t t t t t tx x

t t t

p

z M c x t T

x X p x p x n t T






  

 

    

   

 



 
 
 

      
 

       
 

 

. (11)

48

Note that the constant 0tM  can be selected as       sup : ,
T

t t tc x x X      .

The scenario reformulation for ECRM based on
tt EE  , denoted as -EE, is

addressed in Proposition 5.3.

Proposition 5.3. Consider the case with finitely many realizations  and corresponding

probabilities p . Given a prescribed target level t  for each stage 1, ,t T . Then the

scenario reformulation of -EE optimization is equivalent to the following program:

 

     

     
1

1, ,

, ,

:

min , 1, ,

ˆ, () 0, , 1,...,

t
T

t

t T

T

EE t t t t tx x

t t t

p e

z e c x t T

x X p x p x n t T






  



   

   

 



 
 
 

     
 

       
 

 

. (12)

For the ECRM with t SD  , denoted as -SD, we are able to formulate its risk-averse

stochastic program as a risk-neutral problem as in Proposition 5.4. However, unlike the previous

formulations of the -CVaR, -EP and -EE risk measures, the formulation of -SD

optimization is not separable by scenario due to the presence of constraint

      , 1, ,
T

t t ts p c x t T


  


   
  and, therefore, is not eligible for scenario

decomposition.

Proposition 5.4. Consider the case with finitely many realizations  and corresponding

probabilities p . Then the -SD optimization problem is equivalent to the following program:

49

     

     

     

     

1

1, ,

, ,

:

, 1, ,
min

, 1, ,

ˆ, () 0, , 1,...,

T

T

t t t

t T

T

t t t t

SD
x x T

t t t

t t t

p s c x

s c x t T
z

s p c x t T

x X p x p x n t T







  

  

  

  

   

 





  
  

 
    

  
    
  

 
        

 


. (13)

3.6 Lower Bounding Approach for Risk-Averse Problems

3.6.1 Progressive Hedging (PH) Algorithm

Proposed by Rockafellar and Wets (1991), the progressive hedging (PH) algorithm is a

scenario decomposition method for stochastic programs motivated by augmented Lagrangian

theory. By decomposing the extensive form into scenario sub-problems, the PH algorithm

effectively reduces the computational burden by solving the scenario sub-problems in parallel

instead of solving extensive forms directly, especially for large-scale instances. Solving scenario

sub-problems separately can also take advantage of any special structures that are present.

For a two-stage stochastic mixed-integer program, a solution is said to be admissible in

one scenario if it is feasible in this scenario; a solution is said to be implementable or non-

anticipative if its first-stage decision is scenario-independent; and a solution is feasible if it is

both admissible to all scenarios and implementable. The idea of the PH algorithm is to aggregate

the admissible solutions of modified scenario subproblems which progressively causes the

aggregated solution to be non-anticipative and optimal. The modified scenario subproblem

comes from scenario decomposition of the augmented Lagrangian as a close approximation of

problem (3). The modified cost function includes a penalty term relative to the non-anticipative

constraint and a proximal term that measures the deviation of the scenario solution from the

aggregated solution for first-stage decisions. The weight vector 1n sw  is updated by the

50

penalty parameter (vector) 0  in each iteration. This weight update rule is essential to the

proofs of the convergence theorems (Rockafellar and Wets 1991).

The PH algorithm has been proven to converge when all decision variables are

continuous. It can also serve as a heuristic in the mixed-integer case. While convergence is not

guaranteed for mixed-integer problems, computational studies have shown that the PH algorithm

can find high-quality solutions within a reasonable number of iterations (Watson and Woodruff

2011). The PH algorithm for multistage stochastic mixed-integer programs is restated as follows

(Gade et al. 2016):

STEP 1 Initialization: Let : 0v  and    : 0, , 1, ,v

tw n t T     . Compute for each

  :

    1

1

2

: arg min :
T

Tv T

t t t t t

t

x c x q n x x X 



 
   

 


STEP 2 Iteration update: 1v v 

STEP 3 Non-anticipative policy: Compute for each 1, , 1t T  and each  t tn N  :

   
() () () ()

ˆ () :
t t t t

v v

t t t

n n n n

x n p x p 
 

 
 

  

STEP 4 Weight update: Compute for each 1, , 1t T  and for each   :

           1 ˆ: ()v v v v

t t t t t t t tw n w n x n x n      

STEP 5 Decomposition: Compute for each   :

          
1 2

1

1

2 1

ˆ: arg min :
2

T T
T Tv T v v

t t t t t t t t t t t

t t

x c x q n x w n x x x n x X


   




 

  
       

  
 

 STEP 6 Termination: If at each tree node, all the scenario solutions agree to within some

tolerance, then stop. Otherwise, return to Step 2.

51

The performance of PH using various fixed, global values of penalty parameter  with a

single scalar used for all variables has been extensively explored in the literature (Mulvey and

Vladimirou 1991; Listes and Dekker 2005; Fan and Liu 2010). We denote the corresponding

method by  FX  , where the FX stands for fixed and the argument provides the single value of

 . Watson and Woodruff (2011) observe that the objective cost per decision variable may range

in magnitude and an effective  values should be close in magnitude to the unit cost per

decision variable in the objective. Specifically, they set  i for each decision variable i to be a

multiple of the corresponding objective cost coefficient. The method is denoted by  CP  ,

where CP stands for cost-proportional and the argument gives the cost multiplier 0k  .

Previous experience (Watson and Woodruff 2011; Gade et al. 2016) indicates that larger values

of  can accelerate the convergence of PH while oscillation can occur when the weight vector is

updated too aggressively by large values of  . While smaller values of  lead to slow changes

in weight vector as well as little movement in convergence of PH, the quality of resulting

solutions and lower bounds is improved. In addition to the strategies for choosing the PH 

parameter, Watson and Woodruff (2011) introduced additional strategies such as variable fixing

and slamming to break cycles and accelerate PH convergence.

3.6.2 Lower Bounds from PH on Multistage Stochastic Mixed-Integer Programs

Although the PH algorithm has been applied successfully as a heuristic to solve

multistage stochastic mixed-integer programs, it is limited by the lack of a convergence

guarantee as well as the lack of information to evaluate solution quality relative to the optimal

objective value. Gade et al. (2016) addressed this deficiency by presenting a method to compute

lower bounds in the PH algorithm for multistage stochastic mixed-integer programs. The lower

52

bounds not merely allow us to assess the quality of the solutions in each iteration, but also can

provide lower bounds for solution methods like branch-and-bound that rely on lower bounds. We

elaborate the lower bounding approach for two-stage stochastic mixed-integer programs

proposed by Gade et al. (2016) to multistage cases and show that the weights w define implicit

lower bounds, ()D w , on the optimal objective value denoted by z .

Proposition 6.1. Let    tw w n





 where    1n

tw n   satisfy

  
() ()

0
t t

t

n n

p w n





 for each t tn N . Let

          
1

1

2 1

: min :
T T

T TT

t t t t t t t t

t t

D w n c x q n x w n x x X   


 

 
    

 
  (14)

Then       *: tD w p D w n z 





  .

It can be verified   
() ()

0
t t

t

n n

p w n





 is maintained in every iteration by the weight

update rule. Proposition 6.1 indicates that one can compute a lower bound on *z in any iteration

of PH algorithm using the current weights with approximately the same effort as one PH

iteration.

3.6.3 Scenario Bundling in Progressive Hedging

Motivated by Wets’ strategy of aggregating scenarios in stochastic optimization (Wets

1989), Gade et al. (2016) formalized the bundle version of PH algorithm, which allows Steps 1

and 5 of the PH algorithm to solve smaller extensive forms of the original problem. We extend

the bundle version of lower bounding approach for two-stage cases introduced by Gade et al.

(2016) to multistage cases in Proposition 6.2. Suppose the set of all the scenario tree nodes tN at

53

stage 2, , 1t T  is partitioned into bundles, t , of K scenario tree nodes each. We denote the

set of bundles by tB , with t tB  . Let
 t t

P p  
 .

Proposition 6.2. Let   
t t

t B
w w





 where   1nw   satisfy   0

t

t t

t

B

P w





 . Let

   
 

   
1

1

2 1

: min :
t

t t

T T
T TT

t t t t t t t
x

t t

p
D w c x q x w x x X

P



 
  

  


  

  
    

  
   (15)

Then      *:
t t

t t

t

B

D w P D w z 





  .

3.6.4 Lower Bounds on E-CVaR Stochastic Mixed-Integer Programs

By applying the lower bounding approach in Proposition 6.1 to the optimization

formulation of the -CVaR problem, we have the following Proposition 6.3.

Proposition 6.3. Let   w w





 where   1nw   satisfy  
() ()

0
t tn n

p w





 ,

  w w





  where  w   satisfy  
() ()

0
t tn n

p w





  , and   w w





  where

 w   satisfy  
() ()

0
t tn n

p w





  for each t tn N . Let

            

 

     

1 1 2 2

2

1

1 1

2 2

1 1

1 1

:, , : min

, 2, ,

ˆ, () 0, , 1,...,

T

T T

T

T T
T T T

t t t t

t t

T

t t t t t

t t t

c x v v

w x w w vD w w w

v c x t T

x X p x p x n t T



  

 
 

     

 

   



 

 
      

 
         
 
    
 

        

  (16)

Then          *, , : , , CVaRD w w w p D w w w z  


   



     .

However, the lower bounding approach for solving the -CVaR problem is not as

straightforward as the one for solving risk-neutral problems. Take a 3-stage stochastic mixed-

54

integer program for instance. The problem       , ,D w w w     can be written as:

      
     

      

1 1 1 1 2 2 2

2

2
2 2 2 3 3 3

2 3

1

1
, , : min

1
1 :

1 1

T T T

T T T

t

c x w x w v

D w w w

w w w v x X





  


  


    
 

  
     

   
    

               

AThis optimization problem is unbounded due to the unboundedness property of decision

variables 2 3,  and 2 2v  . To solve the optimization problem       , ,D w w w     , we

must find valid upper and lower bounds for the decision variables 2 3,  and a valid upper bound

for 2 2v  . Such bounds are derived in Proposition 6.4. Those bounds lead to tighter lower

bounds of *

CVaRz and can be obtained with little computational effort. In addition, the

introduction of the bounds also speeds up the convergence of the PH algorithm.

Proposition 6.4. Let * *,t tv be optimal values of , , 2,...,t tv t T   for the -CVaR

stochastic program. Then

  
  

* *

*

max max () : ,

min min () : .

T

t t t t t t
x

T

t t t t t
x

U c x x X v

L c x x X







 

 





   

  

 (17)

Proof: Let * * *(), (), ()t t tx v    be optimal solutions for the -CVaR stochastic program.

(a) The definition of CVaR straightforwardly indicates that

   * *max max () :T

t t t t t t
x

U c x x X v


 


    .

(b) Based on the definition of CVaR (Schultz and Tiedemann 2006), we define the

cumulative distribution function of t to be  * *((),) : ({ : () })
T

t t t t tx P c x         and

define VaR  as * *

, (()) : min{ : ((),) }t t t t tx x        . Since the cumulative distribution

55

function *((),)t tx   of t is a monotonically increasing function over t and a function

defined as * * *((),) : min{ ((),) : ((),) }t t t t tx x x           is a monotonically increasing

function over , then *

, (())t tx  is monotonically increases over . Besides, since

     * *

,
0

lim min ()
T

t t t tx c x


   
 

 , then we have      * *

,min ()
T

t t t tc x x


   


 . Since

*(),tx    are feasible for the risk-neutral problem, then

    *() min :
t

T T

t t t t t
x

c x c x x X    for each   . By taking the minimum for all   on

both sides, we have       *min () min min :
t

T T

t t t t t
x

c x c x x X
 

  
 

  . Thus, it is proved

    *min min :
t

T

t t t t t
x

L c x x X


 


   .

Therefore, to compute the lower bounds for the -CVaR problem, one must compute

both tU and tL by solving the minimization problem and the maximization problem of its risk-

neutral model for each stage , 2,...,t t T  beforehand and then solve the modified problem of

(16) with two additional constraints (17) in each stage , 2,...,t t T  .

3.6.5 Lower Bounds on E-EP Stochastic Mixed-Integer Programs

It is straightforward to apply the lower bounding approach in Proposition 6.1 to the

multistage risk-averse stochastic mixed-integer problems with -EP, resulting in the lower

bounding approach in Proposition 6.5.

Proposition 6.5. Let   w w





 where   1nw   satisfy  
() ()

0
t tn n

p w





 for

each t tn N . Let

56

  

 

 

     

1

1, , 1

:

: min , 1, ,

ˆ, () 0, , 1,...,

T
T

t t t

t T t

T

t t t t t

t t t

w

D w M c x t T

x X p x p x n t T



  

  

   

   



 

 
 

 
 

      
 

       
 
 

 

 (18)

Then      *: EPD w p D w z 





  .

3.6.6 Lower Bounds on E-EE Stochastic Mixed-Integer Programs

Similar to Proposition 6.5, we can easily derive the lower bounding approach for

multistage risk-averse stochastic mixed-integer programs with -EE in Proposition 6.6.

Proposition 6.6. Let   w w





 where   1nw   satisfy  
() ()

0
t tn n

p w





 for

each t tn N . Let

  

 

 

     

1

1, , 1

:

: min , 1, ,

ˆ, () 0, , 1,...,

T
T

t t t

t T t

T

t t t t t

t t t

e w e

D w M e c x t T

x X p x p x n t T



  



  

   



 

 
 

 
 

      
 

       
 
 

 

 (19)

Then      *: EED w p D w z 





  .

3.7 Numerical Results

In this section, we study the performance of the lower bounding approach for risk-averse

stochastic mixed-integer test instances with -CVaR. We investigate the interaction between

the strategies for choosing the PH  parameter and the quality of PH lower bounds as well as

the scenario bundling strategies on a financial portfolio optimization instance. We consider

summary results of the performance of the lower bounding approach on a number of lot sizing

57

instances. We further examine the lower bounding approach on a risk-averse large-scale power

generation expansion planning instance whose extensive form is too large to solve.

We use PySP (Watson et al. 2012), an open-source software package for modeling and

solving stochastic programs, to implement PH algorithm and a plugin called phboundextension

to implement the lower bounding approach for PH algorithm. CPLEX is used to solve mixed-

integer linear optimization programs. All the experiments are conducted on a Linux server with

31 GB and 8 processors with 4 cores per processor.

3.7.1 Portfolio Optimization Problem

The application of multistage stochastic programming has gained popularity in the

financial industry to address the stochastic nature of financial problems. The multistage portfolio

optimization (MPO) problem, or multistage financial asset allocation problem, finds the optimal

decisions to rebalance the portfolio over time to maximize the expected value of the portfolio by

the end of the planning horizon. We modify the portfolio optimization formulation from Dantzig

and Infanger (1993). At the initial time period, a certain amount of wealth is available to a

decision maker in asset 1,i n and in cash which we index as asset 1n  with

0 , 1, , 1ix i n  to be the dollar value of initially available assets. At each time period

1,t T , an investor can sell off an amount of asset i worth t

iy for cash or buy an amount of

asset i worth t

iz from trades in previous periods, and his resulting amount of asset i at period t

is denoted as t

ix . Buying and selling causes transaction costs proportional to the dollar value of

the asset traded. Buying one unit of asset i requires 1 iv units of cash and selling one unit of

asset i results in 1 i units of cash. At time period t , the return rate t

ir of asset i from period

t to period 1t  is not known to the decision maker until after the decision is made on

58

rebalancing the portfolio for period t . Only the return rate on cash,
1

t

nr 
 and the return rate on

asset i from initial period, 0

ir are assumed known. In addition to Dantzig and Infanger’s

formulation, it is required that the amount of assets sold or bought must be either zero or a

positive value between its lower and upper bounds. A multistage stochastic mixed-integer

programming formulation of MPO problem is:

    
1

1

max
n

T T

i i

i

p r x


 


 

  (20a)

          1 1 , 1, , 1, ,t t t t t

i i i i ir x z y x i n t T              (20b)

              1 1

1 1 1 1 1

1 1

1 1 , 1, ,
n n

t t t t t

n n i n i n n

i i

r x v z y x t T       

    

 

         (20c)

           , , 1, , 1, ,t y t t y t z t t z

i i i i i i i i i im l y m u n l z n u i n t T              (20d)

            , , 0, , 0,1 , 1, 1, 1, ,t t t t t

i i i i ix y z m n i n t T            (20e)

We generate a test instance with 5 assets, 3 stages and 10 branches emanating from each

scenario tree node. The 10 branches from each scenario tree node are sampled from normal

distributions of stochastic parameters t

ir with identical probabilities for each asset for each

period. The means of normal distributions are displayed in Table 1 and the standard deviations

are 0.5. The fixed input parameters are displayed in Table 2.

Table 3.1 Mean values of normal distributions of return rates of assets for MPO test instance

 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Period 1 1 1.1 1.2 1.3 1.4

Period 2 1 0.9 0.8 0.7 0.6

Period 3 0.8 0.9 1 1.1 1.2

Table 3.2 Input parameters for MPO test instance

59

 0 , 1, , 1ix i n  100

 , 1, ,iv i n 0

 , 1, ,i i n 0.5%

1

t

nr 
 1.02

 ,y z

i il l 30

 ,y z

i iu u 300

Here, we performed computational studies on the -CVaR problem of this MPO

instance given the upper and lower bounds for -CVaR variables. The preselected probability is

set to be 0.8t  for each stage t such that we are only concerned with the 20% worst scenarios

at each stage. We perform multiple runs of the PH algorithm on this instance, varying the values

of the penalty parameter  . Specifically, we consider fixed

      2 3 410 , 10 , 10FX FX FX    and record the time-series of the lower bound

 , ,D w w w  obtained at each PH iteration during each run. The lower bound results are shown

in Figure 1 (a), which additionally displays the optimal solution value obtained from solving its

extensive form. We also consider the PH lower bounds when bundling scenarios. Specifically,

we vary the number of scenarios in each bundle considered by PH, while holding  constant.

Each scenario bundle is formed by some scenarios emanating from the same scenario tree node.

An illustrative example is shown in Figure 1 (b), with  310FX  .

60

Figure 3.1 Lower bounds from PH and optimal value from solving extensive from for MPO

instance with (a) different penalty parameter values; (b) different scenario bundling strategies

with  310FX 

As displayed in the PH lower bounding results in Figure 1 (a), larger  values can lead

to oscillations in the convergence of lower bounds. In contrast, lower  values smoothen the

convergence of lower bounds but can also slow down their convergence. Figure 1 (b) shows the

advantage of scenario bundling for improving the quality of lower bound convergence but the

disadvantage is that each PH iteration takes longer.

Table 3 further demonstrates that scenario bundling may reduce the number of PH

iterations to converge as well as the total PH computational time. The computation time

consumed per iteration, however, increases with the number of scenarios per bundle.

Table 3.3 Computation time for MPO test instance with different scenario bundles

Number of bundles 100 10 5

Number of scenarios per bundle 1 10 20

Number of PH iterations to converge 200 36 25

Average PH execution time per iteration (seconds) 4.5 11.8 16.9

Total PH execution time (seconds) 909 425 423

3.7.2 Lot Sizing Problem

The multistage lot-sizing problem (MLS) has been widely used as a test case for

multistage stochastic integer programming algorithms (Burhaneddin and Ӧzaltın 2014). It seeks

to determine a minimum cost production and inventory holding schedule for a product to satisfy

its stochastic demand over a finite discrete planning horizon. A multistage stochastic mixed-

integer programming formulation of the MLS problem is:

       min t t t t t t

t T

p x y h s


    
 

   (21a)

61

        1 , 1, ,t t t ts x d s t T           (21b)

     , 1, ,t tx My t T      (21c)

  0 0,s     (21d)

        0,1 ; , 0,t t ty x s       (21e)

where the decision variables , ,t tx s and ty denote production level, inventory level, and

setup indicator at period 1,t T , the parameters , , ,t t t th d  denote production cost, setup

cost, inventory cost, and demand at period t T , the parameter M denotes production capacity,

and the parameter p denotes the probability for each scenario   . Objective (21a)

minimizes the total expected production, setup and inventory costs. Constraints (21b) enforce

inventory balance conditions, (21c) enforce the production capacity limits, (21d) enforces no

initial inventory, and (21e) enforce variable restrictions.

We populate data for MLS instances as in Guan et al. (2006). We generate a test instance

with 4 stages and 5 branches emanating from each scenario tree node. The 5 branches from each

scenario tree node are sampled from uniform distributions of stochastic parameters

 0,100td U with identical probabilities for each time period. The fixed input parameters are

displayed in Table 4. The capacity is assigned to be 200.

Table 3.4 Input parameters for MLS test instance

 t 1 2 3 4

th 3 8 6 5

t 18 22 17 20

t 99 91 102 108

62

Here, we performed computational studies on -CVaR problems of (3-stage, 5-branch),

(3-stage, 10-branch), (4-stage, 5-branch), and (4-stage, 10-branch) MLS instances with the upper

and lower bounds for -CVaR variables and preselected probability set to be 0.2t  for each

stage t . We perform multiple runs of the PH algorithm on this instance, varying the values of the

penalty parameter  . Specifically, we consider fixed       3 3 410 , 10 , 10FX CP CP    and

record the time-series of the lower bound  , ,D w w w  obtained at each PH iteration during each

run. The lower bound results for various lot sizing instances are shown in Figure 2, which

additionally displays the optimal solution value obtained from solving its extensive form.

Figure 3.2 Lower bounds from PH and optimal value from solving extensive form for MLS

instances with (a) 3-stage, 5-branch; (b) 3-stage, 10-branch; (c) 4-stage, 5-branch; (d) 4-stage,

10-branch

3.7.3 Generation Expansion Planning Problem

In a power generation expansion planning (GEP) problem, one seeks to determine a long-

term construction and generation plan for different types of generators, taking into account the

63

uncertainties in future demand and fuel prices. Suppose there are T time stages and n types of

expansion technologies available. Let itx represent the numbers of generators to be built for

generator type i in stage t , and ity represent the amount of electricity produced by generator

type i in stage t . The parameters ,it ita b denote investment and generation cost for generator type

i in stage t . The parameters , ,i i tr u d denote the capacity rating of generator type i , the

construction limits on generator type i , and the electricity demand at stage t . A multistage

stochastic mixed-integer programming formulation of GEP problem is:

       
1 1

min
T n

it it it it

t i

p a x b y


  
  

  (22a)

    
1

, 1, , 1, ,
t

it i is

s

y r x i n t T  


     (22b)

  
1

, 1, ,
T

it i

t

x u i n 


    (22c)

    
1

, 1, ,
n

it t

i

y d t T  


    (22d)

 , , 1, , 1, ,it itx y i n t T        (22e)

In the above formulation, objective (22a) minimizes the total expected investment cost

and generation cost. Constraints (22b) enforce generation capacity, (22c) enforce the limitation

on total number of generators, (22d) enforce demand satisfaction, and (22e) enforce variable

restrictions.

We consider an instance of the GEP problem with a 10-year planning horizon where each

year is considered as one period. There are 6 types of generators available for capacity

expansion, namely Coal, Combined Cycle (CC), Combined Turbine (CT), Nuclear, Wind, and

Integrated Gasification Combined Cycle (IGCC). Among these 6 types of generators, both CC

64

and CT power generators are fueled by natural gas. All the input parameters are deterministic

except demand and natural gas price. We populate data for GEP problem as in Jin et al. (2011).

While Jin et al. (2011) consider a 10-period GEP instance as a two-stage problem, we

consider a 10-period GEP instance as a 8-stage problem according to the division of the planning

horizon and scenario tree generation in Feng et al. (2013). In our instance, each of the first six

stages represent one period and each of the last two stages represent two periods. The stochastic

parameters of demand and natural gas price are generated from two correlated geometric

Brownian motions as in Jin et al. (2011). From each scenario tree node, 3 realizations of the pair

of uncertain parameters and their probabilities are computed using moment matching method

(Feng and Ryan 2013), thus leading to a large-scale mixed-integer problem with 2,187 scenarios.

The data of fixed input parameters are obtained from GEP instance in Jin et al. (2011). We

formulate its risk-averse -CVaR formulation with preselected probability set to be 0.2t  for

each stage t , which has 244,944 variables and 205,578 constraints in total.

Due to the large number of scenarios and variables in this -CVaR problem, its

extensive form failed to compute an optimal objective with 48-hour time limit. To deal with this

issue, the lower bounding approach from PH for risk-averse problems is employed here to

compute a feasible solution with a reasonable optimality gap. In this instance, the objective cost

coefficients of decision variables are in the unit of millions while the cost coefficients of the

E-CVaR related variables t and tv are no greater than one. The unbalanced cost coefficients in

objective prevent the PH algorithm from obtaining good variable-specific penalty parameters  ,

which significantly slows down its progress. Thus, additional variables 610t t  and

610t tu v are substituted for t and tv in the E-CVaR optimization problem. In addition, the

variable fixing and slamming strategies from Watson and Woodruff’s PH extensions (2011) are

65

adopted here to accelerate PH convergence by forcing early agreement of variables at the

expense of sub-optimal solutions. We fix decision variables once their value has stabilized to a

fixed value over the past 3 iterations. After 10 iterations, we enforced slamming where a decision

variable is fixed to its maximum solution across all scenarios for every 2 subsequent iterations.

Table 5 shows that while the extensive form failed to solve within 48 hours, the

Progressive Hedging algorithm is able to provide a feasible solution with 3.2% optimality gap

within 5 hours. The lower bounding approach allows us to assess the quality of feasible solutions

generated by the algorithm by an upper bound on its optimality gap as the difference between the

upper bound and lower bound.

Table 3.5 PH run-time and optimality gap on 8-stage GEP instance with 48-hour time limit

PH

iterations

Run-time

(hours)

Optimal objective

(cost in thousand

million dollars)

Lower

bound

Upper

bound

Optimality

gap

Extensive Form 48 N/A N/A N/A N/A

Progressive Hedging 12 6 N/A 3.41 3.45 1.2%

 26 14 N/A 3.41 3.42 0.3%

As the preselected probability  varies, the optimal solutions to the risk-averse programs

change corresponding to optimize the expected values of costs in the (1) 100%  worst

scenarios. Table 6 reports the best feasible solutions to first-stage decision variables for the E-

CVaR problem of 8-stage GEP instance with different values of  .

Table 3.6 First-stage variable solutions for different values of 

66

Number of generators to

build by type

 values

0 0.2 0.8

Baseload 0 0 4

CC 0 0 0

CT 0 0 0

Nuclear 1 1 1

Wind 22 21 40

IGCC 0 0 4

Table 6 indicates that the optimal solutions may vary significantly according to the

preselected probability and the optimal solutions to risk-neutral models do not necessarily

guarantee best performance for risk-averse models.

3.8 Conclusions

We have proposed the scenario decomposition reformulations of multistage risk-averse

stochastic programs with a variety of ECRMs. Based on the scenario reformulation, we

presented a lower bounding approach from the PH algorithm. We discussed strategies for

choosing the PH  parameter and applied the scenario bundling strategy to help improve the

quality of the PH lower bounds. Computing lower bounds for the PH algorithm allows us to

assess the quality of the solutions generated by PH algorithm and also integrate with exact

algorithms that rely on lower bounds. The integration of this lower bounding approach for risk-

averse models with other exact algorithms remains as a promising area for potential future

research. We also provided a remedy for the issue of unbounded optimization in the lower

bounding problems introduced by -CVaR. Numerical results indicate that this lower bounding

approach obtains convergent and tight lower bounds and displays its advantage in solving near-

optimal solutions within reasonable run-time for large-scale stochastic problems whose extensive

form fails to solve.

67

REFERENCES

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs.

Mathematical Programming, 106 (3), 433-446.

Bion-Nadal, J. (2008). Dynamic risk measures: time consistency and risk measures from BMO

martingales. Finance and Stochastics, 12(2), 219-244.

Burhaneddin, S., & Ӧzaltın, O. Y. (2014) A scalable bounding method for multi-stage stochastic

integer programs. Chicago Booth Research Paper, No. 14-21.

Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming.

Operations Research Letters, 24(1-2), 37-45.

Carpentier, P., Chancelier, J.P., Cohen, G., Lara, M.D., & Girardeau, P. (2012). Dynamic

consistency for stochastic optimal control problems. Annals of Operations Research, 200(1),

247-263.

Cheridito, P., Delbaen, F., & Kupper, M. (2006). Dynamic monetary risk measures for bounded

discrete-time processes. Electronic Journal of Probability, 11(3), 57-106.

Collado, R. A., & Papp, D. (2011). Scenario decomposition of risk-averse multistage stochastic

programming problems. Annals of Operations Research, 200(1), 147-170.

Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio

optimization. Annals of Operations Research, 45, 59-76.

Detlefsen, K., & Scandolo, G. (2005). Conditional and dynamic convex risk measures. Finance

and Stochastics, 9(4), 539-561.

Fabian, C. I. (2008). Handling CVaR objectives and constraints in two-stage stochastic models.

European Journal of Operations Research, 191(3), 888-911.

Fan, Y., & Liu, C. (2010). Solving stochastic transportation network protection problem using

the progressive hedging-based method. Networks and Spatial Economics, 10(2), 193-208.

Feng, Y., & Ryan, S. M. (2013). Scenario construction and reduction applied to stochastic power

generation expansion planning. Computers & Operations Research, 40, 9-23.

Gade, D., Hackebeil, G., Ryan, S. M., Watson, J. P., Wets, R. J., & Woodruff, D. L. (2016).

Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer

programs. Mathematical Programming, 157(1), 47-67.

Guan, Y., Ahmed, S., Nemhauser, G. L., & Miller, A. J. (2006). A branch-and-cut algorithm for

the stochastic uncapacitated lot-sizing problem. Mathematical Programming, 105(1), 55-84.

68

Guigues, V., & Sagastizábal, C. (2013). Risk-averse feasible policies for large-scale multistage

stochastic linear programs. Mathematical Programming, 138(1-2), 167-198.

Guo, G., Hackebeil, G., Ryan, S. M., Watson, J. P., & Woodruff, D. L. (2015). Integration of

progressive hedging and dual decomposition in stochastic integer programs. Operations Research

Letters, 43(3), 311-316.

Homem-de-Mello, T., & Pagnoncelli, B. K. (2016). Risk aversion in multistage stochastic

programming: a modeling and algorithmic perspective. European Journal of Operational

Research, 249(1), 188-199.

Jin, S., Ryan, S. M., Watson, J. P., & Woodruff, D. L. (2011). Modeling and solving a large-

scale generation expansion planning problem under uncertainty. Energy Systems, 2(3-4), 209-

242.

Kovacevic, R., & Pflug, G. (2014). Are time consistent valuations information monotone?

International Journal of Theoretical and Applied Finance, 17(1), 1443-1471.

Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-

at-risk objective and constraints. Journal of Risk, 4, 11-27.

Listes, O., & Dekker, R. (2005). A scenario aggregation based approach for determining a robust

airline fleet composition. Transportation Science, 39, 367-382.

Miller, N., & Ruszczynski, A. (2011). Risk-averse two-stage stochastic linear programming:

modeling and decomposition. Operations Research, 59(1), 125-132.

Mulvey, J. M., & Vladimirou, H. (1991). Applying the progressive hedging algorithm to

stochastic generalized networks. Annals of Operations Research, 31, 399-424.

Noyan, N. (2012). Risk-averse two-stage stochastic programming with an application to disaster

management. Computer and Operations Research, 39(3), 541-559.

Pereira, M., & Pinto, L. M. (1991). Multi-stage stochastic optimization applied to energy

planning. Mathematical Programming, 52(1-3), 359-375.

Pflug, G. C., & Pichler, A. (2014). Multistage Stochastic Optimization. Springer Series in

Operations Research and Financial Engineering.

Pflug, G. C., & Pichler, A. (2016). Time-inconsistent multistage stochastic programs: martingale

bounds. European Journal of Operational Research, 249(1), 155-163.

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of

Risk, 2, 21-42.

69

Rockafellar, R. T., & Wets, R. J. B. (1991). Scenarios and policy aggregation in optimization

under uncertainty. Mathematics of Operations Research, 16(1), 119-147.

Rudloff, B., Street, A., & Valladão, D. (2014). On the economic interpretation of time consistent

dynamic stochastic programming problems. European Journal of Operational Research, 234(3),

743-750.

Ruszczynski, A. (2010). Risk-averse dynamic programming for Markov decision processes.

Mathematical Programming, 125(2), 235-261.

Ruszczynski, A., & Shapiro, A. (2006). Conditional risk mappings. Mathematics of Operations

Research, 31(3), 544-561.

Schultz, R. (2011). Risk aversion in two-stage stochastic integer programming. In G. Infanger

(Ed.), Stochastic Programming (pp. 165-187). New York: Springer.

Schultz, R., & Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with

mixed-integer recourse. Mathematical Programming, 105(2), 365-386.

Shapiro, A. (2009). On a time consistency concept in risk averse multistage stochastic

programming. Operations Research Letters, 37(37), 143-147.

Watson, J. P., & Woodruff, D. L. (2011). Progressive hedging innovations for a class of

stochastic mixed-integer resource allocation problems. Computational Management Science,

8(4), 355-370.

Watson, J. P., Woodruff, D. L., & Hart, W. E. (2012). PySP: modeling and solving stochastic

programs in Python. Mathematical Programming Computation, 4(2), 109-149

Wets, R. J. B. (1989). The aggregation principle in scenario analysis and stochastic optimization.

In Wallace, S.W. (Ed.), Algorithms and Model Formulations in Mathematical Programming (pp.

91-113). Berlin: Springer.

Zou, J., Ahmed, S., & Sun, X. A. (2016). Stochastic dual dynamic integer programming.

Submitted for publication. http://www.optimization-online.org/DB_HTML/2016/05/5436.html.

IBM ILOG CPLEX Optimization Studio V12.6, Available at:

https://www.ibm.com/products/ilog-cplex-optimization-studio

70

CHAPTER 4. TIME CONSISTENT MULTISTAGE RISK-AVERSE STOCHASTIC

MIXED-INTEGER PROGRAMMING APPLIED TO A MIXED-MODEL ASSEMBLY

LINE SEQUENCING PROBLEM

Abstract

The existing optimization formulations for mixed-model assembly line sequencing

(MMALS) problems consider stochastic demand and task times, but neglect many real-world

uncertainty factors such as timely part delivery, material quality, upstream sub-assembly

completion and availability of other resources. Real-time resequencing decisions are required to

deal with the inevitable disruptions. We present a multistage stochastic mixed-integer program for

a sequencing problem to increase on-time performance considering part availability uncertainty.

A risk-averse sequencing problem can be modeled to further improve on-time performance in the

worst scenarios for decision makers more concerned about large losses than average performance.

Computational studies are performed on a set of MMALS test cases with Progressive Hedging

(PH) as the solution heuristic in the context of real-time resequencing. A lower bounding approach

for time consistent risk-averse models is applied to evaluate the quality of the PH solutions.

Keywords: Mixed-model assembly line sequencing; Stochastic mixed-integer

programming; Risk-averse optimization; Time consistency; Progressive Hedging; Lower bounds

4.1 Introduction

As an important part of the just-in-time production system, a mixed-model assembly line

manufacturing system makes it possible to produce a variety of models of the same basic product

on the same production line. The optimal design and operation of mixed-model lines must address

a long-term line balancing problem to assign tasks to a sequence of stations and a short-term model

sequencing problem to determine the production sequence of models within a planning horizon.

In this paper, we are concerned with the model sequencing problem. A mixed-model assembly line

71

comprises a series of stations and a conveyor moving at a constant speed, which can assemble

different models of the same basic product during a working shift. The model sequencing problem

is to determine the sequence that specifies the feeding order of the models at the beginning of each

working shift. This is a very complicated decision due to the large number of orders of models

from customers, each with a specific due time and various requirements for parts and resources at

different stations.

The development of mixed-model assembly lines has stimulated recent studies that address

optimization formulations for model sequencing problems. Manavizadeh et al. (2015) proposed an

optimization formulation and a heuristic solution method for both balancing and sequencing

problems to minimize the cycle times, the wastages in stations and the work overload. Dörmer et

al. (2015) presented an optimization model for master production scheduling problems in mixed-

model assembly lines in the automotive industry to minimize the workload variability. Rabbani et

al. (2018) developed a bi-objective optimization model to determine a sequence of products that

minimizes the total cost and maximizes levels of customer satisfaction. In addition, some studies

concern optimization models with a variety of uncertainties. Zhao (2006) proposed an optimization

formulation for the mixed-model assembly line sequencing problem to minimize the expected cost

including the inventory cost and the backorder cost in consideration of stochastic demand. Boysen

et al. (2009) discussed three major sequencing approaches including mixed-model sequencing, car

sequencing and level scheduling considering stochastic demand and task times. Dong (2014)

presented a stochastic programming formulation to minimize the expected work overload time for

mixed-model assembly U-lines with stochastic task times.

Despite the efforts in decision making for mixed-model sequencing with uncertainties, the

existing formulations do not model many real-world uncertainty factors including timely part

72

delivery, material quality, upstream sub-assembly completion and availability of other resources.

To incorporate the uncertainty of part delivery and material quality, we formulate a multi-stage

stochastic mixed-integer program with a probabilistic model for part availability. To increase on-

time performance, our objective function minimizes both lateness and earliness of the final

products’ finish times given their due time targets. The formulation of this optimization model to

make real-time resequencing decisions is part of a project to develop a shop floor decision support

system. This optimization model could serve as a decision-making tool in the sequencing module

of this decision support system. Since this sequencing model accounts for all the possible outcomes

of material availability, it effectively saves the time to solve the sequencing problem once again

whenever a part availability issue arises, providing the shop floor with the optimal resequencing

decisions in real time in all circumstances. Consequently, this model not only offers the sequencing

decisions leading to optimal overall on-time performance, but could also help to prevent the

assembly line from shutting down when required materials turn out to be unavailable.

For sequencing decision makers who are more concerned with on-time performance in

worst scenarios rather than average performance, risk-averse models are preferred to risk-neutral

models. Risk-averse stochastic programs have not been explored in the existing literature for

mixed-model assembly line sequencing problems to our knowledge. In addition to the risk-neutral

sequencing model, therefore, we present the risk-averse problem with Conditional Value-at-Risk

(CVaR) adopted as our risk measure. With the CVaR risk measure, our risk-averse model is able

to provide best resequencing decisions for the worst possible outcomes regarding the part

availability, which helps decision makers to guarantee customers’ satisfaction regarding on-time

performance.

73

The Progressive Hedging (PH) algorithm is a scenario decomposition algorithm initially

developed by Rockafellar and Wets (1991) for stochastic programs with continuous decision

variables. It was further adapted as an effective heuristic solution method to solve stochastic

mixed-integer programs by Watson and Woodruff (2011). The PH algorithm is adopted as our

solution approach not only because of its capability to solve multi-stage models, but also due to its

computational efficiency when dealing with many possible realizations of uncertainties. In many

applications where real-time decisions are valued, such as model sequencing in manufacturing

systems, near-optimal solutions are desired within a limited time frame. Gade et al. (2016) made

it possible to evaluate the quality of solutions at each iteration of the PH algorithm by developing

a lower bounding approach. This lower bounding method, however, is restricted to risk-neutral

models. Guo and Ryan (2017) extended this lower bounding technique to obtain convergent and

tight lower bounds for certain time consistent multistage risk-averse stochastic mixed-integer

programs. In our computational study, we apply this lower bounding approach to a set of time

consistent risk-averse MMALS instances. The numerical results show that convergent and tight

lower bounds are found and that near-optimal feasible solutions can be found in real time

especially for large-scale instances whose extensive form fails to solve directly. This PH algorithm

together with the lower bounding method could be employed within our decision support system

to make real-time resequencing decisions for the shop floor that can significantly reduce the

downtime of assembly lines.

The remainder of this paper is organized as follows. In section 2, we formulate a

deterministic optimization program for mixed-model assembly line sequencing problem to

maximize on-time performance. Based on the deterministic model, in section 3, we develop its

stochastic version with part availability uncertainty taken into consideration and further propose

74

its risk-averse stochastic version with CVaR risk measure to find optimal sequencing decisions in

the worst scenarios. In section 4, we introduce a lower bounding approach to assess solution

qualities for time consistent risk-averse stochastic programs. Computational studies are performed

on a set of MMALS instances with their numerical results provided in section 5.

4.2 Formulation of Mixed-Model Assembly Line Sequencing Problem

We formulate a mixed-integer programming program for mixed-model assembly lines to

make sequencing decisions. The objective of our model is to minimize both lateness and earliness

of meeting customers’ deadlines for finished assembly products. While it is obvious that the

lateness must be avoided, completing the products too early also leads to undesirable inventory

cost.

In our formulation, we schedule the sequencing of assembly units ordered by customers

with given deadlines. We look for the optimal decisions on which unit to assemble at each

assembly station at each period. It is assumed that the takt time, the rate at which a product needs

to be completed to meet customer demand, keeps constant and we take one takt time as the length

of one period. We also assume that the cycle time, the total time it takes to process one assembly

unit at one station, is equal to the takt time. All the assembly units proceed throughout the assembly

line from station to station in the same sequence. Each assembly station can either process one

assembly unit at each period or stay idle. Each assembly unit can be processed at one assembly

station at each period. If one assembly unit is ready to proceed to the next station while the next

station is still busy or the required parts on the next station are not available yet, then this assembly

unit will be pulled off the assembly line and wait beside the current station. The finish time for

each assembly unit is defined as the time when this unit leaves the final assembly station. The

length of earliness and lateness for each assembly unit is measured by the positive deviation and

the negative deviation, respectively, between its finish time and its due time.

75

The deterministic model for our mixed-model assembly line sequencing problem is

formulated as follows:

Sets:

N : set of assembly units to be sequenced with 1, ,n N

P : set of parts with 1, ,p P

T : set of time periods with 1, ,t T , where continuous time t denotes the end of

discrete period t

S : set of assembly stations with 1, ,s S

Decision variables:

, ,n s tv : binary variable equal to 1, if unit n is being processed at station s at time period t ;

and 0, otherwise

, ,n s tu : binary variable equal to 1, if unit n is pulled offline and waiting at station s at time

period t ; 0, otherwise

, ,p s ta : the number of good parts p available at station s at time period t

nf : finish time when unit n leaves the last assembly station

ne : earliness of unit n

nl : lateness of unit n

Input parameters:

nD : due time when finished unit n is required by downstream operations or customers

, ,p s tL : number of good parts p delivered at station s at time period t

, ,p n sR : number of parts p consumed by unit n at station s

76

eC : penalty for earliness ($/unit time)

lC : penalty for lateness ($/unit time)

Objective:

1 1

min
N N

e n l nn n
C e C l

 
  (1.1)

Constraints:

 , ,1
1, 1, , , 1, ,

N

n s tn
v s S t T


    (1.2)

  , , , ,1
1, 1, , , 1, ,

S

n s t n s ts
v u n N t T


     (1.3)

 , ,1
1, 1, , , 1, ,

T

n s tt
v n N s S


    (1.4)

,1,1 , ,1

, , , , , 1, 1 , , 1

1, 1, , , 0, 1, , , 2, ,

, 1, , , 1, , 1, 1, , 1

n n s

n s t n s t n s t n s t

v n N v n N s S

v u v u n N s S t T  

      

        
 (1.5)

 

 

, , , , , ,1

, , , , 1 , , , , , ,1

, 1, , , 1, , , 1, ,

, 1, , , 1, , , 2, ,

N

p n s n s t p s tn

N

p s t p s t p s t p n s n s tn

R v a p P s S t T

a a L R v p P s S t T



 

    

      




 (1.6)

  , ,1
, 1, , ,

T

n s t nt
tv f n N s S


    (1.7)

 , 1, ,n n nf e D n N    (1.8)

 , 1, ,n n nf l D n N   (1.9)

 , , , , , ,, 0,1 , , 1, , , 1, , , 1, ,

, , , 1, ,

n s t n s t p s t

n n n

v u a n N s S t T

f e l n N

     

  
 (1.10)

The objective (1.1) is to minimize the weighted total earliness and lateness over all the

finished products. Constraints (1.2) enforce that each assembly station at each time period can

either process one assembly unit or stay idle. Constraints (1.3) require that each assembly unit at

each time period can stay at only one assembly station, either being processed or waiting offline.

77

Constraints (1.4) restrict that each assembly unit is processed for exactly one time period at each

assembly station. Constraints (1.5) ensure that all assembly units proceed throughout all the

stations on the assembly line in the same sequence. Constraints (1.6) state the availability balance

condition and restrict the consumption of parts or resources at each assembly station to not exceed

the availability at each time period. The variable of finish time for each assembly unit is defined

in constraints (1.7) as the time when the unit leaves the last assembly station. The variables of

earliness and lateness for each assembly unit are defined in constraints (1.8) and (1.9), respectively,

as the positive deviation and the negative deviation between its finish time and its due time.

Constraints (1.10) enforce restrictions on the decision variables.

In the above formulation, the input parameters for the numbers of delivered good parts

, ,p s tL are considered to be deterministic with assumptions of timely part delivery and flawless

material quality. In the real world, however, the quantities of delivered good parts , ,p s tL are random

variables as a result of delay of deliveries and quality defects with stochastic values that are

generally smaller than the deterministic parameters
, ,p s tL in formulation (1). Therefore, the

optimal solutions yielded from solving the deterministic problem (1) might turn out to be infeasible

given the actual number of available parts with delivery delays or quality issues. As a consequence,

the problem (1) will need to be resolved with the updated information on the number of available

parts, leading to the downtime of assembly lines while updating the sequencing decisions. Thus,

it would be desirable to have initial solutions that are feasible with various extents of delays of

deliveries and quality defects to optimize the overall on-time performance at the beginning of each

working shift.

4.3 Time Consistent Multistage Risk-Averse Stochastic Mixed-Integer Formulation

4.3.1 Multistage Risk-Neutral Programs for Model Sequencing Problem

78

For a multistage stochastic program with  time stages, we use 2(, ,)   to denote

the uncertain parameters with known probability distributions and use 1(, ,)x x x to denote the

decision vectors. The realization of uncertainty t at stage 2, ,t  is not revealed until the

decisions 1tx  are made. We use
[] 2(, ,)t t   to denote the history of the realizations up to

stage t and use    1 2 2 1 2 3 3 1 2 1 13
, , (,), , (, ,), , , (, , ,)x x x x x x x x x   
      to represent the

sequence of decisions and realizations of uncertainties.

We represent the risk-neutral multistage stochastic mixed-integer program as follows:

   1 1 1

2
1

1 1 2 1 1 12
, ,

min , : ,
q k qT

x x
z c x Q x Ax b x


  

 
     
 

 (2)

For 2, ,t  ,
1 [](,)t t tQ x 

 is defined recursively as:

      
     

1 []1 [] [] | 1 [1]

[] 1 [1] []

, min ,
t t

t

t t t

T

t t t t t t t t t
x

t t t t t t t t

q k q

t

Q x c x Q x

T x W x h

x

  

 



 

  
 

 

 

   

  

Here 1 1

1 ,
k j

c b  and [] []() , ()t tk j

t t t tc h   are given vectors, while 1 1j k
A




and 1

[] [1]() , ()t t t t
j k j k

t t t tT W
 

   are given matrices. The decisions are non-anticipative in

the sense that a decision made in stage t can depend on information revealed before that stage

but not after.

The notation  denotes expectation with respect to the distribution of random variable

 . To avoid complications when computing the integral behind  we assume that we have

only a finite number of realizations  with corresponding probabilities p . In a scenario tree, we

use to to denote a scenario tree node that belongs to the set of all scenario tree nodes tO at stage

79

1, ,t  . We use ()to to represent a scenario that belongs to the set of scenarios ()to that

define the node t to O . We use ()to  to denote the corresponding tree node for scenario  

at stage 1, ,t  . We use ˆ(())tx o  as the non-anticipative decision made at scenario tree node

()to  .

Then problem (2) can decompose by scenario and be represented as its scenario

reformulation:

   

      

1
1 1 []

ˆ, , ,
2

min :

ˆ, () 0, , 1,...,

T T

t t t
x x x

t

t t t

z p c x c x

x X p x p x o t

 

  
   

 

      

 







  

 

    

 (3)

where

   

         

1 1 1

1

[] 1 [1] []

: , , 1, ,

, , 2, ,

q k q

t t

t t t t t t t t

x Ax b x t
X

T x W x h t


  

      



 

 

      
  

       

 (4)

Problem (3) can further decompose into scenario sub-problems

 
1

1 1 []
, ,

2

min : , 1, ,T T

t t t t
x x

t

c x c x x X t




 


 
    

 
 for scenarios  which are coupled

by the non-anticipativity constraints    ˆ () 0t tp x p x o    .

Our deterministic formulation (1) assumes the part delivery is timely and no quality defects

are present, that is, the information of part delivery
, ,p s tL is known with certainty. In the real world,

however, the availability of parts at each period may not be revealed until after the sequencing

decisions are made for that period. In order to make sequencing decisions in consideration of

uncertainty from part delivery, this formulation is extended to a multistage stochastic program

according to formulation (3) where each period defines one decision stage. In our multistage model,

each scenario specifies a possible realization of part delivery over the schedule horizon with

80

marginal probability distribution
, , , ,() Pr()p s t p s tf l L l  where scalar l represents the number of

good parts p delivered at station s at stage t. The sequencing decisions tx made at each stage are

made with the part delivery information of the current and previous periods
[]t and previous

decisions 1 1(, ,)tx x  . The delivery information of parts for the next periods is not revealed until

after the sequencing decisions at the current stage are made. The scenario tree node ()to  represent

the realization of part delivery information for scenario   at stage t . A set of non-

anticipativity constraints     ˆ
t tx x o  for all scenario tree nodes ()to  is essential in our

multistage formulation to enforce that all the decisions tied to the same scenario tree node are

identical and cannot account for any information that has not been revealed yet. For a  -stage

problem, note the decision variables tx in our multistage model include stage t decision variables

, , , , , ,, , , 1, , , 1, ,n s t n s t p s tv u a n N s S   when t  and include last stage decision variables

, , , , , ,, , , , 1, ,n s n s p s tv u a n N s S     and , , ,n n nf e l n N   when t  . The feasible region

X corresponds to constraints (1.2) - (1.10) given the realization  for

, , , 1, , , 1, , , 1, ,p s tL p P s S t     .

Compared to the deterministic model (1), the multistage stochastic version manages to

account for all the possible realizations of part delivery and yields the sequencing decision for each

realization resulting in the optimal expected on-time performance over all the scenarios. This

makes the stochastic optimization model an effective real-time sequencing decision-making tool

for a shop floor decision support system. While the deterministic model could yield infeasible

solutions when required materials are unavailable or have quality issues, leading to the downtime

81

of assembly lines, the stochastic model considers all the possible scenarios and offers sequencing

decisions in all circumstances.

4.3.2 Time Consistent Multistage Risk-Averse Programs with CVaR Risk Measure

The multistage formulation in equation (2) is risk-neutral such that the expected

performance across all scenarios is minimized. On the other hand, there are many applications

where decision makers are more interested in worst events that might happen. In manufacturing

systems such as mixed-model assembly lines, the schedulers are more concerned with the on-time

performance in the worst scenarios of part availability to guarantee the customers’ satisfaction

regarding the timely delivery of finished products, especially when the delivery of parts is very

unpredictable. For such decision makers concerned about the worst scenarios, a risk-averse model

is preferred. However, one key issue of time consistency arises when measuring risk in multistage

models. Among various definitions of time consistency, we use the definition of time consistency

from Homem-de-Mello and Pagnoncelli (2016) such that given the optimal solutions from

previous stages, resolving the problem results in the same solutions for the later stages if the

optimal solutions are unique or gives the same optimal objective otherwise. In general, this

property of time consistency is not guaranteed for multistage stochastic programs and depends on

how the risk measure is computed. Homem-de-Mello and Pagnoncelli (2016) proposed a class of

expected conditional risk measures (ECRMs) which prove to be time consistent and, for some risk

measures, allow for risk-neutral reformulations. Guo and Ryan (2017) presented scenario

reformulations for multistage risk-averse models with ECRMs that allow for the application of

scenario decomposition solution algorithms to efficiently solve the risk-averse problems. In the

application of mixed-model assembly line sequencing problems where decision makers are

concerned with costs in worst cases, we focus on Conditional Value-at-Risk (CVaR) as a coherent

82

risk measure to measure the expected value of earliness and lateness in the worst  100 1 %

scenarios given a probability  . We use -CVaR to denote the multistage risk-averse program

with the expected conditional CVaR risk measure.

Here, we restate the scenario reformulation of -CVaR optimization from Guo and Ryan

(2017) in Proposition 3 to demonstrate how -CVaR optimization can be computed in a

deterministic equivalent formulation.

Proposition 3. Consider the case with finitely many realizations  and corresponding

probabilities p . Let (0,1)  . Then the scenario reformulation of -CVaR optimization can be

represented as:

       

       

     
1

2

2

1 1 2 2

2

ˆ, , ,
, , ,
, ,

1 1
:

1 1

min , 2, ,

ˆ, () 0, , 1, ,

T

T

CVaR t t t t t
x x x

v v t t t

p c x v v

z v c x t

x X p x p x o t








  
 

 

  

     
 

     

    





  
     

   
 

     
 

       
 
 



 (5)

where X is defined in (4).

4.4 Lower Bounding Approach for Time Consistent Risk-Averse Programs

4.4.1 Progressive Hedging Algorithm

The PH algorithm is a scenario decomposition method developed by Rockafellar and Wets

(1991) for stochastic linear programs. It demonstrates great advantage when dealing with a large

number of scenarios by allowing decomposition of the large-scale extensive form into scenario

sub-problems and optimization for each scenario in parallel. The computational burden can be

further reduced by taking advantage of any special structures in the scenario sub-problems.

For a multistage stochastic mixed-integer program, a scenario solution is defined to be

admissible to a specific scenario if it satisfies all the constraints in this scenario. A solution is

83

defined to be non-anticipative if its decisions tied to the same scenario tree node are identical. A

solution is defined to be feasible if it is non-anticipative and all its scenario solutions are admissible

to the corresponding scenarios. To find an optimal solution for a multistage stochastic program,

the PH algorithm computes an aggregated solution at each scenario tree node from the admissible

solutions of all the modified scenario sub-problems tied to the same scenario tree node and then

updates the modified scenario sub-problems at each PH iteration. The aggregated solutions

progressively converge to the optimal solution. The objective in each modified scenario sub-

problem includes a penalty term for the non-anticipativity constraint and a proximal term to

represent the squared deviation of its admissible solution for this scenario from the aggregated

solution across all the scenarios. The weight vector 1 2 1k k k
w    
 in modified scenario sub-

problems is updated by the penalty vector 0  at each iteration.

The PH algorithm was further adapted by Watson and Woodruff (2011) to solve stochastic

mixed-integer programs as an effective heuristic algorithm. Though its optimality is not guaranteed

in the mixed-integer case, computational studies demonstrate that it finds high-quality solutions

within a reasonable number of iterations (Watson and Woodruff 2011). We restate the PH

algorithm for multistage stochastic mixed-integer programs from Gade et al. (2016):

STEP 1 Initialization: Let : 0v  and   : 0,vw     . For each   , compute

   1

1 1

2

: arg min :v T T

t t t t

t

x c x c x x X



 
   

 



 

STEP 2 Iteration counter update: 1v v 

STEP 3 Non-anticipative policy:    
() () () ()

ˆ () :
t t t t

v v

t t t

o o o o

x o p x p 
 

 
 

  

84

STEP 4 Weight update: For each   , compute

        1 ˆ: ()v v v v

t t t t tw w x x o      

STEP 5 Decomposition: For each   , compute

       
1

2
1

1 1

2 1

ˆ: arg min () :
2

Tv T T v v

t t t t t t t t t

t t

x c x c x w x x x o x X




 

  
       

  
 
 




   

STEP 6 Termination: If all the scenario solutions are identical to within some tolerance at

each tree node, then stop. Otherwise, return to Step 2.

The performance of the PH algorithm with various values of penalty parameter  with a

single scalar for all variables has been extensively studied in the literature (Mulvey and

Vladimirou 1991; Listes and Dekker 2005; Fan and Liu 2010). Computational studies (Watson

and Woodruff 2011; Gade et al. 2016) show that larger values of  tend to speed up the

convergence of PH but the upper bound may be bad and PH may converge to a non-optimal

solution. The smaller values of  generally slow down the convergence of PH but are more

likely to result in high-quality solutions, and tight lower bounds.

4.4.2 Progressive Hedging Lower Bounds on Stochastic Mixed-Integer Programs

The PH algorithm has demonstrated its high-quality solutions and computational

efficiency in a variety of applications of stochastic mixed-integer programs including power

systems (Cheung et al. 2015, Ordoudis et al. 2015), network design (Crainic et al. 2011), lot-

sizing (Haugen et al. 2001) and production scheduling (Lamghari et al. 2016). However, its

optimality is not guaranteed and the algorithm itself lacks the capability to assess the quality of

PH solutions. Gade et al. (2016) effectively addressed this deficiency by developing a lower

bounding approach for the PH algorithm to evaluate its solution quality at each iteration. This

85

approach also allows the integration of PH with some exact solution algorithms for the two-stage

problem such as dual decomposition that rely on lower bounds (Guo et al. 2015).

Here, we elaborate the extension of the lower bounding method proposed by Gade et al.

(2016) for multistage problems in Proposition 4.1. Let z denote the optimal objective function

value of the problem (2) and (3). The weight vector w defines an implicit lower bound ()D w on

z .

Proposition 4.1. Let   w w





 and     
1,t t

w w





  where   tk

tw  satisfy

 
() ()

0
t t

t

o o

p w


 


 for each t to O . Let

       
1

1 1

2 1

: min :T T T

t t t t t

t t

D w c x c x w x x X


 

 
    

 
 
 

    (6)

Then      *:D w p D w z


   


 .

It is well known that convergence of PH can be accelerated by forming bundles of

scenarios (Wets 1989). Instead of solving each scenario sub-problem, the bundle version of the

PH algorithm solves smaller extensive forms of the original problem in steps 1 and 5 of the PH

algorithm.

Here, we elaborate the bundle version of PH lower bounding method by Gade et al.

(2016) for two-stage programs extended to multistage models in Proposition 4.2. Suppose the set

of all the scenario tree nodes tO at stage 2, , 1t   is partitioned into bundles t . We denote

the set of bundles by tB , with t tB  . Let
 t t

P p  
 and   :

t t tX x     .

Although the scenario tree nodes can be bundled at multiple stages, here we consider bundling

only once at a single stage t .

86

Proposition 4.2. Let   
t t

t B
w w





 where   tk

tw  satisfies   0
t

t t

t

B

P w





 . Let

   
 

   
1

1 1

2 1

: min :
t t

t t

T T T

t t t t t t
x

t t

p
D w c x c x w x x X

P



  

  
    

  
  
 



 
  

   (7)

Then      *:
t t

t t

t

B

D w P D w z 





  .

4.4.3 Lower Bounds on Time Consistent Risk-Averse Programs with CVaR Risk Measure

The above lower bounding approach has been successfully implemented in a variety of

applications where numerous scenarios are present and time efficiency is valued (Gade et al.

2016, Cheung et al. 2015). The resulting solutions are expected to perform well across all the

possible realizations and do not consider the risks in the worst scenarios. Guo and Ryan (2017)

presented a set of PH lower bounding formulations for some commonly used risk measures

including CVaR, excess probability and expected excess. Those risk measures are formulated

based on the ECRMs proposed by Homem-de-Mello and Pagnoncelli (2016) which prove to be

time consistent.

For some of the manufacturing systems such as mixed-model assembly lines operating on

a just-in-time basis, the timely delivery of materials can be a large source of uncertainty for

decision makers. Even the optimal sequencing decision solved from the multistage stochastic

model may lead to significant costs in the worst scenarios of part availability. To increase the on-

time performance for the worst cases, we adopt risk-averse stochastic models. We choose CVaR

as our risk measure in our risk-averse model to measure the expectation of earliness and lateness

in the worst scenarios whose costs fall above a given quantile of the cost distribution. Our time

consistent risk-averse -CVaR optimization program for the mixed-model assembly line

sequencing problem is formulated according to problem (5). Note that the objective function

87

(1.1) only includes  -stage decision variables. Therefore, the worst  100 1 % of scenarios in

stage  are considered in the -CVaR formulation of problem (1).

Here, we restate the lower bounding approach for -CVaR optimization programs from

Guo and Ryan (2017) in Proposition 4.3. Let   max max () :T

t t t t
x

U c x x X


  


 and

  min min () :T

t t t t
x

L c x x X


  


 . Let *

CVaRz  denote the optimal objective function value of the

problem (5). The weight vector w defines an implicit lower bound on *

CVaRz  .

Proposition 4.3. Let   w w





 and     
1,t t

w w





  where   tk

tw  satisfy

 
() ()

0
t t

t

o o

p w


 


 for each t to O . Let   w w





  and     
1,t t

w w


 


  where

  tk

tw  satisfy  
() ()

0
t t

t

o O

p w


  


 for each t to O . Let   w w





  and

    
1,t t

w w


 


  where   tk

tw  satisfy  
() ()

0
t t

t

o O

p w


  


 for each t to O . Let

      

     

 

     

1 1 2 2

2

1

1 1

2 2

1 1

1 1

:

, , : min
, 2, ,

ˆ, () 0, , 1, ,

, 1, ,

, 1, ,

T

T T T

t t t t

t t

T

t t t t

t t t

t t t

t t

c x v v

w x w w v

D w w w
v c x t

x X p x p x o t

v U t

L t



 

 
      

 
 

    
 

       
 
       
 

    
    

 

 



 



  

 
 

   

  
  

    

 

 

 (8)

Then          *, , : , , CVaRD w w w p D w w w z 



       


   .

4.5 Computational Study

In this section, we examine the performance of PH lower bounds for our time consistent

risk-averse multistage stochastic mixed-integer formulation of the MMALS problem. We

88

generate a set of test instances and study the performance of the PH lower bounds. The

interaction between the strategies for choosing the PH  parameter and the quality of PH lower

bounds is investigated as well as the scenario bundling strategies of PH. The PH algorithm is

implemented in PySP (Hart et al. 2017), an open-source software package for modeling and

solving stochastic programs with or without scenario bundling. The plugin called

phboundextension is employed to implement the PH lower bounds for stochastic programs.

CPLEX 12.7 is adopted to solve mixed-integer linear optimization problems (IBM ILOG

CPLEX). All the experiments are conducted on a Linux server with 31 GB and 8 processors with

4 cores per processor.

We generate a set of MMALS instances denoted as MMALS-P. where P is the number

of critical parts with uncertain availability and  is the number of time stages. In each MMALS

instance, the goal is to sequence a given set of various models to be assembled with various

deadlines from customers. We consider the deliveries of the critical parts required for the

assembly of each product as the uncertainty factor. According to the data collected from our

industrial partners, the deliveries of parts are observed to be independent among different parts

and across periods. The maximum lateness of delivery is two periods such that there are three

scenarios for each part delivery, that is, timely delivery, delivery one period late, and delivery

two periods late. Additionally, the delivery of each part generally follows a truncated geometric

distribution where the probability of its being delivered in the next period, if the part has not

arrived yet, is 0.7. When multiple copies of the same part are needed by the same unit, they

arrive together, either all delivered on time or all delayed. When there exist more than one

critical part delivered with uncertainty, the joint distribution of part deliveries is computed from

the marginal distribution for each part with assumption of independence among parts. In a  -

89

stage instance, we consider uncertain delivery of parts in the first  time periods and assume the

parts scheduled to deliver in later stages are delivered on time. For a MMALS instance with 

stages and P parts with uncertain availability, the input parameters of part deliveries are

generated using probabilistic scenario trees with  stages and 3P branches emanating from each

scenario tree node since there are 3 possible realizations for each part from each node of the

previous stage, which leads to
 1

3
P 

 scenarios. To represent the evolution of realizations of

uncertainties for MMALS instances, we take MMALS-1.5 as an instance and display its scenario

tree of part delivery uncertainties in Figure 1. With only one part with uncertain delivery, 3

possible realizations emanate from each scenario tree node for the first  periods with td

representing the number of delayed periods at period 1, ,t   . After  periods, only one

realization emanates from each scenario node with 0td  for periods t  , meaning all the

parts scheduled to deliver in stages later than  periods are delivered in a timely manner. As

seen from the scenario tree for MMALS-1.5, the number of nodes tO for each period t  are

computed as
13t

tO  while the number of nodes tO for each period t  stays constant as

13tO  
.

90

Figure 4.1 Scenario tree to represent realizations of part delivery lateness for instance MMALS-

1.5

In our MMALS instances, we sequence ten various models at each working shift on a

mixed-model assembly line of ten workstations. We consider 15 time periods with various time

stages. The penalties for earliness and lateness are set to be 1eC  and 3lC  . The input

parameters of deadlines on the finished products are shown in Table 1. The input parameters of

the part consumption are displayed in Table 2 and the input parameters of the number of

delivered parts are shown in Table 3. The P critical parts delivered with uncertainty are

consumed in the first P workstations in the assembly line, one such part type in each station.

Table 4.1 Input parameters of due time for the finished products on MMALS instances

91

 n 1 2 3 4 5 6 7 8 9 10

P=1 nD 11 12 13 14 15 16 17 18 19 20

P=2 nD 12 13 14 15 16 17 18 19 20 21

Table 4.2. Input parameters of the number of part assumptions on MMALS instances

 n 1 2 3 4 5 6 7 8 9 10

P=1 1, ,1nR 2 1 3 2 1 3 2 1 3 2

P=2 1, ,1nR 2 1 3 2 1 3 2 1 3 2

 2, ,2nR 2 1 3 2 1 3 2 1 3 2

Table 4.3. Input parameters of the number of delivered good parts on MMALS instances

 n 1 2 3 4 5 6 7 8 9 10 11

P=1 1,1,tL 2 1 3 2 1 3 2 1 3 2 0

P=2 1,1,tL 2 1 3 2 1 3 2 1 3 2 0

 2,2,tL 0 2 1 3 2 1 3 2 1 3 2

Computational studies on the risk-averse MMALS instances with -CVaR risk measure

are as follows. Since the objective function (1.1) only includes  -stage decision variables, we

need only to assign the confidence level in the final stage. The preselected probability is set to be

0.8 such that we are concerned with the 20% worst scenarios in the final stage. Multiple

runs of the PH algorithm are performed on this instance, varying the values of the penalty

parameter  . Specifically, we consider fixed scalar values  1 2 31,10 ,10 ,10   and record the

time-series of the lower bound  , ,D w w w  obtained at each PH iteration during each run. The

lower bound results for a MMALS-2.3 instance are shown in Figure 2 (a), which additionally

displays the optimal value obtained from solving its extensive form. As displayed in Figure 2 (a),

larger values of  tend to accelerate the convergence of lower bounds to the optimal objective.

In contrast, smaller values of  slow down as well as smooth the convergence and generally

lead to higher quality of final solutions.

92

We also examine the PH lower bounds when bundling scenarios. Specifically, we vary

the number of scenarios in each bundle considered by PH, while holding  constant. We

consider bundling at a single stage t and each bundle is formed by scenarios emanating from one

scenario tree node in stage 1t  . An illustrative example for a MMALS-2.3 instance is shown in

Figure 2 (b). The PH parameter is chosen to be
310 because it takes a relatively large

number of iterations for the PH lower bounds to converge to the optimal objective value. When

scenarios are bundled when implementing the PH algorithm, the PH lower bounds start closer

and converge faster to the optimal objective value.

Figure 4.2 Lower bounds from PH and optimal value by solving extensive form for MMALS-2.3

with (a) different penalty parameter values; (b) different scenario bundling strategies with
310

Finally, we consider summary results of a set of MMALS instances under the PH

algorithm, shown in Table 4. In this experiment, we consider the PH algorithm behavior with and

without the scenario bundling strategy under scalar PH parameter values  1 210 ,10  . In

just-in-time production systems such as mixed-model assembly lines, the takt time and the cycle

time tend to be very short and are generally measured in minutes, which requires real-time

decisions within minutes to prevent the assembly lines from shutting down. In our computational

experiments, the run-time limit is set to be 300 seconds for the PH algorithm and we record the

93

PH lower bounds as well as upper bounds on the optimality gaps. As we can see from Table 4,

although the extensive form solves faster for relatively small-scale instances, the PH algorithm

displays advantages when real-time decisions are desired for relatively large-scale instances

where extensive forms fail to solve within a limited time frame. A parallel implementation of PH

could reduce the run-times from those reported.

Table 4.4 Lower bounds and run-time (in seconds) from PH and optimal objective and run-time

(in seconds) from EF for a set of MMALS-P. instances

MMALS

instance

Number

of

scenarios

PH algorithm with 300-second time limit Extensive Form

Value

of 

Stage

of

bundle

Number

of

bundles

Number

of

iterations

Lower

bound

Gap

upper

bound

Run-

time

(s)

Optimal

objective

Run-

time

(s)

2.3 81 0.1 NA NA 4 33.71 0.21% 187 33.78 42

 3 9 3 33.78 0.00% 120

 0.01 NA NA 9 33.36 1.26% 300

 3 9 2 33.78 0.00% 89

2.4* 729 0.1 NA NA 1 31.37 7.68% 300 33.37 578

 4 81 1 32.01 5.53% 300

 3 9 1 33.37 1.23% 300

 0.01 NA NA 1 31.35 7.75% 300

 4 81 1 32.01 5.53% 300

 3 9 1 33.37 1.23% 300

2.5* 6561 0.1 NA NA 1 32.09 14.02% 300 NA NA

 4 81 1 34.47 6.15% 300

 3 9 1 34.48 6.12% 300

 0.01 NA NA 1 32.09 14.02% 300

 4 81 1 34.44 6.24% 300

 3 9 1 34.44 6.24% 300

1.5 81 0.1 NA NA 11 32.11 5.45% 300 33.86 18

 4 9 8 32.55 4.02% 210

 0.01 NA NA 10 31.62 7.08% 300

 4 9 13 32.39 4.54% 300

1.6 243 0.1 NA NA 3 31.10 8.87% 300 33.86 71

 5 27 3 31.99 5.85% 300

 4 9 4 32.46 4.31% 300

 0.01 NA NA 2 31.04 9.09% 300

 5 27 3 31.96 5.94% 300

 4 9 4 32.34 4.70% 300

94

1.7* 729 0.1 NA NA 1 31.12 9.54% 300 34.09 255

 5 27 1 32.09 6.23% 300

 4 9 1 32.46 5.02% 300

 0.01 NA NA 1 31.12 9.54% 300

 5 27 1 32.04 6.40% 300

 4 9 1 32.40 5.22% 300

1.8* 2187 0.1 NA NA 1 31.29 9.68% 300 34.32 670

 5 27 1 31.29 9.68% 300

 0.01 NA NA 1 31.29 9.68% 300

 5 27 1 31.29 9.68% 300

1.9* 6561 0.1 NA NA 1 31.29 9.68% 300 NA NA

 6 81 1 31.29 9.68% 300

 0.01 NA NA 1 31.29 9.68% 300

 6 81 1 31.29 9.68% 300

The PH algorithm is terminated either when the normalized average per-scenario

deviation from the average solution is reduced below the convergence threshold of 0.01% or

when the run-time exceeds 300 seconds. The bound on the optimality gap is computed as

UB LB

LB


, where LB is the value of the lower bound obtained from our PH lower bounding

approach, and UB is the objective value of the feasible solution obtained from PH in the last

iteration. For the relatively large MMALS instances denoted by symbol *, however, only one

iteration can be performed within the 300-second time limit. For those instances, LB is equal to

the ‘wait-and-see’ (WS) value; i.e., the expectation of the optimal objective values from all the

scenario sub-problems, and UB is the objective value of a feasible solution obtained by solving

the extensive form of a pessimistic instance that is solvable within 300 seconds. Compared to the

original  -stage instance, a pessimistic has a scenario tree modified to have only the worst

realizations of part deliveries in periods  , 1  , …, 1K   for some K ; i.e., all the parts

scheduled to be delivered in the last K periods are delivered two periods late. As observed from

Table 4, we cannot tell the difference on the optimal objectives between MMALS-1.8 and

95

MMALS-1.9, which indicates that the uncertainties to be realized in the ninth period are too

remote to affect the sequencing decisions and results from the initial stage. This observation

suggests diminishing returns from including many stages of uncertainties in the stochastic

sequencing model.

4.6 Conclusions

To develop a shop floor decision support system for just-in-time production systems such

as mixed-model assembly lines, it is essential to develop a decision-making tool to make real-time

resequencing decisions. Real-time decisions are necessary to avoid wastage in time and costs of

downtime caused by inevitable disruptions. The real-time aspect of our decision-making tool is

realized from two respects: the stochastic optimization model and the solution approach. On the

modeling side, our multistage stochastic program formulation accounts for all the possibilities of

part availability and thus provides a feasible sequencing decision no matter which scenario occurs.

While a deterministic model might give a solution that turns out to be infeasible when some

required parts are unavailable, this stochastic model effectively prevents the assembly line from

shutting down when scheduled parts are not delivered on time. In addition, the optimal solution

from a risk-neutral model may result in large costs in the worst scenarios when the uncertainty of

timely delivery is significant. Therefore, a time consistent risk-averse model with an expected

conditional CVaR risk measure is presented to optimize the on-time performance for the worst

scenarios. For computational efficiency, we adopt the PH algorithm with a lower bounding

approach to assess solution quality. Our numerical results demonstrate its computational advantage

in finding near-optimal solutions in real time, especially for large-scale MMALS instances whose

extensive forms cannot be solved within a limited time frame. In summary, our formulation of

risk-neutral and risk-averse multistage stochastic optimization models, together with our adopted

96

solution approach, makes it possible for a shop floor decision support system to suggest real-time

resequencing decisions to improve the on-time performance of mixed-model assembly lines.

REFERENCES

Boysen N., Fliedner M., and Scholl A. (2009) Sequencing mixed-model assembly lines: survey,

classification and model critique. European Journal of Operations Research, 192, 349-373

Cheung K., Gade D., Silva-Monroy C., Ryan S., Watson J.P. (2015) Toward scalable stochastic

unit commitment. Part 2: solver configuration and performance assessment. Energy Systems,

6(3), 417-438

Crainic T.G., Fu X., Gendreau M., Rei W., and Wallace S.W. (2011) Progressive hedging-based

metaheuristics for stochastic network design. Networks, 58(2), 114-124

Dong J. (2014) Balancing and sequencing of stochastic mixed-model assembly u-lines to

minimize the expectation of work overload time. International Journal of Production Research,

52(24), 7529-7548

Dörmer J., Günther H. O., and Gujjula R. (2015) Master production scheduling and sequencing

at mixed-model assembly lines in the automotive industry. Flexible Services and Manufacturing

Journal, 27, 1-29

Fan, Y., & Liu, C. (2010). Solving stochastic transportation network protection problem using

the progressive hedging-based method. Networks and Spatial Economics, 10(2), 193-208.

Gade D., Hackebeil G., Ryan S., Watson J., Wets R., and Woodruff D. (2016) Obtaining lower

bounds from the progressive hedging algorithm for stochastic mixed-integer

programs. Mathematical Programming, 157(1), 47-67

Guo G., Hackebeil G., Ryan S., Watson J., and Woodruff D. (2015) Integration of progressive

hedging and dual decomposition in stochastic integer programs. Operations Research Letters, 43,

311-316

Guo G., Ryan S. (2017). Progressive hedging lower bounds for time consistent risk-averse

multistage stochastic mixed-integer programs, available at:

http://works.bepress.com/sarah_m_ryan/93/

Hart W., Laird C., Watson J., Woodruff D., Hackebeil G., Nicholson B., and Siirola J. (2017)

Stochastic Programming Extensions. In Pyomo - Optimization Modeling in Python. Second

Edition (pp. 165-198) Springer Optimization and Its Applications, 67

Haugen K., Løkketangen A., and Woodruff D.L. (2001) Progressive hedging as a metaheuristic

applied to stochastic lot-sizing. European Journal of Operational Research, 132, 116-122

97

Homem-de-Mello T., & Pagnoncelli B. K. (2016). Risk aversion in multistage stochastic

programming: a modeling and algorithmic perspective. European Journal of Operational

Research, 249(1), 188-199.

Lamghari A., and Dimitrakopoulos R. (2016) Progressive hedging applied as a metaheuristic to

schedule production in open-pit mines accounting for reserve uncertainty. European Journal of

Operational Research, 265(3), 843-855

Listes O., & Dekker R. (2005). A scenario aggregation based approach for determining a robust

airline fleet composition. Transportation Science, 39, 367-382.

Manavizadeh N., Rabbani M., and Radmehr F. (2015) A new multi-objective approach in order

to balancing and sequencing U-shaped mixed model assembly line problem: a proposed heuristic

algorithm. The International Journal of Advanced Manufacturing Technology, 79, 415-425

Mulvey J. M., & Vladimirou, H. (1991). Applying the progressive hedging algorithm to

stochastic generalized networks. Annals of Operations Research, 31, 399-424.

Ordoudis C., Pinson P., Zugno M., and Morales J.M. (2015) Stochastic unit commitment via

Progressive Hedging – extensive analysis of solution methods. PowerTech 2015 IEEE

Eindhoven

Rabbani M., Heidari R., and Farrokhi H. (2018) A bi-objective mixed-model assembly line

sequencing problem considering customer satisfaction and customer buying behavior.

Engineering Optimization, 1-20

Rahimi-Vahed A. (2007) A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-

model assembly line sequencing problem,” Computers and Industrial Engineering, 53(4), 642-

666

Rockafellar R., and Wets R. (1991) Scenarios and policy aggregation in optimization under

uncertainty. Mathematics of Operations Research, 16(1), 119–147

Schultz R. (2010) Risk aversion in two-stage stochastic integer programming. International

Series in Operations Research and Management Science, 150, 165-187

Watson J., and Woodruff D. (2011) Progressive hedging innovations for a class of stochastic

mixed-integer resource allocation problems. Computational Management Science, 8(4), 355-370

Wets R. J. B. (1989). The aggregation principle in scenario analysis and stochastic optimization.

In Wallace, S.W. (Ed.), Algorithms and Model Formulations in Mathematical Programming (pp.

91-113). Berlin: Springer.

Zhao X. (2006) Sequence-to-customer Goal with Stochastic Demands for a Mixed-model

Assembly Line. International Journal of Production Research, 44(24), 5279-5305

http://link.springer.com/bookseries/6161
http://link.springer.com/bookseries/6161

98

CHAPTER 5. SUMMARY AND DISCUSSION

This dissertation consists of three papers that, together, contribute to the solution

approaches for multistage risk-neutral and risk-averse optimization problems with discrete

decisions under uncertainty. The contributions, limitations, and future studies are discussed in

this chapter.

The first paper addressed some complementary deficiencies of the PH and DD algorithms

and presented an integrated method that takes advantage of PH’s computational efficiency and

DD’s guarantee of global convergence. The computational studies indicate that the integration of

the PH algorithm can help the DD algorithm to reduce the run-time by up to 50% in a set of

stochastic server location instances, and help the DD algorithm to converge to a near-optimal

solution within minutes in a stochastic unit commitment instance that takes the DD algorithm

alone more than 24 hours to reduce the optimality gap below 99%. The success with this solution

approach, however, relies on the prior experiment on the tuning of the PH parameters and the

DD parameters which might consume some computational time. Further research can be

performed to explore the strategies to compute effective and efficient PH and DD parameters to

speed up the convergence of our integrated method. In addition, we shall compare the PH lower

bound with other bounding approaches for multistage problems in our future study.

The second paper proposed a time consistent scenario-decomposed version of

reformulations of multistage risk-averse stochastic programs with a variety of risk measures,

which allows for the employment of scenario decomposition solution algorithms such as the PH

algorithm in solving multistage risk-averse models. We further developed a lower bounding

approach based on the scenario reformulations to help the PH algorithm to assess solution quality

and to find near-optimal solutions within a reasonable amount of time for multistage risk-averse

99

stochastic mixed-integer problems. Our computational experiments show that this lower

bounding approach provides convergent and tight lower bounds and that PH can obtain near-

optimal solutions within reasonable run-time for large-scale stochastic mixed-integer instances

whose extensive form cannot be solved. However, our numerical studies are limited to the risk-

averse problems with CVaR as the risk measure. A complete computational study can be

performed in our future study to include a variety of risk-averse models with different risk

measures. It also remains as a promising area for potential future research to integrate this lower

bounding approach with other exact algorithms for multistage risk-averse programs.

The third paper is part of a project to develop a shop floor decision support system for a

just-in-time production system to provide real-time resequencing decisions. First, a stochastic

optimization model was formulated to incorporate real-world uncertainties from timely part

delivery and material quality such that a feasible sequencing decision is available in any

scenario. A time consistent risk-averse model was further proposed to optimize on-time

performance for the worst scenarios. Second, the lower bounding approach presented in the

second paper was adopted as our solution method to find near-optimal sequencing decisions in

real time. The computational results indicate the PH algorithm together with its lower bounding

approach can yield real-time sequencing decisions with verifiable high quality in a just-in-time

production system, especially for large-scale instances whose extensive form cannot be solved

within a reasonable amount of time. This optimization model, however, is limited to the

sequencing decision making in the main assembly lines. Future studies can be conducted to also

include the sequencing decisions for the sub-assembly lines. Additionally, more real-world

uncertainty factors such as stochastic demands and deadlines can be incorporated in our

sequencing model in our future research.

