
A Bayesian beta kernel model for binary classification
and online learning problems

Cameron A. MacKenziea, Theodore B. Trafalisb, Kash Barkerb

This is the Author’s Accepted Manuscript of an article that has been published in Statistical
Analysis and Data Mining, volume 7, issue 6, pages 434-449, 2014. The final version is

available online at http://dx.doi.org/10.1002/sam.11241

aDefense Resources Management Institute, Naval Postgraduate School, Monterey, CA 93943
bSchool of Industrial and Systems Engineering, University of Oklahoma, Norman, OK

73019

Abstract

Recent advances in data mining have integrated kernel functions with Bayesian

probabilistic analysis of Gaussian distributions. These machine learning ap-

proaches can incorporate prior information with new data to calculate proba-

bilistic rather than deterministic values for unknown parameters. This paper

extensively analyzes a specific Bayesian kernel model that uses a kernel func-

tion to calculate a posterior beta distribution that is conjugate to the prior beta

distribution. Numerical testing of the beta kernel model on several benchmark

data sets reveals that this model’s accuracy is comparable with those of the

support vector machine, relevance vector machine, naive Bayes, and logistic re-

gression, and the model runs more quickly than all the other algorithms except

for logistic regression. When one class occurs much more frequently than the

other class, the beta kernel model often outperforms other strategies to handle

imbalanced data sets, including under-sampling, over-sampling, and the Syn-

thetic Minority Over-Sampling Technique. If data arrive sequentially over time,

the beta kernel model easily and quickly updates the probability distribution,

and this model is more accurate than an incremental support vector machine

algorithm for online learning.
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1. Introduction

Since advances in the mid-1990s, kernel-based approaches to machine learn-

ing and pattern recognition have revolutionized the field of data mining (Shawe-

Taylor and Cristianini 2004). Kernel functions map input data to a higher di-

mensional space, called the feature space, where the dot product between two

vectors in the feature space is replaced by a kernel function. This approach

enables algorithms designed to detect linear relationships in data, such as sup-

port vector machines (SVM) and least-squares regression, to detect non-linear

relationships and patterns through their use on the feature space (Cristianini

and Shawe-Taylor 2000; Hastie et al. 2001; Schölkopf and Smola 2002).

More recently, kernel functions have been integrated with Bayesian analysis

to produce a new subset of machine learning tools that produce probabilistic

rather than deterministic solutions. Probabilistic outcomes can better express

uncertainty in underlying data relative to deterministic outcomes. Most pre-

vious Bayesian kernel models, such as the relevance vector machine (RVM),

have assumed Gaussian prior distributions over model parameters (Seeger 2000;

Tipping 2001; Schölkopf and Smola 2002; Bishop and Tipping 2003). Different

approaches, such as assuming the mean and variance of the Gaussian distri-

bution are randomly chosen from other distributions, have been deployed to

increase the flexibility and accuracy of the Gaussian kernel model (Figueiredo

2002; Mallick et al. 2005; Zhang et al. 2011). These approaches carry additional

computational complexities and generally require simulation algorithms such as

Markov Chain Monte Carlo to solve for the optimal parameters.

At least two issues can pose challenges to kernel-based binary classifiers,

including the Gaussian Bayesian models. First, imbalanced data sets, where

one class appears much more frequently than another class, create difficulties for

many machine learning algorithms because the classifiers tend to classify almost

all of the unknown data points in the class that occurs most frequently. Second,

most classifiers are designed to process data in a single batch, and a classifier may

have difficulty in incrementally updating if data arrive sequentially. Although
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Bayesian models can typically use new information to update a probability

distribution, the complexity of Gaussian kernel models limits their ability to

update quickly.

A Bayesian kernel model using the beta rather than the normal distribu-

tion can potentially address both of these challenges. The beta kernel model

appears to have been first presented by Montesano and Lopes (2009) in order

to predict a robot’s ability to grasp objects. The authors used empirical proba-

bilities calculated from previous experiments with the robot to update the beta

distribution. Although the beta kernel model was developed specifically for this

robotic application, we believe the model deserves a fuller exploration. This

paper analyzes the beta kernel model for a wider range of binary classification

problems where empirical probabilities are unavailable, the data are heavily im-

balanced, and data arrive incrementally. Additionally, the beta kernel model

does not require solutions to optimization problems such as the SVM or RVM,

which makes the beta kernel model extremely fast to calculate.

This paper offers several unique contributions to analyze whether beta kernel

models should become part of the machine learning toolkit for binary classifica-

tion problems. We explicitly relate the beta kernel model to the beta-binomial

Bayesian model and discuss how to select parameters for the prior distribution.

We generalize the beta kernel model to a Dirichlet kernel model that could be

used for multiclass classification problems. This paper also explores the similar-

ities of the beta kernel and the well-known Parzen (1962) window classifier and

discusses how the beta kernel model can overcome some of the difficulties with

the Parzen window. Our inclusion of weighting parameters with the likelihood

function in the beta kernel model or beginning with a non-uniform prior distri-

bution increases the predictive accuracy for imbalanced data sets. Finally, the

posterior probabilities from the model can act as prior probabilities to incorpo-

rate additional information, making the model useful for online or incremental

learning.

Section 2 focuses on binary classification problems. We review the existing

Gaussian kernel models such as the RVM and the beta kernel model presented
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by Montesano and Lopes (2009). The model can be extended to imbalanced

data sets through the addition of weighting parameters or a non-uniform prior.

Section 3 extensively tests the beta kernel model, the RVM, and the SVM

for standard binary classification problems, heavily imbalanced data sets, and

online learning. Tests on imbalanced data sets include additional algorithms

such as under-sampling and over-sampling in combination with the RVM and

SVM.

2. Bayesian models

Binary classification machine learning tools seek to assign an unknown data

point y either to the negative class, y = −1, or to the positive class, y = 1.

The assignment is based on the input data x, a vector with d components,

where each component is an attribute. Rather than assigning y to either the

positive or negative class, Bayesian binary classification models calculate the

probability that y belongs to each class given x. Because most Bayesian kernel

models assume Gaussian prior distributions, we first present the basic Gaussian

kernel model and the popular RVM (a variation of the basic model) and next

the beta kernel model.

2.1. Gaussian kernel model

Gaussian Bayesian kernel models assume a function t maps the input data

x to a target value that corresponds to an output y, where y ∈ {−1,+1}. The

range of t(x) is the set of all real numbers, and the logit function maps t(x) to

a probability that y = 1.

P (y = 1|t(x)) =
1

1 + exp(−t(x))
(1)

If the m× d data matrix X has m rows (observed data points) each with d

attributes, the function t(X) can be thought of as a random vector of length m.

The Gaussian model assumes that t follows a multivariate normal distribution

where E[t] = 0 and Cov(t) = K (Schölkopf and Smola 2002). The matrix K is
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positive definite where Kij is the kernel function k(xi,xj) between the ith and

jth data points.

P (t) =
1√

(2π)m
(det K)−1/2exp

(
−1

2
tTK−1t

)
(2)

Calculating the inverse of K is computationally expensive, and a new vector

ω of length m is introduced such that t(xi) =
∑m
j=1 k(xi,xj)ωj = k(xi,X)ω

(Schölkopf and Smola 2002). The prior probability function for ω is also a

multivariate normal distribution but eliminates the need to take the inverse of

K.

P (ω) =
1√

(2π)m
(det K)−1/2exp

(
−1

2
ωTKω

)
(3)

Because 1√
(2π)m

(det K)−1/2 does not depend on ω, the prior can be written

without this constant. With the likelihood from (1) and the prior from (3), the

posterior becomes a function of ω and the observed output values y.

P (ω|y) ∝
m∏
i=1

[
1

1 + exp(−k(xi,X)ω)

]0.5+0.5yi [ 1

1 + exp(k(xi,X)ω)

]0.5−0.5yi
exp

(
−1

2
ωTKω

)
(4)

Most solution methods seek to maximize the posterior or equivalently, to mini-

mize the negative of the log of the posterior (Schölkopf and Smola, 2002). The

Newton-Raphson method can be used to find ω that maximizes the posterior

probability in (4). The posterior probability is identical to the objective function

in non-Bayesian kernel logistic regression, which can be solved quickly using a

truncated Newton method (Maalouf and Trafalis 2008).

An alternative to the logit link function in (1) is the probit model, which

generally assumes that the sign of t(x) determines the class of y, except for

Gaussian noise. If y = sgn (t (x + ξ)) where ξ ∼ N (0, σ), then P (y = 1|t(x)) =

Φ (yt(x)/σ ) where Φ (·) is the standard normal cumulative distribution (Schölkopf
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and Smola 2002). Figueiredo (2002) uses the probit model to build a hierarchi-

cal Bayesian kernel model where most of the weights—which play a role similar

to ω in (3)—are 0.

2.2. Relevance vector machine

Although several variations on the Gaussian Bayesian kernel model exist

(e.g., Figueiredo 2002; Mallick et al. 2005; Zhang et al. 2011), the most pop-

ular extension of this model is perhaps the RVM. The RVM seeks to combine

the sparsity aspects of the SVM with the probabilistic advantages of Bayesian

methods (Tipping 2001; Bishop and Tipping 2003). The SVM assigns non-zero

weights to only a small fraction of the total number of data points, and the

RVM seeks to find a similarly sparse set.

The RVM has the same logit likelihood function as in (1); however, the prior

on ω becomes a function of a hyperparameter s, where each sj is the inverse of

the variance of ωj (Tipping 2001). The conditional probability density function

of ω given s is expressed in (5) where S =diag(s) (Bishop and Tipping 2003).

P (ω|s) =
1√

(2π)m
(detS)

1/2
exp

(
−1

2
ωTSω

)
(5)

Traditionally, each sj ≥ 0 is assumed to be drawn from the same gamma distri-

bution as given in (6) where Γ(·) is the gamma function.

P (sj) =
ba

Γ(a)
sa−1j e−bsj (6)

The shape and scale parameters, a and b, respectively, are usually set close to

0 to ensure a flat or non-informative prior over ω. If a → 0 and b → 0, the

gamma distribution becomes degenerate such that si = 0 in the limit, which

implies infinite variance for ωi (Schölkopf and Smola 2002).

The RVM algorithm (Tipping and Faul 2003) begins by selecting the data

point that maximizes the posterior probability, and it sequentially adds addi-

tional data points until the posterior probability begins to converge to a value.

Because E[ωi] = 0, only a few ωi’s are non-zero. Testing the RVM on sev-
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eral databases reveals that approximately 10% of the ωi’s are non-zero and the

RVM’s error rate is comparable to that of the SVM (Tipping 2001; Bishop and

Tipping 2003). The RVM has been applied to a wide variety of problems such

as analyzing remote sensor data (Foody 2008), forecasting stock indices (Huang

and Wu 2008), and estimating battery reliability (Saha et al. 2009).

The Gaussian distribution enables analytically tractable solutions, and the

RVM delivers sparse solutions. As justification for a normal distribution over

the prior, each target value ti is a linear-weighted sum of a multivariate random

vector ω where ω∼ N(0,K−1) for the basic Gaussian kernel model and ω∼

N(0,S−1) in the RVM. Thus, each ti also follows a normal distribution.

2.3. Beta kernel model

Alternatively, the beta distribution can serve as a prior distribution for

Bayesian models. The beta distribution is a natural model for binary out-

comes because the distribution’s two parameters can represent the number of

times each outcome has occurred or is expected to occur (Gupta and Nadarajah

2004), and the distribution provides the probability distribution of a parameter

θ ∈ [0, 1] where θ = P (y = 1) and 1 − θ = P (y = −1). We begin the develop-

ment of the beta distribution as a prior distribution for classification problems

by examining the model as applied to predict a robot’s ability to grasp objects.

Generalizing this model and adding weighting parameters enables us to apply

this model to a broad spectrum of binary classification problems.

The beta distribution can model a Bernoulli process where α is the number

of successes and β is the number of failures. If the prior on θ follows a beta

distribution with prior parameters α and β and the Bernoulli process results

in r successes out of m trials, which implies a binomial likelihood function, the

posterior distribution over θ also follows a beta distribution.

θ|r ∼ beta(α+ r, β +m− r) (7)

The beta distribution is known as a conjugate prior because the posterior is also

a beta distribution.
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Montesano and Lopes (2009) and Mason and Lopes (2011) exploit the beta-

binomial relationship by adapting it to a data mining problem that slightly

differs from the binary classification problem we have been discussing. In their

problem, each xj has Nj trials, with Rj positive classifications and Uj negative

classifications, where Rj + Uj = Nj . An empirical probability of a positive

classification yj = 1 exists for each data point, θ̂j = Rj/Nj .

For a data point xi whose empirical probability is unobserved or unknown,

the kernel function, k(xi,xj), serves as a measure of similarity between xi and

xj . In this manner, the kernel function can be used to estimate the posterior

distribution for θi based on the observed Rj and Uj for m data points.

θi|Rj , Uj ∼ beta

α+

m∑
j=1

k (xi,xj)Rj , β +

m∑
j=1

k (xi,xj)Uj

 (8)

The most likely estimate θ̄i = E [P (yi = 1)] is the expected value of the beta

posterior distribution.

θ̄i =
α+

∑m
j=1 k (xi,xj)Rj

α+
∑m
j=1 k (xi,xj)Rj + β +

∑m
j=1 k (xi,xj)Uj

(9)

An optimization algorithm selects parameters for the kernel function by

minimizing the squared difference between the θ̄j as calculated by (9) and the

empirical probability θ̂j for a training set (Montesano and Lopes, 2009). This

Bayesian kernel regression allows the authors to measure a robot’s ability to

grasp different objects (which have a set of features) and then use those results

to estimate the probability that a robot will grasp a different object that has

not been empirically measured.

Empirical probabilities are generally not available for binary classification

problems because each data point xj often has a single trial rather than multiple

trials, i.e., Nj = 1 for all j = 1, . . . ,m. Another potential problem that plagues

many binary classifiers is inaccurate classifications if the two classes do not

contain the same number of data points (King and Zheng 2001; Wang et al.

2010; Maalouf and Trafalis 2011). Many machine learning tools label too many
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points in the class that occurs most frequently. We resolve this problem of

imbalanced data sets by including weighting parameters m−/m and m+/m ,

where m− and m+ are the number of negative and positive labels, respectively,

in the training set.

θi|y ∼ beta

α+
m−
m

∑
{j|yj=1}

k(xi,xj), β +
m+

m

∑
{j|yj=−1}

k(xi,xj)

 (10)

These weighting parameters balance the likelihood function so that the posterior

probability moves to whichever class is closest to xi in the feature space. These

parameters follow typical cost penalties or weights for the SVM (Morik et al.

1999; Wang and Japkowicz 2008). In a weighted SVM, the ratio of misclassifi-

cation in the positive class to misclassification in the negative class weight often

is m−/m+ .

As a Bayesian formulation, (10) calculates a probability distribution over

θi = P (yi = 1) based on a set of known data points. The parameters of the beta

distribution are updated for θi so that αi = α + (m−/m )
∑
{j|yj=1} k(xi,xj)

and βi = β+(m+/m )
∑
{j|yj=−1} k(xi,xj). The expected value of the posterior

distribution θ̄i = αi/(αi + βi) can be used for making predictions.

This beta kernel model can be generalized to multiclass classification prob-

lems by deploying a Dirichlet distribution. The Dirichlet distribution describes

the probability of N discrete outcomes. Given a Dirichlet prior with prior pa-

rameters α1, α2, . . . , αN , the weighted kernel approach in (11) derives the pos-

terior probability for θi, which also follows a Dirichlet distribution. The weight

to update αn is given by m−n/m , the fraction of points not in the nth class

where n = 1, 2, . . . , N .

θi|y ∼ Dir

α1 +
m−1
m

∑
{j|yj=1}

k(xi,xj), . . . , αN +
m−N
m

∑
{j|yj=N}

k(xi,xj)


(11)
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The expected probability that an unknown data point yi belongs to the nth

class is given by E [θi,n] = αi,n/αi,0 where αi,n = αn+(m−n/m )
∑
{j|yj=n} k(xi,xj)

and αi,0 =
∑N
l=1 αi,l. The posterior marginal distribution for each θi,n follows

a beta distribution where θi,n ∼ beta (αi,n, αi,0 − αi,n).

This paper focuses on the specific case of the beta distribution and binary

classification problems and examines numerical results for the beta kernel model.

Future research can test the more general Dirichlet kernel model for multiclass

classification problems.

We have previously been assuming that the prior α and β are given, and

neither Montesano and Lopes (2009) nor Mason and Lopes (2011) devote much

discussion to selecting prior distributions. If nothing is known a priori about

the probability of a positive or negative class, choosing a uniform prior where

α = 1 and β = 1 may be the best. However, many situations arise where the

overall probability of an event may be estimated based on past experience or

data. For example, if the data mining problem is to predict breast cancer in

women age 40 to 49, we might know that a randomly selected female in her 40s

has a 2% chance of being diagnosed with breast cancer. The prior distribution

can reflect that knowledge through the prior mean α/(α+ β) = 0.02.

Data from the training set can be used to generate a prior distribution.

The parameters α and β can be selected so that the mean equals the fraction

of positively classified data points in the training set m+/m and so that the

variance of the prior αβ
/[

(α+ β)
2

(α+ β + 1)
]

matches the variance in the

training set. An empirical Bayes method estimates α and β by maximizing the

log-likelihood of the beta distribution. The Jeffreys prior where α = 0.5 and

β = 0.5 has modes at the two ends of the distribution 0 and 1, but if a large

number of data points exist in the training set (e.g., m > 20), the posterior

distribution from a Jeffreys prior will closely resemble the posterior from a

uniform prior. (Carlin and Louis 2008 present a helpful discussion on selecting

priors for Bayesian analysis.)

The prior may also influence if the weighting parameters, m−/m and m+/m ,

are used. Probabilistic data mining models often include a threshold probability
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that divides the positive and negative classes. With a uniform prior, if the ex-

pected value of the posterior distribution is greater than 0.5, the unknown point

should be positively classified. The weighting parameters help ensure that this

classification is due to the unknown data point’s similarity with the known data

as opposed to one class being more numerous than the other class. Including

weights is not appropriate with a non-uniform prior distribution, however, be-

cause the weights would generate a posterior whose expectation is too close to

the class with fewer data points. If a non-uniform prior is used, no weighting

parameters are necessary. Instead, the expectation of the prior distribution can

be used as the threshold probability so that if the expectation of the poste-

rior is greater than the expectation of the prior, the point should be positively

classified. Choosing between a uniform prior with weighting parameters and a

non-uniform prior without weighting parameters can result in the same classifi-

cation scheme, as the follow proposition illustrates.

Proposition 1. The following classification rules are equivalent.

1. Given a uniform prior where α = 1 and β = 1 and the weights as depicted

in (10), an unknown point yi should be positively classified if θ̄i > 0.5 and

negatively classified if θ̄i < 0.5.

2. Given a non-uniform prior where α/(α+ β) = m+/m and if weights

are not deployed to update θi, an unknown point yi should be positively

classified if θ̄i > m+/m and negatively classified if θ̄i < m+/m .

Proof. See Appendix.

Although a uniform prior and weights will generate different posterior proba-

bilities than a non-uniform prior without weights, the final classification schemes

will be the same if the expected value of the non-uniform prior equals m+/m .

The beta kernel model closely resembles the Parzen (1962) window classifier,

which classifies an unknown data point based on whether it is closer in the fea-

ture space to the mean of the positive or negative class. An unknown data point

yi is positively classified if
∑
{j|yj=1} k(xi,xj)

/
m+ >

∑
{j|yj=−1} k(xi,xj)

/
m− .
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An alternative interpretation of the Parzen window is that the unknown data

point is labeled according to whether the probability is greater for the positive

or negative class (Chapelle 2005). The probability that yi is in the positive class

is
∑
{j|yj=1} k(xi,xj)

/∑m
j=1 k(xi,xj) . The Parzen window probability echoes

the expectation of an unweighted posterior beta distribution.

A problem with using the Parzen window probability and the expectation of

the beta posterior distribution occurs when a point xi is far away in the feature

space from both positively and negatively classified points. If the point is slightly

closer to the positive class, the Parzen window and the expectation of the beta

distribution will likely calculate a high probability that yi = 1 (Chapelle 2005).

In the Bayesian model, the posterior’s variance can express uncertainty in the

classifier. If xi is dissimilar to the known points, both
∑
{j|yj=1} k(xi,xj) and∑

{j|yj=−1} k(xi,xj) should be close to zero, which implies the variance of the

posterior distribution P (yi|y) will be large, assuming α and β are relatively

small. Although the posterior distribution’s expectation may be high, the large

variance would indicate a significant likelihood that the unknown point should

be negatively classified.

3. Numerical results

3.1. Binary classification for the beta kernel, RVM, and SVM

We test the beta kernel model on several data sets and compare the results to

the RVM, the traditional soft-margin SVM (Cristianini and Shawe-Taylor 2000;

Shawe-Taylor and Cristianini 2004), a weighted soft-margin SVM (Chew et al.

2001), the naive Bayes algorithm, and logistic regression. The SVM is a kernel-

based linear classifier that uses a relatively small number of vectors to create

a boundary between the classes in the feature space. The soft-margin SVM

assigns a cost parameter for misclassifications. In the weighted SVM, we assign

a different cost for the misclassification of each class: Cm−/m for the positive

class and Cm+/m for the negative class where C is a constant cost parameter to

be optimized. We use LIBSVM 3.0 (Chang and Ling 2001) for the SVM models
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and the code developed by Tipping (2009) for the RVM. The classification rule

for the beta kernel model follows Proposition 1. Matlab (2012) provides a naive

Bayes classification algorithm that uses a kernel smoothing density estimate

based on a normal distribution. The logistic regression algorithm is a non-kernel

generalized linear regression model with a logit link function that positively

labels an unknown data point if the calculated probability exceeds the fraction

of positively classified data points in the training set.

Table 1 shows characteristics of the ten data sets used for comparing among

the different classifiers. The Parkinson data set contains biomedical voice mea-

surements that correspond to individuals with Parkinson’s disease and those

without the disease (Little et al. 2009). Haberman’s survival database con-

sists of patients who survived or died after undergoing surgery for breast cancer

(Haberman 1976). The satellite data set contains spectral values for pixels in or-

der to classify land images as red or gray soil. The arcene data contain patients

with ovarian or prostrate cancer and healthy patients, where the attributes are

mass-spectrometry features (Guyon et al. 2004). The spam database is a collec-

tion of emails classified as either spam or not spam, and the attributes consist

of frequency counts of words and characters. The adult data consist of census

information from the U.S. 1994 census to predict whether or not an individual

earns more or less than $50,000 (Kohavi 1996). The transfusion data set con-

tains blood donor attributes to predict whether or not an individual donated

blood in a specific month (Yeh et al. 2008). The breast cancer data use im-

age characteristics of breast mass to predict if women will have a recurrence of

breast cancer within two years of treatment (Street et al. 1995). These eight

data sets can be downloaded from the University of California-Irvine Machine

Learning Repository (Bache and Lichman 2013). The colon cancer data consists

of gene expressions that either come from a tumor biopsy or a healthy biopsy,

and this data derives from the Princeton University Gene Expression Project

(Alon et al., 1999). Finally, the tornado database contains weather character-

istics corresponding to a tornado or no tornado as collected by the National

Weather Center at the University of Oklahoma (Trafalis et al. 2007).
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Table 1: Binary classification data sets

Data set
Percentage of Number

of
attributes

Training
set
size

Tuning
set
size

Testing
set
size

positively
labeled points

Parkinson 75 22 98 39 58
Haberman’s survival 74 3 153 61 92
Satellite 53 36 509 203 305
Arcene 44 9,961 100 40 60
Spam 39 57 230 92 138
Colon cancer 35 2,000 31 12 19
Adult 24 13 799 320 480
Transfusion 24 4 374 150 224
Breast cancer 20 32 69 28 41
Tornado 7 83 541 216 325

With one exception, the radial basis function (RBF) is used as the kernel

function throughout this paper, where σ > 0 is tuned to optimize each classifier.

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(12)

The RBF is perhaps the most popular kernel function because the image of the

function lies between zero and one and the kernel matrix has full rank (Schölkopf

and Smola 2002).

The polynomial kernel has performed well in classifying text and spam data

(Kudo and Matsumoto 2003; Moon et al. 2004). In addition to the RBF, we

use the polynomial kernel on the spam data set for the beta kernel, RVM, and

SVM algorithms. The polynomial kernel has two parameters: the degree of the

polynomial function p > 0 and a constant parameter κ > 0.

k(xi,xj) = (xᵀ
i xj + κ)

p
(13)

Each of the ten data sets is divided into a training, tuning, and testing

set. The training set comprises 50% of each data set, the tuning set 20%, and

the testing set 30%. In each individual trial, σ in the RBF or p and κ in the

polynomial kernel (as well as the cost parameter C in the SVM) is selected that
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achieves the highest accuracy score in the tuning set. (The accuracy score is

described in the next paragraph.) The training and tuning set are combined to

retrain the classifier using the optimal σ or p and κ (and C) and test it on the

testing set.

We repeat this procedure 200 times for each classifier, randomly selecting

the training, tuning, and testing set for each trial. Table 2 displays the mean

performance for the true positive (TP) rate, the true negative (TN) rate, and

the accuracy score where Acc =
√

TP ∗ TN is the geometric mean (Kubat et

al. 1997). The geometric mean explicitly penalizes a classifying algorithm

that performs badly in classifying one of the classes. The receiver operating

characteristic (ROC) curve can judge the performance of probabilistic classifiers

such as the beta kernel and RVM and can be extended to include deterministic

classifiers such as the SVM. We also calculate the area under the ROC curve

(AUC) for each of the six classifiers for each of the 200 runs.

The results show that the beta kernel model performs comparably to the

other data mining algorithms for these ten data sets. The beta kernel model

has the highest average accuracy for five of the eleven data trials. (The spam

data set is tested twice, once with the RBF kernel and once with the polynomial

kernel.) Because we are making multiple comparisons of mean accuracy levels

where the sample sizes are equal (200 repetitions), we use Tukey’s method to

assess the statistical significance of the difference between the best performing

classifier and the other classifiers. The beta kernel model’s mean accuracy is

significantly different at the 0.1 level for the breast cancer data set. Logistic

regression has the highest average accuracy for three data sets (Haberman’s

survival, adult, and transfusion) and the difference in accuracy is significant

at the 0.01 level for two data sets. However, logistic regression performs quite

badly for the arcene and breast cancer data. The traditional SVM has the

highest average accuracy for the satellite and arcene data, and the weighted

SVM has the highest average accuracy for spam with the RBF kernel.

The beta kernel model performs quite well according to the AUC metric. The

beta kernel has the largest average AUC for six data sets (Parkinson, satellite,
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Table 2: Binary classification results

Data set
Performance Beta

RVM
Traditional Weighted Naive Logistic

metric kernel SVM SVM Bayes Regression

Parkinson Acc 0.870 0.786 0.869 0.863 0.760 0.758
TP 0.80 0.93 0.96 0.92 0.76 0.82
TN 0.95 0.68 0.80 0.83 0.77 0.71

AUC 0.946* 0.925 0.876 0.872 0.770 0.864
Haberman’s Acc 0.566 0.441 0.436 0.589 0.469 0.625**
survival TP 0.81 0.92 0.86 0.73 0.91 0.78

TN 0.40 0.22 0.24 0.50 0.27 0.51
AUC 0.670 0.669 0.543 0.607 0.556 0.679

Satellite Acc 0.987 0.985 0.988 0.988 0.971 0.978
TP 0.98 0.98 0.99 0.98 0.96 0.98
TN 0.99 0.99 0.99 0.99 0.98 0.98

AUC 0.999 0.998 0.988 0.988 0.971 0.988
Arcene Acc 0.783 0.753 0.842 0.840 † 0.453

TP 0.93 0.73 0.86 0.86 † 0.50
TN 0.66 0.79 0.83 0.82 † 0.50

AUC 0.830 0.846 0.844 0.843 † 0.503
Spam (RBF) Acc 0.815 0.874 0.883 0.885 0.875 0.860

TP 0.83 0.82 0.83 0.84 0.81 0.85
TN 0.83 0.93 0.94 0.93 0.95 0.87

AUC 0.929 0.942** 0.888 0.891 0.863 0.867
Spam (polynomial) Acc 0.880 0.839 0.865 0.879 0.677 0.855

TP 0.88 0.82 0.79 0.83 0.98 0.84
TN 0.88 0.87 0.95 0.94 0.49 0.88

AUC 0.937 0.933 0.868 0.880 0.682 0.862
Colon cancer Acc 0.800 0.691 0.799 0.771 0.490 0.598

TP 0.81 0.64 0.75 0.75 0.37 0.56
TN 0.80 0.80 0.88 0.85 0.93 0.68

AUC 0.867** 0.808 0.814 0.801 0.646 0.641
Adult Acc 0.782 0.726 0.720 0.799 0.798 0.807*

TP 0.81 0.57 0.57 0.83 0.76 0.82
TN 0.76 0.93 0.92 0.77 0.84 0.80

AUC 0.867 0.890 0.742 0.800 0.799 0.896
Transfusion Acc 0.649 0.532 0.525 0.664 0.537 0.689**

TP 0.66 0.31 0.31 0.65 0.33 0.76
TN 0.66 0.94 0.91 0.68 0.89 0.63

AUC 0.734 0.741 0.607 0.669 0.607 0.750
Breast cancer Acc 0.615* 0.335 0.470 0.571 0.559 0.503

TP 0.65 0.17 0.29 0.47 0.44 0.39
TN 0.61 0.95 0.89 0.76 0.79 0.71

AUC 0.657* 0.628 0.578 0.608 0.610 0.579
Tornado Acc 0.862 0.772 0.794 0.857 0.848 0.795

TP 0.77 0.61 0.64 0.82 0.75 0.66
TN 0.97 0.99 0.99 0.92 0.97 0.97

AUC 0.959 0.949 0.816 0.869 0.858 0.845

* indicates the difference in accuracy is significant at the 0.1 level
** indicates the difference in accuracy is significant at the 0.01 level
† algorithm fails to terminate in a reasonable amount of time
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Table 3: Average run-time in seconds for binary classification models

Data set
Beta

RVM
Traditional Weighted Naive Logistic

kernel SVM SVM Bayes Regression

Parkinson 0.12 8.67 1.78 1.89 8.76 0.03
Haberman’s survival 0.26 3.06 2.79 2.49 1.34 0.06
Satellite 2.77 134.57 15.16 15.55 35.65 0.80
Arcene 6.30 46.23 488.25 489.94 † 0.26
Spam 0.66 73.18 11.08 11.61 25.39 0.26
Colon cancer 0.12 3.36 10.62 10.51 723.51 0.07
Adult 6.30 239.46 50.27 51.66 21.52 0.01
Transfusion 1.30 8.75 13.20 10.85 3.26 0.34
Breast cancer 0.08 5.36 1.54 1.56 11.82 0.02
Tornado 3.86 440.73 46.38 62.06 74.97 0.23
† algorithm fails to terminate in a reasonable amount of time

spam with the polynomial kernel, colon cancer, breast cancer, and tornado).

Two of those sets have differences in the means that are significant at the 0.1

level, and one is significant at the 0.01 level. Logistic regression has the largest

AUC for three data sets, corresponding to the data sets for which it had the

best average accuracy, and RVM has the highest average AUC for two data

sets (arcene and spam with RBF kernel). Because SVM does not calculate

probabilities, it performs worse on this metric.

We record the average run-time from the 200 different runs for each algo-

rithm in Table 3. Logistic regression is the fatest algorithm because it does not

have any parameters to tune. The beta kernel’s most complicated operation is

calculating the kernel matrix, and the average run-time is a few seconds. The

SVM algorithms are also very fast, but the SVM algorithm has two parameters

to tune (σ and C) which multiplies the number of times the SVM optimiza-

tion problem is solved. Although the RVM usually relies on fewer vectors than

the SVM to classify unknown data points, the RVM algorithm as developed by

Tipping and Faul (2003) sequentially selects vectors xj that are used to classify

unknown data points. This sequential process can take a long time, as with the

satellite, adult, and tornado data sets. The naive Bayes algorithm takes a very

long time when the data have a large number of attributes, and the arcene data
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set has so many attributes that the naive Bayes algorithm does not terminate

in a reasonable amount of time.

3.2. Imbalanced data sets

Imbalanced data sets can cause problems for data mining and statistical

learning because algorithms like the SVM tend to classify almost all of data

points in the class that occurs most frequently, the majority class (Akbani et

al., 2004; Batista et al., 2004; Visa and Ralescu, 2005; Chawla, 2010). Under-

sampling the majority class or over-sampling the minority class so that both

classes have an equal number of data points when training the algorithm can help

the machine learning tool more accurately identify data points in the minority

class (Maloof, 2003; Tang et al., 2009). The Synthetic Minority Over-sampling

Technique (SMOTE) creates new data points through linear combinations of two

input data points belonging to the minority class (Chawla et al., 2002, 2003) so

that the minority class has an equivalent number of points as the majority class.

These sampling techniques can be used in combination with machine learning

algorithms such as the SVM and RVM (Van Hulse et al., 2007).

Although none of the data sets used previously have the same number of

data points in both classes, we create much more imbalanced data sets from

these ten data sets. We randomly select only 5% in the minority class for the

eight databases. For example, the Parkinson data have 75% positively labeled

and 25% negatively labeled points, and the new imbalanced Parkinson data

have 95% positive and 5% negative. Conversely, 95% of the data are negatively

classified and 5% are positively classified in the breast cancer data set. Because

the colon cancer data only contain 62 data points, too few negatively classified

data points exist to have the 19:1 ratio between the negative and positive class

in a training, tuning, and testing set. Therefore, the imbalanced colon cancer

data contain 10% positive and 90% negative.

The beta kernel model with the weighting parameters is compared to several

other methods designed to address these heavily imbalanced data sets. In addi-

tion to the weighted SVM (which was previously deployed), these other meth-
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ods are under-sampling the majority class, over-sampling the minority class,

and SMOTE. Each of these three sampling techniques are applied separately

to the RVM and SVM. We test the eight different classifiers for the ten heavily

imbalanced data sets, with the same rules as before for training, tuning, and

testing. Each algorithm is tested 200 times for each data set.

With the imbalanced data, the beta kernel model performs the best in six

of the eleven data trials (Table 4), and the differences in means are statistically

significant at the 0.01 level for three data sets (Parkinson, arcene, and spam

with the polynomial kernel). The beta kernel model’s accuracy for four other

data sets compares well to the best accuracy. The beta kernel’s average accuracy

is within 0.01 of the best mean accuracy for Haberman’s survival, adult, and

tornado and within 0.04 for breast cancer. The beta kernel performs poorly in

comparison to the other classifiers on the spam data set with the RBF kernel,

but the beta kernel classifier performs much better on the same data using the

polynomial kernel. Overall, under-sampling performs better than over-sampling

and has the additional benefit of being faster than over-sampling or SMOTE

although the beta kernel is the fastest. The mean accuracies for under-sampling

with the RVM and under-sampling with the SVM are each the best for two data

sets, but under-sampling with SVM performs extremely poorly for the arcene

data.

3.3. Comparison of beta kernel and SVM

Comparing the performance of the beta kernel model with the SVM can shed

light on situations where the beta kernel model may be more effective than the

SVM. We use a Gaussian mixture model as the basis for this comparison. Both

classes are drawn from multivariate normal distributions with unit covariance

matrices. The attribute means corresponding to the positive class are (1.0, 1.0)

and the attribute means corresponding to the negative class are (−1.0,−1.0).

The beta kernel model and the SVM are compared for two training sets each

with 60 total data points: (i) a balanced data set with a 50% chance of sampling

from the positive class and a 50% chance of sampling from the negative class and
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Table 4: Binary classification results with 5% in the minority class

Data set
Performance Beta Weighted Under-sampling Over-sampling SMOTE

metric kernel SVM RVM SVM RVM SVM RVM SVM

Parkinson Acc 0.743** 0.586 0.529 0.578 0.513 0.578 0.604 0.449
TP 0.81 0.85 0.69 0.77 0.95 0.92 0.92 0.97
TN 0.78 0.58 0.63 0.63 0.44 0.52 0.54 0.38

Haberman’s Acc 0.473 0.378 0.475 0.467 0.329 0.339 0.420 0.290
survival TP 0.72 0.76 0.59 0.62 0.84 0.82 0.84 0.89

TN 0.41 0.35 0.52 0.49 0.27 0.26 0.32 0.22
Satellite Acc 0.975* 0.945 0.909 0.946 0.931 0.943 0.937 0.940

TP 0.98 0.99 0.96 0.98 0.99 1.00 0.99 0.99
TN 0.97 0.91 0.88 0.92 0.92 0.90 0.89 0.91

Arcene Acc 0.502** 0.115 0.263 0.000 0.118 0.115 0.119 0.115
TP 0.64 0.12 0.42 1.00 0.12 0.12 0.12 0.12
TN 0.59 1.00 0.63 0.01 1.00 1.00 1.00 1.00

Spam (RBF) Acc 0.528 0.576 0.673 0.691 0.500 0.510 0.656 0.660
TP 0.41 0.49 0.70 0.65 0.38 0.38 0.56 0.58
TN 0.95 0.91 0.74 0.83 0.95 0.97 0.90 0.89

Spam Acc 0.755** 0.454 0.640 0.350 0.592 0.445 0.648 0.584
(polynomial) TP 0.78 0.34 0.66 0.29 0.53 0.31 0.63 0.44

TN 0.77 0.98 0.74 0.94 0.82 0.98 0.79 0.96
Colon Acc 0.529 0.292 0.273 0.454 0.198 0.220 0.189 0.197
cancer1 TP 0.55 0.37 0.73 0.60 0.20 0.23 0.20 0.20

TN 0.84 0.83 0.44 0.64 0.99 0.99 0.98 0.99
Adult Acc 0.760 0.765 0.758 0.758 † 0.743 † 0.690

TP 0.74 0.75 0.77 0.79 † 0.68 † 0.55
TN 0.80 0.79 0.74 0.75 † 0.83 † 0.89

Transfusion Acc 0.634 0.612 0.585 0.591 0.581 0.608 0.354 0.468
TP 0.68 0.63 0.62 0.64 0.54 0.58 0.22 0.32
TN 0.62 0.66 0.62 0.59 0.70 0.69 0.89 0.84

Breast Acc 0.295 0.174 0.262 0.328 0.114 0.203 0.123 0.111
cancer TP 0.54 0.42 0.44 0.52 0.12 0.27 0.14 0.12

TN 0.35 0.51 0.57 0.43 0.97 0.73 0.81 0.95
Tornado Acc 0.800 0.761 0.806 0.800 0.744 0.778 0.742 0.772

TP 0.67 0.66 0.82 0.79 0.64 0.64 0.67 0.70
TN 0.98 0.95 0.81 0.86 0.92 0.97 0.88 0.94

1Because colon cancer is a small data set, the imbalanced version has 10% positive.
** indicates the difference in accuracy with the other models is significant at the 0.01 level
* indicates the difference in accuracy with the other models is significant at the 0.1 level
† algorithm fails to terminate in a reasonable amount of time
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(d) Imbalanced data, SVM with undersampling

Figure 1: Beta kernel and SVM classification of the Gaussian mixture model based on (a-b)
50% chance of positive and 50% chance of negative and (c-d) 10% chance of positive and 90%
chance of negative

(ii) an imbalanced data set with a 10% chance of sampling from the positive

class and a 90% chance of sampling from the negative class. An unweighted

SVM is used for the balanced training set, and under-sampling is used with the

SVM for the second training set because this combination performed well for

the imbalanced data sets in Table 4.

Fig. 1 depicts how the beta kernel model and SVM classify data ranging

between -4.0 and 4.0 for each of the two attributes, given the two training

data sets. The beta kernel model establishes a linear dividing line for both the

balanced and imbalanced data sets. The dividing line predicted by the beta

kernel model in the balanced data set corresponds closely to the discriminant

line in the Gaussian mixture model. A point on the discriminant line (the black

line in Fig. 1) indicates a 50% chance the point is positively labeled and 50%

chance it is negatively labeled according to the Gaussian mixture model.

The SVM establishes a non-linear division for the balanced data set in Fig.

1b. Because of the variation in the training data, the SVM creates areas around

the positive training points for which it positively classifies unknown points and
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also creates areas around the negative training points for which it negatively

classifies unknown points. Because the SVM undersamples the negative class

for the imbalanced data set, the SVM establishes a linear dividing line for the

particular instance depicted in Fig. 1d, but a different sample may lead to a

non-linear division.

This demonstration with the Gaussian mixture model suggests that if the

training data contain significant random variation, the beta kernel model may

do a better job of predicting the underlying classification pattern than the SVM.

The beta kernel model classifies unknown data points based on difference mea-

sures as determined by the RBF kernel. Consequently, the beta kernel model

is less impacted by a point in the training set whose classification is a low-

probability (i.e., less than 50%) event. If a point in the training set is labeled

because of physical reasons rather than random variations—which may signify

that other points in the vicinity should also be labeled similarly—the SVM

algorithm does a better job than the beta kernel model of uncovering that dis-

crepancy.

3.4. Online learning

One of the principle advantages of Bayesian methods is the ability to rapidly

incorporate new information into the analysis. Under Bayesian analysis, the

prior distribution is updated with data, which produces a posterior distribu-

tion, and that posterior distribution serves as the prior distribution in the next

iteration. The Gaussian Bayesian kernel methods discussed in Section 2 are not

easily adaptable to this online learning pattern because the solution algorithms

generally rely on maximizing the posterior distribution. Two Gaussian Bayesian

data mining tools for online learning or incremental updating include a Bayesian

online perceptron (Opper, 1998; Solla and Winther, 1998) and a sparse repre-

sentation for a Gaussian process model (Csató and Opper, 2001). The Bayesian

online perceptron approximates a posterior distribution by incrementally updat-

ing mean weights and covariances for the input data xj , but this method does

not employ kernel functions. The sparse representation for a Gaussian process
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model uses the kernel function as the covariance matrix as depicted in (2) and

determines whether to include a new input data vector xj based on the degree

to which the new data point changes the mean of the posterior distribution.

Studying these two Bayesian classifiers for text classification reveals that they

perform well in comparison with the SVM for relatively balanced classes, but

SVM performs the best for imbalanced data sets (Chai et al., 2002).

The sequential RVM relies on a Bayesian Kalman filter and a least-squares

approach to iteratively revise the RVM weights and hyperparameters for re-

gression and time series forecasting problems (Nikolaev et al., 2005). Online or

incremental learning has been investigated more fully for non-probabilistic clas-

sifiers and includes algorithms such as LASVM (Bordes et al., 2005), ALMAp

(Gentile, 2001), and NORMA (Kivinen et al., 2004). Jin et al. (2010) develop

an algorithm that combines online learning and kernel learning which simulta-

neously trains an SVM classifier and assigns weights for multiple kernels.

The beta kernel model provides an easy tool for online learning because the

model does not require solving an optimization problem. The posterior dis-

tribution at the end of one iteration acts as the prior distribution in the next

iteration. Because the model relies on the kernel function to calculate posterior

probabilities, the attributes for a data point xi should be known although the

outcome yi is not. The outcome remains uncertain as new data with known out-

comes are collected. For example, an oil and gas company may have geological

characteristics about several different areas. As it drills for oil in certain places

and discovers whether or not those places contain oil, it can update its proba-

bility about whether or not a specific area contains oil based on the geological

similarity between the known and unknown areas.

We explore the application of the beta kernel model to online learning by (1)

demonstrating how α, β, and θ change as new data arrive and (2) comparing the

beta kernel’s accuracy to two other online learning tools. We depict how the beta

kernel model’s parameters change using the twonorm data set as downloaded

from the Delve project (Revow 1996) at the University of Toronto. Unlike the

previous example, this experiment keeps all 20 attributes for the twonorm data.
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Table 5: Updated parameters for beta kernel model with twonorm data

Iteration
Data point 1 Data point 2

α β θ̄1 α β θ̄2

Prior 1 1 0.50 1 1 0.50
1 1.21 1.35 0.47 1.04 2.32 0.31
2 2.05 1.54 0.57 1.28 3.35 0.28
5 2.18 3.01 0.42 1.31 6.66 0.16
10 4.92 4.97 0.50 1.70 10.47 0.14
20 8.29 8.40 0.50 2.59 19.54 0.12
30 13.50 11.71 0.54 3.59 27.73 0.11

Although the original data set has an equal number of positively and negatively

labeled outcomes, we purposely imbalance the data so that only 25% of the

outcomes are positive.

We select two data points for which we assume the attributes but not the

outcomes are known. At each iteration, a unique set of 10 data points whose out-

comes are known is used to update α and β for the each of the two unknown data

points where αi = α +
∑
{j|yj=1} k(xi,xj) and βi = β +

∑
{j|yj=−1} k(xi,xj).

Table 5 depicts the updated α and β and the expected posterior probability

θ̄i = E[P (yi = 1)]. Fig. 2 displays the beta distribution’s probability density

function as α and β are updated for each of these two data points.

As the classifier receives more information, the first data point is much more

likely to result in a positive outcome than the second data point. The expected

probability for the first data point is close to 0.5 during all the iterations. Even

after 30 iterations, the beta distribution’s density function (the dark solid line in

Fig. 2a) is still wide enough that the posterior probability could be between 0.25

and 0.75. The first data point’s expected probability is 0.54. Much uncertainty

exists over whether this data point is positively or negatively labeled; however,

the posterior probability is much greater than 0.25, the fraction of positively

labeled data points in the data set.

Updating the parameters for the second data point significantly reduces

the uncertainty of this data point’s outcome. After only 5 iterations or 50

data points, the expected probability is 0.16. After 30 iterations, the expected
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Figure 2: Posterior probability distributions for two different data points in the twonorm data
set

probability is only 0.11, and most of the beta distribution’s density function is

less than 0.25.

3.5. Online learning comparison

We compare the ability of three algorithms to correctly classify data incre-

mentally. The weighted beta kernel model begins with a uniform prior where

α = β = 1, and these parameters and the weights for imbalanced data are up-

dated with the arrival of each new set of data. Because the sequential RVM is

designed for regression as opposed to classification problems, we slightly modify

the standard RVM algorithm (Tipping, 2009) so that it learns incrementally.

The set of vectors with non-zero weights after one iteration is assumed to have

non-zero weights with the arrival of a new batch of data, and only data in the

new batch can be added to the set of vectors with non-zero weights. Once a

data point is excluded from this set, it is discarded. The third algorithm is

LASVM, an online SVM algorithm (Bordes et al., 2005).

We use the ten databases that were described in Section 3.1 but randomly

divide each data set into batches, where each batch contains either 5 or 10
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data points, depending on size of the data set. Five data sets have 50 different

batches, three data sets have 30 batches, and the colon cancer and breast cancer

data only have 10 batches because these latter sets contain a fewer data. At

each iteration, each algorithm incorporates a new batch to classify unknown

points in the testing set. Any data point not in a batch is in the testing set.

The experiment is repeated 200 times for each data set.

The median optimal values that were generated by the initial binary classi-

fication numerical experiments were used for σ in the RBF kernel and C in the

SVM for this online learning experiment. Table 6 depicts the average accuracy

(the square root of the product of the TP and TN rates) for different iterations.

Because online learning typically does not begin with a large training set that

can be used to generate optimal parameters for kernel functions, algorithms

have been developed that linearly combine multiple kernels for a single classi-

fier. As the classifier learns on data, the weights for each possible kernel are

also updated to improve accuracy (Jin et al., 2010; Gosselin et al., 2011). Fu-

ture research could apply these concepts to the beta kernel model in an online

learning environment.

After 30 iterations, the three algorithms generally return accuracies consis-

tent with the mean accuracies depicted in Table 2. After 1 or 5 iterations, the

beta kernel outperforms the other two algorithms except on the spam data, but

LASVM’s accuracy exceeds that of the beta kernel by the 30th or 50th iteration

for Parkinson, arcene, colon cancer, as well as spam. This result suggests that

the beta kernel is a better algorithm than LASVM for a handful of data points

(i.e., less than 50). When the data set contains more than 50 data points, the

beta kernel and LASVM perform comparably, which echoes the findings from

Table 2 in which the beta kernel and SVM algorithms perform similarly. In the

online learning environment, the beta kernel model outperforms LASVM for

the Haberman’s survival, satellite, adult, transfusion, breast cancer, and tor-
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Table 6: Online learning results

Data set
Data points in

Iteration
Beta

RVM LASVM
each batch kernel

Parkinson 5 1 0.60 0.25 0.35
5 0.75 0.50 0.59
10 0.81 0.63 0.72
20 0.86 0.75 0.83
30 0.87 0.81 0.88

Haberman’s survival 5 1 0.47 0.20 0.34
5 0.53 0.28 0.46
10 0.54 0.32 0.41
20 0.56 0.38 0.50
30 0.57 0.39 0.48
50 0.58 0.43 0.50

Satellite 10 1 0.93 0.81 0.91
5 0.98 0.96 0.97
10 0.98 0.97 0.98
20 0.98 0.98 0.98
30 0.99 0.98 0.99
50 0.99 0.98 0.99

Arcene 5 1 0.51 0.12 0.38
5 0.68 0.53 0.64
10 0.74 0.60 0.73
20 0.78 0.68 0.82
30 0.79 0.74 0.87

Spam (RBF) 10 1 0.45 0.43 0.63
5 0.66 0.76 0.81
10 0.71 0.79 0.84
20 0.76 0.79 0.86
30 0.79 0.79 0.88

Colon cancer 5 1 0.58 0.12 0.25
5 0.75 0.61 0.64
10 0.81 0.73 0.85

Adult 10 1 0.54 0.37 0.51
5 0.70 0.56 0.60
10 0.74 0.61 0.64
20 0.76 0.65 0.66
30 0.76 0.66 0.66
50 0.77 0.68 0.67

Transfusion 10 1 0.49 0.33 0.43
5 0.57 0.37 0.51
10 0.61 0.41 0.52
20 0.64 0.47 0.51
30 0.64 0.50 0.52
50 0.66 0.54 0.51

Breast cancer 5 1 0.50 0.08 0.42
5 0.57 0.25 0.47
10 0.59 0.31 0.50

Tornado 10 1 0.63 0.13 0.46
5 0.76 0.41 0.66
10 0.80 0.58 0.72
20 0.83 0.70 0.76
30 0.84 0.74 0.77
50 0.86 0.77 0.79
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Table 7: Results of large-scale simulation for Gaussian mixture model

Model Acc TP TN Run-time (seconds)

Beta kernel 0.9996 1.0000 0.9992 206
LASVM 0.9905 0.9817 0.9999 797
Naive Bayes 0.9708 1.0000 0.9850 745
Logistic regression 0.9965 0.9993 0.9978 8

nado data sets after 30 or 50 iterations (which correspond to 150 to 500 data

points). Although not shown in the table, the beta kernel runs more quickly

than the RVM and LASVM.

3.6. Large-scale simulation

Another test explores how well the beta kernel model performs for large

data sets. As in Section 3.3, a Gaussian mixture model is used, in which the

positive and negative class are drawn from a multivariate normal distribution

with unit covariance matrices. The simulation uses 10 attributes. The mean

for each attribute corresponding to the positive clas is 1.0, and the mean for

each attribute corresponding to the negative class is -1.0. We create a highly

imbalanced set so that the chance of having a positively labeled point is 0.1%.

The training set has 1,000,000 data points, and the testing set has 10,000 data

points. The beta kernel model and the LASVM process this training set by using

1000 batches where each batch has 1000 data points. The logistic regression and

naive Bayes algorithms offered by Matlab can process the million data points

in one batch. The large-scale simulation is repeated 50 times.

As depicted in Table 7, the beta kernel model outperforms the other three

algorithms for this large data set, using the acccuracy measure described earlier,

Acc =
√

TP ∗ TN. The accuracies for the beta kernel, LASVM, and logistic

regression are very similar to each other, however. The beta kernel model runs

more slowly than logistic regression because the beta kernel requires generating

two kernel matrices K, one for the positively labeled training data points and
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the other for the negatively labeled training data points. The beta kernel model

runs more quickly than the other two kernel-based algorithms: the LASVM and

naive Bayes. Matlab’s logistic regression runs so quickly because it does not

need to divide the training set into smaller batches.

The computational complexity of the beta kernel model depends on the

algorithm to generate the kernel matrix. If we use the beta kernel model to

predict only one unknown data point, the complexity of generating the RBF

kernel matrix is at worst O (dm), where d is the number of attributes and m is

the size of the training set. After the kernel matrix is generated, the complexity

of updating the α and β parameters is O (m). Although the beta kernel model

can handle large data sets if the memory to store the kernel matrices is sufficient,

it may not be cost-effective to use the beta kernel model if non-kernel algorithms

such as logistic regression perform reasonably well.

4. Conclusions

This paper has explored the usefulness of the beta kernel model and com-

pared the model’s accuracy with the RVM (a binary classification algorithm

based on Gaussian distributions), the SVM, naive Bayes, and logistic regres-

sion. The beta kernel model relies on the well-known beta-binomial Bayesian

formula, and deploying a kernel function as a measure of similarity between

two different data points enables us to apply these updating techniques to clas-

sification problems. Incorporating weighting parameters or beginning with a

non-uniform prior can help the model correctly classify imbalanced data sets.

The model can be generalized to a Dirichlet kernel model for multiclass classifi-

cation problems, and future research can compare the accuracy of the Dirichlet

kernel model with other multiclass classifiers.

The extensive numerical testing of the beta kernel model with the RVM,
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SVM, naive Bayes, and logistic regression indicates that the beta kernel model

may have some advantages that can be exploited for classification problems. The

beta kernel model performs similarly to the SVM, a weighted SVM, and logistic

regression for the ten data sets in which the minority class composes between

7 and 44% of the data. The beta kernel model consistently performs better

than the RVM and naive Bayes. If the user desires a probabilistic data mining

tool, the beta kernel model may be a superior choice to the RVM. When the

minority class comprises only 5% of the data, the beta kernel model is usually

more accurate than the RVM and SVM, even though the latter two classifiers

were improved using under-sampling, over-sampling, and SMOTE. This suggests

that the beta kernel model should be an important tool for classifying heavily

imbalanced data sets. The online learning experiment reveals that the beta

kernel model consistently outperforms the RVM and LASVM (an incremental

learning version of the SVM) if 50 or fewer data points are available, and the

model frequently performs better than the RVM and LASVM even if more data

are available. Finally, the beta kernel model calculates posterior probabilities

very quickly and runs faster than the RVM and SVM, both of which rely on

solving optimization problems.

As this paper represents, to our knowledge, the first extensive analysis and

testing of the beta kernel model, we believe the model can potentially become

a useful tool in machine learning. The beta kernel model provides similar accu-

racies for classifying data sets where the number in each class is relatively the

same, and the model carries other advantages, such as fast computation times.

If the data set is heavily imbalanced, the beta kernel model may be the most

accurate. If the data arrive incrementally, the model easily and quickly updates

to incorporate the new data and can be relatively accurate with just a few data

points. Future work could explore if the beta kernel model can be combined
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with the SVM, RVM, and logistic regression to improve overall accuracy. We

intend to apply the beta kernel model to existing problems and demonstrate

how some of these benefits can aid a decision maker.

Appendix

We seek to prove that the uniform beta prior with a weighted kernel like-

lihood will label an unknown data point as a beta prior that derives from the

training set and is updated with an unweighted kernel likelihood.

The uniform prior (α = β = 1) and weighted kernel likelihood labels an

unknown point xi in the positive class if and only if (14) holds.

1 + m−
m

∑
k+ij

2 + m−
m

∑
k+ij + m+

m

∑
k−ij

> 0.5 (14)

We assign
∑
k+ij =

∑
{j|yj=1} k(xi,xj) and

∑
k−ij =

∑
{j|yj=−1} k(xi,xj) for

notational convenience.

If the prior is formulated so that the prior’s expected value is the proportion

of positively labeled points in the training set, then an unknown point will be

positively classified if and only if (15) holds.

∑
k+ij∑

k+ij +
∑
k−ij

>
m+

m
(15)

We want to show that (14) and (15) are equivalent. We begin with (14).

1 + m−
m

∑
k+ij > 1 + 0.5

(m−
m

∑
k+ij + m+

m

∑
k−ij
)

m−
∑
k+ij > 0.5

(
m−

∑
k+ij +m+

∑
k−ij
)

0.5m−
∑
k+ij > 0.5m+

∑
k−ij

m−
∑
k+ij +m+

∑
k+ij > m+

∑
k−ij +m+

∑
k+ij

m
∑
k+ij > m+

(∑
k−ij +

∑
k+ij
)

(16)
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The last line is equivalent to (15).
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