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ABSTRACT 

 

 Abstract- Environmental, social and economic concerns motivate the operation of closed-

loop supply chain networks (CLSCN) in many industries. We propose a novel profit 

maximization model for CLSCN design as a mixed-integer linear program in which there is 

flexibility in covering the proportions of demand satisfied and returns collected based on the 

firm's policies.  

Our major contribution is to develop a novel hybrid robust-stochastic programming 

(HRSP) approach to simultaneously model two different types of uncertainties by including 

stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and 

returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method 

and scenario reduction is applied to consolidate them. An accelerated stochastic Benders 

decomposition algorithm is proposed for solving this model. To speed up the convergence of this 

algorithm, valid inequalities are introduced to improve the quality of lower bound, and also a 

Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. 

Numerical studies are performed to verify our mathematical formulation and also demonstrate 

the benefits of the HRSP approach. The performance improvements achieved by the valid 

inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances. 
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CHAPTER I   OVERVIEW 

 

1.1 Introduction  

 

The growing need for remanufacturing and recycling due to resource scarcity and 

environmental concerns requires firms to coordinate the forward and reverse material flows in 

their supply chains. This motivates the design of a closed-loop supply chain network (CLSCN) 

to avoid sub-optimality arising from separate design of forward and reverse networks. As pointed 

out by Klibi et al. (2010), the design of a supply chain network is a crucial strategic decision, the 

effects of which will persist for many years while the business environment may change. Thus, 

some important parameters such as demand and costs are significantly uncertain. In addition, 

since opening or closing a facility is time-consuming and costly, making any change in these 

decisions in response to parameter oscillations is impossible within a short time frame (Pishvaee 

et al., 2011). Uncertainties are intensified in the reverse supply chain network where the quality 

and quantity of returned products vary unpredictably and fast. Therefore, the design of CLSCN 

should be robust to the inherent uncertainty in the network parameters. 

Of the few recent relevant papers that consider uncertainty in the CLSCN design 

problem, most estimate the probability distributions for the parameters and then apply scenario-

based stochastic programming (SP) (e.g. Salema et al., 2007; Santoso et al., 2005). SP is a 

powerful modeling tool when an accurate probabilistic description of the random variables is 

known. However, it has three main drawbacks (Bertsimas and Thiele, 2006; Gülpınar et al., 

2013). First, in many real-life applications not enough historical data are available to estimate 

distributions for uncertain parameters. For instance, predicting demand of a new product is 
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challenging. Secondly, an accurate distribution approximation may require a large number of 

scenarios. But the more scenarios used for representing uncertainty, the harder it is to solve the 

problem to optimality. Conversely, if the number of scenarios is limited for computational 

reasons, the range of future states under which decisions are made and assessed is restricted. As a 

consequence, the obtained solution may be infeasible for some realizations of uncertain 

parameters. Even if this occurs with very small probability, it could result in high cost due to the 

large scale of the CLSCN. Finally, SP models in which the expected total cost is minimized 

assume that the decision maker worries about the average performance of the system. However, 

there are situations where the decision maker is concerned with the worst-case. We highlight this 

concern with respect to uncertain demand and return quantities.  

To avoid these drawbacks, robust optimization (RO) has emerged as an alternative 

methodology to cope with uncertainty. RO handles uncertainty in the input data by solving the 

so-called robust counterpart over properly predefined uncertainty sets. The robust counterpart is 

a deterministic worst-case formulation of the original problem in which the worst-case is 

calculated over all possible values the input parameters may take within their uncertainty sets. As 

mentioned by Alem and Morabito (2012), two main advantages of RO compared with SP are: 

first, independently of the number of uncertain parameters, the robust counterpart can remain 

computationally tractable. For instance, with polyhedral uncertainty sets, the robust counterpart 

of a linear program is also a linear program. Second, rough historical data and decision makers’ 

experiences can be used to derive the boundaries of uncertainty sets, without the need for precise 

estimates of probability distributions.  

The uncertain parameters we consider in our CLSCN design problem differ qualitatively 

different. Historical data for transportation costs can be used to formulate probabilistic scenarios 
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for them, but no such data for demand and return quantities of a new product exist. Because the 

purpose of the network is to supply products and collect the returns, we design it for the extreme 

quantities to ensure that its capacity and configuration will suffice in any event. The need to 

consider both types of uncertainty and an integrated network has been emphasized recently by 

Melo et al. (2009), Klibi and Martel (2012) and Gabrel et al. (2014).  

This paper contributes to the CLSCN design literature by developing a novel hybrid 

robust-stochastic optimization approach and also devising an efficient solution procedure. 

Specifically, a mathematical model is developed for a multi-period, single-product and 

capacitated CLSCN. The strategic decisions including locations and capacities of facilities as 

well as the tactical decisions including inventory levels, production amounts, and shipments 

among the network entities are determined to maximize the expected worst-case profit. The 

major contributions can be summarized as follows: 

 A novel CLSCN design model as a mixed-integer linear program (MILP) to integrate both 

strategic and tactical decisions with flexibility to cover varying proportions of demands and 

customer returns based on the firm’s policies.  

 A novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model 

two different types of uncertainties including stochastic scenarios for transportation costs 

and polyhedral uncertainty sets for demand and return quantities. 

 A scenario generation approach using Latin Hypercube Sampling (LHS) followed by 

scenario reduction to obtain a small but representative set of transportation cost scenarios.  

 An accelerated stochastic Benders decomposition (BD) algorithm with two sets of valid 

inequalities (VI) to strengthen the master problem and improve the quality of the lower 
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bound. Pareto-optimal cuts are also used to accelerate the convergence of the solution 

algorithm.  

The remainder of this paper is organized as follows. In the next section, we briefly review 

the literature on the CLSCN design problem and the relevant solution methods. The problem and 

its stochastic formulation are defined in Section 3. Then, the HRSP approach is presented in 

Section 4. In Section 5, the scenario generation and reduction algorithm for transportation costs 

is presented. The stochastic BD algorithm with some acceleration techniques for improving its 

convergence is provided in Section 6. Section 7 describes computational experiments and 

sensitivity analyses that allow us to derive managerial insights about this CLSCN. Finally, 

Section 8 concludes this paper and offers some suggestions for future research.  

1.2 Literature Review 

The relevant literature follows two separate but complementary streams. We first review 

studies of the CLSCN design problem and then discuss solution algorithms.  

1.2.1 Closed-loop supply chain network design problem 

To avoid the sub-optimality from modeling and designing forward and reverse networks 

separately, many researchers have integrated them in the more complex CLSCN (Melo et al., 

2009). Many CLSCN models are inspired by facility location theory. In this regard, Melo et al. 

(2009) and Klibi et al. (2010) presented comprehensive reviews on the facility location models in 

supply chain planning and on supply chain network design under uncertainty, respectively, to 

point out some missing aspects. Moreover, Pokharel and Mutha (2009) summarized the current 

developments of reverse supply chains, while Brandenburg et al. (2014) and Dekker et al. (2012) 

reviewed quantitative models that address environmental and social aspects in the supply chain.  
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Originally, Fleischmann et al. (2001) considered the integration of forward and reverse 

flows as a CLSCN using some case studies. They found that this integrated approach could 

provide a potential for a significant cost savings compared to a segregated approach. The 

research that followed was primarily carried out with simple facility location models (e.g. Aras et 

al., 2008). Then, more complex models were proposed especially by considering the real-life 

characteristics (e.g. Cruz-Rivera and Ertel, 2009). Recently, the field has experienced a strong 

development over the last decade (e.g. Klibi and Martel, 2012; Alumur et al., 2012; Cardoso et 

al., 2013; Baghalian et al., 2013; Keyvanshokooh et al., 2013; Gao and Ryan, 2014; De Giovanni 

and Zaccour, 2014; Niknejad and Petrovic, 2014).  

Given that all activities in both forward and reverse supply chains are subject to 

considerable uncertainty, many works addressed the CLSCN design problem where some 

network parameters such as demand, return and costs are uncertain. In a pioneering step, Salema 

et al. (2007) extended the model of Fleischmann et al. (2001) to a multi-product and capacitated 

CLSCN considering uncertainty in demand and return. To summarize the literature, in Appendix 

A we have devised a coding system in Table A.1 and classified the most cited and recent papers 

based on problem features, supply chain stages, objective, modeling, uncertainty programming, 

uncertain parameters, decisions, and solution methods in Table A.2. SP is the most popular tool 

applied to the configuration of a CLSCN under uncertainty. However, a limited number of 

studies employed RO (Pishvaee et al., 2011; Vahdani et al., 2012; Hasani et al., 2011). These 

applied a worst-case robust formulation (Soyster, 1973) which may result in an overly 

conservative solution. Considering this research gap, we apply a more recent RO approach 

(Bertsimas and Sim, 2004), which allows a tradeoff between optimality and robustness. To our 

knowledge, no existing research combines probabilistic scenarios for some parameters with 
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uncertainty sets for others in the area of CLSCN design problem. But, Fanzeres dos Santos et al. 

(2014) used another hybrid approach in a different context, power system markets. 

From Table A.2, it is also clear that minimizing cost has been the primary objective in 

most CLSCN models. These models typically require that every customer’s demand and return 

has to be satisfied. However, it may not always be optimal to satisfy all demands and returns. 

Sometimes, there is not much competition in target market, so the cost of losing customers will 

be very low. Hence, the firm may maximize its profit by losing some customers. On the other 

hand, sometimes profit is increased with better customer service. This paper includes flexibility 

to determine what percentage of customers to serve.  

1.2.2 Solution algorithms  

Because the CLSCN design problem is an NP-hard combinatorial optimization problem, 

a plethora of solution algorithms including metaheuristic, heuristic, and exact methods have been 

developed, as shown in the last column of Table A.2. Most solution methods employ standard 

commercial packages such as CPLEX to solve mixed-integer programming formulations. 

However, when the number of discrete variables is large, the resulting models can be solved only 

by using metaheuristic or heuristic methods to obtain a near optimal solution. But, because the 

CLSCN design involves large investment and greatly influences the operational and tactical costs 

as well as efficiency of service, developing efficient exact algorithms for solving larger and more 

realistic cases is worthwhile (de Sá et al., 2013). Among these exact solution approaches, the 

branch-and-bound algorithm has been a popular methodology combined with other heuristics or 

Lagrangian relaxation methods to obtain better bounds. As shown in Table A.2, there are few 

papers that develop an exact solution scheme, a shortage highlighted by Klibi and Martel (2012).  
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Furthermore, as a discrete facility location problem, CLSCN is an attractive candidate for 

decomposition. It involves both binary variables related to the strategic configuration, and 

continuous variables associated with tactical and operational decisions. Table A.2 includes just 

four papers in which decomposition schemes were applied. Among the decomposition 

techniques, the BD method (Benders, 1962) is a classical exact algorithm suitable for solving 

large-scale MILP problems having special structure in the constraint set; i.e., upon fixing the 

values of the complicating integer variables, the MILP problem reduces to an easy linear 

program.  

However, the classical BD and also its stochastic version, called the L-shaped method, 

might not be efficient (Saharidis and Ierapetritou, 2010). The major issues resulting in its slow 

convergence are (1) solving the Relaxed Master problem (RMP) which is in fact an integer or 

sometime MILP program, and (2) the quality of Benders cuts. To overcome these concerns, 

different acceleration techniques have been proposed to speed up BD. To improve the quality of 

Benders cuts, Magnanti and Wong (1981) defined a cut as Pareto-optimal. By applying these 

cuts to a problem in which the sub-problem is degenerate, the results showed a significant 

improvement in convergence. Saharidis et al., (2010) introduced a covering cut bundle strategy 

by producing a bundle of cuts in each iteration to cover all decision variables of the MP. Some 

other modifications to this algorithm were presented by McDaniel and Devine (1977), Saharidis 

et al., (2013), Tang et al., (2013), Sherali and Lunday (2013) and  Oliveira et al., (2014) in 

different applications.  
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CHAPTER 2   HYBRID ROBUST AND STOCHASTIC OPTIMIZATION APPROCH 

FOR CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN USING 

ACCELERATED BENDERS DECOMPOSITION  

 

A paper under revision in European Journal of Operational Research 

Esmaeil Keyvanshokooh and Sarah M. Ryan 

2.1 Problem Definition  

As illustrated by Fig. 1, we consider a single product, multi-period, and capacitated CLSCN 

consisting of manufacturing/remanufacturing, distribution, collection, and disposal centers as 

well as retailers under demand, return and transportation cost uncertainty. The end-of-use 

products are collected from retailers, transported to collection centers, and after a quality test, 

divided into two categories: recoverable products sent to manufacturing/remanufacturing centers 

and scrapped products shipped to disposal centers. In the forward network, the remanufactured 

products along with the new ones are supplied to retailers from manufacturing/remanufacturing 

centers through distribution centers to meet their demand. We also assume a periodic review 

inventory policy for distribution centers to find inventory levels and include base-stock levels as 

decision variables (Keyvanshokooh et al., 2013). Moreover, it is assumed that the product is 

perishable and hence the excess amount of product in the retailers in one period cannot be used 

to satisfy the demand of next period.  
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Distribution Centers
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Remanufacturing 

Centers

Retailers

Food Mart
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Food Mart

Base-Stock
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Figure 1.  The CLSCN structure 

This CLSCN model can apply to companies that are introducing new products to their target 

market consisting of their previous customers. For example, an exclusive company produces 

desktop and notebook computers. To improve customer satisfaction, it decides to also provide 

after-sales service and to this aim they want to produce some components such as modem and 

hard disk. On one hand, due to being an exclusive firm, these spare parts would appeal only to 

their customers who bought the desktop or notebook computers from this company before, so 

there is not much competition in the target market. Thus, the risk of losing customers will be 

very low. Then, if a small penalty is considered for not satisfying demand and return, profit may 

be maximized by covering just a portion of demand and return. On the other hand, if the 

company wants to emphasize satisfaction of customers, a high penalty cost should be considered 

for not satisfying demand and return. Our hybrid robust-stochastic formulation allows any 

condition between these two extremes. Most CLSCND models in the literature are trying to 

satisfy the whole demand and return quantities, or they just want to maximize their profit or 

minimize their costs without any attention to how much the demand and return they satisfy 
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(Keyvanshokooh et al., 2013; Amin and Zhang, 2013). However, one of our concerns in this 

research is to design this network considering different conditions of the target market to satisfy 

the demand and return of customers. 

In the developed hybrid robust-stochastic programming approach, in the forward network, if 

the flow from distribution centers to retailers exceeds the retailers’ demand, then a surplus cost is 

considered per unit of excess amounts of flow to retailers over their demands. On the other hand, 

if the retailers’ demand is greater than the quantity delivered from distribution centers, then a 

penalty cost for unsatisfied demand is incurred. In the reverse network, if the flow from retailers 

to collection centers is greater than the potential returns, which is impossible in practice, then we 

apply a penalty cost per unit of excess flow from the retailers over returns collected. However, if 

the reverse flow from retailers to collection centers is less than the potential returns, then we 

impose a scrap cost per unit of uncollected returns. Defining the penalty and surplus costs in the 

forward network and the penalty and scrap costs in the reverse network balances the forward 

flows with the demands and the reverse flows with the return quantities as much as possible 

while ensuring complete recourse (Birge and Louveaux, 1997) in the stochastic program.  

The main concern of this paper is to design the CLSCN in the presence of uncertainty. Two 

different types of uncertainty are present; one for transportation costs and the other for demand 

and return. During the last decade, the oscillations in fuel price have dramatically influenced 

transportation costs and it is quite likely that this uncertainty on fuel price will be sustained 

(Pishvaee et al., 2009). We assume the firm has historical data for transportation cost 

distributions from its previous sales and so model this uncertainty with probabilistic scenarios. 

On the other hand, forecasting the precise distribution of future demands and returns of a new 

product is very difficult. Demand could be affected by unexpected events such as the appearance 
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of a new competitor and return quantities depend on customer use patterns. Stationarity of 

probability distributions cannot be guaranteed especially in our multi-period planning horizon. 

Even if sufficient data are available to generate credible scenarios, considering many of them for 

both demands and returns will create computational challenges. Thus, we adopt a RO approach 

of formulating uncertainty sets instead of probability distributions for these quantities. 

Considering these two types of uncertainty, our main contribution is to develop a novel 

hybrid robust-stochastic programming approach in which uncertain transportation costs are 

modeled using various scenarios while uncertain demand and return are modeled with polyhedral 

uncertainty sets. Because competition forces companies to try their best to completely satisfy the 

demands of their customers, even a small amount of unsatisfied demands or returns could result 

in unacceptable loss. Therefore, we consider the worst-case situation associated with not meeting 

demands or collecting returns and take the expectation of profit with respect to transportation 

costs. The CLSCN design problem is to concurrently determine the location of facilities, their 

capacities, and base-stock levels as the first-stage decisions in light of the recourse production 

amounts and network flows to meet the worst-case demand and return quantities in each 

transportation cost scenario.  

2.2 Problem Formulation  

We formulate a two-stage stochastic program with recourse for the CLSCN design problem 

assuming full knowledge of probability distributions for uncertain transportation costs. 

Regarding the uncertain demands and returns, we first consider their nominal values under each 

scenario for transportation cost. In the following subsection, we explain how uncertainty sets for 

these parameters are included in the HRSP approach. In the first-stage, strategic decisions such 
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as facility locations, their capacity and base-stock levels are determined as the here-and-now 

decisions that should be made before realization of any uncertain parameters, and in the second-

stage operational decisions such as network flows are made after realization of uncertain 

parameters. The following notations are used for in the formulation of the CLSCN: 

Sets: 

I Set of potential locations of manufacturing/remanufacturing centers,  

J Set of potential locations available for distribution and collection centers,
 
 

K Set of fixed locations of retailers,  

R Set of fixed locations of disposal centers,  

S Set of scenarios for transportation costs,  

T Set of time periods in the planning horizon,  ,t p  

Parameters: 

Demand and Return: 

ˆ tD
ks  Nominal demand of retailer k at time period t in scenario s 

ˆtR
ks  Nominal return of used product from retailer k at time period t in scenario s 

Fixed costs: 

MCFi  Fixed cost for opening manufacturing/remanufacturing center i  

DCFj  Fixed cost for opening distribution center j 

CCFj  Fixed cost for opening collection center j 

Variable costs: 
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PRk  
Revenue per unit of product sold by retailer k to customers 

MCi  
Unit manufacturing cost in manufacturing/remanufacturing center i 

RCi
 

Unit remanufacturing cost in manufacturing/remanufacturing center i 

tIC j
 

Inventory cost per unit of product in time period t in distribution center j  

CC j
 

Unit collection/inspection cost in collection center j 

DCr
 

Unit disposal cost in disposal center r 

DPC
 

Penalty cost per unit of non-satisfied demands of retailer 

RSC
 

Scrap cost per unit of uncollected returns of retailer    

DSC  Surplus cost per unit of excess amounts of flow over demands received by retailers  

RPC  
Penalty cost per unit of excess amounts of flow over returns collected from retailers 

Transportation costs: 

tCIJijs
 

Transportation cost per unit of product transported from manufacturing/remanufacturing center 

i to distribution center j in time period t in scenario s 

tCJK
jks  

Transportation cost per unit of product transported from distribution center j to retailer k in time 

period t in scenario s 

tCKJ
kjs  

Transportation cost per unit of returned product transported from retailer k to collection center j 

in time period t in scenario s 

tCJI jis
 

Transportation cost per unit of recoverable product transported from collection center j to 

manufacturing/remanufacturing center i in time period t in scenario s 

tCJR jrs  Transportation cost per unit of scrapped product transported from collection center j to disposal 
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center r in time period t in scenario s 

Capacity costs: 

MCCi  Capacity cost of manufacturing/remanufacturing center i per unit of products per period 

DCC j  Capacity cost of distribution center j per unit of products per period 

CCC j  Capacity cost of collection center j per unit of products per period 

Maximum available capacity of facilities: 

MCCAPi  

Maximum available capacity of manufacturing/remanufacturing center i (units of products per 

period) 

DCCAPj  
Maximum available capacity of distribution center j (units of products per period) 

CCCAPj  
Maximum available capacity of collection center j (units of products per period) 

Coefficients and ratios: 

a
 

Fraction of returned products that can be remanufactured 

Prs
 

Probability of transportation cost scenario s 

Decision variables: 

Binary variables (regarding opening network facilities): 

MC
iX  

Binary variable equal to 1 if a manufacturing/remanufacturing center is opened at location i, 0 

otherwise 

DC
jX  Binary variable equal to 1 if a distribution center is opened at location j, 0 otherwise 

CC
jX

 
Binary variable equal to 1 if a collection center is opened at location j, 0 otherwise 

Continuous variables (regarding determining the capacity for each facility): 
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MC
iW  Capacity of manufacturing/remanufacturing center i (units of products per period) 

DC
jW  Capacity of distribution center j (units of products per period) 

CC
jW

 
Capacity of collection center j (units of products per period) 

Continuous variables (regarding the flows of network): 

t
ijsFIJ

 

Quantity of products transported from manufacturing/remanufacturing center i to distribution 

center j in time period t in scenario s 

t
jksFJK

 

Quantity of products transported from distribution center j to retailer k in time period t in 

scenario s 

t
kjsFKJ

 

Quantity of returned products transported from retailer k to collection center j in time period t in 

scenario s 

t
ijsFIJ

 

Quantity of recoverable products transported from collection center j to 

manufacturing/remanufacturing center  i in time period t in scenario s 

t
jrsFJR

 

Quantity of scrapped products transported from collection center j to disposal center r in time 

period t in scenario s 

Other continuous variables: 

t
isPI

 

Quantity of products produced by manufacturing/remanufacturing center i in time period t in 

scenario s 

jBS
 

Base-stock level of product of distribution center j at the beginning of each period 

Based on the above-mentioned notations, the two-stage stochastic CLSCN design problem 

can be formulated as follows:  

( , , ) MC MC MC MC DC DC DC DC CC CC CC CC
i i i i j j j j j j j j

i I i I j J j J j J j J

Max Z Q X W BS F X C W F X C W F X C W
     

             (1)  
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S.t. 

MC MC MC
i i iW CAP X  

 

j J   

 

(2)  

DC DC DC
j j jW CAP X  j J   (3)  

CC CC CC
j j jW CAP X  j J   (4)  

DC
j jW BS  j J   (5)  

1DC CC
j jX X 

 
j J   

(6)  

, , {0,1}, , , , 0MC DC CC MC DC CC
i j j i j j jX X X W W W BS 

 
,i I j J    

(7)  

where    ( , , ) , , , , , ,s s s

s

Q X W BS E X W BS Pr X W BS          . The term   , , , sE X W BS    denotes 

the recourse function. For a given scenario s ,  , , , sX W BS   is the optimal objective function 

value of the second-stage problem (8)-(24): 

 , , , t t t t t t t
s k jks ijs ijs jks jks kjs kjs

j J k K t T i I j J t T j J k K t T j J k K t T

t t t t t t
jis jis jrs jrs i is i jis

j J i I t T j J r R t T i I t T t

X W BS Max PR FJK CIJ FIJ CJK FJK CKJ FKJ

CJI FJI CJR FJR MC PI RC FJI

 
           

       

   

   

   

   t
j kjs

i I j J T k K j J t T

p p t t
ijs jks j r jrs

j J t T i I p t k K p t r R j J t T

CC FKJ

FIJ FJK IC DC FJR

     

        



 
   

 
 

 

   

 

 

(8)  

S.t. 

ˆt t
jks ks

j J

FJK D


  
,k K t T    

(9)  

ˆt t
kjs ks

j J

FKJ R


  ,k K t T    
(10)  

0p p
jks ijs

k K p t i I p t

FJK FIJ
   

     

,j J t T    

(11)  
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p p
ijs jks j

i I p t k K p t

FIJ FJK BS
   

    
,j J t T    

(12)  

t t t
is jis ijs

j J j J

PI FJI FIJ
 

  
 

,i I t T    
(13)  

t t
kjs jis

k K i I

a FKJ FJI
 

   ,j J t T    
(14)  

 1 t t
kjs jrs

k K r R

a FKJ FJR
 

    ,j J t T    
(15)  

t t MC
is jis i

j J

PI FJI W


   
,i I t T    

(16)  

t DC
ijs j

i I

FIJ W



 

,j J t T    
(17)  

t CC
kjs j

k K

FKJ W


  ,j J t T    
(18)  

.t DC
ijs jFIJ M X

 

, ,i I j J t T     
(19)  

.t DC
jks jFJK M X

 

, ,k K j J t T     
(20)  

.t CC
kjs jFKJ M X

 

, ,k K j J t T     
(21)  

.t CC
jis jFJI M X

 

, ,i I j J t T     
(22)  

.t CC
jrs jFJR M X

 

, ,r R j J t T     
(23)  

, , , , , 0t t t t t t
ijs jks kjs jis jrs isFIJ FJK FKJ FJI FJR PI 

 
, , , ,i I j J r R k K t T       

(24)  

The objective (1) is to maximize the expected total second-stage profit less the first-stage 

costs including fixed costs of opening facilities and capacity costs. The second-stage profit (8) 

includes the revenue from selling new products less transportation costs, inventory costs, 

manufacturing costs of new products and remanufacturing costs of used products, collection 
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costs of used products, and disposal costs of scrapped product. Constraints (2)-(4) ensure 

capacity restrictions for manufacturing/remanufacturing, distribution and collection centers, 

respectively. Constraints (5) guarantee that the capacity of each distribution center is at least 

equal to its base-stock level. Constraints (6) ensure that at each location j just one of distribution 

or collection centers is opened. Constraints (9)-(10) assure that the demand of retailers are 

satisfied by the distribution centers and also the returns of used products from retailers are 

collected by the collection centers, respectively. Note that here we put the nominal values of 

demands and returns of retailers. In the next section, we will explain how we deal with the robust 

uncertainty in these parameters. Constraint (11) assures the flow balance for each distribution 

centers. Constraints (12) enforce base-stock levels for each distribution center in scenario s and 

period t. Constraints (13)-(15) ensure the flow balance for manufacturing/remanufacturing and 

collection centers. Constraints (16)-(18) express the capacity constraints for the 

manufacturing/remanufacturing, distribution and collection centers, respectively. Constraints 

(19)-(23) connect the binary variables for facility existence with the corresponding flows, where 

M is a large number. Finally, constraints (7) and (24) enforce the binary and non-negativity 

restrictions on decision variables.  

2.3 Problem Formulation  

First, we briefly review a RO approach presented by Bertsimas and Sim, 2003, 2004 as a 

prelude to describing our HRSP formulation. Consider the linear program (LP) where C is an n-

vector, A is a m n  matrix, and b is an m-vector: 

 . . , 0Min Cx s t Ax b x 
 

(25)  
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Assume uncertainty only affects the elements of matrix A. That is, consider a particular row i 

of A and let iJ  represent the set of coefficients in row i of A subject to uncertainty. Each data 

element ,ij ia j J  is modeled as a bounded and independent random variable taking value in an 

interval    
ˆ ˆ,ij ij ij ija a a a  where ˆ

ija  is the nominal value and ija  is the maximum deviation from this 

nominal value. With this assumption, LP (25) is reformulated as: 

. . , 0
ij i

ij j i
a J

j

Min Cx s t max a x b i x
 

 
   

 
 
  

(26)  

Then, we define a scaled deviation  ˆij ij ij ijz a a a   from its nominal value of ˆija  that always 

belongs to the interval 1,1   . Note that ija , ˆija and ija  denote the uncertain value, its nominal 

value and its maximum deviation from the nominal value, respectively.  It is unlikely that all of 

the uncertain input ,ij ia j J  will realize their worst-case values simultaneously. Thus, a 

maximum number of parameters that can deviate from their nominal values for each constraint i 

is considered asi , called the budget of uncertainty, where 0,i iJ    . The aggregated scaled 

deviation of uncertain parameters for constraint i is bounded as


  ,
i

ij ij J
z i . 

The budget of uncertainty plays a crucial role in adjusting the solution’s level of 

conservatism of obtained solution against the robustness. If  0i
, it reduces to the nominal 

formulation where there is no protection against uncertainty . If  i iJ , the ith constraint is 

completely protected against the worst-case realization of uncertain parameters. Finally, if 

   0,i iJ , the decision maker considers a trade-off between conservatism and cost of the 

solution against the level of protection against constraint violation. Based on this definition, the 
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set iJ  is defined as      ˆ , , ,i ij ij ij ij ijJ a a a a z i j z where  
    1

, 1,
n

ij i ijj
z z z i . Restating 

each constraint i as        ˆ ˆ
ij j ij ij ij j ij j ij ij jj j j j
a x a a z x a x a z x , LP (26) can be reformulated as: 

ˆ. . , 0
zi i

ij j ij ij j i

j j

Min Cx s t a x Max a z x b i x


      
(27)  

The lower level problem 
i i

ij ij jjz
Max a z x

  for a given vector x  is equivalent to LP (28):  

. . , 0 1ij ij j ij i ij i

j j

Max a z x s t z i z j J          
(28)  

Then by introducing the dual variables i  and ij , the dual of LP (28) is: 

*. . , , 0 , 0

i

i i ij i ij ij j i ij i i

j J

Min s t a x i j J j J i     


            
(29)  

The dual (29) is applied to LP (27) to obtain the robust counterpart of LP (25): 

ˆ. . , , , , 0 ,

i

i i i ij i i ij ij j i ij i i

j J

Min Cx s t a x b i a x i j J i j J     


            
(30)  

This RO approach provides an efficient way to determine bounds on the probability of 

violation of each constraint. Let 
*
jx  be the robust solution, then the violation probability of the 

ith constraint is calculated by: 

  * 1 1ij j i i i

j

Pr a x b J
 
     
 
 
  

(31)  

where     is the standard normal cumulative distribution function. This upper bound 

provides a way of assigning a proper budget of uncertainty to each constraint when our uncertain 

parameter is independent and symmetrically distributed random variable in its associated 

uncertainty set.  
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In our HRSP approach for CLSCN, within each transportation cost scenario we define 

polyhedral uncertainty sets for demand and return in each period and for each retailer to apply 

the RO approach of Bertsimas and Sim, 2003, 2004. Fig. 2 illustrates the arrangement of the 

polyhedral uncertainty sets for demands of retailers in different periods for different 

transportation cost scenarios. The uncertain demands and returns are allowed to deviate from a 

nominal scenario toward a worst-case realization within a constrained polyhedral uncertainty set. 

For simplicity, Fig. 2 shows uncertainty sets for demand only.  

Uncertain 

Transportation 

Costs

2t t T1t 3t
1Retailer

1S 

S S

2t t T1t 3t
Retailer K

Nominal Scenario

ˆ t
ksD

t
ksD 

t
ksD 

 

Figure 2.  Uncertainty characterization of the HRSP approach 

To develop the uncertainty sets, first we define the positive and negative deviation 

percentages from the nominal scenario for demands and returns, respectively, as follows: 

ˆ
ˆif ,

t t
t t tks ks
ks ks kst

ks

D D
D D D

D







 

  

ˆ
ˆif

t t
t t tks ks
ks ks kst

ks

D D
D D D

D







 


 (32)  

ˆ
ˆif ,

t t
t t tks ks
ks ks kst

ks

R R
R R R

R







 

  

ˆ
ˆif

t t
t t tks ks
ks ks kst

ks

R R
R R R

R







 


 (33)  

Then, the uncertainty sets of demand and return for each scenario of transportation costs are: 
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 ˆ , , , ,D t t t t t t t t t D
s ks ks ks ks ks ks ks ks ksJ D D D D D D D k t D D K   

     

         

 

where  

 { , 0 1, 0 1, }D t t t t t t D
ks ks ks ks ks ks s

k K t T

K D D D D D D     
     

 

         

And
 

(34)  

 ˆ , , , ,R t t t t t t t t t R
s ks ks ks ks ks ks ks ks ksJ R R R R R R R k t R R K   

     

         

 

where  

 { , 0 1, 0 1, }R t t t t t t R
ks ks ks ks ks ks s

k K t T

K R R R R R R     
     

 

       
 

(35)  

The dimension of these sets is K T  for each transportation cost scenario. Recall that ˆ t
ks

D  

denotes the nominal scenario for demand of retailer k in period t for scenario s of transportation 

cost while t
ks

D


   and t
ks

D


  are the maximum positive and negative deviations from the nominal 

value, respectively, while t
ks

D


 and t
ks

D


 state the percentage by which the worst-case scenario 

deviates from the nominal value. The parameter D
s is the budget of uncertainty for demand in 

scenario s via which we can constrain the number of periods in which the worst-case scenario 

deviates from the nominal scenario. Similar definitions apply to the polyhedral uncertainty sets 

for returns in (35).  

In the stochastic formulation (1)-(24), we just have uncertain demand and return parameters 

in constraint (9)-(10), which are assumed to belong to some polyhedral uncertainty sets. If we 

want to consider these constraints into our problem, then they cannot be satisfied certainly 

because we do not know the exact amount of uncertain demand and return quantities before 
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obtaining the optimal flows from distribution centers to retailers and also the optimal flows from 

retailers to collection centers. Furthermore, even if we want to put these constraints into our 

problem formulation and solve it, then we will come up with the two situations: (1) the optimal 

flows from distribution centers to retailers may be less than the demand quantities of retailers, or 

(2) the optimal flows from distribution centers to retailers may be more than the demand 

quantities of retailers. In both cases, we actually violate this constraint and our problem becomes 

infeasible. We have the same situation in the reverse supply chain network as well.  

To deal with this drawback, we remove these constraints from the stochastic formulation (1)-

(24) and adding them to the objective function with some cost terms. As the cost terms, we 

define the penalty cost per unit of non-satisfied demands DPC  and the surplus cost per unit of 

excess amounts of flow over demands received by retailers DSC in forward supply chain, and also 

the scrap cost per unit of uncollected returns RSC and the penalty cost per unit of excess amounts 

of flow over returns collected from retailers RPC  in reverse supply chain. By doing so, we 

actually provide the decision maker with the opportunity of having flexibility to control each side 

of this issue. For example, if the company is in a very competitive market setting in such a way 

that it does not want to lose any customer, then we can increase the penalty cost for the amount 

of unsatisfied demand. On the other hand, if the manufacturing and remanufacturing resources of 

company are restricted or the cost price of product is high, and also if there is not much 

competition in the target market, then it can decrease its excess level of production over demands 

with the help of increasing the surplus cost per unit of excess amounts of flow over demands 

received by retailers. In Section 7.1.2, we investigate the effects of this concern in the CLSCN 

design problem.  
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Our purpose is to minimize the maximum amounts of costs regarding violating these 

constraints (9)-(10), which are added to the objective function with some cost parameters as 

explained above. To apply the uncertainty sets (34)-(35) in the stochastic formulation (1)-(24), 

we isolate the term containing random demand and return parameters for scenario s as the 

following nonlinear term: 

 , ,

,

t D
ks s

t R
ks s

t t D t t D
s ks jks jks ks

D J
k K t T j J k K t T j J

t t R t t R
ks kjs kjs ks

R J
k K t T j J k K t T j J

PC FJK FKJ Max D FJK PC FJK D SC

Max R FKJ SC FKJ R PC


     


     

    
        

        

    
        

        

   

   

 (36)  

where 
t
ksD  and 

t
ksR  are the random demand and return which belong to sets (34) and (35), 

respectively. For each transportation cost scenario, this term represents the worst-case value for 

penalty, scrap and surplus costs. We reformulate this nonlinear optimization problem (36) as the 

following LP for each scenario s by defining auxiliary variables 1sZ and 2sZ :  

 
, , 1 , 2

, 1 2
s s

s s s
FJK FKJ Z Z

Min PC FJK FKJ Z Z   

S.t. 

(37)  

1 ,t t D t D
ks jks s ks s

k K t T j J

D FJK PC Z D J
  

 
     

 
 

 
 

(38)  

1 ,t t D t D
jks ks s ks s

k K t T j J

FJK D SC Z D J
  

 
     

 
 

 
 

(39)  

2 ,t t R t R
ks kjs s ks s

k K t T j J

R FKJ SC Z R J
  

 
     

 
 

   
(40)  

2 ,t t R t R
kjs ks s ks s

k K t T j J

FKJ R PC Z R J
  

 
     

 
 

   
(41)  
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1 , 2 0s sZ Z   (42)  

The constraints (38)-(42) should be satisfied for all realizations of the uncertain demands and 

returns in their polyhedral uncertainty sets. We find their robust counterparts, explained in detail 

for constraint (38). From the set definition (34), we can rewrite the constraints (38) as: 

Max 1
t D
ks s

t t D
ks jks s

D J
k K t T j J

D FJK PC Z


  

  
    

    
 

 
(43)  

which can be transformed into: 

 
,

ˆ Max 1
t t D
ks ks

t t D t t t t D
ks jks ks ks ks ks s

D D Kk K t T j J k K t T

D FJK PC D D D D PC Z
 

 
   

 
    

   
            

  
  

 
(44)  

In this constraint, we optimize over the positive and negative deviation percentages from 

nominal scenario for uncertain demand. We expand the maximization problem considering 

constraints from polyhedral uncertainty sets as follows:  

 
,

Min
t t D
ks ks

t t t t D
ks ks ks ks

D D K k K t T

D D D D PC
 

 
   

 
  

 
       

 
  

S.t. 

 

1, , : 1

1, , : 2

: 1

, 0

t t
ks ks

t t
ks ks

t t D D
ks ks s

k K t T

t t
ks ks

D t T k K

D t T k K

D D

D D

 

 

  

 





 

 

 

     

     

   




 

(45)  

Then we take the dual as: 

 
1 , 2 , 1

Max 1 1 2
t t D
ks ks

D D t t
s ks ks

k K t T
  

  
 

 
    
 

  

S.t. 

(46)  
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1 , ,

2 , ,

1 , 1 , 2 0, ,

t D t
ks ks

t D t
ks ks

D t t
ks ks

D t T k K

D t T k K

t T k K

 

 

  





      

      

   

 

In this LP (46), since the second constraint is actually redundant, we can remove 2t
ks

 . 

According to strong duality theory, we then replace the objective function (46) without 2t
ks

  in 

the constraint (44) and, hence, the robust counterpart of constraint (38) is obtained as follows: 

 ˆ 1 1 1t t D D t D
ks ks s jks s

k K t T k K t T j J

D FJK PC Z 
    

 
      

 
 
 

 

(47)  
1 1 , ,t D t

ks ksD t T k K 


     
 

1 , 1 0t D
ks  

 

The robust counterpart of the other constraints is found by the same procedure. Finally, our 

hybrid robust-stochastic formulation of this CLSCN design problem is: 

Pr . t t t t t
s k jks ijs ijs jks jks

s S j J k K t T i I j J t T j J k K t T

t t t t t t t
kjs kjs jis jis jrs jrs i is i ji

j J k K t T j J i I t T j J r R t T i I t T

Max Z PR FJK CIJ FIJ CJK FJK

CKJ FKJ CJI FJI CJR FJR MC PI RC FJI

         

          


  




    

   

   

1 2

t
s

i I j J t T

p p t t t
ijs jks j j kjs r jrs s s

j J t T i I p t k K p t k K j J t T r R j J t T

MC MC MC MC DC DC DC DC CC CC CC CC
i i i i j j j j j j j j

i I i I j J j J j J j

FIJ FJK IC CC FKJ DC FJR Z Z

F X C W F X C W F X C W

  

           

     

  
       

  
  

     



    

    
J



 

(48)  

S.t. 

Constraints (2)–(7), (11)–(24) 

 

 

 ˆ 1 1 1 ,t t D D t D
ks ks s jks s

k K t T k K t T j J

D FJK PC Z s S 
    

 
       

 
 
 

 

(49)  
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 ˆ 2 2 1 ,t t D D t D
ks ks s jks s

k K t T k K t T j J

D FJK SC Z s S 
    

 
        

 
 
 

 

(50)  

 ˆ 1 1 2 ,t t R R t R
ks ks s kjs s

k K t T k K t T j J

R FKJ SC Z s S 
    

 
       

 
 
 

 

(51)  

 ˆ 2 2 2 ,t t R R t R
ks ks s kjs s

k K t T k K t T j J

R FKJ PC Z s S 
    

 
        

 
 
 

 

(52)  

1 1 , , ,t D t
ks ksD t T k K s S 



      
 

(53)  

2 2 , , ,t D t
ks ksD t T k K s S 



      
 

(54)  

1 1 , , ,t R t
ks ksR t T k K s S 



      
 

(55)  

2 2 , , ,t R t
ks ksR t T k K s S 



      
 

(56)  

1 , 2 , 1 , 1 , 2 , 2 , 1 , 1 , 2 , 2 0, , ,t D t D t R t R
s s ks ks ks ksZ Z t T k K s S              (57)  

In this formulation, the parameters D
s  and R

s  control the trade-off between the 

robustness and the level of conservativeness of the obtained solution at each scenario for 

transportation cost by restricting the number of times that demands and returns deviate from the 

nominal scenario in their associated uncertainty sets. As a result, higher values for the parameters 

D
s  and R

s  increase the level of robustness at the expense of a lower expected profit. 

2.4 Scenario Generation and Reduction Algorithm for Transportation Costs 

To obtain transportation cost scenarios over multiple periods, we combine forecast errors into 

a tree. As in Schütz et al. (2009) we use a deterministic Pth order autoregressive process as the 

forecasting method, and add a realization of error term 1
s
t  , to the predicted transportation cost 

at time t+1 to obtain the transportation cost in scenario s denoted by 1
s
tc  : 
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1 1 1

1

ˆ
P

s s

t i t i t

i

c c     



    (58)  

where   is a constant parameter, i  is an autoregressive parameter, and 1t ic    
is the historical 

transportation cost at period (t +1– i). Then, a transportation cost scenario is generated as: 

1

1

1

1

1

1

ˆ ˆ 1

ˆ ,

P
s

i t j i t

i

j P
s s
t j i t j i i t j i

i i j

P
s

i t j i

i

c j

c c c j P

c j P

  

  

 

  





    

 

 




  





    


  




 



 
(59)  

The error terms are assumed to be normally distributed with mean zero and variance
2
 . Fig. 

3 illustrates the scenario tree for prediction error. Error terms are generated for each period 

independently.  

f =1 f =2 f =NF

1
,1t

2
,1t

,1
NS
t

1
,2t

2
,2t

,2
NS
t

1
,t NF

2
,t NF

,
NS
t NF

s =1

s =2

s = NS

 

Figure 3.  Scenario tree for the prediction error term for each time period t 

For a pair of facilities  ,f i j  let NF be the total number of flows from all facility type i to 

all facility type j and NS be the number of scenario values for period t in Fig 3. Based on this 

scenario tree for the prediction error terms, the procedure to combine forecasting and scenario 

generation is illustrated by Fig 4.  
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Predicted data

2,t fc  1,t fc  ,t fc

1,ˆs
t fc  2,ˆs

t fc  |T|,ˆs
t fc 

 

 

Historical data

1
1,ˆt fc 

1
2,ˆt fc 

1
|T|,t̂ fc 

2
1,ˆt fc 

2
2,ˆt fc 

2
|T|,t̂ fc 

1,ˆNS
t fc  2,ˆNS

t fc  |T|,ˆNS
t fc 

 

 Figure 4. Forecasting and scenario generation scheme for transportation costs 

 To construct different scenarios for the error terms, most studies used Monte Carlo 

simulation (MCS). Instead, we apply Latin hypercube sampling (LHS) introduced by Olsson et 

al. (2003). MCS often requires a large sample size to approximate an input distribution, but LHS 

is designed to accurately approximate the input distribution through sampling in fewer iterations 

compared with MCS. Moreover, this method covers more of the domain of the random variables 

than MCS with the same sample size (Fattahi et al., 2014; Shi et al., 2013). To generate the 

scenario tree for |T| periods, suppose that in each period the error terms are generated using LHS. 

Since the error terms are period-independent, using this procedure results in an exponentially 

increasing number of scenarios which makes CLSCN model hard to solve. To efficiently reduce 

the number of scenarios, a backward reduction technique (Dupačová et al., 2003) is used. A 

pseudo-code of the proposed scenario generation and reduction algorithm is presented in 

Appendix B. 
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2.5 Solution Algorithm 

The L-shaped method introduced by Van Slyke and Wets (1969) is a BD method applied to 

two-stage recourse SP problems. The complex MILP is decomposed into a master problem (MP) 

including first-stage decision variables, and Benders sub-problems (BSP) including second-stage 

decision variables. The BSPs are scenario-specific and connected by the first-stage variables.  

The BSP of this CLSCN can be formulated by fixing the first-stage variables to the given 

values , , , , , , ,{ , , , , , , }MC MC DC DC CC CC MC MC DC DC CC CC
i i it j j it j j it i i it j j it j j it j j itX X X X X X W W W W W W BS BS        at iteration it. The 

BSP actually includes the objective function (8) subject to the constraints (11)-(24) and (49)-(57) 

in which we fixed the first-stage variables to these given values and also the term 1 2s sZ Z   

should be added to the objective function (8). If BSP is feasible for the given values of
 
first-stage 

variables, then the dual of sub-problem (DSP) has a bounded solution as an extreme point of the 

dual polyhedron, and so an optimality cut (OC) is deduced. On the other hand, if BSP is 

infeasible, DSP is unbounded and an extreme ray of its dual polyhedron can be determined and 

thus a feasibility cut (FC) will be produced. However, it is straightforward to verify that our 

formulation possesses complete recourse; therefore, FCs are not needed (Birge and Louveaux, 

2011). Thus, if y and h vectors represent the dual variables of the constraints (11)-(24) and (49)-

(57) respectively, then the DSP which obtains a lower bound for the objective function of the 

original CLSND problem at each iteration it is formulated as follows:  

 

   

, , , , , ,

, , , ,

: 2 7 8 6 . 13

. 9 . 12 . 10 . 11

DSP t DC t CC t MC t CC t
s it j it js j it js j it js i it is j it jrs

j J t T i I t T r R j J t T

DC t CC t DC t CC t
j it ijs j it jis j it jks j it kjs

i I j J t T t

DSP Min Z BS y W y W y W y M X y

M X y M X y M X y M X y

      

   

    

  

  



 5 6 7 8

j J k K T

t t t t t t t t
ks ks ks ks ks ks ks ks

k K t T

D h D h R h R h
   

 

 

       





 
(60)  
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Subject to:  

1 2 10 1 2 , , ,t t t D D t t
js js kjs s s k jks jy y y PC h SC h PR CJK IC j J k K t T            (61)  

1 2 3 7 9 , , ,t t t t t t t
js js is js ijs ijs jy y y y y CIJ IC j J i I t T             (62)  

3 4 6 12 , , ,t t t t t
is js is ijs jis iy y y y CIJ RC j J i I t T           (63)  

 4 1 5 8 11 3 4 , , ,t t t t R R t t
js js js kjs s s kjs ja y a y y y SC h PC h CKJ CC j J k K t T              (64)  

5 13 , , ,t t t
js rjs jrs ry y CJR DC j J r R t T          (65)  

3 6 , ,t t
is is iy y MC i I t T       (66)  

1 5 0, ,D D t
s s ksPC h h k K t T       (67)  

2 6 0, ,D D t
s s ksSC h h k K t T       (68)  

3 7 0, ,R R t
s s ksSC h h k K t T       (69)  

4 8 0, ,R R t
s s ksPC h h k K t T       (70)  

1 5 0, ,D t
s ksPC h h k K t T      (71)  

2 6 0, ,D t
s ksSC h h k K t T      (72)  

3 7 0, ,R t
s ksSC h h k K t T      (73)  

4 8 0, ,R t
s ksPC h h k K t T      (74)  

1 2 1s sh h   (75)  

3 4 1s sh h   (76)  

1 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 0

, , ,

t t t t t t t t t t t t t
js is js js ijs jks kjs jis jrs s s s s ks ks ks ksy y y y y y y y y h h h h h h h h

j J i I k K t T



    
 

(77)  

Then, based on the DSP’s solution, the general MP which produces an upper bound for the 

objective function of original CLSND model at each iteration can be written as: 
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MP: PrMP MC MC MC MC DC DC DC DC CC CC CC CC
s s i i i i j j j j j j j j

s i I i I j J j J j J j J

Max Z F X C W F X C W F X C W
     

               (78)  

Subject to: 

  Constraints (2)-(7), 0,s s S     

 

  

  

, , , , , ,

, , ,

2 7 8 6 . 13 . 9

. 12 . 10 . 11

t DC t CC t MC t CC t DC t
s j it js j it js j it js i it is j it jrs j it ijs

j J t T i I t T r R j J t T i I j J t T

CC t DC t CC t
j it jis j it jks j it kjs

j J k K t T

BS y W y W y W y M X y M X y

M X y M X y M X y


         

  

     

    

   

  5 6 7 8 ,t t t t t t t t
ks ks ks ks ks ks ks ks

k K t T

D h D h R h R h s S
   

 

       

 

(79)  

In this MP, the constraint (79) represents the optimality cut where ( , )y h  indicates the 

extreme point of the dual polyhedral resulted from solving the DSP. This reformulation has the 

drawback of involving a large number of OC constraints. At the optimal solution, not all of these 

constraints will be binding. Thus, one works with RMP by considering only a subset of these 

constraints. This RMP provides an upper bound to optimal solution of MP. At a given iteration 

of BD, RMP is first solved to obtain the values of first-stage decisions. Then, these values are 

used to solve DSP to obtain an extreme point and a new optimality cut (79) is included in the 

RMP. But this algorithm may require a large number of iterations to converge, especially for our 

complex MILP. To improve the slow convergence of the BD, there are some acceleration 

techniques in the literature such as generation of valid inequalities, disaggregation of Benders cut 

(Dogan and Goetschalckx, 1999), Pareto-optimal cut generations scheme (Magnanti and Wong, 

1981; Papadakos, 2008), covering cut bundle strategy (Saharidis et al.,  2010), local branching 

(Rei et al., 2009), generation of maximal non-dominated cuts (Sherali and Lunday, 2013), and 

dynamically updated near-maximal Benders cuts (Oliveira et al., 2014). However, due to the 

structure of our complex CLSCND problem, we employ the following acceleration strategies to 

improve the slow convergence of this stochastic BD.  
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2.5.1 Valid inequalities 

One of the critical reasons for slow convergence of BD is the low quality of the RMP 

solutions at the primary iterations (Saharidis and Ierapetritou, 2010). To avoid this inefficiency, a 

series of valid inequalities (constraints) may be derived to be included into RMP to restrict the 

feasible region and so, produce high quality solutions. Consequently, the gap between the lower 

and upper bounds will be decreased and the algorithm will converge to an optimal solution 

faster. Based on the structure of problem, the following VIs are developed to narrow solution 

space of RMP and improve the lower bound: 

(1) Force the capacity of established facilities to be at least equal to summation of maximum 

nominal retailers’ demand and return: 

MC
i j

i I j J

W BS
 

    (80)  

,

ˆmaxDC t
j ks

s S t T
j J k K

W D
 

 

    (81)  

,

ˆmaxCC t
j ks

s S t T
j J k K

W R
 

 

 
 

 (82)  

Constraints (80)-(82) apply this idea to manufacturing/remanufacturing, distribution, and 

collection centers, respectively. By adding them to RMP, we improve the quality of RMP 

solutions, especially in early iterations.  

(2) Force the opening of at least one facility of each type:  

1MC
i

i I

X


   (83)  

1DC
j

j J

X


   (84)  
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1CC
j

j J

X



 

 (85)  

It is easy to verify that they preserve complete recourse. Moreover, at the beginning of the L-

shaped algorithm, we need an initial feasible solution of first-stage variables. We can obtain a 

good initial feasible solution by solving the optimization problem with the objective (78) without 

its first term subject to constraints (2)-(7) and the VIs (80)-(85).  

2.5.2 Pareto-optimal cuts generation scheme 

Magnanti and Wong (1981) proposed a procedure for generating Pareto-optimal cuts to 

strengthen the optimality cuts. A cut is called Pareto-optimal if no other cut makes it redundant 

and similarly, the point corresponding to that cut is called Pareto-optimal. Such a cut exists 

whenever a DSP has multiple optimal solutions, and it is the strongest among all the alternative 

cuts in the same iteration. Because our BSP has a network structure, it typically has multiple dual 

solutions that generate alternative optimality cuts. To generate a Pareto-optimal cut, consider our 

CLSCND problem as the MILP problem  1 2 . . , 0, 0,1T TMax c x c y s t Ax By b x y     . Fixing integer 

variables y y , the general form of the SP is as 1 . . , 0TMax c x s t Ax b By x    and then its DSP 

can be written as   1. . , 0
T T TMin b By u s t A u c u   . Let u* be the optimal solution of the DSP and yc 

be a core point of the solution space of RMP. A Pareto-optimal cut can be obtained by solving 

the following problem, which is also called Magnanti-Wong problem: 

     1. . , , 0
T T Tc T TMin b By u s t A u c b By u b By u u     

 

(86)  

The challenge at each iteration is to identify and update a core point, which is required to lie 

inside the relative interior of convex hull of the sub-region defined in terms of MP variables. To 

deal with this problem, Papadakos (2008) proved that it is not necessary to use a core point yc to 
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obtain a Pareto-optimal. As an update strategy, it is demonstrated that the convex combination of 

the current MP solution and the previous used core point suffices for obtaining a new core point 

at each iteration as  1 1 , 0 1c c MP
it it ity y y       . For the first iteration, 0

cy  is set to equal to the 

solution of MP. Fig. 5 depicts the pseudo-code for the accelerated multi-cut L-shaped algorithm 

with the Pareto-optimal cut scheme. In step iii, the corresponding Magnanti-Wong problem (86) 

is solved to obtain Pareto-optimal cut. 

Proposed Solution Algorithm based on accelerated multi-cut L-shaped algorithm 

Step 0. Initialization 

i. 00 ,
Upper LowerZ Z     

ii. Solve the model with objective function (78) subject to the constraints (2)-(7), and VIs 

(80)-(85) to obtain an initial feasible solution 0 0 0 0 0 0 0{ , , , , , , }MC DC CC MC DC CC
i j j i j j jX X X W W W BS  

iii. Find a core point (Set it as the solution of MP) 

iv.  it = 0  

   While (
Upper Lower

ititZ Z   ) do 

Step 1. Solving DSPs for  each scenario s ∈S  using 

, , , , , , ,{ , , , , , , }MC DC CC MC DC CC
i it j it j it i it j it j it j itX X X W W W BS  

               If  solved to optimality 

                  i. Solve the corresponding Magnanti-Wong problem (86) to obtain a Pareto-

optimal cut  

                  ii. Update  
Lower
itZ   

           End if   

      Step 2. Add generated cuts to RMP 

      Step 3. Solving the RMP with the new cuts 

i.  Update 
Upper
itZ  

ii.   it = it + 1 

iii. Update the core point   1 1 , 0 1c c MP
it it ity y y        

   End while 

Figure 5.  The pseudo-code of the accelerated L-shaped algorithm 
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2.6 Computational Results 

In Section 2.6.1, the mathematical formulation is verified by performing sensitivity analysis 

on some important parameters in small instances. Then in Section 2.6.2, stability analysis is done 

to verify that our developed scenario generation and reduction algorithm generates appropriate 

scenario trees. Finally in Section 2.6.3, we describe computational experiments using the 

proposed stochastic BD algorithm for solving large-scale CLSCN design problems.  

2.6.1 Sensitivity analysis of the hybrid robust-stochastic CLSCN design formulation 

To assess the model performance, two test instances described in Table 1 are considered. We 

generate scenarios for uncertain transportation costs. Then, for each scenario uncertainty sets of 

demand and return are developed. To do so, we sample nominal demands from a uniform 

distribution specified in Table 1. Then, we determine maximum positive and negative deviations 

from the nominal scenario such that the deviation interval of uncertain demand is a subset of the 

interval defined in Table 1. The same procedure is used to obtain uncertainty sets for returns.  

Table 1 

Characteristics and transportation costs scenarios in the test instances 1 and 2. 

Instance Size 

|I|*|J|*|K|*|R|*|T| 

Scenarios 

(S) 

Scenario 

Probability  
Transportation costs 

Nominal 

Demands 

Nominal 

 Returns 

3*8*10*2*2 

 

1 0.5           Unif(5,10)    Unif(2100,2850)      Unif(450,1050) 

2 0.2           Unif(10,15)    Unif(2350,2950)      Unif(580,1200) 

3 0.3           Unif(15,20)    Unif(2150,2650)      Unif(460,1150) 

8*12*20*5*6 1 0.1           Unif(5,9)    Unif(1500,2000)      Unif(350,850) 

2 0.3           Unif(7,12)    Unif(1900,2450)      Unif(450,1050) 

3 0.1           Unif(6,11)    Unif(2500,3100)      Unif(850,1350) 

4 0.3           Unif(5,10)    Unif(2100,2850)      Unif(450,1050) 

5 0.2           Unif(10,15)    Unif(2350,2950)      Unif(680,1200) 
 

Other parameters are generated randomly according to the uniform distributions specified in 

Table 2. The instances are solved by GAMS 23.5 using ILOG-CPLEX 11.0. To explore the 
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effects of the main parameters on solutions, sensitivity analysis is performed on operational 

costs, penalty costs analysis, selling price and uncertainty budgets. 

Table 2 

The distributions from which the parameters used in the test instances are generated. 

Parameter              Range Parameter      Range Parameter      Range 

MC
iF  Unif(2100000, 3100000)    iMC  Unif (120,160) MC

iCAP  Unif(12000, 22000) 

DC
jF  Unif(831500, 1000000)    iRC  Unif (20,40) DC

jCAP  Unif(12000, 20000) 

CC
jF  Unif(831500, 1000000) 

   
t
jIC  Unif (5,10) CC

jCAP  Unif(4800, 8100) 

,D RPC PC  Unif (150,600) 
   jCC  Unif (60,80) MC

iC
 

Unif(50, 100) 

,D RSC SC  
Unif (50,150)    rDC

 
Unif (1,5) DC

jC
 

Unif(30, 50) 

a
 Unif (0.7,1)    kPR  Unif (160,230) CC

jC
 

Unif(30, 50) 

2.6.1.1 Operational costs 

First, we examine solution sensitivity to some essential costs, such as remanufacturing, 

collection, and manufacturing costs. Changing these operational costs affects the amount of 

demands satisfied and the amount of returns collected. To investigate these effects, one cost at a 

time is multiplied by some constant coefficients. Then we examine the sensitivity of expected 

coverage of demand and returns, as well as profit, over the scenarios.  

Table 3 

Expected coverage of return and profit tor different remanufacturing costs. 

Test instance 1  Test instance 2 

Change 

coefficient 
Profit 

Expected coverage 

of return 

Change 

coefficient 
Profit 

Expected coverage 

of return 

0.5 3095177.8 96.88% 0.5 607672.3 93.90% 

1 2934364.2 96.88% 1 570964.2 93.90% 

2 2621310.2 88.76% 2 -1277780 91.60% 

10 276568 78.66% 10 -3351230 85.23% 

30 -5072070 0.00% 50 -56133500 33.70% 
 

Table 4 

Expected coverage of return and profit for different collection costs. 
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Test instance 1 Test instance 2 

Change 

coefficient 
Profit 

Expected coverage 

of return 

Change 

coefficient 
Profit 

Expected coverage 

of return 

0 4264758 99.98% 0 751722.4 99.87% 

0.6 3454197 98.93% 0.2 715681.2 95.78% 

0.8 3187979 96.75% 0.6 607672.5 93.90% 

0.9 3061048 96.23% 0.8 383767.6 93.90% 

1 2934364 89.88% 1 570964.2 93.90% 

2 1754915 75.76% 2 -2487887 87.65% 

8 -5072070 54.34% 8 -4468432 66.42% 

 

The fluctuation of the optimal expected profit and the expected coverage of return and 

demand over scenarios are demonstrated in Tables 3 and 4 for different values of 

remanufacturing and collection costs, respectively. Increasing these costs results in decreasing 

the expected coverage of return as well as the profit. In fact, with extreme increase in these 

operational costs, the expected coverage of return decreases to zero because collecting and 

acquiring end-of-use products is no longer economical. However, changing the collection and 

remanufacturing costs has no effect on the expected coverage of demand.  

Table 5 

Expected coverage of demand and return and profit for different manufacturing costs. 

Test instance 1  Test instance 2 

Change 

coefficient 
Profit 

Expected 

coverage of 

demand 

Expected 

coverage 

of return 

Change 

coefficient 
Profit 

Expected 

coverage of 

demand 

Expected 

coverage 

of return 

0.5 5955323.7 99.38% 88.76% 0.5 9659102.6 97.60% 93.90% 

0.8 4129472.5 97.53% 88.76% 0.8 5630294.3 96.40% 93.90% 

1 2934364.2 97.53% 96.88% 1 570964.2 95.90% 93.90% 

2 2383885 85.44% 96.88% 2 -10001500 95.30% 93.90% 

3 -6554420 76.19% 99.01% 3 -21934000 83.40% 99.60% 

4 -8825490 59.30% 99.01% 4 -30067200 67.10% 99.60% 

5 -8872220 24.94% 99.21% 5 -34444100 34.30% 99.60% 
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Table 5 shows that when the manufacturing cost increases, the expected coverage of demand 

and profit will decrease, but the expected coverage of returns will increase. When the 

manufacturing cost increases in the forward network, the system tries to satisfy demand by 

remanufacturing used products collected from retailers. Thus, with increase in manufacturing 

cost, the expected coverage of returns increases and, since the remanufactured products are not 

sufficient to meet the demand, the expected coverage of demand decreases.  

2.6.1.2 Penalty and other costs related to retailers 

Next we investigate the impact of penalty costs for unsatisfied demand and scrap costs for 

uncollected returns on the expected coverage of demand and return, respectively, followed by the 

relation between surplus cost and the expected coverage of demand and also the relation between 

penalty cost and the expected coverage of return. There is an inverse relation between the surplus 

and penalty costs in the forward network and also between the scrap and penalty costs in the 

reverse network. In the forward network, the CLSCN seeks a trade-off between the penalty and 

surplus costs such that their total is minimized. Likewise, in the reverse network, the 

optimization achieves a trade-off between the penalty and scrap costs such that their total is also 

minimized. These costs serve to balance the forward flows with the demand and the reverse 

flows with the return quantities as much as possible.  

Table 6 

Expected coverage of demand and profit for different penalty costs for unsatisfied demands. 

Test instance 1  Test instance 2 

Penalty cost of 

unsatisfied demand 
Profit 

Expected coverage 

of demand 

Penalty cost of 

unsatisfied demand 
Profit 

Expected coverage 

of demand 

0 6881686.461 78.23% 0 8011126.061 74.56% 

155 5756598.493 85.43% 50 5458363.293 83.22% 

300 5696535.978 89.68% 100 4747939.381 93.34% 
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800 5535406.573 92.56% 350 3558672.964 96.81% 

1200 5427877.293 99.48% 450 3264315.516 98.57% 

2400 5134039.509 99.96% 750 2973672.746 99.78% 
 

Table 7 

Expected coverage of return and profit for different scrap costs for uncollected returns.  

Test instance 1 Test instance 2 

Scrap costs of 

uncollected return 
Profit 

Expected 

coverage of return 

Scrap costs of 

uncollected  return 
Profit 

Expected coverage 

of return 

0 6881686.462 0 0 8011126.061 0 

100 5089580.689 65.43% 50 6407165.786 58.22% 

300 4660283.369 88.76% 150 5937110.786 81.78% 

500 4304763.446 98.74% 450 5413307.469 96.57% 

800 4302200.405 99.84% 750 4315328.712 99.78% 

 

As the results in Table 6 show, increasing the penalty cost for unsatisfied demands results in 

higher expected coverage of demand and lower total profit. A similar sensitivity of the expected 

coverage of return to its corresponding scrap cost of uncollected returns is also seen in Table 7.  

Table 8 

Expected coverage of demand and profit for different surplus costs of excess amount of flows over demand. 

Test instance 1  Test instance 2 

Surplus cost 

for demand 
Profit 

Expected coverage of 

demand 

Surplus cost 

for demand 
Profit 

Expected coverage of 

demand 

0 3084707.559 99.98% 0 1028633.229 98.75% 

60 2976581.403 98.59% 75 462961.162 98.42% 

100 2915489.545 97.69% 100 360710.162 97.24% 

800 2313456.622 95.52% 900 -653970.454 96.41% 

1200 2236937.507 85.48% 1200 -773171.213 95.27% 

2000 1931361.174 75.66% 5000 -1138770 86.78% 
 

 

 

Table 9 

Expected coverage of return and profit for different penalty costs of excess amount of flows over return. 

Test instance 1 Test instance 2 
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Penalty cost 

of return 
Profit 

Expected coverage of 

return 

Penalty cost of 

return 
Profit 

Expected coverage 

of return 

0 3082146.106 99.14% 0 1028633 99.71% 

20 3044299.389 98.39% 25 838454.6 96.52% 

50 2993617.919 97.66% 55 635474.7 94.21% 

100 2985514.982 88.76% 100 407039.1 93.83% 

1000 2941578.337 86.28% 1000 -1350870 89.22% 

2000 2853703.669 85.36% 5000 -2085200 87.78% 

 

Furthermore, as Table 8 illustrates, increasing the unit surplus cost for excess amount of 

flows over demands in retailers lowers the expected coverage of demand and the total profit. A 

similar result for penalty costs on the excess amount of flows over returns is shown in Table 9. 

2.6.1.3 Selling price 

The selling price has an important influence on the total profit and the expected coverage of 

demand. The sensitivity is explored by multiplying the price by a constant coefficient.  

Table 10 

Expected coverage of return and profit for different selling prices. 

Test instance 1 Test instance 2 

Change 

coefficient 
Profit 

Expected coverage 

of demand 

Change 

coefficient 
Profit 

Expected coverage of 

demand 

0.2 -15235300 21.92% 0.2 -41582100 83.40% 

0.5 -10527400 59.31% 0.4 -31680300 92.30% 

0.7 -5258650 85.44% 0.7 -15665600 94.80% 

1 2934364 97.53% 1 570964 95.90% 

1.5 12190600 98.43% 2.5 84338690 98.70% 

2.5 49782290 99.48% 5 225508800 99.80% 

5 128181300 99.86 10 508778800 100.00% 

 

From Table 10, increasing the selling price causes the expected coverage of demand and 

profit to increase. The reason for this system behavior is that the cost prices of the product for 
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different customers are different and so the system tries to satisfy the demand of customers 

whose cost price is less than the selling price. Increasing the selling price raises the number of 

such customers and so the expected coverage of demands will increase.  

2.6.1.4 Budget of uncertainty 

The effect of uncertainty is studied by changing the budget of uncertainty parameters for 

uncertain demands and returns. We define   as the level of variability of the uncertain 

parameter respect to its nominal value and consider the values 5%,10%,20%  and 30% . With the 

help of this parameter we can change the radius of the polyhedral uncertainty sets. In test 

instance 1, for each level of variability of uncertain demand, we vary 
D
s  in each scenario s from 

0 (the nominal formulation) to its maximum value 20K T  (the worst-case formulation) by 1, 

while maintaining 0R
s   to investigate just the uncertainty in demand. In addition, a bound on 

the probability of constraint violation is computed according to equation (31) under the 

assumption of symmetric distributions for independent demand and return quantities. The 

percent decrease in the optimal profit value and the constraint violation probability bound for 

each scenario s independently are plotted in Figures 6 and 7, respectively, as functions of 
D
s  

and
R
s . Here, the relative decrease in optimal profit is calculated as  N R NZ Z Z where NZ  and RZ  

are the nominal and robust optimal profits, respectively. 
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Figure 6.  Optimal profit decrease and probability of robust constraint violation as a function of 

D
s  

Figure 7.  Optimal profit decrease and probability of robust constraint violation as a function of 

R
s  
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As expected, we observe from Figures 6 and 7 that for each level of variability, the 

magnitude of reduction in profit increases while the constraint violation probability decreases 

with as the uncertainty budget increases.  

However, the bound on the probability of constraint violation computed according to equation 

(31) is in fact for a single robust constraint. To our knowledge, no bounds have been developed 

for probability of violating multiple robust constraints together. To investigate this, we compute 

an empirical frequency of constraint violation in a simulation. To do so, the test instance 1 is 

solved for different values of 
D
s  and

R
s which are increased from 0 to 20 in increments of one. 

Then, for each solved test instance 1 with different values of 
D
s  and

R
s , we generate random 

values a thousand times for the collection of uncertain demands and returns from their associated 

polyhedral uncertainty sets. Next, based on the optimal values for the decision variables and 

these sampled values of demand and return quantities, we check to see whether the robust 

constraints are feasible or not, and so obtain the violation frequency of our hybrid robust-

stochastic problem. To compare with each other for test instance 1, these frequencies as well as 

the constraint violation probability bound for each scenario s, which is calculated based on 

equation (31), are plotted together in Figure 8 as functions of 
D
s  and

R
s .  
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Figure 8.  Violation frequency and optimal profit value decrease as a function of 
D
s  and

R
s  

In Figure 8, the red curve with diamond markers shows the deviation from optimal profit for 

different values of 
D
s  and

R
s . Also, the green plot with triangle markers shows the violation 

probability of a single constraint computed using equation (31). However, according to the 

approximate violation frequencies illustrated by the blue plot, if we choose , 4D R
s s   , then the 

overall violation probability is approximately 1, which means that when the highest objective 

value is obtained it is not robust with respect to changing the values of our uncertain parameters. 

For 4 , 14D R
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s s   , then there is not much difference in terms of the robustness and in fact it is close 
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our problem with these scenario trees, then we should obtain (approximately) the same optimal 

value of the objective function. That is, if we generate |L| scenario trees  , 1,...,l l L  using our 

scenario generation and reduction algorithm, solve the CLSCN design problem with each one of 

these scenario trees, and obtain the optimal solution * , 1,...,lx l L , then stability means that we 

should have       * *ˆ ˆ, , , , 1,...,l l u uf x f x l u L  where  *ˆ ,l lf x  is the optimal objective function value with 

respect to the scenario tree l. This type of stability means that the real performance of the optimal 

solution 
*
lx  is stable, i.e. it is not dependent upon which scenario tree we choose (Kaut and 

Wallace, 2007). To carry out this stability analysis, we generate 8 scenario trees for test instances 

1 and 2, solve the hybrid robust-stochastic CLSCN design problem with the other input data held 

constant and then the optimal objective function values are reported in Table 11. The lack of any 

substantial difference between the optimal objective values indicates stability.  

Table 11 

Stability analysis of the scenario generation and reduction algorithm 

Test instance 1 Test instance 2 

Scenario Tree Optimal objective function value Scenario Tree Optimal objective function value 

1 2934364.2 1 570964.2 

2 2945120.7 2 572356.1 

3 2975218.2 3 570852.3 

4 3012312.5 4 575123.7 

5 3024521.1 5 569978.9 

6 2898959.8 6 572123.5 

7 2955412.9 7 570768.1 

8 3003252.1 8 572325.4 
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2.6.3 Computational efficiency of the accelerated L-shaped algorithm 

We measure the computational efficiencies achieved by adding VIs and employing Pareto-

optimal cuts in terms of computing times, number of Benders iterations and the quality of lower 

bounds. The characteristics of the test instances are described in Table 12. The transportation 

cost scenarios are based on an AR (1) process with  = 30, 1  = 0.15, and error terms normally 

distributed with a mean 0 and a variance. The accelerated BD algorithm is coded in MATLAB 

and tested on a computer with CPU Intel Core i7, 2.5 GHz and 8 GB RAM. CPLEX 11.0 is used 

to solve MP and BSPs. We solve each instance both with/without VIs and Pareto-optimal cuts.  

Table 12 

Characteristics and size of the generated test instances. 

Instance |I| |J| |K| |R| |T| Number of scenarios Number of variables Number of constraints 

1 8 12 20 5 3 5 38.75 10  
39.76 10  

2 10 14 20 8 6 10 46.2634 10   
46.827 10  

3 12 16 25 10 8 15 51.7485 10  
51.8782 10  

4 15 18 30 12 9 20 53.5494 10  
53.7709 10  

5 18 20 35 16 12 24 57.4841 10  
57.7816 10  

6 20 24 40 18 12 28 61.1735 10  
61.2286 10  

7 24 26 43 20 14 32 61.8818 10  
61.9624 10  

8 26 30 45 25 16 35 62.7386 10  
62.8468 10  

 

2.6.3.1 Effectiveness of the valid inequalities 

Table 13 compares the effects of different combinations of VIs on the lower bounds, 

optimality gap, and the number of BD iterations (Iters). Here, BD denotes the BD algorithm 

without any VI, and BDVI1, BDVI2, and BDVI12 denote that VIs (80)-(82), (83)-(86), and (80)-

(86), respectively, are added to the MP. The stopping criteria are (1) optimality gap below a 

threshold value 0.009 or (2) a maximum of 70 Benders iterations is reached.  
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Table 13 

Lower bounds, optimality gap and number of Benders iterations for different combinations of VIs. 

 
Test 

NO. 
BD BDVI1 BDVI2 BDVI12 

Test 

NO. 
BD BDVI1 BDVI2 BDVI12 

lbZ  

1 

20489040 20497213 20489040 20503960 

5 

164097472 164097472 164097472 164136565 

Gap (%) 0.315 0.275 0.315 0.242 0.767 0.767 0.767 0.743 

Iters 6 6 6 5 18 17 18 17 

lbZ  

2 

76750546 76750546 76750546 76814729 

6 

156060139 156094286 156060139 156105154 

Gap (%) 0.532 0.532 0.532 0.448 0.567 0.545 0.567 0.538 

Iters 15 13 14 11 10 8 10 8 

lbZ  

3 

140005839 140317678 140014137 140345464 

7 

180275935 180281299 180275935 180281299 

Gap (%) 1.243 1.018 1.237 0.998 0.821 0.818 0.821 0.818 

Iters 70 70 70 70 21 21 21 20 

lbZ  

4 

177735807 177825740 177825740 177908700 

8 

173109952 173118493 173109952 173243278 

Gap (%) 0.843 0.792 0.792 0.745 1.353 1.348 1.353 1.275 

Iters 25 24 25 23 70 70 70 70 

In Table 13, we see that VI2 itself does not make any significant impact on either the number 

of Benders iterations or the optimality gap. However, BDVI12 consistently improves the lower 

bound as compared with the classical BD algorithm, and so increases the convergence rate. 

Moreover, when the maximum number of iterations is reached, for example in instances 3 and 8, 

the gaps provided including both VIs are better than those provided with either VI alone. Of the 

two sets of VIs alone, the first (VI1) improves the lower bound more and so more efficient. 

2.6.3.2 Effectiveness of Pareto-optimal cuts 

In Table 14, the lower bound, the optimality gap and the number of Benders iterations are 

displayed for the BD variants with Pareto-optimal cuts and also with a hybrid strategy that 

combines the VIs with the Pareto-optimal cuts. Note that in our computational experiments, a 

core point approximation 0
cy  is initialized with a feasible solution to our RMP and then we 
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update the approximation at each successive iteration by setting  1
ˆ1c c MP

it it ity y y    . We set 

0.5   because, according to empirical observations of Papadakos (2008) and Oliveira et al., 

(2014). The BDVI12 variant has lower optimality gaps than the BD variant with Pareto-optimal 

cuts. The hybrid strategy achieves even better results in terms of optimality gap and the iteration 

count compared with other variants of BD algorithm.  

Table 14 

Lower bounds, optimality gap and number of Benders cycles for different BD algorithms. 

 

Test 

NO. 

BD with Pareto-

optimal cut 

BD with hybrid 

strategy 

Test 

 NO. 

BD with Pareto-

optimal cut 

BD with hybrid 

strategy 

lbZ  

1 

20504983 20519053 

5 

164149600 164149600 

Gap (%) 0.237 0.167 0.735 0.735 

Cycles 5 3 15 15 

lbZ  

2 

76814729 76814528 

6 

156094500 156130215 

Gap (%) 0.448 0.448 0.545 0.522 

Cycles 11 11 7 5 

lbZ  

3 

140317678 140695119 

7 

180292029 180297394 

Gap (%) 1.018 0.747 0. 812 0.809 

Cycles 70 15 19 16 

lbZ  

4 

177938726 177966995 

8 

173109952 173109952 

Gap (%) 0.728 0.712 1.335 1.156 

Cycles 22 19 70 70 

Table 15 displays the computational times for solving each test instance by each BD variant 

and also by directly solving the extensive form by CPLEX. The CPLEX computational times are 

smaller for the test instances with few scenarios. As the number of scenarios increases, the BD 

algorithms, especially with the hybrid strategy, outperforms CPLEX. From the results of Tables 

13, we can observe that adding the VI1 is more efficient than VI2 in terms of number of 

iterations and gap. Moreover, we see that when we apply the BD algorithm with Pareto-optimal 



50 

cut, the number of iterations and optimality gap are decreased for most test instances compared 

with BD, BDV1, BDV2, and BDV12. But, this algorithm has the highest computational time 

compared with all BD algorithms. The smaller numbers of Benders iterations when using Pareto-

optimal cuts do not necessarily mean smaller computational times in fact, the computational 

times are increased as a result of the time spent to solve the Magnanti-Wong problem to obtain 

the Pareto-optimal cuts. Here, each iteration is more effective than each iteration in other BD 

algorithms and that is why we have less the number of iterations and optimality gap compared 

with BD, BDV1, BDV2, and BDV12, but each iteration takes longer. However, when we add 

both VI1 and VI2 to the BD algorithm with Pareto-optimal cut as the BD algorithm with hybrid 

strategy, it gives us the best performance in terms of both computational time and also optimality 

gaps and number of Benders cycles for large-scale instances such as instance 5, 6, 7, and 8. 

Therefore, the Pareto-optimal cuts generation scheme plus adding both valid inequalities 

demonstrates the best performance in general. 

Table 15 
Result summary of computational times (in seconds) for different solution algorithms. 

 

Test NO. BD BDVI1 BDVI2 
BD with Pareto-

optimal cut 

BD with 

hybrid strategy 
CPLEX 

1 25.19 19.08 21.57 27.08 24.01 11.06 

2 88.08 85.12 82.21 92.43 90.34 35.48 

3 121.56 119.32 121.34 145.21 122.67 58.32 

4 162.78 141.11 155.62 189.34 157.17 159.12 

5 287.54 271.37 285.09 298.32 268.54 332.34 

6 399.91 375.76 388.23 467.78 372.62 465.12 

7 684.23 655.34 675.54 699.12 646.46 -* 

8 1018.45 899.21 986.24 1146.13 888.32 -* 

* The dashes means that we were not able to solve these test instances. 

 

 



51 

CHAPTER 3   CONCLUSION AND FUTURE RESEARCH  

 

In this paper, a mixed-integer linear programming model for a multi-period, single-product 

and capacitated CLSCN design problem is formulated to maximize the expected profit. As the 

major contribution, a hybrid robust-stochastic programming approach is developed to model 

qualitatively different uncertainties. We assume historical data exist for transportation costs and 

use them to generate probabilistic scenarios by a scenario generation and reduction algorithm. 

Then, in each scenario for transportation costs, polyhedral uncertainty sets are proposed for 

demand and return quantities in the absence of historical data for a new product. Some numerical 

instances are created to analyze and validate formulation. To solve this combinatorial problem, 

an accelerated stochastic BD algorithm is proposed. Two groups of valid inequalities are added 

to the master problem to efficiently improve the lower bound, and Pareto-optimal cuts are also 

applied to further accelerate convergence. The computational results demonstrate that the 

combination of all valid inequalities is most effective for improving the lower bound. Also, the 

Pareto-optimal cut generation scheme results in significant improvement for some instances 

where the number of Benders iterations is large. Overall, the combination of VIs and Pareto-

optimal cuts demonstrates the best average performance.  

As this paper introduces a novel combination of robust and stochastic optimization in the 

context of CLSCN design, there are some opportunities for future research such as applying 

other robust optimization approaches and even other uncertainty sets such as ellipsoidal ones, as 

well as investigating the management of disruption risk in the CLSCN design problem. 

Moreover, to solve this large-scale problem, other versions of the BD approach such as a 

Benders-based branch-and-cut approach, where a single branch-and-cut tree is constructed and 
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then the Benders cuts are added during the exploration of this tree, can be applied for 

performance comparisons.  
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Appendix A.  Literature review 

Table A.1 

Classification of closed-loop supply chain network design problems. 

Category Detail Code Category Detail Code 

Problem 

features: 

Periods:  Collection/inspection centers  CIC 

Multi-period MP Disassembly centers DAC 

Single period SP Remanufacturing centers RMC 

Product: Repair centers RPC 

Single-product SPr Redistribution centers  RDC 

Multi-product MPr Objectives: Min cost C 

Flow capacity: Max profit Pr 

Uncapacitated flow UF Others O 

Capacitated flow CF Modeling: Mixed-integer non-linear program MINLP 

Facility capacity: Mixed-integer linear program MILP 

Uncapacitated UC Outputs: Inventory I 

Capacitated CC Location/allocation LA 

Sourcing: Facility capacity FC 

Single Sourcing SS Transportation amount  TA 

Multiple Sourcing MS Price of products P 

Capacity expansion: CE Production amount PA 

SC 

network  

Stages: 

Forward stage: Transportation mode  TM 

Distribution centers/Warehouses  DC Demand/Return satisfaction  DRS 

Manufacturing centers  MC Uncertain  

Programming

: 

Deterministic Programming DP 

Supply centers  SC Stochastic Programming StP 

Customer zones/retailer CZ Robust Programming RtP 

Reverse stages: Fuzzy Programming FuP 

Redistribution centers  RDC Uncertain  

Parameter: 

Demand/Supply DS 

Disposal centers  DSC Return RE 

Recycling centers  RYC Costs CO 

Recovery centers  RCC Others Ot 
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Table A.2 

Review of most cited and also recent articles in the CLSCN design problem 

Articles Problem features  SCN stages Objective Modeling Uncertainty 

Parameters 

Uncertainty 

Programmin

g 

Outputs Solution Method 

Fleischmann et al. (2001) SP, SPr, UF, UC, MS MC, DC, DAC, RMC, DSC, CZ C MILP - DP LA, TA, DRS CPLEX 

Salema et al. (2007) SP, MPr, UF, CC, MS MC, DC, CIC, RMC, RCC, CZ C MILP DS, RE StP LA, TA Branch & Bound algorithm 

Üster et al. (2007) SP, MPr, UF, UC, SS MC, DC, CIC, RMC, CZ C MILP - DP LA, TA Benders’ Decomposition with multiple cuts 

Ko and Evans (2007) MP, MPr, UF, CC, MS,CE MC, DC, RPC, CZ C MINLP - DP LA, TA, FC Genetic algorithm-based heuristic 

Lu and Bostel (2007)   SP, SPr, UF, UC, MS MC, CIC, RMC, DSC,CZ C MILP - DP LA, TA Algorithm based on Lagrangian heuristics 

Listeş (2007) SP, SPr, UF, CC, SS MC, RCC, DSC, CZ C MILP DS, RE StP LA, TA L-Shaped algorithm 

Min and Ko (2008) MP, MPr, UF, UC, MS,CE MC, DC,CIC,RPC, CZ C MINLP  DP LA,TA,FC, DRS Genetic algorithm 

Lee and Dong (2008) MP, MPr, UF, CC, MS MC, DC,CIC,RDC,RMC,CZ C MINLP DS, RE StP LA, TA Heuristic algorithm based on Simulated 

Annealing  & sample average approximation 

Salema et al. (2009) MP, MPr, UF, CC, MS MC, DC, DAC, RMC, CZ C MILP - DP LA, TA, I, PA, DRS Branch & Bound algorithm 

Easwaran and Üster (2009) SP, MPr, UF, CC, MS MC, DC, CIC, CZ C MILP - DP LA, TA Benders’ Decomposition & Tabu search 

heuristics 

Pishvaee et al. (2009) SP, SPr, UF, CC, MS MC, DC, CIC, DSC, CZ C MILP DS, RE, CO StP LA, TA LINGO 

El-Sayed et al. (2010) MP, SPr, UF, CC, MS SC, MC, DC,CIC,RDC,RMC,DSC, CZ P MILP DS StP LA, TA, I Xpress-Mosel  

Pishvaee et al. (2010) SP, SPr, UF, CC, MS MC, DC, CIC, RDC, DSC, CZ C, O MILP - DP LA, TA, FC Memetic algorithm 

Wang and Hsu (2010) SP, SPr, UF, CC, MS SC, MC, DC,RDC,RMC,DAC,CZ C MINLP - DP LA, TA, PA Genetic algorithm 

Salema et al. (2010) MP, MPr, CF, CC, MS MC, DC, DAC, DSC, CZ C MILP - DP LA, TA, I, PA, DRS CPLEX 

Easwaran and Üster (2010) SP, MPr, UF, CC, MS MC, DC, CIC, RMC, CZ C MILP - DP LA, TA Benders’ decomposition 

Pishvaee and Torabi (2010) MP, SPr, UF, CC, MS MC, DC, CIC, RCC, RYC, CZ C, O MILP DS, RE, Ot FuP LA, TA Interactive fuzzy solution approach 

Pishvaee et al. (2011) SP, SPr, UF, CC, MS RCC, RDC, CIC, DSC, CZ C MILP DS, RE, CO RtP LA, TA, DRS CPLEX 

Hasani et al. (2011) MP, MPr, UF, CC, MS SC, MC, DC, CIC, RMC, CZ C MILP DS, CO RtP LA, TA, I, DRS LINGO 

Vahdani et al. (2012) SP, MPr, UF, CC, SS SC, MC, DC, CIC, RYC ,CZ C, O MILP CO RtP, FuP LA, TA a hybrid solution method 

Zeballos et al. (2012) MP, MPr, CF, CC, MS MC, DC, DAC, DSC, CZ C MILP RE StP LA, TA, I, DRS CPLEX 

Pishvaee and Razmi (2012) SP, SPr, UF, CC, MS MC, CIC, DSC, RYC, CZ C, O MILP DS, RE, CO, 

Ot 

FuP LA, TA Interactive fuzzy solution approach 

Ramezani et al. (2013) SP, MPr, CF, CC, SS SC, MC, DC, CIC, RMC, DSC, CZ C, O MILP DS, RE, CO StP LA, TA, FC CPLEX 

Amin and Zhang (2013) SP, MPr, UF, CC, MS MC, CIC, DSC, CZ C, O MILP DS, RE StP LA, TA CPLEX 

Keyvanshokooh et al.(2013) MP, MPr, UF, CC, SS MC, DC, CIC, RCC, DSC, CZ C MILP - DP LA, TA, PA, FC, I, P CPLEX 

Devika et al. (2014) SP, SPr, UF, CC, SS SC,MC,DC,CIC,RMC,RYC,RCC, DSC C, O MILP - DP LA,TA,PA  Imperialist competitive algorithm  & variable 

neighborhood search algorithm 

Soleimani and Govindan 

(2014) 

SP, MPr, UF, CC, MS MC, RDC, CIC, DSC, RYC C MILP DS, RE, CO StP LA, TA CPLEX 

Faccio et al. (2014) SP, MPr, UF, CC, MS MC, DC, RDC, RMC, DSC, CZ C MILP - DP LA, TA, I, TM Commercial Solver 

Zeballos et al. (2014) MP, MPr, UF, CC, MS SC,MC,DC, CIC, DAC, RPC, DSC, CZ C MILP DS StP LA, TA, I, TM CPLEX 

This paper MP, SPr, UF, CC, MS MC, DC, CIC, RMC, DSC, CZ P MILP DS,RE,CO StP, RtP LA, TA, I, PA,  FC Accelerated stochastic Benders 

Decomposition with Pareto-optimal cuts 

 

 
5
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Appendix B. Scenario generation and reduction algorithm 

Scenario Generation & Reduction Algorithm 

Nomenclature: 

NS : The number of constructed scenarios in each time period  

targetNS :The desired number of reduced scenarios 

NF: The number of flows among each pair of facility types 

tSc :The set of scenarios in time period t 

Prtj : The probability of generated scenario j in time period t 

tDSc : The set of scenarios that is deleted in time period t 

ijtDis : The Euclidean distance between scenario i and j in time period t  

Begin 

For each time period t ∈T 

Step 1. Generate  , 1,2,..., ; 1,2,...,s
t f f NF s NS    using the LHS method as follows: 

i. P is an NF NS matrix in which each row is a random permutation of 1,..,NS. 

ii. R is an NF NS matrix generated randomly using uniform distribution (0,1).  

iii. 
1

( )G P R
NS

  . 

iv.  1
,

ˆ ( ) 1,2,..., ; 1,2,...,s
t f fsF G f NF s NS    where 1()F

  is inverse cumulative distribution function of ε. 

Step 2. Construct transportation cost scenarios. 

         If (t>1) then 

a. Construct the set tSc  by targetNS NS scenarios with the help of equation (57) using 

 , 1,2,..., ; 1,2,...,s
t f f NF s NS    and 1tSc  as the available transportation costs from previous periods. 

b. Calculate the probability of target

Pr
Pr , ( 1) 1 , 1,..,i

tj i NS j NS i i NS
NS

         

         Else 

a. Construct NS transportation cost scenarios for the time period 1 using equation (56). 

b. Calculate the probability of 1

1
Pr , 1,..,j j NS

NS
   

         End if 

Step 3. Backward scenario reduction method: 

i. Define tSc as a set of all initial scenarios at time period t and tDSc is a null set. 

ii. While ( target| |tSc NS ) 

a.  
2

, ,

1 1

, 1,..,| |, 1,..,| |

NF t
ji

ijt p f t tp f

f p

Dis c c i Sc j Sc

 

 
    
  
 

  
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b. ,
1,..,| |
min { }   1,..,| |,

t

s t ss t t
s Sc

MDis Dis s Sc t T


     , and then find the scenario index r that has the 

minimum distance with scenario s. 

c. Calculate , ,Pr    1,..,| |,s t s s t tPS MDis s Sc t T       

d. Find the scenario index d such that , ,min    1,..,| |,d t s t tPS PS s Sc t T      

e. , , ,scenario( ), scenario ( ),Pr Pr Prt t t t t r t r t dSc Sc d DSc DSc d       

                   End while 

End for 

End 
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