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ABSTRACT 

 

As a potential substitute for petroleum-based fuel, second generation biofuels are 

playing an increasingly important role due to their economic, environmental, and social 

benefits. With the rapid development of biofuel industry, there has been an increasing 

literature on the techno-economic analysis and supply chain design for biofuel production 

based on a variety of production pathways. A recently proposed production pathway of 

advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast 

pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation 

fuels in centralized biorefinery.  

This thesis aims to investigate two types of assessments on this bio-oil gasification 

pathway: techno-economic analysis based on process modeling and literature data; supply 

chain design with a focus on optimal decisions for number of facilities to build, facility 

capacities and logistic decisions considering uncertainties.  

A detailed process modeling with corn stover as feedstock and liquid fuels as the final 

products is presented. Techno-economic analysis of the bio-oil gasification pathway is also 

discussed to assess the economic feasibility. Some preliminary results show a capital 

investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of 

gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate 

of return (IRR), biomass feedstock cost, and fixed capital cost. 

A two-stage stochastic programming is formulated to solve the supply chain design 

problem considering uncertainties in biomass availability, technology advancement, and 

biofuel price. The first-stage makes the capital investment decisions including the locations 
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and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while 

the second-stage determines the biomass and biofuel flows. The numerical results and case 

study illustrate that considering uncertainties can be pivotal in this supply chain design and 

optimization problem. Also, farmers’ participation has a significant effect on the decision 

making process.  
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CHAPTER 1 GENERAL INTRODUCTION 

 

As primary energy sources, petroleum products such as gasoline and diesel are widely 

used all around the world. The United States consumed 18.49 million barrels of refined 

petroleum products per day in 2012, which was about 20.7% of total world petroleum 

consumption according to the US Energy Information Administration (EIA) [1]. However, the 

use of petroleum has a negative impact on ecosystems and biosphere, releasing pollutants and 

greenhouse gases. Besides, 40% of the petroleum that the United States consumed in 2012 are 

relied on net imports [2]. Thus, the attentions on national energy security and independence as 

well as environmental impacts have brought rising interests in renewable energy in both public 

and private sectors. 

Biofuels such as ethanol and biodiesel are transportation fuels that are made from 

biomass-based materials, which are recognized as a relatively clean and sustainable fuel source. 

The Renewable Fuel Standard (RFS) program was created by US Environmental Protection 

Agency (EPA) in 2005, and it’s the first renewable fuel volume mandate established in the 

United States. Under the Energy Independence and Security Act (EISA) of 2007, the RFS 

program was revised. According to the revised Renewable Fuel Standard (RFS2), as shown in 

Figure 1.1, at least 36 billion gallons of renewable fuels will be produced every year by 2022, of 

which at least 16 billion gallons per year will be from cellulosic biofuels [3]. 

Biomass can be converted to transportation fuels through a variety of production 

pathways, including biochemical and thermochemical platforms. Recently, thermochemical 

conversion of biomass to produce transportation fuels has moved to the forefront of biofuel 

research and development. Fast pyrolysis and gasification are two of the most prominent 
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technologies for the thermochemical conversion of cellulosic biomass. Fast pyrolysis thermally 

decomposes organic compounds in the absence of oxygen process, and the products include bio-

oil, bio-char, and non-condensable gases [4]. The fast pyrolysis reactors typically run at 

temperature between 400 ºC and 600 ºC and can produce approximately 70% (by weight) bio-oil 

[5]. The other 30% splits between non-condensable gases (e.g., carbon dioxide or methane) and 

bio-char. On the other hand, biomass gasification runs at much higher temperature (800 ºC - 

1300 ºC) and gasification a relatively mature technology. However, commercialization of 

biomass gasification has been hampered by its high capital and operating costs due to the 

challenges of transporting bulky solid biomass over a long distance, processing solid feedstock at 

high pressure, and removing contaminants from the product gas stream. 

 

Figure 1.1 Revised Renewable Fuel Standard 

With the rapid development of biofuel industry, there has been an increasing literature on 

the techno-economic analysis and supply chain design for biofuel production based on a variety 

of production pathways. The techno-economic analysis of biomass gasification by Swanson et al. 
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claims that the minimum fuel selling price is $4-5 per gallon of gasoline equivalent (GGE) and 

the capital investment requirement is $500-650 million for a 2000 metric ton per day facility [6]. 

Wright et al. reported that the capital cost of centralized gasification plant with a capacity of 550 

million GGE per year is about 1.47 billion [7]. The capital cost of distributed fast pyrolysis 

facility with a capacity of 2,000 metric ton per day is $200 million [8]. To reduce system cost 

and improve supply chain efficiency, it has been suggested that biomass can be converted to bio-

oil via fast pyrolysis near the harvest site, then the bio-oil can be transported to the upgrading 

plant for transportation fuels production [9]. On supply chain network design side of literature, 

Shah reviewed the previous studies in modeling, planning, and scheduling with a few real world 

examples to summarize the challenges and advantages of supply chain optimization [10]. An et 

al. compared the supply chain research on petroleum-based fuel with biofuel production [11]. 

Eksioglu et al. formulated a model to determine the numbers, locations, and capacities of the 

biorefineries, conducted a case study for the state of Mississippi to illustrate the optimization 

model [12]. Most of the literature on biofuel supply chain design assumes all the parameters in 

the system are deterministic. 

Cellulosic biomass to liquid fuel technologies are not yet to be commercialized despite of 

the increasing research interests, mainly due to the lack of economic competitiveness of 

advanced biofuel production pathways. In this thesis, a hybrid production pathway that combined 

the two prominent thermochemical production pathways (fast pyrolysis and gasification) is 

considered. Its economic feasibility and supply chain design are investigated. The biofuel 

production process works as follows: cellulosic biomass such as corn stover is converted to bio-

oil in relatively small fast pyrolysis processing plants at distributed locations; with mild-
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hydrotreating, the bio-oil is then transported to a centralized gasification facility to synthesize 

and produce the transportation fuels. 

As a newly proposed pathway in the cellulosic biofuel technology, the process design, 

techno-economic analysis, and supply chain design of this pathway have not been studied 

extensively. To fulfill these gaps, this thesis aims to investigate the techno-economic feasibility 

at commercial scale and the optimal supply chain design decisions on the number and capacities 

of the facilities, as well as the logistic decisions. It should be noted that the techno-economic 

analysis is part of the ongoing project titled “Experiments, Technoeconomics, and Optimization 

of Bioenergy Systems Based on Bio-Oil Gasification” which is supported by Iowa Energy 

Center. Therefore, the preliminary results and analysis in CHAPTER 2 are subjected to update 

with additional experimental results. The conclusions and discussions can contribute to the 

system efficiency improvement of supply chain network and economic feasibility of the 

production pathway. The insights derived from this thesis can potentially facilitate the 

commercialization of this proposed advanced biofuel production technology.  

The rest of the thesis is organized as follows. In CHAPTER 2, we present the process 

model and techno-economic analysis of bio-oil gasification pathway, with corn stover as 

feedstock and liquid transportation fuels as the final products. In CHAPTER 3, we provide a 

mathematical programming framework with a two-stage stochastic programming approach to 

design the supply chain network considering uncertainties along the supply chain such as 

biomass availability, technology advancement, and biofuel price. Besides, the effects of farmers’ 

participation on decision making process are discussed in CHAPTER 3. CHAPTER 4 concludes 

the thesis with a summary of the research findings and conclusions. Some proposed future 

research directions are also provided in CHAPTER 4. 
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CHAPTER 2 TECHNO-ECONOMIC ANALYSIS OF ADVANCED BIOFUEL 

PRODUCTION BASED ON BIO-OIL GASIFICATION 

Modified from a paper to be submitted to Fuel 

Qi Li
1
, Yanan Zhang

2
 and Guiping Hu

3
 

 

Abstract 

This chapter evaluates the economic feasibility of a hybrid production pathway 

combining fast pyrolysis and bio-oil gasification. In this pathway, cellulosic biomass such as 

corn stover is firstly converted to bio-oil through fast pyrolysis and then the bio-oil will go 

through gasification process to produce the syngas followed by catalytic Fischer-Tropsch 

synthesis and hydroprocessing to produce transportation fuels.  

A detailed process modeling is presented using Aspen Plus
®
 for a 2000 metric ton per 

day facility. Preliminary results of techno-economic analysis of this fast pyrolysis and bio-oil 

gasification pathway are discussed to assess the economic feasibility. The results of this analysis 

show a total capital investment of 438 million dollars and minimum fuel selling price (MSP) of 

$5.6 per gallon of gasoline equivalent. The sensitivity analysis shows that the MSP is most 

sensitive to internal rate of return (IRR) requirement, biomass feedstock cost, and fixed capital 

investment. 

  

                                                 
1
 Graduate student, primary researcher and author, Department of Industrial and Manufacturing Systems 

Engineering, Iowa State University 
2
 Graduate student, Department of Mechanical Engineering, Iowa State University 

3
 Author for correspondence, assistant professor, Department of Industrial and Manufacturing Systems 
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2.1 Introduction 

Biofuels are playing an increasingly important role as a cleaner substitute for fossil-based 

fuels. Second generation biofuels are made from nonedible plant residues or dedicated energy 

crop. The revised Renewable Fuel Standard (RFS2) has been enacted to accelerate the domestic 

biofuel production and consumption. By the year 2022, at least 36 billion gallons per year of 

renewable fuels will be produced and blended into the transportation fuel, of which at least 16 

billion gallons per year should be produced from cellulosic  biomass feedstock [1]. 

Biomass can be converted to transportation fuels through a variety of production 

pathways, including biochemical and thermochemical platforms. Recently, thermochemical 

conversion of biomass (e.g., fast pyrolysis and gasification) has attracted increasing attention. In 

this chapter, a hybrid production pathway combining fast pyrolysis and bio-oil gasification is 

considered. Cellulosic biomass such as corn stover is firstly converted to bio-oil through fast 

pyrolysis and then bio-oil will go through gasification process to produce the syngas followed by 

catalytic Fischer-Tropsch synthesis and hydroprocessing to produce transportation fuels. 

This proposed hybrid pathway offers several advantages. Firstly, bio-oil can be produced 

in relatively small fast pyrolysis plants at distributed locations and shipped to centralized 

biorefinery such that high cost of shipping bulky solid biomass over long distance could be 

avoided. Secondly, liquids are relatively easy to pump to high pressure than solids, so high 

pressure gasification technology can be implemented to improve conversion efficiency. Thirdly, 

as most of nitrogen and potassium are left in biochar after the fast pyrolysis, bio-oil has reduced 

level of ash and other contaminants, which makes the syngas cleanup easier [2, 3]. 

Process modeling, which breaks down and simulate the entire production system with a 

series of processes, is an effective tool to assess the technical performance of a production 
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facility. Also, the mass and energy balance data obtained from process modeling simulation 

could provide the basis for the estimation of capital and operational costs of the plant. Techno-

economic analysis is a combination of process modeling and economic evaluation based on 

engineering economic principles.  

There is an increasing literature on techno-economic analysis of a variety of advanced 

biofuel production pathways with a range of feedstock and products. The techno-economic 

analysis of biomass gasification using corn stover as the feedstock by Swanson et al. claimed that 

the MSP is $4-5 per gallon of gasoline equivalent and the capital investment requirement is 

$500-650 million for a 2000 metric ton per day facility [4]. Zhang et al. conducted a techno-

economic analysis of  biohydrogen production via bio-oil gasification and concluded that an IRR 

of 8.4% is realized with the prevailing market price [5]. Wright et al. reported that the capital 

cost of gasification plant with a capacity of 550 million GGE per year is about 1.47 billion [6]. 

The capital cost of fast pyrolysis facility with a capacity of 2,000 metric ton per day is $200 

million and an MSP is $2.11 per gallon of gasoline equivalent under purchasing hydrogen 

scenario [7]. 

 However, as a recent advancement in the cellulosic biofuel, the process design and 

techno-economic analysis of the proposed hybrid pathway have not been studied extensively. 

Motivated by this gap, this study aims to model the production process and evaluate the 

economic feasibility based on nth plant design. To be noted that this study is part of an ongoing 

project funded by Iowa Energy Center. Thus, the process model and techno-economic analysis 

are work-in-progress and modifications and updates for the results and analysis can be expected 

when more information becomes available.  
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The rest of the chapter is organized as follows: in Section 2, the methodology is presented 

with a focus on the process design. Then, some preliminary techno-economic analysis results are 

discussed in Section 3. Finally, we conclude the chapter in Section 4 with summary and potential 

research directions. 

2.2 Methods 

In this section, the methodology to perform this techno-economic study is presented. 

Materials and technologies are firstly selected according to some commonly used criteria. Then, 

Aspen Plus
®
 process engineering software is employed to develop the detailed process model. 

After that, capital and operation costs of the plant are evaluated using the output of process 

models and literature data.  

2.2.1 Material and Technologies 

A variety of feedstock and operational design decisions are open for the bio-oil 

gasification pathway, e.g., gasification conditions, syngas cleanup techniques, and fuel synthesis 

methods. These options are selected by the following commonly used criteria in literatures: (i) 

the technology should be commercialized in the next 5-8 years; (ii) adequate feedstock should be 

provided by the current agricultural system; (iii) the final products are compatible with the 

present transportation fuels [4, 8].  

Iowa possesses the largest quantity of corn stover, an important type of cellulosic 

biomass, in the United States [9]. Corn stover is therefore chosen as feedstock of this pathway. 

The ultimate and proximate analysis of corn stover can be found in Table 2.1 [7]. The plant 

capacity is set to be 2000 metric ton per day dry biomass for consistency and comparison with 

the literatures [4, 7, 8]. The fluidized bed gasifier operations in low temperature (870 ºC) for 

gasification and Fischer-Tropsch synthesis is employed for transportation fuel production.  
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Table 2.1 Ultimate and proximate analyses for corn stover feedstock and char (wt.%) [7] 

Ultimate analysis (dry basis)  Proximate analysis (wet basis) 

Element Corn Stover  Char  Element Corn Stover Char 

Carbon 47.28 51.2  Moisture 25.0 0 

Hydrogen 5.06 2.12  Fixed Content 17.7 51.21 

Nitrogen 0.8 0.45  Volatile Matter 52.8 49.79 

Chlorine 0 0.471  Ash 4.5 0 

Sulfur 0.22 0.935     

Oxygen 40.63 11.5     

Ash 6 33.3     

2.2.2 Process Design 

A thorough process model was established in Aspen Plus
®
. The model developed in this 

study is based on several previous models developed at Iowa State University [4, 5, 7]. A 

schematic of the generalized process model is shown in  

Figure 2.1, and the major components includes biomass preprocessing, bio-oil production 

(fast pyrolysis), bio-oil gasification, syngas cleanup, and fuel synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Generalized process flow diagram for bio-oil gasification pathway 
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Biomass preprocessing & fast pyrolysis process 

Biomass preprocessing (chopping, drying, and grinding) are conducted before the 

pyrolysis process. Solids removal and bio-oil recovery are included to condense and collect the 

bio-oil. Table 2.2 provides detailed descriptions about these process sections and lists the key 

assumptions for the individual process. 

Table 2.2 Process descriptions and assumptions [10] 

In the biomass pretreatment, biomass with 25% moisture is dried to 7% moisture and 

ground to 3 mm diameter size prior to feeding into a pyrolyzer. The fluidized bed pyrolyzer 

operates at 500 ℃ and atmospheric pressure. As shown in Error! Not a valid bookmark self-

reference. [7, 11], data from previous techno-economic analysis of pyrolysis-based biofuels are 

employed to build RYield module in Aspen Plus
®
. 

Table 2.3 Pyrolysis products distribution (wt.% of corn stover feedstock) [7] 

Bio-oil composition Gases 

 Water 10.8 Nitrogen 0 

Acetic acid 5.93 Carbon dioxide 5.42 

Propionic acid 7.31 Carbon monoxide 6.56 

Methoxyphenol 0.61 Methane 0.035 

Ethylphenol 3.8 Ethane 0.142 

Formic acid 3.41 Hydrogen 0.588 

Propyl-benzoate 16.36 Propene 0.152 

Phenol 0.46 Ammonia 0.0121 

Section name Section descriptions Key assumptions 

Chopping Particle size reduction to 10 mm 
Incoming biomass average size of 10 

to 25 mm 

Drying Biomass drying to 7% moisture Steam drying at 200 ℃ 

Grinding Particle size reduction to 3 mm 
Incoming biomass maximum size 

of < 10 mm 

Pyrolysis 
Biomass conversion to pyrolysis 

Products 
500 ℃ and 1 atm; Heat provided by 

char combustion 

Solids Removal 
Removal of entrained solid 

particles from vapor stream 
90% particle removal 
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Table 2.3 continued 

Toluene 2.27 Total 12.91 

Furfural 18.98 

  Benzene 0.77 Solids 

 Total 70.7 Char/Ash 16.39 

Standard cyclones remove solids consisting mostly of char particles entrained in the 

vapors exiting the pyrolyzer. It is assumed that the solid products and non-condensable gases are 

sent to a combustor to provide heat for the drying and pyrolysis process. The char composition 

analysis is shown in Table 2.1 [7]. Ash and char are removed from the raw bio-oil through the 

cyclones with 90% particle removal rate. The electrostatic precipitators (ESP) and condensers 

are used to collect liquid phase in bio-oil recovery process. 

Bio-oil gasification process 

In simulating the bio-oil gasification system (as shown in Figure 2.2), 95% purity oxygen 

and steam are employed as the gasifying agent. The bio-oil is a mixture of all fractions from the 

fast pyrolysis, so-called “whole bio-oil”. The gasifier operates at a pressure of 28 bar and a 

temperature of 870 ℃. The mass ratios of oxygen to bio-oil are set to be 0.3 and the mass ratios 

of steam to bio-oil are set to be 0.2. After gasification, a separator is used to remove the slag. The 

syngas contains some particulate as well as all the ammonia, hydrogen sulfide, and other 

contaminants which need cleanup. A direct water quench is employed to reduce the syngas 

temperature to about 40 ℃ to condense tar and most of ammonia and ammonium chloride. 

Carbon dioxide and nitrogen hydrogen sulfide are removed in acid gas removal system based on 

monoethanolamine. 
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Figure 2.2 Schematic of the bio-oil gasification process 

Fischer-Tropsch (FT) synthesis process 

In the catalytic FT synthesis, one mole of CO reacts with two moles of    to form mainly 

aliphatic straight-chain hydrocarbons (Equation (1)). Typical FT catalysts are based on iron or 

cobalt. The optimal ratio of       is around 2.1 according to FT. When the feed gas       

ratio is lower, water-gas shift (WGS) reaction (Equation (2)) is used to adjust the ratio. Typical 

operation conditions for FT synthesis, when aiming for long-chain products, are under 

temperatures of 200-250 ºC and pressures of 25-60 bars [12].  

    .      (   )                                              (1) 

                                                            (2) 

As shown in Figure 2.3, major operations in this area include zinc oxide/activated carbon 

gas polishing, syngas booster compression, steam methane reforming (SMR), WGS, pressure 
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swing adsorption (PSA), FT synthesis, FT product separation, and unconverted syngas recycle 

[4].  
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Figure 2.3 Process flow diagram for Fischer-Tropsch synthesis 

Appropriate pretreatment must be taken so that the syngas entering FT synthesis 

contaminants below 200 ppb sulfur and 10 ppm ammonia at a pressure of 25 bar [13]. First, a 

zinc oxide and activated carbon gas polishing is used to polish sulfur and trace contaminants. 

Next, the syngas stream is compressed to 25 bar in syngas booster compression unit. 

Experimental data indicate that there is a significant amount of methane and ethane in the syngas 

stream in the low temperature bio-oil gasification scenario. Thus, a SMR is utilized to reduce 

those components. As mentioned, a WGS unit is included to adjust syngas       ratio to just 

above the optimal value for FT synthesis. After that, pressure swing adsorption (PSA) is used to 
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provide hydrogen for the hydroprocessing section. Next, the syngas reacts over a cobalt-based 

catalyst in a fixed-bed FT reactor at 200 ºC. The Anderson-Schulz-Flory alpha chain growth 

model described by Song et al. is used to predict the FT product distribution [14]. After the gas is 

cooled, the liquid hydrocarbons and water are separated before the hydroprocessing section. The 

unconverted syngas is partially recycled back into the FT reactor while the other portions go 

back to the acid gas removal system in syngas cleanup section. 

2.2.3 Economic Analysis 

Literature data and Aspen Economic Evaluation
®

 software are employed to estimate the 

facility cost for this pathway. Unit costs for equipment are scaled from base equipment costs by 

using Equation (3).         is the scaled new equipment cost and       is the base equipment  

cost;         is the size of new equipment and      is the size of base equipment;   is the index 

of calculated year and    is the index of the base year.   is the particular scaling factor for a 

particular type of equipment with a range from 0.6 to 0.8. The scaling factor and some base 

equipment cost come from literature [4, 5, 7]. The estimated costs have been adjusted to the 2013 

US dollars. 

        (
 

  
)        [

       

     
]
 

                                             (3) 

Aspen Economic Evaluation software is employed to estimate equipment size and cost 

and calculate project capital expenditures. The methodology developed by Peters et al. is used 

for calculating installation costs [15]. A total installation factor of 3.02 is used to estimate the 

installed equipment costs [5].  A Lang Factor of 5.46 is chosen to estimate the total capital 

investment (TCI) [5, 7, 16]. Table 2.4 provides a summary of methodology for capital cost 

estimation. 
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Table 2.4 Summary of methodology for capital cost estimation 

Parameter Assumption 

Total Purchased Equipment Cost (TPEC) 100% 

Purchased Equipment Installation 39% 

Instrumentation and Controls 26% 

Piping 10% 

Electrical Systems 31% 

Buildings (including services) 29% 

Yard Improvements 12% 

Service Facilities 55% 

Total Installed Cost (TIC) 3.02*TPEC 

Indirect Cost (IC) 0.89*TPEC 

Engineering 32% 

Construction 34% 

Legal and Contractors Fees 23% 

Total Direct and Indirect Costs(TDIC) TIC + IC 

Contingency 20% of TDIC 

Fixed Capital Investment (FCI) TDIC + Contingency 

Working capital (WC) 15% of FCI 

Land Use 6% of TPEC 

Total Capital Investment (with land) FCI + WC + Land 

Table 2.5 provides the assumptions for the material and operating cost estimation. The 

electricity price are based on the average 20-year forecast from Energy Information 

Administration [17]. The facility-gate corn stover feedstock price is assumed to be 83 $ t
-1

 [18]. 

The solid and waste water disposal costs are based on biomass gasification design [4]. 

Table 2.5 Assumptions for material and operating parameters 

Parameters Values 

Electricity 6.6 cents/kWh 

Process Water 0.032 $ t
-1

 

Delivered Feedstock Cost  83 $ t
-1

 

Fuel Gas 1.06 $ GJ
-1

 

Steam 9.05 $ t
-1

 

Solids Disposal Cost 19.84 $ t
-1

 

Waste Water Disposal Cost 1.16 $ t
-1

 

Operating Hours per Year 7884(90%) 

Balance of Plant 12% 
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 A modified National Renewable Energy Laboratory (NREL) discounted cash flow rate 

of return (DCFROR) analysis spreadsheet is employed in this study to evaluate the economic 

feasibility with the IRR under the prevailing market conditions. Assumptions in DCFROR 

analysis are listed in Table 2.6 [5]. The process design is assumed to be the nth plant with a life 

cycle of 20 years based on the current state of technology. 

Table 2.6 Assumptions for DCFROR analysis [5] 

2.3 Preliminary Results and Analysis  

2.3.1 Process Modeling 

The corn stover with 25% moisture is as the biomass feedstock, and the moisture level is 

reduced to 7% with pretreatment. The fast pyrolysis process has a capacity of 2000 metric ton 

per day (t d
-1

) dry corn stover and the  yield of wet bio-oil (with a moisture content of 15%) is 

63%, which means it will yield 1260 t d
-1

 of  wet bio-oil. The transportation fuel yield for 

Parameter Assumption 

Working Capital (% of FCI) 15% 

Salvage Value 0 

Type of Depreciation DDB 

General Plant 200 

Steam Plant 150 

Depreciation Period (Years)  

General Plant 7 

Steam/Electricity System 20 

Construction Period (Years) 2.5 

% Spent in Year -3 8% 

% Spent in Year -2 60% 

% Spent in Year -1 32% 

Start-up Time (Years) 0.5 

Revenues (% of Normal) 50% 

Variable Costs (% of Normal) 75% 

Fixed Cost (% of Normal) 100% 

Income Tax Rate 39% 

Facility Type nth facility 
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gasoline and diesel are 170 t d
-1 

and 69 t d
-1

, representing 13.5% and 5.5% of the wet bio-oil, 

respectively. The comparisons of fuel yield for different pathways are included in Table 2.7. 

Table 2.7 Comparison of fuel yield for a variety of pathways (t d
-1

) 

Pathway Biomass gasification 

[4] 

Fast pyrolysis and 

hydroprocessing [7] 

Fast pyrolysis and 

Bio-oil gasification 

Biomass input 2000 2000 2000 

Bio-oil yield NA 1260 1260 

FT liquids yield 331 NA 270 

Fuel yield 293 192 239 

Gasification experiments have been conducted with whole red oak bio-oil at Iowa State 

University. The gasification reactor runs at 850 °C. Pure oxygen was maintained at an 

equivalence ratio of 25% for full combustion. The results show that about 88% of reactants react 

into products by weight, of which 71% are syngas and 29% are water and tar. The bio-oil 

gasification yields are estimated based on the preliminary experimental and literature data [4, 5]. 

Table 2.8 shows the comparison of gasification conditions and syngas composition. 

Table 2.8 Comparison of gasification conditions and syngas composition

 Biomass 

gasification[4] 

Bio-oil 

gasification [5] 

Bio-oil 

gasification 

(experiments)  

Assumptions 

in this study 

Gasification conditions 

Temperature 870 ºC 1200 ºC 850 ºC 870 ºC 

Pressure 28 bar 20 bar 1.01 bar 28 bar 

mass ratios of oxygen 

to bio-oil/biomass  

0.26 0.42 0.37 0.3 

mass ratios of steam to 

bio-oil/biomass 

0.17 0.2 0 0.2 

Gas Composition (mole basis) 

Water (H2O) 19.39% 21.49% 20.20% 20.00% 

Carbon monoxide (CO) 24.08% 36.15% 32.50% 32.00% 

Hydrogen (H
2
) 20.02% 32.71% 16.40% 17.00% 

Carbon dioxide (CO
2
) 27.24% 9.63% 20.80% 20.00% 

Methane (CH4) 5.48% 0.02% 5.60% 6.00% 

Other 3.79% 0.01% 4.50% 5.00% 
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2.3.2 Economics Results 

Estimated total installed equipment cost (TIEC) for 2000 t d
-1

 facility is 273 million 

dollars for this bio-oil gasification pathway. As mentioned in Table 2.4, total capital investment 

(TCI) is the summation of total installed equipment cost, working capital cost, total indirect cost, 

land use and project contingency. Detailed capital costs are shown in Table 2.9. 

 

Figure 2.4 Equipment cost and installed cost for each area 

The free on board (FOB) equipment cost and installed equipment cost are breakdown to 

model area. Figure 1.1Figure 2.4 shows the percentage of equipment cost and installed cost for 

each model area. Fast pyrolysis, combustion and fuel synthesis contribute 48% of equipment cost 

and 42% of installed cost. 

Table 2.9 Capital costs for bio-oil gasification pathway (million dollars) 

Item Costs 

Total Installed Equipment Cost 273  

Total Indirect Cost 92  

Project Contingency 73  

Working Capital 66  

Land Use 6  

Total Capital Investment 510  
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Stream mass flows in the Aspen Plus model and current market prices of the products are 

used to calculate the total annual operating costs. The fixed operating costs include salaries, 

maintenance cost, and insurance. The costs of cooling water, steam, waste disposal etc. are 

included in   other variable operating costs category. As show in Figure 2.5, the biomass 

feedstock cost, about 54.3 million dollars, is the largest contributor to annual operating costs.  

 

Figure 2.5 Annual itemized operating costs 

Based on the estimated capital costs, operating costs and IRR of 10%, an MSP of $5.6 

per gallon of gasoline equivalent is calculated for the bio-oil gasification pathway. 

2.3.3 Sensitivity Analysis 

The results of sensitivity analysis for bio-oil gasification are presented in Figure 2.6 to 

demonstrate the sensitivity of MSP to changes in the parameters. The parameters under 

investigation are IRR, feedstock cost, fixed capital cost, catalyst cost, catalyst life, balance of 

plant (BOP), and availability operating hours. The analysis finds that MSP is most sensitive to 

IRR, feedstock cost, and fixed capital cost. IRR is influential because it affects the entire cash 
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flow. As a significant portion of operating costs, feedstock price is a highly sensitive parameter. 

The fixed capital cost affects the capital depreciation and average income tax, a ±20% range in 

fixed capital cost results an MSP in a range of $5.02 to $6.17 per gallon. 

 

Figure 2.6 Sensitivity analysis for MSP in 2013 $ per GGE 

The results of this study show higher capital investment and MSP compared to the 

previous techno-economic studies on thermochemical production pathways. This is mainly due 

to the conservative assumptions on fuel yields and installation factor. Additionally, capital and 

operational costs are all adjusted to cost year 2013, therefore, the economic feasibility is affected 

by the rapid escalation in construction and equipment costs in recent years. 

2.4 Conclusion  

In this chapter, a detailed process modeling is presented and some preliminary results of 

techno-economic analysis of this fast pyrolysis and bio-oil gasification pathway are also 

discussed to assess the economic feasibility. The results of this study show a capital investment 

of 438 million dollar and MSP of $5.6 per gallon of gasoline equivalent. The sensitivity analysis 

illustrates that MSP is most sensitive to IRR, feedstock cost, and fixed capital cost. As an 
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ongoing work, the techno-economic analysis will continue to be updated and improved with 

additional experimental data.  

There are numerous aspects that could be improved in the techno-economic analysis. 

First, the levels of the details of the Aspen model will continue to be refined in order to obtain 

accurate predictions. Experimental data have been, and will be, used to adjust the model 

parameters to improve the model accuracy. Second, we could increase the complexity of the 

techno-economic analysis of commercial biorefinery by considering the practical logistic settings 

and constraints. For example, a supply chain including various 2000-metric-ton-per-day 

decentralized pyrolysis facilities coupled with a central bio-oil gasification facility for the entire 

state of Iowa could be considered. Moreover, comparative study of similar pathway could be 

conducted to assess the economic superiority. Finally, other uncertainty analysis such as Monte-

Carlo simulation could be performed to test the uncertainty in technical data (e.g., reactor 

performance, product yields), facility size, and capital costs. 
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Abstract 

To reduce biomass transportation costs and take advantage of the economics of scales 

for gasification facility, a proposed production pathway of advanced biofuel is to convert 

biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-

oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery.  

This chapter aims to provide an optimal supply chain design for this advanced biofuel 

production pathway considering uncertainties in biomass availability, technology 

advancement, and biofuel price. A two-stage stochastic programming is formulated to solve 

this supply chain design problem. The first-stage makes the capital investment decisions 

including the locations and capacities of the decentralized fast pyrolysis plants and the 

centralized biorefinery while the second-stage determines the biomass and biofuel flows. The 

numerical results and case study illustrate that considering uncertainties can be pivotal in this 

supply chain design and optimization problem. Also, farmers’ participation has a significant 

effect on the decision making process.  
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3.1 Introduction 

As a potential substitute for petroleum-based fuel, second generation biofuels are 

playing an increasingly important role due to their economic, environmental, and social 

benefits. Second generation biofuels are made from nonedible plant residues or dedicated 

energy crop, such as corn cobs, corn stover, switchgrass, miscanthus, and woody residues. As 

a result, the biomass feedstock for second generation biofuels are less land and water 

intensive, which will not have significant negative impact on the food market [1]. According 

to the revised Renewable Fuel Standard (RFS2) established in 2007, at least 36 billion 

gallons per year of renewable fuels will be produced by 2022, of which at least 16 billion 

gallons per year will be from cellulosic biofuels [2]. However, the targeted cellulosic biofuel 

volume requirement for 2013 was revised to be only 14 million gallons, which is 

significantly lower than the original target. This is mainly due to the high capital investment 

and logistic challenges in cellulosic biofuel. The supply system activities of harvest, 

collection, storage, preprocessing, handling, and transportation, represent one of the biggest 

challenges to the cellulosic biofuel industry. It becomes necessary to consider the supply 

chain design of a biofuel production system. Thus, it is timely and meaningful to study the 

economic feasibility of the commercialization of cellulosic biofuel considering the supply 

chain design and logistic analysis.   

Biomass can be converted to transportation fuels through a variety of production 

pathways, including biochemical and thermochemical platforms. One example of 

biochemical pathways is the corn ethanol production from fermentation. On the other hand, 

thermochemical conversion of biomass to produce transportation fuels has recently moved to 
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the forefront of biofuel research and development. Fast pyrolysis and gasification are two of 

the most prominent technologies for thermochemical conversion of cellulosic biomass.  

Fast pyrolysis thermally decomposes organic compounds in the absence of oxygen 

process, and the products include bio-oil, bio-char, and non-condensable gases[3]. The fast 

pyrolysis reactors typically run at temperature between 400 ºC and 600 ºC and can produce 

approximately 70% (by weight) bio-oil [4]. The other 30% is split between non-condensable 

gases (e.g., carbon dioxide or methane) and bio-char. The non-condensable gases and bio-

char could be combusted to provide heat for the facility. In addition, bio-char is mostly 

organic carbon which can be sequestered or gasified to produce syngas [5]. Bio-oil has three 

to five times the energy density compared to raw biomass [6]. However, due to the high 

viscosity and acidity, bio-oil needs to be upgraded to be used as transportation fuels. The bio-

oil upgrading has proven to be a challenging process due to the low conversion efficiency 

and fuel quality. On the other hand, biomass gasification runs at much higher temperature 

(800 ºC - 1300 ºC) and it is a relatively mature technology. The syngas produced from the 

biomass gasification process will typically go through the Fischer-Tropsch synthesis to 

produce liquid transportation fuels[7]. However, commercialization of biomass gasification 

has been hampered by its high capital and operating costs due to the challenges of 

transporting bulky solid biomass over a long distance, processing solid feedstock at high 

pressure, and removing contaminants from the product gas stream. The techno-economic 

analysis of biomass gasification by Swanson et al. claims that the minimum fuel selling price 

is $4-5 per gallon of gasoline equivalent and the capital investment requirement is $500-650 

million for a 2000 metric ton per day facility [7].  
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It is thus necessary to reduce system cost and improve supply chain efficiency to 

improve the economic feasibility and competitiveness of the advanced biofuel production 

pathways. Feedstock production and logistics constitute more than 35% of the total 

production cost of advanced biofuel [8] and logistics associated with moving biomass from 

farmland to biorefinery can make up 50–75% of the feedstock cost [9]. To reduce feedstock 

transportation cost, it has been suggested that biomass can be converted to bio-oil via fast 

pyrolysis near the harvest site, then the bio-oil can be transported to the upgrading plant for 

transportation fuels production [10]. In this chapter, the proposed hybrid production pathway 

is to combine the two prominent thermochemical production pathways. Biomass fast 

pyrolysis produces bio-oil in relatively small processing plants at distributed locations so that 

the transportation of bulky biomass over a long distance can be avoided. After mild 

hydrotreating, the bio-oil is then transported to a centralized gasification facility to produce 

transportation fuels. It should be recognized that centralized plant has advantages such as 

economies of scale, the inventory buffer storage reduction, and administration overhead cost 

savings [11]. 

One of the biggest challenges of advanced biofuel production industry is the design of 

supply chain networks under uncertainty. There is a rich literature on supply chain network 

design. Shah reviewed the previous studies in modeling, planning, and scheduling with some 

real world examples to summarize the challenges and advantages of supply chain 

optimization [12]. An et al. compared the supply chain research on petroleum-based fuel and 

biofuel [13]. Eksioglu et al. formulated a model to determine the numbers, locations, and 

capacities of the biorefineries, conducted a case study for the state of Mississippi to illustrate, 

and verified the optimization model [14]. Most of the literature on biofuel supply chain 
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design assumes all the parameters in the system are deterministic. However, the biofuel 

industry is highly affected by the uncertainties along the supply chain such as biomass supply 

availability, technology advancement and biofuel price. For example, the biomass feedstock 

supply is highly dependent on biomass yield and farmers’ participation. As a result, it is of 

vital importance to design the biofuel supply chain considering the uncertainties along the 

supply chain. Kim et al. considered a two-stage stochastic model using bounds of the 

parameters to determine the capacities and locations of the biorefineries [15]. Marvin et al. 

formulated a mixed integer linear programming model to determine optimal locations and 

capacities of biorefineries [16]. As a recent advancement in the cellulosic biofuel technology, 

decentralized supply chain design for thermochemical pathways have not been studied 

extensively, especially the planning scenario under uncertainty. This chapter aims to provide 

a mathematical programming framework with a two-stage stochastic programming approach 

to design the supply chain network considering uncertainties along the supply chain. The 

production pathway under consideration is the bio-oil gasification, with bio-oil production 

from biomass fast pyrolysis at decentralized facilities and syngas production and fuel 

synthesis in the centralized gasification facility. This model provides methodological insights 

for the decision makers on the capital investment decisions and logistic decisions for the 

thermochemical pathway of bio-oil gasification. 

The rest of the chapter is organized as follows: in Section 2, the problem statement 

for this biofuel supply chain design is presented. Then, we discuss the deterministic mixed 

integer linear programming model and the two-stage stochastic programming models in 

Section 3. A case study of Iowa is conducted to illustrate and validate this optimization 
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model in Section 4. Finally, we conclude the chapter in Section 5 with brief summary and 

potential research directions. 

3.2 Problem Statement  

As mentioned, one of the most important decisions faced by the biofuel industry is 

the design of the supply chain networks, especially under the system uncertainties. This 

provides the major motivation for this study. 

The supply chain system schematics for the bio-oil gasification pathway are shown in 

Figure 3.1. Biomass is collected and consolidated at the county level. Biomass is then 

transported to the decentralized fast pyrolysis facilities to be converted to bio-oil. Mild-

hydrotreated bio-oil is transported to the centralized gasification facility to produce the 

transportation fuels. It is assumed that each biomass feedstock supply location/county can 

serve multiple fast pyrolysis facilities; each fast pyrolysis facility can acquire feedstock from 

multiple biomass supply locations. The locations for the decentralized fast pyrolysis facilities 

and centralized gasification facility are assumed to be the centroids of counties. 

 

Figure 3.1 System schematics of supply chain 
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The supply chain network design of biofuel production is highly affected by the 

uncertainties along the supply chain such as biomass supply availability, technology 

advancement and biofuel price. The biomass supply availability is highly dependent on crop 

yields and farmers’ participation; the conversion rates are affected by technology 

advancement and operating conditions; the biofuel price would change based on market 

conditions and enacted policies. Thus, it is of vital importance to make the supply network 

design decisions with the system uncertainties taken into consideration. Stochastic 

programming is one of the most widely used modeling frameworks to study the decision 

making under uncertainties.  

The goal of this chapter is to provide a mathematical framework for the biofuel 

supply chain design and optimization under uncertainty. A two-stage stochastic programming 

approach is employed for the supply chain decision making. The comparison and analysis of 

the results provide methodological suggestions for the decision makers on the capital 

investment and logistic decisions. The insights derived from this study can contribute to the 

system efficiency improvement of the supply chain network and thus improve the economic 

feasibility of the production pathway. 

3.3 Model Formulation 

In this section, we introduce the deterministic and stochastic models for this biofuel 

supply chain design problem. The objective is to maximize the annual profit for biofuel 

producer based on the hybrid production pathway of bio-oil gasification. The deterministic 

mixed integer linear programming model is firstly introduced as a baseline model and then 

the two-stage stochastic model is presented to address the uncertainties in the supply chain 

design problem. The stochastic programming framework bears the concept of recourse, 
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which means some decisions (recourse actions) are taken after uncertainties have been 

realized. In other words, first-stage decisions are made by taking some factors’ future effects 

into account. In the second stage, the actual value of the variables becomes known and some 

corrective actions can be taken [17]. 

3.3.1 Mathematical Notations 

The mathematical notations are summarized in Table 3.1.  

Table 3.1 Notations for deterministic model 

Subscripts 

          Biomass supply locations 

          Candidate fast pyrolysis facility locations 

          Biofuel demand locations 

          Allowed fast pyrolysis capacity levels 

          Candidate refining facility locations 

Decision variables 

    Amount of biomass transported from supply location   to candidate fast pyrolysis 

facility location   
    Amount of bio-oil transported from candidate fast pyrolysis facility location   to 

candidate refining facility location   

    Amount of biofuel transported from refining facility location   to demand location   

    Whether a fast pyrolysis facility of capacity level   is planned at candidate location   
(binary variable) 

   Whether a refining facility is planned at candidate location   (binary variable) 

Parameters 

B Total budget 

    Capital cost of the centralized refining facility 

  
   

 Capital cost of the decentralized fast pyrolysis facility at level   

   Biofuel price at demand location   

   Biofuel demand at demand location   

    Penalty for not meeting the demand at demand location   

   
  Penalty for exceeding the demand at demand location   

  
    Unit biomass collecting cost at supply location   

    Unit conversion cost from dry biomass to bio-oil 

    Unit conversion cost from bio-oil to biofuel 

   
   Unit biomass shipping cost from supply location   to fast pyrolysis facility location   

   
   Unit bio-oil shipping cost from fast pyrolysis facility location   to refining facility 

location   

   
   Unit biofuel shipping cost from refining facility location   to demand location   

   Capacity of fast pyrolysis facility at level   
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Table 3.1 continued 

  Capacity of refining facility  

   Available biomass feedstock at location   
  Sustainability factor 

  Conversion factor from wet biomass to dry biomass 

  The loss factor of biomass during collection and transportation 

   Conversion ratio, metric ton of bio-oil per metric ton of dry biomass 

   Conversion ratio, metric ton of biofuel per metric ton of bio-oil 

  Availability factor 

3.3.2 Deterministic Model 

In the deterministic mixed integer linear programming model, all the system 

parameters are assumed to be known with certainty.  

Objective function 

The objective function is to maximize the annual profit for biofuel producer, which 

can be defined as the revenue from selling the biofuel subtracted by the total system costs 

along the supply chain including the potential penalties. Penalties are imposed on the unmet 

demand which is based on the assumption that the producers have to purchase fuels from 

other sources to satisfy unmet demand.  Penalties are also imposed for the surplus production 

due to additional inventory holding and storage costs. A variety of system costs have been 

considered in the model including facility capital investment cost, biomass collection cost, 

biofuel conversion cost, and logistics cost. 

Firstly, the total capital cost for the decentralized fast pyrolysis facility at level   

is ∑ ∑   
      

 
   

 
   . With the assumption that the facilities have an  -year operation life and 

an interest rate of   , the annual amortized capital costs are 
 (   ) 

(   )   
(∑ ∑   

      
 
   

 
    

   ) . Secondly, the cost of collection biomass from different feedstock location is 

∑ ∑   
      

 
   

 
   . Thirdly,    (   ) ∑    

 
    is the fast pyrolysis conversion cost from 

biomass to bio-oil and    ∑ ∑    
 
   

 
    is the conversion cost from bio-oil to biofuel at 
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the gasification and upgrading biorefinery. Lastly, the logistics costs include the biomass 

shipping cost from biomass feedstock locations to fast pyrolysis facility locations, the bio-oil 

shipping cost from fast pyrolysis facility locations to gasification and upgrading biorefinery 

location, and the biofuel shipping cost from gasification and upgrading biorefinery location 

to demand locations.  

In sum, the objective function can be formulated as follows: 
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Constraints  

The constraint (1) is included to ensure that the sum of capital cost of decentralized 

fast pyrolysis facilities and centralized biorefinery does not exceed the total budget.  

      ∑ ∑   
      

 
   

 
                                                                   (1)   

The total amount of biomass transported from supply location   to all the candidate 

fast pyrolysis facility locations should not exceed the available feedstock at that supply 

location as denoted in constraint (2).   is the sustainability factor which is the percentage of 

biomass that has to be left in the field to sustain the soil nutrients.   is the availability factor 
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which is defined as the ratio of the available biomass to collectable biomass.  This factor 

represents the social factors that could impact the biomass availability for biofuel production 

such as farmers’ willingness to participate [18]. 

∑    
 
    (   )                                                                           (2) 

The facility capacity limits are included in the model in constraint (3) and constraint 

(4). The loss factor       ) is the fraction weight loss of biomass during the collection, 

transportation, and unloading process and   is the conversion ratio from wet biomass to dry 

biomass on the weight basis. 

∑      
 
    (   ) ∑    

 
                                                   (3) 

    ∑    
 
                                                                               (4) 

There should be no more than one fast pyrolysis facility planned in each candidate 

facility location as shown in constraint (5).  In addition, only one centralized refining facility 

will be constructed in one region of interest (typically one state) as denoted in constraint (6).  

∑    
 
                                                                                             (5) 

∑   
 
                                                                                              (6) 

We assume that biomass is converted to bio-oil with conversion efficiency    and 

bio-oil is converted to biofuel with conversion efficiency    on the weight basis. Thus, we 

have the following conversion balance constraints (7) and (8): 

(   )   ∑    
 
    ∑    

 
                                                           (7)                                               

  ∑ ∑    
 
   

 
    ∑ ∑    

 
   

 
                                                  (8)                                                      

In summary, this mixed integer linear programming model aims to maximize the 

annual profit considering the capital investments and logistics decisions. This deterministic 

model provides the baseline for the stochastic programming model in the next sections. 
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3.3.3 Two-stage Stochastic Programming Model 

In this section, the two-stage stochastic programming model is discussed considering 

the uncertainties of the biomass availability, technology advancement, and biofuel prices. 

The stochastic parameters in this model are assumed to be discretely distributed. We use 

subscript   to represent scenario with corresponding probability     and this subscript is also 

incorporated into the decision variables and parameters.  

The two-stage stochastic programming model is formulated as follows: 
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The first-stage decisions involve variables which have to be decided before the 

uncertainties are realized. After the uncertainties are realized, the second-stage decisions are 

made. In this supply chain network design model, the first-stage decision variables include 

the binary variables           , which make the capital investment decisions including the 

facility locations (decentralized fast pyrolysis and centralized refining facilities) and 

capacities of the decentralized fast pyrolysis facilities. The second-stage decision variables 

                   determine the biomass and biofuel flows.  

Constraints (1), (5), and (6) are the first-stage constraints, these constraints remain the 

same in all scenarios and they are same as in the deterministic linear program model. The rest 

of the constraints change based on the stochastic scenario.  

One of the most commonly used methods for scenario generation is moment 

matching method. To implement this method, let   be the set of all selected statistical 

properties, and       be the value of the selected statistical property    ; let   (    ) be the 

mathematical expression for statistical property     and   is the probability vector; let   be 

a constant matrix of zeroes and ones; let    be the weight for statistical property     [41]. 

Then, the following nonlinear programming problem can be solved for the probabilistic 

scenario.  

   
   

∑  (  (    )       )
 

   

        

 .  .  ∑          . 

3.4 Case Study  

We apply the supply chain design model for a case study in Iowa State, USA to 

illustrate and validate the optimization model. Iowa possesses the largest quantity of corn 

stover in the United States and has been one of the leading states of corn ethanol and soybean 
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biodiesel production [19]. With the abundance of cellulosic biomass, Iowa has the potential 

in the cellulosic biofuel production via thermochemical conversion processes. The objective 

for the supply chain design is to maximize the yearly profit for biofuel producer by choosing 

the locations and capacity levels for the distributed fast pyrolysis facilities, and the location 

of the centralized gasification biorefinery. Meanwhile, the logistic flow decisions of the 

biomass and biofuel will also be investigated. 

3.4.1 Data Sources 

The centroids of 99 counties of Iowa are chosen as candidate biomass (corn stover in 

this case study) supply locations, the potential sites for distributed fast pyrolysis facilities, 

and the candidate location for the centralized gasification facility. The annual corn stover 

yield is estimated based on corn grain yield with the residue harvest index of 0.5 meaning 

50% of the above ground biomass is grain and consequently stover is generated in the same 

amount as grain [20]. The weight of #2 corn at 15.5% moisture is applied to calculate the 

corn grain yields [21]. The county level corn production and yield data from 2003-2012 are 

collected from the National Agricultural Statistics Service (NASS), United States 

Department of Agriculture (USDA) [22]. The average county level corn stover yield in Iowa 

for 2003-2012 is shown in Figure 3.2 with the darkness of the shade corresponding to the 

corn stove yield. 

In addition, the collectable corn stover is limited by growing conditions, soil nutrient 

levels, and method of harvest. Montross et al. reported the collection efficiencies of using 

three strategies in Kentucky: bale only to be 38%; rake and bale to be 55%; and mow, rake, 

and bale to be 64% [23]. Schechinger and Hettenhaus reported collection efficiencies of 40% 

to 50% without raking and 70% with raking in large-scale stover collection operations in 



38 

 

 

Nebraska and Wisconsin [24]. Lindstrom suggested that a 30% removal rate would not 

significantly increase soil loss [25]. Later, Papendick et al. shows that a 30% removal rate 

results in 93% soil cover after residue harvest [26]. The National Resource Conservation 

Service (NRCS) suggests that a minimum of 30% of stover cover must remain in the field to 

prevent soil erosion [27]. In this analysis, we assume the sustainability factor to be 0.3, which 

means at least 30% of the stover must be left in the field to promote soil health. 

 

Figure 3.2 Average corn stover yield in Iowa (2003-2012) 

Although significant literature has investigated the environmental consequences of 

biomass collection from the field, limited studies have taken the social factors such as 

farmers’ willingness to participate into consideration. However, the farmers’ willingness to 

participate makes a direct impact on the biomass feedstock availability. Recently, an Iowa 
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farmer survey conducted by Tyndall et al. shows that only 17% of farmers in Iowa show 

interest in harvesting their stover and about 37% are undecided [19]. These results suggest 

that about half of the farmers will not collect the corn stover in the near future. In the base 

case scenario, the availability factor is assumed to be 0.4, and the influence of this 

availability factor on the supply chain design is also investigated in this study. 

The collection cost for corn stover is different for each county due to the differences 

in collection quantities and collection methods. The collection cost utilized in this case study 

is based on the regression analysis from Graham et al. [28]. Biomass loss factor, which 

accounts for possible mass loss during loading, transportation, and unloading of the biomass, 

is assumed to be 0.05 in this analysis [29]. 

The total gasoline demand of Iowa is based on the state-level gasoline consumption 

data from the Energy Information Administration (EIA) [30]. Weekly retail gasoline prices 

for the Midwest area from 2003 to 2012 are also from EIA [31]. Gasoline demand of each 

demand area is assumed to be proportional to the population of metropolitan statistical areas 

(MSAs). The partitions and population information of Iowa MSAs are based on U.S. Census 

Bureau [32].  

All the biomass suppliers, biorefineries, and demand locations are assumed to be at 

the county centroids. Transportation distances for biomass, bio-oil and biofuel are calculated 

using the great circle distance, which is defined as the shortest distance between the two 

locations on a sphere. In addition, the actual distances have been adjusted to account for the 

difference in the transportation methods by the circuit factors from the Congressional Budget 

Office [33]. 
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The fixed transportation cost of corn stover via truck is $5.34/metric ton-mile and the 

variable cost of $0.23/metric ton-mile [34]. The transportation cost of bio-oil via truck is 

assumed to be equal to the national average truck shipping cost of $0.312/metric ton-mile 

based on Bureau of Transportation Statistics (BTS). The transportation cost of biofuel via 

pipeline is assumed to be equal to the national average oil pipeline cost, which is 

$0.032/metric ton-mile [35]. The cost data have been adjusted to the 2012 US dollars. 

In the fast pyrolysis process, the biomass is converted into bio-oil (53-78%), char (12-

34%), and gas (8-20%) [36]. The bio-oil yield is assumed to follow the normal distribution 

based on the experimental results from Iowa State University. In this study, the fluidized bed 

reactor is employed in the fast pyrolysis which has an average conversion ratio of 0.63 from 

biomass to bio-oil on weight basis [37]. The conversion ratio from bio-oil to biofuel is not 

available due to lack of experimental data. Limited experiment shows high carbon 

conversion of gasification but low efficiency from syngas to fuel (due to the diverse        

ratio). Raffelt et al. reported a conversion ratio of 0.156 on weight basis for slurry (80% bio-

oil and 20% char) gasification [36]. We assume that the conversion ratio from bio-oil to 

biofuel follows a normal distribution with an average of 0.20 on weight basis. With these 

assumptions, the average fuel yield for the pathway under analysis would be 31.2 million 

gasoline gallon equivalent (GGE) per year for the plant size to of 2000 metric ton biomass 

per day facility. This is consistent with reported fuel yield of 29.3-58.2 million GGE per year 

for 2000 metric ton per day facility [38]. 

Wright et al. reported that the capital cost of centralized gasification plant with a 

capacity of 550 million GGE per year is about 1.47 billion [39]. The capital cost of 

distributed fast pyrolysis facility with a capacity of 2,000 metric ton per day is $200 million 
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[37]. The commonly used scaling factor of 0.6 (the “sixth-tenth rule” [40]) is applied to 

estimate capital cost for facilities with other capacity levels. In this study, we consider three 

capacity levels of distributed fast pyrolysis facilities: 500, 1000, and 2000 metric ton per day. 

According to RFS2, at least 36 billion gallons per year of renewable fuels will be produced 

by 2022, which is about 28% of the national gasoline consumption. In this study, we assume 

the centralized gasification and upgrading plant has a capacity of 550 million GGE per year, 

which could satisfy more than 30% of the gasoline consumption in Iowa. Thus, we only need 

to consider one centralized bio-oil gasification and upgrading facility in this case study. 

It is assumed that all the facilities have a 20-year operation life and an interest rate of 

10%; the online time of all the facilities is 328 days per year (equivalent capacity factor of 

90%). In the following two sections, the computational results of the biofuel supply chain 

design for both deterministic case and stochastic case are presented.  

3.4.2 Analysis for Deterministic Case 

In the deterministic case, 17 distributed fast pyrolysis plants will be built, and all of 

them are at the highest capacity level (2000 metric ton per day). This is mainly due to the 

budget limit and economies of scale. The centralized gasification plant is planned to be 

located in Hamilton County. The optimal locations for these facilities are shown in Figure 

3.3. The shaded areas are biomass feedstock suppliers (71 counties) in this case. These 

counties are mainly located at the central and northern part of Iowa, which have a higher 

yield of corn and thus have better availability for corn stover. 
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Figure 3.3 Optimal facilities locations in deterministic case 

Table 3.2 includes the annual itemized costs in deterministic case. Total shipping cost 

accounts for 14% of the total cost; biomass collecting cost accounts for 18% of the total cost; 

total capital cost accounts for about 25% of the total cost; conversion cost accounts for 43% 

of the total cost. In the category of shipping cost, biomass shipping cost is the most 

significant (54%).  

Table 3.2 Annual itemized costs in deterministic case (million dollars) 

Biomass collecting cost 416.93 

Total capital cost 604.33 

    Capital cost of the centralized refining facility 184.06 

    Capital cost of the fast pyrolysis facility  420.27 

Total shipping cost 334.04 

   Biomass shipping cost 181.99 

   Bio-oil shipping cost 146.80 

   Biofuel shipping cost 5.25 

Conversion cost 1020.20 

Total 2375.51 
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3.4.3 Analysis for Stochastic Case  

In the stochastic case, uncertainties along the supply chain are incorporated into the 

modeling framework. The uncertainties under considerations include biomass availability, 

technology advancements and biofuel price. Technology advancements uncertainty is 

represented by the probabilistic distribution of two conversion ratios. Historical data for corn 

stover yield and retail gasoline prices are available to estimate the probabilistic scenarios. In 

this case study, moment matching method has been employed to generate the probabilistic 

scenarios. Data statistics such as mean, variance, skewness, and kurtosis are calculated for 

moment matching based on the historical data.  

Table 3.3 Scenario summary 

No. Statistics 
Corn stover yield 

(metric ton/acre) 

Gasoline 

prices 

($/Gallon) 

Conversion 

ratio    

Conversion 

ratio    

1 Mean 2.8848 2.6473 0.63 0.2 

2 Variance 0.0497 0.4684 0.0049 0.0001 

3 Skewness -1.5047 -0.0838 0 0 

4 Kurtosis 3.0143 -0.8540 3 3 

Scenario Probability 
    

1 0.0128 2.2066 2.2035 0.4961 0.1825 

2 0.0114 2.1568 2.5758 0.4476 0.1810 

3 0.1269 2.9174 2.4271 0.7770 0.2197 

4 0.1130 3.1437 4.5391 0.6242 0.1993 

5 0.1116 2.9115 4.4923 0.6243 0.1984 

6 0.1078 2.9048 3.4381 0.6253 0.1959 

7 0.1092 2.6570 3.5253 0.6229 0.2097 

8 0.1255 2.9986 3.2187 0.6206 0.1963 

9 0.0531 2.7582 3.3948 0.6198 0.1961 

10 0.0100 2.1041 2.5689 0.3952 0.1875 

11 0.0288 2.7502 3.3767 0.5742 0.1917 

12 0.0164 2.6637 3.2652 0.5465 0.1925 

13 0.0259 2.7056 3.3314 0.5897 0.1944 

14 0.0143 2.6095 3.1129 0.5376 0.1945 

15 0.1231 3.1086 4.0164 0.6265 0.1950 

16 0.0100 2.0942 2.8036 0.3858 0.1562 
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The non-linear optimization problem is solved by applying a heuristic of changing 

initiating value until a satisfactory solution is obtained. The General Algebraic Modeling 

System (GAMS) is utilized to solve the moment matching problem and a scenario tree with a 

size of 16 is generated. A summary of scenarios in the stochastic model are included in Table 

3.3.  

17 distributed fast pyrolysis plants are proposed in the stochastic case, and all of them 

are at the highest capacity level. This is same as the deterministic case. The numbers of 

biomass feedstock sites (counties) involved in stochastic case are various based on scenarios 

with a maximum of 79 counties. Nine scenarios (with a total probability of 0.6) need biomass 

supply from more than 71 counties. The optimal locations for these facilities are represented 

in Figure 3.4. The shaded areas are additive biomass feedstock sites involved in all the 

stochastic scenarios (81 counties). 

 

Figure 3.4 Optimal facilities locations in stochastic case 

In both deterministic and stochastic cases, 17 distributed fast pyrolysis plants are 

proposed but they are not at the same locations. The plants are all proposed to be built at the 
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highest capacity level to reduce the capital cost due to the economies of scale. The 

centralized gasification plant will be constructed at Hamilton County in both cases, which is 

at the center of high corn yield counties.  

Despite of the similarities of the both cases, differences exist for the supply chain 

network configurations. In the stochastic case, it is preferred to build the fast pyrolysis plants 

farther away from the centralized gasification and upgrading plant because biomass 

collection sites are more distributed due to the uncertainties in biomass feedstock supply 

availability. 

The yearly profit in the deterministic case is 154.53 million dollars. For comparison, 

the numerical value of parameters used in deterministic case are the expected value of those 

parameters from the stochastic scenarios, thus this deterministic solution is also called the 

expected value solution (EV). The solution in the stochastic case is known as recourse 

problem solution (RP). In this case study, the yearly profit from the recourse problem is 

129.57 million dollars. If we apply the decisions in deterministic case to the stochastic 

environment, we will get the expected yearly profit with the EV solution. This is called 

expected results of EV solution (EEV), which is 129.11 million dollars in this case study. 

The value of the stochastic solution (VSS) could be defined as           . The VSS 

is about 0.46 million dollars, which is the benefit of considering uncertainties in the decision 

making process. 

3.4.4 Discussion on the Impact of Farmers’ Participation 

In this section, we discuss the impact of farmers’ participation, which is represented 

as the availability factor   in the model, on the decisions in both the deterministic case and 

stochastic case.  
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For the deterministic case, if the availability factor   is less than 0.23, which means 

no more than 23% of the farmers would participate in corn stover collection in each county, 

the objective function value is equal to zero. In this case, this biofuel supply chain system is 

not profitable and it is optimal not to construct any facilities. When the availability factor   is 

in the range of 0.23 to 0.36, the system is profitable but it could not satisfy the biofuel target 

of the entire state. Recall that the goal is to satisfy at least 30% of the gasoline consumption 

in Iowa, which is about 517 million GGE per year. Thus, at least 33000 metric ton dry 

biomass per day is needed at distributed fast pyrolysis plants. The biofuel supply target will 

be met if the availability factor   is larger than 0.36.   

Table 3.4 provides the annual itemized costs and profit for a variety of availability 

factor    . The total capital cost, biomass collection cost and total shipping cost increase 

when availability factor   increases from 0.3 to 0.4. This is because of the increase of the 

facilities production and capacities. It should be noted that when the biofuel production 

capacity can meet the target biofuel demand, the total shipping cost and biomass collection 

cost will decrease as the availability factor increase. After that, the total capital cost will not 

change since the same number and capacities of facilities are planned. As a result, the yearly 

profit will increase as the availability factor increase. In sum, the system cost will decrease 

and yearly profit will increase with increase in the farmers’ participation. 

Table 3.4 Annual itemized costs and profit for different δ (million dollars) 

  0.3 0.4 0.5 0.6 0.7 

Profit 69.246 154.53 200.92 232.09 256.43 

Total capital cost 530.21 604.39 604.39 604.39 604.39 

Biomass collecting cost 347.72 416.93 409.46 402.17 398.69 

Total shipping cost 296.27 334.04 295.13 271.24 250.38 

Conversion cost 840.14 1020.20 1020.20 1020.20 1020.20 
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Figure 3.5 Optimal facilities locations in deterministic case (δ=0.7) 

If we compare Figure 3.5 to Figure 3.3, it is observed that the locations of fast 

pyrolysis plants are more centralized when availability factor   is equal to 0.7 and we only 

need 40 counties (rather than 71 when   is equal to 0.4) to supply the biomass. The main 

reason for these phenomena is the biomass availibility for each county increases as the 

availability factor   increases. As a result, optimal decisions will be improved due to the 

additional flexilities in choosing the biomass harvesting sites. 

Table 3.5 shows the value of the stochastic solution (VSS) will decrease as the 

availability factor increase. The VSS will reduce to zero when the availability factor is larger 

than 0.5. It can be observed from the model that as farmers’ participation increase in Iowa, 

the supply chain design and optimization model will become more robust. On the other hand, 
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since the advanced biofuel industry is still at its infancy, the farmers’ participation is 

currently at a relatively low level. Therefore, it is beneficial to apply stochastic programming 

framework to deal with the uncertainties and improve the decision making. This analysis 

provides the decision makers another insight to improve system resiliency by increasing 

farmers’ participation.  

Table 3.5 Stochastic programming results for different δ 

  EV RP EEV VSS 

0.3 69.25 56.25 55.74 0.51 
0.4 154.53 129.57 129.11 0.46 
0.5 200.92 171.82 171.76 0.06 
0.6 232.09 200.93 200.93 0 
0.7 256.43 222.74 222.74 0 

3.5 Conclusion  

Cellulosic biofuels play an increasingly important role in RFS2 and renewable 

energy. The hybrid thermochemical production pathway of bio-oil gasification which 

combines fast pyrolysis and gasification is one of the promising production pathways of 

advanced biofuel. In this production pathway, the widely distributed small-scale fast 

pyrolysis processing plants could avoid transporting bulky solid biomass over a long distance 

and the centralized gasification and fuel synthesis facility can take advantage of the 

economies of scales. Due to the significance of supply chain related system costs, the design 

of biofuel supply chain networks is playing an essential role in the commercialization 

process.  

This chapter provides a mathematical programming framework with a two-stage 

stochastic programming approach to deal with the uncertainties in the biofuel industry. The 

first-stage makes the capital investment decisions including the locations and capacities of 
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facilities while the second-stage determines the biomass and biofuel flows. The optimization 

model could provide methodological suggestions for the decision makers on the capital 

investment decisions and logistic decisions of this thermochemical conversion pathway based 

on bio-oil gasification.  

A case study of Iowa is presented to illustrate and validate this supply chain design 

and optimization model. The results show that uncertain factors such as biomass availability, 

technology advancement and biofuel price can be pivotal in this supply chain design and 

optimization. In addition, farmers’ participation has a significant effect on the decision 

making process. It is appropriate and necessary to apply stochastic programming framework 

to deal with the uncertainties, especially at a low farmers’ participation level. As farmers’ 

participation increase in Iowa, the supply chain design and optimization model will become 

more robust against the uncertainties along the supply chain.  

In summary, this chapter provides a modeling framework to study the advanced 

biofuel production pathway under uncertainty. Our study is subject to a number of 

limitations. Firstly, we assume the sustainability factor and farmers’ participation are the 

same for each county. However, these factors may vary based on the land characteristics and 

agricultural management practices; we could include additional constraints and assumptions 

to better describe the biomass availability. Secondly, we assume the transportation cost 

within counties is negligible, which could impact the supply chain design and decision 

making. Thirdly, we consider three sources of uncertainties and more uncertainty factors can 

be considered. Last but not least, only one set of scenarios is generated in this chapter, more 

scenarios could be generated to test the results’ stability. We shall address these limitations in 

our future research. 
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CHAPTER 4 CONCLUSION  

 

With the growing concerns of renewable energy and the mandates of the Revised 

Renewable Fuel Standard (RFS2), cellulosic biofuels have been moved to the frontier of 

bioenergy research and development. With this motivation, this thesis is dedicated to 

investigate the economic assessment and supply chain design of a hybrid production 

pathway. This hybrid thermochemical production pathway based on bio-oil gasification 

which combines fast pyrolysis and gasification is one of the promising production pathways 

of advanced biofuel.  

In Chapter 2, a detailed process modeling with corn stover as feedstock and 

transportation fuels as the final products are presented. Techno-economic analysis of this fast 

pyrolysis and bio-oil gasification pathway is also discussed to assess the economic feasibility. 

The preliminary results of this study show a capital investment of 438 million dollar and 

MSP of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is 

most sensitive to IRR, feedstock cost, and fixed capital cost. 

As one of the superiority of bio-oil gasification, a supply chain design with various 

widely distributed small-scale fast pyrolysis processing plants coupled with a central bio-oil 

gasification facility could be considered. In Chapter 3, a two-stage stochastic programming is 

formulated to solve this supply chain design problem considering uncertainties in biomass 

availability, technology advancement, and biofuel price. The numerical results and case study 

of Iowa illustrate that considering uncertainties can be pivotal in this supply chain design and 

optimization problem. Also, farmers’ participation has a significant effect on the decision 

making process.  
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In summary, this thesis provides a techno-economic analysis and supply chain design 

for advanced biofuel production based on bio-oil gasification. This study is subject to a 

number of limitations which could also serve as future research directions. 

For Chapter 2, the techno-economic analysis will continue to be updated and 

improved with additional experimental data as they become available. Practical logistics 

settings and constraints could be considered at commercial scale. Other uncertainty analysis 

such as Monte-Carlo simulation could be performed to test the uncertainty in technical data, 

facility size, and capital costs. Comprehensive comparisons should be conducted to evaluate 

the difference between bio-oil gasification pathway and direct solid biomass gasification 

pathway for fuel production. Optimization models can also be formulated for a facility design 

and operational improvement such as production scheduling and inventory control. 

For the supply chain design model detailed in Chapter 3, additional constraints and 

assumptions should be incorporated to better describe the practical supply chain, e.g., 

transportation cost within counties and diversification of the sustainability factor and 

farmers’ participation in different areas. Moreover, more uncertainty factors could be 

considered and more scenarios could be generated to test the results’ stability. 

 


