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ABSTRACT

Deep uncertainty usually refers to problems with epistemic uncertainty in which

the analyst or decision maker has very little information about the system, data are

severely lacking, and different mathematical models to describe the system may be

possible. Since little information is available to forecast the future, selecting prob-

ability distributions to represent this uncertainty is very challenging. Traditional

methods of decision making with uncertainty may not be appropriate for deep un-

certainty problems. This paper introduces a novel approach to allocate resources

within complex and very uncertain situations. The resource allocation model for

deep uncertainty (RAM-DU) incorporates different types of uncertainty (e.g., param-

eter, structural, model uncertainty) and can consider every possible model, different

probability distributions, and possible futures. Instead of identifying a single optimal

alternative as in most resource allocation models, RAM-DU recommends an interval

of allocation amounts. The RAM-DU solution generates an interval for one or mul-

tiple decision variables so that the decision maker can allocate any amount within

that interval and still ensure that the objective function is within a predefined level of

optimality for all the different parameters, models, and futures under consideration.

RAM-DU is applied to allocating resources to prepare for and respond to a Deepwater

Horizon-type oil spill. The application identifies allocation intervals for how much

should be spent to prepare for this type of oil spill and how much should be spent to

help industries recover from the spill.
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CHAPTER 1. INTRODUCTION

Risk and uncertainty are most frequently linked with each other when people talk

about decision making. Risk management is a very old idea that has relatively recently

taken on somewhat of a new character. Kaplan and Garrick (1981) suggest measuring

risk using three questions. They are: 1) What can happen? 2) How likely is it that it

will happen? 3) If it does happen, what are the consequences? Answering these three

question proposed by Kaplan and Garrick (1981) is not so easy. Decision makers

often face uncertainty, which means good risk management should be implemented

during the decision-making process. However, answering questions 2 and 3 can be

very challenging especially when facing deep uncertainty with little information or a

severe lack of data.

Uncertainty is perhaps the biggest factor that makes decision making challenging

for many people, especially for complex systems. For instance, public policy, as a very

complex system, decision making is challenging as discussed above. On one hand,

not every sector will perform as planned or anticipated, because natural disasters,

an attack, and some other accident may happen in some sector. In this case, more

resources should be allocated to the dedicated sectors. The consequences of these

disruptions can be significant. Fig. 1.1 and Fig. 1.2 show the severe consequences

when some natural disaster really happened(example of Deepwater Horizon case). On

the other hand, decision makers usually need to allocate resources at the beginning of

a fiscal year or time period. After allocation, adjusting budget among sectors is not
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Figure 1.1 Deepwater Horizon accident influence area

so easy. So allocating resources when facing uncertainty can be a very big challenge

to decision makers.

Numerous literatures have studied uncertainty and decision making under deep

uncertainty. (Helton, 1994; Hoffman and Hammonds, 1994; Tannert et al., 2007)

studied classification of uncertainty, which can be classified into aleatory or epistemic

uncertainty. Uncertainty can also be classified based on its severity (Courtney, 2001;

Walker et al., 2013) or the source of uncertainty (Grander and Max, 1990; Walker et

al., 2013). Walker et al. (2013) describes uncertainty about the future can be divided

into five categories. Deep uncertainty refers to uncertainty at level 4 (multiple possible

futures with several system models) and level 5 (unknown or unidentified futures,

unknown unknowns). Along with studying deep uncertainty, several decision-making

methods have been proposed to handle deep uncertainty.

The purpose of this thesis is to propose a new approach for decision making under



3

Figure 1.2 Deepwater Horizon accident mineral particle density in 5 years (2010 -
2015)
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deep uncertainty. The proposed solution can capture different types of uncertainty,

including parameter uncertainty, model uncertainty, and structural uncertainty. The

resource allocation model for deep uncertainty (RAM-DU) incorporates all of the

different types of uncertainty and can consider every possible model, different prob-

ability distributions, and possible futures. This thesis focuses on allocating infinitely

divisible resources, such as money, as opposed to discrete resources, such as the num-

ber of people or trucks. The RAM-DU solution generates an interval for the decision

variable. Allocating any amount within that interval ensures that the objective func-

tion is within a predefined optimality gap for all the different parameters, models,

and futures under consideration. The interval also provides the decision maker with

flexibility.

This paper introduces the methodology of RAM-DU and applies the method to a

real-world application of an oil spill. In Chapter 2, section 2.2 introduces the general

model structure for RAM-DU and examines interval solutions for a single decision

variable and for multiple decision variables. In Chapter 2, section 2.3 applies RAM-

DU to the problem of allocating resources to prevent and respond to a Deepwater

Horizon-type oil spill. Finally, we make conclusions and possible future extensions of

this methodology.
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CHAPTER 2. A RESOURCE ALLOCATION MODEL

FOR DEEP UNCERTAINTY (RAM-DU), WITH

APPLICATION TO THE DEEPWATER HORIZON OIL

SPILL

2.1 Literature Review

Uncertainty is perhaps the biggest factor that makes decision making challeng-

ing for many people, especially for complex systems. Examples of complex decisions

with significant uncertainty exist in new product development (Hamarat et al., 2013;

Tatikonda and Rosenthal, 2000), investments (Hallegatte et al., 2012), climate change

(Heal and Millner, 2013; Lempert and Schiesinger, 2000; Polasky et al., 2011), and

national security (Lambert et al., 2012). Uncertainty can be classified into aleatory

or epistemic uncertainty (Helton, 1994; Hoffman and Hammonds, 1994; Tannert et

al., 2007). Aleatory uncertainty results from natural or stochastic variation within a

physical system or environment. Epistemic uncertainty results from a lack of knowl-

edge or information about a system. Uncertainty can also be classified based on its

severity (Courtney, 2001; Walker et al., 2013) or the source of uncertainty (Grander

and Max, 1990; Walker et al., 2013). In scientific research and modeling, uncertain-

ties can include parametric uncertainty, structural or model uncertainty, algorithm

uncertainty, experimental uncertainty, and interpolation uncertainty.
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Probability is the most popular way to measure and model uncertainty. Paté-

Cornell (1996) defines six levels of treatment for uncertainty in risk analysis where

the lowest levels focus on identifying hazards and the worst cases for those hazards

and the highest level models uncertainty over probability distributions. In problems

with a lot of epistemic uncertainty where the analyst or decision maker has very little

information about the system, the use of probabilities to measure that uncertainty can

pose challenges. This type of uncertainty is known as deep uncertainty (Morgan, 2003;

Lempert et al., 2002). According to Walker et al. (2013), uncertainty about the future

can be divided into five categories. Increasing levels signify increasing uncertainty,

from a fairly certain future in level 1 to a completely unknown future in level 5. Deep

uncertainty refers to uncertainty at level 4 (multiple possible futures with several

system models) and level 5 (unknown or unidentified futures, unknown unknowns).

This article will treat deep uncertainty at level 4, in which multiple plausible futures

exist and multiple system models can represent those future scenarios, and an analyst

or decision maker does not know which model is most appropriate or which futures

are more likely. In this context, choosing a probability distribution to represent the

uncertainty in model parameters or the different futures and selecting value functions

to represent the desirability of different outcomes can be very challenging (Lempert,

2003).

Several decision-making methods have been proposed to handle deep uncertainty.

The robust decision framework was first proposed by Rosenhead (2001). Robust

decision making (RDM) (Lempert, 2003) is perhaps one of the most widely used. A

robust strategy is an alternative that performs well under many or even all possible

futures, and RDM helps a decision maker identify robust strategies, characterize

the vulnerabilities of such strategies, and evaluate the trade-offs among strategies

(Lempert and Collins, 2007; Croskerry, 2009). RDM allows for the possibility that
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stakeholders in a problem do not know or cannot agree on the systems model or the

probabilities that should be used in the models (i.e., deep uncertainty) (Lempert and

Collins, 2007). Information-gap theory (Ben-Haim, 2001, 2004) seeks to identify the

optimal alternative that performs well as the uncertainty around a parameter grows.

Probability boxes, or p-boxes, calculate every possible probability distribution that

could fit within a predefined bound around that uncertainty (Ferson et al., 2003;

Zhang et al., 2017). Exploratory modeling and analysis (Bankes, 1993) copes with

deep uncertainty by calculating model outcomes across a large group of plausible

representations of the future. The uncertainty can exist due to unknown external

scenarios, model parameters, and problem structure (Agusdinata, 2008; Kwakkel et

al., 2010). Model uncertainty can also result from large amounts of data because

it is not clear which model is suitable for such a large data set. Adaptive boosting

addresses that model uncertainty by weighting different models based on a training

set (Cox, 2012). Other methods for deep uncertainty include the adaptive decision-

making framework (Hamarat et al., 2013) and using real options to hedge against

uncertain futures (Hallegatte et al., 2012).

A Bayesian approach to uncertainty and decision making can also address deep

uncertainty through the use of probabilities. According to Bayesians, probability

represents a individual’s subjective degree of belief about the future, and an individual

can always assign a probability for an uncertainty (DeGroot, 1988; Willink and White,

2012). If the individual has very little information about the uncertainty, he or

she should select a very diffuse or uninformative probability distribution. If several

probability distributions are possible to describe a single uncertainty, Bayesians can

also assign probabilities for each of these distributions, which is similar to the level 6

treatment of uncertainty in Paté-Cornell (1996).

Despite this wealth of proposed solutions, making decisions with deep uncertainty
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still represents challenges. Selecting robust strategies tends to emphasize worst-case

scenarios, which may be very unlikely. Using subjective probabilities for deep uncer-

tainty can be subject to individual biases (Tversky and Kahneman, 1975; Kahneman

et al., 1982), especially the tendency to be overconfident about the future. This can

result in disastrous outcomes (Taleb, 2005). For complex problems with parameter

uncertainty, structural and model uncertainty, and uncertainty over possible futures,

it is not clear if different methods should address each type of uncertainty.

This paper offers a novel approach to decision making with deep uncertainty,

specifically for a problem in which a decision maker is allocating resources in a com-

plex, uncertain situation. The resource allocation model for deep uncertainty (RAM-

DU) incorporates all of the different types of uncertainty and can consider every

possible model, different probability distributions, and possible futures. Similar to

RDM, RAM-DU identifies allocation strategies that perform well across the possible

parameters, models, and future outcomes. However, RAM-DU is unique because it

recommends an interval of possible allocation strategies rather than a single optimal

alternative. This paper focuses on allocating infinitely divisible resources, such as

money, as opposed to discrete resources, such as the number of people or trucks.

The RAM-DU solution generates an interval for the decision variable. Allocating

any amount within that interval ensures that the objective function is within a pre-

defined optimality gap for all the different parameters, models, and futures under

consideration.

An interval solution is also beneficial because mathematical models are abstrac-

tions of the real world and cannot capture every possible factor. A decision maker

may have other considerations that are not captured in the models but that should

also influence his or her decision. By providing an interval rather than a point so-

lution, RAM-DU gives the decision maker flexibility to select a resource allocation
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strategy within that interval. The decision maker can more easily incorporate other

considerations not captured by the model but still follow recommendations of the

model. For example, Floricel and Miller (2001) argue that strategies for large-scale

engineering projects with turbulent environments should include flexibility. RAM-DU

can also consider multiple stakeholders with different assumptions or opinions about

the model by incorporating those different factors within the interval solution.

This paper introduces the methodology of RAM-DU and applies the method to

a real-world application of an oil spill. Section 2.2 introduces the general model

structure for RAM-DU and examines interval solutions for a single decision variable

and for multiple decision variables. Section 2.3 applies RAM-DU to the problem of

allocating resources to prevent and respond to a Deepwater Horizon-type oil spill.

Concluding remarks and possible future extensions of this methodology appear in the

Chapter 3.

2.2 Methodology

A resource allocation model seeks to optimally distribute resources in order to

minimize or maximize an objective. Resources can be discrete or continuous. Dis-

crete resources are represented by integers such as the number of people, trucks, or

equipment. Continuous resources are infinitely divisible, such as money or time, and

are represented by positive real numbers (Slowinski, 1980). RAM-DU assumes contin-

uous resources, and the decision variables z1, z2, . . . , zn are nonnegative real numbers

and z = (z1, z2, . . . , zn)T is a vector of length n. A decision maker seeks to allocate

each zi in order to minimize a real-valued function f(z,θ) where θ denotes a vector of

exogenous parameters. Constraints are represented by h(z,θ), a vector-valued func-

tion of the decision variables z and exogenous parameters θ. The resource allocation



10

model can be expressed as an optimization problem in (2.1):

min f(z,θ)

s.t. h(z,θ) ≤ 0

(2.1)

As discussed in the Introduction, a decision maker may be uncertain about many

aspects of this resource allocation model. Parameter uncertainty may exist in some,

or even all, of the parameters represented by θ, and a decision maker may not be com-

fortable assigning probabilities to represent the uncertainty in θ. Model uncertainty

may exist with the constraints h(z,θ) and the objective function f(z,θ). Different

functions could represent the decision maker’s objective because the objective is dif-

ficult to model or the decision maker is unsure of his or her true objective. Given

this parameter and model uncertainty and the difficulty of assigning probabilities to

represent the uncertainty, the resource allocation model becomes a problem with deep

uncertainty.

We assume that every possible value for the parameter θ and every possible func-

tion for f(z,θ) and h(z,θ) can be identified. We assume m unique versions of the

optimization problem in (2.1) exist where the jth version of the problem is denoted by

θj, fj(z,θj), and hj(z,θj) for j = 1, . . . ,m. For example, fj(z,θj) could differ from

fj′(z,θj′) because the objective function in j is exponential and the objective function

in j′ is logarithmic. Or, fj(z,θj) could differ from fj′(z,θj′) because θj = [1, 2] and

θj′ = [1, 3]. It could also be true that fj(z,θj) and fj′(z,θj′) are identical but that

hj(z,θj) differs from hj′(z,θj′) for at least one of the constraints.

The goal of RAM-DU is to find an interval for a single decision variable or multiple

intervals for multiple decision variables that account for the m unique optimization

problems so that every solution within the interval guarantees that every objective

function is within a predefined optimality gap of its true minimum. We initially
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address a situation for a single interval and let zi be the decision variable around

which we want an interval. Identifying an interval means that the objective function

fj (z,θj) is close to its minimum value for all zi between ai and bi where bi > ai ≥ 0.

Let f ∗j be the minimum value for the jth optimization problem. The function fj (z,θj)

can be considered close to its minimum f ∗j , if fj (z,θj) is within δj of f ∗j where δj ≥ 0.

We define αj ≡ f ∗j + δj, where αj denotes the maximum acceptable threshold and

δj denotes the difference between the optimal value and the maximum acceptable

threshold for the jth optimization problem. We seek to maximize the interval width

bi − ai such that fj (z,θj) ≤ αj for all zi within the interval [ai, bi]:

max bi − ai

s.t. fj(z,θj) ≤ αj; ∀zi ∈ [ai, bi], j = 1, . . . ,m

hj(z,θj) ≤ 0; ∀zi ∈ [ai, bi], j = 1, . . . ,m

(2.2)

The other decision variables zi′ i
′ 6= i are chosen in order that the constraints in (2.2)

are satisfied.

Algorithm 1 illustrates a method to solve the optimization problem in (2.2) if

fj(z,θj) is quasiconvex and hj(z,θj) is convex in zi for all j = 1, . . . ,m. A function

f(y) is quasiconvex if and only if f(λy1+(1−λ)y2) ≤ max{f(y1), f(y2)} for all y1 and

y2 in the domain of f and λ ∈ [0, 1] (Boyd and Vandenberghe, 2004). Quasiconvexity

ensures that f decreases and then increases. According to Algorithm 1, minimizing

zi subject to fj(z,θj) ≤ αj returns aij, which is a candidate for the lower bound of

the interval. Similarly, maximizing zi subject to fj(z,θj) ≤ αj returns bij, which is

a candidate for the upper bound of the interval. After minimizing and maximizing

zi for each of the m possible optimization problems, ai equals the largest aij and bi

equals the smallest bij for all j = 1, . . . ,m.

A pictorial representation of the interval endpoints ai and bi appears in Fig. 2.1
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Algorithm 1 Maximize interval width for one decision variable zi
Inputs: fj(z,θj),hj(z,θj),θj, δj, j = 1, ...,m
Results: ai, bi

for j ← 1 to m do
Solve min fj(z,θj), subject to hj(z,θj) ≤ 0 7−→ f ∗j
αj = f ∗j + δj
Solve min zi, subject to fj(z,θj) ≤ αj, hj(z,θj) ≤ 0 7−→ aij
Solve max zi, subject to fj(z,θj) ≤ αj, hj(z,θj) ≤ 0 7−→ bij

end for
ai = max{aij}
bi = min{bij}

for three possible optimization models, i.e. m = 3. Three objective functions fj(z,θj)

are drawn in dotted, solid, and dashed lines as a function of zi, and each corresponding

maximum acceptable threshold αj is depicted as a horizontal line. Objective functions

f1(z,θ1) < α1 and f2(z,θ2) < α2 when zi = 0; however, f3(z,θ3) > α3 when zi = 0.

The value of ai corresponds to the smallest value of zi when f3(z,θ3) = α3 (the dashed

curve and line). For bi, the largest value of zi at which fj(z,θj) ≤ αj corresponds

to the largest value of zi at which f1(z,θ1) ≤ α1 (the dotted curve and line). For

all values of zi such that ai ≤ zi ≤ bi, the objective function for each of the three

possible models is less than or equal to the maximum acceptable threshold aj. The

interval [ai, bi] also represents the largest interval because at least one of the objective

functions is greater than the maximum acceptable threshold for zi < ai and zi > bi.

The prior discussion focused on finding an interval for a single decision variable zi

even if several decision variables exist in the resource allocation model. It might be

desirable to have intervals around multiple decision variables to provide the decision

maker with greater flexibility than a single interval. Instead of maximizing the width

of a single interval bi − ai, the objective function in (2.2) becomes a multi-objective

optimization problem. In this case, RAM-DU finds intervals for ñ decision variables
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Figure 2.1 Interval with 3 possible optimization problems

where ñ ≤ n. The optimization problem in (2.3) seeks to maximize the interval

widths for decision variables z1, z2, . . . , zñ with different weights wi:

max
∑ñ

i=1wi(bi − ai)

s.t. fj(z,θj) ≤ αj

hj(z,θj) ≤ 0∑ñ
i=1wi = 1

∀zi ∈ [ai, bi]

i = 1, . . . , ñ

j = 1, . . . ,m

(2.3)

Since (2.3) is a multi-objective optimization problem, it is necessary to identify a set

of Pareto optimal solutions in order to create a hypervolume in ñ dimensions such

that any set of solutions (z1, z2, . . . , zñ) contained within that hypervolume will ensure
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that fj(z,θj) ≤ αj for all j = 1, . . . ,m. The weights wi are set before solving the

the optimization problem in (2.3), which is solved multiple times for different weights

in order to identify the Pareto optimal. The application in Section 2.3 provides an

example in two dimensions, i.e. ñ = 2.

The optimization problems in (2.2) and (2.3) may not have feasible solutions.

If δj is very small for several fj (z,θj), there might not be any zi that can satisfy

fj (z,θj) ≤ αj. If this occurs, it is necessary to increase δj.

The use of intervals in RAM-DU enables resources to be allocated to account for

situations where deep uncertainty exists. Any allocation within the interval or hyper-

volume guarantees that each objective function is less than or equal to an acceptable

threshold. The interval also provides flexibility for the decision maker because the

decision maker can choose to allocate any zi within [ai, bi]. If the decision maker

prefers to allocate less—perhaps because there are other demands for resources that

have not been modeled—he or she should select an allocation closer to ai. If the

decision maker prefers to allocate more—perhaps because these resources will have

additional benefits that are not modeled—he or she should select an allocation closer

to bi.

2.3 Illustrative example of the Deepwater Horizon Oil Spill

On April 20, 2010, an explosion occurred on the Deepwater Horizon semi-submersible

mobile offshore drilling unit, which led to 11 dead workers, 17 injured workers, the

loss of almost 5 million barrels of oil, and enormous environmental damage. This sec-

tion applies RAM-DU to a large oil spill in the Gulf of Mexico similar to that of the

Deepwater Horizon oil spill. The resource allocation model is derived from MacKen-

zie (2017) in which a decision maker allocates resources to prevent and prepare for
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an oil spill and then allocates resources to help the Gulf region recover if an oil spill

occurs. This section first presents the resource allocation model for the oil spill and

then demonstrates how RAM-DU can be applied to this situation to help a decision

maker determine how much should be spent to prevent and prepare for an oil spill

and how much should be spent to help the region recover from a large oil spill.

2.3.1 Resource Allocation Model for an Oil Spill

Although the Deepwater Horizon oil spill resulted in fatalities, injuries, environ-

mental damage, and lost business, the resource allocation model focuses exclusively

on economic losses. The economic losses from an oil spill result from less drilling for

oil, decreased demand for seafood and real estate, and a drop in tourism. Economic

losses for this model are calculated for the five U.S. states touching the Gulf of Mex-

ico: Florida, Alabama, Mississippi, Louisiana, and Texas. A single decision maker in

the model controls resources that can help prevent an oil spill and limit the economic

losses if a spill occurs. In reality, resources to prepare for and respond to an oil spill

are controlled by federal, state, and local governments and the private sector.

The objective function seeks to minimize the expected economic loss from an oil

spill. The oil spill directly impacts l̄ = 5 industries (fishing and forestry, real estate,

amusement, accommodations, and oil and gas) out of a total of l = 63 industries in the

economy. The Inoperability Input-Output Model (Santos and Haimes, 2004; Santos,

2006) translates these direct impacts into total production losses in all industries,

and the total economic loss equals x>Dc∗ where x is a vector of length l representing

normal production for each industry and D is an l × l̄ interdependency matrix that

translates direct losses to direct and indirect losses. The vector c∗ is of length l̄ where

c∗i measures the direct impacts, in proportional terms, to industry i. Economic data

to populate x and D are collected by the U.S. Bureau of Economic Analysis (2010a,b,
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2011).

The decision maker can allocate resources before the oil spill for prevention and

preparedness, z1, to help all industries recover after the oil spill z2, and help each of

the l̄ = 5 directly impacted industries recover z3, . . . , z7. The total number of decision

variables is n = 7. The parameter p̂ is the probability of a spill if no money is spent

to prevent a spill. Allocating z1 helps prevent an oil spill by reducing the initial

probability from p̂ to p, where p ≤ p̂ and can also help to reduce the direct impacts.

The direct impacts, c∗i , for industry i are a function of money z1 allocated before an oil

spill, money z2 allocated to help all industries simultaneously, and money zi allocated

to industry i, where i = 3, . . . , n = 7. Based on these decisions, the direct impacts

from an oil spill are reduced from initial estimated ĉ∗i to c∗i . The total available

budget is Z. The minimum expected economic losses can be calculated by solving

(2.4) in which allocating resources reduces the probability and impacts according to

an exponential function (Bier and Abhichandani, 2003; Dillon et al., 2005; Guikema

and Paté-Cornell, 2002; MacKenzie et al., 2016).

min px>Dc∗ − (1− p)g(z1, Z)

s.t. p = p̂e−kpz1

c∗i = ĉ∗i e
−(kqz1+k0z2+kizi); i = 3, . . . , n

n∑
i=1

zi ≤ Z

zi ≥ 0, i = 1, . . . , n

(2.4)

where kp denotes the effectiveness of allocating z1 to reduce the probability of an oil

spill; kq describes the effectiveness of allocating z1 to reduce the impacts; k0 describes

the effectiveness of allocating z2 to help all industries recover; and ki denotes the

effectiveness of allocating zi to help industry i recover, where i = 3, . . . , n.
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The right-hand part of the objective function g(z1, Z) in (2.4) is the opportunity

cost and represents what could be done with the resources to increase regional pro-

duction if no oil spill occurs. If there is no oil spill, the amount Z − z1 could be

spent on other projects or returned to taxpayers which should increase production

in the region. The function g(z1, Z) is strictly decreasing in z1, increasing in Z, and

non-negative for z1 ≤ Z. Since a decision maker desires to minimize the expected

economic losses if an oil spill occurs and maximize the expected production gain if the

oil spill does not occur, minimizing the objective function requires inserting a negative

sign before the expected gain in production (1 − p)g(z1, Z) where 1 − p denotes the

probability of no spill. When the objective function in (2.4) is negative, it means the

region experiences expected production gains because the expected production gains

from (1 − p)g(z1, Z) are larger than the expected production losses from the spill,

px>Dc∗. If the objective function is positive, the region has expected production

losses.

The function to describe production gains g(z1, Z) can take on different forms to

describe how resources impact regional production. Three possible functions are pro-

posed in this article: linear, exponential, and concave as described in Eqs. (2.5)-(2.7).

Fig. 2.2 depicts the linear, exponential, and concave g(·) functions. A linear g(·) func-

tion indicates that every dollar not spent on the oil spill increases regional production

by a constant amount. An exponential g(·) indicates that smaller values of z1 have a

much bigger impact on production than larger values of z1. A concave g(·) function

is opposite to the exponential function. Larger values of z1 have a larger impact on

production than smaller values of z1. The concave function indicates that a decision

maker is using resources more efficiently because he or she is initially removing money

from projects that that are less effective in increasing regional production.
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Figure 2.2 Types of g(·) function

g1 = q1 + γ1(Z − z1) (2.5)

g2 = γ2Ze
−q2z1 (2.6)

g3 = Zγ3 − q3z21 (2.7)

where qi and γi, i = 1, 2, 3 are parameters of the g(·) function. In this oil spill case

study, γi = 1.6 and qi = 1.6× 10−4.

2.3.2 Optimal Allocation Results

As depicted in Table 2.1, the parameters for the Deepwater Horizon oil spill are

explained in MacKenzie et al. (2016) and MacKenzie (2017) and are based on public

economic data, government reports, and journal articles. The five directly impacted
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industries are fishing and forestry (which reflects the lack of seafood), real estate,

amusements, accommodations, and oil and gas. We choose a budget of Z = $10

billion, which is a little less than what BP spent to stop the Deepwater Horizon oil

spill.

Table 2.1 Initial parameter values for Deepwater Horizon oil spill
Probability of oil spill p̂ = 0.045
Prevention effectiveness kp = 2.8× 10−4

Preparedness effectiveness kq = 1.6× 10−4

Recovery for all industries effectiveness k0 = 1.0× 10−5

i Industry ki (per $1 million) ĉ∗i
1 Fishing and forestry 0.074 0.0084
2 Real estate 0 0.047
3 Amusements 0.0038 0.21
4 Accommodations 0.0027 0.16
5 Oil and gas 0.0057 0.079

With these parameter values, the optimal allocation from the budget is calculated

for each of the three possible g(·) functions as illustrated in Eqs. All the parameters

and functions are considered as known. Table 2.2 depicts the optimal amount to

spend to prevent and prepare for an oil spill, to help all industries recover, and to

help each individual industry recover.

If g(·) is linear or exponential, the decision maker should not allocate any money

to prevent or prepare for an oil spill. Since the probability of an oil spill is small, it is

better to spend the budget to increase regional production via the opportunity cost

function than prevent and prepare for an oil spill. If an oil spill occurs, the decision

maker should spend z2 = $5.98 billion to help all industries recover and distribute

the remainder of budget among four industries (fishing and forestry, amusements,

accommodations, and oil and gas). If the opportunity cost function is concave, the

decision maker should spend z1 = $1.20 billion before a spill. The amounts allocated

for the five industries remain the same, but the money to help all industries recover
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Table 2.2 Optimal allocation amounts for Deepwater Horizon oil spill for different
opportunity cost functions (millions of $)

Linear g(·)
function

Exponential
g(·) function

Concave g(·)
function

Objective function (f ∗j ) -14,383 -14,383 -14,730
Pre oil spill allocation amount 0 0 1,205
Post oil spill allocation amount 5,982 5,982 4,777
Fishing & Forestry 46 46 46
Real estate 0 0 0
Amusements 1,209 1,209 1,209
Accommodations 1,752 1,752 1,752
Oil & Gas 1,011 1,011 1,011

simultaneously is reduced to z2 = $4.78 billion. The concave g(·) function should

induce a positive z1 because the concave function indicates that production does not

decrease as much as in the linear and exponential functions for small values of z1.

Thus, it is rational to spend that money to prevent and prepare for an oil spill.

2.3.3 Interval for allocating resources before an oil spill

The preceding illustration demonstrates that a different function for g(·) can result

in a different allocation amount to spend before an oil spill. This is an example of

model uncertainty. Many of the parameters used in the model also have considerable

uncertainty in part because the rarity of really big oil spills limits the availability of

historical data. In particular, the probability of an oil spill p̂ and the effectiveness

parameters kp, kq, and k0 are very difficult to estimate.

Given the uncertainty in the function g(·) and the parameters p̂, kp, kq, and k0,

RAM-DU is applied to the Deepwater Horizon oil spill and we want to find an interval

around the amount of money that should be spent before an oil spill z1. The resource

allocation model in (2.4) is extended to RAM-DU to find the maximum interval [a1, b1]
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Table 2.3 Input values for Deepwater Horizon oil spill

Category Initial value Range
Preparedness kq = 1.6× 10−4 kq ∈ [1.0× 10−5, 0.1]
Prevention kp = 2.8× 10−4 kp ∈ [1.0× 10−5, 0.1]

k0 = 1.07× 10−5 k0 ∈ [6.67× 10−7, 6.67× 10−3]
p̂ = 0.045 / year p̂ ∈ [0.01, 0.08]

for z1 where the superscript j = 1, . . . ,m refers to the different optimization problems

based on uncertainty in the parameters and the g(·) function:

max b1 − a1

s.t. px>Dc∗ − (1− p)g(j)(z1, Z) ≤ αj; j = 1, . . . ,m

p = p̂(j)e−k
(j)
p z1 ; j = 1, . . . ,m

c∗i = ĉ∗i e
−(k(j)q z1+k

(j)
0 z2+kizi);

i = 3, . . . , n

j = 1, . . . ,m

n∑
i=1

zi ≤ Z

zi ≥ 0; i = 1, . . . , n

(2.8)

Table 2.3 depicts the ranges for p̂, kp, kq, and k0. MacKenzie (2017) argues that

k0 = kq/15, and this relationship is preserved in this application. These ranges of

parameters are combined with the three different g(·) functions in order to establish

hundreds of possible optimization problems. The value of αj for each of these opti-

mization problems is selected as a percentage of the minimum value of each objective

function. Algorithm 1 is used to maximize the interval width for z1.

Figs. 2.3 and 2.4 show the objective function value as a function of z1 for several

of the possible optimization problems when αj corresponds to 91% and 93%, respec-

tively, of the minimum objective function value. Although hundreds of optimization
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Figure 2.3 Pre oil spill allocation interval with acceptable threshold at 91%

problems are considered, the figures only display six of these objective functions in

order to depict these results on a graph. Each figure shows two objective functions

with a linear g(·) function, two objective functions with an exponential g(·) function,

and two objective functions with a concave g(·) function. The horizontal lines repre-

sent the maximum acceptable threshold αj for each of the six optimization problems.

In Fig. 2.3, when αj is 91% of the minimum objective function, a1 = $244 million

is determined by the intersection of α6 and objective function f6, which corresponds

to a concave g(·) function. The upper bound of the interval b1 = $529 million is

determined by the intersection of α4 and objective function f4, which corresponds to

an exponential g(·) function. When αj is 93% of the minimum objective function,

a1 = $387 million and b1 = $408 million are again determined by objective functions

f6 and f4, respectively. But the interval is much narrower because the maximum

acceptable threshold has been tightened.
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Figure 2.4 Pre oil spill allocation interval with acceptable threshold at 93%

Table 2.4 depicts the interval for z1 for several different thresholds. As the thresh-

old gets tighter—signifying that objective function must be closer to the optimal

values—the interval gets smaller. For several of the optimization problems, the in-

terval does not contain the optimal amount. For example, z1 = $0 in the base case

for the linear and exponential g(·) functions and z1 = $1.2 billion for the concave

g(·) function. However, neither of those amounts are contained within the intervals.

Accounting for all of the uncertainty in the resource allocation model seems to recom-

mend allocation amounts that are in between the optimal allocations of the various

optimization problems. If the decision maker wants to guarantee that the objective

function is within 91% of the minimum objective function values for the hundreds of

possible models, the decision maker should allocate between $244 and $529 million to

prevent and prepare for an oil spill in the Gulf. If the decision maker is really worried

about an oil spill, he or she should spend closer to the upper bound of the interval. If
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Table 2.4 Interval for pre oil spill allocation (millions of $)

Threshold 88% 89% 90% 91% 92% 93%
z1 lower bound $66 $121 $180 $245 $312 $387
z1 upper bound $716 $653 $591 $529 $468 $408

the decision maker wants to spend more money on other priorities, he or she should

spend approximately $250 million. If the decision maker requires that the interval

is within more than 93% of the optimal values, the optimization problem in (2.8) is

infeasible.

2.3.4 Multiple Allocation Intervals for Pre and Post Oil Spill

The application of RAM-DU in the previous subsection examined a single inter-

val. Given the allocation of z1, the other amounts for recovery are fixed in order

to minimize the expected economic loss. However, a decision maker may want the

allocation to help all industries to recover simultaneously to also consider all of the

different uncertainties. In this subsection, two intervals will be generated, for the

pre-oil spill amount and to help all industries after an oil spill. As depicted in the

optimization problem in (2.3), it becomes a multi-objective optimization problem in

which two interval widths b1−a1 and b2−a2 are maximized with their related weights.

As with the one-interval illustration, the opportunity cost function, p̂, kp, kq, and k0

are uncertain with the ranges for those parameters depicted in Table 2.3.

Fig. 2.5 depicts the result of RAM-DU for these two intervals when the acceptable

threshold is set at 91% of the minimum function value. Again, hundreds of possible

optimization problems are calculated, but only three of these problems are shown

in the figure. The shaded region, similar to a rectangular shape, represents the set

of solutions for (z1, z2) that achieves objective functions less than or equal to αj for
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Figure 2.5 Allocation intervals for z1 and z2 with acceptable threshold at 91%

each optimization problem. The lower bound for z1 (a dashed line) corresponds to

the concave g(·) function with parameters values p̂ = 0.1, kp = 10−5, kq = 10−2, and

k0 = 6.67×10−4. The upper bound for z1 (a solid line) corresponds to the exponential

g(·) function with p̂ = 0.1, kp = 10−5, kq = 10−5, and k0 = 6.67× 10−7.

A decision maker should allocate between $244 million and $529 million for pre-

vention and preparedness. The allocation interval is between $0 and $5.57 billion

to help all industries recover. The remainder of budget helps individual industries

recover. Fig. 2.5 shows that as z1 increases, the decision maker should also increase

its allocation for z2 in order to guarantee that all objective functions are less than

or equal to the threshold. If the decision maker chooses z1 = $244 million, then he

or she can choose between $0 and $1.71 billion for z2. If the decision maker chooses

z1 = $529 million, then he or she should choose between $3.18 and $5.57 billion for

z2.

Fig. 2.6 shows the results of RAM-DU when the acceptable threshold is 93% of
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the minimum value. The shaded region in Fig. 2.6 is much than smaller than that

in Fig. 2.5. When a decision maker requires the objective function to be closer to its

minimum value, the deciion maker has less flexibility in allocating resources. If αj

corresponds to 91% of the minimum value, a decision maker can choose between $387

and $404 million for prevention and preparedness and between $0 and $2.21 billion

to help all industries recover.
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Figure 2.6 Allocation intervals for z1 and z2 with acceptable threshold at 93%
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CHAPTER 3. CONCLUSIONS

This article discusses deep uncertainty and decision making under deep uncer-

tainty. Based on it, this article introduces RAM-DU as a solution to incorporate

deep uncertainty within resource allocation models. The unique elements of RAM-

DU include: (i) the incorporation of parameter, model, and structural uncertainty

within the resource allocation model; (ii) the recommendation of an interval for allo-

cation amounts rather than a point solution; and (iii) the objective function of each

identified model will be no greater than the maximum acceptable threshold for every

allocation amount within the interval. Extending RAM-DU to multiple decision vari-

ables generates a multidimensional hypervolume in which every set of values within

that space are acceptable allocation amounts.

Applying RAM-DU to the Deepwater Horizon oil spill shows that allocating be-

tween $244 and $529 million to prevent and prepare for an oil spill will ensure that

the economic losses are close to the minimum economic loss while accounting for

uncertainty in the opportunity cost function, the probability of an oil spill, and the

effectiveness of allocating resources. If the decision maker requires tighter thresholds,

the interval becomes narrower, and he or she should allocate between $387 and $408

million before the oil spill. When the amount spent to help all industries recover is

also considered, the decision maker has additional flexibility in spending between $0

and $5.57 billion to help all industries recover. The exact interval for this recovery

allocation depends on the amount spent before the oil spill.
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If a decision maker believes that one model or parameter value better reflects

reality than other models or parameter values, this belief could be represented in

the acceptable threshold. For those models that do not seem the most accurate but

which the decision maker still wants to consider, the threshold could be further away

from the minimum value. RAM-DU can also be applied to multiple disruptions to

identify the different ranges to allocate to prevent and prepare for each one of several

disruptions. RAM-DU could also consider different risk attitudes where each risk

attitude represents a different objective function in the form of a utility function.

This could reflect multiple stakeholders where one individual is more risk neutral and

another individual is more risk averse.

The Deepwater Horizon case only shows an oil spill application in RAM-DU. How-

ever, RAM-DU can also be applied to other resource allocation problems with deep

uncertainty, especially public sector type problems. RAM-DU is particularly suitable

for allocating resources in national security, homeland security, climate change, and

complex system problems that plan for the distant future because these problems

typically are very uncertain and models and parameters are unknown. RAM-DU

provides decision makers with flexibility when they face multiple plausible futures.

The Deepwater Horizon case only shows a single oil spill application in RAM-DU.

However, in reality, multiple disruptions can happen in the studied region. For exam-

ple, an oil spill happens in Mexico Gulf area which impacts five Gulf coastal states.

At the same time, a medium-size hurricane strikes five Gulf coastal states. Multi-

ple disruption application in RAM-DU study is more close to reality, which can tell

decision makers how to balance resource allocation amounts considering uncertainty

and severity. At the same time, we assume decision makers hold risk neutral attitude

since we do not nominate specific decision makers. While in reality, especially public

policy decision making process, decision makers may hold risk aversion attitude. Un-
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der this circumstance, considering utility value when facing deep uncertainty will be

more close to reality. In the future work in RAM-DU, multiple disruption and risk

aversion attitude considerations can be our direction to work on.
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