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1 INTRODUCTION
Imagine the the following decision problem for the fictitious country of Drmecia, a small nation with many security
problems and limited funds for addressing these problems:

The Army of Drmecia operates a ground based air-search early warning radar base located near
the capital city, Sloat. The radar continues to exhibit low availability because of reliability and main-
tainability problems. This exposes the country to a surprise air attack from its enemy, Madland. The
Army obtained procurement funds two years ago and installed another radar of the same type as a
back-up, or stand-by, radar. Unfortunately, the second radar unit also has exhibited low availability
and too often both radars are off-line. The commander of Sloat Radar Base is now requesting funds
for a third radar, but the Army Chief of Staff is very concerned. He knows that the defense budget is
under increasing pressure and funds spent on another radar may have to come from some other Army
project. In addition, two new radar models are now available for procurement at higher cost than the
existing radars. It may be better to purchase one of these than another radar of the existing model.

The Chief of Staff knows he must have a strong case if he is to go to the Minister of Defense and
ask for additional funds. He wants to know which radar is best. He wants to know what he is getting
for the extra money spent. He wants to know what is the most cost-effective course of action.

The director of analysis for the Army of Drmecia knows that making a cost-effective decision
requires two things: (1) a cost analysis and (2) an effectiveness analysis. The analysis of cost is a
familiar problem and he has a staff working on it. The effectiveness part of the problem, however, is
a concern. What is effectiveness in this situation? How can effectiveness be defined and quantified?
How can the cost analysis be integrated with effectiveness analysis so that a cost-effective solution can
be found?

The goal of this chapter is to develop a method to think about and quantify effectiveness in the public sector,
specifically defense. Effectiveness can best be measured in the public sector by developing a framework for solving
decision problems with multiple objectives. The framework will provide you with a practical tool for quantitative
investigation of all factors that may influence a decision, and you will be able to determine why one alternative
is more effective than others. This analytical ability is very important because many real-life decision problems
involve more than a single issue of concern. This holds true for personal-life decisions, private sector business
decisions, and public sector government resource allocation decisions.

Examples of personal-life decision problems with multiple objectives are plentiful: selecting a new automo-
bile; choosing from among several employment offers; or deciding between surgery or medication to correct a
serious medical problem. In the private sector, maximizing profit is often the sole objective for a business, but
other objectives may be considered, such as maximizing market share, maximizing share price performance, and
minimizing environmental damage.

Public sector decision making almost always involves multiple objectives. State and local government budget
decisions are evaluated, at least, in terms of their impacts on education programs, transportation infrastructure,
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public safety, and social welfare. The situation is more complex at the Federal level because national defense is-
sues enter the picture. For example, consider the ways in which the U. S. Department of Defense evaluates budget
proposals. Top-level decision makers consider the effects of a budget proposal on (1) the existing force structure,
(2) the speed of modernization, (3) the state of readiness, and (4) the level of risk, among other factors. Other
national defense objectives include the ability to deter aggression, project force around the world, and defeat the
enemy in combat no matter the location and his military capability. This multidimensional character permeates all
levels of decision making within a Planning, Programming, Budgeting and Execution System (PPBES). Acquisi-
tion decisions, training and doctrine policy changes, and base reorganization and consolidation choices all have
multiple objectives.

Government decisions in general, and defense resource allocation decisions in particular, have an added eval-
uation challenge. Outcomes are difficult, if not impossible, to represent in monetary terms. First, benefit cannot
be expressed in terms of profit. Unlike the private sector, the public sector is not profit motivated and this single
monetary measure of benefit is not relevant. Second, market mechanisms often do not exist for “pricing out” the
many benefits derived from public sector decisions. Thus, it is not possible to convert all the benefits into mone-
tary terms and conduct a cost-benefit analysis. In national defense, benefits are often characterized in terms like
deterrence, enhanced security, and increased combat capability. No markets exist that generate a price per unit of
deterrence or a unit increase in national military security.

Solving these decision problems requires a structured systematic approach that aids in discovering all the
relevant objectives and makes it easy to work with objectives expressed in many different units of measure. It
also must allow the decision maker to account for the relative importance of the objectives and the importance of
marginal changes within individual objective functions. Following such an approach can allow decision makers to
perform cost-effectiveness analysis to compare among different programs and alternatives.

2 PROBLEM FORMULATION
A systematic approach to decision making requires developing a model that reflects a decision maker’s preferences
and objectives. We assume the decision maker is rational and seeks the most attractive or desirable alternative.
Goals describe what the decision maker is trying to achieve, and objectives determine what should be done in
order to achieve the decision maker’s goal(s). A model based on the decision maker’s objectives will allow the
decision maker to evaluate and compare among different alternatives.

For a decision problem with a single objective, the model for decision making is straight forward. For example,
consider the simple problem of choosing the “best” alternative where “best” is interpreted as the greatest range.
Not surprisingly, the decision maker should choose the alternative with the greatest range.

Things are never this straight forward when there are multiple objectives because the most desirable or most
effective alternative is not obvious. For example, consider the selection of the Sloat Radar as discussed in the
introduction. The decision maker knows that range and interoperability are important. Maintenance and reliability
are also concerns. How do we define effectiveness in this situation? Do we focus only on range? Do we focus only
on interoperability? How can we consider all four objectives at the same time?

2.1 Issues of Concern and Objectives
The issues of concern to the decision maker can always be expressed as objectives. For example, in selecting
a radar system, suppose two alternatives are equal in all respects except for range. In this case, the decision
maker chooses the radar with more range. This concern with range translates to an objective: the decision maker
wants to maximize range. Likewise, suppose that two alternatives are equal in all respects except for required
maintenance, and the decision maker selects the alternative with less required maintenance. The concern with
required maintenance translates to an objective: the decision maker will want to minimize required maintenance.

The rational decision maker can always be shown to act in a way consistent with a suitably defined set of
objectives. Hence, decision problems characterized by many issues of concern are decision problems in which
the decision maker attempts to pursue many objectives. In other words, the decision maker confronts a Multiple
Objective Decision Problem.

The set of objectives is fundamental to the formulation of this type of decision problem. If we have a complete
set of objectives that derive from all the issues of concern to the decision maker, we have a well formulated problem.
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Furthermore, if these objectives are defined in sufficient detail, they tell us how to evaluate the alternatives in terms
that have meaning to the decision maker. In the radar example, each alternative can be evaluated in terms of its
range, its interoperability, its required maintenance, etc. This knowledge is fundamental to the solution of this
type of decision problem. This knowledge tells us how to quantify things or how to measure the attainment of the
objectives. We seek to represent the alternatives by a set of numbers that reveal to the decision maker how well
each alternative “measures up” in terms of the objectives.

Let us introduce some mathematical notation to help with the formulation, and Table 1 defines all the variables
used in this chapter. Let there be M objectives for the decision maker. Let these be defined in enough detail so that
we know how to measure the attainment of each objective. Let these measures be denoted xi where 1 ≤ i ≤ M.
For example, x1 = range, x2 = interoperability, x3 = required maintenance, etc. Let there be N alternatives
indexed by the letter j where 1 ≤ j ≤ N. Thus, each alternative can be represented by a set of M numbers:

{x1(j), x2(j), x3(j), . . . , xM (j)}.

These numbers become the attributes for the jth alternative, and each of the M numbers represent how well the jth

alternative meets each one of the decision maker’s M objectives. Evaluating an alternative means determining the
numerical value of each of the measures. These serve as the raw data upon which the decision is made.

The key to solving the decision problem is to explain how this set of M numbers is viewed in the mind of the
decision maker. This is done by constructing a collective measure of value that reflects how much the decision
maker prefers one collection of attributes vis a vis another collection of attributes. For example, how does the
decision maker value the set of attributes for the first alternative, {xi(1)}, compared to the set of attributes for the
second alternative, {xi(2)},where 1 ≤ i ≤M? Is the the set {xi(1)} more “attractive” than the set {xi(2)}?

It is challenging for a decision maker to compare alternatives if each alternative has several attributes (i.e., if
M is greater than 3 or 4). Developing a function that combines the M attributes into a single number provides a
method for the decision maker to compare alternatives based on the attributes that describe each alternative. This
single number is called the Measure of Effectiveness (MOE).

2.2 Effectiveness
The function that measures the effectiveness of the jth alternative is called a value function, v(j). This function
incorporates the preferences of the decision maker and converts each collection of attributes as represented by
the set {xi(j)} into a number that represents the attractiveness or desirability of the collection in the mind of
the decision maker. It measures the extent to which the jth alternative helps the decision maker pursue all the
objectives while taking into account the relative importance of each. Effectiveness is a number. It quantifies “how
far we go” towards achieving our goals as measured by the value of the objectives. The objectives are not all of
equal importance, however, and v(j) also takes into account the relative importance of each objective.

The decision maker desires to maximize effectiveness by choosing the alternative with the highest v(j) subject
of course to cost considerations. The fundamental problem in formulating the decision problem is defining v(j)
based on the set of attributes {x1(j), x2(j), x3(j), . . . , xM (j)} and then integrating cost with the MOE.

Formulating a decision problem with multiple objectives requires four pieces of information:

1. We need a list of the relevant objectives.

2. We need to know how to value the measures associated with each individual objective.

3. We need to know the relative importance of these objectives.

4. We need to know the relative importance between the cost and effectiveness of each alternative.

We proceed to address each of these needs in the rest of the chapter.

3 DISCOVERING THE RELEVANT OBJECTIVES
We must know what matters in a decision problem or the consequences that a decision maker considers when
thinking about each solution alternative. These are the issues of concern and are represented by objectives. We
cannot judge alternatives without knowing the objectives of the decision maker.
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Table 1: Variable definitions
Variable Definition

a Assessed parameter in the exponential value function
b1 Assessed parameter for squared term in the exponential value function
b2 Assessed parameter for cubic term in the exponential value function
c(j) Life-cycle cost of the jth alternative
cideal Dollar amount at which the value of cost equals 1

ctoo much Dollar amount at which cost is too high or value of cost equals 0
i A single objective or attribute
j A single alternative

k =
1

ctoo much
Reciprocal of too high of cost

wi Importance weight for the ith attribute
wA Importance weight for availability
wC Importance weight for complexity
wE Importance weight for electronic counter-counter measures (ECCM)
wI Importance weight for interoperability
wL Importance weight for cognitive load
wP Importance weight for performance
wR Importance weight for range
wU Importance weight for ease-of-use
v(j) Measure of effectiveness for the jth alternative

vc(c(j)) Value function for cost of the jth alternative
vi(xi) Value function for the ith attribute
xi Measurement for the ith attribute

xi(j) Measurement for the ith attribute for the jth alternative
xideal Ideal measurement for an attribute
xmax Maximum measurement for an attribute
xmin Minimum measurement for an attribute

xtoo little Too little for an attribute for more-is-better case
xtoo much Too much for an attribute for less-is-better case

z Swing in attribute that contributes least to an objective
zi Difference between xi and either xmax or xmin

K Normalization constant for exponential value function
K1 Normalization constant for quadratic exponential value function
K2 Normalization constant for cubic exponential value function
M Number of objectives or attributes
N Number of alternatives

V (j) Payoff function for cost-effectiveness of the jth alternative
V ∗ and V ∗∗ Payoff values of cost-effectiveness

WC Importance weight for cost
WE Importance weight for effectiveness

4



Figure 1: Generic hierarchy

Discovering all the relevant objectives is the first step in solving the decision problem. It is helpful to employ
a graphical construction called an hierarchy or “tree structure.” (Think of a tree: a trunk with a few main branches
that have many more smaller branches that have even more smaller branches—now turn that picture upside down
and you have a picture of an hierarchy.) Figure 1 depicts a hierarchy with several levels. The hierarchy begins at
the top most level with a single over-arching objective that captures in its definition all that the decision maker is
trying to do. For multiple objective problems in public policy, the overall objective is to maximize effectiveness.
The objectives in the first level below the overall objective tell us how we define the top level hierarchy. We say
the overall objective is refined or defined in more detail by the objectives listed on the next level down. The lower
level provides more detail as to what is meant by the objective at the next higher level.

The definition is not operational unless it is useful in measuring things. We must have a way to develop the
hierarchy in enough detail so that we get specific enough in our definition of the objectives that it becomes obvious
to us (and everyone else) how “to measure things.” What we need is a method of construction that takes us from
the top level down to the lowest level where measurement is obvious. There are several ways of doing this but we
will only discuss the “top-down” method and the “bottom-up” method.

3.1 The Top-Down Approach
In the top-down approach you start with the obvious, to maximize effectiveness. This becomes the top-level
objective. Because this objective can mean many things to many people and is too vague to be operational, the
next step is to seek more detail. You proceed by asking the question: “What do you mean by that?” The answer
to this question will allow you to write down a set of sub-objectives, each of which derives from a more detailed
interpretation by the decision maker of just what overall effectiveness means to him or her. For example, in the case
of Sloat Radar the decision maker may say: “Maximizing availability is part of maximizing overall effectiveness,
I’ve got to have a radar that works almost all the time.” He may also say that “I need a high performance radar
that works almost all the time, so maximizing radar performance is also part of maximizing overall effectiveness.”
Finally, he may say that he needs a radar that is easy to use. Thus minimizing radar complexity for the user is also
important.

The top-down approach continues in this way until there is no doubt what the objectives mean because we will
be able to measure their value for each alternative. For example, in the first level down from the top we know
exactly what we mean by acting so as “to maximize availability.” Availability has a well known precise definition:
availability is the probability that a system will work at any given time. It can be measured either directly or
by computation using the system’s Mean Time Between Failure (MTBF) and its Mean Time To Repair (MTTR).
Each alternative can be evaluated in terms of its availability, and maximizing availability is pursued by seeking the
system that exhibits the highest availability.

Performance, however, does not have a precise agreed upon definition that tells us how we can measure it. Here
we must ask once again: “What do you mean by that?” The answer to this question will allow us to understand
what is meant by maximizing performance. Suppose, for example, that the response to this question is: “High
performance means great effective radar range, resistance to electronic counter measures, and high interoperabil-
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Figure 2: Sloat Radar objectives hierarchy

ity.” We do not need to ask any other questions here because we know how to measure (evaluate) range for each
alternative. We know how to evaluate resistance to electronic counter measures: a simple “yes” or “no” answer
will do. Either an alternative has electronic counter-counter measures (ECCM) capability or it does not. Finally,
we know how to measure interoperability: we can count the number of communication links that can be operated
by each alternative (so it can feed target information to the various anti-air forces).

Minimizing user complexity also requires refinement so we need to ask: “What do you mean by that?” The
answer in our example may be that to minimize user complexity we need to minimize the cognitive load placed
on the radar operator (measured by how many things the operator has to watch, sense, react to, adjust, and refine)
and maximize the ease-of-use of the radar by the operator. Each alternative could be evaluated by cognitive
psychologists and human-machine interface industrial engineering specialists. In this case each evaluation could
result in a simple rating scheme that uses “high,” “medium,” or “low” coding. Therefore both objectives are specific
enough to be measurable.

The end result of this top-down approach for the Sloat radar example is the objectives hierarchy depicted in
Figure 2. The key to the top-down approach is repeated application of the question “What do you mean by that?”
to provide more and more detail. You stop refining the structure when the answer to the question defines a quantity
that can be measured, quantified, or evaluated. When you have reached this point for each part of the hierarchy
then you have completed the process and obtained what you desire—a complete description of what you mean by
effectiveness and a way to measure it.

3.2 The Bottom-Up Approach
The bottom-up approach starts where the top-down approach ends: with a collection of very detailed and specific
measures. These are structured, or grouped, into a hierarchy in a way that assures we are not forgetting anything
important and we are not double counting objectives. The key to this approach is the repeated application of the
question: “Why is that there?”

The construction of the list is accomplished in many ways. First, it can be considered a Christmas “wish list.”
The decision maker can be asked to list everything he or she would like to have in an alternative. For example, with
Sloat Radar the decision maker may respond with the following. “I’d like to have maximum effective range and
complete immunity to electronic ‘jamming.’ I’d also like to have it very easy to use so my least technically adept
soldier could operate it.” Second, specific measures can be found in the “symptoms” listed in the original problem
statement. If the Army is upset with the existing radar availability then it is obvious that the decision maker would
also be interested in improving or maximizing availability.

For each item listed the decision maker is asked: “Why is that there?” The response to this question will
provide information that aids in grouping the measures. This makes it easy to define higher level objectives for
each group. For example, electronic counter measure resistance and range are included so that “when the radar
works, it has enough capability to do its job better than any other alternative.” This response may bring to mind
performance issues, and we group these two measures under an objective that seeks to maximize performance.
Once performance is included as a higher objective it may provoke consideration of other ways one interprets
performance, and this may make the decision maker think of high interoperability. The same process applied to
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the ease-of-use measure would lead to considering cognitive loading on the operator and a general concern with
user complexity.

Finally, this process aids the decision maker in clarifying the higher level objectives. A structure emerges
that helps insure nothing is forgotten and nothing is double counted. For example, once the higher objectives of
maximizing performance and minimizing complexity are evoked, the decision maker will be able to see what is
important: (1) the radar has got to work almost all the time, i.e., maximize availability; (2) when it works it must
be the best, i.e., maximize performance; and (3) it should be easy to operate or else all the other stuff is not worth
anything, i.e., minimize complexity. The result is a hierarchy of objectives as in the Figure 2.

3.3 Which Approach to Use
Each approach has its advantages and disadvantages. The top-down approach enforces a structure from the very
beginning of the exercise. It is, however, often difficult to think in general terms initially. Humans find it easier
to focus on specifics, like range and availability. The bottom-up approach is more attractive in this respect, but
this will not produce a logical structure without additional work. Producing an extensive wish list will, most
likely, produce redundant measures. Oddly enough, the longer the list, the more likely something important will
be forgotten. Long lists are harder to critically examine and locate omissions. This is where structure helps.

The best approach is perhaps a combination of the two. First, construct an hierarchy with the top-down ap-
proach, and then “reverse” direction—construct a hierarchy using the bottom-up approach. Critical examination
of the results provides information for a more complete final hierarchy. The result should be a hierarchy that is:

1. Mutually exclusive (where each objective appears once).
2. Collectively exhaustive (where all important objectives are included).
3. Able to lead to measures that are operational (can actually be used).

The bottom level of the hierarchy composes the M objectives or attributes necessary to build the function for effec-
tiveness. The Sloat Radar hierarchy has M = 6 attributes (availability, interoperability, ECCM, range, cognitive
load, and ease-of-use), which will be used to compare among the different alternatives.

3.4 The Types of Effectiveness Measures
The effectiveness measures that result from development of the objectives hierarchy can be of three general types:
(1) natural measures; (2) constructed measures; and (3) proxy measures.

3.4.1 Natural measures

Natural measures are those that can be easily counted or physically measured. They use scales that are most often
in common use. Radar range, interoperability (as measured by the number of communication links provided), and
availability (as measured by the probability that the system will be functioning at any given time) are examples.
Weight, payload, maximum speed, size, volume, and area are other examples. Whenever possible, we should try
to refine our objectives definitions in the hierarchy to obtain this type of measure.

3.4.2 Constructed measures

This type of measure attempts to measure the degree to which an objective is attained. It often results when no
commonly used physical or natural measure exists. For example, cognitive load is a constructed measure. It is
assessed as high, medium, or low depending on the number of visual and audible signals to which the operator
must attend. Suppose indicators of operator cognitive abilities as measured by aptitude scores, training rigor, and
education level indicate significant error in operator function if the combination of audio and visual cues is greater
than 5. A radar with 5 or more cues is then assessed as having a high cognitive load. Similarly, a combination of
cues between 3 and 4 constitutes a medium cognitive load, and a combination of cues less than 3 constitutes a low
cognitive load. Constructed measures are the next best thing to natural measures.
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3.4.3 Proxy measures

These measures are like natural measures in that they usually are countable or physically measurable. The differ-
ence is that they do not directly measure the objective of concern. In one sense we could consider radar range to
be a proxy for measuring how much an alternative helps to maximize warning time to react better to an airborne
threat. The actual reaction time cannot be directly measured because we would need to know the exact attack speed
of the threatening bombers. We do know, however, that the farther out we can detect an attack, the more reaction
time we would have. So maximizing range is a proxy measure for maximizing time to react.

4 DECISION MAKER PREFERENCES
After building the objectives hierarchy, we know what is important and have created a list of the relevant objectives.
Each alternative can be evaluated using the list of individual effectiveness measures for the different attributes, but
these measures involve a variety of incommensurable units. We must develop a way to convert all these disparate
measures to a common unit of measure. This common unit of measure represents value in the mind of the decision
maker.

Calculating the MOE for the jth alternative as represented by the function v(j) requires two types of preference
information: (1) information that expresses preference for more or less of a single attribute and (2) information
that expresses relative importance between attributes. The first represents preference information within a single
attribute, while the second represents preference information across different attributes.

The first is important because of the way a decision maker values marginal changes in a single effectiveness
measure. For example, in the Sloat Radar case, a decision maker may value the increment in range from 200
km to 400 km more than twice as much as the same increment from 400 km to 600 km. The same increment in
range (of 200 km) from 600 km to 800 km may be valued very little. This valuation is quite reasonable. More
range is preferred to less range, but there is a point beyond which additional range has little additional value to the
decision maker. We already will have “enough” range for the purposes of early warning against air attack. Such
information is very important for another reason. It allows us to construct an individual attribute value function
that provides a scaling function to convert the natural units of measurement into units of value on a scale of 0− 1.
This has the advantage of removing any problem caused by the units of measurement for the individual attribute.
For example, measuring radar range in terms of meters, kilometers, or thousands of kilometers can influence the
numerical analysis and ultimately the answer. We need a process that is independent of the units of measurement.
This is one of the important things we achieve with an individual attribute value function. Such a function also
makes the process independent of the range of values of the individual effectiveness measures. This preference
information will provide the answer to the question: “How much is enough?”

The second type of information is important because a decision maker values some individual effectiveness
measures of attributes more than others. For example, in the Sloat Radar problem, the decision maker may feel
it much more important to increase availability than to increase range. Such information implies that a decision
maker would be willing to obtain more availability at the expense of less range. This preference information will
provide the answer to the question: “How important is it?”

4.1 How Much Is Enough (of an Individual Attribute)?
Once we know all the relevant effectiveness measures, we need to describe how a decision maker values marginal
changes in each measure. This is done by constructing a function that converts the nominal measurement scale
into a 0− 1 value scale where 0 is least preferred and 1 is most preferred. There are several ways of doing this but
only one method is presented here. It is a three step procedure.

First, divide the nominal scale into “chunks,” or intervals, over which the decision maker can express preference
information. For example, consider radar range. The decision maker may find it difficult to express preferences
for each additional kilometer of range but may find it easier to do so if we consider range in 100 kilometer chunks.

Second, ask the decision maker to tell you, using a scale of 0 − 10, how valuable is the first 100 km of radar
range. Then ask how valuable is the next 100 km of range (the second increment from 100 km to 200 km). Repeat
this process for each additional 100 km of range until you reach the upper limit of interest. Suppose this exercise
gives the following sequence when applied to range measurements between 0 km and 1000 km: 10, 10, 8, 7, 5, 3,
1, 0.5, 0.1, 0.05. These are the increases in marginal effectiveness to the decision maker.
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Figure 3: Radar range value function

Third, use this marginal information to create a cumulative value function scaled to give value scores between
0 and 1. The radar range example gives a total cumulative value (the sum of the marginal increments) equal
to 10 + 10 + 8 + 7 + 5 + 3 + 1 + 0.5 + 0.1 + 0.05 = 44.65. Divide all marginal increments by this sum:
10/44.65, 10/44.65, 8/44.65, 7/44.65, etc. We obtain a sequence of smaller numbers that add to one. The cumu-
lative value, calculated by adding the marginal values, is what we use to determine the value of a measure. For
example, the value of 300 km range is equal to the value derived from increasing the range from 0 to 100 km plus
the additional value derived from increasing the range from 100 km to 200 km plus the additional value derived
from increasing the range from 200 km to 300 km. The cumulative value of these normalized marginal increments
is presented graphically in Figure 3.

This method achieves two important things. First, if we repeat this process for each attribute, we have a
common unit of measure standardized to a 0 − 1 interval. Second, and most importantly, we now have a way of
valuing radar range. A range of 700 km has a value of 0.985 and a range of 800 km has a value of approximately
0.997, which informs us that the decision maker prefers 800 km to 700 km but that this increase is not highly
valued (only an increase in value of 0.012). On the other hand, increasing the range from 200 km (with a value of
0.448) to 300 km (with a value of 0.628) is much more valuable to the decision maker. The increase in value here
is 0.18. Thus we know the decision maker prefers the 100 km increment from 200 to 300 km more than the going
from 700 to 800 km.

The analysis of effectiveness is facilitated by converting this graphical information to algebraic form so we can
obtain a model of preferences that allows us to quantify these preferences for every possible numerical measure
for an attribute. We construct a value function for an individual attribute where xi represents the numerical value
for the ith attribute and vi(xi) is the value function for the ith attribute. A useful algebraic form for capturing the
important characteristics of Figure 3 is the exponential function:

vi(xi) =
1− e−a[xi−xmin]

K
(1)

where K = 1− e−a[xmax−xmin] is a normalization constant. This function requires three parameters: xmin, xmax,
and a. The first two are known already because the decision maker has specified the range of interest over which xi

will vary: [xmin ≤ xi ≤ xmax]. The parameter a can be obtained using least-squares regression using the Solver
“add-in” tool in Excel. The parameter can also be estimated graphically by adjusting a until the curve generated by
the function vi(xi) corresponds to the points representing the decision maker’s preferences in the cumulative value
function as ascertained by the three-step method. More flexible but more complicated forms of this exponential
function can be used (see the Appendix). The purpose of these algebraic forms is to match the original cumulative
value function given to us by the decision maker as closely as possible.

Calculating a numerical value for a in vi(xi) that corresponds to the information for the range of the radar, as
depicted in Figure 3, is done in Excel using the Solver add-in tool. Figure 4 presents vi(xi) corresponding to the
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Figure 4: Fitted exponential value function for radar range

Figure 5: Radio weight value function

data in Figure 3 when we use an exponential form with a = 0.0033, xmin = 0, and xmax = 1000.
The preceding example has illustrated a case where “more is better.” Exactly the same approach is used when

“less is better.” For example, consider a man-portable field radio. Here less weight is preferred to more weight.
Now the decision maker is asked a series of questions relating to marginal value but we “start from the other
end” of the measurement scale—we start with the heaviest weight and work backwards to the lightest weight. For
example, suppose it is decided that field radios weighing more than 20 kg are useless because they weigh too much
for a typical soldier to carry. Imagine we use marginal changes in weight of 2 kg. We begin by asking the decision
maker to give us a number (on a scale of 0− 10) expressing the value of a 2 kg reduction (from a weight of 20 kg
to a weight of 18 kg). Then we ask what value is associated with a further 2 kg reduction in weight (to 16 kg). We
repeat the process until we get an answer for the value attached to the last 2 kg of weight. Suppose we obtain the
sequence: 10, 9, 8, 5, 3,1, 0.4, 0.1, 0.0. These sum to 36.5 so we normalize the decrements by this total. The result
is presented in Figure 5.

As in the case where more is better, the graph of cumulative value can be used to fit an exponential function
for conducting analysis of effectiveness. Once again, exponential functions are very useful and can be used to
represent this information:

vi(xi) =
1− e−a[xmax−xi]

K
(2)
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Figure 6: Fitted exponential value function for radio weight

where K is the same as before. Figure 6 depicts the results of fitting the cumulative value function for radio weight
in Excel using the Solver add-in tool where a = 0.21, xmin = 0, and xmax = 20. Once again, closer fit can be
obtained by using more terms in the exponent as described in the Appendix.

A linear function can also be used to approximate the exponential function for either the more-is-better case or
the less-is-better case. The linear function can use the same cumulative value function as described previously, or
just two values can be assessed from the decision maker. The two values necessary are a number corresponding to
“not enough performance” and a number corresponding to “good enough performance.” If more is better, the num-
ber corresponding to not enough performance is “too little” or xtoo little. If less is better, the number corresponding
to not enough performance is “too much” or xtoo much. In both cases, the number corresponding to good enough
performance is “ideal” or xideal. For example, in the more-is-better example of radar range, 0 km can represent not
enough performance or too little and 600 km can represent good enough performance or the ideal. We choose 600
km rather than 1000 km as the ideal because the assessed value at 600 km is 0.963 and the increase in value from
600 to 1000 km is only 0.037. In the less-is-better example of the radio’s weight, we choose 20 kg as too much and
8 kg as ideal. Eight kilograms is chosen as ideal because the value at 8 kg is 0.986 and the increase in value from
8 to 0 kg is only 0.014. The linear value function is defined for more is better in which [xtoo little ≤ xi ≤ xideal]:

vi(xi) =
xi − xtoo little

xideal − xtoo little
, (3a)

and for less is better in which [xideal ≤ xi ≤ xtoo much]:

vi(xi) =
xi − xtoo much

xideal − xtoo much
. (3b)

If xi ≥ xideal in the more-is-better case or if xi ≤ xideal in the less-is-better case, vi(xi) = 1. Similarly, vi(xi) = 0
if xi ≤ xtoo little in the more-is-better case or xi ≥ xtoo much in the less-is-better case.

4.2 How Important Is It (Relative to the Other Attributes)?
After assessing the preferences of the decision maker for changes in each attribute, we need to know the preferences
of the decision maker among different attributes. The model for the MOE uses importance weights or trade-off
weights denoted by wi, the importance weight for the ith attribute. Each importance weight must satisfy 0 ≤ wi ≤ 1
and together must satisfy

∑M
i=1 wi = 1. A larger value of wi signifies that the effectiveness measure for the ith

attribute is more important.
The conditions imposed on the weights will automatically be satisfied if we apply the conditions to each of

the partial hierarchies that appear within the overall objectives hierarchy. For example, the overall hierarchy in
Figure 2 is actually composed of three hierarchies. In the first hierarchy, defined by the top level and the first level
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underneath it, maximizing overall effectiveness is supported by maximizing availability, maximizing performance,
and minimizing user complexity. The relative importance of each of these three objectives to maximizing overall
effectiveness can be expressed with three weights such that 0 ≤ wA, wP , wC ≤ 1 and wA + wP + wC = 1 (A =
availability, P = performance, and C = complexity). In the second hierarchy, maximizing performance is supported
by maximizing interoperability, maximizing ECCM capability, and maximizing range. The relative importance of
each of these can be expressed with three more weights such that 0 ≤ wI , wE , wR ≤ 1 and wI + wE + wR = 1
(I = interoperability, E = ECCM, and R = range). Finally, minimizing complexity is supported by minimizing
cognitive load and maximizing ease-of-use. The relative importance of these two objectives can be expressed with
two weights such that 0 ≤ wL, wU ≤ 1 and wL + wU = 1 (L = cognitive load and U = ease-of-use).

Assigning weights in this fashion guarantees that the weights for all M objectives or attributes sum to one and
are all within the range of 0−1. The Sloat Radar example has M = 6 attributes, and we need 6 importance weights,
w1, w2, w3, w4, w5, and w6 to correspond to each one of the attributes (availability, interoperability, ECCM, range,
cognitive load, and ease-of-use). These 6 “global” weights can be derived from the “local” weights described in
the previous paragraph. Availability stands alone in the hierarchy, and wA = w1 where w1 is the global weight
for availability. Performance is composed of three attributes, and wP = w2 + w3 + w4 where w2 is the global
weight for interoperability, w3 is the global weight for ECCM, and w4 is the global weight for range. Complexity
is composed of two attributes, and wC = w5 + w6 where w5 and w6 are the global weights for cognitive load
and ease-of-use, respectively. Using the fact that wI + wE + wR = 1 for the performance sub-hierarchy and
wL + wU = 1 for the complexity sub-hierarchy, we can express the global weights for the 6 attributes:

w1 = wA (4a)
w2 = wP · wI (4b)
w3 = wP · wE (4c)
w4 = wP · wR (4d)
w5 = wC · wL (4e)
w6 = wC · wU . (4f)

Since each group of local weights sum to one, we know the global weights as calculated above will also sum to
one:

w1 + w2 + w3 + w4 + w5 + w6 = wA + wP + wC = 1.

Obtaining the weights requires solicitation of decision maker preferences using a different set of questions
from that used above. There are many ways to do this, and we consider five methods.

4.2.1 Direct assessment

The most obvious way to gain the information required is to directly ask the decision maker for M numbers, wi,
such that 0 ≤ wi ≤ 1 for {1 ≤ i ≤ M} and

∑M
i=1 wi = 1. If there are no more than three or four effectiveness

measures this is a feasible approach. Unfortunately many real-life problems have many more effectiveness mea-
sures and direct assessment becomes too difficult. The Sloat Radar example has six effectiveness measures, and
this presents a formidable problem to the decision maker. All is not lost, however, if we utilize the structure given
us in the objectives hierarchy.

Consider the Sloat Radar hierarchy. We can ask the decision maker to consider first just the relative importance
of the three components that make up overall effectiveness: availability, performance, and user complexity. Di-
rectly assessing three importance weights at this level presents no insurmountable problem for the decision maker.
Next we can ask the decision maker to consider the components of performance and tell us the relative importance
of interoperability, ECCM capability, and range. Finally, we can ask the same question for the components of user
complexity that requires only two importance weights be assigned. The results of this series of questions allows us
to compute the complete set of six weights using Eqs. (4a) - (4f).

Using the hierarchy and this “divide and conquer” approach makes direct assessment feasible in many situations
where otherwise it would appear overwhelming.
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4.2.2 Equal importance

Direct assessment may result in the decision maker stating that “all individual measures are equally important.” In
this case we must ask the decision maker if this statement applies to all M attributes or to each part of the hierarchy.
Different importance weights result depending on the interpretation of the statement.

If the decision maker is referring to all M attributes, then clearly wi = 1/M. In the Sloat Radar example
this means that each measure would be given a weight of 1/6. It is important to realize that this weighting
has implications for the corresponding weights in the hierarchy. As discussed earlier, the importance weight for
performance equals the sum of global weights for interoperability, ECCM, and range, and wP = 1/6 + 1/6 +
1/6 = 1/2. The weight for complexity equals the sum of the weights for cognitive load and ease-of-use, and
wC = 1/6 + 1/6 = 1/3.

Clearly, equal importance across the bottom level measures does NOT imply equal weights throughout the
hierarchy. Thus, it is very important to go back to the decision maker and ask: “Do you really believe performance
is three times more important than availability?” “Do you really believe that minimizing complexity is twice as
important as maximizing availability?” When phrased this way the decision maker may be led to reassess the
importance weights.

If the decision maker is referring to the weights at each level in the objectives hierarchy, then we get a different
set of weights for wi. Figure 2 tells us that on the first level down availability, performance and complexity are all
equally important:

wA = wP = wC = 1/3.

This also means that all the component objectives for performance are equally important:

wI = wE = wR = 1/3.

Finally, suppose the decision maker says that maximizing ease-of-use and minimizing cognitive load are equally
important, then we know:

wU = wL = 1/2.

These local weights translate into the following global weights:

w1 = 1/3, w2 = 1/3 · 1/3 = 1/9, w3 = 1/3 · 1/3 = 1/9,

w4 = 1/3 · 1/3 = 1/9, w5 = 1/3 · 1/2 = 1/6, w6 = 1/3 · 1/2 = 1/6.

A very different picture emerges. Availability is three times more important than interoperability, ECCM capability,
and range. Availability is twice as important as cognitive load and ease-of-use.

The structure of the hierarchy is a powerful source of information that we will continually find helpful and
informative.

4.2.3 Rank sum and rank reciprocal

Sometimes the decision maker will provide only rank order information. For example, in assessing the weights
making up the performance measure, the decision maker may tell us: “Range is most important, interoperability
is second most important, and ECCM is least important.” In such cases we can use either the rank sum or rank
reciprocal method. Range has rank one, interoperability has rank two, and ECCM has rank three.

In the rank sum method, range has an un-normalized weight of 3, interoperability 2, and ECCM 1, based on
the decision maker’s ranking. Dividing each of these weights by the sum 3 + 2 + 1 = 6 returns the normalized
weights: wR = 3/6, wI = 2/6, and wE = 1/6.

In the rank reciprocal method, the reciprocals of the original ranks give:

Range = 1/1

Interoperability = 1/2

ECCM = 1/3

which sum to 11/6. Dividing the reciprocal ranks by their sum gives three numbers that satisfy the summation
condition and represent a valid set of weights: wR = 6/11, wI = 3/11, and wE = 2/11.

Both the rank sum and rank reciprocal methods only require rank order information from the decision maker.
The rank sum method returns weights that are less dispersed than the rank reciprocal method, and less importance
is placed on the first objective in the rank sum method.
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4.2.4 Pairwise comparison

Decision makers find it easier to express preferences between objectives where there are only two objectives.
This has led to a procedure for soliciting preference information based on pairwise comparisons. This allows the
importance weights over M measures to be established by comparing measures only two at a time. This is a special
case of the swing weighting method, which is described subsequently.

4.2.5 Swing weighting

One method helpful with direct assessment that incorporates more than rank order information is swing weighting.
Although more complex than the other methods, the swing weighting method can provide a more accurate depic-
tion of the true importance the decision maker places on each objective. Swing weighting is also sensitive to the
range of values that an attribute takes, and different values for attributes can result in different weights. The method
has four steps. First, the decision maker is asked to consider the increments in overall effectiveness that would be
represented by shifting, or “swinging,” each individual effectiveness measure from its least preferred value to its
most preferred value. Second, the decision maker is asked to order these overall increments from least important to
most important. Third, the decision maker quantitatively scales these increments on a scale from 0 to 100. Finally
the sum-to-one condition is used to find the value of the least preferred increment.

Let us illustrate this process using the performance part of the Sloat Radar hierarchy. We need to find three
importance weights: wI , wE , and wR. First, suppose that the least preferred under performance are 0 km for range,
0 communication links for interoperability, and no ECCM. This “least-preferred alternative” with 0 km in range,
no communication links, and no ECCM has a value of 0 for performance. The most preferred under performance
are 1000 km for range, 5 communication links, and with ECCM. The decision maker believes that a swing in range
from 0 to 1000 km will contribute most to performance, a swing from no communication links to five links will
contribute second most to performance, and a swing from no ECCM capability to having ECCM capability will
contribute the least to performance. Because range is the most preferred swing, we arbitrarily assign a value of
100 to a hypothetical alternative with 1000 km range, 0 communication links, and no ECCM. We ask the decision
maker for the value of swinging from 0 to 5 communication links relative to the alternative with a value of 100
and the least-preferred alternative with a value of 0. The decision maker may say that a hypothetical alternative
with 0 km range, 5 communication links, and no ECCM has a value of 67. Finally, the decision maker may
conclude that a hypothetical alternative with 0 km range, 0 communication links, and having ECCM capability has
a value of 33 relative to the other alternatives. Thus, we know the un-normalized weights are 100 for range, 67
for interoperability, and 33 for ECCM. Dividing each weight by the sum of the un-normalized weights gives the
importance weight for each attribute: wR = 100/(100 + 67 + 33) = 1/2, wI = 67/(100 + 67 + 33) = 1/3, and
wE = 33/(100 + 67 + 33) = 1/6.

These weights express something very important in effectiveness analysis. When xi is at its least preferred
value, vi(xi) = 0. When it is at its most preferred value vi(xi) = 1. The weights, {wi, 1 ≤ i ≤M}, capture
the relative importance of these changes. The ratio wi/wi′ expresses the relative importance between the changes
from worst to best in the measures xi and xi′ for the ith and i′th attributes.

Swing weighting incorporates three types of preference information: ordinal (rank), relative importance, and
range of variation of the individual effectiveness measures. Pairwise comparison uses rank and relative importance.
The rank sum and rank reciprocal methods only use rank information.

5 EFFECTIVENESS ANALYSIS
The quantification of decision maker preferences completes our model of effectiveness. We can begin assessing
or analyzing the overall effectiveness of each alternative. All the ingredients are present: The objectives hierarchy
tells us what is important and defines the individual measures of effectiveness. The individual value functions tell
us how the decision maker values marginal increments in these measures and scales them to a 0−1 interval. Finally,
the importance weights tell us the relative importance of the individual attributes. The weights are combined with
the values for a single alternative to calculate the overall effectiveness of the jth alternative:

v(j) = w1 · v1(x1(j)) + w2 · v2(x2(j)) + w3 · v3(x3(j)) + · · · =
M∑
i=1

wi · vi(xi(j)). (5)
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Table 2: Evaluation data for Sloat Radar
Alternative Availability Interoperability ECCM Range (km) Cognitive load Ease-of-use

Sloat 2 0.79 2 data links No 250 Low Medium
Sloat 3 0.87 2 data links No 250 Low Medium
SkyRay 0.98 4 data links No 700 Medium Low
Sweeper 0.97 2 data links Yes 500 High Low

The MOE is calculated as the weighted sum of all the individual value functions. Nothing of relevance is left out,
and everything that enters the computation does so according to the preferences of the decision maker.

Evaluating the overall effectiveness of an alternative requires computing its v(j). The result allows us to order
all the alternatives from best to worst according to their MOE. The “best” alternative is now the alternative with
the largest MOE. While this provides us a way to find “the” answer, we have a far more powerful tool at hand.

We can use Eq. (5) to investigate why we get the answers we do. For example, what makes the best alternative
so desirable? What individual effectiveness measures contribute most to its desirability? An alternative may be
the best because of very high effectiveness in only one single measure. This may tell us that we could be “putting
all our eggs in one basket.” If this alternative is still under development, uncertainties about its development may
make this alternative risky, and identifying the second best alternative may be important.

We can also assess the sensitivity of the answer to the importance weights. We can find out how much the
weights must change to give us a different answer. For example, would a change of only 1% in one of the higher
level weights change the ordering of the alternatives? How about a change of 10%? This is of practical significance
because the decision maker assigns weights subjectively, and this always involves a lack of precision.

Most important of all is the ability to assess the effect of uncertainty in the future condition. The decision
maker’s preferences are a function of the future condition. If the decision maker believes the future condition will
change, then the preferences, value function, and weights may change. The effects of uncertainties in the problem
formulation can be readily evaluated once we have our model.

We illustrate each of these situations using the Sloat Radar example. Suppose there are four alternatives: (1)
“do nothing” (keep the two existing radars at Sloat which is labeled as Sloat 2); (2) purchase a third radar for
Sloat of the same type (which is labeled as Sloat 3); (3) purchase the new SkyRay radar; and (4) purchase the
new Sweeper radar. The latter two alternatives are new, with better range, availability, interoperability and ECCM.
These come at the cost of higher cognitive load and less ease-of-use. The costs of procurement for the two new
radars are also higher than purchasing an existing radar. The data on which each of these four alternatives are
depicted in Table 2.

5.1 The Components of Success
The decision maker preferences for the importance weights are wA = 0.60, wP = 0.35, wC = 0.05, wI =
0.50, wE = 0.0, wR = 0.50, wL = 0.50, and wU = 0.50. Individual value functions for availability and range are
specified by value functions similar in shape and form to that portrayed in Figure 4. The individual value function
for interoperability is similar but specified for integer values, 0 − 5. The individual value function for ECCM
capability is binary, taking the value 0 for no ECCM capability and the value 1 for having ECCM capability.
Cognitive load and ease-of-use are evaluated using a constructed scale of three categories: low, medium, and
high. For cognitive load, vL(low) = 1, vL(medium) = 0.5, and vL(high) = 0. For ease-of-use vU (low) = 0,
vU (medium) = 0.5, and vH(high) = 1. Combining these evaluations and preferences gives the values depicted in
Table 3.

Multiplying each of the global weights by the each of the values and adding them together calculates an MOE
for each radar, as pictured in Figure 7. SkyRay is the most effective alternative and we know why. It has the highest
value for interoperability and range. Sweeper is second best because it has the second highest value for range. All
alternatives possess approximately the same availability rating. Interoperability and range are the attributes that
are most important in discriminating among these alternatives.
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Table 3: Values and weights for Sloat Radar
Alternative Availability Interoperability ECCM Range (km) Cognitive load Ease-of-use

Sloat 2 0.962 0.375 0 0.413 1.0 0.5
Sloat 3 0.982 0.375 0 0.413 1.0 0.5
SkyRay 0.998 0.938 0 0.909 0.5 0
Sweeper 0.997 0.375 1 0.774 0 0

Global weights 0.60 0.175 0 0.175 0.025 0.025

Figure 7: Components of overall effectiveness for Sloat Radar

5.2 Sensitivity to Preferences
The original importance weights produce an ordering of alternatives in which SkyRay is most effective, Sweeper
next most effective, followed by Sloat 3 and then Sloat 2. Is this ordering robust to reasonable changes in the
weights? If not, which weights are most influential? Questions like these are answered using the model to recom-
pute the MOE of each alternative with different importance weights.

First let us fix wP = 0.35 and vary both wA and wC over a reasonable range of values subject to the condition
that wA + wP + wC = 1. The result is shown in Figure 8. SkyRay remains the most effective alternative for
the range of weights examined, which means that the most effective alternative is fairly robust to changes in
the importance weights for availability relative to complexity. The ordering of the other alternatives changes if
wA ≤ 0.55 or, correspondingly, when wC ≥ 0.10. As availability becomes less important relative to complexity,
Sweeper becomes the least effective radar, and Sloat 3 becomes the second most effective alternative. When
determining the second most effective alternative, the decision maker needs to ask himself: “How confident am I
that wA > 0.55 when wP = 0.35?”

Attention now focuses on the influence of wP . We repeat the above analysis for wA and wC for different values
of wP . If wP = 0.25, SkyRay remains for the most effective alternative as long as wA ≥ 0.5 and wC ≤ 0.25. As
depicted in Figure 9, if wP = 0.2, Sloat 3 becomes the most effective if wA ≤ 0.55 or wC ≥ 0.25. The question
to ask is: “How likely is it that wA ≤ 0.55, wP ≤ 0.2, and wC ≥ 0.25?” If the decision maker responds that he
will not put that much importance on complexity relative to availability and performance, then SkyRay remains
the most effective alternative.

5.3 Uncertainty in the Future Conditions
A new future condition or planning scenario may change the decision maker’s preferences and consequently, the
ordering of the alternatives. Investigating this type of sensitivity is very important when there is uncertainty in the
future condition. Let us assume the situation described in Section 5.1 and depicted in Figure 7 corresponds to a
particular planning scenario we will call the baseline.
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Figure 8: Sensitivity to wA and wC with wP = 0.35

Figure 9: Sensitivity to wA and wC with wP = 0.2
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Figure 10: Supersonic attack scenario

Figure 11: ECM scenario

Now suppose new intelligence estimates suggest the potential enemy will re-equip its bomber fleet with su-
personic attack aircraft. This new scenario may change decision maker preferences to place more importance on
performance because of the enemy’s increase in capability. For example, the importance weights defining the mea-
sure of overall effectiveness may change to wA = 0.30, wP = 0.65, and wC = 0.05. Furthermore, the importance
weights defining the components of performance could change to wI = 0.25, wE = 0.0, and wR = 0.75. This
preference structure gives the result depicted in Figure 10. The ordering of the alternatives is unchanged and the
picture resembles that in Figure 7. There are differences, however, in the composition of the MOE for each alter-
native. Range plays a more important role, and availability plays a less important role. Nevertheless, the original
ordering of alternatives is robust to this change in the future condition.

Now assume that intelligence reports indicate the potential enemy cannot afford to reequip its bomber fleet with
new aircraft. Instead, they have decided on an avionics upgrade to give the existing bomber fleet radar jamming
capability or electronic counter measures (ECM). Under this future condition the decision maker may still favor
performance over availability, and wA = 0.30, wP = 0.65, and wC = 0.05. ECCM becomes important, and the
weights within performance may change to wI = 0.10, wE = 0.75, and wR = 0.15. The resulting MOE are
depicted in Figure 11. Sweeper is now the most effective alternative for this future condition because it is the only
radar with ECCM capability.
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Figure 12: Alternatives in cost-effectiveness space

6 COST-EFFECTIVENESS
Computing the MOE for each alternative allows the decision maker to order the alternatives from most effective
to least effective. This is only half the story, though, because cost also matters. Ultimately the decision maker
will have to integrate cost information with effectiveness and engage in cost-effectiveness analysis. This section
presents the conceptual elements used in the analysis and outlines the process followed in the analysis.

6.1 Conceptual Framework
The decision maker ultimately pursues two overall objectives when searching for a solution: (1) maximize effec-
tiveness and (2) minimize cost. An alternative j will be evaluated in terms of its MOE, v(j), and its discounted
life-cycle cost, c(j). Drawing a picture of effectiveness and cost on a scatter plot can help us think in these two
dimensions at the same time. Cost is plotted on the horizontal axis, and effectiveness is plotted on the vertical axis.
If the four alternatives in the Sloat Radar example have the following discounted life-cycle costs and MOEs (with
the importance weights from the baseline) in the table below, Figure 12 depicts this information graphically.

Alternative Cost (millions of dollars) Effectiveness (MOE)
Sloat 2 23.9 0.752
Sloat 3 41.6 0.765
SkyRay 63.5 0.934
Sweeper 70.4 0.799

This framework makes it easy for the decision maker to see which alternative is cheapest or most expensive and
which alternative is most effective or least effective. It shows the distance between alternatives—how much more
effective and/or costly is one alternative versus another. Such a picture provides all the information the decision
maker needs to choose the most cost-effective alternative, the exact meaning of which requires understanding the
many ways the solution can be interpreted.

6.2 Solution Concepts
Multiple ways exist to define a solution that minimizes cost and maximizes effectiveness. The solutions are dis-
tinguished from each other based on the amount of additional information required of the decision maker. First,
we present two concepts that do not require any more information from the decision maker. Second, we develop
solution concepts that require a little additional information from the decision maker. Finally, we conclude with
a definition for the most cost-effective solution. This last concept requires eliciting additional decision maker
preference information and is the most demanding.
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Figure 13: Superior or dominant solution

Figure 14: Efficient solution

6.2.1 Superior solution

A superior solution is a feasible alternative that has the lowest cost and the greatest effectiveness. It does not
matter if you are a decision maker who places all emphasis on minimizing cost or a decision maker who places
all emphasis on maximizing effectiveness. Both types of decision makers would select the superior solution if one
exists. Figure 13 illustrates this concept. Alternative 1 is superior to all the others, and it is called the dominant
solution because this alternative is the cheapest and the most effective. We do not need any preference information
beyond that which we have already obtained in order to define effectiveness. No alternatives exist in the “north-
west” quadrant relative to alternative 1 because no alternative is either cheaper or more effective than alternative
1.

6.2.2 Efficient solution

The efficient solution concept builds upon the superior solution concept. An efficient solution is one that is not
dominated by, or inferior to, any other feasible alternative, and an alternative is not efficient because there exists
another alternative that is superior to it. An example of this type of solution is found in Figure 14. Alternatives
4 and 6 are dominated by, or are inferior to, alternatives 3 and 5, respectively. Consequently, alternatives 4 and 6
should not be selected. Alternatives 2, 3, 5, and 7 are all efficient.

This solution concept does not necessarily yield unique answers. If only one efficient solution exists, it is the
superior solution. If more than one efficient solution exist, a set of non-unique solutions or alternatives exists. This
may not be a bad circumstance, however, because the decision maker has flexibility, and several alternatives can
be defended as efficient.
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Figure 15: Satisficing solution

6.2.3 Satisficing solution

A satisficing solution is a feasible solution that is “good enough” in the sense that it exceeds a minimum level
of effectiveness and does not exceed a maximum cost. This solution concept requires the decision maker to
state a desired MOE and a maximum life-cycle cost. An alternative that satisfies both of these requirements
simultaneously is satisfactory. Like the efficient solution concept, the satisficing solution concept often yields
non-unique answers. Figure 15 shows a situation where both alternatives 3 and 5 are satisfactory solutions because
both alternatives are cheaper than the maximum cost (costmax) and more effective than the minimum effectiveness
level (v(j)min). Because both alternatives are satisfactory, a decision maker will need another solution concept to
decide between the two alternatives.

6.2.4 Marginal reasoning solution

If a superior solution does not exist, marginal reasoning may be used to select an alternative. This solution concept
begins with an efficient set of alternatives, such as those from Figure 14, which are reproduced in Figure 16.
Suppose the decision maker is considering alternative 3. Alternatives 2 and 5 are its closest neighbors: alternative
2 is similar in cost and alternative 5 is similar in effectiveness. Two questions can be asked: (1) Is the marginal
increase in cost worth the marginal gain in effectiveness when moving to alternative 5? and (2) Is the marginal
savings in cost worth the marginal decrease in effectiveness when moving to alternative 2? If the decision maker
prefers alternative 5 over alternative 3, the additional cost is worth paying to obtain the additional increase in
effectiveness. If the decision maker prefers alternative 3 to alternative 5, the marginal increase in effectiveness is
not worth the marginal increase in cost. If the decision maker cannot decide between alternative 3 and alternative 5,
the marginal increase in cost is balanced by the marginal increase in effectiveness, or equivalently, the cost savings
just compensate for the decrease in effectiveness. It is a “toss up” between the two.

This reasoning can be applied to each alternative in the efficient set. After all the alternatives have been
considered, the decision maker will arrive at one of two situations: (1) one alternative is identified as the most
preferred alternative; or (2) two or more alternatives are identified as equivalent and, as a group, are more preferred
than than all the rest.

6.2.5 Importance weights for effectiveness and cost

The most formal solution concept asks the decision maker to determine the relative importance of cost to effec-
tiveness. This means there exists in the mind of the decision maker a payoff function that combines the two issues
of concern: (1) maximizing effectiveness and (2) minimizing cost. The first objective is represented by the MOE
v(j). The second objective is a function of the cost measure c(j) and represents a less-is-better preference relation.
The decision maker needs to determine a value function for cost similar to the example given in Section 4.1 where
a value function for the weight of a radio is constructed. The value function for cost vc(c(j)) can be an exponential
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Figure 16: Marginal reasoning solution

function as in Eq. (2) or a linear function as in Eq. (3b) in which less is better. Figure 27 in the Appendix depicts
a linear value function for cost in which cideal = $0 and ctoo much = $90 million.

The payoff function for the cost-effectiveness of the jth alternative is denoted by V (j) and follows a simple
additive form:

V (j) = WE · v(j) +WC · vc(c(j)) (6)

where WE and WC are the importance weights for effectiveness and cost, respectively. Upper case letters dis-
tinguish these weights from those used in defining v(j). WE represents the importance to the decision maker of
maximizing effectiveness and WC represents importance to the decision maker of minimizing cost. The weights
must satisfy 0 ≤ WE ≤ 1, 0 ≤ WC ≤ 1, and WE + WC = 1. The relative importance of these two conflicting
objectives is captured by the ratio WC/WE .

Eq. (6) represents the preferences of a rational decision maker. When confronted by a choice between two
alternatives equal in effectiveness, the decision maker will choose the less expensive alternative because vc(c(j))
decreases as the cost c(j) increases. Similarly, when confronted by a choice between two alternatives equal in cost,
the decision maker will choose the alternative with the greater MOE because v(j) is greater for the alternative that
is more effective.

The overall cost-effectiveness function V (j) defines a preference structure that allows us to develop valuable
insights. We can see this graphically by rearranging the cost-effectiveness function and drawing a straight line to
represent V (j) on the cost-effectiveness graph. Express v(j) as a function of V (j) and c(j):

v(j) =
1

WE
V (j)− WC

WE
· vc(c(j)).

For simplicity, we assume a linear individual value function—see Eq. (3b)—for vc(c(j)) in which less is better. If
we assume cideal = 0, then vc(c(j)) = [c(j) − ctoo much]/[−ctoo much] = 1 − k · c(j) where k = 1/ctoo much. For a
fixed value of V (j), we see that v(j) is a linear function of c(j):

v(j) =
1

WE
V (j)− WC

WE
· [1− k · c(j)]

=
1

WE
V (j)− WC

WE
+

WC

WE
· k · c(j).

This is the equation for a straight line when we interpret c(j) as the independent variable and v(j) as the dependent
variable. The intercept for the line is given by V (j)/WE−WC/WE and the slope is given by k·WC/WE . This line
represents all combinations of cost and effectiveness corresponding to a given level of overall cost-effectiveness,
V (j). As V (j) increases (for example, V ∗∗ > V ∗ in Figure 17), this “isoquant” line shifts up and to the left.
As we move closer to the northwest corner of the cost-effectiveness plot, we move to greater levels of overall
cost-effectiveness.

Suppose the decision maker is much more interested in minimizing cost than maximizing effectiveness. This
decision maker would select weights where WC >> WE . The slope of the lines representing constant overall
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Figure 17: Cost-effectiveness linear preference

Figure 18: WC >> WE

cost-effectiveness would be very steep. This situation is depicted in Figure 18. Alternative 3 is the best in this
situation because it lies on the highest achievable isoquant of cost-effectiveness. A decision maker who places
more emphasis on maximizing effectiveness would choose weights that result in less steep lines of constant overall
cost effectiveness, which could yield a picture like Figure 19. Now alternative 5 is the most cost-effective. Finally,
consider a decision maker who places considerable importance on the maximization of effectiveness, which implies
that WE >> WC . The slope of the lines is very small resulting in nearly flat isoquants of cost-effectiveness as in
Figure 20. Alternative 7 is now the most cost-effective alternative.

The above three cases illustrate the importance of the efficient set, and the most cost-effective alternative is
selected from the set of efficient alternatives. The most cost-effective depends on the decision maker preferences
for cost reduction versus effectiveness maximization. The answer to the decision problem requires elicitation of
decision maker preferences—we do not know what we mean by “cost-effectiveness” until we incorporate decision
maker preferences over cost and effectiveness.

6.3 Cost-effectiveness for Sloat Radar
Figure 12 shows no superior solution exists among the four alternatives of the Sloat Radar problem and Sweeper is
dominated by SkyRay. The efficient set is composed of Sloat 2 (the “do nothing” alternative), Sloat 3 (purchase a
third radar of the type already installed), and SkyRay. The question is which of the three non-dominated alternatives
in the efficient set is most cost-effective? The answer cannot be given until we solicit additional preferences from
the decision maker.

A marginal reasoning solution may begin with Sloat 2 and ask the decision maker whether he is willing to
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Figure 19: WE > WC

Figure 20: WE >> WC
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Figure 21: Cost-effectiveness: WC/WE = 1.0

spend an additional $17.7 million to achieve an increase in 0.013 in effectiveness (the difference in MOEs between
Sloat 3 and Sloat 2). The increase in effectiveness occurs because Sloat 3 is available more frequently than Sloat 2.
If the decision maker responds that he is unwilling to spend the extra money for a small increase in effectiveness,
we can ask him if he is willing to spend an additional $39.6 million to achieve an increase in 0.182 in effectiveness
(the difference in MOEs between SkyRay and Sloat 2). SkyRay is more effective than Sloat 2 because it has more
range, is available more often, and has greater interoperability. Framing the questions in this manner can help the
decision maker understand precisely what additional capability he is getting for an increased cost.

The more formal manner of answering which alternative is the most cost-effective requires elicitation of the
final set of importance weights, WC and WE . Suppose the decision maker believes cost and effectiveness are
equally important. These preferences translates to WC/WE = 1.0 resulting in the picture given in Figure 21. The
decision maker would select the “do nothing” alternative because at least one isoquant line lies to the right of Sloat
2 and to the left of Sloat 3 and SkyRay.

If the decision maker believes maximizing effectiveness is twice as important as minimizing cost, WC/WE =
0.5, which results in the picture given in Figure 22. Sloat 2 is still most cost-effective because at least one isoquant
line separates Sloat 2 from Sloat 3 and SkyRay. If the decision maker believes maximizing effectiveness is four
times more important than cost reduction, WC/WE = 0.25. These preferences give the picture shown in Figure
23. SkyRay is the most cost-effective because at least one isoquant line lies below SkyRay and above Sloat 2 and
Sloat 3.

This method also can serve to find the ratio between WC and WE which would make the decision maker
indifferent between two alternatives. For example, when WC/WE = 1/3 we obtain the situation in Figure 24.
Here Sloat 2 and SkyRay are almost of equal cost-effectiveness. The analysis of cost-effectiveness afforded by the
model reduces the management question to one of asking the decision maker: “Do you feel that effectiveness is
more than three times as important as cost?” If the answer is yes, SkyRay should be selected. If the answer is no
then do nothing (Sloat 2) is the best alternative. The model helps to focus attention on critical information.

Now that we have found the critical value of WC/WE ' 1/3, it is of interest to consider the effects of
uncertainty in the future condition. Two other planning scenarios besides the baseline were considered during the
MOE discussion. If the supersonic attack scenario is highly likely, then we use different weights in the definition
of effectiveness. The v(j) values change for all alternatives and Figure 25 shows SkyRay is the most cost-effective
if WC/WE ≤ 0.57. The decision maker should be asked: “Is effectiveness more than 1.75 times as important
than cost?” If he answers yes, SkyRay is the best alternative. The ECM planning scenario changes the importance
weights in effectiveness, and the resulting cost-effectiveness is shown in Figure 26. If WC/WE = 1/3, Sweeper is
the best alternative. Under this scenario, Sweeper remains the best alternative as long as the decision maker values
effectiveness at least 1.4 times as much as cost, or WC/WE ≤ 0.74.
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Figure 22: Cost-effectiveness: WC/WE = 0.5

Figure 23: Cost-effectiveness: WC/WE = 0.25

Figure 24: Cost-effectiveness: WC/WE = 0.33
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Figure 25: Cost-effectiveness for supersonic attack scenario: WC/WE = 0.57

Figure 26: Cost-effectiveness for ECM scenario: WC/WE = 0.74
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7 SUMMARY
Multiple objective decision problems arise very frequently. Their solution requires the decision maker to first
determine what really matters and list the issues or consequences of concern. This process of discovery should be
pursued through the construction of an objectives hierarchy. It is the single most important step towards a solution.
Without doing this we run the risk of not knowing “what is the real problem” and of not asking “the right question.”

The lowest levels of the hierarchy define the individual measures of effectiveness. These are the natural,
constructed, or proxy measurement scales by which we begin to quantify the effectiveness of an alternative. The
proper integration of these measures into a single MOE requires quantification of decision maker preferences. First
we need to know decision maker preferences over marginal changes in the individual effectiveness measures—the
answer to “How much is enough?” These changes can represent increases (when more is better) or decreases (when
less is better). This information allows us to convert the individual effectiveness measures into individual value
measures on a 0− 1 scale. Second we need to know decision maker preferences across the individual measures—
the answer to “How important is it?” This information allows us to combine the individual scaling functions using
a weighted sum defined by the importance weights.

Next, we combine the resulting MOE with the discounted life-cycle cost. This provides all the information
needed to conduct the analysis of cost-effectiveness. Viewing things in a two-dimensional framework expedites
thinking about the solution by allowing visual inspection and making use of humans’ ability at pattern recogni-
tion. In this framework, five solution concepts apply: (1) the superior solution, (2) the efficient solution, (3) the
satisficing solution, (4) marginal reasoning, and (5) weighting cost versus effectiveness. The first concept should
always be sought, and a superior solution (if one exists) is the best alternative regardless of the preferences for
cost reduction versus effectiveness maximization. The efficient solution and the satisficing solution often yield
non-unique answers and gives the decision maker flexibility over which alternative to select. The set of efficient
solutions is intrinsically important because because the most cost-effective alternative will come from this set. Se-
lecting the most cost-effective alternative requires eliciting additional decision maker preferences. We must know
the decision maker’s preferences over cost minimization and effectiveness maximization before determining the
most cost-effective alternative.

APPENDIX: Individual Value Functions
There are many functions for describing decision maker preferences over marginal changes in a single effectiveness
measure. The exponential function provides a good approximation to many preferences:

vi(zi) =
1− e−azi

K

where either
zi = xi − xmin

(the more-is-better case) or
zi = xmax − xi

(the less-is-better case) and K = 1 − e−a[xmax−xmin] is a constant that standardizes the range of variation so
0 ≤ vi(zi) ≤ 1.

This function is flexible enough to include the linear value function. It can be shown using calculus that, in the
limit as a→ 0, this function becomes

vi(zi) =
zi

xmax − xmin
.

This describes a decision maker who places equal value on marginal changes of equal amounts. For example, let
a = 0.001, xmin = 0 and xmax = $90 million. We obtain the function pictured in Figure 27. This represents a
decision maker who values a $10 million cost savings the same, no matter if it is a reduction in cost from $90 to
$80 million or from $70 to $60 million.

This exponential form can be expanded to include a quadratic term,

vi(zi) =
1− e−azi−b1z

2
i

K1
,
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Figure 27: Linear value function for cost

or a cubic term,

vi(zi) =
1− e−azi−b1z

2
i−b2z

3
i

K2
,

where K1 = 1 − e−a[xmax−xmin]−b1[xmax−xmin]
2

and K2 = 1 − e−a[xmax−xmin]−b1[xmax−xmin]
2−b2[xmax−xmin]

3

.
The quadratic form with a = 0 allows value functions with an “S-shape” to be represented. The cubic form with
a = b = 0 permits us to incorporate value functions that appear almost like “step” functions.

Higher order terms can be specified but in practice are almost never needed. The additional terms permit a
wider range of preference behavior to be modeled but are hardly ever worth the increased complexity.

29


