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ABSTRACT

This dissertation focuses on formulating and solving multi-stage decision problems in uncer-

tain environments using stochastic programming and robust optimization approaches. These

approaches are applied to the design of closed-loop supply chain (CLSC) networks, which in-

tegrate both traditional flow and the reverse flow of products. The uncertainties associated

with this application include forward demands, the quantity and quality of used products to be

collected, and the carbon tax rate. The design decisions include long-term facility configura-

tions as well as short-term contracts for transportation capacities by various modes that differ

according to their variable costs, fixed costs, and emission rates.

This dissertation consists of three papers. The first paper develops a multi-stage stochastic

program for a CLSC network design problem with demands and quality of return uncertain-

ties. The second paper focuses on robust optimization; particularly, the question of whether

an adjustable robust counterpart (ARC) produces less conservative solutions than the robust

counterpart (RC). Using the results of the second paper, a three-stage hybrid robust/stochastic

program is proposed in the third paper, in which an ARC is formulated for a mixed integer

linear programming model of the CLSC network design problem.

In the first paper, a multi-stage stochastic program is proposed for the CLSC network

design problem where facility locations are decided in the first stage and in subsequent stages,

the capacities of transportation of different modes are contracted under uncertainty about the

amounts of new and return products to transport among facilities. We explore the impact of the

uncertain quality of returned products as well as uncertain demands with dependencies between

periods. We investigate the stability of the solution obtained from scenario trees of varying

granularity using a moment matching method for demands and distribution approximation

for the quality of returns. Multi-stage solutions are evaluated in out-of-sample tests using

simulated historical data and also compared with two-stage model. We observe an instance



xii

of overfitting, in which a scenario tree including more outcomes at each stage produces a

dramatically different solution that has slightly higher average cost, compared to the solution

from a less granular tree, when evaluated against the underlying simulated historical data. We

also show that when the scenarios include demand dependencies, the solution performs better

in out-of-sample simulation.

In the second paper, the ARC of an uncertain linear program extends the RC by allowing

some decision variables to adjust to the realizations of some uncertain parameters. The ARC

may produce a less conservative solution than the RC does but cases are known in which it does

not. While the literature documents some examples of cost savings provided by adjustability

(particularly affine adjustability), it is not straightforward to determine in advance whether

they will materialize. We establish conditions under which adjustability may lower the optimal

cost with a numerical condition that can be checked in small representative instances. The

provided conditions include the presence of at least two binding constraints at optimality of

the RC formulation, and an adjustable variable that appears in both constraints with implicit

bounds from above and below provided by different extreme values in the uncertainty set.

The third paper concerns a CLSC network that is subject to uncertainty in demands for

both new and returned products. The model structure also accommodates uncertainty in the

carbon tax rate. The proposed model combines probabilistic scenarios for the demands and

return quantities with an uncertainty set for the carbon tax rate. We constructed a three-

stage hybrid robust/stochastic program in which the first stage decisions are long-term facility

configurations, the second stage concerns the plan for distributing new and collecting returned

products after realization of demands and returns but before realization of the carbon tax

rate, and the numbers of transportation units of various modes, as the third stage decisions,

are adjustable to the realization of the carbon tax level. For computational tractability, we

restrict the transportation capacities to be affine functions of the carbon tax rates. By utilizing

our findings in the second paper, we found conditions under which the ARC produces a less

conservative solution. To solve the affinely adjustable version, Benders cuts are generated

using recent duality developments for robust linear programs. Computational results show

that the ability to adjust transportation mode capacities can substitute for building additional
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facilities as a way to respond to carbon tax uncertainty. The number of opened facilities in

ARC solutions are decreased under uncertainty in demands and returns. The results confirm

the reduction of total expected cost in the worst case of the carbon tax rate by increasing

utilization of transportation modes with higher capacity per unit and lower emission rate.
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CHAPTER 1. INTRODUCTION

1.1 Background

It is important for successful enterprises in today’s competitive economy to not only be fast

and reliable, but also flexible. In linear programming (LP) models optimization that accounts

for randomness or uncertainty in application environments yields more flexible solutions. For

example, in supply chain applications many factors such as customer demands, travel time,

or government decisions cannot be precisely forecasted. Information about the future is most

often revealed over time. As an example, only estimates of customer demand are available when

decisions are made while the actual demand will be revealed at a later date. Yearly or monthly

government decisions might impact the optimal supply chain network design decisions, which

are hard to revise once decided. This dissertation considers uncertainties in a mixed-integer LP

(MILP) model of CLSC network design, to represent actual situations more realistically than

a deterministic model can. The different decision points, such as before or after the realization

of uncertain parameters, are called stages. Different stages involve particular decisions. How

to deal with a multi-stage decision problem in an uncertain environment is a challenging issue

because decisions involved in a stage depend on uncertain parameters realized before that stage.

Stochastic programming (SP) and robust optimization (RO) have evolved as the two pri-

mary approaches to deal with uncertain LP that due to randomness in parameters has been

studied in many applications and mathematical models. The RO methodology does not require

the exact distribution of model uncertainties. However, uncertainties are modeled as random

variables with known distributions in SP. If the precise distribution of uncertain quantities is

known, optimal solutions yielded by the robust formulation could be overly and unnecessar-

ily conservative (Goh and Sim, 2010). Uncertain parameters with unknown distribution are
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defined in terms of uncertainty sets in RO, and decisions are optimized in the worst case.

Stochastic optimization can be modeled as two-stage or multi-stage problems. Uncertain

parameters in stochastic optimization can be represented by a set of scenarios, each of which

specifies both a full set of random variable realizations and a corresponding probability of oc-

currence. In two-stage stochastic programs, a subset of the decisions that have to be taken

without full information of scenarios are called first stage decisions. Once full information is

received about the realization of the random parameters (i.e., once the scenarios are observed)

the second-stage decisions are taken. Multistage stochastic programs extend the two-stage

models by allowing decisions to depend on the realized uncertainties in each stage. The chal-

lenge appears with high numbers of scenarios that lead to a dramatic increase in computational

difficulty relative to the deterministic case. It is challenging to both obtain a set of probabilistic

scenarios that adequately represent the uncertain parameters while not requiring prohibitive

computational effort and to evaluate the resulting solution.

Robust optimization, on the other hand, assumes that the uncertain data reside in an un-

certainty set and optimizes for the worst-case member of the set. The goal in this optimization

approach is to find a best solution that is feasible with respect to the every value in the un-

certainty set. RO computational tractability for many classes of uncertainty sets is the reason

for its popularity. The challenge appears when solving the robust counterpart (RC) leads to a

too conservative solution. One method that has been developed to tackle this problem consid-

ers the adjustability of decision variables to the uncertain parameters, by formulating what is

called an adjustable robust counterpart (ARC). Similarly to later-stage variables in stochastic

programming, adjustable variables tune themselves with uncertain parameters to develop less

conservative solutions in ARC. Conditions under which the adjustability may lower the optimal

cost of the RC formulation are investigated in this research.

Stochastic programming and robust optimization tools have been applied in many contexts

with uncertain parameters. This dissertation focuses on an application that exploits both SP

and RO tools in uncertain MILP. This application focuses on designing a closed-loop supply

chain (CLSC) networks, which is an MILP under uncertain environment. Few studies examine

the ARC and multi-stage stochastic model of this MILP.
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The design of CLSC networks integrates both traditional forward flow and the reverse

flow of products. Reverse flows manage the recovery of used products for different reasons.

One of the most important reasons, due to increased societal awareness, is environmental

concerns. Many countries and regions have established legislation to require products to be

more environmentally friendly and energy efficient (Zhang et al., 2011). For example, important

policies have been issued by the European Union, such as those related to the end of life for

automotive products [Directive on End-of-Life Vehicles, 2000/EC] and electrical and electronic

equipment parts [Waste from Electrical and Electronic Equipment, 2003/EU] (Zeballos et al.,

2012). These regulations would affect the CLSC network design decisions, which include facility

configuration that involves a large investment and lead-time, as well as transportation capacities

and product movements that would be decided more often.

The MILP formulation of the CLSC design problem studied in this dissertation includes two

aspects. In the first aspect, a multi-stage stochastic program is proposed for the design prob-

lem with uncertain demands and quality of returned products, in which there are dependencies

of demands among periods. A two-stage stochastic program approach has been implemented

frequently in CLSC network design. However, the CLSC design must accommodate the con-

stant shifting of customer requirements. Uncertain demands could change every period with

dependencies to their previous periods. These dependencies could be the retailers decision on

adjusting their next orders based on the history of their customer demands. Also the solution

of two-stage stochastic program would not be the optimal one for the constant changes of un-

certain parameters in different periods. Adjusting the facility locations would be significantly

costly once implemented. The same goes with adjusting transportation units and production

flows to the realized demands and quality of returns. The decisions on transportation units may

not be responsive to the changes of demands and quality of returns, which may cause short-

age or inventory cost. Therefore, the impact of multi-stage stochastic program with uncertain

demands and quality of returns on the obtained solution is investigated in this research.

The second aspect of the CLSC application concerns the uncertainty in demands for both

new and returned products and also regulation to mitigate the adverse environmental effects

of freight transportation, particularly CO2 emissions. The design and establishment of the
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supply chain network is a strategic decision whose effect will last for several years, during which

the parameters of the business environment such as carbon tax rates and customer demands

may change (Pishvaee et al., 2011). Therefore, it is critical to consider these parameters as

uncertain in the design stage. Recent research concludes that the earth’s average temperature

has been increasing significantly over the past century. The cause of this global warming is the

build-up of greenhouse gas (GHG) in the earth’s atmosphere. Policy-makers have developed

regulations concerning carbon emissions that result from industries such as transportation and

power generation. One type of regulation is a carbon tax that forces industries or other polluters

to pay taxes on their emitted CO2. Pricing pollution appears to be more successful than other

regulatory approaches. Currently, some countries institute carbon taxes with different prices.

Because most of the states in U.S have not implemented such a policy, the carbon tax rate is

another uncertain parameter considered in the second part of the CLSC application.

1.2 Problem Statement

The problem investigated in this dissertation concerns how to deal with different decisions

of multi-stage models in an uncertain environment. Two-stage and multi-stage formulations

are well studied in the literature of stochastic programs. However, few studies are related to

the use of ARC and multi-stage stochastic program in MILP models of CLSC decision.

The CLSC network design application in an uncertain environment includes long-term de-

cisions of fixed facilities, contracts for transportation capacity by multiple modes and decisions

on product flows. Transportation modes differ in operational cost, capacities and emission

rates. Interesting research questions regarding the CLSC network design with uncertainty are

outlined as follows. What are the efficient combinations of transportation modes among facili-

ties to balance operational against environmental costs? How would historical data of uncertain

parameters such as carbon tax affect the choice of transportation modes in order to minimize

the overall cost? What design of facility locations and the number and types of transporta-

tion modes would be robust regarding these uncertainties in demands and returns? Would the

adjustability of transportation modes to uncertain parameters improve the solution?

The multi-stage stochastic program of CLSC network design becomes computationally cum-
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bersome when the number of scenarios rises. How can scenarios be selected efficiently from

the distribution of uncertain parameters such as demands and quality of returned products in

order to find a high quality solution? How should the solutions obtained be evaluated and

compared?

The ARC formulation applied in our CLSC design is a multi-stage approach to robust op-

timization that allows some decision variables to adjust the uncertain parameters. The ARC

formulation might provide a less conservative solution compared to the RC formulation. How-

ever, it is not always straightforward to determine how and when the ARC, once reformulated

as appropriate tractable model, reduces the conservativeness of the RC.

The three-stage hybrid robust/stochastic program of CLSC network design is a combination

of adjustable robust optimization and stochastic programming. We investigate how an ARC

model of CLSC design can be incorporated alongside the stochastic programming model to form

a multi-stage hybrid robust/stochastic program of CLSC where some variables are adjustable

to uncertain parameters? In other words, how can probabilistic scenarios for some parameters

be effectively and efficiently combined with uncertainty sets for others?

1.3 Dissertation Structure

Three papers are provided in this dissertation, one in each chapter.

In Chapter 2, a multi-stage stochastic program is proposed to design a CLSC network with

the uncertain quality of returned products as well as uncertain demands for new products

in which there are dependencies of demands among periods. The network design involves

long-term decisions to invest in fixed facilities such as manufacturing/remanufacturing plants,

warehouses, and collection facilities. Procurement of transportation capacity among multiple

modes is also required before each period’s demands are known. We assume that a fixed

proportion of products sold in each period are to be collected as returns, and uncertain return

qualities are the random outcome of the grading process for those returned products. In this

problem facility location is determined in the first stage. The unit transportation capacities are

determined at the next stage in each period before realization of uncertain parameters for that

period, and the amount of products to transport as well as inventories are recourse decisions for
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each period after realization of the uncertain parameters. Scenarios have been chosen effectively

from the distribution of uncertain parameters to obtain a high quality solution. The results

of stochastic problems with scenario trees of varying granularity are evaluated and compared.

We test the solutions for both in-sample and out-of-sample stability to identify which scenario

trees yield the best solution. We show that Including demand dependencies improves the

solution performs in out-of-sample simulation. Also, adjustability of transportation modes in

multi-stage model yields a better solution comparing to two-stage model where transportation

modes are the first stage decision variables. Under most of the scenario trees, the solutions

to the stochastic program reserves more capacity of the transportation mode with a larger

unit capacity, which results in less inventory, and satisfies more of the demands on average

compared to the solution of the expected value model. However, a more granular scenario

tree resulting from overfitting the simulated historical demand data yields an alternative near-

optimal solution with far lower investment in facilities and transportation capacity than the

others.

Ben-Tal et al. (2004) provided a theorem that indicates conditions under which the objective

values of ARC and RC are equivalent. Another challenge in real applications appears when

conditions of this theorem are not met by the RC formulation and yet its optimal objective

value matches that of the ARC. It is not always straightforward to determine how and when

ARC reduces the conservativeness of the RC. In Chapter 3, a proposition concerning the RC

model is elaborated to present conditions under which the ARC model leads to a better solution

compared to the RC model of an uncertain linear program.

Chapter 4 describes a multi-stage hybrid robust/stochastic MILP model for CLSC network

design with uncertain demands, returns and carbon tax rate. The carbon tax rate is modeled

with an uncertainty set because of the lack of historical data in the US to fit a distribution.

However, the distribution of demands and returns of a new product may be estimated based

on historical data for similar products. Therefore, the CLSC model produces decisions that

are robust with respect to carbon tax rate, while demands and returns are modeled with

probabilistic scenarios. The first stage variables determine long-term facility configurations

that are robust to the carbon tax rate. The second stage decisions concern the product flows
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among the facilities, decided after realization of demands and returns but before realization

of carbon tax. At the final stage, the model determines transportation capacities of different

modes after realization of the carbon tax rate. For computational tractability of the ARC, we

restrict the transportation capacities to be affine functions of the carbon tax rates. Benders cuts

are generated using recent duality developments for robust linear programs. Computational

results show that the ability to adjust transportation mode capacities can substitute for building

additional facilities as a way to respond to carbon tax uncertainty.

Conclusions and possible future research directions are provided in Chapter 5.
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CHAPTER 2. A MULTI-STAGE STOCHASTIC PROGRAM FOR A

CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN WITH

UNCERTAIN DEMANDS AND QUALITY OF RETURNS

2.1 Introduction

Recently, much attention has been directed toward reprocessing returned products to pursue

profit or environmental sustainability. Firms collect returned products to gain profit and/or to

avoid legislated fees. Much research has combined the reverse channel of returned products with

the forward channel to design a comprehensive network with the objective of minimizing trans-

portation costs as well as inventory and manufacturing/remanufacturing costs (Fleischmann

et al., 2003). In a closed-loop supply chain (CLSC), forward flow satisfies new demands, and

reverse flow includes procurement and remanufacturing or recycling of returned products. The

uncertain amounts of demands and returned products pose a significant challenge for the design

of such networks.

Uncertain parameters would affect the decision variables depending on the realizations.

Decisions can be made in different stages such as before or after realization of uncertain pa-

rameters at different point of time. One popular approach to deal with uncertainties in different

stages is stochastic programming. At two-stage stochastic program approach has been imple-

mented frequently in CLSC network design. However, the CLSC design must accommodate

the constant shifting of customer requirements. Demands and quantity as well as quality of

return products could change every period. The realization of uncertain parameters might be

dependent to their previous periods. Retailers usually adjust their next orders based on the

history of their customer demands. A period can consist of one or more years. The solution

of two-stage stochastic program would not be the optimal one for the constant changes of
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parameters in different periods. Adjusting the facility locations would be significantly costly

once implemented. The same goes with adjusting transportation units and production flows

to the realized demands and quality of returns. The decisions on transportation units may not

be responsive to the changes of demands and quality of returns, which may cause shortage or

inventory cost.

The decision variables that should be adjusted before or after realization of each period

depend on the nature of the problem. Facility investments have been considered as first stage

variables in the current literature. However, in many real situations after realization of demands

and returns the product flows, storage and shortage variables should be decided based on the

available transportation units. Decisions concerning capacity to transport goods by various

modes, either by purchasing or leasing fleets or by contracting with external providers are

required before each period’s demands are known.

Two-stage and multi-stage stochastic programs are challenging with large scenario trees

spanning multiple periods. The computation time can be controlled by reducing the number

of scenarios or by generating a small number of outcomes for each period. However, it is not

clear beforehand which scenario tree would best represent the problem and give a near global

optimal solution? To help select a scenario generation or reduction method, it is crucial to

have a strategy on evaluating the solutions obtained from different scenario trees.

The quality of returns might be uncertain. Different levels of quality require different

amounts of remanufacturing, with some not being remanufacturable at all. For example,

Denizel et al. (2010) relate that in the IBM corporation in Raleigh, NC, for shipments of

used laptops to be eligible for resale, the quality level of returned products after remanufac-

turing or refurbishing must attain a predetermined level of acceptability. In this process, not

all used laptops require the same effort to remanufacture. For example, one used laptop might

need only to be cleaned, tested, and loaded with the standard software configuration after

formatting the hard drive while another might require repairs that take three times as long.

In this paper we do not model return quantity uncertainty directly. Some firms can ac-

curately estimate the quantity of their returned products either because they lease their new

products to customers or they offer a trade-in credit when customers return the old product
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and purchase a new one. For example, IBM and Pitney Bowes offer an option for leasing

their products and remanufacture these products after their return. In addition, firms with a

trade-in credit option can have an accurate forecast of how many used products they receive

by knowing the sales forecast of new ones. However, the variation in the quality of returns

remains a challenge for both firms that take back their leased products and those that receive

used ones by trade-in credits (Denizel et al., 2010).

We propose a problem formulation to design a CLSC network with the uncertain quality

of returned products as well as uncertain demands for new products in which there are depen-

dencies of demands among periods. The network design involves long-term decisions to invest

in fixed facilities such as manufacturing/remanufacturing plants, warehouses, and collection

facilities. Procurement of transportation capacity among multiple modes is also required be-

fore each period’s demands are known. We assume that a fixed proportion of products sold

in each period are to be collected as returns, and uncertain return qualities are the random

outcome of the grading process for those returned products. A trade-off exists between the

shortage of new products relative to demands or the loss of uncollected used products, and

excess processing or transportation capacity that goes unused. We formulate the problem as a

multi-stage stochastic program where facility location is determined in the first stage. The unit

transportation capacities are determined at the next stage in each period before realization

of uncertain parameters for that period, and the amount of products to transport as well as

inventories are recourse decisions for each period after realization of the uncertain parameters.

Obtaining a set of probabilistic scenarios that adequately represent the uncertain parameters

while not requiring prohibitive computational effort and also evaluating and comparing the

obtained stochastic results pose significant challenges. We combine different scenario gener-

ation methods for different random variables and test the solutions for both in-sample and

out-of-sample stability to identify which scenario trees yield the best solution.

The main contribution of this paper is proposing a multi-stage stochastic program for

CLSC network design with uncertain return qualities in addition to demands, in which there

are dependencies of demands among periods. In the solution methodology, the procurement of

transportation capacity of multiple modes is decided before realization uncertain parameters.
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Multi-stage scenario trees are generated using two approaches for approximating distributions

of uncertain parameters. Specifically, we create a synthetic dataset of simulated historical

demands to use both as a basis for scenario tree generation by moment matching and to

evaluate solutions obtained with different scenario trees of different granularities. We observe

an instance of overfitting, in which a scenario tree including more outcomes at each stage

produces a dramatically different solution that has slightly higher average cost, compared to the

solution from a less granular tree, when evaluated against the underlying simulated historical

data.

A brief literature review of CLSC network design follows in Section 2. In Section 3, we

present the deterministic model and notation definitions. The stochastic program is formulated

in Section 4. Uncertain parameters as well as scenario generation methods are described in

Section 5 along with computational experiments for deterministic and stochastic versions to

validate the model, and finally provide conclusions and topics for future research in Section 6.

2.2 Literature Review

Since Fleischmann et al. (2001) extended the forward product flow with reverse flow in

supply chain, CLSC networks have attracted much attention in the literature because of en-

vironmental concerns. Researchers have considered uncertain parameters in their quantitative

and qualitative analysis.

A few papers used two-stage scenario-based stochastic problem for designing the CLSC

network. Listes (2007) presented a generic two-stage stochastic program for the design of a

CLSC network, where the alternative scenarios were based on uncertain demand and returns.

The location decisions are made in the first stage, and product flows are the second stage

after realization of uncertain parameters. He applied an integer L-shaped method to solve

it. Francas and Minner (2009) studied a CLSC network design where they examined capacity

decisions and expected performance of two network configurations such as hybrid or separated

manufacturing and remanufacturing plants. They assumed demands and returns uncertainties

where capacity acquisitions of plants in two different network configurations are the first stage

variables and unit manufactured and remanufactured products are second stage decision vari-
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ables. Additionally, Amin and Zhang (2012) investigated the impact of demand and return

uncertainties on the CLSC network configuration with a two-stage stochastic program. They

minimized a multi-objective function including total cost and environmental factors, and used

weighted sums and ε-constraint methods to examine the trade-off surfaces of the test instances.

The first stage variables are location variables, and product flows are the second stage vari-

ables. Zeballos et al. (2012) proposed a two-stage model to simultaneously design and deal with

planning decisions for a CLSC network where the quantity and quality of the product flows of

the reverse network are uncertain. They used mixed integer linear programming to maximize

the expected profit by deciding on the location variables as the first stage and production, dis-

tribution and storage variables as the second-stage variables. Gao and Ryan (2014) designed a

CLSC network considering operation over multiple periods while considering uncertainties in

demands, returns, and potential carbon emission regulations. They formulated the network de-

sign in two-stage stochastic program where facility investment decisions are the first-stage and

transportation flows are the second stage variables. Baptista et al. (2015) proposed a heuristic

algorithm for solving a multi-period, multi-product CLSC with several sources of uncertain-

ties such as demands, quality and quantity of returned products, transportation cost, financial

budget, and investment costs. The first stage decision variables are plants configurations at

the start of the year, and second stage variables are production, inventory and product flows

for every period.

Only Zeballos et al. (2014) addressed a CLSC network design with a multi-stage stochastic

programming approach. They considered uncertain supply levels of raw materials and cus-

tomer demands as uncertain parameters, where the first stage variables are the binary network

design decisions and the other stage decision variables include production, distribution and

storage variables. They used a scenario reduction method to reduce the number of scenarios

and compared their multi-stage model with deterministic one. However, in their multi-stage

approach there are no dependencies of demands among periods and they did attempt to evalu-

ate different scenario trees of different granularities. They also did not compare their solution

to the two-stage solution to show the superiority of their approach.

All the above papers in stochastic program for CLSC assumed only facility configuration
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investments as their first stage decisions. However, the type and capacity of transportation also

might need to be decided before realization of uncertain parameters. A few articles on the CLSC

network designs considered multiple choices of transportation modes. Paksoy et al. (2011)

proposed a quite general CLSC network configuration that handles various costs where they

also included different modes of transportation. In the Gao and Ryan (2014) CLSC network

designed, they considered different transportation modes which produce a large proportion

of greenhouse gas emissions. In another study, Sim et al. (2004) developed a CLSC network

where, in addition to transportation modes, they considered multiple products in a multi-period

model to minimize facility investments, transportation, operating and production/storage costs.

They also used a linear programming-based heuristic genetic algorithm instead of mixed-integer

programming and compared it to the exact solvers.

Some studies such as Tao et al. (2012) and Zeballos et al. (2012) have considered uncertain

quality as well as the quantity of returned products in CLSC network design. However, one im-

portant aspect not often considered in the literature is the utilization of multiple transportation

modes among facilities. The uncertainty of both quantity and quality of returns will affect the

relative efficiency of transportation modes among facilities. Sorting returned products based on

their qualities has been studied by Aras et al. (2004). In addition, Guide et al. (2003) developed

a simple framework for determining the optimal prices and the corresponding profitability of

sorting returned products in a single period, deterministic setting. Galbreth and Blackburn

(2006) also considered sorting deterministic returns in a single period with decision variables

such as how many used items to acquire and how selective to be during the sorting process.

For multi-period production planning, Zhou et al. (2010) studied a single-product periodic-

review inventory system with multiple types of returns. They considered stochastic demands

and minimized the expected total discounted cost over a finite planning horizon. Denizel et al.

(2010) considered production planning when returns have different and uncertain quality lev-

els along with capacity constraints. Keyvanshokooh et al. (2013) addressed a multi-echelon,

multi-period CLSC which determines the acquisition price for different quality level of prod-

ucts. In addition, Cai et al. (2013) studied acquisition and production planning for a hybrid

manufacturing/remanufacturing system when the quality of cores include two levels. They
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used stochastic dynamic programming to derive the optimal acquisition pricing and production

policy.

Aspects that are not considered in the literature include a method for formulating and

evaluating the CLSC network design in multi-stage stochastic program where transportation

capacities are decided before realization of uncertain parameters and there is a dependencies

between uncertain demands among periods. Multi-stage scenario trees are generated and a

synthetic dataset of simulated historical demands is used both as a basis for scenario tree gen-

eration and to evaluate solutions obtained with different scenario trees of different granularities.

In addition, uncertain return qualities are assumed the random outcome of the grading process

for those returned products.

2.3 The Deterministic CLSC Design Model

In this section, our deterministic mathematical model of CLSC network design considering

the quality of returned products, multiple transportation modes, and inventories is presented.

The assumptions underlying the model include that plants manufacture and remanufacture

a single product in multiple periods; that warehouses and collection centers have the ability

to manage inventory between periods; that high-quality returned products can be sold at the

same price as new products after remanufacturing; and that the locations of potential facilities

such as manufacturing/remanufacturing plants, warehouses, and collection facilities are known.

To account for the time value of money transportation and inventory cost parameters are

represent their present values. Finally, multiple transportation modes have different capacities

to carry products between facilities where the mode with larger capacity has higher fixed cost

but not necessarily higher variable cost. Therefore, minimizing the use of empty space in

transportation can help to reduce fuel cost and CO2 emissions. For simplicity, however, we

assume transportation capacity in each period to be available in continuous quantities. The

decision variables include the locations of facilities, capacities for each transportation mode, the

volume of products transported among facilities by each mode, and inventories. The objective

is to minimize facility configuration investment as well as transportation and inventory costs.

Following are the definitions of model parameters and variables:
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Sets:

• P : the set of potential facilities consisting of factories F , new product warehouses J ,

and collection centers for returned products L ; i.e.,P = F ∪ J ∪ L

• K : the set of retailers

• M: the set of transportation modes

• R : the set of periods

• A : the set of arcs ≡ {ij : (i ∈ F , j ∈ J )} ∪ {ij : (i ∈ J , j ∈ K)} ∪ {ij : (i ∈ K, j ∈

L)} ∪ {ij : (i ∈ L, j ∈ F)}

Parameters:

• ci : the total investment cost ($) for building facility i ∈ P

• βij : the length (km) of the arc ij ∈ A

• gmr: the unit transportation cost ($/km-unit of product) for mode m ∈ M in period

r ∈ R

• hmr : the approximate fixed operating cost ($/unit of capacity) of transportation mode

m ∈M in period r ∈ R

• Φr
i : the inventory cost ($/unit of product) at warehouse i ∈ J or collection center i ∈ L

in period r ∈ R

• τ r ∈ [0, 1]: the rate of product return in period r ∈ R as a proportion of demand

• Wm : the weight limit (tons/unit of capacity) of mode m ∈M

• ω : the weight (tons/unit of product)

• ηi : the processing capacity (units of product/period) at node i ∈ P

Random variables:



16

• Dr
k: the demand (units of product) for new products by retailer k ∈ K in period r ∈ R

• Ar: the rate of quality; i.e., proportion of acceptable products, after grading in period

r ∈ R

Decision variables:

• xmrij : the amount of units of product transported on arc ij ∈ A using transportation

mode m ∈M in period r ∈ R

• tmrij : the number of units of transportation mode m ∈ M for which to contract on arc

ij ∈ A for period r ∈ R

• vri : the amount of inventory (units of product) that is held in warehouse i ∈ J or

collection center i ∈ L in period r ∈ R

• yi: binary variable equal to 1 if facility i ∈ P is opened, and 0 otherwise

Given realized values drk and αr for Dr
k and Ar, the deterministic mathematical program to

minimize the cost is as follows:

min
∑
i∈P

ciyi +
∑
r∈R

∑
m∈M

∑
ij∈A

(
gmrβijx

mr
ij + hmrtmrij

)
+
∑
j∈J

Φr
jv
r
j +

∑
l∈L

Φr
l v
r
l

 (2.1)
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s.t.:

∑
f∈F

∑
m∈M

xmrfj + vr−1
j − vrj −

∑
k∈K

∑
m∈M

xmrjk = 0, ∀r ∈ R, j ∈ J (2.2)

∑
j∈J

∑
m∈M

xmrjk = drk, ∀r ∈ R, k ∈ K (2.3)

∑
i∈L

∑
m∈M

xmrki − τ r
∑
j∈J

∑
m∈M

xmrjk = 0, ∀r ∈ R, k ∈ K (2.4)

αr
∑
k∈K

∑
m∈M

xmrkl + vr−1
l − vrl −

∑
f∈F

∑
m∈M

xmrlf = 0 ∀r ∈ R, l ∈ L (2.5)

wxmrij −Wmt
mr
ij ≤ 0 ∀r ∈ R, ij ∈ A,m ∈M (2.6)

∑
j:ij∈A

∑
m∈M

xmrij − ηiyi ≤ 0 ∀r ∈ R, i ∈ P (2.7)

y ∈ {0, 1}|P|, x ∈ R|A|×|M|×|R|+ , t ∈ R|A|×|M|×|R|+ , v ∈ R|J |×|R|+ , v ∈ R|L|×|R|+ (2.8)

The objective (2.1) consists of present value of three costs; namely, facility configuration

investments, transportation, and inventory. The transportation cost includes both variable and

fixed costs that vary by the mode of transport. Constraint (2.2) expresses the balance between

in-bound and out-bound goods of each warehouse j accounting for inventories between periods.

Constraint (2.3) and (2.4) ensure that new demands are provided and returned demands are

transported to collection centers for every retailer k, respectively. The grading process occurs

in collection centers from which a fraction αr of returns is transferred to the manufacturer in

period r; constraint (2.5) ensures conservation of flow in this process and tracks the inventory

in collection centers. Constraint (2.6) is the capacity constraint for the weight of products

transported by each mode. Constraint (2.7) enforces the capacity constraints of processing

nodes, and constraint (2.8) shows the nonnegativity and binary requirements for the variables.
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2.4 Stochastic Program

2.4.1 Multi-Stage Model

In this section, we present a multi-stage stochastic program to minimize expected costs with

uncertainty in the demands and the quality of returned products. The location and the number

of facilities (yi, i ∈ P) are binary decisions to be taken before the realization of any uncertainty

for all periods. In each period r ∈ R, transportation capacities (tmrij , ij ∈ A,m ∈ M) must be

determined before the realization of demands and quality rates. The other decision variables

are determined after the realization of uncertainties in each period.

We represent nodes in a scenario tree as
(
dr(λ), αr(µ)

)
, λ = 1, ..., ur, µ = 1, ..., zr, where dr(λ)

is a realization of Dr =
(
Dr

1, ..., D
r
|K|

)
and we have ur values for demands and zr values for

the quality of returns in period r. Therefore, the number of branches from each node at period

r − 1 is urzr and the corresponding set S, of scenario paths has cardinality |S| =
∏
r∈R urzr.

Given a conditional probability ρrλµ for node
(
dr(λ), αr(µ)

)
in period r, a scenario path consists

of nodes
{

0,
(
d1(λ), α1(µ)

)
, ...,

(
d|R|(λ), α|R|(µ)

)}
with its probability computed as ps = ρ1

λµ...ρ
|R|
λµ

.

Figure 2.1 illustrates an example of a scenario tree for the set of periods R = {1, 2, 3} with

ur = 2 values for demands and zr = 2 values for quality. In this figure, decision variables y and

t1 are the first-stage variables that must be decided before any realization of uncertainty for

all periods. In addition, the decision variables xr, vr, and tr+1 are determined after realization

of uncertain parameters in every period r. This scenario tree consists of
∏
r∈R urzr = 43 = 64

scenario paths.

To express the extensive form of the deterministic equivalent of this multi-stage stochastic

program, we add a superscript (s ∈ S) in deterministic formulation (2.1)-(2.8) to every decision

variable and parameter that depends on the scenario path. The probabilities of scenario paths

are also included in the objective to determine the expected costs. In addition, to provide

complete recourse, we introduce new decision variables for unmet demands and uncollected

used products in the case of insufficient transportation or facility capacity. A collection of

nodes b ∈ B(r) where all scenarios s ∈ b share the same nodes in periods 1, ..., r is called a
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Figure 2.1 Representation of scenario paths for three periods where each node
(
dr(λ), αr(µ)

)
specifies a combination of demand values at retailers and return quality in period

r, and the decision variables displayed under each period can be decided after

realization of the random variables for that period.

bundle in period r in which B(r) represents the set of bundles.

The extensive form of the stochastic program, where χ ≡ {y, t, x, v, e, e′}, is as follows:

minZMS(χ, S) =
∑
i∈P

ciyi +
∑
r∈R

∑
s∈S

ps

{ ∑
m∈M

∑
ij∈A

(
gmrβijx

mrs
ij + hmrtmrsij

)
+
∑
j∈J

Φr
jv
rs
j +

∑
l∈L

Φr
l v
rs
l +

∑
k∈K

(
Ψr
ke
rs
k + Ψ′rk e

′rs
k

)}
(2.9)
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s.t.:

∑
f∈F

∑
m∈M

xmrsfj + vr−1,s
j − vrsj −

∑
k∈K

∑
m∈M

xmrsjk = 0, ∀r ∈ R, j ∈ J , s ∈ S (2.10)

∑
j∈J

∑
m∈M

xmrsjk + ersk = drsk , ∀r ∈ R, k ∈ K, s ∈ S (2.11)

∑
i∈L

∑
m∈M

xmrski + e′rsk − τ r
∑
j∈J

∑
m∈M

xmrsjk = 0, ∀r ∈ R, k ∈ K, s ∈ S (2.12)

αrs
∑
k∈K

∑
m∈M

xmrskl + vr−1,s
l − vrsl −

∑
f∈F

∑
m∈M

xmrslf = 0 ∀r ∈ R, l ∈ L, s ∈ S (2.13)

∑
j:ij∈A

∑
m∈M

xmrsij − ηiyi ≤ 0 ∀r ∈ R, i ∈ P, s ∈ S (2.14)

wxmrsij −Wmt
mrs
ij ≤ 0 ∀r ∈ R, ij ∈ A,m ∈M, s ∈ S (2.15)

Implementability constraints: (2.16)

tmrsij = tmrs
′

ij ∀r ∈ R, ij ∈ A,m ∈M, s, s′ ∈ b, ∀b ∈ B(r − 1)

xmrsij = xmrs
′

ij ∀r ∈ R, ij ∈ A,m ∈M, s, s′ ∈ b, ∀b ∈ B(r)

vmrsj = vmrs
′

j ∀r ∈ R, j ∈ J ∪ L,m ∈M, s, s′ ∈ b, ∀b ∈ B(r)

emrsk = emrs
′

k , e′mrsk = e′mrs
′

k ∀r ∈ R, k ∈ K,m ∈M, s, s′ ∈ b, ∀b ∈ B(r)

y ∈ {0, 1}|P|, x, t ∈ R|A|×|M|×|R|×|S|+ , v ∈ R|J |×|R|×|S|+ ,

v ∈ R|L|×|R|×|S|+ , e, e′ ∈ R|K|×|R|×|S|+ (2.17)

Decision variables ersk and e′rsk are included in constraints (2.11) and (2.12) to represent

the amounts of unmet demands and uncollected returns. Correspondingly, the quantities Ψr
k

and Ψ′rk in the objective (2.9) are the shortage costs and penalties for the uncollected returned

products at retailer k in period r ∈ R, respectively. The implementability (nonanticipativity)

constraints of the staged decision variables are shown in (2.16), where these constraint are
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enforced over each pair of decision variables for period r or r − 1 if their scenario paths s ∈ S

and s′ ∈ S belong to the same bundle for that period. Finally, (2.17) represents the expanded

dimensions of decision variables in the extensive form of the stochastic program.

2.4.2 Two-Stage Model

In our two-stage stochastic program we assume that facilities (yi, i ∈ P) and transportation

capacities (tmrij , ij ∈ A,m ∈ M, r ∈ R) decision variables for all periods must be determined

before the realization of demands and quality rates as the first stage. Therefore, the second

stage decision variables include product flows (xr), inventories (vr), unmet demands (er)and

uncollected used products (e′r) for all periods r ∈ R. The extensive form of the two-stage

stochastic program, where χ ≡ {y, t, x, v, e, e′} with implicit implementability constrains on y

and t, is as follows:

minZTS(χ, S) =
∑
i∈P

ciyi +
∑
m∈M

∑
ij∈A

hmrtmrij +

∑
r∈R

∑
s∈S

ρrs

{ ∑
m∈M

∑
ij∈A

gmrβijx
mrs
ij +

∑
j∈J

Φr
jv
rs
j +

∑
l∈L

Φr
l v
rs
l +

∑
k∈K

(
Ψr
ke
rs
k + Ψ′rk e

′rs
k

)}
(2.18)

s.t.: (2.10) - (2.14)

wxmrsij −Wmt
mr
ij ≤ 0 ∀r ∈ R, ij ∈ A,m ∈M, s ∈ S (2.19)

y ∈ {0, 1}|P|, t ∈ R|A|×|M|×|R|+ , x ∈ R|A|×|M|×|R|×|S|+ , v ∈ R|J |×|R|×|S|+ ,

v ∈ R|L|×|R|×|S|+ , e, e′ ∈ R|K|×|R|×|S|+ (2.20)

2.5 Computational Experiment

To compare the solutions of the stochastic program with different granularities of scenario

trees, we constructed an instance that consists of three potential locations for plants, four po-

tential warehouses and four potential collection centers to satisfy eight retailers. We formulated

the instance for three periods with three transportation modes using equations (2.9)-(2.17) for

the stochastic program and the deterministic model as a special case with a single scenario.
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More information about the empirical distributions for demands and the parameter settings

are provided in the Appendix. Here we describe scenario generation, optimization and stability

results.

2.5.1 Scenario Generation

This section briefly describes our procedures to generate scenarios. We review the distri-

bution approximation method for the continuous distribution of return quality, and a moment

matching method for multi-dimensional demands over multiple periods with arbitrary statis-

tical specifications. We optimally discretized the distribution of return quality with different

levels of granularity and applied moment-matching to generate demand scenarios from simu-

lated historical data.

2.5.1.1 The Quality of Returns

We assume the quality of returned product parameters (αr) are independent and distributed

according to a Beta density in each period:

f(αr) =
Γ(γr + δr)

Γ(γr)Γ(δr)
(αr)γ

r−1(1− αr)δr−1, γr, δr > 0, (2.21)

where γr and δr are Beta function parameters. Because the support for this distribution

is the interval [0, 1], it is a good choice for the proportion of acceptable returns. Furthermore,

by changing the distribution parameters γr and δr, a variety of shapes which could be fitted

to the real data is obtained. Some cdfs of this distribution for different values of γr and δr are

illustrated in Figure 2.2. In particular, if γr = δr = 1 then it is a uniform distribution.

To generate k discrete outcomes of this continuous distribution, we approximate a discrete

distribution using the Wasserstein-distance ∆1 as in Pflug (2001).

∆1(G, G̃) =

k∑
q=1

∫ zq+zq+1
2

zq−1+zq

2

|α− zq|dG(α) (2.22)
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Figure 2.2 CDF of Beta Distribution with different values of γ and δ

where G(α) is the cdf of distribution with density g(α). Here, z1, ..., zk form the support for the

discrete approximate distribution G̃(z) with probabilities Pz1 + ...+ Pzk = 1, z0 = 0, zk+1 = 1.

The procedure to find z1, ..., zk (for example for k = 2) is to minimize:

∆1(G, G̃) =

∫ z1+z2
2

0
|α− z1|g(α)dα+

∫ 1

z1+z2
2

|α− z2|g(α)dα (2.23)

To find the probability of each z using the property (iii) of ∆1-distance proven in Theorem

1 of Pflug (2001), we find the masses of the points by:

G̃(x) =
∑

{q:zq≤x}

G

(
zq + zq+1

2

)
, (2.24)

Pzq = G

(
zq + zq+1

2

)
−G

(
zq−1 + zq

2

)
, (2.25)

To specify the scenario generation method for quality of returns, we assumed parameters

of the Beta distribution for αr to be γ = 1, δ = 2 for every r ∈ R so the density function
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g(αr) = 2(1 − αr). Two discrete outcomes from this continuous distribution, to be applied

independently for all periods, are generated by minimizing the Wasserstein-distance ∆1 as in

(2.22). The specific procedure to find z1 and z2 when k = 2, substituting g(αr) in (2.23), is to

minimize:

∆1

(
G, G̃(2)

)
= −4

(
−z

3
1

3
+
z2

1(z1 + 1)

2
− z2

1

)
(2.26)

+ 2

(
−(z1 + z2)3

12
+

(z1 + z2)2(z1 + z2 + 2)

8
− (z1 + z2)2

2

)
+ 2(−1

3
+

(z2 + 1)

2
− z2)− 4(−z

3
2

3
+
z2

2(z2 + 1)

2
− z2

2)

Figure 2.3 illustrates ∆1(G, G̃(2)) as a function of z1 and z2. Upon applying a non-linear

optimization routine in MATLAB, the minimum value of ∆1(G, G̃(2)) is found when z1 = 0.1554

and z2 = 0.5383.

Figure 2.3 ∆1- distance between discrete and continuous distribution of α for different z1 and

z2

Finally, the probabilities of each outcome are found below using (2.25) and shown in Table

2.1 as approximate distribution G̃(2).
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p̃(2)
z1 = G(

z1 + z2

2
) = 0.5734, p̃(2)

z2 = G(1)−G(
z1 + z2

2
) = 0.4266 (2.27)

To explore the stability of the solution with respect to distribution granularity, we also

generated more outcomes for the quality of returns using four approximating points instead of

two by minimizing:

∆1(G, G̃(4)) =
k∑
q=1

∫ zq+zq+1
2

zq−1+zq

2

|u− zq|dG(u) =

∫ z1+z2
2

0
|u− z1|g(u)du

+

∫ z2+z3
2

z1+z2
2

|u− z2|g(u)du+

∫ z3+z4
2

z2+z3
2

|u− z3|g(u)du+

∫ 1

z3+z4
2

|u− z4|g(u)du. (2.28)

The resulting outcomes and probabilities for each period are shown as G̃(4) in Table 2.1.

Table 2.1 The approximate distributions for quality of returns in each period

Distribution Values Probabilities

G̃(2) 0.1554 0.5734

0.5383 0.4266

G̃(4)

0.0804 0.3085

0.2565 0.2774

0.4565 0.2372

0.7024 0.1769

2.5.1.2 Demands

To simulate a plausible scenario generation process while providing data for out-of-sample

stability tests, we first created a dataset of simulated historical demand as D = {d̃rsk }. Here,

{d̃rsk } denotes simulated observation s of randomly generated demand for retailer k ∈ K in

period r = 1, 2, 3., s = 1, ..., 250. The simulated demands for each retailer independently were

drawn from Normal distributions {d̃1s
k } ∼ N(98, 20) in the first period and {d̃2s

k } ∼ N(110, 20)

in the second period. The first two periods’ demands of each retailer were independent but

the demand of retailer k in the third period was dependent on that retailer’s first two periods’

demands following:



26

d̃3s
k = ζd̃1s

k +
√

1− ζ2d̃2s
k + εsk, s = 1, ..., 250, k ∈ K (2.29)

where the ζ parameter was set equal to 0.4 and the random terms εsk were generated indepen-

dently from N(−10, 15). In this simulation, we assume that the retailer demands of a product

depend on a history of more than one period. An example could be retailers that adjust their

orders based on their customers. The first two periods are trials and rest of the orders are

based on their past experience of the product.

To generate scenarios for the demands of each retailer k in every period, we used the

moment-matching approach of Hyland et al. (2003); specifically, the moment-matching heuristic

procedure constructed by Kaut and Mathieu (2012). Hyland and Wallace (2001) presented the

general idea of an optimization problem to generate, at each stage, q discrete outcomes for

every customer as the decision variables for the demands of the |K| customers.

Based on simulated historical demands, we computed the first four statistical moments; i.e.,

mean, variance, skewness, and kurtosis of the marginal distributions for each period. Using

the moment-matching scenario generation approach of Hyland et al. (2003), a multi-stage

scenario tree with equal weights for all specifications was generated. Rather than generating

the whole scenario tree at once, we compute the outcomes of demands at each node and period

separately. The mean values between periods are assumed to be state dependent as opposed

to the other three specifications. Considering eight retailers and their four properties, a single

period includes 32 specifications. The least number of outcomes based on the available degrees

of freedom is four outcomes for the demands of each retailer at each period based on Hyland

et al. (2003):

min{q|(I + 1)q − 1 ≥ |B|} (2.30)

In this equation, q is the number of outcomes, B is the set of all specified statistical proper-

ties and I is the number of random variables; that is, eight. Therefore, the moment-matching

scenario generation consists of n = 32 decision variables calculated by four outcomes multiply

to eight retailers for each period. Including the conditional probabilities, there were a total of
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36 decision variables. Figure 2.4 shows the nodes of multistage scenario tree where the demand

outcomes of all retailers are considered as a node and each node has four children in the next

period. The connection between periods are based on the mean values of each retailer and

obtained using

Figure 2.4 Scenario tree representation of three periods and four demand outcomes for each

retailer

κrk(λ) = θrd̄
r
k + (1− θr)d(r−1)λ

k (2.31)

where κrk(λ) is the expected demand of retailer k in period r over the children of outcome δ in

period r−1, d
(r−1)λ
k is the parent node, and d̄rk = 1

250

∑250
s=1 d̃

rs
k that is, the mean value computed

from the simulated historical data. Here, θr is a constant parameter to combine outcomes of

the previous period d
(r−1)λ
k with the mean value of the current period d̄rk. We estimate the θ

values using

θr = arg min
θ

250∑
s=1

([
θrd̄

r
k + (1− θr)d̃(r−1)s

k

]
− d̃rsk

)2
, r > 1 (2.32)
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that is, the value of θr is found by minimizing the sum of squared differences between the

forecasted mean demands and the simulated historical demands d̃
(r−1)s
k . If there were no cor-

relation between period r and r − 1, θr would be equal to one. The values were found by trial

and error to be θ2 = 1 and θ3
∼= 0.5 for the second and third period, respectively. Therefore,

the expected mean value κrk(λ) is used as the specified mean for retailer k in the children of

node r(λ) for r = 2, 3. The first period means d̄rk as well as the other statistical specifications

for each retailer are shown in Table A.8.

After finding the relation for mean values between periods, we follow the description of

scenario generation to generate four outcomes, as shown in Figure 2.4. The four outcomes with

probabilities for eight retailers in Table 2.3 are generated based on specifications of Table 2.2

for the first period. The generated outcomes and specifications of all demands and periods are

shown in Table A.6 and A.8 in Appendix.

Table 2.2 Demand specifications for period one

Retailer Mean Variance Skewness Kurtosis

1 95.54 442.13 -0.067 3.23

2 97.33 433.15 -0.124 3.37

3 99.45 370.26 0.170 2.78

4 96.84 354.61 0.009 2.76

5 96.12 421.22 0.093 3.40

6 99.18 372.27 0.031 2.76

7 97.22 455.82 -0.188 2.94

8 97.48 401.63 -0.085 2.66

Table 2.3 The result of moment matching method with four outcomes for period one

Retailer 1 2 3 4 5 6 7 8

Probability

0.3617 121.7 93.1 92.8 92.8 88.0 94.7 122.9 94.8

0.3098 76.1 76.0 81.6 77.3 78.4 79.4 74.5 75.5

0.0064 5.7 8.5 24.7 23.8 8.5 24.2 9.8 21.0

0.3221 86.6 124.4 125.6 121.6 124 124.6 92.0 123.1

Combining the four outcomes (Table 2.3) for demands independently with the two outcomes

for return quality (Table 2.1) yields the eight scenario tree nodes for one period shown in Table

2.4. The demands of all retailers should be combined; in this table, however, the demand of
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only one retailer is shown.

Table 2.4 The nodes of the scenario tree for the first period

Probability Demand Quality

0.2074 121.7 0.1554

0.1543 121.7 0.5383

0.1776 76.1 0.1554

0.1321 76.1 0.5383

0.0036 5.7 0.1554

0.0027 5.7 0.5383

0.1847 86.6 0.1554

0.1374 86.6 0.5383

In this three-period instance, the combination of four demand outcomes and two possible

quality rates of returns results in a total of (4×2)3 = 512 scenario paths. The representation of

scenario paths for the average demands over all retailers and the quality of returns are shown

in Figure 2.5, separately, because representing the combined return quality and demand would

be confusing. Figure 2.5(a) is another representation of Figure 2.4 where the vertical axis

shows the average scenario demands. As we can see, since the first and second periods are

independent (θ2 = 1) the demand scenario nodes at period two coincide for all four paths as

opposed to the third period.

Figure 2.5 Scenario path representation of three periods with four demand outcomes (a) and

two outcomes for the quality of returns (b)
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2.5.2 Computational Results

We obtained and evaluated solutions to deterministic and stochastic versions of the CLSC

design problem with various scenario trees for uncertain demands and quality of returns. The

required time for solving this problem is exponentially increasing by the increase of period

numbers. We reduce the number of scenarios by generating a small number of outcomes for

each period. In this experimental design, we define the scenario trees generated by these

outcomes that are solved using multi-stage formulation. We evaluate their solutions using

historical simulated data to identify which scenario tree would best represent the problem and

give a near global optimal solution. The importance of demand dependencies between periods

is presented. We consider the dependencies of uncertain demands to their previous periods and

compare it to the cases where there are no dependencies to see how the solution would perform

in out-of-sample simulation. Also, the solution to the two-stage model is compared with the

multi-stage solution to assess the value of the more complicated multi-stage model. Finally,

facility investments and transportation unit solutions are compared to identify the changes of

solutions among the recourse problems with different scenarios and deterministic model. The

experiments were implemented with the MIP solver of CPLEX 12.5 in the C++ environment

on a shared remote servers with 126 GB RAM and 32 Core CPU (Intelr Xeonr 2.00 GHz).

The scenario trees evaluated in this computational experiment differed according to the

granularity of approximations of the quality of return and scenario demand outcomes. The

deterministic scenario model is represented by S̄ where a single scenario consisting of the

expected values is used so that |S̄| = 1. We denote the simulated observations of demand

combined with the four outcomes for quality of return as S0, which has dimension (u(S0) ×

z(S0))|R| = (250 × 4)3 = |S0|. The scenario set Si has dimension (u(Si) × z(Si))3, including

u(Si) demands and z(Si) qualities of return as an approximation of the original scenarios S0.

The optimal value of the deterministic problem can be expressed as EVS̄ = minχ Z(χ, S̄),

where χ ≡ {y, t, x, v, e, e′} is the vector of all decision variables and χ ∈ X(S̄) ≡ {X :

(2.10) − (2.17)|S̄}. Its optimal design is denoted by (yS̄ , tS̄) ≡ arg min(y,t) Z(χ, S̄). The value

EEVS̄ = ES0(z(ξ, S0|yS̄ , tS̄)) where ξ ≡ {x, v, e, e′} and ξ ∈ Ξ(S0, S̄) ≡ {ξ : (2.10)− (2.17)|y =
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yS̄ ; t = tS̄ ;S0} represents the evaluation of the performance of the design found from solving

the deterministic expected value problem against the simulated historical data (S0). Here,

z(ξ, S0|yS̄ , tS̄) is the expected cost evaluated according to equation (2.9). The design variables

y and t are fixed to the values (yS̄ , tS̄) found from the expected value solution, and the recourse

variables x, v, e, and e′ are optimized. For the stochastic program or recourse problems (RP),

the optimal value is represented as RPSi = minχESiZ(χi, Si) where χi ∈ X(Si), i = 1, ..., 4.

We denote their expected values with respect to S0 as ERPSi = ES0(z(ξ, S0|ySi , tSi)) where

ξ ∈ Ξ(S0, Si) and (ySi , tSi) ≡ arg miny,t Z(χ, Si).

An intricate aspect of evaluating the solutions found with different scenario trees against the

simulated historical demand data was to map the data paths to each scenario tree so that, in

reverse, the optimal values of decision variables t could be applied to the simulated observations.

We used a nearest neighbor approach. First, the simulated demand paths were partitioned into

u1 sets by, for each observation path, identifying the scenario tree node for period one with the

smallest Euclidean distance from the period one observed demand vector. Then, within each

set for period one, the observed paths were partitioned into u2 subsets according to minimum

Euclidean distance from the corresponding child nodes in period two. A similar step for period

three completed the mapping of observed paths to scenario tree paths. For some scenario trees,

this process resulted in some scenario tree paths not having any observation paths mapped

to them. Figure 2.6 illustrates the partitions of the observations among the three demand

outcomes in each period for scenario tree S1. The dark-colored paths are the ones to which

some observed path was mapped. Conversely, the solution values corresponding to nodes in

the light-colored tree paths were not applied to any of the observed paths in the evaluation

process.

The simulated observed demands were crossed with the four quality of return levels shown

in Table 2.1 to complete the granular evaluation set S0. To evaluate a solution derived from

a scenario tree with only two outcomes of return quality in each period, the solution values

corresponding for the lower of the two return qualities were applied to paths in S0 with the

two lowest (of four) quality values and solution values for the higher of the two return qualities

were applied to the paths in S0 with the two highest (of four) quality values.



32

Figure 2.6 The classification of demand paths in simulated historical data for three demand

outcomes

In section 2.5.1.2, the least number of outcomes based on the available degrees of freedom

is found to be four. Therefore, we first compared the scenario set S2, in which four demand

outcomes along with two return qualities are considered, with the solution of the expected value

model. The amount of savings from solving the stochastic model, or the relative improvement

over evaluated cost of the EV solution, EEVS̄ − ERPS2 , is 4.2% of the ERPS2 cost. The

comparison between the cost components of the S̄ and S2 solutions in Table 2.6 shows that

the S̄ solution underinvests in transportation capacity, which leads to higher average inventory

and shortage costs over the simulated historical data.

To test the stability of solutions with respect to the scenario generation, different combi-

nations of demands and the quality of returns were analyzed as shown in Table 2.5 with their

computational times. We decrease the number of demand outcomes in S2 from four to three in

a tree denoted as S1 having 216 paths. In addition, to show the difference of changing scenario

trees by altering the quality of returns, we increased the number of return quality outcomes

from two to four in S3. Further analysis is performed on increasing the number of outcomes of

demands from four in to six branches from each node of scenario tree (S4), while applying the
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same two quality of return outcomes, which resulted in 1,728 paths. The result of evaluating

the solution of these scenario sets S1, S3, and S4 against the simulated historical data are also

shown in Table 2.6. In addition to the total cost percent savings relative to the expected value

solution, the percentages of cost attributed to different components of total cost are shown in

Table 2.6.

Table 2.5 The sets of scenario combinations of demands and quality of return evaluated in

this experiment.

Scenario Sets S̄ S0 S1 S2 S3 S4

Demand Outcomes 1 250 3 4 3 6

Quality of Return Outcomes 1 4 2 2 4 2

Total Scenarios 1 109 216 512 1728 1728

Computational Time (minutes) 1/60 - 31 107 2504 1678

Table 2.6 The evaluation of deterministic and stochastic solutions against simulated historical

data, with category costs as % of total cost.

EEVS̄ ERPS1 ERPS2 ERPS3 ERPS4

Total Cost ($1000) 2206.18 2118.00 2114.20 2117.58 2151.66

Savings From EEV% - 4.00 4.17 4.02 2.47

Facility Cost 64.82 64.45 64.56 64.46 33.23

Fixed Transportation 8.73 10.22 10.21 10.13 5.70

Variable Transportation 13.76 15.79 15.88 15.85 9.60

Inventory Cost 3.43 0.54 0.50 0.44 3.00

Shortage Cost 9.26 9.00 8.84 9.12 48.47

Compared to ERPS2 , ERPS1 shows an increase of 0.18% in the objective but still it is 4.00%

lower than EEVS̄ . This comparison is intuitive because optimizing against more scenarios

might improve the solution. However, more experimentation reveals that it is not always the

case. The combination of four outcomes for both demands and quality of returns, which results

in 4,096 paths, was left unsolved because of the expensive computational time. Instead, the

scenario tree (S3) with |S3| = 1, 728 paths comprised of three demands and four quality of

returns was evaluated to test the increase in quality of return. The objective ERPS3 was only

0.02% lower than ERPS1 with two return qualities and was also 4.02% smaller than EEVS̄ , the

cost of deterministic solution. The improvement was not significant relative to its computational

time as shown in Table 2.5. In this case, increasing the number of outcomes for the quality of
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return might not improve the solution.

Further analysis is performed on increasing the number of branches from four to six for

demands at each stage of scenario tree (S4) because this resulted in the largest number of

scenarios that we were able to solve in the extensive form of the stochastic program. Applying

the same two return quality outcomes results in 1,728 paths where its computational time is

about 1,678 minutes shown in Table 2.5. Using more demand or return outcomes would require

more than a week to be solved. A scenario tree composed of five demand outcomes and two

quality of return levels yielded nearly the same solution as S2. The evaluated cost ERPS4 in

Table 2.6 is actually increased by 1.74% compared to ERPS2 but was still 2.47% lower than

deterministic solution EEVS̄ . The difference between the solution of S4 and other scenario trees

of S1, S2, and S3 is the significant reduction of opened facilities in the network configuration

that results in higher shortage cost in the evaluation ERPS4 . Apparently, increasing the number

of demand outcomes by two from its minimum of four found using equation (2.30) resulted in

an over-fit that actually deteriorated the solution.

In this section, we solved the multi-stage model for scenario trees S′1 and S′2 assuming

there is no dependencies among the periods. The connections between periods for demands are

shown in equation (2.31) by value θr for period r ∈ R. When θr = 1 there is no dependencies

between period r and r − 1. The estimated values for period two and three using equation

(2.32) were found to be θ2 = 1 and θ3
∼= 0.5. Period two is independent from period one. To

generate outcomes for period three in order to be independent from period two, we calculated

the average outcomes of dependent case of period three for every retailer as we have shown in

Table A.7 as an example for S′2. Table 2.7 shows the results of evaluation of their solution. The

results are better than deterministic evaluation by 3.4% and 3.6% for scenario trees S′1 and S′2,

respectively. However, they are both 0.6% lower than ERPS1 and ERPS2 in Table 2.6 which

indicates that considering dependencies of demands among the periods would yield a better

solution.

Table 2.8 also compares the optimal cost with the cost of two-stage solution in multi-stage

formulation with scenario tree S1 (ETRPS1). The facility configurations of both solution are

the same. The optimal objective value of ETRPS1 is $3,783 higher than the multi-stage RPS1
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Table 2.7 The evaluation of deterministic and stochastic solutions against simulated historical

data, with category costs as % of total cost when there is no dependencies between

periods.

EEVS̄ ERPS′1 ERPS′2
Total Cost ($1000) 2206.18 2131.92 2126.91

Savings From EEV% - 3.37 3.59

Facility Cost 64.82 33.54 33.62

Fixed Transportation 8.73 5.95 5.85

Variable Transportation 13.76 9.82 9.36

Inventory Cost 3.43 2.25 2.61

Shortage Cost 9.26 48.44 48.56

optimal solution, which this difference indicates the value of formulating and solving the multi-

stage version. Multi-stage solution has more adjustability for the use of transportation capacity

by adjusting in different periods. Table 2.9 shows the difference between the expected numbers

of units of each transportation mode between multi-stage RPS1 and two-stage RPS1 solution.

The percentage of contracts for mode two in the multi-stage solution is higher than in the

two-stage solution which shows that the former uses transportation units with higher capacity.

Table 2.8 The comparison of two-stage and multi-stage solutions with scenario tree S1 and

category costs as % of total cost where ETRP is the evaluation of two-stage RP

solution in multi-stage RP formulation.

Multi-stage RPS1 ETRPS1

Total Cost ($1000) 2020.31 2024.10

Facility Cost 67.56 67.44

Fixed Transportation 10.68 10.67

Variable Transportation 16.57 16.58

Inventory Cost 0.00 0.00

Shortage Cost 5.18 5.31

The facility investments of the S̄, S1, ..., S4 solutions are compared in Figure 2.7. Figure

2.7(a) depicts the retailer locations, and Figure 2.7(b) shows the potential locations of three

plants, four warehouses, and four collection centers. In the deterministic solution S̄ (Figure

2.7(c)) we have two opened locations for every facility. A similar configuration exists in the

S1 solution (Figure 2.7(d)) where the only difference is the number and position of opened

collection centers. The solutions for S2 and S3 both have the configuration shown in Figure
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Table 2.9 The comparison between the expected number of units of each transportation mode

contracted in multi-stage solution RPS1 and two-stage solutions RPS1

Multi-stage RPS1 Two-stage RPS1

Modes 1 2 3 1 2 3

Period 1 50.8 99.3 14.8 51.2 99.2 14.7

Period 2 65.2 117.0 15.8 72.5 113.5 15.9

Period 3 73.0 137.0 21.1 70.6 136.8 21.3

% usage

of modes
31.8 59.5 8.7 32.6 58.7 8.7

2.7(e), in which their only difference from the S1 solution is the position of a collection center.

Figure 2.7(f) illustrates the facility configuration investments from S4 which has only one

opened facility of each type (plant, warehouse, and collection center). The facility investment

of S4 with six outcomes for demand has the most significant difference among the other scenario

trees.

Table 2.10 shows the difference between the expected numbers of units of transportation

modes contracted in the S̄ solution and the four stochastic solutions within different periods.

The use of mode two with more capacity and higher cost compared to the first mode increases

from 49.62% in the S̄ solution to over 56% in all stochastic solutions. However, usage of mode

three does not change as much as the other modes. Overall, the stochastic solutions indicate

that the percentage usage of the mode with higher capacity and fixed cost increases in an

uncertain environment. Moreover, due to more uncertainty in demands and returns, there is

overall more transportation capacity reserved in the stochastic solutions as shown in Table 2.10.

However, the solution from S4 reserves less transportation capacity, consistent with its fewer

opened facilities as shown in Figure 2.7(f).

Overall, the qualitative conclusion is that using more scenarios might not result in a better

solution but finding the best number of outcomes representing the underlying distribution is

more effective. However, the solutions obtained from different scenario trees show two near-

optimal investments that, when evaluated by historical simulated data, are both superior to

the deterministic solution.
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Figure 2.7 The retailers’ locations and the potential facility locations are shown in (a) and

(b), respectively. The facility configurations in the above figure is as follows: (c):

S̄, (d): S1, (e): both S2 and S3 , and (f): S4

2.6 Conclusion

In this paper, we proposed a multi-stage stochastic program when quality of returned prod-

ucts as well as demands are uncertain in a CLSC network design problem that involves long-term

decisions to invest in fixed facilities such as manufacturing/remanufacturing plants, warehouses,

and collection facilities. In addition, decisions concerning capacities of different modes to trans-

port products were included before realization of uncertain parameters in each stage. The pro-

posed multi-stage stochastic program manages the trade-off between the shortage of demands

or the loss of used products, and excess processing or transportation capacity that goes unused.
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Table 2.10 The comparison between the expected number of units of each transportation

mode contracted in S̄ and stochastic solutions: S1, S2, S3 and S4

S̄ S1 S2 S3 S4

Modes 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Period 1 58.2 76.7 13.2 50.8 99.3 14.8 53.0 109.0 15.3 51.2 100.0 15.4 39.7 61.9 8.0

Period 2 72.0 89.1 15.9 65.2 117.0 15.8 70.3 110.0 16.0 71.9 113.0 15.9 39.7 72.4 8.2

Period 3 96.1 107.0 21.8 73.0 137.0 21.1 88.5 142.0 20.6 73.4 136.0 20.9 52.8 70.3 12.1

% usage

of modes
41.1 49.6 9.2 31.8 59.5 8.7 33.9 57.8 8.3 32.8 58.5 8.7 36.2 56.1 7.7

A moment matching method was applied to generate the scenario tree for demands, and distri-

bution approximation was used to generate discrete outcomes from a continuous distribution

of the uncertain returns quality.

A numerical instance illustrated how uncertainty in demands and quality of returns changes

the solution concerning the type of transportation modes and facility investments. All solutions

found from scenario trees with different granularities were evaluated in an out-of sample sim-

ulation. The underinvestment in transportation capacities of the solution to the deterministic

expected value model results in more expected inventory and shortage cost compared to the

stochastic program solutions. When uncertainty is taken into account, more transportation

capacity is contracted to satisfy more demands while the use of high capacity modes with more

fixed cost increased. Different levels of granularity of scenarios demonstrated the existence of

a significantly dissimilar alternative near-optimal solution. Increasing the number of outcomes

of return quality results in a small improvement in cost. By decreasing the number of demand

outcomes from its minimum according to the degrees of freedom available, the solution slightly

degraded. The solution was also deteriorated significantly by increasing the number of de-

mand outcomes from its minimal value. Thus, some scenario increments might not necessarily

improve the solution due to overfitting. The results of multi-stage solution when there is no

dependencies of demands among periods shows a reduction on solution quality comparing to

the scenario tree with dependent demands among periods. Finally, the solution of a two-stage

stochastic problem has less adjustability for the use of transportation capacity across different

periods comparing to the multi-stage solution.
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Multi-stage stochastic programming poses challenges in both formulation and computation.

Future work is warranted to model the relationships among uncertain variables over time and

generate accurate scenario trees that are not too large. In addition, the application of further

improved methods for generating multi-stage trees could be investigated and compared. Finally,

the solution of larger-scale instances may require decomposition approaches such as progressive

hedging or the nested L-shaped method.
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CHAPTER 3. CONDITIONS UNDER WHICH ADJUSTABILITY

LOWERS THE COST OF A ROBUST LINEAR PROGRAM

3.1 Introduction

Robust optimization is a modeling strategy in which an uncertainty set describes the pos-

sible values of some parameters of a mathematical program. The goal in this optimization

approach is to find a best solution that is feasible for all parameter values within the uncer-

tainty set. In the original formulation by Soyster (1972) the solution was often observed to

be very conservative. The approach was further developed by Ben-Tal and Nemirovski (1998,

1999, 2000) as well as Ghaoui and Lebret (1997) and Ghaoui et al. (1998) independently. These

papers proposed tractable solution approaches to special cases of the robust counterpart (RC)

in the form of conic quadratic problems with less conservative results.

In the RC formulation, the values of all decision variables are determined before the re-

alization of uncertain parameters (i.e., treated as “here and now” decisions). However, there

are applications in which some variables, including auxiliary variables such as slack or surplus

variables, could be decided after realization of (some of) the uncertain parameters (“wait and

see” decisions). Ben-Tal et al. (2004) proposed an adjustable robust counterpart (ARC) for

models with adjustable variables that tune themselves with uncertain parameters. They intro-

duced the ARC concept with two types of recourse; fixed, where the coefficients of adjustable

variables are deterministic, and uncertain, where they are not. Because ARC formulations may

not be computationally tractable, they also proposed an affinely adjustable robust counterpart

(AARC) to approximate the ARC by restricting the adjustable variables to be affine functions

of the uncertain parameters. Similar techniques of considering linear adjustability to uncertain

parameters have also been employed for tractability in linear stochastic optimization under the
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label of linear decision rules such as in Kuhn et al. (2009); Bertsimas et al. (2010); Chen and

Zhang (2009); and Bertsimas et al. (2013).

The ARC formulation is appealing because it avoids unnecessary conservatism by allowing

adjustability. The challenge is that it is not always straightforward to determine when the ARC

or AARC might be less conservative than the RC formulation in real applications. Several

published cost minimization applications where ZAARC < ZRC include project management

(Cohen et al., 2007), inventory control (Ben-Tal et al., 2009), telecommunication (Ouorou,

2013), and production planning (Solyali, 2014). But several papers establish conditions under

which ZARC = ZRC or ZAARC = ZRC . Ben-Tal et al. (2004), Bertsimas and Goyal (2010),

Bertsimas et al. (2011), Bertsimas and Goyal (2013), Bertsimas et al. (2015), and Marandi and

den Hertog (2015) defined conditions under which ZARC = ZRC . However, in some important

applications that are not covered by these papers’ assumptions, we find ZAARC = ZRC , while

ZAARC < ZRC in others.

The goal of this paper is to help determine whether ZARC may be less than ZRC in an

application that, without loss of generality, we assume has a cost minimization objective.

Because AARC is more tractable than ARC and ZARC ≤ ZAARC , we study conditions under

which ZAARC < ZRC as a sufficient condition for ZARC < ZRC . Our conditions include

the presence of at least two binding constraints at optimality of the RC formulation, and

an adjustable variable in both constraints with implicit bounds from above and below with

different extreme values in the uncertainty set. Using the dual of the RC, which is explored in

Beck and Ben-Tal (2009), we show how RC formulations can be tested in small instances in

order to identify whether affine adjustability matters. In this paper, we restrict attention to

models with fixed recourse and box uncertainty sets.

In the next section, the required preliminary definitions and explanations are presented.

Section 3.3 provides the proposition in detail with illustrative examples. Examples taken from

applications in the literature are illustrated in Section 3.4. Conclusions and future research

directions are provided in Section 3.5.
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3.2 Preliminaries

Consider a linear program (LP):

min
w≥0

cTw : A′w ≤ b, (3.1)

where w ∈ Rn+, c ∈ Rn, A′ ∈ Rm×n, b ∈ Rm. The RC of (3.1) was proposed by Ben-Tal et al.

(2004) as follows:

min
w≥0

max
ζ∈Z

{
cTw : A′w − b ≤ 0, ∀ζ = [c, A′, b] ∈ Z

}
,

where Z ⊂ Rn×Rm×n×Rm is a given uncertainty set. We can decompose the decision variables

w into non-adjustable variables x and adjustable variables y. In addition, if the costs of some

non-adjustable variables are affected by uncertainty then we reformulate as in (3.2) to move all

uncertainty to the constraints:

min
u,x,y≥0

{
u : cTxx+ cTy y − u ≤ 0, Ax+Dy ≤ b, ∀ζ = [c, A,D, b] ∈ Z

}
, (3.2)

where x ∈ Rn−p+ , y ∈ Rp+, A ∈ Rm×(n−p), D ∈ Rm×p, b ∈ Rm,Z ⊂ Rn×Rm×(n−p)×Rm×p×Rm.

Upon this reformulation (if necessary), we can state the robust counterpart as:

ZRC = min
x,y≥0

{
cTxx+ cTy y : Ax+Dy ≤ b, ∀ζ = [A,D, b] ∈ Z

}
. (3.3)

Henceforth, we assume all uncertain parameters appear in the constraints. The ARC corre-

sponding to (3.3), where the adjustable variable y is decided after realization of the uncertain

parameters, is:

ZARC = min
x,y(ζ)≥0,∀ζ∈Z

{
cTxx+ max

ζ∈Z
cTy y(ζ) : Ax+Dy(ζ) ≤ b, ∀ζ = [A,D, b] ∈ Z

}
. (3.4)

Ben-Tal et al. (2004) assumed, without loss of generality, that the uncertainty set Z is

affinely parameterized by a perturbation vector ξ varying in a given non-empty convex compact

perturbation set χ ⊂ RL:
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Z =

{
[A,D, b] =

[
A0, D0, b0

]
+

L∑
l=1

ξl
[
Al, Dl, bl

]
: ξ ∈ χ

}
. (3.5)

In the case of fixed recourse, the coefficients of the adjustable variables are deterministic

(i.e., Dl = 0 for l = 1, ..., L). If we define ali ∈ Rn−p as the ith row of Al, di ∈ Rp as the i th row

of D0 and bli ∈ R as the i th element of vector bl, the RC formulation with fixed recourse is as

follows:

ZRC = min
x,y≥0{

cTxx+ cTy y :

(
a0
i +

L∑
l=1

ξlali

)
x+ diy ≤ b0i +

L∑
l=1

ξlbli, ∀ξ ∈ χ, i = 1, ...,m

}
, (3.6)

and the fixed recourse version of ARC is:

ZARC = min
x,y(ξ)≥0,∀ξ∈χ

{
cTxx+ max

ξ∈χ
cTy y(ξ) :(

a0
i +

L∑
l=1

ξlali

)
x+ diy(ξ) ≤ b0i +

L∑
l=1

ξlbli, ∀ξ ∈ χ, i = 1, ...,m

}
. (3.7)

The AARC is an approximation of the ARC in which the adjustable variables are restricted

to be affine functions of the uncertain parameters. In this approximation, if Z is affinely

parameterized as defined in equation (3.5), the adjustable variables y are restricted to affinely

depend on ξ:

y = π0 +
L∑
l=1

ξlπl ≥ 0, (3.8)

where πl ∈ Rp for l = 0, ..., L. The fixed recourse AARC formulation corresponding to (3.7) is:
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ZAARC = min
x≥0,π

{
cTx+ max

ξ∈χ
cTy

(
π0 +

L∑
l=1

ξlπl

)
:(

a0
i +

L∑
l=1

ξlali

)
x+ di

(
π0 +

L∑
l=1

ξlπl

)
≤ b0i +

L∑
l=1

ξlbli, ∀ξ ∈ χ, i = 1, ...,m;

π0 +

L∑
l=1

ξlπl ≥ 0, ∀ξ ∈ χ
}
. (3.9)

In practice, πl would be forced to equal zero if y is not adjustable to the lth perturbation for

some l ∈ {1, ..., L}. The AARC (3.9) is computationally tractable. Even when the coefficients

of the adjustable variables are uncertain, it can be approximated by an explicit semi-definite

program if the uncertainty set is an intersection of concentric ellipsoids (Ben-Tal et al., 2004).

However, the AARC formulation with uncertainty-affected recourse imposes more computa-

tional challenge that is not considered in this paper. In addition, only box uncertainty sets

(3.10) are considered here to avoid the complexity of interactions among uncertainties. That

is, we define

χ =
{
ξ : |ξl| ≤ ρl, l = 1, ..., L

}
, (3.10)

where, without loss of generality, we assume that ρl = 1 for all l = 1, ..., L.

3.3 Conditions For ZARC < ZRC

Because ZARC ≤ ZAARC ≤ ZRC , conditions under which ZAARC < ZRC are sufficient for

ZARC < ZRC as well. The behavior of the solution to the AARC formulation depends on how

the uncertain parameters interact in the RC constraints. As detailed below, adjustability may

lower the cost if there are at least two constraints that are binding at an optimal RC solution

for different values of the same uncertain parameter. In addition, a decision variable that could

be made adjustable appears in both constraints, one of which bounds it from above at one

extreme of the uncertainty set and the other bounds it from below at the opposite extreme of

the uncertainty set. By allowing the variable to adjust to that uncertain parameter, there is
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a possible improvement from using AARC formulation and, therefore, the more general ARC

formulation.

Several papers provided conditions to show when adjustability does not matter or provided

bounds on ZARC based on ZRC . Ben-Tal et al. (2004) and Marandi and den Hertog (2015)

proved that for models with constraint-wise uncertainty, ZRC = ZARC . But they did not

explicate how the interaction of the same uncertain parameter in separate constraints might

allow adjustability to lower the optimal cost.

In other papers, some limitations prevent identification of models with inequality between

ZRC and ZARC . Bertsimas and Goyal (2010) and Bertsimas et al. (2011) approximated a

two-stage stochastic model and an adjustable robust counterpart with the robust counterpart.

They considered both objective coefficient and constraint right-hand side uncertainty. Bertsi-

mas and Goyal (2010) proved that, for hypercube uncertainty set when uncertainty is in the

objective and right-hand side, the robust solution is equal to fully adjustable solution. Using a

generalized notion of symmetry for general convex uncertainty sets, Bertsimas et al. (2011) ex-

tend the Bertsimas and Goyal (2010) static robust solution performance in two-stage stochastic

optimization problems. Bertsimas and Goyal (2011) also compared the optimal affine policy

to the optimal fully adaptable solution with no comparison between RC and ARC. The limi-

tation of these studies includes the right-hand side nonnegativity of non-strict “greater than”

constraints, which prevents them from modeling upper bounds on decision variables.

Bertsimas and Goyal (2013) and Bertsimas et al. (2015) extended the uncertainty to be in

constraint and objective coefficients. They approximated the ZARC with the ZRC to handle

packing constraints such as in revenue management or resource allocation problems. Their

limitation, however, does not allow the adjustable variable to have a lower-bound because of

the assumptions of non-strict “less than” constraints. Moreover, Bertsimas and Goyal (2013)

assumed that objective and constraints are convex and the constraint functions should be

convex regarding positive decision variables, and also concave and increasing with respect to

uncertain parameters of the positive compact convex set. Bertsimas et al. (2015) assumed a

linear objective and constraint functions with tighter bounds and fewer positivity restricted

parameters compared to Bertsimas and Goyal (2013). However, they still assumed constraint
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coefficients, second-stage objective coefficients and decision variables to be positive which rules

out lower bounds on second-stage decision variables. Table 3.1 compares the restrictions exist-

ing in the literature to our model for the comparison between RC and ARC optimal objective

values in linear programming. The implicit lower and upper bounds imposed by constraints on

adjustable decision variables are important aspects of the conditions for ZAARC < ZRC to be

stated below.

Table 3.1 The limitations considered in the papers and this research for the comparison be-

tween RC and ARC objectives in LP

Paper Uncertain param-

eters

Limitations of the comparison

between RC and ARC

Ben-Tal et al. (2004) All parameters Constraint-wise uncertainty

Marandi and den Hertog (2015) All parameters Constraint-wise uncertainty

Bertsimas and Goyal (2011, 2010) b and cy x, y ≥ 0, and c, b ≥ 0

Bertsimas et al. (2011) b and cy b ≥ 0, and Z ≥ 0

Bertsimas and Goyal (2013) D and cy x, y ≥ 0, and c, A,D, b ≥ 0

Bertsimas et al. (2015) D and cy y ≥ 0,and c,D ≥ 0

This paper A and b Box uncertainty set and x, y ≥ 0

We identify numerical conditions under which the use of the AARC formulation produces

less conservative solutions than the RC. To be able to apply these conditions, we must solve

the RC in a representative instance for its optimal primal and dual values. Duality in robust

optimization has been studied recently by Beck and Ben-Tal (2009), Soyster and Murphy

(2013), Soyster and Murphy (2014), and Bertsimas and Ruiter (2015). The dual of (3.6) can

be written as (Beck and Ben-Tal, 2009):

DRC = max
λ

{ m∑
i=1

λi

[
b0i +

L∑
l=1

ξ̂lib
l
i

]
:

λas ≤ csx, λds
′ ≤ cs′y , λ ≤ 0, s = 1, ..., n− p, s′ = 1, ...p

}
, (3.11)

where as and ds
′
, respectively, denote column s of A0 +

∑L
l=1 ξ̂

lAl and column s′ of D, and ξ̂li is

the value of ξ for which constraint i is binding (see Definition 2) in the optimal solution to the
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RC. The dual of the RC is the same as the optimistic counterpart of the dual of the original

linear program (3.1), as mentioned in Beck and Ben-Tal (2009).

The feasible region of the RC (3.6) can be expressed as a convex set
⋂m
i=0F iRC where (Beck

and Ben-Tal, 2009):

F iRC =

{
x, y ≥ 0 :

(
a0
i +

L∑
l=1

ξlali

)
x+ diy ≤ b0i +

L∑
l=1

ξlbli, ∀ξ ∈ χ

}
,

i = 1, ...,m. (3.12)

Likewise, the feasible region of AARC (3.9) is given by
⋂m
i=0F iAARC , where

F iAARC =

{
x ≥ 0, π :

(
a0
i +

L∑
l=1

ξlali

)
x+ di

(
π0 +

L∑
l=1

ξlπl

)
≤ b0i +

L∑
l=1

ξlbli,

∀ξ ∈ χ;

(
π0 +

L∑
l=1

ξlπl

)
≥ 0, ∀ξ ∈ χ

}
, i = 1, ...,m. (3.13)

From Ben-Tal et al. (2004) we know that
⋂m
i=0F iRC ⊆

⋂m
i=0F iAARC because the AARC

differs from the RC only by the inclusion of variables πl, l = 1, ..., L. Moreover, (3.12) can be

obtained from (3.13) by forcing πl for l = 1, ..., L to be zero. However, a larger robust feasible

set does not necessarily improve the objective. If the parameters of distinct constraints are

affected by different perturbations, the (affine) adjustable counterpart may be equivalent to

the robust counterpart. The following definition formalizes this concept.

Definition 1. (Ben-Tal et al., 2004) Uncertainty in the RC is constraint-wise if [A, b] ∈ Z

consists of non-overlapping sub-vectors (ali, b
l
i)
L
l=1 for i = 1, ...,m such that (a0

i +
∑L

l=1 ξ
lali)x+

diy ≤ b0i +
∑L

l=1 ξ
lbli depends on (ali, b

l
i)
L
l=1 only. Moreover, if ∃l ∈ {1, ..., L} : [ali, b

l
i] 6= 0,then

[alj , b
l
j ] = 0 ∀j 6= i.

The following result identified some conditions under which the RC and ARC are equivalent.

Theorem 1 (See Theorem 2.1 of Ben-Tal et al. (2004)). The objective values of RC (3.3) and

ARC (3.4) are equal if:

• The uncertainty is constraint-wise, and
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• Whenever x is feasible for ARC (3.4), there exists a compact set Vx such that for every A,D, b

where ζ ∈ Z, the relation Ax+Dy ≤ b implies that x ∈ Vx.

However, the more interesting question of when adjustability would result in ZARC <

ZRC was not explored. The challenge of determining whether the ARC is more advantageous

than the RC formulation in real applications is compelling because it is not always evidently

determined beforehand. Up to now, it can be determined only by directly solving the full-scale

AARC formulation. In some cases the AARC does not produce any better solution than the

RC formulation. The proposition below establishes conditions under which the objective values

of AARC (3.9) and RC (3.6) are not equal. The following are definitions necessary for stating

the conditions.

Definition 2. If (x̂RC , ŷRC) is any optimal solution of the RC (3.6), we say that constraint

i ∈ {1, ...,m} is binding at (x̂RC , ŷRC) if a0
i x̂
RC + diŷ

RC = b0i +
∑L

l=1 ξ̂
l
i(b

l
i − alix̂RC) where

ξ̂i ≡ argminξ

(
b0i +

∑L
l=1 ξ

l(bli − alix̂RC)
)

is the worst-case value of ξ with respect to constraint

i.

When the uncertainty is not constraint-wise, at least one component l = 1, ..., L is involved

in more than one constraint. However, the worst-case value of ξl can differ across constraints.

Definition 3. Constraint i is said to be relaxed by changing some parameter values ali, di, b
l
i

to a′li , d
′
i, b
′l
i , if the result is a feasible region F ′iRC ⊂ F iRC .

Proposition 1. Considering the RC formulation of equation (3.6) and (x̂RC , ŷRC) to be any

optimal solution, suppose:

1. There exist two binding constraints indexed by j, k ∈ {1, ...,m}, j 6= k, where relaxing either of

these constraints strictly improves ZRC , and ξ̂j 6= ξ̂k, where ξ̂j and ξ̂k are defined in Definition

2.

2. The uncertainty is not constraint-wise with respect to the constraints j and k identified in

condition 1. Specifically, ∃q ∈ {1, ..., L} such that the qth parameters are non-zero in both

constraints: [aqj , b
q
j ] 6= 0 and [aqk, b

q
k] 6= 0.
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3. There is a component yr with objective coefficient cyr ∈ R that is basic in (x̂RC , ŷRC) such that

a. djrdkr < 0 for the constraints j and k identified in condition 1, and

b. yr is adjustable to the perturbation ξq in AARC where q is defined in condition 2. In

other words, in equation (3.8) πqr ∈ R is not forced to be zero.

Assume that [aqi , b
q
i ] = 0 for i 6= {j, k}. Let λ∗ be an optimal dual solution corresponding to

(x̂RC , ŷRC) as defined by Beck and Ben-Tal (2009), and j and k index two constraints of RC

as defined in condition 1. Then∣∣∣λ∗j (bqj − aqj x̂RC)
∣∣∣+
∣∣λ∗k(bqk − aqkx̂RC)

∣∣ > ∣∣∣λ∗j (bqj − aqj x̂RC − djrδ)∣∣∣
+
∣∣λ∗k(bqk − aqkx̂RC − dkrδ)∣∣+ |cyrδ|+

m∑
i=1

i 6={j,k}

|δλ∗i dir| . (3.14)

for some δ 6= 0 implies ZRC > ZAARC .

Proof. Consider the intersection of the feasible regions defined by constraints j and k,F iRC ∩

FkRC , and focus on the perturbation ξq. Condition 1 implies:

a0
j x̂
RC + dj ŷ

RC = b0j +
L∑
l=1
l 6=q

ξ̂lj

(
blj − alj x̂RC

)
+ ξ̂qj

(
bqj − a

q
j x̂
RC
)

and

a0
kx̂

RC + dkŷ
RC = b0k +

L∑
l=1
l 6=q

ξ̂lk

(
blk − alkx̂RC

)
+ ξ̂qk

(
bqk − a

q
kx̂

RC
)
,

where, based on condition 1, ξ̂qj 6= ξ̂qk.

From Bazaraa et al. (2010), if surplus variables s are added to linear program (3.1) con-

verting the inequalities to equalities, we have

z∗ = min
w′≥0

cTw′ : A′w′ = b, (3.15)

where w′T = [w, s] can be partitioned into w′B as basic variables and w′N as non-basic variables

in a given basic solution. In addition, if B∗ and N are the corresponding optimal basic and
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non-basic matrices, respectively, the objective and the optimal values of the basic variables can

be written as z∗− cTNw′N = cTB∗w
′
B∗ , where w′B∗ = B∗−1b−B∗−1Nw′N . That is, we can rewrite

objective z∗ as

z∗ = cTB∗B
∗−1b+ w′TN (cN − cTB∗B∗−1N) = λ∗b+ w′TN (cN − λ∗N), (3.16)

where λ∗ = cTB∗B
∗−1 is an optimal dual vector corresponding to the particular optimal solution

w′∗. If we define ∆B∗ = (xB∗ , yB∗) as basic variables and ∆N = (xN , yN ) as the non-basic

variables in (x̂RC , ŷRC) then we can write:

ZRC(∆N ) =
m∑
i=1

λ∗i

[
b0i +

L∑
l=1

ξ̂lib
l
i

]
+ ∆N (cN − λ∗N), (3.17)

where ZRC(∆N ) is the objective value of RC as a function of non-basic variables ∆N and

ZRC(0) = ZRC . By subtracting the constant
∑m

i=1 λ
∗
i

[∑L
l=1 ξ̂

l
i(a

l
ix̂
RC)

]
from ZRC(∆N ), we

have:

z(∆N ) ≡ ZRC(∆N )−
m∑
i=1

λ∗i

[
L∑
l=1

ξ̂li(a
l
ix̂
RC)

]
=

m∑
i=1

λ∗i

[
b0i +

L∑
l=1

ξ̂li

(
bli − alix̂RC

)]
+ ∆N (cN − λ∗N) . (3.18)

From condition 3, we know yr ∈ ∆B∗ . Therefore, based on (3.6) and (3.9) we can identify

πqr as a new variable with constraint column Nr and objective coefficient Cr as follows:

Nr =

[
... djr ξ̂

q
j ... dkr ξ̂

q
k ...

]T
, Cr = ξqcyr . (3.19)

Recall that ξ̂qj and ξ̂qk are the worst-case values of ξ in equation (3.6) for constraints j and

k, respectively, and cyr is the objective function coefficient of yr. Based on equation (3.18), for

∆N = (0, ..., πqr)T where πqr has been appended to the set of non-basic variables, we have:

z
(
(0, ..., πqr)

T
)

=
m∑
i=1

λ∗i

[
b0i +

L∑
l=1

ξ̂li(b
l
i − alix̂RC)

]
+ πqr(Cr − λ∗Nr). (3.20)
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Following equation (3.20) we can isolate j and k and also substitute (3.19):

z
(
(0, ..., πqr)

T
)

=

m∑
i=1

i 6={j,k}

λ∗i

[
b0i +

L∑
l=1

ξ̂li(b
l
i − alix̂RC)

]
+

λ∗j

b0j +
L∑
l=1
l 6=q

ξ̂lj(b
l
j − alj x̂RC) + ξ̂qj (b

q
j − a

q
j x̂
RC)

+

λ∗k

b0k +
L∑
l=1
l 6=q

ξ̂lk(b
l
k − alkx̂RC) + ξ̂qk(b

q
k − a

q
kx̂

RC)

+

πqr

(
ξqcyr − λ∗

[
... djr ξ̂

q
j ... dkr ξ̂

q
k ...

]T)
(3.21)

Upon rearranging terms, denoting a value of πqr by δ, and also based on the assumption of

[aqi , b
q
i ] = 0 for i 6= {j, k}, we have:

z
(
(0, ..., δ)T

)
=

m∑
i=1

i 6={j,k}

λ∗i

[
b0i +

L∑
l=1

ξ̂li(b
l
i − alix̂RC)

]
+

λ∗j

b0j +
L∑
l=1
l 6=q

ξ̂lj(b
l
j − alj x̂RC) + ξ̂qj (b

q
j − a

q
j x̂
RC − djrδ)

+

λ∗k

b0k +
L∑
l=1
l 6=q

ξ̂lk(b
l
k − alkx̂RC) + ξ̂qk(b

q
k − a

q
kx̂

RC − dkrδ)


+ δξqcyr −

m∑
i=1

i 6={j,k}

δλ∗i dirξ
q
i . (3.22)

Let z(0) = ZRC −
∑m

i=1 λ
∗
i

[∑L
l=1 ξ̂

l
i(a

l
ix̂
RC)

]
≡ z

(
(0, ..., δ)T

)
for δ = 0. The inequality z(0) >

z
(
(0, ..., δ)T

)
is equivalent to:
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ξ̂qjλ
∗
j (b

q
j − a

q
j x̂
RC) + ξ̂qkλ

∗
k(b

q
k − a

q
kx̂

RC) > ξ̂qjλ
∗
j (b

q
j − a

q
j x̂
RC − djrδ)

+ ξ̂qkλ
∗
k(b

q
k − a

q
kx̂

RC − dkrδ) + ξcyrδ −
m∑
i=1

i 6={j,k}

ξqi δλ
∗
i dir. (3.23)

Based on Definition 2 and assumption (3.10), ξ̂qi (b
q
i −a

q
i x̂
RC) = −

∣∣bqi − aqi x̂RC∣∣. Then, since

λi ≤ 0 in the dual of RC (3.11), we have

ξ̂qjλ
∗
j (b

q
j − a

q
j x̂
RC) + ξ̂qkλ

∗
k(b

q
k − a

q
kx̂

RC) =
∣∣∣λ∗j (bqj − aqj x̂RC)

∣∣∣+
∣∣λ∗k(bqk − aqkx̂RC)

∣∣ (3.24)

In addition,

ξ̂qjλ
∗
j (b

q
j − a

q
j x̂
RC − djrδ) + ξ̂qkλ

∗
k(b

q
k − a

q
kx̂

RC − dkrδ) + ξcyrδ −
m∑
i=1

i 6={j,k}

ξqi δλ
∗
i dir

≤
∣∣∣λ∗j (bqj − aqj x̂RC − djrδ)∣∣∣+

∣∣λ∗k(bqk − aqkx̂RC − dkrδ)∣∣+ |cyrδ|+
m∑
i=1

i 6={j,k}

|δλ∗i dir| (3.25)

Therefore, from the right-hand sides of (3.24) and (3.25), if (3.14) holds considering box

uncertainty set (3.10), there exists δ 6= 0 such that z(0) > z
(
(0, ..., δ)T

)
(expressed as inequality

(3.23)). Recall that z(0) +
∑m

i=1 λ
∗
i

[∑L
l=1 ξ̂

l
i(a

l
ix̂
RC)

]
= ZRC . Because the AARC could have

multiple adjustable variables, ZAARC ≤ z
(
(0, ..., δ)T

)
+∑m

i=1 λ
∗
i

[∑L
l=1 ξ̂

l
i(a

l
ix̂
RC)

]
. Therefore, inequality (3.14) implies ZRC > ZAARC .

Remark 1. For simplicity in the proof, we focus on only two constraints j and k that have

the same uncertain parameter in (3.14), and consider yr as adjustable to a single perturbation

ξq where [aqi , b
q
i ] = 0 for i 6= {j, k}. The result can be extended using the same intuition

if there exist similar constraints to j or k that satisfy conditions 1 - 3 with no assumption

that [aqκ, b
q
κ] = 0. Expressions of the form |λ∗κ(bqκ − aqκx̂RC)| and |λ∗κ(bqκ − aqκx̂RC − dκrδ)| for

such constraints κ ∈ {1, ...,m} would be added to the left- and right-hand sides of (3.14),

respectively, and index κ should be excluded from the sum
∑m

i=1
i 6={j,k}

|δλ∗i dir| . The extension of

(3.14) when considering all constraints is as follows:
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m∑
i=1

∣∣λ∗i (bqi − aqi x̂RC)
∣∣ > m∑

i=1

∣∣λ∗i (bqi − aqi x̂RC − dirδ)∣∣+ |cyrδ| (3.26)

Examples 4 and 5 illustrate the use of this expanded inequality.

Next we show the importance of condition 1, which has been ruled out in the literature.

Condition 1 holds if there are two binding constraints with different values of the uncertain

parameter at the optimal RC solution. The variable that is adjustable to the uncertain pa-

rameter in both constraints is effectively bounded above and below by these constraints based

on condition 3. One of these bounds is unfavorable for the objective but can be relaxed by

adjustability in a direction that lowers the objective value.

Remark 2. Suppose conditions 2 and 3 of Proposition 1 hold but ξ̂qj = ξ̂qk = ξ̂q. The coefficient

of πqr in (3.20) is reformulated by inserting (3.19) as:

(Cr − λ∗Nr) =

(
ξqcyr − cB∗B∗−1

[
... djr ξ̂

q
j ... dkr ξ̂

q
k ...

]T)
. (3.27)

The left-hand-side of (3.27) equals:

(
ξqcyr − cB∗B∗−1

[
... djr ... dkr ...

]T
ξ̂q

)
. (3.28)

If Nr = N ′r ξ̂
q in (3.28) where N ′r =

[
... djr ... dkr ...

]T
, since N ′r equals the rth column

of B∗, multiplying B∗−1 and N ′r yields the rth column of identity matrix In. Following (3.28)

and since the rth element of cB∗ is cyr , we have:

(
ξqcyr − cTB∗

[
0 ... ξ̂q ... 0

]T)
= cyr(ξq − ξ̂q), (3.29)

where (3.29) expresses the coefficient of πqr in (3.20) as a function of ξ. The parameter ξq can

take on a value that forces the coefficient of πqr in (3.20) to equal 0. Therefore, for any value of

πqr , z
(
(0, ..., πqr)T

)
= z(0) and ZAARC = ZRC .
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Note also that if condition 2 does not hold, then the uncertainty is constraint-wise, and

ZARC equals ZRC (Ben-Tal et al., 2004; Marandi and den Hertog, 2015).

To illustrate the proposition, Examples 1-3 are provided based on the following LP formu-

lation:

min
x,y≥0

cxx+ cyy : a1x+ d1y ≤ b1, a2x+ d2y ≤ b2, (3.30)

where ai = a0
i + ξa1

i and bi = b0i + ξb1i are the uncertain parameters in constraints i = 1, 2.

Example 1. This example illustrates equivalence of RC and AARC objective values based

on Remark 2. If the parameter values of (3.30) are a0
1 = −3, a1

1 = −1, a0
2 = 0, a1

2 = −1, b01 =

−6, b11 = −1, b02 = 1, b12 = −1, cx = cy = 1, d1 = 1 and d2 = −1 where ξ ∈ [−1, 1], the RC

formulation is as follows:

ZRC = min
x,y≥0

x+ y :

(i = 1) − (3 + ξ)x+ y ≤ −6− ξ, ∀ξ ∈ [−1, 1]

(i = 2) − ξx− y ≤ 1− ξ, ∀ξ ∈ [−1, 1] (3.31)

Figure 3.1(a) illustrates the RC feasible region formed by the constraints in their respective

most restrictive cases. Since the uncertainty sets are polyhedral, the RC can be converted to

an explicit LP by defining additional constraints and variables v1 = −min−1≤ξ≤1 ξ(x − 1) in

constraint 1 and v2 = −min−1≤ξ≤1 ξ(x− 1) in constraint 2 as follows (Ben-Tal et al., 2004):

ZRC = min
x,y,v1,v2≥0

x+ y :− 3x+ y ≤ −6− v1, −v1 ≤ x− 1 ≤ v1,

− y ≤ 1− v2, −v2 ≤ x− 1 ≤ v2. (3.32)

The optimal values of the RC variables by solving (3.32) are x̂RC = 3, ŷRC = 1, ZRC = 4.

Note that the optimal solution for this particular instance could be identified with only one

auxiliary variable v ≡ v1 = v2. We can identify j = 1 and k = 2 in (3.31) as satisfying
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conditions 1-3 of the proposition. The values of λ∗ can be easily found using the deterministic

formulation (3.32) for all corresponding constraints. For example, constraint −3x+y ≤ −6−v1

in (3.32) corresponds to i = 1 in (3.31). The optimal basic variables of RC (3.31) are x and

y. Their cost coefficients and the optimal values of the dual variables are cTB∗ =

(
1 1

)
and

λ∗ = cTB∗B
∗−1 =

(
λ∗1 λ∗2

)
=

(
−2 −3

)
, respectively.

We can also obtain the values of ξ at the optimal solution in constraints j and k, by

substituting the optimal values of x̂RC and ŷRC into constraints j = 1 and k = 2 of formulation

(3.31) and identifying the values of ξ where the constraints hold as equalities. In this instance,

we obtain ξ̂1 = −1, ξ̂2 = −1, which do not satisfy condition 1.

Considering the adjustable variable as an affine function y = π0 + ξδ, and by inserting the

corresponding parameter values and the new variable δ into (3.14) we obtain:

10 > 2 |2− δ|+ 3 |2 + δ|+ |δ| . (3.33)

The inequality (3.33) cannot be satisfied, because its right-hand side is a convex piecewise

linear expression with minimum value 10. Indeed by solving the AARC with y = π0 + ξδ, we

find x̂AARC = 3, π̂0 = 1, δ̂ = 0,and ZAARC = 4 = ZRC .

Figure 3.1 The feasible regions of the RC constraints within uncertainty set ξ ∈ [−1, 1] for (a)

Example 1, (b) Example 2, (c) Example 3 are shaded with gray lines. The thick

black line in (c) is y = 3
2 −

3
2ξ for ξ ∈ [−1, 1].

Example 2. This instance shows that if condition 3(a) is not satisfied (i.e., djrdkr > 0 but

still conditions 1, 2 and 3(b) are satisfied) the objective values of RC and AARC are equal.



56

The RC formulation of (3.30) with a0
1 = −4, a1

1 = −1, a0
2 = −1, a1

2 = 1, b01 = −6, b11 = 0, b02 =

−3, b12 = 0, cx = cy = 1, d1 = −1 and d2 = −1 where ξ ∈ [−1, 1] is:

ZRC = min
x,y≥0

x+ y :

(i = 1) − (4 + ξ)x− y ≤ −6, ∀ξ ∈ [−1, 1]

(i = 2) (−1 + ξ)x− y ≤ −3, ∀ξ ∈ [−1, 1] (3.34)

The optimal values of RC variables following the same method of Example 1, in which we

converted the RC problem to its deterministic formulation (3.32), are x̂RC = 1, ŷRC = 3, ZRC =

4 (see Figure 3.1(b)). The two constraints j = 1 and k = 2 satisfy conditions 1, 2 and 3(b)

but not 3(a). Moreover, the coefficients of the adjustable variable y for the two constraints

are d1 = −1, d2 = −1. Also, ξ̂1 = −1 and ξ̂2 = 1. The optimal values of dual variables

are

(
λ∗1 λ∗2

)
=

(
−1

3 −2
3

)
. After inserting the corresponding parameter values in equation

(3.14), we have:

1 >
1

3
|1 + δ|+ 2

3
|−1 + δ|+ |δ| . (3.35)

Again, the right-hand side of inequality (3.35) is a convex piecewise linear expression whose

minimum value is 1. The optimal values of AARC variables when y = π0 + ξδ are x̂AARC = 1,

π0 = 3, δ = 0, and ZAARC = 4 = ZRC .

Example 3. This example illustrates the case in which all conditions of the proposition are

satisfied along with (3.14) so that ZRC > ZAARC . In this instance, the parameter values of

(3.30) are a0
1 = −3, a1

1 = −1, a0
2 = 1, a1

2 = 1, b01 = −6, b11 = 1, b02 = 5, b12 = −1, cx = cy = 1, d1 =

−1 and d2 = 1
2 , where ξ ∈ [−1, 1]. The RC formulation is:

ZRC = min
x,y≥0

x+ y :

(i = 1) − (3 + ξ)x− y ≤ −6 + ξ, ∀ξ ∈ [−1, 1]

(i = 2) (1 + ξ)x+
1

2
y ≤ 5− ξ, ∀ξ ∈ [−1, 1] (3.36)
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Here the optimal values of the RC variables are: x̂RC = 1
2 , ŷ

RC = 6, ZRC = 13
2 . Figure

3.1(c) illustrates the feasible region as well as the optimal solution of the adjustable variable

y = π0 + ξδ = 3
2 −

3
2ξ for ξ ∈ [−1, 1]. In line with condition 1, the two constraints j = 1 and

k = 2 are binding at ξ̂1 = −1 and ξ̂2 = 1; that is, ξ̂1 6= ξ̂2. Condition 2 holds because at

least one parameter depends on ξ in these two constraints. In the ARC formulation of (3.36),

y is adjustable to ξ which has non-zero coefficients in both constraints that satisfy condition

3. The objective coefficient vector of the basic variables is cTB∗ =

(
1 1

)
and the optimal dual

variables of RC are λ∗ = cTB∗B
∗−1 =

(
λ∗1 λ∗2

)
=

(
−3

2 −1

)
. Inequality (3.14) is:

15

4
>

3

2

∣∣∣∣32 + δ

∣∣∣∣+

∣∣∣∣−3

2
− 1

2
δ

∣∣∣∣+ |δ|. (3.37)

If δ = −3
2 then (3.37) is satisfied as 15

4 > 9
4 . The optimal values of the AARC variables are

x̂AARC = 2, y = 3
2 −

3
2ξ, and ZAARC = 5 < ZRC .

3.4 Applications

To evaluate the potential for affine adjustability to lower the cost in any application, in-

equality (3.26) (that is, the extension of (3.14)) can be tested in a small instance. The following

two examples illustrate this evaluation process in applications where the AARC approach has

been applied successfully. Note that these applications are evaluated using inequality (3.26)

before reformulation as AARC.

Example 4 (Inventory model). Multi-stage inventory management has been solved by the

AARC approach frequently (Ben-Tal et al., 2004, 2009; Adida and Perakis, 2010). Ben-Tal

et al. (2004) formulated it as:
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ZRC = min
pN ,pA

J∑
j=1

T∑
t=1

cj(t)pj(t)

0 ≤ pj(t) ≤ Pj(t), j = 1, ..., J, t = 1, ..., T

T∑
t=1

pj(t) ≤ Q(j), j = 1, ..., J

Vmin ≤ v(1) +
J∑
j=1

t∑
s=1

pj(s)−
t∑

s=1

θ̃s(ξ) ≤ Vmax, ∀ξ ∈ χ, t = 1, ..., T. (3.38)

Here, J and T are the numbers of factories and periods, respectively, p = {pj(t)} denotes

the production quantities with costs cj(t) and P = {Pj(t)} are the production capacities of

factory j in period t. The subsets of adjustable and non-adjustable variables for the AARC

formulation are pA = {pj(s)|s ∈ {1, ..., t}}, t = 1, ..., T and pN = p \pA, respectively. In

addition, Q(j) represents the maximum cumulative capacity of factory j, v(1) stands for the

amount of available product at the beginning of the horizon, and Vmin (Vmax) are the minimum

(maximum) storage capacity of the warehouse. We assume that θ̃t(ξ), the demand in period t,

is uncertain and lies in a box uncertainty set θ̃t(ξ) = θ̄t + ξtθ̂t where |ξt| ≤ ρt.

Consider a simple instance where T = 2, J = 2 and the parameter values are:

c(1) =

9

8

 , c(2) =

10

9

 , P (1) = P (2) =

20

20

 , Q =

50

20

 , Vmin = 0, Vmax = 10

If the uncertain demands for two periods are θ̃1(ξ) = 10 + ξ13 and θ̃2(ξ) = 10 + ξ22 where

|ξ1| ≤ 1 and |ξ2| ≤ 1, then the optimal solution to (3.38) using the same process as in Example

1 are p̂RC(1) =

[
0 17

]T
, p̂RC(2) =

[
5 3

]T
with ZRC = 213.

By considering p1(1) as adjustable to the first perturbation ξ1, the following represents how

to evaluate the RC optimum solution based on the general inequality (3.26).

Only three constraints have non-zero corresponding dual values λ∗ =



59

(−1,−10,−1)T as follows:

(i = 1) v(1) + p1(1) + p2(1) ≤ (θ̄1 + ξ1θ̂1) + Vmax

(i = 2) − v(1)− p1(1)− p2(1)− p1(2)− p2(2) ≤ −(θ̄1 + ξ1θ̂1)− (θ̄2 + ξ2θ̂2)− Vmin

(i = 3) p2(1) + p2(2) ≤ Q(2)

The coefficients ali equal zero for all i and l while b11 = θ̂1 = 3, b12 = −θ̂1 = −3. Also, the

coefficient vector of adjustable variable p1(1) in these constraints is d = (1,−1, 0)T . Finally,

the coefficient of p1(1) in the objective, denoted cyr in (3.26), is 9. Therefore, considering the

affine function p1(1) = π0 + ξ1δ, (3.26) is:

33 > |3− δ|+ 10| − 3 + δ|+ 9|δ| (3.39)

Inequality (3.39) holds for δ = 3, for example. Therefore, the conservatism of problem

(3.38) would be reduced by AARC formulation. When only p1(1) is adjustable, ZAARC = 208.

The AARC formulation when pi(1) is adjustable to ξ1 and pi(2) is adjustable to both ξ1 and

ξ2 yields the optimal objective value of ZAARC = 207 in this instance.

However, a single modification to this instance renders adjustability ineffective. If Vmax

changes to 100, then the new RC solution with ZRC = 205 is p(1) =

[
5 20

]T
, p(2) =

[
0 0

]T
.

The non-zero dual values are λ∗2 = −9 and λ∗4 = −1 where constraint i = 4 is p2(1) ≤ P2(1).

After this change, conditions 1 and 2 in the proposition do not hold only one of the binding

constraints involves an uncertain parameter. Therefore, ZRC = ZAARC .

Example 5 (Project management). A time-cost tradeoff problem (TCTP) in project man-

agement with uncertainty in time duration was another application proposed by Cohen et al.

(2007) to solve with AARC. The following is the RC formulation of TCTP:
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ZRC = min
x,y≥0

max
ξ∈χ

∑
ij

µij T̃ij(ξ) +
∑
ij

Φijyij + Cxn

− (xj − xi + yij) ≤ −T̃ij(ξ), ∀ξ ∈ χ, ∀j,∀i ∈ Pj

yij ≤ T̃ij(ξ)−Mij , ∀ξ ∈ χ, ∀j,∀i ∈ Pj

x1 = 0, xn ≤ D, (3.40)

where xi denotes the start time of node i ∈ {1, ..., n} in which n is the final node. When

x1 = 0 then xn is the project duration with overhead cost C, and D denotes its predetermined

due date. The immediate predecessors set of node j is shown as Pj . The decision variable

yij represents the crashing of activity ij ∈ {1, ..., n} with a constant marginal cost Φij . The

uncertain normal duration of each activity T̃ij(ξ) is assumed to belong a symmetric interval

with objective coefficient µij as the compensation of the contractor. In this example, we assume

T̃ij(ξ) = T̄ij + ξij T̂ij where |ξij | ≤ ρij . In addition, Mij represents the lower bound of activity

duration ij. In the AARC each variable is adjustable to a portion of the uncertain parameters.

A small instance of the problem with only three nodes n = 3 and two arcs ij = {(1, 2), (2, 3)}

is specified with the following parameter values, extracted from the same instance as in Cohen

et al. (2007) limited to three nodes and two sequential activities:

µ =

5

5

 ,Φ =

15

2

 ,M =

1.3

1.9

 , T̄ =

 3

4.4

 , T̂ =

 0.3

0.44

 , C = 15.

Assuming the uncertainty set surrounding the duration of each activity is |ξij | ≤ 1 for

ij ∈ {(1, 2), (2, 3)}, then the optimal values of the RC variables following the same process of

Example 1 are x̂RC = (0.0, 3.3, 6.08)T , ŷRC = (0, 2.06)T , with ZRC = 136.02.

We select y23 as the affine adjustable variable to ξ23, that is, y23 = π0+ξ23δ. The constraints

with corresponding non-zero optimal dual values λ∗ =

(−1,−15,−15,−13)T of RC (3.40) are as follows:
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(i = 1) − u+ Cxn +
∑
ij

Φijyij ≤ −
∑
ij

µij(T̄ij + ξij T̂ij)

(i = 2) − (x2 − x1 + y12) ≤ −(T̄12 + ξ12T̂12)

(i = 3) − (x3 − x2 + y23) ≤ −(T̄23 + ξ23T̂23)

(i = 4) y23 ≤ (T̄23 + ξ23T̂23)−M23

where u is an auxiliary variable after converting the objective of (3.40) to constraint i = 1.

All coefficients ali equal zero, while b2 = (−2.2, 0,−0.44, 0.44)T . In addition, the coefficient

vector d of adjustable variable y23 in the constraints is (2, 0,−1, 1)T . Finally, the coefficient of

y23 in the objective cyr equals zero. Substituting into inequality (3.26), we obtain:

14.52 > | − 2.2− 2δ|+ 15| − 0.44 + δ|+ 13|0.44− δ| (3.41)

In this instance, the right-hand-side of inequality (3.41) equals 3.08 for δ = 0.44. Since

the adjustability of a single variable would reduce the RC objective function, making more

variables adjustable might reduce it more. Indeed, the AARC optimal objective value when

both activity durations are adjustable (i.e., yij = π0
ij + ξijπ1

ij) is ZAARC = 124.58 based on

x̂AARC = (0.0, 3.4, 5.3)T , π0 = (0, 2.5)T , π1 = (0.3, 0.44)T .

These examples illustrate how RC formulations can be tested in small-scale instances using

optimal primal and dual solutions in order to identify whether AARC and therefore ARC might

be advantageous.

3.5 Conclusion

In some situations, uncertain linear programs can be solved by the ARC or the more

tractable AARC instead of the RC formulation to provide a less conservative solution. The

proposition provided in this paper identifies conditions under which the objective values of ARC

and RC of uncertain linear program are not equivalent by using the AARC formulation. In the

provided conditions, the RC formulation includes at least two constraints that are binding at
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the optimal RC solution for different values of the same uncertain parameter. In addition, a

variable to be made adjustable appears in both constraints and is bounded from above by one

constraint at one extreme of the uncertainty interval and bounded from below by the other at

the opposite extreme of the uncertainty interval. One of these bounds is unfavorable for the

objective. By relaxing this bound, adjustability increases the feasible region of the RC in a

direction that lowers the objective value.

Besides providing insights into formulations where adjustability is beneficial, we show how

RC formulations can be tested in small-scale instances using dual variables of RC in order

to identify whether the ARC is advantageous. Some small instances demonstrate different

situations of RC formulations. The examples illustrate that, although the models are not

covered by the previous papers’ conditions for ZARC = ZRC , nevertheless ZAARC is equal to

ZRC . A third example and two applications from the literature demonstrate the use of this

proposition to establish that ZARC < ZRC .

In this paper we only considered the fixed recourse case. For uncertainty-affected recourse

a similar approach would require more computational complexity that is a subject for future

research. Another extension could be including more complex uncertainty sets beyond box

uncertainty. For instance, ellipsoidal uncertainty, used in many applications, allows interactions

among uncertain parameters to be modeled.
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CHAPTER 4. CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN

WITH MULTIPLE TRANSPORTATION MODES UNDER STOCHASTIC

DEMAND AND UNCERTAIN CARBON TAX

4.1 Introduction

With concern over global climate change, regulations over carbon emissions resulting from

industries such as transportation and power generation have been developed by policy-makers in

different nations. For example, in 2005 the European Union instituted a carbon emission trading

scheme (EU ETS) for the energy-intensive industries with the aim of reducing greenhouse gas

(GHG) emissions by at least 20% below 1990 levels (BeÜhringer et al., 2009). In addition,

China, which is one of the world’s largest emitters of GHG, has announced in recent years that

the Ministry of Finance may levy taxation policies over CO2 emissions (Xinhuanet, 2013).

As of January 2011, the US Environmental Protection Agency has power to regulate the

carbon emissions of companies operating in the US. In the past, the federal government has

tended to emphasize “command and control” regulatory approaches to control pollutants. For

the US to reduce its GHG emissions, most environmental policy analysts agree it must use

market-based environmental mechanisms. The two main market-based options are a carbon

tax and a cap-and-trade system of tradable permits for emissions (Metcalf, 2009), with the tax

proposals currently receiving more attention.

According to a survey, 26 percent of CO2 emissions were generated by transportation activ-

ities in 2014 (U.S. Environmental Protection Agency, 2016). International trade liberalization

contributes to significantly more transportation of products in global supply chains (Mallidis

et al., 2012). These trades employ different modes of transportation such as road, rail, air, and

water, each of which has a certain rate of GHG emissions. Among them, road transportation
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Figure 4.1 CO2 emissions from fossil fuel combustion in transportation by mode (1990-2014).

modes account for nearly 83% of CO2 emissions. Light trucks were responsible for 18% of CO2

emissions while medium- and heavy-duty trucks contributed 23% in 2014 (Figure 4.1)1.

Designing a closed-loop supply chain (CLSC) involves long-term decisions to invest in fixed

facilities such as manufacturing or remanufacturing plants, warehouses, and collection facili-

ties. Somewhat more flexible are decisions concerning capacity to transport goods by various

modes, either by purchasing or leasing fleets or by contracting with external providers. To

reduce the negative environmental consequences from supply chains, legislation and social con-

cerns have been motivating firms to plan their supply chain structures and find ways to handle

both forward and reverse product flows. The reverse flows include the recycling or manufac-

turing of returned products that occur due to commercial and consumer returns, extended

producer responsibility legislation, or the potential profits derived from remanufacturing and

resale. Much research has been proposed to mitigate the inverse environmental effects of freight

transportation, particularly CO2 emissions (Hickman and Banister, 2011). One approach in-

volves decisions concerning the choice among modes with varying emission rates, capacities,

1Source: U.S. Environmental Protection Agency, 2016. Inventory of U.S. Greenhouse Gas Emissions
and Sinks: 1990-2014, available at (https://www.epa.gov/sites/production/files/2016-04/documents/us-ghg-
inventory-2016-main-text.pdf, Aug. 2016)
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and costs (Mallidis et al., 2012). How uncertainty concerning emission tax rates should affect

the choice of modes and product flows while minimizing the overall cost is worth investigation.

In this paper we formulate and solve a tractable closed-loop supply chain network design

problem that includes: facility configuration that is robust to carbon tax regulation and op-

timizes the expected cost of satisfying demands and collecting returns; product flows that

optimally balance the tradeoffs between transportation cost and emission-related operational

costs in the worst case of carbon tax rate; and transportation capacities of various modes that

respond to the carbon tax rate. The results of numerical case studies show how the optimal

number and locations of opened facilities respond to uncertainty in demands and returns. In

addition, we observe the choices of modes based on different carbon tax uncertainty levels and

the extent to which adjustability of transportation capacities to carbon tax rates is beneficial.

Overall, our model optimizes the facility configuration to minimize the expected cost over

probabilistic scenarios for demands and returns, where the worst case of the uncertain carbon

tax rate is considered in each scenario. A large number of scenarios for demands and returns in

large-scale instances renders the solution procedure computationally cumbersome. Therefore,

we apply Benders decomposition (BD) to solve the hybrid robust/stochastic model. Benders

cuts are formulated using the dual solutions of robust counterpart (RC) and affinely adjustable

robust counterpart (AARC) sub-problems which we obtain using recent duality results.

A brief literature review of the recent work follows in Section 2. In Section 3, we introduce

our CLSC network structure by considering carbon tax policy. The CLSC design formulation

with stochastic demands and returns is provided in Section 3.1. The proposed robust for-

mulation and our tractable solution approach for the AARC formulation with uncertain tax

rate policy is explained in Section 3.2. The hybrid robust/stochastic model that combines the

stochastic demands and returns with uncertainty sets for the carbon tax rate is provided in

Section 3.3. We present computational results in Section 4 and finally conclusions as well as

future research directions in Section 5.
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4.2 Literature Review

Environmental concerns have prompted many nations to devise penalties or incentives to

reduce their carbon footprints. Much attention has been devoted to reducing the GHG emis-

sions of transport activities and facilities in supply chains. As an example, cap-and-trade and

carbon taxes are regulations that have been studied in the literature and practiced in some coun-

tries. For example, Fransoo and van Houtum (2010) investigated the effect of cap-and-trade

and company-wide (hard constraint on emissions) regulation on transportation mode decisions.

Furthermore, they analyzed the effect of considering emission costs or emission in their model,

and they found that emission cost penalties have only a small effect on transport mode selec-

tion compared to constraints. However, they did not consider the effect of transportation mode

decisions emission cost parameters. Benjaafar et al. (2013) presented and modified traditional

supply chain models to include carbon footprint along with other costs. They also examined

different regulatory emissions such as cap-and-trade and carbon tax and presented the effect of

their parameters on costs and emissions. Fu and Kelly (2012) evaluated the impacts of different

transportation tax policies for carbon emission in Ireland. Their results suggested that the fuel

based carbon tax is better than either a vehicle registration tax or motor tax in terms of tax

revenue, carbon emission reductions, and social welfare, but worse than the latter in terms

of household utility and production costs. Zakeri et al. (2015) presented an analytical supply

chain planning model to examine the supply chain performance under carbon taxes and carbon

emissions trading. They found that the carbon tax is more worthwhile from an uncertainty

perspective as emissions trading costs depend on numerous uncertain market conditions. These

studies have not considered the choice among transportation modes in supply chains.

Some models did include different modes of transportation. Forkenbrock (2001) examined

and estimated the air pollution and GHG emissions of different types of railroad companies,

and compared them to freight trucking. Pan et al. (2010) explored the environmental impact of

pooling of supply chain resources at a strategic level and extracted the emission functions of two

transport modes, rail and road, using a French case study. Paksoy et al. (2011) also proposed

a general CLSC network configuration that handles various costs including emission costs for
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transportation activities in a completely deterministic environment for all parameters. More

research includes the investigation of Bloemhof-Ruwaard et al. (2011) on the environmental

impact of inland navigation (transportation by canals or rivers) compared to inland transport

modes, which identified that the road transport mode is the biggest contributor of hazardous

gas emission. However, the effect of uncertain carbon tax rate on the choice of transportation

modes has not been investigated.

To model an uncertain carbon tax rate, we formulate the RC of the optimization problem

with uncertain parameters whose distribution functions are unknown or difficult to determine.

This approach was first proposed by Soyster (1972) and further developed by Ben-Tal and

Nemirovski (1998, 1999, 2000) as well as Ghaoui and Lebret (1997); Ghaoui et al. (1998) in-

dependently. The more recent papers proposed tractable solution approaches to special cases

of robust counterparts in the form of conic quadratic problems with less conservative solutions

than the Soyster (1972) approach. Ben-Tal et al. (2004) defined the adjustable robust counter-

part (ARC) and more tractable AARC models with adjustable variables that tune themselves

to the values of uncertain parameters described by certain forms of uncertainty sets. They

defined conditions under which the solutions of RC and ARC are equal. Haddad-Sisakht and

Ryan (2016) established conditions under which affine adjustability may lower the optimal cost

of the RC solution.

Along with GHG emissions, we also consider product returns because of environmental con-

cerns. Several strategies have been introduced to solve deterministic and stochastic versions

of CLSC network design. Zeballos et al. (2012) proposed a two-stage scenario-based model for

a CLSC design problem in which the quantity and the quality of returned product flows are

uncertain. Vahdani et al. (2012) and Pishvaee et al. (2012) also designed bi-objective CLSCs,

the former combining robust optimization and queuing theory to solve their model with fuzzy

multiple objectives, and the latter by applying robust possibilistic programming to cope with

their model uncertainties. Amin and Zhang (2012) investigated the impact of demand and

return uncertainties on the CLSC network configuration with a scenario-based stochastic pro-

gram. Georgiadis and Athanasiou (2013) dealt with long-term two-capacity planning strategies

of a CLSC network with uncertainty in actual demand, sales patterns, quality and timing of
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end-of-use product returns. They also considered two sequential product-types in network

design and solved with a simulation-based system dynamics optimization approach. Vahdani

and Mohammadi (2015) developed a bi-objective model for CLSC network design to minimize

total cost and waiting time under multiple uncertain parameters. They proposed a hybrid

solution approach based on interval programming, stochastic programming, robust optimiza-

tion, and fuzzy multi-objective programming. Keyvanshokooh et al. (2016) developed a hybrid

robust-stochastic programming approach for a profit maximizing CLSC network design under

stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and

returns.

Gao and Ryan (2014) considered a robust formulation of a multi-period capacitated CLSC

network design problem while considering two regulations for carbon emissions. They inte-

grated stochastic programming and robust optimization to deal with uncertainty in demands

and returns as well as carbon regulation parameters caused by different transport modes. They

observed that, as the uncertainty level in the carbon tax increases, more facilities are opened

and more capacity of modes with lower emission rates is used. Their model did not allow for

the allocation of capacity among transportation models to adjust to the carbon tax rate. The

contributions of this paper include incorporation of this adjustability to obtain a less conser-

vative model. We show that by adjustability, the same number of facilities can accommodate

the increase of uncertainty. A methodological contribution is to integrate a scenario-based op-

timization for product uncertainties with AARC for tax uncertainty in a three-stage model. To

our knowledge, the generation of Benders cuts from the duals of the RC and AARC formulations

has not been done previously.

4.3 CLSC Model

In our model, the first stage variables determine long-term facility configurations that are

robust to both types of uncertainty. High uncertainty of future carbon tax costs must be

considered to identify necessary changes in the structure of supply chain. We assume carbon

tax policy rather than cap-and-trade system, since this is politically more likely in the US.

Moreover, it may be the only feasible way to regulate emissions from transportation because of
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the large number of entities involved. To model the tax rate uncertainty we use uncertainty sets

because of the lack of data with which to estimate distributions. However, the distributions of

demands and return quantities for a new product may be estimated based on historical data

for the similar given product.

The second stage decisions concern a plan for the product flows among facilities after

realization of demands and returns but before realization of carbon tax. Finally, transportation

capacities of different modes are decided after realization of carbon tax. We use an ARC model

in which the transportation capacities of various modes are adjustable to carbon tax rates. For

tractability we adopt the AARC, in which the adjustable variables are restricted to be affine

functions of the tax rate.

The closed-loop supply chain network is denoted by G = (N ,A) where N is the set of

nodes and A is the set of arcs. The node set N = P ∪K, where P is a set of potential facilities

consisting of factories I, new product warehouses J , collection centers for returned products

L; i.e., P = I ∪J ∪L; and K is the set of retailers. LetM be the set of transportation modes

available for the supply chain. The arc set A = {ij : (i ∈ I, j ∈ J ), (i ∈ J , j ∈ K), (i ∈ K, j ∈

L), (i ∈ L, j ∈ I)} (see Figure 4.2 for the network topology). The closed-loop supply chain

configuration decisions consist of determining which of the processing facilities to open. Let

binary variable yi be the decision to open the processing facility i ∈ P and xmij be the number

of units of product transported from node i to node j using transportation mode m, where

ij ∈ A and m ∈ M. Decision variables tmij denote the number of units transportation mode

m ∈M for which to contract on arc ij ∈ A.

In addition, the unmet demands and discarded returns decision variables are denoted as

zk and ek units of products respectively, for customer k. In this model, we do not consider

keeping inventory in facilities across periods. We assume that manufacturers are responsible for

processing returns after receiving them from collection centers, and we only consider a single

product. The deterministic mathematical model for CLSC network design can be stated as

follows:
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Figure 4.2 Closed-loop supply chain network structure

min
∑
i∈P

ciyi +
∑
m∈M

∑
ij∈A

hmtmij +
∑
m∈M

∑
ij∈A

gmβijx
m
ij +

∑
k∈K

(θzk + ζek)

+ wα
∑
ij∈A

βij
∑
m∈M

τmxmij , (4.1)

∑
j∈J

∑
m∈M

xmjk + zk = dnk , ∀k ∈ K (4.2)

∑
i∈L

∑
m∈M

xmki + ek = dok, ∀k ∈ K (4.3)

∑
i∈K

∑
m∈M

xmji −
∑
i∈I

∑
m∈M

xmij = 0 ∀j ∈ J (4.4)

∑
i∈I

∑
m∈M

xmji −
∑
i∈K

∑
m∈M

xmij = 0 ∀j ∈ L (4.5)

wxmij −Wmt
m
ij ≤ 0 ∀ij ∈ A,m ∈M (4.6)

∑
j:ij∈A

∑
m∈M

xmij − ηiyi ≤ 0 ∀i ∈ P (4.7)
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y ∈ {0, 1}|P|, x ∈ R|A|×|M|+ , t ∈ R|A|×|M|+ , z, e ∈ R|K|+ (4.8)

In this model, ci denotes the investment cost ($) for building facility i ∈ P, hm is the ap-

proximate fixed operating cost ($/units of transportation) per unit of capacity of transportation

mode m, gm is the unit transportation cost ($/units of product-km) of mode m, and βij is the

distance (km) from node i to node j. The unmet demand cost is θ ($/units of products) and

the corresponding cost for discarded returns is ζ. In addition, α is the carbon tax rate ($/ton)

subject to uncertain policy decision. In the last term of the objective function, w is the weight

of product (tons/units of product), and τm is the carbon emission factor (ton/tons-km) for

transportation mode m.

Constraints (4.2) and (4.3) compute met or unmet demands as well as returned products,

where dnk is the demand (units of product) for new products and dok is the quantity of returns

(units of product). Constraints (4.4) and (4.5) ensure that the warehouse and collection cen-

ters will not carry stocks across periods or incur backlogs. Constraint (4.6) requires that the

product’s weight does not exceed the total capacity of transportation mode m from node i to

node j, where Wm denotes the weight limit (tons/units of transportation capacity) of mode

m. Constraint (4.7) enforces capacity constraints of the processing nodes, where ηi denotes the

capacity at node i ∈ P. Finally, variable restrictions are given in (4.8).

The proposed model is a three-stage hybrid robust/stochastic program with multiple sce-

narios for the demands and returns. In the first stage, the decisions pertain to the long-term

strategy of finding facility configurations because changing facilities in the short-term or ad-

justing them to values of uncertain parameters is usually costly. The second stage decisions

concern the plan for distributing new and collecting returned products after realization of de-

mands and returns by the customers but before realization of the carbon tax. The scenarios

represent “macro” - level descriptions of product acceptance and consumer behavior rather

than high-frequency variability. At the final stage, the model decides on capacities of each

transportation mode after the realization of carbon tax level, reflecting the fact that legislation

usually takes a long time to be decided and implemented.

In the following sections, we first introduce the stochastic program (SP) for CLSC de-
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sign, then the robust optimization of the recourse problem, and finally the three-stage hybrid

robust/stochastic program.

4.3.1 Stochastic Program For CLSC Design

In our model, the first stage variables are binary decisions y for facility configuration. In this

subsection, we incorporate probabilistic scenarios for demands and return quantities. If s ∈ S

is a given realization with probability Ps, the stochastic programming extension of (4.1)-(4.8)

is as follows:

min
y

∑
i∈P

ciyi +
∑
s∈S

PsQN (y, s) (4.9)

y ∈ {0, 1}|P|

where the second stage of the stochastic program optimizes cost in a given scenario, assuming

the carbon tax rate is at its nominal value, ᾱ:

QN (y, s) = min
xs,ts,zs,es

∑
m∈M

∑
ij∈A

hmtmijs +
∑
m∈M

∑
ij∈A

gmβijx
m
ijs

+
∑
k∈K

(θzks + ζeks) + wᾱ
∑
ij∈A

βij
∑
m∈M

τmxmijs, (4.10)
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∑
j∈J

∑
m∈M

xmjks + zks = dnks, ∀k ∈ K (4.11)

∑
i∈L

∑
m∈M

xmkis + eks = doks, ∀k ∈ K (4.12)

∑
i∈K

∑
m∈M

xmjis −
∑
i∈I

∑
m∈M

xmijs = 0 ∀j ∈ J (4.13)

∑
i∈I

∑
m∈M

xmjis −
∑
i∈K

∑
m∈M

xmijs = 0 ∀j ∈ L (4.14)

∑
j:ij∈A

∑
m∈M

xmijs − ηiyi ≤ 0 ∀i ∈ P (4.15)

wxmijs −Wmt
m
ijs ≤ 0 ∀ij ∈ A,m ∈M (4.16)

xs ∈ R|A|×|M|+ , ts ∈ R|A|×|M|+ , zs, es ∈ R|K|+ . (4.17)

Note that relatively complete recourse is provided by the slack variables in (4.11) and (4.12).

To incorporate the third-stage and consider the carbon tax uncertainty, we introduce the RC

and AARC formulation of the recourse problem in the following section.

4.3.2 Robust Counterpart and Affinely Adjustable Robust Counterpart of Re-

course Problems

The robust counterpart of the recourse problem is to find an optimal solution that satisfies

all constraints for any carbon tax α̃ ∈ U . We define the RC of (4.10) - (4.17) as:

QRC(y, s) = min
us,xs,ts,zs,es

us, such that ∀α̃ ∈ U , (4.18)∑
m∈M

∑
ij∈A

hmtmijs +
∑
m∈M

∑
ij∈A

gmβijx
m
ijs +

∑
k∈K

(θzks + ζeks)

+ wα̃
∑
ij∈A

βij
∑
m∈M

τmxmijs ≤ us, (4.19)

(4.11) − (4.17), (4.20)
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where us ∈ R, xs, ts and the slack variables zs and es are all here-and-now decisions regarding

carbon tax uncertainty. However, the RC formulation may provide an overly conservative

solution by requiring all decision variables to be feasible for all values of α̃ in the uncertainty

set. To obtain a less conservative solution, we assume that ts is an adjustable variable; i.e., its

value can be determined after the tax rate uncertainty is resolved (Ben-Tal et al., 2004). The

ARC is as follows:

QARC(y, s) = min
us,xs,zs,es

us, such that ∀α̃ ∈ U , ∃ts(α̃) such that (4.21)

(4.11) − (4.17) and (4.19), (4.22)

where variable ts is a function of the uncertain parameter α̃. Usually, ARC models cannot

be solved efficiently even in fixed recourse cases. A tractable approximation is provided by

the AARC, where adjustable variables are restricted to be affine functions of the uncertainties

(Ben-Tal et al., 2004). Setting tmijs = πmij(0)s + α̃πmij(1)s, where π(0)s and π(1)s are non-adjustable

variables, allows the ts variables to depend on α̃. Under this restriction, the transportation

capacity decisions in the ARC (4.21) - (4.22) are replaced by an AARC given by:

QAARC(y, s) = min
us,xs,πs,zs,es

us, such that ∀α̃ ∈ U , (4.23)∑
m∈M

∑
ij∈A

hm
(
πmij(0)s + α̃πmij(1)s

)
+
∑
m∈M

∑
ij∈A

gmβijx
m
ijs

+
∑
k∈K

(θzks + ζeks) + wα̃
∑
ij∈A

βij
∑
m∈M

τmxmijs ≤ us, (4.24)

(4.11)− (4.15), and (4.25)

wxmijs −Wm

(
πmij(0)s + α̃πmij(1)s

)
≤ 0 ∀ij ∈ A,m ∈M (4.26)

xs ∈ R|A|×|M|+ , πs ∈ R|A|×|M|, zs, es ∈ R|K|+ , us ∈ R. (4.27)

Here, all the decisions are second-stage decision variables once ts has been replaced by its affine

function of α̃. Note that also adjusting product flows to the carbon tax rate introduce uncertain

recourse and convert the AARC into a semi-definite program. When combined with the binary
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first-stage decisions, such a formulation is currently intractable. Therefore, in this paper, we

require product flows to be robust to the carbon tax rate.

The purpose of the AARC formulation is to produce less conservative solutions than the

RC. However, because uncertainty affects only (4.19) and is thus constraint-wise, RC (4.18)-

(4.20) satisfies Theorem 2.1 of Ben-Tal et al. (2004) which defines conditions under which the

objectives of RC and ARC are equal. However, by introducing new constraints, certain condi-

tions listed in Proposition 1 of Haddad-Sisakht and Ryan (2016) are satisfied, and therefore,

the AARC could be less conservative than the RC formulation.

It is not always straightforward to determine when the ARC might be less conservative com-

pared to the RC formulation. Haddad-Sisakht and Ryan (2016) described specific departures

from constraint-wise uncertainty that allow a difference between the optimal objective values

of the RC and ARC formulations. One example for the RC (4.18)-(4.20) is to incorporate lower

bound on the transportation and emission cost of each mode as follows:

QLRC(y, s) = min
us,xs,ts,zs,es

us, such that ∀α̃ ∈ U , (4.28)∑
ij∈A

(
hmtmijs + gmβijx

m
ijs + wα̃βijτ

mxmijs
)
≥ Lm, ∀m ∈M (4.29)

(4.11) − (4.17), and (4.19) (4.30)

where Lm is a lower bound on the cost of mode m determined by management. Assuming

α̃ belongs to a box uncertainty set, the RC of (4.28)-(4.30) with adjustable variable t satis-

fies the conditions of Haddad-Sisakht and Ryan (2016), which are loosely described as: the

model contains at least two binding constraints at optimality of the RC formulation and an

adjustable variable in both constraints with implicit bounds from above and below for different

extreme values in the uncertainty set. Therefore, the following affinely adjustable modification

QLAARC(y, s) could result in a less conservative solution than to QLRC(y, s), depending on the

parameter values.
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QLAARC(y, s) = min
us,xs,πs,zs,es

us, such that ∀α̃ ∈ U , (4.31)∑
ij∈A

(
hm
(
πmij(0)s + α̃πmij(1)s

)
+ gmβijx

m
ijs + wα̃βijτ

mxmijs

)
≥ Lm, ∀m ∈M (4.32)

(4.24) − (4.27), (4.33)

Using the dual of the RC, Haddad-Sisakht and Ryan (2016) described how small instances

can be used to identify whether affine adjustability reduces the optimal cost. A constraint,

such as (4.29), that guarantees at least minimal use of some transportation mode might reflect

units of capacity already procured (Yuzhong and Guangming, 2012) or the desire to guarantee

access to a mode that provides rapid delivery despite its higher emissions and cost (Turban

et al., 2015). Contractual provisions might cause reluctance to change usage dramatically from

previous periods. Or, usage above a threshold might gain a quantity discount.

A lower bound on the cost of using a transportation mode is used, instead of a direct lower

bound on t, because considering a minimal number of transportation units procured does not

necessarily guarantee the use of that available mode for transportation. Considering a lower

bound based on cost, as opposed to the number of transportation units, also could reflect how

much a manager would like to spend on internal capacity rather than outsourcing. In addition,

constraining cost as a continuous quantity is compatible with our neglect of integer restrictions

on the units of transportation capacity to avoid computational complications.

4.3.3 Integration of Robust Optimization And Stochastic Programming

In the proposed hybrid robust/stochastic optimization model, the first stage variables are

binary decisions y for facility configuration and the second stage decisions are product flows

x after realization of demands and returns before realization of carbon tax. The third stage

decisions are unit transportation capacities t that should be decided after realization of the

carbon tax rate. We assume the uncertain α̃ falls in a box uncertainty set. Specifically,

α̃ = ᾱ+ ξα̂, where the perturbation scalar ξ varies set:
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χp ≡ {ξ| |ξ| ≤ ρ} . (4.34)

Without loss of generality, the adjustable variable can be adjusted to perturbation scalar

ξ instead of α̃ as tmijs = πmij(0)s + ξπmij(1)s (Ben-Tal et al., 2004). Our hybrid robust/stochastic

CLSC design model is as follows:

ZRC = min
y

∑
i∈P

ciyi +
∑
s∈S

PsQ
L
RC(y, s) (4.35)

y ∈ {0, 1}|P|,

and the affine adjustable version is:

ZAARC = min
y

∑
i∈P

ciyi +
∑
s∈S

Ps min
us,xs,πs,zs,es

us, such that ∀ξ ∈ χp, (4.36)

∑
m∈M

∑
ij∈A

hm
(
πmij(0)s + ξπmij(1)s

)
+
∑
m∈M

∑
ij∈A

gmβijx
m
ijs

+
∑
k∈K

(θzks + ζeks) + w(ᾱ+ ξα̂)
∑
ij∈A

βij
∑
m∈M

τmxmijs ≤ us, (4.37)

∑
ij∈A

(
hm
(
πmij(0)s + ξπmij(1)s

)
+ gmβijx

m
ijs

)
+
∑
ij∈A

(
w(ᾱ+ ξα̂)βijτ

mxmijs
)
≥ Lm, ∀m ∈M (4.38)

(4.11)− (4.15), and (4.39)

wxmijs −Wm

(
πmij(0)s + ξπmij(1)s

)
≤ 0 ∀ij ∈ A,m ∈M (4.40)

y ∈ {0, 1}|P|, xs ∈ R|A|×|M|+ , πs ∈ R|A|×|M|, zs, es ∈ R|K|+ , us ∈ R. (4.41)

Problems (4.35) and (4.36)-(4.41) can be solved directly as mixed integer programs; however,

with large numbers of scenarios and potential facilities, this approach would become compu-

tationally cumbersome. We use a multi-cut version of Benders decomposition (BD) (Benders,

1962) to decompose the problem into master and sub-problems Birge and Louveaux (2011).
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Because the recourse problem is always feasible since it has relatively complete recourse, the

only optimality cuts are generated. The master problem is:

min
y,δs

∑
i∈P

ciyi +
∑
s∈S

δs, (4.42)

Optimality cuts

y ∈ {0, 1}|P|, δs ∈ R

where δs is a lower bound on the objective value for sub-problem s.

The decision variables in the master problem are binary variables y for facility configu-

ration. The sub-problems for each scenario s ∈ S with optimal objective value Σs (where

Σs = QLRC(y, s) or Σs = QLAARC(y, s) for the RC or AARC formulation, respectively) minimize

upper bounds on transportation, shortage and emission costs for given ŷ. The BD algorithm

solves the master problem and sub-problems iteratively. If Σs > δs in master problem (4.42),

an optimality cut is added. The algorithm continues until Σs ≤ δs for all scenarios s ∈ S (Birge

and Louveaux, 2011).

An optimality cut for a scenario is obtained using the dual objective value of the cor-

responding sub-problem. Each sub-problem is an AARC or RC formulation with carbon tax

uncertainty set whose dual can be obtained using the approach of Beck and Ben-Tal (2009). By

denoting the dual variables of constraints (4.24), (4.32), (4.11) - (4.15), and (4.26), respectively,

as λ1 to λ8, the dual of sub-problem (4.31) - (4.33) is as follows:

ΣD
s = max

λ

∑
i∈P

ηiyiλ7i +
∑
k∈K

(dnksλ3k + doksλ4k) +
∑
m∈M

Lmλ2m, (4.43)
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− λ1 = Ps, (4.44)

hm(λ1 + λ2m)−Wmλ
m
8ij = 0, ∀ij ∈ A,m ∈M (4.45)

hmα̃(λ1 + λ2m)−Wmα̃λ
m
8ij = 0, for some α̃ ∈ U , ∀ij ∈ A,m ∈M (4.46)

θλ1 + λ3k ≤ 0, ∀k ∈ K (4.47)

ζλ1 + λ4k ≤ 0, ∀k ∈ K (4.48)

(gmβij + α̃wβijτ
m)(λ1 + λ2m) + wλm8ij

+ λ5j + λ7i ≤ 0 for some α̃ ∈ U , ∀ij ∈ (I,J ),m ∈M (4.49)

(gmβjk + α̃wβjkτ
m)(λ1 + λ2m) + wλm8jk

+ λ3k − λ5j ≤ 0 for some α̃ ∈ U , ∀jk ∈ (J ,K),m ∈M (4.50)

(gmβkl + α̃wβklτ
m)(λ1 + λ2m) + wλm8kl

+ λ4k + λ6l + λ7l ≤ 0 for some α̃ ∈ U , ∀kl ∈ (K,L),m ∈M (4.51)

(gmβli + α̃wβliτ
m)(λ1 + λ2m) + wλm8li

− λ6l + λ7i ≤ 0 for some α̃ ∈ U , ∀li ∈ (L, I),m ∈M (4.52)

λ1 ∈ R−, λ2 ∈ R|M|+ , λ3, λ4 ∈ R|K|, λ5 ∈ R|J |, λ6 ∈ R|L|, λ7 ∈ R|P|− , λ8 ∈ R|A|×|M|− (4.53)

If Σs > δs, the following optimality cut is added to the master problem for the next iteration:

∑
i∈P

ηiyiλ
∗
7i +

∑
k∈K

(dnksλ
∗
3k + doksλ

∗
4k) +

∑
m∈M

Lmλ∗2m ≤ δs (4.54)

where the left-hand-side is ΣD
s from (4.43).

4.4 Computational Experiments

The questions addressed in this section include: What are the effects of adjustability and

non-adjustability over decisions in CLSC design with multiple transportation modes? How does

carbon tax rate uncertainty affect the solutions? Do the uncertainties in demands and return

quantities significantly affect the AARC solution? To validate the model and solution approach,

we present a computational experiment based on randomly generated instances with realistic
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parameter values. We compare the results between the nominal, non-adjustable RC and AARC

models with various sizes of the uncertainty set. We also show the effect of scenarios on the

strategic aspects of the solution in terms of choosing transportation modes, facility locations,

and satisfying demands and collecting returns.

In our computational experiment, the locations of potential facilities are randomly selected

from a 3500 km × 2000 km rectangle, and the Euclidian distance is used. The uniform distri-

butions of data generators for the fixed costs ci of potential factories, warehouses and collection

centers and for their capacities ηi are shown in Table 4.1.

Table 4.1 The generator distributions for fixed cost and capacities of potential facilities

Fixed Cost ci($1000) Capacities ηi (units of product)

Factories Uniform[1000, 4000] Uniform[3000, 6000]

Warehouses Uniform[500, 1500] Uniform[3000, 7000]

Collection Centers Uniform[500, 1500] Uniform[600, 900]

Based on research studies such as Levinson et al. (2004) and Mallidis et al. (2010), many

approaches have been used to estimate truck operating costs which depend on fuel, repair and

maintenance, tire, depreciation, and labor cost. Levinson et al. (2004) conducted a survey to

identify the average cost per kilometer for the average truckload, which they found $0.69/km.

In addition, several sources such as Coyle et al. (2011) and a white paper by Armstrong Asso-

ciates Inc. (2009) approximate that 70 to 90 percent of truck operating costs are variable and

10 to 30 percent are fixed costs. More specifically, the latter stated that variable costs include

those parameters changing within a year, such as direct labor, fuel, insurance, rented equip-

ment, and maintenance. Fixed costs, which include depreciation, building leased/purchased,

management/salespeople, and overhead, are usually steady over a year.

In our computational experiment, only road transport modes are considered, including light,

mid-size and heavy trucks. From U.S. government documents, the estimated weights Wm of

light, mid-size, and heavy trucks are shown in Table 4.2 (U.S. Department of Transportation,

2000). The estimated unit transportation costs of the modes gm (per km per ton) for the trucks

calculated based on Byrne et al. (2006) are also shown in Table 4.2. We assume each unit is

a pallet with 1.1 ton weight. The fixed operating cost hm per unit of capacity for each road
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mode is calculated based on approximately 20% of total truck operating costs (Coyle et al.,

2011). Moreover, we calculate the total cost of each truck by multiplying the average distance

between facilities by the maximum weight of each truck divided by 0.80. Therefore, the fixed

costs for different instances depend on the randomly generated distances. The hm values for

the deterministic instances of Section 4.1 are provided in Table 4.2.

Table 4.2 The estimated parameters of mode transportations

Mode (Truck Type)
Wm

(tons)

gm($/units

of

product-

km)

hm($/unit

of

trans-

porta-

tion)

Light 8.9 0.021368

Mid-size 15.2 0.0211115

Heavy-duty 19.6 0.0240169

The demands dnk are generated according to a normal distribution with mean value 400

units and standard deviation 100; i.e. N(400,100). We have three scenarios for demands:

low, medium and high demands. We assume the medium and high demands are 100 and 200

units more than low demands, respectively. Independent of demands, returned products dok

are obtained by multiplying the rate of return Rtk generated from N(0.2 , 0.1) by demands:

dok = Rtk.d
n
k . Shortage costs θ and ζ for unmet demands and uncollected returned products

usually exceed other components such as production and transportation costs (Absi and Kedad-

Sidhoum, 2008). Therefore, after calculating the maximum cost for transporting one unit to a

customer, shortage cost are randomly generated according to Unif[1000 -1500].

The carbon emission factor, τm, of road transport mode m depends on the mode as well

as its vehicle condition, maintenance, roads, type of fuel, and many other factors. The factor

values that we used in this experiment, shown in Table 3, are based on data from The Network

for Transport and Environment (2014). Heavy trucks usually have lower emission rate per ton

but more capacity than light trucks.

For the nominal values of uncertain carbon tax ᾱ, the carbon tax rate of British Columbia

in 2012 (Sumner et al., 2009) is used. The instances are solved by CPLEX on a computer with
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Table 4.3 The carbon emission rate of different modes (tons/km-ton)

Modes (Trucks) Light (m=1) Mid-size (m=2) Heavy-duty (m=3)

τm 0.00025 0.00018 0.00012

8 GB RAM and Intel Core i7 2.00 GHz CPU.

4.4.1 RC and AARC Comparison

In this computational experiment, we assume there are five potential facilities for each of

plants, warehouses, and collection centers. The goal is to satisfy 20 customers in different

locations. The carbon tax uncertainty set is α̃ = ᾱ + ξα̂ where the nominal value ᾱ = 30 and

the deviation value α̂ range from 0 to 30 with |ξ| ≤ 1. The deterministic model of carbon

tax uncertainty has α̂ = 0, and deterministic demands and returns are assumed by considering

one scenario with expected value of demand and return scenarios for each customer. Figure

4.3 shows the facility configuration of the solution of AARC (4.36)-(4.41) when demands and

returns are deterministic and α̂ = 10. In addition, the lower bounds on transportation and

emission costs for all three modes are assumed to be zero. In this instance, three plants, three

warehouses, and two collection centers are opened.

The RC (4.35) and AARC (4.36)-(4.41) solutions for different values of α̂ with ᾱ = 30 and

L1 = L2 = L3 = 0 are compared in Table 4.4. In this table, the total use of three modes

by summing over total product flows of all arcs are shown to be the same for both RC and

AARC formulations. As shown in the last column, there is no difference between the RC

and the AARC solution since uncertainty is constraint-wise. As the uncertainty of carbon tax

increases, the use of transportation mode three with less emission cost increases. Mode two is

used in most cases when there is no lower bound on transportation cost.

To generate Table 4.5, we assumed the lower bound, L1, on transportation and emission

costs of mode one is $1M but L2 = L3 = 0. The RC and the AARC solutions of different

tax uncertainty set are compared for ᾱ = 30. The facility configuration is the same for both

RC and AARC. The difference between the RC and AARC objective values increases with the

uncertainty of the carbon tax rate. In all of these instances, the use of mode two or three with
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Figure 4.3 Facility configuration of RC or AARC solution when demands and returns are

deterministic and α̂ = 10 and L1 = L2 = L3 = 0. Opened facilities are shown in

darker color.

less emission cost is higher in the AARC solution than in the RC solution.

Tables 4.6 and 4.7 illustrate the differences between RC and AARC solutions and optimal

objective values when the lower bound on transportation cost of mode one and three, respec-

tively, vary from $100,000 to $1M. The AARC reduces the conservativeness of the RC solution

as the lower bound on the cost of either transportation mode increases. However, the RC and

AARC objective differences with the mode one lower bound (Table 4.6) are higher than with

the mode three lower bound (Table 4.7) because mode one has the higher emission rate.

We also incorporated uncertainty in demands and returns in the robust CLSC and solved the

hybrid robust/stochastic problems (4.35) and (4.36)-(4.41). We used BD to solve the problem

with three demand and return scenarios: low, medium and high.

To implement the deterministic model, the average values of assumed scenarios of the

uncertain demands and returns are used. If d̃ denotes the uncertain demands and returns,

and d̄ is the expected value of their distributions, then the optimal value of the deterministic

problem can be expressed as EV= ZAARC from (4.36)-(4.41) with deterministic d̄. The EV
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Table 4.4 The comparison between RC and AARC when ᾱ = 30, and L1 = L2 = L3 = 0 for

different values of α̂. The % use of mode m is
∑

ij∈A x
m
ij /
(∑

µ∈M
∑

ij∈A x
µ
ij

)
%.

% use of mode

α̂ m=1 m=2 m=3 ZAARC
(ZRC − ZAARC)/ZRC%

0 0 100 0 11643265 0

10 0 100 0 11700130 0

15 0 100 0 11728563 0

20 0 100 0 11756995 0

25 0 77 23 11782611 0

30 0 70 30 11806341 0

solution for the facility configuration is denoted by ȳ(d̄). For the stochastic program or recourse

problem (RP), the optimal value is denoted as RP= ZAARC using the three scenarios. When

the performance of the deterministic solution ȳ(d̄) is evaluated in the stochastic model, we

obtain EEV =
∑

i∈P ciȳi(d̄) +
∑

s∈S PsQ
L
AARC(ȳ(d̄), s).

The amount of savings that results from solving the stochastic model, called the value of

the stochastic solution (VSS), equals EEV−RP (Birge and Louveaux, 2011). The costs of RP

and EEV and their comparisons for the AARC model are shown in Tables 4.8 and 4.9. For

example, the VSS with the nominal value of the carbon tax rate α̂ = 0 and L1 = 0 in Table

4.8, is EEV− RP = 12, 432, 293− 12, 391, 806 = 40, 487 which is 0.33% of RP.

The results in Table 4.8 indicate that the savings from finding the stochastic solution com-

pared to the deterministic solution decreases as the carbon tax rate uncertainty increases.

Table 4.9 shows the cost savings of the stochastic solution for different values of lower bounds

on modes one and three. The highest cost savings are observed for the highest values of each

lower bound.

To evaluate facility configurations and the use of modes under both types of uncertainty, we

compared the solutions as the nominal carbon tax ᾱ increases from 20 to 50 in Table 4.10. For

each carbon tax uncertainty level, we randomly generated ten instances of demands, returns,

fixed costs, and capacities from their distributions, maintaining a fixed number, 20, of potential

facilities of each type to satisfy 70 customers. The results in Table 4.10 show that by increasing

the nominal value of the carbon tax rate, the use of modes with lower emission rate would
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Table 4.5 The comparison between RC and AARC when ᾱ = 30, L2 = L3 = 0,

and L1 = 1, 000, 000 for different values of α̂. The % use of mode m is∑
ij∈A x

m
ij /
(∑

µ∈M
∑

ij∈A x
µ
ij

)
%.

% use of mode

α̂ Types m=1 m=2 m=3
(ZRC − ZAARC)/ZRC%

0
RC 97 3 0

AARC 97 3 0
0.00

10
RC 100 0 0

AARC 94 6 0
0.24

15
RC 100 0 0

AARC 92 8 0
0.62

20
RC 100 0 0

AARC 91 9 0
0.99

25
RC 96 0 4

AARC 90 0 10
1.23

30
RC 99 0 1

AARC 88 0 12
1.48

significantly increase. However, unlike the results found in Gao and Ryan (2014), the number

of opened facilities do not significantly change.

Table 4.11 shows the results for 20 trials of the same experiment to compare the solutions

for stochastic and deterministic demands and returns of the AARC formulation. We assumed

randomly generated the probabilities of scenarios 1 and 2 from Unif[0.3, 0.35] and set P3 =

1 − (P1 + P2). The results show that the stochastic solution opens fewer facilities compared

to the deterministic one but the use of modes with lower capacity or higher emission rate

increases. Figure 4.4 shows the facility configuration of the same instance as in Figure 4.3

but with stochastic demands and returns. In the stochastic solution the numbers of both

warehouses and collection centers are decreased from three to two facilities, and one plant has

moved to a different location compared to deterministic one in Figure 4.3.

To see how the number of opened facilities is affected by adjustability, Figure 4.5 shows the

total number of opened facilities for four different randomly generated instances. We assumed

higher demands to represent longer periods by setting the mean and standard deviation of

demands to be 100 and 10 thousand units, respectively, and the demands in the medium and

high scenarios are 10000 and 20000 units, respectively, more than those in the low scenario. Also
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Table 4.6 The comparison between RC and AARC when ᾱ = 30, α̂ = 10, L2 = L3 = 0 for

different values of L1.

% use of mode

L1($1000) Types m=1 m=2 m=3
(ZRC − ZAARC)/ZRC%

100
RC 20 80 0

AARC 19 81 0
0.01

250
RC 40 60 0

AARC 36 64 0
0.02

500
RC 69 31 0

AARC 62 38 0
0.05

750
RC 88 12 0

AARC 82 18 0
0.09

1000
RC 100 0 0

AARC 94 06 0
0.24

the facility capacities for plants and warehouses were randomly generated from Unif[1M, 2M ],

and for the collection centers from Unif[100000, 200000]. The results in Figure 4.5 indicates

that by increasing the nominal value of the carbon tax rate, the number of opened facilities are

increased. However, there are values of ᾱ for which AARC would open fewer facilities compared

to the RC solution.

4.5 Conclusion

In this paper, we formulated a hybrid robust/stochastic model for CLSC network design that

is subject to uncertainty in demands and returned products. We used probabilistic scenarios

for the quantities of demands and returned products where the first stage decisions are facility

configuration and product flows are determined in the second stage after demand and return

quantities are realized. The model structure accommodates carbon tax policy by ensuring that

the resulting solutions of facility configuration and product flows are robust to the uncertain

carbon tax rate. The transportation capacities as the third stage decisions are assumed to

be affine functions of the carbon tax rate for tractable yet less conservative solution to the

problem.

In computational experiments, we illustrated the reduced conservatism provided by affine

adjustability in the robust counterpart. We analyzed the solutions of the RC and AARC for-
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Table 4.7 The comparison between RC and AARC when ᾱ = 30, α̂ = 10, L1 = L2 = 0 for

different values of L3.

% use of mode

L3($1000) Types m=1 m=2 m=3
(ZRC − ZAARC)/ZRC%

100
RC 0 95 05

AARC 0 95 05
0.00

250
RC 0 87 13

AARC 0 88 12
0.00

500
RC 0 68 32

AARC 0 72 28
0.01

750
RC 0 40 60

AARC 0 46 54
0.02

1000
RC 0 3 97

AARC 0 17 83
0.04

Table 4.8 Evaluating hybrid robust/stochastic AARC solution with robust AARC solution

when ᾱ = 30, and L2 = L3 = 0, for different values of α̂.

L1 = 0 L1 = 1, 000, 000

α̂ Stochastic (RP) EEV
V SS

RP
% Stochastic (RP) EEV

V SS

RP
%

0 12,391,806 12,432,293 0.33 12,463,191 12,555,984 0.74

10 12,448,955 12,483,124 0.27 12,534,298 12,601,637 0.53

15 12,475,871 12,508,539 0.26 12,567,575 12,623,956 0.45

20 12,502,786 12,533,954 0.25 12,600,414 12,645,983 0.36

25 12,527,455 12,557,362 0.24 12,631,885 12,666,767 0.28

30 12,548,517 12,578,992 0.24 12,662,188 12,687,443 0.20

mulations with different levels of uncertainty in the carbon tax rate with lower bounds on the

transportation and emission costs of different modes. The results confirm the intuitive under-

standing that the total expected cost in the worst case of the carbon tax rate is decreased by

increasing utilization of transportation modes with higher capacity per unit and lower emission

rate. This behavior is consistent across different levels of the lower bounds on transportation

and emission costs by mode. Imposing a lower bound on the mode with highest emission rate,

maximizes the cost difference between the RC and AARC solutions. The number of opened

facilities in AARC solutions are decreased under uncertainty in demands and returns, which

indicates the potential for over-investment in facilities if this source of uncertainty is ignored.

When there is uncertainty in demands and returns, the numbers of opened facilities do not
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Table 4.9 Evaluating hybrid robust/stochastic AARC solution with robust AARC solution

when ᾱ = 30, α̂ = 10, and L2 = 0 for different values of L1 and L3.

L($1000) Stochastic (RP) EEV
V SS

RP
%

(L3 = 0), L1 :

100 12,455,944 12,489,521 0.27

250 12,467,874 12,501,327 0.27

500 12,489,066 12,521,598 0.26

750 12,511,519 12,543,165 0.25

1000 12,534,298 12,601,637 0.53

(L1 = 0), L3 :

100 12,451,178 12,485,342 0.27

250 12,454,847 12,488,945 0.27

500 12,461,284 12,496,485 0.28

750 12,469,413 12,506,054 0.29

1000 12,486,465 12,568,429 0.65

Table 4.10 The comparison among “mean ± standard error” of the AARC solutions of

ten randomly generated instances of parameters with different values of ᾱ when

L1 = $1.5M,L2 = L3 = 0 and α̂ = 10.

Average use of modes(%) Average opened facilities

ᾱ m=1 m=2 m=3 |I| |J | |K|
20 91 ± 1.2 9 ± 1.2 0 ± 0.0 8.1 ± 0.2 7.6 ± 0.2 4.4 ± 0.7

35 87 ± 1.9 13 ± 1.9 0 ± 0.0 7.8 ± 0.2 7.5 ± 0.2 4.1 ± 0.7

50 85 ± 0.9 6 ± 1.3 9 ± 1.4 8.1 ± 0.3 7.6 ± 0.2 3.7 ± 0.6

vary with the nominal value of carbon tax, but the optimal use of modes with lower emission

rates increases. In addition, the AARC solution opens fewer facilities and more highly utilizes

modes with lower emission rates than the RC solution.

Suggestions for future research including considering product flows to be adjustable the

carbon tax rate, which would make the AARC problem significantly harder to solve due to its

uncertain recourse. Another possibility is to model parameter variations over multiple periods

Table 4.11 The comparison among “mean ± standard error” of the AARC solutions of ten

randomly generated instances of parameters between deterministic and stochastic

demands and returns when L1 = $1.5M,L2 = L3 = 0,ᾱ = 50 and α̂ = 30.

Average use of modes(%) Average opened facilities

m=1 m=2 m=3 |I| |J | |K|
Stochastic 96 ± 0.6 0 ± 0.0 4 ± 0.6 8.35 ± 0.2 7.95 ± 0.1 3.4 ± 0.6

Deterministic 91 ± 1.0 0 ± 0.0 9 ± 1.0 9.25 ± 0.2 8.75 ± 0.1 3.4 ± 0.5
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Figure 4.4 Facility configuration of RC or AARC solution when demands and returns are

uncertain and α̂ = 10 and L1 = L2 = L3 = 0. Opened facilities are shown in

darker color.

of operation for the CLSC network design. In addition, explicitly modeling inventories in the

facilities to the problem could be a useful extension to examine the tradeoff between emission

and inventory costs.
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Figure 4.5 Total number of opened facilities of RC and AARC solution when ᾱ is increasing

in horizontal axes and α̂ = 10, L1 = $100M,L2 = L3 = 0.
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CHAPTER 5. GENERAL CONCLUSION

Optimization of multi-stage decision problems under uncertain environments was the focus

of this dissertation. We modeled a CLSC network design as a multi-stage stochastic MILP and

a hybrid robust/stochastic program. We also investigated when an ARC formulation reduces

the conservativeness of the RC formulation.

The proposed CLSC network design problem in this dissertation includes long-term deci-

sions of fixed facilities, decisions of contracts of transportation capacity by multiple modes and

decisions of product flows. This application contains two parts.

In the first part of the application, the CLSC network design problem includes uncertain

demands and quality of returned products, in which there are dependencies of demands among

periods. Using multistage stochastic programming with scenario generation from simulated

historical data, the solutions obtained from different scenario trees are evaluated in out-of-

sample tests using the same historical data. The underinvestment in transportation capacities

of the solution to the deterministic expected value model results in more expected inventory

and shortage cost compared to the stochastic program solutions. When uncertainty is taken

into account, more transportation capacity is contracted to satisfy a larger proportion of de-

mands while the use of high capacity modes with more fixed cost increased. Different levels

of granularity of scenarios demonstrated the existence of a significantly dissimilar alternative

near-optimal solution. Some scenario increments might not necessarily improve the solution

due to overfitting. The results of multi-stage solution when there is no dependencies of de-

mands among periods show a reduction on solution quality comparing to the scenario tree with

dependent demands among periods. The solution of a two-stage stochastic problem has less

adjustability for the use of transportation capacity across different periods comparing to the

multi-stage solution.
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In the next part of the application, the ARC MILP formulation of CLSC network design

with tax rate uncertainty. However, the ARC formulation does not always produce a less

conservative solution than the RC formulation. Therefore, Chapter 3 provides conditions in

which the objective values of ARC and RC are not equivalent. In these conditions, the RC

formulation includes at least two constraints that are binding at the optimal RC solution for

different values of the same uncertain parameter. In addition, a variable to be made adjustable

appears in both constraints and is bounded from above by one constraint at one extreme of

the uncertainty interval and bounded from below by the other at the opposite extreme of

the uncertainty interval. One of these bounds is unfavorable for the objective. By relaxing

this bound, adjustability increases the feasible region of the RC in a direction that lowers

the objective value. Using the dual values of the optimal RC solution, we show how RC

formulations can be tested in small instances before converting to AARC in order to identify

whether adjustability matters.

In the second part of CLSC network design, we consider carbon tax as an environmental

regulation with multiple modes of transportation. In computational experiments, we illustrated

the reduced conservatism provided by affine adjustability in the robust counterpart. The results

also confirm the intuitive understanding that the total expected cost in the worst case of the

carbon tax rate is decreased by increasing the utilization of transportation modes with higher

capacity per unit and lower emission rate. We identified significant factors in deciding the

best numbers and types of transportation modes when there is carbon tax uncertainty. As

the nominal or the interval of carbon tax rate uncertainty increases, the use of transportation

mode with less emission cost increases. Imposing a lower bound on the mode with highest

emission rate maximizes the cost difference between the RC and AARC solutions. The number

of opened facilities in AARC solutions is decreased under uncertainty in demands and returns,

which indicates the potential for over-investment in facilities if this source of uncertainty is

ignored. When there is uncertainty in demands and returns, the numbers of opened facilities

do not vary with the nominal value of carbon tax, but the optimal use of modes with lower

emission rates increases. In addition, the AARC solution opens fewer facilities and more highly

utilizes modes with lower emission rates than the RC solution.
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In summary, the contributions of this dissertation include:

• Developing a multi-stage model for designing a CLSC network with integrated uncer-

tain quality of returns and demands with dependencies between periods while different

transportation modes are decided before realization of uncertain parameters to offer more

efficient solutions compared to the deterministic solution,

• Identifying significant factors in deciding the best numbers and types of transportation

modes when there is carbon tax uncertainty in CLSC network design,

• Providing conditions in which the objective values of ARC and RC are not equivalent

• Developing a three-stage hybrid robust stochastic model with transportation capacities

that adjust to carbon tax rate in uncertainty sets within probabilistic scenarios for quan-

tities of demands and returned products.

Future research in the CLSC design application could include modeling the relationships

among uncertain variables over time. For example, the demands and returned products can be

dependent over the periods. More accurate scenario generations can be used to create scenario

trees that are not too large. Scenario reductions can also be used for large-scale problems

or the ones with longer periods. Finally, the solution of larger-scale instances may require

decomposition approaches such as progressive hedging or the nested L-shaped method.

For uncertain carbon tax rate modeling parameter variations over multiple periods of opera-

tion could be another extension for the CLSC network design. Product flows can be considered

to be adjustable the carbon tax rate, which would make the AARC problem significantly harder

to solve due to its uncertain recourse. In addition, explicitly modeling inventories in the fa-

cilities to the problem could be a useful extension to examine the tradeoff between emission

and inventory costs. For multi-stage adjustable robust optimization, we only considered the

fixed recourse case. For uncertainty-affected recourse, a similar approach would require more

computational complexity that is a subject for future research.
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APPENDIX A. PARAMETER VALUES FOR THE COMPUTATIONAL

EXPERIMENTS IN CHAPTER 2

Table A.1 provides the two-dimensional coordinates of retailers and potential locations

for plants, warehouses, and collection centers. The coordinates of retailers were generated

randomly between 1000 and 12000 km from (0, 0) and the coordinates of potential facilities are

located close to retailers where we assume that they are usually constructed in real applications.

The distance βij is the Euclidean distance between two facilities.

Table A.1 The coordinates of retailers and potential locations of facilities (km)

Retailers, |K| = 8 Plants, |F| = 3 Warehouses, |J | = 4 Collection centers, |L| = 4

X Y X Y X Y X Y

4164 6409 10037 4096 4164 6309 3752 8001

6370 7586 6370 7786 8199 6729 5353 2802

9257 6343 2980 3239 8000 2780 1319 4738

8029 2780 1319 4938 9207 6323

1349 4908

8099 6799

5373 2832

3692 8001

Table A.2 shows the fixed cost and capacities of the potential facilities, for which the

parameter values are equal for all facilities at the same type.

Table A.2 Fixed cost ($) and capacities of potential facilities (unit of product/period)

Facility ci(∀i ∈ P) ($) ηi(∀i ∈ P) ($)

Plants 400,000 550

Warehouse 250,000 600

Collection center 65,000 500

Table A.3 presents the holding costs of each warehouse and collection center which were
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generated to be in a reasonable proportion with the other costs. We assumed that holding

costs are higher in collection centers because returned products lose value more quickly. The

shortage costs of demands and uncollected costs of used products, which are equal for each

retailer, are shown in this table as well. The randomly generated shortage costs are assumed

to be higher than the highest transportation cost of one unit from a plant to a retailer.

Table A.3 Inventory costs ($/unit of product) in warehouses and collection centers and short-

age and uncollected returns costs ($/unit of product)

Φj(j ∈ J ) Φl(l ∈ L) Ψk = Ψ′k(k ∈ K)

1 452 571 873

2 497 543 885

3 452 583 871

4 481 594 897

5 919

6 923

7 959

8 969

Table A.4 illustrates the properties of three transportation modes with specified capacity,

fixed and variable costs for all periods. From U.S. Department of Transportation documents,

the estimated weights of light, mid-size and heavy trucks are considered to be 8.9 , 15.2, and

19.6 tons, respectively (The U.S. Department of Transportation, 2000). The estimated unit

transportation costs of light, mid-sized, and heavy trucks are $0.0215, $0.022, and $0.024 per

km per ton, respectively, that are calculated based on (Byrne et al., 2006). In addition, we

consider each unit of product as a pallet with 1.1 ton weight (w = 1.1). The per unit capacity of

fixed operating cost for each road-transportation mode are calculated based on approximately

20% of total truck operating costs (Coyle et al., 2011).

Table A.4 The amount of capacity (tons/unit mode), variable ($/km-unit of product) and

fixed costs ($/unit mode) of transportation modes

Mode Wm(tons/unit mode) gm ($/km-unit of product) hm ($/unit mode)

1- Small trucks 8.9 0.0215 248.4

2- Mid-Size trucks 15.2 0.0220 404.3

3- Heavy truck 19.6 0.0240 510.0

Table A.5 shows the return rates in each period for all retailers. We assumed that this rate
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is an increasing function of periods.

Table A.5 Return rate of retailers at different periods

Period t

1 0.2

2 0.3

3 0.5

Table A.6 shows demand outcomes for all retailers that were obtained by the moment-

matching heuristic explained in section 2.5.1.2. In Table A.6 there is no dependencies between

period one and two but period three depends to period two. Table A.7 is demand outcomes of

period three when there is no dependencies between period three and two, which is calculated by

taking the average values of four scenarios of period three in Table A.6. More specifically, each

outcome value in Table A.7 was calculated by summation over four outcomes of multiplying

probability of each scenario to their values of period three in Table A.6. Also each probability

of Table A.7 is calculated by making the average of four scenario probabilities of period three

in Table A.6. Therefore, the data used for the case of no dependencies of demands among

periods is period one and two from Table A.6 and period three from Table A.7. Table A.8 is

the demand specifications of all retailers.
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Table A.6 The four demand outcomes (unit of product) of each eight retailers for different

periods.

Retailer 1 2 3 4 5 6 7 8

Scenario Probability

Period 1

1-1 0.361747 122.0 93.1 92.8 92.8 88.0 94.7 123.0 94.8

1-2 0.309766 76.1 76.0 81.6 77.3 78.4 79.4 74.5 75.5

1-3 0.006355 5.7 8.5 24.7 23.8 8.5 24.2 9.79 21.0

1-4 0.322132 86.6 124.0 126.0 122.0 124.0 125.0 92.0 123.0

Period 2

2-1 0.010119 101.0 185.0 177.0 59.8 63.1 83.7 44.3 36.1

2-2 0.386865 133.0 82.9 84.8 90.0 86.6 87.8 134.0 133.0

2-3 0.007629 28.3 126.0 44.4 182.0 171.0 189.0 44.9 123.0

2-4 0.595387 93.0 123.0 124.0 126.0 121.0 125.0 97.0 95.2

Period 3
3-1 0.592752 103.0 142.0 138.0 83.2 81.1 93.7 76.6 70.4

3-2 0.325370 148.0 191.0 188.0 128.0 124.0 139.0 117.0 115.0

(Root 3-3 0.026237 35.7 81.0 75.0 30.9 23.8 35.0 59.7 4.2

Period 2-

1)

3-4 0.055640 73.6 145.0 149.0 58.8 128.0 93.3 28.0 51.3

Period 3
3-1 0.552377 116.0 90.9 93.3 90.9 94.2 91.7 112.0 115.0

3-2 0.060496 66.5 47.8 47.2 105.0 65.1 91.8 152.0 93.0

(Root 3-3 0.006875 212.0 194.0 196.0 16.3 14.0 7.6 32.0 22.4

Period 2-

2)

3-4 0.380252 159.0 134.0 136.0 140.0 136.0 139.0 158.0 161.0

Period 3
3-1 0.030786 0.0 52.8 10.5 146.0 82.9 148.0 156.0 48.9

3-2 0.365464 110.0 159.0 119.0 185.0 167.0 148.0 106.0 156.0

(Root 3-3 0.489904 62.3 112.0 71.8 146.0 133.0 181.0 64.1 111.0

Period 2-

3)

3-4 0.113840 62.3 112.0 71.8 108.0 190.0 107.0 106.0 111.0

Period 3
3-1 0.593040 93.7 107.0 107.0 109.0 110.0 109.0 98.4 95.6

3-2 0.005154 3.5 11.5 8.2 26.9 40.3 19.2 36.6 0.1

(Root 3-3 0.377057 142.0 157.0 158.0 158.0 153.0 155.0 141.0 142.0

Period 2-

4)

3-4 0.024748 43.0 89.7 144.0 145.0 59.7 171.0 45.6 55.4

Table A.7 The demand outcomes (unit of product) of each eight retailers for period three

when there is no dependencies among periods.

Retailer 1 2 3 4 5 6 7 8

Scenario Probability

Period 3

3-1 0.442239 180.7 199.6 197.3 168.8 168.1 175.4 170.5 163.5

3-2 0.189121 92.3 123.2 107.4 115.7 105.4 105.0 86.2 100.2

3-3 0.225019 86.3 117.4 98.2 132.2 123.5 148.0 86.5 108.3

3-4 0.143622 72.6 73.9 71.6 72.6 81.8 74.3 74.9 78.1
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Table A.8 Demand specifications of each retailer for three periods.

Demand specifications

Retailers Period Mean Variance Skewness. Kurtosis

1

1 95.54 442.13 -0.067 3.23

2 κ2
1(λ) 427.77 0.015 2.69

3 κ3
1(λ) 704.17 -0.234 3.18

2

1 97.33 433.15 -0.124 3.37

2 κ2
2(λ) 431.40 0.071 2.92

3 κ3
2(λ) 679.04 0.024 2.96

3

1 99.45 370.26 0.170 2.78

2 κ2
3(λ) 436.04 -0.222 2.65

3 κ2
3(λ) 685.87 -0.066 3.15

4

1 96.84 354.61 0.009 2.76

2 κ2
4(λ) 370.73 -0.158 2.72

3 κ2
4(λ) 612.35 0.064 2.47

5

1 96.12 421.22 0.093 3.40

2 κ2
5(λ) 329.70 -0.160 2.40

3 κ2
5(λ) 571.30 -0.238 3.02

6

1 99.18 372.27 0.031 2.76

2 κ2
6(λ) 374.08 0.102 3.07

3 κ2
6(λ) 587.50 -0.027 3.11

7

1 97.22 455.82 -0.188 2.94

2 κ2
7(λ) 402.47 -0.169 2.94

3 κ2
7(λ) 574.19 -0.222 2.91

8

1 97.48 401.63 -0.085 2.66

2 κ2
8(λ) 391.84 -0.080 2.85

3 κ2
8(λ) 653.11 -0.195 3.35
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Goh, J. and Sim, M. (2010). Distributionally robust optimization and its tractable approxima-

tions. Operations Research, 58(4-Part-1):902–917.

Guide, D., Teunter, R., and Van Wassenhove, L. N. (2003). Matching demand and supply to

maximize profits from remanufacturing. Manufacturing and Service Operations Management,

5(4):303–316.

Haddad-Sisakht, A. and Ryan, S. M. (2016). Conditions under which adjustability lowers the

cost of a robust linear program. Available at: http://lib.dr.iastate.edu/imse_reports/

3/.

Hickman, Robin Ashiru, O. and Banister, D. (2011). Transitions to low carbon transport

futures: strategic conversations from london and delhi. Journal of Transport Geography,

19(6):1553–1562.

Hyland, K., Kaut, M., and Wallace, S. W. (2003). A heuristic for moment-matching scenario

generation. Computational Optimization and Applications, 24(2-3):169–185.

Hyland, K. and Wallace, S. W. (2001). Generating scenario trees for multistage decision prob-

lems. Management Science, 47(2):295–307.

Kaut, M. and Mathieu, D. (2012). Chapter 4 of Modeling with Stochastic Programming

Springer, page 99. Springer, London, 1 edition.

http://lib.dr.iastate.edu/imse_reports/3/
http://lib.dr.iastate.edu/imse_reports/3/


104

Keyvanshokooh, E., Fattahi, M., Seyed-Hosseini, S., and Tavakkoli-Moghaddam, R. (2013).

A dynamic pricing approach for returned products in integrated forward/reverse logistics

network design. Applied Mathematical Modelling, 37:10182–10202.

Keyvanshokooh, E., Ryan, S. M., and Kabir, E. (2016). Hybrid robust and stochastic optimiza-

tion for closed-loop supply chain network design using accelerated benders decomposition.

European Journal of Operational Research, 249(1):76–92.

Kuhn, D., Wiesemann, W., and Georghiou, A. (2009). Primal and dual linear decision rules in

stochastic and robust optimization. Mathematical Programming, 130(1):177–209.

Levinson, D., Corbett, M., and Hashami., M. (2004). Operating costs for trucks.

http://nexus.umn.edu/papers/truckoperatingcosts.pdf.

Listes, O. (2007). A generic stochastic model for supply-and-return network design. Computers

and Operations Research, 34(2):417–442.

Mallidis, I., Dekker, R., and Vlachos, D. (2010). Greening supply chains: Impact on costs and

design. Retrieved from Erasmus University, Econometric Institute website: http: // repub.

eur. nl/ res/ pub/ 20375 .

Mallidis, I., Dekker, R., and Vlachos, D. (2012). The impact of greening on supply chain design

and cost: a case for a developing region. Journal of Transport Geography, 22:118–128.

Marandi, A. and den Hertog, D. (2015). When are static and adjustable robust optimiza-

tion with constraint-wise uncertainty equivalent? Tilburg CentER (Center for Economic

Research) Discussion Paper, 2015-045.

Metcalf, G. E. (2009). Market-based policy options to control U.S. greenhouse gas emissions.

Journal of Economic Perspectives, 23(2):5–27.

Ouorou, A. (2013). Tractable approximations to a robust capacity assignment model in telecom-

munications under demand uncertainty. Computers & Operations Research, 40(1):318–327.

http://repub.eur.nl/res/pub/20375
http://repub.eur.nl/res/pub/20375


105

Paksoy, T., Bekta, T., and zceylan, E. (2011). Operational and environmental performance

measures in a multi-product closed-loop supply chain. Transportation Research Part E:

Logistics and Transportation Review, 47(4):532–546.

Pan, S., Ballot, E., and Fontane, F. (2010). The reduction of greenhouse gas emissions from

freight transport by pooling supply chains. International Journal of Production Economics,

143(1).

Pflug, G. C. (2001). Scenario tree generation for multiperiod financial optimization by optimal

discretization. Mathematical Programming Series, 89:251–271.

Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization approach to

closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling,

35(2):637–649.

Pishvaee, M. S., Razmi, J., and Torabi, S. A. (2012). Robust possibilistic programming for

socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems,

206(1):1–20.

Sim, O., Jung, S., Kim, H., and Park, J. (2004). A generic network design for a closed-loop

supply chain using genetic algorithm. In al., K. D. e., editor, Genetic and Evolutionary Com-

putation: GECCO 2004, volume 3103, pages 1214–1225. Springer-Verlag Berlin Heidelberg.

Solyali, O. (2014). Production planning with remanufacturing under uncertain demand and
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