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ABSTRACT

The aviation industry represents a complex system with low-volume high-value man-

ufacturing, long lead times, large capital investments, and highly variable demand. Mak-

ing important decisions with intensive capital investments requires accurate forecasting

of future demand. However, this can be challenging because of significant variability

in future scenarios. The purpose of this research is to develop an approach on making

long-term production planning decision with appropriate demand forecasting model and

decision-making theory.

The first study is focused on demand forecasting. Probabilistic models are evaluated

based on the model assumptions and statistics test with historical data. Two forecasting

models based on stochastic processes are used to forecast demand for commercial aircraft

models. A modified Brownian motion model is developed to account for dependency

between observations. Geometric Brownian motion at different starting points is used

to accurately account for increasing variation. A comparison of the modified Brownian

motion and Autoregressive Integrated Moving Average model is discussed.

The second study compared several popular decision-making methods: Expected

Utility, Robust Decision Making and Information Gap. The comparison is conducted in

the situation of deep uncertainty when probability distributions are difficult to ascertain.

The purpose of this comparison is to explore under what circumstances and assumptions

each method results in different recommended alternatives and what these results mean

making good decisions with significant uncertainty in the long-term future.
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CHAPTER 1. GENERAL INTRODUCTION

As the production rate of airliners increases dramatically following the nadir in 2009,

major airplane manufactures such as Boeing and Airbus are benefiting from the extraor-

dinary selling record. Figure 1.1 shows the historical order for global commercial airliners

(Boeing, 2015; Airbus, 2015). In 2014, global orders were exceed 3,300 which is six times

of orders in 2009. As the emerging of new market and positive outlook of global macroe-

conomics, the demand is likely to keep increasing in future. However, if the production

rate approaches an upper limit, Boeing and other aircraft manufactures will encounter

a tough capacity planning decision: whether they should expand their capacity? And if

they should, how to make a long-term capacity planning strategy? It is a typical long-

term capacity planning problem under high uncertainty. For such a complex problem,

making decisions based on gut feelings is certainly not a good choice as it would make

company in huge risk. A careful production planning can help a decision maker tackle

this complex strategic problem.

Figure 1.1 Historical order of global commercial airliners
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Long-term capacity planning under the presence of uncertainty is a big challenge

for many organizations. Because of the large uncertainties involved, most traditional

short-term or medium-term capacity planning methods are not applicable. Thus it is

essential to find new ways of dealing with this difficult problem. There are numerous

literatures discussed capacity planning problems in various industries. Higgins et al.

(2005) described how simulation model could be used for capacity planning under un-

certainty in food industry. The application of simulation for capacity planning is also

found in biomedicine which is used to support decision making (Groothuis et al., 2001).

Several articles have discussed the capacity planning problem in industrial and manufac-

turing field. Eppen et al. (1989) developed a practical model using Mixed Integer Linear

Programming to solve a capacity planning problem for General Motors. Nazzal et al.

(2006) proposed a comprehensive capital investment decision framework by integrating

simulation, statistics, and financial models to support decision making.

But much of this previous research has focused on deterministic problems or short

or medium-term planning. When handling uncertainty in capacity planning, multi-stage

stochastic programming is a popular method(Chen et al., 2002; Ahmed et al., 2003;

Geng et al., 2009). To understand the risks of capacity planning, Bonfill et al. (2004)

considered three risk factors (financial risk, downside risk, and worst-case revenue) in

a two-stage stochastic programming model. Incorporating game theory, utility theory,

financial hedging, and operational hedging can provide a financial model for a capacity

planning problem (Mieghem, 2003). However, understanding how to represent the risk

and making good decision of long-term capacity planning problems that can be applied

to real world problems in aviation industry largely remains an unanswered question.

A collaboration research is initialed in order to overcome this challenge. The goal of

the collaboration research is to develop a flexible and practical airplane painting capacity

planning tool for Boeing. It is designed to provide Boeing with sufficient information to

support decision making for long-term capacity planning strategy. It consists four parts:
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demand forecasting, mathematical modeling, simulation modeling, and decision making.

This thesis shows partial work (demand forecasting and decision making) within the

collaboration research.

The purpose of this thesis is to demonstrate several approaches for long-term pro-

duction planning problem. A good decision making process about whether to increase

capacity should require a reliable demand forecasting which provides sufficient informa-

tion on plausible scenarios rather than single prediction. In the first study, different

types of demand forecasting methods have been applied and evaluated based on the

historical orders of the 737, 777 and other airplane types. A modified Brownian mo-

tion model to account for dependency between observations is purposed. We compare

this new probabilistic model with Autoregressive Integrated Moving Average model. In

the second study, a strategy level production planning model is developed. Under the

framework of previous model, three decision making methods (Expected Utility, Robust

Decision Making and Information Gap) are implemented and applied to the model. The

results obtained from those decision-making theories are compared. Finally, we make

suggestions and conclude the finding of this research.
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CHAPTER 2. PROBABILISTIC METHODS FOR

LONG-TERM DEMAND FORECASTING FOR AVIATION

PRODUCTION PLANNING

Minxiang Zhang1, Cameron A. MacKenzie2

1 Primary researcher and author

2 Advisor

Abstract

The aviation industry represents a complex system with low-volume high-value man-

ufacturing, long lead times, large capital investments, and highly variable demand. De-

cisions with intensive capital investments require accurate forecasting of future demand.

However, this can be challenging because of the significant uncertainty in future demand.

The use of probabilistic methods such as Brownian motion in forecasting has been well

studied especially in the financial industry. Applying these probabilistic methods to fore-

cast demand in the aviation industry can be problematic because of the independence

assumptions of model and different characteristics of input data. This paper develops

two models based on stochastic processes to forecast demand for commercial airliners:

(1) a modified Brownian motion model to account for dependency between observations

and (2) a geometric Brownian motion with different starting points. The paper com-

pares the modified Brownian motion with an Autoregressive Integrated Moving Average

model. These models are used to forecast demand for aircraft production in the next 20

years.
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2.1 Introduction

As globalization increases, air travel increases as well, which in turn boosts the de-

mand for new aircraft. In this environment, Boeing is analyzing its capacity to manu-

facture commercial aircraft to satisfy future demand. Given the substantial investment

required to increase capacity, this analysis is predicated on a forecast model for demand

for new aircraft for the next 20 years. There is no ”best” method for long-term de-

mand forecasting (McLeodet al., 1977). Regarding to the topic of production planning

or capacity planning under demand uncertainty, most of previous literatures dedicated

to finding optimal schedule or allocating resources while simply represented demand as

a probability distribution (Johnson et al., 1974; Caldeira et al., 1983; Geng et al., 2009).

Then existing tools in operations research such as stochastic programming could be ap-

plied. A comprehensive review for production planning under uncertainty was presented

in the literature (Mula et al., 2006). Nonetheless, as rapid market change in modern

era, the simplified version of demand uncertainty is rarely a good representer of reality.

Airliner demand in aviation industry fluctuates greatly over long-term due to macroe-

conomics and market change. Therefore, a specific demand forecasting model which

dedicates to long-term production planning problem is needed. The goal of this research

is to develop a way to measure risk and uncertainty for future demand, so that it could

provide adequate information for a decision maker in enterprise strategy planning.

Forecasting future demand given historical data often applies traditional time se-

ries models (e.g., Autoregressive Integrated Moving Average). Autoregressive Integrated

Moving Average (ARIMA) and Autoregressive Moving Average (ARMA) model have

been studied for decades and have already been applied into many fields such as energy

(Ediger et al., 2007), economics (Elliott et al., 2016), finance (Rounaghi et al., 2016), hy-

drology (Karthikeyan et al., 2013), transportation (Klepsch et al., 2017), etc.. However,

demand in the aviation industry is influenced by numerous factors such as macroeco-
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nomics, fuel price, globalization, and competitiveness. Historical demand for airplanes

exhibits large variability. It may not be possible to accurately predict demand without es-

tablishing a multivariate causal model which requires enormous effort. This article from

Boeing briefly discussed the complexity in developing this type of model (Peterson et al.,

2013). Compared to traditional time series forecasting, probabilistic methods explicitly

incorporate uncertainty and therefore show a range of plausible scenarios (Gneiting et

al., 2014). This article provides a good review on methods in probabilistic forecasting

(Zhang et al., 2014). For a production planning problem with high capital investment,

probabilistic information for future states is more meaningful than a deterministic fore-

cast of demand. This paper favors probabilistic models to quantify the uncertainty in

future demand.

Brownian motion and geometric Brownian motion (GBM) are stochastic process

which have been widely applied in various fields. Many literatures discussed the ap-

plication of Brownian motion (Osborne, 1959, 1962; De Meyer et al., 2003; Azmoodeh

et al., 2009), geometric Brownian motion (Voit, 2003; De Meyer et al., 2009) and the

generalization model, fractional Brownian motion (Rogers, 1997; Sottinen, 2001), in eco-

nomics and finance. Because of its nice properties and good interpretation, it was also

applied to other fields: chemical engineering (Kramers, 1940), biology (Saffman et al.,

1975), quantum mechanics (Caldeira et al., 1983), etc..

This paper focuses on Boeings future painting capacity planning for new airplanes

and to determine whether additional painting capacity is needed. Forecasting demand is

necessary to develop a reasonable production planning model. This paper uses probabilis-

tic methods for long-term demand forecasting that is based on historical data of annual

airplane orders and develops innovative methods to apply these models to forecasting

aircraft demand. First, a Brownian motion model is developed to account for depen-

dency between annual orders. Brownian motion assumes independence, but this paper

proposes a unique method to dynamically adjust the forecast based on observed correla-
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tion. We borrow from the autoregressive model to introduce correlation into Brownian

motion. This approach is helpful when the historical data show a strong correlation.

This model is applied to forecasting demand for Boeings 737. ARIMA model is also

fitted to the data for comparison. Second, this paper constructs a model for geometric

Brownian motion in which the starting point is shifted to forecast demand for Boeings

777. We demonstrate how these models account for both the trend (mean shift) and

variation in annual demand.

2.2 Forecasting Models

2.2.1 Background on Brownian Motion and Geometric Brownian Motion

Brownian motion is a popular probabilistic model in forecasting. Brownian motion

assumes that demand in one year is independent of demand in the other years. A Brow-

nian motion model with drift assumes that annual demand follows a normal distribution

with mean µt+ b and variance tσ2, where µ is the mean shift in demand, t is the number

of years after the current year, b is the current demand, and σ2 is the variance of de-

mand at time t = 1. Uncertainty (or variance) increases each year in this model. If the

annual demand for airplanes follows a Brownian motion process, the demand at time t is:

X(t) = σB(t) + µt+ b (2.1)

where B(t) ∼ N(0, t) is a standard Brownian motion (i.e., it is normally distributed with

a mean 0 and variance t).

GBM is a stochastic process in which the annual percentage changes in demand are

independent and identically distributed. GBM is commonly used to predict stock prices

and oil prices (Postali, 2006). The annual demand in a GBM is Y (t) = exp (X(t)) where

the logarithm of ratio Y (t+1)
Y (t)

follows a normal distribution N(µ+b, σ2) (Marathe & Ryan,

2005).
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A standard probability plot or quantile-quantile (Q-Q) plot can be used to verify

the normality assumptions of both Brownian motion and GBM. A Q-Q plot displays

the residuals of the observed data minus the mean versus the quantiles of the normal

(Gaussian) distribution. For the GBM, if Y (t+1)
Y (t)

is log-normal distributed, the points on

both plots should approximate a straight line. A Shapiro-Wilk test can be conducted

to further verify the assumption of normality. If the p-value from Shapiro-Wilk test is

less than 0.05, it is reasonable to reject the null hypothesis: the original data follow a

normal distribution. Brownian motion assumes independence between observations, and

GBM assumes independence of the log ratio. The linear independence assumption can be

tested by the autocorrelation function (ACF), which calculates the correlation between

demand of different years. The difference in the years is the lag. For the GBM to be

valid, the correlation between demand ratios Y (t+1)
Y (t)

and Y (t+1+k)
Y (t+k)

should be not significant

where k > 0 represents the lag. The maximum likelihood estimation (MLE) method can

be used to estimate model parameters such as mean (i.e., drift) and standard deviation

for Brownian motion or GBM based on historical data.

2.2.2 Modified Brownian Motion and GBM

As will be discussed in the application section, the historical demand for airplanes

does not always follow the independence assumption. We develop a unique approach

to forecast demand based on Brownian motion when the demand observations are de-

pendent. The correlation between two adjacent years is defined as ρ. If N1 and N2 are

random variables from a standard normal distribution with correlation ρ, we define Ncor

to be a random variable where

Ncor = ρN1 +
√

1− ρ2N2 (2.2)

It can be shown that Ncor also follows a normal distribution and has a correlation of

ρ with N1. At time t, if the demand are X(t) = ρ
√
tN1 + µt + b and X(t + 1) =
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ρ
√
t+ 1Ncor+µ(t+1)+b, then the correlation between X(t) and X(t+1) equals ρ. Thus,

we can use the idea of Brownian motion but induce correlation between annual demand

in consecutive years. A separate challenge to using the GBM to forecast demand is the

increase in variance. In the Brownian motion model, the standard deviation increases by

a factor of
√

1 + 1
t

each year. In the GBM model, the standard deviation (or variance)

increases by approximate a factor of eµσ. Such a large variance with the GBM may

result in an unrealistically large level of uncertainty. We propose a modified GBM based

on the lag variable k. The lag k = 1 in the traditional GBM, which means that the ratio

between two adjacent years R(1) = Y (k+1)
Y (k)

follows a lognormal distribution with mean

µ and variance σ2. In the alternative method, lag k = t. For each year t, R(t) = Y (t)
Y (0)

has a lognormal distribution with mean µt and variance σ2t. A modeling challenge is to

determine the time t = 0 at which the GBM begins. If t = 0 is set too far back in the

past, the variance in the forecasted demand will be very large. If t = 0 is set as the last

observed demand point in the historical data, the variance in the forecasted demand will

be relatively small, which indicates more certainty than is probably warranted for the

future.

2.2.3 Autoregressive Integrated Moving Average

Autoregressive Moving Average is one of the classical forecasting models (Brockwell

et al., 2016). Unlike Brownian motion, which requires independent observations, ARMA

performs well when time-series data exhibits strong dependence. Autoregressive Inte-

grated Moving Average model extends the ARMA model by adding more parameters to

handle the non-stationarity (trend and seasonality) in the data.

Typically, there are two popular approaches to deal with heteroscedasticity in time-

series data (Box et al., 2015), which indicates that variance increases with time. The first

option is to develop a specific variance stabilizing transformation. According to Ziegel

(2003), a variance-stabilizing transformation is a data transformation that is ”specifically
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chosen either to simplify considerations in graphical exploratory data analysis or to allow

the application of simple regression-based or analysis of variance techniques”. The second

option is the Box-Cox transformation. One-parameter Box-Cox transformation is defined

as the following: (Box & Cox, 1964):

S(λ) =


Xλ−1
λ

if λ 6= 0

log(X) if λ = 0
(2.3)

where S(λ) is the transformed data and λ is the transformation parameter. As the dis-

cussion mentioned the risk of using logarithmic transformation blindly to heteroscedastic

time series (Box & Jenkins, 1973), Box-Cox transformation was applied to test the hy-

pothesis of using logarithmic transformation (Chatfield & Prothero, 1973).

Autoregressive Integrated Moving Average model can be expressed as the following:

φ(B)(1−B)dSt = θ(B)Zt (2.4)

where St is time series, {Z(t)} ∼ WN(0, σ2
0). WN is white noise. B is backward shift

operator which is defined as St−j = BjSt, j = 0,±1, .... φ(B) and θ(B) are AR and MA

polynomials respectively.

φ(B) = 1 + φ1B − ...− φpBp (2.5)

θ(B) = 1 + θ1B + ...+ θqB
q (2.6)

So, there are three parameters in ARIMA(p,d,q) process. Typically, we want to find a

ARIMA process with non-negative p, d and q estimated by MLE which has lowest Akaike

information criterion (AIC).

2.3 Application: Forecasting Demand for Airplanes

The demand for two models of airplanes were forecasted, each for a span of 20 years.

The Boeing 737 is a short- to medium-range twinjet narrow-body airliner. It has been
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continuously manufactured since 1967 and still remains popular in nowadays. The Boeing

777 is a family of long-range wide-body twin-engine jet airliners and it was designed to

replace older wide-body airliners and bridge the capacity gap between Boeing’s 767 and

747. It enters the market in 1990. Historical annual orders for each model are available

from Boeing’s website (Boeing, 2015).

2.3.1 737 Airplane

Figure 2.1 shows annual orders for the 737 from 1965 to 2015, and Figure 2.2 depicts

the difference in orders between two adjacent years. These figures show an increasing

trend in orders. The increasing differences between adjacent demands suggest that the

variance in annual orders increases with time. It matches the assumption of Brownian

motion with positive drift.

Figure 2.1 Annual orders for the 737

Plots of the ACF and partial autocorrelation function (PACF) examine linear depen-

dence in the data. The ACF (Figure 2.3) delays slowly and shows that the annual order

data exhibits strong dependence or correlation. The PACF measures the correlation
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Figure 2.2 Difference in orders between adjacent years for the 737

between demand in years t and t + k given the correlation between demand in year t

and t + δ for all δ < k. The PACF in Figure 2.4 demonstrates very little correlation

for k > 2 given correlation between adjacent years. These plots suggest that the annual

orders for the 737 are dependent between adjacent years. This dependence violates the

independence assumption required for Brownian motion, and simple Brownian motion

is not a good model for this data.

Figure 2.3 Autocorrelation of annual orders for the 737

The modified Brownian motion as described in Subsection 2.2.2 is used because the
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Figure 2.4 Partial autocorrelation of annual orders for the 737

modified Brownian motion model accounts for correlation between demand in adjacent

years. The correlation between orders of adjacent years is ρ = 0.84, and the standard

deviation is σ = 294.8. Since the ACF in Figure 2.3 suggests correlation for a period

of 12 years, we calculate the baseline or current demand b as the weighted sum of the

annual orders of the previous 12 years:

b =
12∑
t=1

[X(−t) ∗ wt] (2.7)

where X(−t) represents the annual orders t years prior to the baseline and wt is the

normalized correlation for lag t. Compared to standard methods (averaging or choosing

nearest data) in estimating baseline, this approach takes consideration of linear corre-

lation in historical data. It is similar to the idea of weighted average but emphases on

statistical correlation rather than time.

The drift µ for the Brownian motion is estimated by assuming a linear increasing

trend for the 737. However, only data after 1989 was used for two reasons. First, it

usually takes a while before the market adopts a new product. Second, by observing

the time series in Figure 2.1, the years 1965 through 1988 served as a transition period

for the 737, and the year 1989 seems to represent the beginning of relatively constant

upward drift. Regression analysis on the data from 1989 to 2015 generated an estimate

that µ = 31.7. Table 2.1 depicts the parameters for this modified model.
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Table 2.1 Modified Brownian motion parameters for the 737

Drift (µ) Sigma (σ) Baseline (b) Correlation (ρ)
31.7 294.8 483 0.83

We simulate this modified Brownian motion model and ran 100,000 replications over

a 20-year period. Figure 2.5 depicts the simulation results with the median (red circles)

and the 95% and 5% quantiles (blue triangles). For comparison, Boeings 20-year outlook

(Boeing, 2015) for a single-aisle airplane demand in the next 20 years is 26,730 airplanes.

Assuming that Boeing captures 50% of the market, the demand for the 737 airplane

is 13,365 planes. Based on our modified Brownian motion model, the forecast median

demand for the 737 is 20,072 planes. We show median instead of mean because the dis-

tribution of prediction from simulation is skew. Median is more robust when extremely

high demand presents in the simulation output. Because the modified Brownian motion

model assumes increasing trend in future, the median prediction is increasing steady

with time. It starts with 530 in year 2016 and ends with 1,548 in year 2035. In standard

Brownian motion, the corresponding drift would be 50 which means the median predic-

tion from modified Brownian motion is higher than standard Brownian motion. It is due

to the high correlation in the model. The combination effect of both drift and correlation

makes the interpretation of increasing trend in the model a little tricky. However, the

model is now able to go beyond linear increasing assumption with the ability to predict

non-linear smooth curve. If there is no major change happens in future, the median

prediction seems plausible. The 90% probability interval which defines by the 95% and

5% quantiles from simulation outputs is the other major interest. The 5% lower curve

shows small variability and ranges from 87 to 242. It means company may still have

risk with low demand in future. On the contrary, there is a large variability for the 95%

upper curve with minimum 1,008 at year 2016 to maximum 3,479 at year 2035. Based on



15

the forecasting result, the probability interval at year 2035 is pretty wide which means

there is a lot of uncertainty.

Figure 2.5 Twenty-year demand forecast for the 737 by Brownian motion

We also use the ARIMA model to forecast annual orders for the 737. Since the

ARIMA model explicitly accounts for autocorrelation, it is likely to be a good model

for the 737 which exhibits autocorrelation. Before applying ARIMA model, we need to

make sure the input time series data is stationary. From Figure 2.1, it is clear that the

excepted annual orders for the 737 is a function of time and the variance is increasing

with time. In other word, the original data is non-stationary with trend and changing

covariance. First, Box-Cox transformation is applied to stabilized variance. MLE is used

to estimated the most likely λ based on all observations. The optimum λ from MLE

is -0.02 which quite close to 0. Moreover, the 95% confidence interval of λ contains 0.

Thus, it is reasonable to choose λ = 0, which is essentially the logarithmic transforma-

tion and S(λ) = log(X). Figure 2.6 shows the plot of transformed data. Compared to

original data (Figure 2.1), variance is approximate constant after transformation. We use

transformed data St as input to ARIMA model. Second, 1-lag differencing is applied to
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transformed data in order to removes trend. Figure 2.7 presents the result of differencing

which is no trend and small positive mean. The small positive mean indicates that there

will be an upward drift once we reverse the differencing. It also suggests the parameter

d in ARIMA should be chosen as 1.

Figure 2.6 Transformed data

Through fixing d = 1, it reduces the size of parameter space significantly. By re-

stricting p and q parameters in a reasonable region (typically less than 12), we computed

the AIC for all combinations of parameters. We chose ARIMA (0,1,1) as the final model

which has the lowest AIC. The MLE returned the best model for transformed data is:

St − St−1 = Zt − 0.3344Zt−1 (2.8)

where {Z(t)} ∼ WN(0, 0.3243). Once we predicted the mean of annual order for next

20 years based on ARIMA model, we transformed it back to original scale. Then, delta

method was used to obtain 95% confidence interval in original scale. The 95% confidence

interval of X(t) can be expressed as follow:

eS(t) ± z∗0.05

eS(t)σS√
n

(2.9)
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Figure 2.7 Differencing of transformed data

The forecasting result is shown in Figure 2.8 with prediction (red circles), 95% confidence

interval of mean (green cross) and 90% prediction interval (blue triangles). The drift in

the graph is generated by the inverse of non-zero mean differencing. The confidence

interval in ARIMA is much smaller than modified Brownian motion because it which

shows the chance to capture true mean but probability interval in modified Brownian

motion which presents plausible scenarios. The mean prediction from ARIMA over 20

years ranges from 703 to 2,638. It is higher than the median prediction in modified

Brownian motion. The width of confidence interval increases mildly with time compared

to previous model. On the contrary, the 90% prediction interval is much wider than

modified Brownian motion. The upper limit at year 20 is over 1013 and the lower limit

is 0 most of time. The prediction interval seems unrealistic. Those extreme numbers are

caused by the reverse of transformation.

Overall, for the expected or median prediction modified Brownian motion and ARIMA

have different behaviors. If we project the prediction of ARIMA back to year 1965, it

would look like a smooth convex curve. The prediction from ARIMA looks like a non-

linear fitting to the historical data. However, it does not tell us anything about the



18

Figure 2.8 Twenty-year demand forecast for the 737 by ARIMA

variability, in particular, heteroscedasticity of the original data. By contrast, the prob-

ability interval in modified Brownian motion captures the variability and the increasing

uncertainty in future. Therefore, we consider that the result from modified Brownian mo-

tion is more informative than mean prediction from ARIMA model in long-term decision

making under uncertainty.

2.3.2 777 Airplane

Figure 2.9 shows the annual orders for the 777 from 1990 to 2015, and Figure 2.10

displays the difference in annual orders between each of the adjacent years. Similar to

the 737, the annual orders for the 777 exhibit an upward trend and increasing variance

over time. Figures 2.11 and 2.12 depict the ACF and PACF of ratio of annual order

for the 777. Since the ACF and PACF plots for the 777 demonstrate that the ratio of

orders is linearly independent, ARIMA model is no longer under consideration. Either
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Brownian motion or the GBM could be an appropriate model depending on whether the

data appear normally distributed.

Figure 2.9 Annual orders for the 777

A Q-Q plot (Figure 2.13) without a log transformation for the 777 shows that the

data for the annual orders for the 777 do not follow a normal distribution. A Q-Q plot

of the log transformation of the original data is depicted in Figure 2.14. We did the

Shapiro-Wilk test on log transformed data with p-value 0.7, so we failed to reject the

null hypothesis: the original data follow a lognormal distribution. The annual orders for

the 777 appear to satisfy the GBM normality assumption, and the GBM can be used to

forecast annual orders for the 777.

The ratio is computed from the exponential of historical annual orders Y (t), where

R(t) = Y (t+k)
Y (t)

and the lag k = 1. A lognormal distribution was fitted for R(k). The

estimated mean µ̂ is the drift for GBM and the estimated variance σ̂2 is the variance for

GBM. Table 2.2 shows all estimated parameters that are used in GBM for the 777.

We ran 100,000 simulations of the GBM over a 20-year period. The median (red

circles) and a 90% prediction interval (blue triangles) are shown in Figures 2.15. Because

of the log transformation, the 90% probability intervals for the 777 are too wide to be
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Figure 2.10 Difference in orders between adjacent years for the 777

shown on the graph. The upper bound for the 777 after three years is larger than 500

planes and increases to more than 10,000 planes in years 2025 and beyond. As we can

see from the graph, the 90% prediction interval is too narrow for the first a few years.

Before 2020, the 90% prediction is under 100 which is only one-third of the actual order

in year 2014. Moreover, the median prediction seems to be too conservative. Even in

2035 the median prediction of annual order is under 150. These numbers seems to be

unrealistic.

Figure 2.11 Autocorrelation of annual orders for the 777
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Figure 2.12 Partial autocorrelation of annual orders for the 777

Table 2.2 GBM parameters (traditional method) for the 777

Method Drift (µ) Sigma (σ) Baseline (b)
Tradition 0.030 0.847 3.635

Because of the poor performance and large uncertainty of prediction with the tradi-

tional GBM model, we use the modified GBM as discussed earlier where R(t) = Y (t)
Y (0)

.

For each year t, R(t) = Y (t)
Y (0)

has a lognormal distribution with mean µt and variance σ2t.

The MLE method is used to obtain the most likely µ and σ from the sum of log-likelihood

function of lognormal distribution with R(t). Table 2.3 shows all GBM parameters that

were estimated using the alternative method.

Table 2.3 GBM parameters (alternative method) for the 777

Method Drift (µ) Sigma (σ) Baseline (b)
Alternative 0.056 0.191 3.635

Figure 2.16 shows the median forecast values (red circles) and the 90% probability

interval (blue triangles) of the modified GBM in which t = 0 corresponds to 1990. Note

that the initial probability interval is very small which may not capture the uncertainty

well. The estimated standard deviation (σ) is much smaller than the estimation from
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Figure 2.13 Normal Q-Q plot for the GBM normality check for the 777

the traditional method. On the contrary, the estimated drift is higher for alternative

method. This is because the alternative method chooses the parameters which maximize

the likelihood function with entire historical data (by beginning at t = 0) under the

GBM framework.

We can move the initial point backwards and forwards along the time axis. For

example, Figure 2.18 shows what the estimation would be if we choose year 2000 as a

restart point for the 777, and Figure 2.17 shows the estimations for the 777 if the model

starts at year 2016. However, it is important to mention that even when we start the

estimation in the middle of the timeline, the GBM parameters are the same as in Table

2.3.

All data points on Figure 2.16 are inside 90% probability interval when we fitted the

time dependent lognormal distribution with all historical data. The median prediction

seems plausible and the unstable prediction points after 2030 is likely due to simulation

error (more replications needed). Nonetheless, the high end 95% is too high to be realistic.

It means that there is more than 500 orders for the 777 at year 2016 with 5% chance.



23

Figure 2.14 Lognormal probability plot for the GBM normality check for the 777

It is very unlikely because that would be double of the highest order at year 2014.

Considering the prediction starts at year 2016, the median prediction in Figure 2.17

seems too conservative. Even at year 2035, it predicts less than 150 annual orders which

is only half of the demand in year 2014. In addition, the initial probability interval is

too narrow to be true. Given the high orders in previous years, the probability to have

more than 100 orders in 2016 is clearly higher than 5%.

The starting point was chosen as year 2000 where the prediction mostly captures

the variability of historical data visually. The median prediction in Figure 2.18 matches

expectation while the probability interval still contains most of data. Based on this

modified GBM model, the forecast median demand for the 777 is 1,823 planes. By

comparison, according to Boeings 20-year outlook (Boeing, 2015), the global medium

wide-body airplane demand in the next 20 years is 3,520 airplanes. Assuming that Boeing

captures 50% of the market, the demand for the 777 is 1,760 planes. A close prediction

does not mean the model works all the time. The down side of this approach is lacking of

theoretical justification and model interpretation. It requires subject judgment therefore
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Figure 2.15 Twenty-Year demand forecast for the 777 (traditional GBM method)

may be influenced by the bias from decision maker as well. In addition, because of the

high rate of variance increasing, GBM may not work well in long-term forecasting with

large trend (µ). However, there is no correct answer for the forecasting. This approach

allows the decision maker to explorer various scenarios. So that the decision maker would

have the chance to choose the scenario which captures the variability of data.

2.4 Conclusion

This research explores different methods for forecasting long-term demand based on

historical data for Boeings airplanes. We have used Brownian motion and GBM models

and have shown how these models need to be adjusted to fit the nature of the historical

data. The median forecasted demand compares favorably to the 20-year Boeing demand

forecast. In order to address the correlation in historical data, a modified Brownian

motion model is proposed. The comparison between modified Brownian motion and

ARIMA has been discussed. When precise prediction or expectation of demand is im-

portant, ARIMA is the top choice. However, the long-term extrapolation is still less
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Figure 2.16 Fitted GBM for the 777 (alternative method)

warrant given a non-stationary series data. The probability interval information from

modified Brownian motion model could be useful when the primary purpose of forecast-

ing is strategy planning or demand satisfaction. In these situations, company is planning

for the risk of extreme case which could cause a huge economic loss. When lag k > 1

and there is strong partial autocorrelation observes in timer series data, purposed model

may no longer be suitable. The alternative approach in fitting GBM model is applied

in forecasting of the 777. This approach provides a flexible way for decision maker to

examine the variability of data. It is particularly useful when observations are limited

and no correlation is exhibited. Both the Brownian motion model for the 737 and the

GBM model for the 777 have significant uncertainty in the forecasts 15-20 years in the

future. Although some reduction of uncertainty may be possible, we believe that accu-

rately forecasting demand such a long time into the future will have a lot of uncertainty,

and relying on models without such uncertainty could be exhibit overconfidence in our

knowledge of the future.

These demand forecasts can serve as an input into a larger systems model that eval-

uates Boeings current production capacity for airplanes. Given a demand realization
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Figure 2.17 Fitted GBM starting at year 2016 for the 777 (alternative method)

based on the probabilistic models for the 737, 777, and other airplane models not dis-

cussed in this paper, a production planning model optimally schedules the painting of

new airplane orders. The schedule determines how Boeing can most efficiently utilize its

current painting capacity. Based on running this model with several demand realizations,

we can calculate the probability that Boeings current painting capacity will be exceeded

in any given year. The demand forecasts will be used by the systems model to assess if

and when Boeing should expand its capacity for painting airplanes. Future research can

develop a multi-variate model which incorporates other factors such as gross domestic

product, fuel price, etc..
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Figure 2.18 Fitted GBM starting at year 2000 for the 777 (alternative method)
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Abstract

Making good risk-based decisions is especially difficult for situations with deep un-

certainty that extend over time. Production planning problems may be especially prone

to difficult uncertainties (such as demand, operations, supply chain) and yet firms need

to plan for several years or decades into the future. Traditional decision-making theories

such as subjective expected utility may be challenging to implement if probability distri-

butions are difficult to ascertain. This paper compares different decision-making methods

for a complex problem under the presence of long-term uncertainty. The decision-making

methods are expected utility, robust decision making, and information gap. The purpose

of this comparison is to explore under what circumstances and assumptions each method

results in different recommended alternatives and what these results mean making good

decisions with significant uncertainty in the long-term future.
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3.1 Introduction

In general, uncertainty can be defined as a situation which involves imperfect and/or

unknown information. Probability is the most common way to handle uncertainty. Deep

uncertainty is a situation, as stated by Walker et al. (2013) ”Uncertainties that cannot

be treated probabilistically include model structure uncertainty and situations in which

experts cannot agree upon the probabilities.”. Risks with significant, severe, or deep

uncertainty that extend over time can be especially difficult to manage. Decisions in

the manufacturing industry are especially prone to this type of uncertainty (Applequist,

2000; Brouthers, 2003). A typical approach to these problems is to develop a mathemat-

ical model that captures the essentials of the problem. Random variables governed by

probability distributions can represent that uncertainty, and the model can usually be

solved in order to determine the optimal alternative. If the model involves optimizing

an objective function with uncertainty, stochastic programming has become a rich field

to find the optimal alternative (Infanger, 1992; Ahmed, 2000; Santoso, 2005).

According to Courtney (2001), uncertainty can be divided into 5 intermediate levels

between complete certainty and total ignorance. For level 4 (multiplicity of futures)

and level 5 (unknown future) uncertainty, it is not a easy task to assign probability

distribution for problems with uncertainty far into the future. So, these types of un-

certainty, they are usually referred as deep uncertainty (Walker et al., 2003). Based on

some assumptions and trend-based scenarios, some practical problem such as demand

forecasting and GDP growth could be categorized as situation with level 3 uncertainty

(alternative futures with ranking). In Chapter 2, the development of demand forecasting

model helps to reduce uncertainty for long-term capacity planning problem, so that it

can be treated as situation with level 3 uncertainty. However, what if the assumptions

we made in previous chapter are not true? In this chapter, we use different decision

methods to address the capacity planning problem and test the sensitivity of underlying
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assumptions in Chapter 2.

Several decision-making methods have been developed and proposed to deal with

uncertainty, including expected utility (Fishburn, 1970; Rabin, 2000), prospect theory

(Tversky, 1992), interval analysis (Moore, 1979, 2003), mean-variance analysis (Epstein,

1985), chance-constrained programming (Charnes, 1959; Hogan, 1981; Charnes, 1983;

Hogan, 1984), robust decision making (Lempert, 2003), information gap (Ben-Haim,

2004, 2006, 2015), preserving flexibility (Mandelbaum, 1990), and the precautionary

principle (Steele, 2006). Most papers select one decision-making method, and little

work has gone into exploring when these decision-making methods produce different

results and what assumptions are necessary to implement a specific decision-making

method. Lempert et al. (2007) compared robust decision making, expected utility and

precautionary methods under a hypothetical environment problem. As the Info-gap

method being proposed, Hall (2012) made a comparison between robust decision making

and Info-gap for climate policies problem. One year late, similar comparison was done

with the application in water resource system planning (Matrosov, 2013). However,

all comparisons are in the area of environment and government policy. To the best

knowledge of authors, no such comparison has been made for manufacturing capacity

planning problem. This paper seeks to fill that gap by focusing on three popular decision-

making methods: expected utility (EU), robust decision making (RDM), and information

gap (Info-gap)

With its origins dating back to Daniel Bernoulli (Bernoulli, 1954) in 1738, EU is

perhaps the most established and still one of the most popular methods for making

decisions under uncertainty. EU chooses the alternative that maximizes the decision

makers expected utility, and the decision makers utility incorporates his or her risk

attitude. EU requires a probability for each potential outcome, and the probabilities

represent the decision maker’s subjective beliefs about the future.

It can be tricky to ascertain the decision makers utility function, but there are a
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few papers provide some useful guidance (Samuelson, 1937; Parzen, 1962; Alt, 1971).

Bell (1982) argues that incorporating regret into expected utility theory would improve

the quality of decision making. Starting in the 1950s, as evidence from psychology

and economic experiments discovered the violation of key axioms in utility theory, non-

expected utility theory was proposed (Starmer, 2000). Prospect theory (Kahneman,

1979; Tversky, 1992) and rank-dependent expected utility (Hong, 1987; Quiggin, 2012)

are notable models that seek to incorporate descriptive aspects of human behavior into

decision making.

The idea of robust decision framework is first proposed by Jonathan Rosenhead

(Mingers & Rosenhead, 2001). Then research in robust decision has emerged in ar-

eas such as politics (Groves et al., 2007), finance (Mahnovski, 2006) and operations

research (Dimitris et al., 2006). In 2003, RDM framework was developed (Lempert,

2003). RDM is a natural method to apply when there is complex uncertainty that is not

easily modeled with probability distributions. RDM is designed for situation under deep

uncertainty, so it does not rely on prior probability which is a key input parameter in

most decision-making models (Lempert et al., 2007). Even if the decision maker believes

the uncertainty can be described by a probability distribution, there may be uncertainty

around the parameters informing the probability distribution. RDM provides a solution

to incorporate uncertainty in the parameter estimation. Generating all plausible scenar-

ios remains a challenge in applying RDM. RDM resembles regret-based decision making

in which a decision maker seeks to minimize the regret from a bad outcome. It tends to

overweight on the worst scenarios and the best alternative may be very conservative or

risk averse.

Info-gap is another method used to deal with severe uncertainty in decision making,

especially when probabilities are difficult to assess (Ben-Haim, 2006). Similar to RDM,

Info-gap uses sets of representors rather than a single probability distribution; considers

the outcomes over a wide range of conditions; and provides a trade-off curve to decision
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maker. RDM needs to define scenarios (i.e., distributions), but Info-gap constructs the

uncertainty model first and then uses it to identify candidate strategies. The criteria

for selecting an alternative are robustness and opportuneness which is the minimum and

maximum reward. Info-gap has been criticized for not applicable under situations of

”severe uncertainty” (Sniedovich, 2007). We have a discussion about it in this chapter.

This research compares these different decision-making methods by establishing a

stochastic process over time and comparing the results obtained from EU, RDM, and

Info-gap. Simulation is used to generate the results and compare among the methods.

Sensitivity analysis is also conducted for these methods. We find that EU is still the

best decision-making method when there is little uncertainty. Info-gap is applicable for

level 2 or 3 uncertainty and it provides critical reward information which is especially

useful in commercial industry. RDM is the best decision-making framework under deep

uncertainty but it requires more effort on scenarios exploration and computational opti-

mization. The rest of paper is structured as follows: section 3.2 introduces the capacity

planning model in aviation industry and section 3.3 describes the behavior of the three

methods and presents the result of sensitivity analysis. Comparison among these meth-

ods is summarized in section 3.4. The conclusion appears in section 3.5.

3.2 Decision-making in Aviation Industry with Deep

Uncertainty

In the aviation industry, building new facilities for assembling and painting aircraft

is expensive and the fixed operation cost of existing facilities is high. Capacity planning

is an important strategic decision for manufacturers. Although we have high confidence

that the demand of aircraft is likely to increase globally in future, it is very challenging

to forecast demand for one particular manufacturer over a long time period. Economic

growth rate, geographical location, global competition, and currency exchange rate all
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influence demand. Given this large uncertainty in future demand, should a manufacturer

build additional hangars? If they should build additional hangars, we want to know when

the manufacturer should build them. In this section, we develop a model that captures

the essential factors and variables in this decision problem.

3.2.1 Capacity Planning Model with Uncertain Demand

Table 3.1 and 3.2 lists all notations used in this chapter. A airplane manufacturer

wants to plan when and if it should construct new hangars to paint airplanes. It can

plan to construct hangars on an annual basis, and I(t) is defined as the number of new

hangars at time t, where t is an integer representing years. In this model, we only

consider building new hangars and not removing hangars, so I(t) ≥ 0,∀t.

Table 3.1 Notation of functions

Notation Definition Description
A Model Maximum production capacity
D Model Demand
DC Model Depreciation cost
FC Model Fixed cost
G Model Profit function

G̃ Model Total profit
H Model Capacity
I Model Investment decision
M Model Actual production
MC Model In-house painting cost
OC Model Outsourcing cost
Ps RDM Reward
R Model Revenue
RTs RDM Regret
θ RDM Probability distribution
U EU Utility function
V C Model Variable cost

The demand of airplanes for the manufacturer in year t can be written D(t), and

we assume the manufacturer cannot influence demand. Based on previous analysis of
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Table 3.2 Notation of variables and sets

Notation Type Definition Description
α Variable Info-gap Horizon of uncertainty
CE Variable EU Certainty equivalent
g Variable EU Additional profit beyond baseline
n Variable Model Number of decision options
N Variable Model Number of strategies
Φ Set Info-gap Uncertainty space
r Variable EU Risk tolerance
s Variable Model Strategy
S Set Model Strategy set
s0 Variable EU Default strategy
t Variable Model Time
t˜ Set Model Time set
Θ Set RDM Probability distribution set
µA Variable Model Expected annual production
µD Variable Model Expected annual demand
x Variable Model State
X Set Model State set
z Variable Model Confidence level of best distribution

aviation industry in Chapter 2, we assume that demand follows Brownian motion with

trend. Mathematically, demand is D(t) ∼ Nor(µD, σ
2
Dt), where µD = µD0 +µD1t, µD0 is

the mean of demand at t = 0, µD1 is the annual trend coefficient, and σ2
D is the variance

in demand at t = 1. We assume the manufacturer’s production of airplanes in time t

equals the demand at time t.

We assume that all the manufacturer’s airplanes can be painted in house or via

outsourcing, and the revenue is computed as:

R(t) = aD(t) (3.1)

where a is the selling price of the aircraft. We only consider one type of aircraft with a

fixed selling price without adjusting for inflation.

We define H(t) as the capacity—the number of hangars—in year t. Capacity only

changes at the beginning of year and remains constant for the rest of that year. The
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number of hangars in year t is given by:

H(t) =
t−1∑
i=1

I(i) + h0 (3.2)

where h0 is the number of hangars at time t = 0. Notice that H(t) is the number of total

hangars up to time t and it never decreases if I(t) ≥ 0,∀t.

We use a straight-line depreciation method to compute the cost of new hangars at

time t. The depreciation cost at time t DC(t) is given by:

DC(t) = e ∗ dr ∗ [H(t)− h0] (3.3)

where e is the cost of a new hangar and dr ≤ 1 is depreciation rate. If we want to

depreciate capital cost evenly over time t, then dr = 1
T

where T is the total number

of years in the problem. Depreciating cost for this problem takes into account that

hangars can be used beyond the total number of years examined in this problem. The

manufacturer will not be penalized for building a hangar in year T due to the depreciation

factor. In reality, a manufacturer that builds a hangar in year T would be able to use

that hangar in years T + 1, T + 2, . . ..

The maximum number of airplanes that can be painted during year t is A(t), and

A(t) also has uncertainty. We assume that A(t) follows a Gaussian distribution A(t) ∼

Nor(µA, σ
2
A) ,where µA(H) is the average number of planes that could be painted given

the number of hangars and σ2
A is the variance. The average number of planes painted in

a year is µA = dH(t) + d0, where d and d0 are positive parameters. Given the demand

and maximum capacity, the actual number of planes at time t is given by:

M(t) = min{D(t), A(t)} (3.4)

The manufacturer needs to decide whether to paint an airplane in house or outsource

to a third party. It is preferable to paint in house because of the lower cost and shorter

lead time. However, if the actual demand exceeds the maximum capacity, the manufac-

turer will choose to outsource the painting operations. If we assume outsourcing capacity
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is infinite, the outsourcing cost can be written as:

OC(t) = b ·max{[D(t)−M(t)], 0} (3.5)

where b is cost of outsourcing. The in-house painting cost is decomposed into two parts:

fixed cost FC(t) and variable cost V C(t). Fixed cost is the maintenance cost of capital

which is based on the number of hangars:

FC(t) = fH(t) + f0 (3.6)

where f and f0 are fixed-cost coefficients. Variable cost is the operational cost based on

the number of jobs.

V C(t) = kM(t) + k0 (3.7)

where k and k0 are coefficients. The total in-house painting cost is the sum of the fixed

cost and variable cost:

MC(t) = FC(t) + V C(t) = fH(t) + kM(t) + f0 + k0 (3.8)

The profit function at time t is expressed as:

G(t) = R(t)−MC(t)−OC(t)−DC(t)

= aD(t)− fH(t)− f0 − kM(t)− b ·max{[D(t)−M(t)], 0} − e ∗ dr ∗ [H(t)− h0]

(3.9)

The manufacturer choose an investment strategy s in order to maximize its total

profit over a period of T years. An investment strategy s is a unique collection of I(t˜)
where t˜= {0, 1, · · · , T}. The objective function is calculated as:

G̃(T, s) =
T∑
t=1

G(t, s) (3.10)

where G(t, s) is the profit function in year t given an investment strategy s.



40

3.2.2 Decision Space

If a decision maker can choose n different alternatives in each year for T years, the

number of strategies in the decision space is nT . As the number alternatives or years

increase, the number of available strategies increases dramatically. We assume that the

the maximum number of new hangars can be built over T years is hmax and the hangars

are not distinguishable. These assumptions reduce the number of strategies. The total

number of strategies N in the decision space is calculated as:

N =
hmax∑
i=1

(
T + 1

i

)
(3.11)

3.2.3 Decision-making Methods

In this section, we discuss the framework for the three decision-making methods: EU,

RDM, and Info-gap.

3.2.3.1 Expected Utility

In this case, we assume a single decision exhibits a risk-averse or risk-neutral risk

attitude. Given the large uncertainty in this problem, a risk-averse decision is very

realistic. Exponential utility function is used to compute the utility of profit. The

general form of exponential utility function is:

U(g) = a1 − b1 exp(−g/r) (3.12)

where r > 0 is the risk tolerance; a1 and b1 define the scale of utility function; g =

G̃(T, s) − E[G̃(T, s0)] which is the additional profit over T years given strategy s after

removing the baseline expected profit. The baseline profit E[G̃(T, s0)] is the expected

profit over T years given strategy s0 (no additional hangars). If the decision maker is

indifferent between obtaining the expected baseline profit and a p probability of gaining

an additional m million dollars and 1 − p probability of losing m million dollars, then



41

the decision maker’s risk tolerance r can be calculated:

r̃ = (
p

1− p
)

1
m (3.13)

r =
1

ln r̃
(3.14)

The parameters a1 and b1 can be ascertained by defining two values for utility, such

as u(0) = 0 and u($m million) = 1, and solving for a1 and b1. The decision maker should

choose the strategy that maximizes his or her expected utility. Once the expected utility

is obtained, the certainty equivalent (CE) which is the inverse of utility function and is

in units of dollars could be computed for comparison and judgment:

CE = U−1(E[U(g)]) (3.15)

3.2.3.2 Robust Decision Making

RDM incorporates various uncertainty into the model to support decision making.

Uncertainty is represented as ”a set of multiple, plausible future states of the world” (Hall

et al., 2012). For example, the state x can be interpreted as the parameters µD1, σD in

demand model. RDM assumes three sets: strategy set S, a plausible future state set X,

and a probability distribution set Θ. The expected regret of strategy s ∈ S contingent

on distribution θi(x) ∈ Θ is given by (Lempert et al., 2007):

RT s,i =

∫
x

RTs(x)θi(x)dx (3.16)

where RTs(x) = Maxs′ [Ps′(x)]− Ps(x) is the regret of strategy s in state x and i is the

index of the probability distribution in set Θ. The reward function Ps(x) is the expected

utility of profit E[U(g)] given state x.

Given a strategy s, there is one probability distribution θbest(x) in set Θ which min-

imizes the expected regret RT s,best. Similarly, a probability distribution θworst(x) yields

the maximum expected regret RT s,worst. The true expected regret given the true prob-

ability distribution, which is unknown, should lie in the interval [RT s,best, RT s,worst].
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RDM suggests a way to trade off between the optimal performance and model sensitiv-

ity. Mathematically, the trade-off is written as a weighted average of the best and worst

expected regret:

Vs = zRT s,best + (1− z)RT s,worst (3.17)

where 0 ≤ z ≤ 1.

The parameter z can be interpreted as the level of confidence in the probability

distribution θbest(x). According to RDM, the decision maker should select the strategy s

that minimizes Vs given value of z. For example, if decision maker has 100% confidence

on that θbest(x) is the exact representation of truth, then z = 1 and the result turns

out to be the same as expected utility. Because the expected regret of one strategy is

the difference between its expected utility and the maximum expected utility over all

strategies. Conversely, if z = 0, the decision maker believes there is high uncertainty in

the probability distribution over the future state X and should prepare for worst case.

Preparing for the worst-case corresponds to the well-known mini-max decision rule.

3.2.3.3 Information Gap

Both EU and RDM assume that uncertainty can be measured with probabilities, the

uncertainty in Info-gap model is treated as a family of nested sets (Ben-Haim, 2004). In

RDM, we use state x (recall it includes the parameters µD1, σD in the demand model)

in set X to represent uncertainty.

Unlike RDM, which tries to measure a fixed uncertainty set with a branch of plausible

probability distributions, the Info-gap model has a dynamic uncertainty set Φ and does

not assume any probability distribution over that uncertainty set. The dynamic uncer-

tainty set Φ is defined by a variable α. Given a fixed α, the set Φ(α, x̂) states a degree

of variability around x̂ which is interpreted as the most likely state. The parameter α is

called the ”horizon of uncertainty” (Ben-Haim, 2015) and explains the variability of x.

The greater the value of α, the larger the size of set Φ(α, x̂) and the higher variation. If
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α = 0, there is no uncertainty in the model. Several types of uncertainty models Φ(α, x̂)

exist, and a fraction error model is one of the most common (Hayes et al., 2013). The

fraction error model creates an interval based on an initial estimation for each uncertain

parameter (µD1, σD ∈ X) in the demand model:

Φ(α, x̂) = Φ(α, (µ̂D1, σ̂D))

= {(µD1, σD) : |µD1 − µ̂D1

µ̂D1

| ≤ w1α, |
σD − σ̂D
σ̂D

| ≤ w2α}
(3.18)

where weight parameter w1, w2 ∈ [0, 1] and (µ̂D1, σ̂D) are initial esimtates. Thus, Φ

represents the uncertainty space in this problem.

Similar to RDM, the decision space is defined as the strategy set S. A reward func-

tion Ps(x) measures the expected utility given the strategy s and state x. The decision

maker selects pc, which is the minimum requirement for the reward function. In the

painting decision problem, pc is the required profit. In the Info-gap model, robustness is

defined as the maximum α that still maintains critical requirement for a strategy s, and

opportuneness is defined as the the minimum α (Ben-Haim, 2006). The opportuneness

function focuses on sweeping success, which might not be appropriate for situation exam-

ined in this paper. Hence, we focus on the robustness function α̂(s, pc) which calculates

the greatest level of uncertainty that satisfies the minimum profit requirement.

α̂(s, pc) = max{α : min
x∈Φ(α,x̂)

Ps(x) ≥ pc} (3.19)

The decision maker should select the strategy s that meets the critical requirement

with largest α̂(s, pc).

3.3 Application of Different Decision-making Methods

This section applies EU, RDM and Info-gap to the decision problem of when to build

hangars. The purpose of this section is to analyze how optimal decisions differs among

these decision methods given the uncertainty in demand.
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3.3.1 Model Settings and Interpretation

Table 3.3 depicts the values chosen for this model. The maximum number of hangars,

hmax, that the manufacturer can build over the next T = 20 years equals 2. We assume

that the investment decisions are made only once at year 0, so the decision is planning

for the 20 years. From equation 3.11, the total number of strategies is N = 231. The

baseline strategy of this model is not build any hangars. If I(t) = 0,∀t, after 20,000

replications of a Monte Carlo simulation, the profit over 20 years averages $7.5 million

with a standard deviation of $0.13 million. In general, a decision is more conservative

if less hangars were built or they were built in later year. By contrast, if more hangars

were built early, the decision is more aggressive.

3.3.2 Expected Utility

A risk-averse exponential utility function is constructed as following procedure. Let

p = 0.6, r = 2.4663, a1 = b1 = 1.0102. For each strategy in decision space, we run 20,000

replications to find the expected utility given a strategy. We choose 20,000 replications

because the 95% confidence interval of mean is small enough (only 0.07% of mean). In

addition, the result seems to stable as it does not varies for multiple runs of simulation.

Figure 3.1 shows the expected utility for each strategy. All strategies in decision space

have positive utility and therefore it suggests that it would be profitable if more hangars

are built. A summary of strategies in Figure 3.1 grouping by the number of new hangars

is presented in Figure 3.2. The average of expected utility increases as more hangars

are built. Figure 3.3 shows average expected utility of strategies grouped by the year

of building first hangar. As we can see from the graph, the average expected utility

starts to decrease after year 6. Similarly, grouping by the year of building second hangar

(Figure 3.4), average expected utility is quite stable from the beginning and it starts to

decrease after year 9. These two graphs explains that the best strategy (maximum EU

= 0.389) is to build 2 hangars with first at year 6 and second at year 9.
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Table 3.3 Model parameters

Notation Definition Value Description
a Model 1000 Price for 737
a1 Model 1000 Coefficient of utility function
b Model 800 Outsourcing price
b1 EU 1.0102 Coefficient of utility function
d Model 86.7 Coefficient of expected production function
d0 Model 0 Coefficient of expected production function
dr Model 0.05 Depreciation rate
e Model 30000 Cost of new hangar
f0 Model 0 Coefficient of fixed cost function
h0 Model 9 Initial number of hangars
hmax Model 2 Maximum new hangars allowed
k Model 500 Coefficient of variable cost function
k0 Model 0 Coefficient of variable cost function
m EU 1 Coefficient in risk tolerance estimation
p EU 0.6 Coefficient in risk tolerance estimation
pc Info-gap 7 Required profit (in million)
σA Model 3 Standard deviation of production
σD Model 10 Standard deviation of demand
T Model 20 Total years
µD0 Model 679 Coefficient of expected demand function
µD1 Model 18.6 Coefficient of expected demand function
w1 Info-gap 0.5 Weight parameter for trend
w2 Info-gap 0.2 Weight parameter for standard deviation

Since there is significant uncertainty in demand over the next 20 years, we have little

confidence in the parameters used in the demand distribution. For the Brownian motion

process, trend µD1 and standard deviation σD play an important role in the realization

of demand and significantly impacts the firm’s profit. We perform sensitivity analysis on

µD1 by letting it vary from 0 to 38 airplanes. The optimal strategy graph under different

trends in Figure 3.5.

The horizontal axis in Figure 3.5 is trend (µD1) in the Brownian Motion and vertical

axis is the year to build hangar. If the year to build hangar exceeds year 20, it means

that the hangar would not be built. According to Figure 3.5, the manufacturer should
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Figure 3.1 Expected utility for different strategies

build hangars earlier as the trend increases (more expected demand). The EU method

suggests that the manufacturer should only build one hangar in next 20 years if the

trend µD1 is less than 2 airplanes per year. The optimal strategy changes significantly as

the trend increases. The downside of making decision based on EU is that determining

the optimal strategy is difficult under deep uncertainty (given we do not know the true

trend).

If trend µD1 remains constant the variability in demand σD increases, the the manu-

Figure 3.2 Summary of strategies by number of new hangars
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Figure 3.3 Summary of strategies by year of first hangar

Figure 3.4 Summary of strategies by year of second hangar

facturer should also build hangars earlier and be more aggressive (Figure 3.6). If σD = 0,

there is no variability in demand and it will keep steady increasing in next 20 years. EU

suggests to build first hangar at year 7 and second at year 11 which is more conservative

than the other scenarios with large σD. Intuitively, this recommendation makes sense

because more variability increases the probability of large demand. The manufacturer

should build hangars earlier in order to capture that possibility of larger demand. Under

the assumption of risk averse decision maker, the decision will be more aggressive under

higher estimation of µD1 and σD.

For comparison, we plot the graphs of investment decision when decision maker has

different risk tolerance (Figure 3.7). Recall p is probability when a decision maker is

indifferent between obtaining the expected baseline profit and a p probability of gaining

an additional m million dollars and 1 − p probability of losing m million dollars. So, a

decision maker is risk seeking when p < 0.5, risk neutral when p = 0.5 and risk averse
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Figure 3.5 Optimal strategy by expected utility under different µD1 of demand model

when p > 0.5. We can see that the optimal investment decisions do not varies a lot.

For all the strategies in the graph, the expected utility under same p is fairly close. So,

risk tolerance of decision maker has little influence to the suggestion made by EU in this

problem.

3.3.3 Robust Decision Making

The strategy set in RDM is the same as in EU, but state set is different. EU assumes

that µD1 and σD are known, but RDM considers a wide range of possible values for µD1

and σD. We initially assume σD = 10 and the true µD1 is in range [0,38]. The states are

the combination of µD1 and σD within feasible region. We discretized the parameters to

obtain finite states in state space for further numerical computation. Theoretically, an

infinite number of probability distributions could characterize the probability of states

within the state space. We assume four distributions are possible: uniform, right skew,

left skew and a symmetric triangle. Figure 3.8 depicts the results after 20,000 replications,

for different values of z. (Recall that z is the level of confidence on probability distribution
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Figure 3.6 Optimal strategy by expected utility under different σD of demand model

which returns the best outcome.) RDM suggests the manufacturer should build two

hangars in the next 20 years. For most of the values of z, RDM recommends to build

that hangar closer to the end of the 20 years, except z = 1. If z = 0, which prepares

for the worst-case, the manufacturer should build the first hangar in year 11 and the

second hangar in year 17. If z = 1, the decision maker is confident that the best case

distribution (left skew distribution with high probability in high demand) is the exact

representation of truth. Since there is a high probability of large demand, intuitively,

the decision maker should build the first hangar fairly early, in year 7 and second in year

11.

If µD1 = 18.6 remains constant and σD is the source of uncertainty in range [0,20],

the best-case distribution in this scenario is the right skew (high probability of a small

σD) and the worst-case distribution is left skew. Figure 3.9 shows the results from the

RDM when σD is uncertain for different values of z. If σD is variable, the decision maker

should always build both hangars within the first 8 years. This result is similar to the

EU result with large variability. The decision maker should build hangars early to take
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Figure 3.7 Optimal strategy under different p of demand model

advantage of the possibility that demand will be large.

In both cases (uncertain µD1 and uncertain σD), the result given z = 1 has large

difference with other different value of z. For z 6= 1, the optimal strategies do not vary

a lot for different values of z. The reason for this is the imbalance of variability and the

magnitude of minimum/maximum expected regret (RT s,best / RT s,worst). The optimal

strategy is selected by minimizing equation 3.17. Each strategy s has a corresponding

minimum regret RT s,best and a maximum regret RT s,worst. Figure 3.10 summarizes the

mean and variability of both regret vectors for all the strategies when µD1 is uncertain.

Both the mean and variability of the maximum regret are much larger than minimum

regret. As an affine function (equation 3.17) is used to combine maximum and mini-

mum regret, one unit of regret from either RT s,best or RT s,worst is treated equally. The

contribution from RT s,worst will overshadow the contribution from RT s,best, which has

a smaller mean and less variability. The optimal strategies (s∗) for different values of

z are similar due to the fact that they all share values RT s∗,worst which out-weighs the

effect of z on Vs. One could argue that it is possible to put less weight on RT s,worst
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Figure 3.8 Suggested strategies for different z in RDM when µD1 is uncertain

by properly choosing the value of z in order that the variability of RT s,worst could be

carefully rescaled to match the magnitude of RT s,best. Such an approach would make

the choice of z to be challenging because the variability and magnitude will be different

depending on specific problem setting. Moreover, there would be no clear interpretation

of z since it is no longer the level of confidence on the best-case distribution as originally

proposed.

In brief, our analysis shows that additional attention should be put on the variability

and magnitude of the regret values when using RDM to make a decision. If the variability

of RT s,worst is larger than magnitude of RT s,best, the result of RDM behaves as if the

decision maker is planning for the worst case.

3.3.4 Information Gap

The initial state in Info-gap model is the same as the state in EU which is the

best estimation given the decision maker’s current information. Thus, µ̂D1 = 18.6 and

σ̂D = 10. The Info-gap algorithm continues to increase the value of α that expands the
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Figure 3.9 Suggested strategies for different z in RDM when σD is uncertain

state set around the initial state until no strategy which satisfies the required profit pc

given any state in set.

Figure 3.11 depicts the optimal strategies for different required profits according to

the Info-gap model. The graph has a clear trend. As the required profit increases, the

decision maker should become more aggressive. However, the corresponding α̂ decreases

as the required profit increases (Figure 3.12). Decreasing α̂ means that less uncertainty

around the initial estimate is allowed for larger required profits. If the required profit is

greater than $8 million, no feasible strategy could be found. If the required profit is less

than $6 million, the Info-gap model allows much more uncertainty. With such a small

required profit, not building any hangars is the optimal alternative because it allows for

the largest uncertainty. This strategy is similar to the optimal strategy for an extremely

risk averse (p=0.99) decision maker in EU, which recommends only building a single

hangar in the final year.

Info-gap theory has been criticized for overestimating the importance of the initial

state while dealing with situation in deep uncertainty (Sniedovich, 2008, 2012, 2014). In
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Figure 3.10 Boxplot for minimum regret and maximum regret for all strategies

order to check whether this critique applies to this application, we test the sensitivity of

the initial state. We fix the required profit pc = 7.5 million and change the initial state

µ̂D1, and Figure 3.13 depicts the result of the Info-gap model. The optimal strategies are

similar for different initial states. The randomness in the simulation might explain why

the optimal strategies are different. It appears that the results of the Info-gap are largely

insensitive to the initial state for this situation. However, this problem has a limited state

space with fairly well defined uncertainty. If the problem had more uncertainty such as in

model uncertainty or uncertainty around several parameters, the Info-gap model might

not be as insensitive to the initial state.

3.4 Comparison of Methods under Deep Uncertainty

If σD = 10, but uncertainty exists around the estimation of µD1, which ranges between

0 and 38. Figures 3.5, 3.8, and 3.11 depict the optimal strategies for each of the three

decision-making methods. The optimal strategy in EU is very sensitive to the input

parameter µD1. The optimal strategies vary from building 2 hangars beginning in year

3 to building 1 hangar at year 15. If the decision maker really has no knowledge about

µD1 except that it is between 0 and 38, EU provides little guidance unless the decision
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Figure 3.11 Optimal strategies for different required profit in Info-gap

maker wishes to assume a uniform distribution over µD1 or choose µD1 = 18.6 as the

expected average demand.

In order to overcome the drawback of EU under deep uncertainty, RDM and Info-

gap are designed to handle uncertainty over model parameters. RDM recommends to

build 2 hangars and later than that of EU. RDM seems to be more conservative. As

discussed in the previous section, the variability and magnitude of the regret generates

this conservative approach within RDM. Since RDM is seeking to minimize regret, RDM

puts more weight on bad outcomes and is more sensitive to really bad outcomes. EU

attempts to find the optimal alternative, but RDM is suitable when optimality is less

important and possible bad outcomes have severe consequences.

The Info-gap model structures the problem differently than RDM and EU. The un-

certainty space (the state space in this problem) is no longer a fixed set. The size of set

is determined by the uncertainty parameter α̂. Instead of directly defining that µD1 is

in the range [0,38], the range of µD1 dynamically changes in the Info-gap given different

reward requirements. Due to the dynamic state set, results from Info-gap are not directly
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Figure 3.12 Relationship between required profit and maximum α

comparable to RDM and EU. Nevertheless, given the initial state µ̂D1 = 18.6 and that

2 units of increase in α̂ leads to 2 units of increase in the state set around the initial

state, the strategy with $6 million required profit covers approximately the same state

space as RDM and EU. With this required profit, Info-gap recommends that the decision

maker should only build one hangar in year 18 (Figure 3.11). Before compared to other

decision-making methods, the effect of risk tolerance in utility theory needs to be consid-

ered. It seems that the result of Info-gap is more conservative than RDM when decision

maker with slightly risk aversion (Figure 3.8 and 3.11). However, RDM for which the

decision maker with extreme risk aversion (p=0.99) suggests to build first hangar from

year 17 to 20 (Figure 3.14). It yields very similar result as Info-gap. Although RDM and

Info-gap have different model structures, the experiment from this problem suggests that

both methods encourage less aggressive, or more risk-averse, decisions. The advantage

of Info-gap method is the additional information regarding to the reward which has real-

world applicability for a decision maker. However, because of the previously mentioned

flaw, Info-gap may rely too much on the initial state. Comparing the result from Info-gap

with that of RDM could be a good way to check the robustness of decision.
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Figure 3.13 Sensitivity analysis of initial µ̂D1

3.5 Conclusion

As perhaps the most popular method for making decisions with uncertainty, EU

works well if the uncertainty can be modeled with probability distributions. According

to the Bayesian or subjective theory of probability, a decision maker can always assign a

probability to an uncertainty where the probability represents the decision maker’s beliefs

about the future. However, in situations with a severe lack of information, a decision

maker might be challenged to select a specific probability distribution or may not feel

comfortable assigning a probability. The optimal strategy for EU may vary a lot given

different parameters for the distribution. If the probabilities are incorrect, especially if

the worst outcomes are a lot more probable than assumed by the decision maker, the

optimal strategy according to EU may expose the decision maker to significant risk. In

the painting example in this paper, overestimating the trend parameter in the demand

distribution will lead the decision maker to build hangars too early which will not be fully

utilized. If the demand is underestimated, the painting cost may increase significantly
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Figure 3.14 Suggested strategies in RDM with extreme risk aversion (p=0.99)

due to the high cost of outsourcing. Compared to RDM and Info-gap, EU does not

provide any parameters to allow the decision maker to trade off between optimality and

uncertainty. A trade-off curve can help a decision maker because the trade-off curve

shows a picture of the problem rather than a single ”optimal” point.

RDM can appear to be a pretty complex decision-making method. In one sense,

RDM generalizes utility theory as it expands a single probability distribution in EU to

a set of probability distributions. Uncertainty is incorporated in the state set. RDM

searches the space to find the optimal strategy given the parameter z. Theoretically,

all possible outcomes could be covered by establishing a large set. Nevertheless, more

computational power and advanced optimization algorithms may be needed to search a

large state set. One of the important advantages of RDM is the trade-off curve based on

the level of confidence to the best-case versus worst-case distribution. In our experiment,

however, the interpretation of z could be misleading if the variability of worst case regret

is larger than the magnitude of best-case regret. Unfortunately, the distribution of regret

over strategies is based on individual problem and is likely to be unknowable before
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calculation. The actual interpretation of z may thus vary from case to case, and greater

exploration of the interpretation of z may be a potential direction for improvement in

RDM. In the painting example, RDM recommends more conservative decisions (build

few hangars and later) than EU and the Info-gap model when decision maker is extreme

risk averse. In the situation when decision maker is slightly risk averse, Info-gap gives

the most conservative decisions.

One appealing feature of the Info-gap model is the minimum requirement which pro-

vides a direct way to incorporate profit into the decision-making process. This minimum

requirement links the desired outcome and optimal decision directly without construct-

ing a complex and abstract probabilistic model, which has likely increased its popularity

with industry (Takewaki, 2005; Matrosov, 2013; Soroudi, 2017). In our example, Info-gap

and EU recommend a similar strategy decision given the same initial state and expected

profit requirement. For instance, EU recommends to build 2 hangars in years 6 and 9,

and Info-gap recommends building the hangars in years 6 and 10. Info-gap has been crit-

icized because it searches for local optimality. The result of Info-gap might be misleading

if there is model uncertainty or uncertainty around several parameters in the problem.

Based on previous discussion, we conclude the situations to apply different decision-

making methods. When a probability distribution can be assigned to represent uncer-

tainty with very high confidence level, EU is the best decision-making method. Info-gap

is applicable when uncertain future could be represented as several probability distri-

bution with rank and we have relative high confidence on our initial state estimation.

Moreover, by choosing Info-gap, the underlying assumption is that the decision maker

cares robustness more than optimality. In the situation of deep uncertainty, we have

little information about the future, RDM is the only decision-making method applicable

among the three.

In general, before choosing particular decision-making method, one important ques-

tion to ask ahead is whether we want an optimal solution or a good enough feasible
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solution. As the famous statement wrote by Box 1987, ”All models are wrong, but some

are useful.” In the end, all of these decision-methods should be evaluated by their use-

fulness in making practical decisions.

Bibliography

Ahmed, S. (2000). Strategic planning under uncertainty: Stochastic integer programming

approaches (Doctoral dissertation, University of Illinois at Urbana-Champaign).

Alt, F. (1971). On the measurability of utility. In Preferences, utility, demand: A min-

nesota symposium. Harcourt Brace Jovanovich, reprint of Alt (1936), translated by

Sigfried Schach.

Applequist, G. E., Pekny, J. F., & Reklaitis, G. V. (2000). Risk and uncertainty in

managing chemical manufacturing supply chains. Computers & Chemical Engineering,

24(9), 2211-2222.

Bell, D. E. (1982). Regret in decision making under uncertainty. Operations Research,

30(5), 961-981.

Ben-Haim, Y. (2004). Uncertainty, probability and information-gaps. Reliability Engi-

neering & System Safety, 85(13), 249-266.

Ben-Haim, Y. (2006). Info-gap decision theory : decisions under severe uncertainty /

Yakov Ben-Haim (2nd ed.. ed.). Oxford: Oxford : Elsevier/Academic.

Ben-Haim, Y., Demertzis, Maria. (2015). Decision Making in Times of Knightian Un-

certainty: An Info-Gap Perspective. Economics: The Open-Access, Open Assessment

E-Journal, 9(2015-42).



60

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Economet-

rica: Journal of the Econometric Society, 23-36.

Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces

(Vol. 424). New York: Wiley.

Brouthers, K. D., & Brouthers, L. E. (2003). Why service and manufacturing entry

mode choices differ: The influence of transaction cost factors, risk and trust. Journal

of management studies, 40(5), 1179-1204.

Charnes, A., & Cooper, W. W. (1959). Chance-Constrained Programming. Management

Science, 6(1), 73-79.

Charnes, A., & Cooper, W. W. (1983). Response to ”Decision Problems under Risk

and Chance Constrained Programming: Dilemmas in the Transition”. Management

Science, 29(6), 750-753.

Courtney, H. (2001). 20/20 foresight: crafting strategy in an uncertain world. Harvard

Business Press.

Dimitris, B., & Aurlie, T. (2006). Robust and Data-Driven Optimization: Modern De-

cision Making Under Uncertainty Models, Methods, and Applications for Innovative

Decision Making (pp. 95-122): INFORMS.

Epstein, L. G. (1985). Decreasing Risk Aversion and Mean-Variance Analysis. Econo-

metrica, 53(4), 945-961.

Fishburn, P. C. (1970). Utility theory for decision making (No. RAC-R-105). Research

Analysis Corp Mclean va.

Groves, D. G., & Lempert, R. J. (2007). A new analytic method for finding policy-relevant

scenarios. Global Environmental Change, 17(1), 73-85.



61

Hall, J. W., Lempert, R. J., Keller, K., Hackbarth, A., Mijere, C., & McInerney, D. J.

(2012). Robust Climate Policies Under Uncertainty: A Comparison of Robust Decision

Making and Info-Gap Methods. Risk analysis, 32(10), 1657-1672.

Hayes, K. R., Barry, S. C., Hosack, G. R., & Peters, G. W. (2013). Severe uncertainty

and info-gap decision theory. Methods in Ecology and Evolution, 4(7), 601-611.

Hogan, A. J., Morris, J. G., & Thompson, H. E. (1981). Decision Problems under Risk

and Chance Constrained Programming: Dilemmas in the Transition. Management

Science, 27(6), 698-716.

Hogan, A. J., Morris, J. G., & Thompson, H. E. (1984). Reply to Professors Charnes

and Cooper Concerning Their Response to ”Decision Problems under Risk and Chance

Constrained Programming”. Management Science, 30(2), 258-259.

Hong, C. S., Karni, E., & Safra, Z. (1987). Risk aversion in the theory of expected utility

with rank dependent probabilities. Journal of Economic theory, 42(2), 370-381.

Ierapetritou, M. G., & Pistikopoulos, E. N. (1996). Global optimization for stochastic

planning, scheduling and design problems. In Global optimization in engineering design

(pp. 231-287). Springer US.

Infanger, G. (1992). Planning under uncertainty solving large-scale stochastic linear pro-

grams (No. SOL-92-8). Stanford Univ., CA (United States). Systems Optimization

Lab..

Lempert, R. J. (2003). Shaping the next one hundred years : new methods for quanti-

tative, long-term policy analysis / Robert J. Lempert, Steven W. Popper, Steven C.

Bankes. Santa Monica, CA: Santa Monica, CA : RAND.



62

Lempert, R. J., & Collins, M. T. (2007). Managing the risk of uncertain threshold re-

sponses: comparison of robust, optimum, and precautionary approaches. Risk analysis,

27(4), 1009-1026.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under

risk. Econometrica: Journal of the econometric society, 263-291.

Mahnovski, S. (2006). Robust decisions and deep uncertainty: An application of real op-

tions to public and private investment in hydrogen and fuel cell technologies. (3233779

Ph.D.), The Pardee RAND Graduate School, Ann Arbor.

Mandelbaum, M., & Buzacott, J. (1990). Flexibility and decision making. European

Journal of Operational Research, 44(1), 17-27.

Matrosov, E. S., Woods, A. M., & Harou, J. J. (2013). Robust Decision Making and

Info-Gap Decision Theory for water resource system planning. Journal of Hydrology,

494, 43-58.

Mingers, J., & Rosenhead, J. (2001). Rational analysis for a problematic world revisited

(Vol. 1). John Wiley and Sons Ltd.

Moore, R. E. (1979). Methods and applications of interval analysis. Society for Industrial

and Applied Mathematics.

Moore, R., & Lodwick, W. (2003). Interval analysis and fuzzy set theory. Fuzzy sets and

systems, 135(1), 5-9.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals

of mathematical statistics, 33(3), 1065-1076.

Quiggin, J. (2012). Generalized expected utility theory: The rank-dependent model.

Springer Science & Business Media.



63

Rabin, M. (2000). Risk aversion and expectedutility theory: A calibration theorem.

Econometrica, 68(5), 1281-1292.

Samuelson, P. A. (1937). A note on measurement of utility. The review of economic

studies, 4(2), 155-161.

Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic program-

ming approach for supply chain network design under uncertainty. European Journal

of Operational Research, 167(1), 96-115.

Sniedovich, M. (2007). The art and science of modeling decision-making under severe

uncertainty. Decision Making in Manufacturing and Services, 1(2), 111-136.

Sniedovich, M. (2008). The Fundamental Flaws in Info-Gap Decision Theory.

Sniedovich, M. (2012). Fooled by local robustness. Risk Analysis, 32(10), 1630-1637.

Sniedovich, M. (2014). Response to Burgman and Regan: The elephant in the rhetoric

on infogap decision theory. Ecological Applications, 24(1), 229-233.

Soroudi, A., Rabiee, A., & Keane, A. (2017). Information gap decision theory approach

to deal with wind power uncertainty in unit commitment. Electric Power Systems

Research, 145, 137-148.

Starmer, C. (2000). Developments in Non-Expected Utility Theory: The Hunt for a

Descriptive Theory of Choice under Risk. Journal of Economic Literature, 38(2), 332-

382.

Steele, K. (2006). The precautionary principle: a new approach to public decision-

making? Law, Probability and Risk, 5(1), 19-31.

Takewaki, I., & Ben-Haim, Y. (2005). Info-gap robust design with load and model un-

certainties. Journal of Sound and Vibration, 288(3), 551-570.



64

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative repre-

sentation of uncertainty. Journal of Risk and uncertainty, 5(4), 297-323.

Walker, W. E., Harremos, P., Rotmans, J., van der Sluijs, J. P., van Asselt, M. B.,

Janssen, P., & Krayer von Krauss, M. P. (2003). Defining uncertainty: a conceptual

basis for uncertainty management in model-based decision support. Integrated assess-

ment, 4(1), 5-17.

Walker, W. E., Lempert, R. J., & Kwakkel, J. H. (2013). Deep uncertainty. In Encyclo-

pedia of operations research and management science (pp. 395-402). Springer US.



65

CHAPTER 4. GENERAL CONCLUSIONS

This research discusses demand forecasting and decision making for the purpose of

long-term production planning. Although the analysis and discussions are tailed to

aviation industry, the methodology could extend to other industries in industrial and

manufacturing field.

In Chapter 2, several demand forecasting methods were studied and applied to Boe-

ing’s airliners (737, 777). We clarifies the assumptions of Brownian motion, geometric

Brownian motion and ARIMA model. A modified Brownian motion model is purposed

to address the correlation in historical orders of the 737. A comparison between purposed

model and ARIMA is conducted. We conclude that ARIMA is applicable when high lag

correlation is observed in data and accurate expected prediction is desired. Purposed

Brownian motion model has more conservative expected prediction and shows wide range

of possible future states. These information could be highly valuable when a long-term

strategy decision needs to be made based on the forecasting. The application of GBM

on forecasting of the 777 is also included. We shows that the traditional GBM fitting

method does not work well under the present of high variability from small dataset. We

demonstrate a new approach to fit GBM for the entire dataset. The starting position of

fitted model could be adjusted according to variability of historical data. The advantage

of this method is that it provides a flexible way for a decision maker to interpret the vari-

ability of data which could be highly dependent on domain knowledge. Same methods

are applied to forecast other types of airliners (747, 767 and 787) which does not show

on the paper. The predictions are shown in table 4.1.



66

Table 4.1 20 years forecasting of orders

Airplane Size Airplane Model Prediction (median values)
Single-Aisle 737 20,072

Small Wide-body 787,767 1,856
Medium Wide-body 777 1,823

Large Wide-body 747 354
Sum 24,105

In Chapter 3, a capacity planning which dedicates to investment decision is devel-

oped. As both non-linearity and uncertainty present in the model, simulation based

method is used to find the solution. Three different decision making methods (Expected

Utility, Robust Decision Making, Information Gap) are introduced and applied. We find

the optimal strategy suggested by each method and test the sensitivity of model given

different inputs. As expectation, expected utility method is highly sensitive to the input

probability distribution. RDM and Info-gap which are designed for deep uncertainty,

perform fairly stable and consistent outcomes. Detailed analysis and interpretation of

result is conducted for each method. We find that the interpretation of z parameter in

RDM is not exactly as the claim made by Lempert (2007). The actual effect of z primar-

ily depends on problem which yields different minimum and maximum regret matrix.

These three methods yield different suggested strategies under same setting. Compared

to expected utility, the strategies made by RDM and Info-gap are more robust. In ad-

dition, RDM with extreme risk aversion and Info-gap have similar outcomes for this

problem. We conclude the advantages and limitations of these decision making methods

and specify the situations when they are applicable.

By combining demand forecasting and decision making together, we purpose an over-

all framework on long-term capacity planning. The research provides a quick overview

of capacity planning problem by choosing proper models. It helps decision maker to

understand the risk of decision with existing univariate data without putting enormous
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amount of effort on collecting multivariate data and developing complex causal model.

Therefore, the study is a good starting point for the initial estimation of risk in long-term

capacity planning problem. In future research, more important data such as macroeco-

nomics, fuel price could be collected. With the support of additional information, a

careful designed multivariate model is likely to reduce the uncertainty further and yields

high quality capacity planning strategy.
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