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ABSTRACT 
 

Inspecting castings to verify the quality of a part is critical for foundries to maintain a 

high level of customer confidence. Current methods employ qualitative methods, and the 

manufacturer must correctly interpret the inspection criteria set by the customer in order to 

meet the design specifications. The interpretation of what is acceptable often differs from the 

customer to manufacturer and even from inspector to inspector. In this thesis, the visual 

inspection of cast metal are explored in depth, and improvements to current methods are 

proposed. 

First, the risk of Type I and II errors from the inspection process were evaluated based 

off of varying states of environmental and human factors in the inspection process; however, 

it was discovered high variation among inspectors still exists due to the subjectivity of the 

standards. This signals a need for a more quantitative standard to evaluate the surface of a 

casting. In response a digital standard is proposed, which specifies three parameters to allow 

the customer to communicate their exact needs in regards to surface finish to the 

manufacturer. These parameters are calculated based off of a part’s true geometry post 

shrinkage in absence of surface roughness and abnormalities, or underlying geometry. Since 

the underlying geometry differs from the part’s intended geometry, methods will be explored 

to estimate the underlying geometry from a point cloud of the part’s surface. The proposed 

methods will be compared to identify which approach best estimates the ideal underlying 

geometry. Once an ideal method is identified, it will be used as a standard method to calculate 

the underlying geometry in order to create consistency among inspectors at both the customer 

and manufacturer. 
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The work completed in this thesis will raise awareness of the risk associated with 

current visual inspection methods for cast metal surfaces. The new, digital standard will 

reduce the variation in this inspection process allowing greater confidence in the parts leaving 

the manufacturer. Additionally, the standard will allow the customer to improve 

communication with the manufacturer in order to achieve the quality of surface required for 

their specific needs. 
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CHAPTER 1: INTRODUCTION 
 

Inspection is a critical process in any foundry to verify the quality of a part.  Visual 

inspection methods are currently employed in the evaluation of cast metal surfaces. Surface 

abnormalities, such as porosity, inclusions, and fusion, must be identified by an inspector who 

determines if they are acceptable. An example of an abnormality on a casting can be seen in 

Figure 1.1. The acceptance criteria set by the customer for these methods must be interpreted 

by the manufacturer correctly in order to meet the design specifications. Current visual 

inspection standards are qualitative and make 

it difficult to interpret these standards. Often 

times, the interpretation of what is acceptable 

differs from the customer to manufacturer and 

even from inspector to inspector. In this 

thesis, the visual inspection of cast metal 

surfaces is explored in depth, and 

improvements to current methods are 

proposed.  

A risk analysis was conducted on Type I and Type II errors associated with visual 

inspection processes. This analysis identifies various environmental factors affecting the 

visual inspection process and uses an influence diagram to identify interactions among them. 

By using this analysis to target factors with the highest impact, a manufacturer can reduce the 

probability of error in his inspection process. However, even if the error is significantly 

reduced, inherent variability between individual inspectors will still exist.  

Figure 1.1—Porosity abnormalities on a 

casting 
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Due to the high risk associated with the visual inspection of castings, a digital standard 

is proposed. This standard quantifies surfaces based on data obtained from digital scanners. 

These non-contact methods efficiently collect large amounts of data from the surface of the 

casting, which allows for increased confidence in the model as opposed to its contact 

counterparts, to be used in the calculation of quantitative parameters. These parameters 

include the baseline roughness, abnormality level, and abnormality percentage. The baseline 

roughness is the roughness average of the cast surface excluding abnormalities, or anomalies 

of the surface. The abnormality level is the maximum allowed deviation from the actual part 

geometry, and the abnormality percentage is the percentage of the surface contained in the 

region bounded by twice the baseline roughness and the abnormality level. This allows the 

customer to specify exactly what is needed in regards to surface requirements and allows the 

manufacturer to more accurately determine whether or not a part is acceptable. Additionally, 

it can be used to train inspectors by verifying surface results to reduce the risk of error and 

lay the groundwork for an automated tool for use in confirming inspection results. Inspecting 

castings using the new digital standard can improve communication between the customer 

and manufacturer in addition to reducing the discrepancies between inspectors’ 

interpretations. This will allow for a greater confidence in the inspection process. 

One challenge with calculating surface parameters from digital scans is determining 

the actual geometry of the casting post shrinkage without roughness and abnormalities 

resulting from the casting process. This geometry, known as the underlying geometry of the 

casting, is used to calculate parameters of the digital standard. Slicing and subsampling 

methods were evaluated to eliminate the roughness and abnormalities from the surface of the 

casting in order to estimate the underlying geometry without loss of detail in the complexity 
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of the castings’ geometry. This is because “points on the true underlying [geometry] are not 

directly observable, but are observed only in the presence of error” [1]. 

Exploring the visual inspection of cast metal surfaces in depth allowed a greater 

understanding in the causes of error in this process. Since current visual and tactile methods 

for surface inspection were shown to have high variation among inspectors, improvements 

are proposed, which use a digital process to specify surface criteria. This digital standard 

specifies three parameters to allow the customer to communicate their exact needs in regards 

to surface finish to the manufacturer: the baseline roughness, the abnormality level, and the 

abnormality percentage. These parameters are calculated based off of a part’s true geometry, 

or underlying geometry. Methods to calculate the estimated underlying geometry were 

explored in order to identify best practices to eliminate roughness and abnormalities from the 

data. Once an ideal method is identified, it will be used as a standard method to calculate the 

underlying geometry in order to create consistency among inspectors at both the customer and 

manufacturer.  

The work completed in this thesis will raise awareness of the risk associated with 

current visual inspection methods for cast metal surfaces. The new, digital standard will 

reduce the variation in this inspection process allowing greater confidence in the parts leaving 

the manufacturer. Additionally, the standard will allow the customer to improve 

communication with the manufacturer in order to achieve the quality of surface required for 

their specific needs. 
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Research Motivation 

The motivation of this research stems from the issues arising from the highly variable 

visual inspection process of cast metal surfaces and ambiguity in communicated surface 

criteria between the customer and manufacturer. The goals for this research are as follows: 

1. To identify the effects of visual inspection on Type I and II errors 

2. To develop a digital standard in order to reduce the subjectivity of visual 

inspection of cast metal surfaces 

3. To evaluate and propose methods to determine the underlying geometry of 

castings for use in the digital standard 

 

Thesis Organization  

This thesis contains a general literature review of present research, journal articles 

relevant to this research, and general conclusions of the research. Three journal papers are 

constituted for Chapters 2-4 including the following: a risk analysis on visual inspection, an 

overview of the quantitative standard, and slicing methods to determine the underlying 

geometry. References are provided at the end of each chapter corresponding to in-chapter 

citations. Additionally, graphics are labeled first with the chapter they reside followed by the 

number of the graphic within the chapter for clarity. These chapters are followed by general 

conclusions and future work. Appendix A provides a draft of the digital standard. 

 

References 

[1] Castillo, Enrique Del, Bianca M. Colosimo, and Sam Davanloo Tajbakhsh. “Geodesic 

Gaussian Processes for the Parametric Reconstruction of a Free-Form Surface.” 

Technometrics 57.1 (2014): 87-99. Web.   
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CHAPTER 2: LITERATURE REVIEW 
 

This review will discuss prior works relating to current casting inspection techniques 

and insights into surface evaluation of castings, including options in surface metrology, 

reverse engineering from point clouds, and surface cleaning algorithms. 

 

Current Inspection Standards 

Variations in the surface of castings can be present as a result of the type mold or 

pattern and cleaning procedures, among other factors. These can cause surface anomalies such 

as porosity and inclusions. Inspection methods are present in foundries to identify acceptable 

and unacceptable states of cast surfaces. These include the ACI Surface Indicator, MSS SP-

55, ASTM A802, BNIF 359, and GAR C9 Comparator, among others [1-5]. Inspectors use 

comparators and images in these methods to visually classify the surface roughness and 

abnormalities of an actual casting. The methods are primarily qualitative and based on a 

discretized scale, as opposed to a continuous scale of classification. These standards were 

used as a reference for developing a new digital standard for cast metal surfaces. A 

comparison of the current inspection standards and challenges associated with each are 

covered more in depth in the journal articles found in Chapters 3 and 4.  

 

Surface Metrology 

Methods to calculate surface characteristics of castings were explored. These include 

a variety of roughness calculations, including the roughness average, root mean square, and 

ten point height. These methods aided in determining the optimal method for use in the digital 

surface standard. 
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One means of calculating parameters of the surface is by comparing the surface profile 

to a mean line. From the mean line, 

local minima and maxima can be 

located for a given sample length of a 

two-dimensional surface profile. 

Roughness can be characterized 

through multiple methods including 

amplitude, slope, and spacing of data 

points in a two-dimensional profile; 

however, the amplitude parameter is 

the most commonly used in the 

engineering field. The roughness 

average, denoted Ra, is the most 

commonly used amplitude measure 

and is the “arithmetic mean of the 

magnitude of the deviation of the 

profile from the mean line” [6]. Figure 2.1 shows a visual example of a Ra calculation. For a 

perfect fit, all data would fall on the mean line, giving a Ra value of 0.0. Deviations from the 

mean line would result in values greater than 0, with the roughest of surfaces having greater 

positive values. However, one downfall to specifying surfaces based on a Ra value is this 

parameter may have difficulty discriminating between surfaces as seen in Figure 2.2 [7].  

Several less common surface parameters using the mean line may also be used in some 

instances. The root mean square, Rq, is another amplitude method to classify surfaces. This 

Figure 2.1—Example of roughness average 

calculation: i) locating mean line, ii) taking the 

absolute value of all points compared to the mean 

line, iii) calculating the average [6] 

Figure 2.2—Roughness average comparisons 

of three unique surfaces [7] 
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method is more sensitive to outliers and is calculated by taking the square root of the average 

squared distances from the mean line. Other methods, such as peak to valley parameters, may 

also aid in classifying a rough surface with respect to the mean line. In fact, ISO 4287/1 from 

Japan classifies surfaces based on a ten-point height parameter, where the five most extreme 

points from both peaks and valleys are averaged, while in some methods, the peak count is 

used to estimate the number of peaks over a given sample [6]. These are universally used and 

commonly known methods. 

One disadvantage to using amplitude measures involves outliers. If peak and valley 

cutoffs are not specified, the 

roughness parameters may not be 

accurate. By not specifying cutoff 

values, the mean line could be 

pulled up toward the peaks, which 

could skew amplitude 

calculations, as seen in a 

segmenting length example in 

Figure 2.3 [6, 7, 8]. 

Other unique methods have also been implemented in industry. In a proposed method 

of surface evaluation for die-castings, the entire surface is broken into a grid, and a plane is 

fit using the least-squares method to each unit on the grid. Each unit is approximately the size 

of a typical surface abnormality, so units containing an abnormality will have a fit plane higher 

than the surrounding units. This method begins by determining the global flatness of a part 

from point cloud data. After, the area is broken into a grid. A filtering algorithm reduces the 

Figure 2.3—Effects of sample lengths of a) 0.8mm and 

b) 2.5mm on mean line calculations [6] 
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noise of the sample by averaging sets of nine points in each unit, and each of the individual 

units is fit to a plane to determine the local flatness. This value is compared to the global 

flatness. Upper control limits are then set off of the global flatness, and any local flatness 

height exceeding the control limit is flagged as a potential “nonconformity.” This method is 

designed to only detect surface protrusions, so surfaces with surface depressions would not 

apply to this method [9]. 

Additionally, various surface metrology methods were explored in order to collect 

surface data from the casting. Having a repeatable method in collecting data from surfaces is 

essential for consistent evaluation of surface parameters. Methods explored include contact 

methods, such as stylus profilometry, and non-contact methods, such as white light and laser 

scanning.  

In contact methods, such as stylus profilometry, a stylus is pulled across the surface 

of the part at a constant velocity and the profile deviations in the z-direction are recorded, 

while other methods using a coordinate measuring machine take individual points on the part. 

These methods have two main disadvantages. First, contact methods are time consuming and 

require experienced operators to set up the equipment for proper data collection. Second, large 

amounts of data of an entire surface are difficult to obtain. Data obtained in these methods are 

a result of sampling a surface. Since the data collection process is highly manual, operators 

can selectively place the stylus or probe to yield results they want or test an area not 

representative of the entire surface. For example, stylus profilometry results in the profile 

roughness, Ra, from a single line of data as opposed to the entire areal roughness, Sa [10]. 

Additionally, this data could be limited by the size of the stylus tip. If the stylus tip is too 

large, the stylus may not be able to trace the profile of narrow valleys on the surface [11]. For 
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probe based methods using a coordinate measuring machine, the data collection process 

results in a set of semi-random, sparse points, which would make it difficult to obtain a surface 

roughness.  

In laser scanning, areas with low visibility may be difficult to detect without multiple 

set-ups. However, articulating arms and turntable devices are used in order to obtain a 

complete scan of the surface with minimal registration error. The point density and 

distribution of data points is important for obtaining a sufficient data set for manipulation. 

However, due to their poor metrological performance through limited control over point 

acquisition location, line and structured light scanners should be used in correlation with high 

performing metrological devices, such as coordinate measuring machines, to improve 

measurement accuracy through multi-sensor data fusion [10]. Alternatively, the noise picked 

up by these scanners can be cleaned to remove any outlying data points prior to data 

manipulation [11].  

 

Point Cloud Manipulation 

In order to determine the underlying geometry, previous studies related to reverse 

engineering from point cloud data and surface cleaning algorithms were explored. Each 

method has a unique means of handling noise in either the scanning device or surface profile 

of the data. First, methods in manipulating point cloud data to reconstruct an accurate surface 

will be explored. This is important for replicating the actual surface for data manipulation for 

and comparison to the underlying geometry. Then, cleaning algorithms to smoothen surface 

profiles will be discussed for use in determining the underlying geometry.  
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Triangulation methods are used to convert point cloud data to a mesh. A study by 

Scheidigger [13] looked at various methods of triangulation to most accurately capture the 

true part geometry from a point cloud. Some triangulation methods, such as powercrust and 

cocone reconstruction, use every data point in surface reconstruction, which typically results 

in a non-smooth, noisy mesh model as seen in Figure 2.4b and 2.4c. Cleaning the cloud using 

the moving least-squares (MLS) method to reduce the noise improves the accuracy of the 

mesh curvature; however, directly triangulating the surface post cleaning increases the 

number of facets compared to the other methods (Figure 2.4d). This method is similar to direct 

convolution, which uses the mean height of three points in a kernel to reduce surface noise 

[14]. The proposed optimal curvature algorithm varies the triangle size based on the curvature 

of the facets, unlike standard triangulation methods (Figure 2.4e). The triangles are 

strategically chosen based on local curvature of the part. “Osculating circles” are constructed 

to choose the optimal location of each triangle to control the approximation error and 

determine the appropriate number of triangles for a specific curved region (Figure 2.4f). Only 

isosceles triangles are used to construct the mesh. This method works best with highly dense 

point clouds due to the MLS filter applied prior to running the algorithm to assign curvatures 

to the points [13].  

 
Figure 2.4—Point cloud to mesh triangulation methods a) original point cloud, b) powercrust 

reconstruction, c) cocone reconstruction, d) moving least-squares cleaned triangulation, e) standard 

triangulation, f) optimal curvature-adaptive triangulation [13] 
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Fitting least-square surfaces or patches to point clouds is another method in 

constructing a surface mesh. Shape recognition can be used in order to classify region of the 

point cloud with geometric shapes. This method, called random sample consensus 

(RANSAC), determines a best fit shape by randomly sampling the point cloud to find a 

minimum set of points to define the shape [15]. Weighing functions, such as a moving average 

iterative weighing function or Nadaraya-Watson predictor, can also be integrated into this 

least-squares model to minimize the effects of outliers; however, often these methods have 

issues at the ends of a data set or other locations where the point density is not consistent [16, 

17, 18]. To accommodate for this issue, a line can be fit through the localized data to minimize 

the end effects [17]. Often non-rational b-spline (NURBS) surface patches are fit to highly 

dense point cloud data containing little noise due to their ability to accommodate for complex, 

three-dimensional geometries; however, splines are not as effective at minimizing the effects 

of dense areas of outliers and, thus, should not be used on noisy data [18, 19, 20, 21].  

For surfaces with large abnormalities, constructing a mesh representative of the actual 

surface is difficult. The aforementioned methods take into consideration the entire surface, 

including abnormalities, so when the final mesh is created, the abnormalities are still present. 

Region growing segmentation can be used to identify these abnormalities for potential 

elimination. This algorithm separates a point cloud into different faces based on curvature 

values. Each point is observed to its neighbors, and a comparison of the angles between the 

normal vectors is made. If the difference in the angles falls within some specified threshold, 

then it is considered part of the same face [22]. This separates the part face from the face of 

the abnormalities. If this data is eliminated, holes will exist in the point cloud. Many methods 

for filling incomplete data, or sparse data, are user intensive [23]. In a method used for reverse 
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engineering, a point cloud is sliced, and the points are condensed into the center of each slice; 

each point is weighted based on the distance from the center of the slice third-order b-spline 

curve [24]. The effectiveness of this method would depend greatly on the complexity of the 

part’s geometry and the quantity of remaining data to reconstruct the surface.  

Various methods of removing curvature from surface profiles have been explored. A 

segmented filter is a simple method to eliminate non-uniform waviness from a surface profile. 

This method, also known as high-pass filtering, segments the data into equal sample lengths 

[7]. Alternatively, piecewise splines or polynomials can be fit to the profile using a similar 

process [18]. Each segment is then fit to straight lines as seen in Figure 2.5. Additionally, 

polynomial filters can be used to eliminate waviness. For short lengths of data, polynomial 

curves are fit to the data using least-squares method, seen in Figure 2.6 [7]. 

 

Figure 2.5—Fitting straight lines through segments to remove curvature [7] 

 

Figure 2.6—Fitting polynomials through a surface to remove curvature [7] 
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As with any method, there are limits to fitting lines and polynomials to data sets. For 

instance, the data may not fit as 

perfectly to the data set as 

anticipated, as seen in Figure 2.7. 

If the least-squares method is used 

to identify the truly best-fit 

polynomial, the overfitting of data may occur. In order to obtain the best polynomial for the 

surface, one must know what the profile looks like and fit it to the appropriate order of 

polynomial, which requires additional time and manual intervention. 

Another method to clean data is using a mid-point locus line, as seen in Figure 2.8. In 

this method, a window of a specified width is moved across the profile and the average height 

is plotted. Typically, the window 

should overlap the previous region 

when it is shifted, however, the shifting 

distance does not have to be uniform 

[25]. 

Gaussian filters are used frequently in surface smoothing applications. They are 

typically skewed toward large abnormalities; however, if no abnormalities are present, 

Gaussian filter can give an accurate representation of a data set if the parameters are set 

appropriately [8]. Much like spline filters, Gaussian filters do not fit data well to the ends of 

the data sets; therefore, the beginning and end of the data sets are typically fit to straight lines 

to accommodate for these issues [25]. Some methods replace locally extreme values with the 

mean line before executing Gaussian filters [19]. This limits the effect outliers and 

Figure 2.7—Comparison of a best-fit line versus best-

fit polynomial for surface profile [25] 

Figure 2.8—Use of the mid-point locus line to 

remove curvature from surface profile [25] 
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abnormalities on the final result. However, if a large number of abnormalities exist on one 

side of the mean line, as they do in honed surfaces, the mean line will be pulled toward the 

abnormalities and skew the resulting data.  

Morphological filters can also be used to decompose surface profiles. A bandpass filter 

is used to decompose the surface into different bands based on the filter scale compared to the 

peaks and valleys, as seen in Figure 2.9. By increasing the scale on the filter, smoother profiles 

are created, which can separate the surface into profiles for curvature, waviness, and 

roughness [19]. This process linearizes the surface so calculations based on the roughness 

profile can be executed. 

 
Figure 2.9—Morphological filters decomposing surface profile at various band widths [19] 

 

Robust Gaussian profile filtering use weighted functions in order to smoothen surface 

profiles. Typically, statistical regression is used in order to weigh the points according to a 

specific order of polynomial to minimize deviations for smoothing, but with the robust 
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method, a vertical weighing function is also applied in order to minimize the effects of 

abnormalities in the profile [8, 26]. This weighting function compares the original mean line 

to each data point and assigns a weight to each point based on its distance from the mean. A 

new mean line is constructed using these weighted values, which minimizes the effect of the 

abnormalities. Unlike traditional Gaussian filters, complex surface profiles can be analyzed 

since end effects are not as prevalent, and abnormalities have little effect on the resulting 

profile, as seen in Figure 2.10 [19].   

 

Figure 2.10—Normal Gaussian compared to robust filter on various surface profiles [8] 

 

Manual methods of cleaning and repairing data are often used in point cloud cleaning 

and reconstruction; however, manual intervention often differs between users. When 

determining the underlying geometry, the underlying geometry could differ between 
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individuals interpreting the data, which would essentially nullify the results of any inspection 

in this manner. For example, if the customer uses one method while the manufacturer uses a 

different method, the results may differ. This can be avoided by eliminating manual 

intervention and creating a standard for determining the underlying geometry. 

In this section, various methods were described to manipulate point cloud data. In 

reverse engineering applications, fine details of the scanned surface were desired, and the 

main goal was to filter out noise caused by the scanning device on mostly smooth surfaces. 

This proved to be helpful when looking at the original scan data from this casting research, 

but they failed to remove all roughness from the surface. In the exploration of surface cleaning 

algorithms, some of the inherent noise from the surface itself could be eliminated; however, 

these methods were varied on effectiveness based on the data profile. Chapters 5 and 6 will 

discuss the benefits and drawbacks of some of these methods when determining the 

underlying geometry.  
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CHAPTER 3: RISK ASSESSMENT ON VISUAL INSPECTION 

METHODS FOR CAST METAL SURFACES  
 

A paper submitted to Quality and Reliability Engineering International.  

Michelle M. Voelker1, Cameron A. MacKenzie2, Frank E. Peters3 

 

Abstract 

Current methods for visual inspection of cast metal surfaces are variable in both terms 

of repeatability and reproducibility. Because of this variation in the inspection methods, extra 

grinding is often prescribed; much of this is over processing in attempt to avoid rework or 

customer rejection. Additionally, defective castings may pass inspection and be delivered to 

the customer. Surface specifications are often interpreted differently between the customer 

and manufacturer. A risk assessment employing an influence diagram assesses the 

probabilities of errors in the inspection process based on different environmental and human 

factors. The risk assessment determines the probability of Type I and II errors, which can be 

costly for all parties involved in the production and use of castings. A manufacturer can use 

this analysis to identify factors in its foundry that could reduce the probability of errors. 

 

I. Introduction 

Inspecting parts to meet quality standards is important for meeting customer needs. In 

metal casting, current standards use qualitative methods to determine acceptability of surface 
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quality. The inspection process involves one or more trained operators to visually examine 

the surface to determine if the part is acceptable. Variation exists among interpretation of the 

standard not only in relation to the repeatability and reproducibility of the inspection process, 

but also in regards to interpretations between the manufacturer and the customer. In fact, the 

variability in the casting process itself is often less than that of the visual inspection process 

[1]. This stack-up in variation results in inconsistencies in acceptance criteria and increases 

the occurrence of Type I and II errors. A Type I error, also known as a false alarm, occurs 

when a defect is identified on the casting although no defect is present. Type II errors, or 

misses, occur when a casting passes inspection with a defect present. Although the 

determination of Type I and II errors is in itself subjective, these errors could be detrimental 

to the performance of the parts and could lead to problems between the manufacturer and 

customer if not interpreted as intended.  

This paper will combine various sources of uncertainty associated with Type I and II 

errors, in addition to the consistency of identifying defects, in attempt to model the 

effectiveness of cast metal surface inspection. This paper develops an influence diagram in 

order to calculate the probability of a Type I or Type II error. Although influence diagrams 

have frequently been used to assess risks and identify the optimal alternatives in business and 

public policy decisions, they have only rarely been applied to manufacturing decisions. This 

paper is unique because it develops an influence diagram to incorporate and predict the impact 

of several factors that contribute to Type I and II errors. Management at a manufacturing 

company can use this type of model to identify factors that would decrease the number of 

Type I and II errors the most. 
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Section II presents the current industry standards in visual inspection standards. The 

influence diagram to determine the likelihood of Type I and II errors and the effects of 

different interacting factors on them will be outlined in Section III. Finally, Sections IV and 

V will explore discussions and conclusions based on the constructed model.  

 

II. Current Visual Inspection Standards 

Many qualitative standards exist for the surface inspection of cast metal including 

company and industry specific standards. The Manufacturer Standardization Society (MSS) 

SP-55 Visual Method, American Society for Testing and Materials (ASTM) Steel Castings 

Research and Trade Association (SCRATA) A802, Alloy Casting Institute (ACI) Surface 

Indicator Scale, and GAR Electroforming Cast Comparator C9 are the most commonly used 

metal casting standards in industry. 

 

MSS SP-55 Visual Method 

Images are used for comparison to cast surfaces in the MSS SP-55 method. Twelve 

abnormality types, ranging from porosity 

to weld repair areas, are identified and 

images of acceptable and not acceptable 

surfaces are provided for each [2]. Figure 

3.1 shows an example of the images 

provided for reference.  

 

 

Figure 3.1—MSS Method Example [2] 
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ASTM A802 

  Plastic replications of actual metal castings are used for comparison in ASTM A802, 

more commonly referred to as the SCRATA method. Lettered plates representing one of nine 

abnormalities are used, each with various severity levels as seen in Table 3.1. The 

abnormalities represented are similar to the MSS method. This standard is the most widely 

used standard in the U.S. steel casting industry. 

 

Table 3.1—Visual Inspection Acceptance Criteria [3] 
 Surface Feature Level I Level II Level III Level IV 

Surface texture A1 A2 A3 A4 
Nonmetallic inclusions B1 B2 B4 B5 
Gas porosity C2 C1 C3 C4 
Fusion discontinuities … A D1 D2 D5 
Expansion discontinuities … A … A E3 E5 
Inserts … A … A F1 F3 
Metal removal marks:     
   Thermal G1 G2 G3 G5 
   Mechanical H1 H3 H4 H5 
   Welds J1 J2 J3 J5 
A No reference comparator plate is available for this surface feature and level. 

 

ACI Surface Indicator Scale 

The ACI Surface Indicator, as seen in Figure 3.2, evaluates “general smoothness, 

height and depth of irregularities extending beyond the range of general variations, and 

frequency and distribution of such irregularities” [4]. Designations SIS-1 through SIS-4 

correspond to the root mean square 

(RMS) average deviation in micro-

inches. The standard also specifies 

criteria for the height and 

frequency of surface abnormalities.  

Figure 3.2—ACI Surface Indicator Scale 



23 

 

 

GAR Microfinish Comparator C9 

Less widely used than the other methods, the GAR C9 Comparator is seen in Figure 

3.3. Comparator swatches quantify the surface roughness based on root mean square (RMS) 

values in micro-inches. No abnormalities 

are defined in this standard. In addition 

to a visual examination, inspectors are 

instructed to “draw the tip of the 

fingernail across each surface at right 

angles” to match the texture of the 

inspected part [5].  

While machine vision is readily applied for some casting surface inspection tasks, it 

is limited to a range of defects in certain areas.  Automation methods are not applicable for 

the several in process inspection steps of a wide variety of castings within the production 

facility.   

 

III. Construction of Influence Diagrams 

The methods discussed in Section II are used to help determine whether or not a part 

is defective; however, errors are frequent with these methods. This section builds a model in 

order to assess the likelihood of Type I and II errors in the visual inspection of cast metal 

surfaces and the effects of different interacting factors on them.  

An influence diagram—also called a Bayesian belief net or a decision diagram—

models factors that contribute to a final outcome or uncertainty [6, 7]. Figure 3.4 depicts an 

influence diagram to calculate the probability of a Type I error and a Type II error. The 

Figure 3.3—C9 Cast Microfinish Comparator [5] 
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diagram is constructed in Netica in order to analyze various scenarios causing errors 

efficiently. A Type I error (false alarm) occurs when a defect is identified on the casting 

although no defect is present. A Type II error (miss) occurs when a casting passes inspection 

with a defect present.  

As depicted in Figure 3.4, a manufacturer makes two decisions that influence these 

probabilities: the training for the inspector and the judgement type used in the inspection 

process. The manufacturer can determine the judgement to use in the inspection process and 

training type. Additionally, three uncertain factors directly influence the likelihood of errors: 

defect density, environmental impact, and human capabilities. The environmental impact 

depends on the noise, lighting, and work atmosphere. Human capabilities depend on the health 

and fatigue of the inspectors. After probabilities are assessed for all of the uncertainties, the 

influence diagram can be solved to calculate the probability of a Type I and II error for each 

alternative in the training and judgment type decision. 

Influence diagrams have been popular modeling tools for analyzing the risks of 

engineered systems [8, 9], decision making in business and public policy [10, 11, 12], and 

diagnosing disease [13].  

 
Figure 3.4—Netica model for Type I and II Errors for cast metal surface inspection 

 



25 

 

 

Their role in assessing manufacturing problems and uncertainties has been much more 

limited, however. Some exceptions include diagnosing faults in manufacturing systems [14, 

15, 16], optimizing a maintenance policy [17], modeling manufacturing processes with 

several control variables [18, 19], and determining the optimal site for a manufacturing facility 

[20, 21]. 

The remainder of this section analyzes each factor (training and judgement type, 

environmental factors, human capabilities, and defect density), assesses probabilities for the 

uncertainties, and explains each factor’s impact on Type I and II errors. The probabilities are 

based on previously conducted experiments and research and the authors’ own expertise and 

knowledge about manufacturing conditions. 

 

Training and Judgement Type 

Methodologies used to calibrate inspectors affect the likelihood of Type I and II errors 

and consistency of identifying defects. This can be attributed to the enforcement of inspection 

procedures and effectiveness of training. 

Enforcing methodologies for inspection is a major factor in the consistency of 

identifying defects. This consistency helps analyze the reliability of the estimates for our Type 

I and II errors since the judgment of these errors are, in fact, as subjective as the inspection 

process. The type of judgment as well as the inspection sampling method impacts how defects 

are identified. 

A manufacturer can choose to enforce a relative or absolute judgement in visual 

inspection. Relative judgement occurs when the inspector has a comparator or image of the 

inspection criteria in hand for direct comparison to the cast part, while absolute judgement 
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occurs when the inspector recalls the criteria from memory. A study to determine the 

differences in relative versus absolute judgement was conducted in relation to eye-witness 

accounts [22]. In the relative judgement experiment, participants were asked to compare two 

individuals and pick which was previously shown in an image. For the absolute judgment 

experiment, the same participants were shown a single individual and asked if he or she had 

appeared in the previous image. Accuracy of absolute judgement in the study was found to be 

69%, whereas for relative judgment it was 

found to be 80% as seen in Table 3.2. 

Although this study did not directly relate to 

the casting inspection process, these values can be used as insight into the impact of judgement 

type on Type I and II error. An incorrect identification leads to a Type I or Type II error.  

In a study evaluating inspection of castings using comparators, data was collected in 

relation to Type I and II errors. Participants in the study were asked to categorize 25 castings 

as acceptable or not based on their evaluation of the surface. For some surfaces, participants 

were given the comparator to use for 

references (relative), while others were to 

recall the criteria from memory (absolute). 

Table 3.3 shows the results of this study 

[24]. 

Training techniques also can impact error in visual inspection. In one case study, basic 

training and raster training were evaluated in casting inspection using absolute judgement 

[24]. Raster training involves teaching inspectors to systematically scan the part in a zig-zag 

pattern. This study also used eye tracking software to determine the percentage of the casting 

Table 3.3—Judgment type’s effects on Type I 

and II errors 

Table 3.2—Judgement type’s effects on 

identification of defects 
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viewed under these conditions. Overall, the specific technique used to locate defects not only 

allowed the individual to view a greater percentage of the part, but it decreased the effects of 

Type I and II errors in the inspection process. The results of this study are found in Table 3.4; 

however, it is noted Type II error in raster training was about 16% more variable than for 

basic training. The inspectors in this study 

had no prior experience with inspecting 

castings, which allowed for an unbiased 

result in the analyzing the overall effectiveness in training [22, 24].  

 

Environmental Factors  

Inspectors can be influenced by various environmental factors including the physical 

environment and work atmosphere. These aspects can reduce the inspector’s effectiveness in 

the visual inspection process.  

The physical work environment includes auditory noise, light level, temperature, and 

humidity [1]. These can all distract the inspector and even reduce his capability to locate 

defects. For example, the just noticeable difference between the defect and surrounding area 

will reduce significantly if the lighting is poor, making the defect more difficult to locate. In 

general, both Type I and II errors increase in suboptimal conditions [23]. Additionally, the 

temperature and humidity can affect the inspector’s cognitive ability. In fact, the ideal 

humidity of 65% and temperature of 70 degrees Fahrenheit in the presence of a fan can 

actually stimulate brain activity and increase alertness of the inspector [24]. 

The work atmosphere can also affect the inspector’s likelihood to locate defects. In 

some workplaces, workers are rewarded for doing their job well while others are disciplined 

Table 3.4—Training effects on Type I and II 

errors and percent of part viewed [32] 
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if quality is subpar. In some corporations, inspectors are required to re-inspect parts, either 

from his previous inspections or from another inspector. These are referred to as motivational 

losses. If an inspector receives a part that has already passed inspection once or knows a part 

will be inspected later, he may not look as closely for defects because he feels like it is a poor 

use of time. Both of these instances will increase the likelihood of Type II errors [23].  

As depicted in Figure 3.4, the factors of noise, lighting, and work atmosphere were 

assigned binary states of sufficient or insufficient in the influence diagram. These three factors 

were chosen based on the estimated impact of each on the inspector. The environmental 

impact can either be high, moderate, low, or optimal based on the noise, lighting, and work 

atmosphere. The deterministic states are conservative estimates and their impacts is listed in 

Table 3.5. For example, if lighting and work environment are considered sufficient but the 

noise level is insufficient, then the 

environmental impact is low, and the 

probability of Type I and II errors will 

increase by 0.05. The previous studies 

discussed in Subsection III assumed 

optimal conditions.  

The current states of all factors associated with the environmental impact are 

subjectively estimated based on previous reports and the authors’ expertise. Each of the main 

factors (noise, lighting, and atmosphere) are examined to determine the likelihood that each 

is in an acceptable or unacceptable state.  

The noise element is a major environmental factor in steel foundries. Based on data 

collected in foundries, the noise level of the processes can range from 70 decibels in areas 

Table 3.5—Deterministic values of environmental 

impact on Type I and II errors 
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further from equipment to well above 85 decibels with some as high as 110 decibels; this not 

only affects the environment in which they currently work, but it can also affect long term 

health of the individual [25]. The probability of the noise level in a foundry was modeled 

using a triangle probability distribution with the minimum, mode, and maximum at 70, 85, 

and 110 decibels, respectively. Most foundries require their employees to wear at minimum 

noise reduction rated (NRR) 25dB hearing protection; therefore, the distribution was shifted 

to the left nine units to account for this practice. To determine the state, current industry 

standards were used based on industrial safety requirements were used. According to the 

Occupational Safety and Health Administration, exposure to sound levels above 90 decibels 

for an eight-hour work day can cause hearing damage, so values above this level were 

classified at an unacceptable state [26]. Therefore, the probability the noise level is considered 

insufficient is 12.1% for this model. 

Additional lighting at inspection stations is typically installed to increase visibility of 

the inspector; however, if the light levels become too bright, individuals may experience glare 

on the surface of the part reducing his ability to effectively inspect the surface. Placement of 

the casting in the lighting can also play a major role in successfully detecting defects due to 

shadows that may appear on the surface [27]. Based on a study on casting inspection, the 

range of lighting seen in inspection stations was from 150 to 15,000 lux with a mean of 

approximately 675 lux [28]. This was modeled using a beta probability distribution. Ideally, 

the acceptable range to avoid glare-out and excessive shadows on the part is from 500 to 900 

lux. Therefore, light levels outside of this range is considered insufficient, which is 20% for 

this model.  
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Larger foundries typically have more than one inspector for each casting process 

whether it be on the same or different shifts. These foundries are likely to be more at risk for 

providing rewards to high performing inspectors or creating unintentional competition among 

the inspectors increasing the likelihood for error. According to a study in the United States, 

20% of foundries were considered large businesses, which consisted of 100 or more 

employees [29]. Since this behavior has not been studied in great detail, we make a 

conservative assumption that 50% of the large businesses create an insufficient work 

environment. 

 

Human Capabilities 

The capabilities of the individual performing the inspection also play a role in his or 

her ability to detect defects. These capabilities can be either physical, such as vision ability, 

or perceptual, such as memory ability.  

As shown in Figure 3.4, two uncertainties impact an inspector’s capabilities: health 

and fatigue. Visual, mental, and physical fatigue in inspectors can affect the judgement of 

whether or not a defect is present. When inspectors are tired, they can lose focus in the task 

at hand and become easily distracted [23]. Although fatigued inspectors may take additional 

time to view each part, errors generally increase [24].  

The age and health of the inspector can also be a limiting physical capability. This 

includes vision impairment, such as near or far sightedness, which could reduce the 

individual’s ability to identify defects. Additionally, one’s haptic capabilities may also be 

used to feel whether the surface requirements match the criteria, such as in the GAR C9 

comparator. The presence of calluses on the fingertips or loss of feeling in the fingers that 
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may come with age or prolonged interactions with handling castings may reduce one’s ability 

to detect differences between the casting and the comparator.  

The factors of fatigue and health were assigned states in the influence diagram in 

Figure 4. The states of fatigue and health are least acceptable, acceptable, and most acceptable. 

These factors were chosen based on the estimated impact of each on the inspector. The impact 

of the human capabilities are a deterministic function based on the states of each factor: least 

acceptable (LA), acceptable (A), and 

most acceptable (MA). The 

deterministic states and their impact on 

Type I and II errors are listed in Table 6. 

Previous studies of Type I and II errors 

assumed ideal conditions and human 

capabilities.  

An individual’s health and fatigue levels can be impacted by several factors in a 

foundry environment. These include air quality, heat exposure, and overtime [29, 30]. 

Individual health related to hereditary, such as vision, were also considered to assess the 

probability of health and fatigue. Due to a combination of all of these factors, conservative 

estimates were placed on human capability factors in order to aid in the modeling process. 

 

Defect Density 

An inspector’s perception of a task can greatly influence the likelihood of finding Type 

I and II errors. This includes developing a memory of past inspections and expectations over 

time. 

Table 3.6—Deterministic values of human 

capabilities on Type I and II errors 
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Inspectors who inspect the same part over and over again develop a memory for where 

defects are most common. This may cause them to overlook other areas of the part to be 

inspected where defects are less common. In general, Type I errors become less common, and 

Type II errors increase [23]. 

Defect density, or the overall number of defects on a part, can affect Type I and II 

errors. Generally, as the defect density decreases, Type I and II errors increase. For example, 

if an inspector recalls from previous experience that the number of overall unacceptable parts 

was approximately one every five parts, he may begin to second guess himself if he finds ten 

or more in a row without any errors causing a Type II error. Similarly, if he experiences many 

parts with a lower number of defects, he may look past parts without as many defects causing 

a Type I error. A study using test samples with 0.25, 1, 4, and 16% defect densities was 

administered to 80 inspectors with no prior inspection experience. These inspectors were 

asked to identify all defects on each sample without being told how many defects to expect. 

If the inspector could not decide whether a specific feature was considered a defect, the test 

monitor acted as an inspection supervisor 

and advised them on how to classify the area 

in question [31]. Results from this study can 

be found in the Table 3.7.  

 

Interpretations 

Since various standards can be used to inspect cast metal surfaces and there is no easy 

way to calibrate inspectors, the results from visual inspection are subjective [1]. This can 

Table 3.7—Defect density’s effect on Type I 

and II errors 
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contribute to Type I and II errors from inconsistencies based on the inspection standard used 

and interpretation of specifications. 

There are many inspection standards for cast metal surfaces. As discussed in Section 

II, they consist of methods using images while others use physical comparators. Additionally, 

some of these standards identify specific types of abnormalities to look for when inspecting. 

This causes several issues. First, if an abnormality is not defined by the standard, there is no 

way for the customer to specify what is desired. On the other hand, if the customer only 

specifies criteria for porosity and the part has inclusions, the inspector has to make the 

decision whether to only inspect for the porosity (what was specified), or if the other 

abnormalities should also be considered when inspecting the part. In fact, an inspector may 

not even be able to determine a cause via visual inspection. This causes confusion for both 

parties. 

Additionally, the interpretation of the standard contributes to uncertainty. This 

includes interpretations between the customer and the manufacturer, among a single inspector, 

and between multiple inspectors. The consistency of identifying defects has an effect on the 

overall error; however, the effects on Type I and II errors are not known. Although this 

variation does not specifically play a role on Type I and II errors, it reveals how consistent 

defects are identified in the visual inspection process. 

Many discrepancies exist between the customer and the manufacturer. At times, the 

manufacturer can complete inspection, but this inspection may not meet the customer’s 

standards. For both parties, time constraints can play a big role in the effectiveness of 

inspection. For example, if the manufacturer is behind schedule and needs to deliver parts, he 

may be more likely to ship out bad parts in order to be on time. The customer may reject all 
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of the bad parts; however, if the customer is also being pushed to deliver its product, it may 

be more lenient as to what surface quality is acceptable in order to meet its deadlines. These 

situations have happened before in industry, but studies are not available to quantify these 

values due to the variability and confidentiality associated with this factor. 

Issues with repeatability (variation for a single inspector) and reproducibility 

(variation between inspectors) may also arise 

within a company’s inspecting team, which 

affects the consistency of identifying defects. 

Visual inspection methods show large 

variation in measurement error for both 

repeatability and reproducibility due to 

inconsistencies for a single inspector between 

parts and between inspectors on the same part 

[33]. From this study, the average repeatability 

across six operators from three foundries was 

66.83%, while the average reproducibility for 

operators at the same facilities was 63.33% as 

seen in Table 3.8 [34]. Figure 3.5 shows an 

example of the variation of defect detection on the same part for two operators. Although 

improving the inspectors’ ability to interpret the standard consistently would inherently 

reduce the overall error, its effects on the individual types of errors are unknown. Since these 

factors do not directly contribute to Type I and II errors, they were not included in the 

influence diagram. 

Table 3.8—Repeatability and reproducibility 

Figure 3.5—Repeatability and 

reproducibility example where operators 

marked defects with white stickers [34] 
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Since the consistency of an inspection requires that the inspection is both repeatable 

and reproducible, consistency can be calculated as the product of the probability of 

repeatability and reproducibility. Judgement type and the inspection method will also impact 

the consistency of evaluation.  

 

IV. Discussion 

Populating the influence diagram in Figure 3.4 requires combining data from different 

sources in order to form a better overall risk assessment. Since each dataset that relates 

judgement type (Tables 3.2 and 3.3), training (Table 3.4), or defect density (Table 3.7) to 

Type I and II errors  does not consider the other two elements, an average of the three 

probabilities are used to determine the probability of an error conditioned on the judgement, 

training, and defect density. It is also assumed that all studies were conducted under optimal 

conditions for environmental conditions and the ideal state for human capabilities. Thus, these 

factors are additive to the overall probabilities of the other factors. The factors in the influence 

diagram that influence Type I and II errors are not exhaustive; however, they do play a major 

role on casting inspection. Megaw [27] provides an extensive list of sources that affect the 

accuracy of visual inspection. 

Although prior studies provide estimates of the probabilities for each node in the 

influence diagram, actual values will vary among individual foundries. These values, in 

addition to the experimental values from previous studies, may be substituted in the model in 

order to get an accurate assessment for an individual foundry.  

These qualitative standards for cast metal surfaces rely on an individual’s capability 

to judge whether or not a part is acceptable. Individuals must differentiate between the types 

of abnormality present. It can be unclear if a part is acceptable when an unexpected 
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abnormality appears on the final part if that abnormality was not taken into consideration by 

the customer when specifying the surface. Additionally, the interpretation of the standard or 

specification varies greatly among inspectors and between the customer and manufacturer. 

This factors increase the risk of Type I and II errors resulting from the inspection process.  

Given these assumptions and data, the influence diagram in Figure 3.4 is solved using 

Netica software to evaluate the impact of each training and judgement decision on Type I and 

II errors.  

Figure 3.6 depicts the probability of Type I and II errors given each alternative for 

judgement and training type. These probabilities are calculated from the influence diagram in 

Figure 3.4 and based on the model assumption for the potential state of any given foundry. 

As seen in the figure, relative judgement and raster training tend to decrease the probability 

of Type I errors; however, the opposite is true for Type II errors. This is an interesting 

observation since it appears more robust training and judgement types (raster and relative) 

decrease the probability of false alarms and increase the probability of misses. This is most 

likely a result from the high variability in Type II error from raster training used in the 

assessment of probabilities [32]. 

  
Figure 3.6—Base values of error comparing judgment and training type decision without certainty 

of other factors 
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Since many of the probabilities in the model are based on assumptions of how the 

different factors interact with each other, sensitivity analyses can help determine to what 

extent the probabilities for Type I and II errors depend on these assumptions. Figure 3.7 shows 

the sensitivity analysis where the percent change of the Type I and II errors is displayed based 

on a change from the original state to the worse state of each factor. This change in probability 

would be added to the base values from the decisions made for judgement and training type 

seen in Figure 3.6. For example, if noise is at an insufficient state, the probability of a Type I 

and II error increases by 5%.   

 
Figure 3.7—Sensitivity analysis of various factors’ worst case on Type I and II errors 

 

The worst case, as seen in Figure 3.7, includes a high environmental impact, not ideal 

human capabilities, and a 0.25% defect density. Such a situation increases the likelihood of a 

Type I error by 49.9% and the likelihood of a Type II error by 38.7%. Thus, if the basic 

training and absolute judgement are used with this worst case scenario, the probability of a 

Type I error is 92.9%. If raster training and relative judgement are used, the probability of a 

Type II error is 82.3%. If conditions are optimal, the defect density is 16%, the environmental 

impact is optimal, and human capabilities is ideal.  Under this best-case scenario, the 
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probability of Type I error is 17.8% with relative judgement and raster training, and the 

probability of Type II error is 29.8% with absolute judgement and basic training. Although 

these are extreme differences, the probabilities of Type I and II errors are still high for even 

the best case scenario. In the most likely scenario, with an average defect density of 1%, a 

low environmental impact, and high human capabilities, Type I errors occur 40.5% of the 

time and Type II errors occur 43.6% with raster training and absolute judgment. 

From the sensitivity analysis in Figure 3.7, the environmental impact and human 

capabilities have the largest impact on the Type I and II errors; however, each factor 

contributing to the environmental impact (noise, lighting, and work atmosphere) has little 

individual effect on the overall outcome. Additionally, defect density appears to impact Type 

I errors more than Type II errors, and fatigue has the opposite effect. In the case of defect 

density, when fewer defects are present, inspectors have fewer defects to identify, which 

increases their tendency to over inspect parts and cause false alarms. When inspectors are 

fatigued, their attention is less focused, resulting in a tendency to miss defects. Targeting areas 

like fatigue and defect density would be ideal if a manufacturer wants to reduce one type of 

effect; this could include requiring visual exercises to reduce eye strain or increasing 

awareness of defect density among inspectors.  

 

V. Conclusions 

Surface standards for metal cast surfaces help to determine the acceptability of surface 

quality; however, with current standards and capabilities, a large amount of variability exists 

in the visual inspection process. This paper represents the first use of an influence diagram to 

model the inspection process of surface capabilities. The influence diagram models and 

demonstrates how the different factors interact to impact Type I and II errors. The 
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probabilities in the influence diagram are derived from previous studies and the authors’ 

expertise. According to the model, Type I errors appear slightly less frequently than Type II 

errors. However, each type of error must be examined independently of one another to 

understand the impact. In the case of a Type I error, parts are leaving the manufacturer and 

arriving at the customer in an unacceptable condition. If the customer does not do an in-house 

inspection before using the parts, they could be assembled into final products and could 

damage the customer’s reputation to the consumer. In the case of a Type II error, acceptable 

parts are being held at the manufacturer unnecessarily causing an increase in work-in-process 

inventory and adding additional labor for rework and re-inspection. If multiple inspectors 

arrive at this same conclusion, the parts may even be scrapped.  

The influence diagram developed in this assessment provides additional insight into 

the visual inspection process. The model of individual factors and their interactions with one 

another present a broader picture of the problem. Using Netica allowed for a simple means of 

comparing scenarios when uncertainty nodes changed state or decision nodes were declared. 

This provides a better understanding of how a variety of factors plays a role in affecting Type 

I and II errors.  

The consistency of identifying defects, however, is extremely variable, which means 

the estimates for Type I and II errors contain a significant amount of variability. The judgment 

of these errors are as subjective as the inspection process. Clearer communication of 

expectations of cast surface specifications is needed between the manufacturer and customer.  

In order to improve communication in visual inspection, the manufacturer and customer 

should convene to discuss their expectations of surface quality in regards to the comparator 

methods available. Additionally, training procedures should be developed so that inspectors 
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are calibrated with one another. A yearly refresher course, at minimum, would be ideal in 

order to verify the inspectors remain calibrated throughout the duration of their inspection 

duties.  

To reduce the subjectivity and variability of visual inspection, quantitative criteria 

should be implemented. A digital surface standard can be developed in order to provide a 

quantitative method of inspecting cast metal surfaces. This standard should reduce the 

variation and improve the accuracy in the surface inspection process. The influence diagram 

could be expanded to assess how the probabilities of errors change with such a standard. 
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CHAPTER 4: DEVELOPMENT OF A DIGITAL STANDARD TO 

SPECIFY SURFACE REQUIREMENTS OF CAST METAL SURFACES 
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Abstract 

Communication of specifications between a customer and a manufacturer is important 

for meeting form, fit, and functional requirements of any part. Current standards for the 

requirements of cast metal surfaces use qualitative methods, including comparator plates and 

images of surfaces, to specify the surface quality allowing ample room for variation in 

interpretation of the standard. The length scale of existing contact surface measurements is 

too small for most casting surfaces.  This paper covers a proposed digital standard for 

specifying cast metal surfaces. The proposed digital standard uses point cloud data of a cast 

surface, likely attained using a non-contact capture method, in order to identify roughness 

properties and anomalies caused by the casting process. Unlike current qualitative methods, 

this standard does not specify the potential causes of surface issues, such as porosity or 

inclusions.  This standard has been developed in order to reduce measurement variation and 

eliminate confusion between the customer and manufacturer. Assigning quantitative criterion 

to the surface allows the customer to specify exactly what is needed as opposed to limiting 

them to a subjective comparator or image to base their requirements. Additionally, this 
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quantitative method can be used to verify visual inspection results among the inspectors 

within a production facility to reduce their measurement error and improve productivity. 

 

I. Introduction 

Inspecting parts to meet quality standards is important for meeting customer needs. In 

metal casting, current standards use qualitative methods to determine acceptability of surface 

quality. These methods show large variation in measurement error for both repeatability and 

reproducibility due to in the inconsistencies subjective decision making for a single inspector 

between parts and between inspectors on the same part [1]. The proposed digital standard that 

quantifies acceptance criteria is being developed to reduce the amount of error during 

inspection to verify results from a visual method. For the customer, a quantitative, or digital, 

standard will allow them to be able to communicate to the manufacturer exactly what they 

need or want. It does not limit the customer to a specific set of surface finishes like other 

standards that use a set of comparators or images to specify requirements. The development 

of the standard for Quantitative Inspection Acceptance Criteria for Cast Metal Surfaces 

(Appendix A) is discussed in this article. 

 

II. Current Inspection Standards 

The Alloy Casting Institute (ACI) Surface Indicator Scale, Manufacturer 

Standardization Society (MSS) SP-55 Visual Method, American Society for Testing and 

Materials (ASTM) A802-95 that reference the Steel Castings Research and Trade Association 

(SCRATA) comparator plates and its French equivalent, BNIF 359, continue to be the leading 
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standards used to specify metal casting surfaces. In addition, the GAR Electroforming Cast 

Comparator C9 is used in some surface roughness inspection processes. 

 

ACI Surface Indicator Scale 

The ACI Surface Indicator method uses a metal plate with four surface variations, as 

seen in Figure 4.1. The method evaluates “general smoothness, height and depth of 

irregularities extending beyond the range of general variations, and frequency and distribution 

of such irregularities [2].” The comparator swatches are designated SIS-1 through SIS-4 and 

correspond to the root mean 

square (RMS) average deviation 

in micro-inches. Additionally, 

the standard specifies criteria for 

the height and frequency of 

surface abnormalities through a 

series of grids of a “controlling 

square inch.” 

 

MSS SP-55 Visual Method 

The MSS SP-55 method uses images as a means to specify surfaces. Twelve different 

types of abnormalities ranging from porosity to weld repair areas are pictured with examples 

of both acceptable and non-acceptable cast surfaces [3]. An example of the standard is shown 

in Figure 4.2. 

Figure 4.1—ACI Surface Indicator Scale [2] 
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Figure 4.2—MSS method example of acceptable (left) and non-acceptable (right) cutting marks [3] 

 

ASTM A802-95 

The SCRATA method uses plastic plates replicated from actual steel casting surfaces 

for comparison to the finished part. Nine different abnormalities are represented by lettered 

plates, each with either two or four levels of severity of the abnormality labeled Level I to 

Level IV as seen in Table 4.1. The roughness nor abnormalities are quantified. These 

abnormalities are similar to the MSS method with a slight variation in how they are grouped. 

This method is most commonly used in the U.S. steel casting industry. 

Table 4.1—Visual inspection acceptance criteria of ASTM A802 [4] 

Surface Feature Level I Level II Level III Level IV 

Surface texture A1 A2 A3 A4 
Nonmetallic inclusions B1 B2 B4 B5 
Gas porosity C2 C1 C3 C4 
Fusion discontinuities … A D1 D2 D5 
Expansion discontinuities … A … A E3 E5 
Inserts … A … A F1 F3 
Metal removal marks:     
   Thermal G1 G2 G3 G5 
   Mechanical H1 H3 H4 H5 
   Welds J1 J2 J3 J5 
A No reference comparator plate is available for this surface feature and level. 
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BNIF 359 

The BNIF method is a French standard similar to the SCRATA method in that it uses 

plastic replicas of cast metal surfaces. A comparison of these comparators can be seen in 

Figure 4.3. Each comparator is an example of a 

specific casting process and is classified by the type 

and amount of finishing required. The three 

finishing classifications consist of the following: 

Series n°1: No or limited finishing, Series n°2: 

Particular finishing, and Series n°3: Special 

finishing. Suggested values for steel, iron, 

aluminum and copper are given based on the 

molding process. A general scale of the roughness 

average is provided as a general guideline for each 

suggested process as seen in Figure 4.4 [5]. 

 

Figure 4.3—Comparison of SCRATA 

(top-E3, C3) and BNIF comparators 

(bottom- 4 OS1, S3) [4, 5] 

Figure 4.4—BNIF suggestion table for steel castings [5] 



49 

 

 

GAR Electroforming Cast Microfinish Comparator C9 

The GAR C9 Comparator, seen in Figure 4.5, is not as widely used as the 

aforementioned methods. Each comparator swatch represents the surface texture based on 

root mean square (RMS) values in micro-inches. This standard provides additional clarity 

compared to the ACI Surface Indicator Scale, MSS SP-55, and ASTM A805-92 for 

interpretation of the standard; 

however, it does not define any 

abnormalities. In addition, inspectors 

use this comparator qualitatively with 

little regard for the measurement 

assignment. Instructed use of this 

comparator includes “drawing the tip 

of the fingernail across each surface at 

right angles” to match the texture of the 

inspected part [6]. 

 

Other 

These standards for metal casting specification and inspection have several 

disadvantages. These disadvantages include the need for subjective interpretation of the 

standard, expectations of labor, definition of abnormalities, and distribution of abnormalities. 

 

 

 

Figure 4.5—C9 Microfinish Comparator [6] 
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Summary of Current Standards 

These standards for metal casting inspection have several disadvantages. These 

disadvantages include interpretation of the standards, expectations of labor, definition of 

abnormalities, and distribution of abnormalities. 

Standard Interpretation 

Variation exists between the manufacturer’s and customer’s interpretation of the 

standard due to the complexity of the evaluation criteria and variation in qualitative 

inspection. A definitive cut off point in which the part can be deemed as acceptable currently 

does not exist or is unclear in the written standards.  

Labor Expectations 

Personnel must be trained on the standard and should have the standard documentation 

in hand in order to make the determination of whether or not the part is acceptable. These 

methods rely solely on the individual’s sensory (visual and possibly tactile) capability as 

opposed to hard data. Due to the subjectivity of the decision, the cutoff point can move out 

over time or among people. Research has shown that training must be ongoing to keep 

personnel ‘calibrated’ [9]. 

Undefined Abnormalities 

Surface abnormalities not contained within the given standard make it difficult to 

assign a value to the finished part. Furthermore, many abnormalities cannot be determined via 

visual inspection and rather require metallurgical analysis. Furthermore, the origin of the 

abnormality is quite irrelevant to the final casting use in most cases.  
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Abnormality Distribution 

The distribution of abnormalities versus size over the entire part is not clearly 

specified. For example, if one large crater is acceptable on a part, there is no reasoning behind 

why multiple craters of smaller size are not acceptable. Or, if the area under question is smaller 

than a SCRATA comparator plate, the single larger crater could now not be acceptable. 

With the decreasing cost of non-contact technologies, such as white light and laser 

scanning, a quantitative method can be introduced to increase reliability and repeatability of 

the casting inspection process. 

 

III. Overview of Quantitative Standard 

The quantitative standard uses data obtained from three-dimensional scans of a portion 

of a casting in order to objectively inspect a surface. From this data, the three main parameters 

specified by the customer are verified, including the baseline roughness, abnormality level, 

and abnormality percentage.  

The baseline roughness, measured in millimeters, is the roughness average, denoted 

Sa for areal roughness or Ra for a profile, of the cast surface disregarding abnormalities. This 

parameter is the minimum requirement to be specified by the customer. Default values will 

be assigned to other parameters if none are specified.  

Abnormalities are any surface anomaly present that is not part of random variation 

due to the actual baseline roughness and are greater than, arbitrarily, twice the specified 

baseline roughness. Therefore, there is no need for the customer to specify every type of 

abnormality that could possibly occur, as with the SCRATA standard; all abnormality types 

are encompassed under the abnormality level parameter. These include, but are not limited to, 
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porosity, inclusions, and expansion. Abnormalities are considered any point exceeding twice 

the specified baseline roughness. The abnormality level is specified in millimeters and is 

represented by the absolute distance of the data point from the underlying geometry. If an 

abnormality level is not specified, the default level assigned where no abnormalities are 

acceptable, or twice the specified baseline roughness. (As discussed later, the designer could 

specify a surface with no allowable abnormalities; however, this could come at a higher 

acquisition cost.) 

The third parameter to describe the surface is the abnormality percentage. This is 

expressed as the total fraction of the surface area that is considered abnormal, or exceeding 

twice the specified baseline roughness. The default inspection area is 8 centimeters by 8 

centimeters, arbitrarily, unless otherwise agreed upon by the customer. The abnormality area 

is a percentage of this target area. The target area can be any 8 by 8 centimeter area on the 

surface, meaning every such area needs to be in specification. This prevents discrepancies 

between the customer and manufacturer when interpreting the abnormality percentage. If an 

abnormality percentage is not specified, the default level assigned will be 5%. This standard 

does not cover dimensional accuracy, unusual visual conditions, such as casting color, nor 

chaplets. Chaplets are not included in this specification because they represent a likely 

performance issue, unlike most other abnormalities on the casting surface.   

These three parameters should be specified at their maximum acceptable value for use 

and annotated using the Voelker Surface Ratio (VSR), which is written numerically with 

dashes as, “VSR [baseline roughness] – [abnormality level] – [abnormality percentage].” An 

example of this notation is, “VSR 0.30 – 0.60 – 2,” indicating a maximum baseline roughness 

of 0.30 mm, a maximum abnormality level of 0.60 mm, and the maximum percentage of the 
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inspected surface considered abnormal of 2%. If the standard only specifies “VSR 0.30,” the 

defaults for abnormality level and abnormality percentage are assigned as twice the specified 

baseline roughness, or 0.60, and 5, respectively for any 8 by 8 centimeter area on the casting.  

In order to consistently calculate these parameters due to the complexity of cast 

surfaces, the underlying geometry must be determined. The underlying geometry is the 

geometry of the surface in absence of the surface roughness and abnormalities. This geometry 

may differ from the intended part geometry due to contraction, mold movement, and other 

dimensional changes during the casting process. To illustrate the use of the proposed standard, 

the process of finding the underlying geometry to calculate surface deviations and identifying 

abnormalities for a criteria of VSR 1.85 – 12.00 – 35 is found in Figure 4.6. After a surface is 

scanned and the underlying geometry is determined, the deviations from each point to the 

underlying geometry are calculated. Based off of the acceptance criteria from the customer 

and deviations from the underlying geometry, the actual baseline roughness is calculated, and 

abnormalities are identified and measured.  

A single surface can be specified in different ways. The sample profile in the previous 

example shows a surface with an abnormality located in the center. For the purpose of 

simplifying conceptualization, the total number of abnormal points in the two-dimensional 

profile divided by the total number of points in the profile will be used to illustrate the 

abnormality percentage. Given this assumption, the profile could be classified as the 

following variations: VSR 1.85 – 12.00 – 35, VSR 2.32 – 12.00 – 17, and VSR 6.00 – 12.00 

– 0. The bounds of each variation where the data points falling outside of the bounds are 

considered abnormal are shown in Figure 4.7. 
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Figure 4.6—Parameter calculation process A) determine underlying geometry, B) calculate 

deviations from the underlying geometry, C) identify and measure abnormal points based off of the 

deviations from the underlying geometry and assigned acceptance criteria 

 

 
Figure 4.7—Comparison of control limits where data points are considered abnormal based on the 

specified baseline roughness of each example specification 
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VSR 1.85 – 12.00 – 35 

 This specification criteria considers the 21 points with a deviation from the underlying 

geometry greater than 3.7 mm (twice the specified baseline roughness represented by thick, 

green solid line in Figure 4.7) as abnormal. These points were omitted from the actual baseline 

roughness parameter calculation; however, they were captured in the abnormality percentage 

parameter given. The 21 points over the entire inspected area of 60 points, or 35%, were 

considered abnormal. This is right at the threshold as presented by the third parameter (twice 

the specified baseline roughness). The abnormality level sets the maximum deviation from 

the underlying geometry of the data points to 12. This would mean the part would be rejected 

if points greater than 12 mm from the underlying geometry were present. 

 

VSR 2.32 – 12.00 – 17 

 The 10 points with a deviation from the underlying geometry greater than 4.64 mm 

(represented by alternating dot and dashed blue line in Figure 4.7) are considered abnormal 

for this specification criteria. The same process was used as part A to determine the parameters 

of the criteria. 

 

VSR 6.00 – 12.00 – 0  

 In this scenario, all points within ± 12 mm (represented by purple dashed line in Figure 

4.7) of the underlying geometry are not considered abnormal since the abnormality level is 

exactly twice the specified baseline roughness. All 60 data points are used in calculation of 

the actual baseline roughness for this criteria. This particular specification does not allow any 
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point to be abnormal, but it opens up the deviation from the underlying geometry to be 

considered abnormal. 

 

Other Variations 

 This surface profile would also be considered acceptable where any of the three 

parameters are greater than those currently stated, such as VSR 4.12 – 15.00 – 40. This is 

because the specification notes the maximum acceptable value for use of all parameters. 

However, one must consider resulting surface variations if specifying values for the baseline 

roughness and abnormality level greater than their sample surfaces, since a lower quality 

surface than the sample could be considered acceptable under these increased parameters. 

 Customers need to be conscientious when specifying cast surfaces as there can be an 

infinite number of surfaces that would be acceptable for each VSR surface specification. 

Variations of a surface profile for each criteria assigned in the previous example are seen in 

Figure 4.8: VSR 1.85 – 12.00 – 35, VSR 2.32 – 12.00 – 17, and VSR 6.00 – 12.00 – 0.  Sample 

A of Figure 8 is identical to the profile found in Figure 4.6. Based on the number of points 

exceeding the bounds of twice the specified baseline roughness, as previously demonstrated 

in Figure 4.7, Samples A-B of Figure 8 would be considered acceptable with all three 

standards previously mentioned. Samples C-F of Figure 8 only correspond to VSR 6.00 – 

12.00 – 0 since a greater number of points exceed twice the specified baseline roughness of 

the other examples. As a general rule, the specified baseline roughness and abnormality 

percentage are inversely related when assigning different specifications to the same surface. 

To simplify specification assignment and interpretation, it is suggested the abnormality 

percentage for an 8 centimeter by 8 centimeter surface area does not exceed 10%. 
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 Designers must determine the type of surface which is acceptable for their component, 

and then write the appropriate VSR specification, keeping in mind that more restrictive 

specifications will increase the procurement cost.  A major advantage of the VSR standard is 

that the designer can quantify the surface that is acceptable, and not rely on comparative 

methods which may not result in the surface they were expecting. 

All parts deemed acceptable through VSR 1.85 – 12.00 – 35 and VSR 2.32 – 12.00 – 

17 will also be considered acceptable under the VSR 6.00 – 12.00 – 0 criteria; however unlike 

the other two requirement examples, VSR 6.00 – 12.00 – 0 also can be specified, which 

increases the number of allowable points located further from the underlying geometry while 

maintaining a roughness less than or equal to 6.00 mm. Since an abnormality is defined as 

greater than twice the specified baseline roughness, any data falling within ±12 mm from the 

underlying geometry would not be considered abnormal. Therefore, since the sample surfaces 

do not have any data points falling outside of this range, the abnormality percentage is 0%. 

This method sets a range on the maximum permissible deviation from the underlying 

geometry as opposed to calling out any abnormalities and is ideal when specifying no 

abnormalities can be present on the surface.  

In order to begin assigning criteria to their castings, customers can use current castings 

as a baseline for specifying a standard. To do this, customers can select a part with what they 

consider the least acceptable surface roughness and abnormality level, or a part that is not of 

the highest quality but still meets their current surface expectations. After using a non-contact 

method to collect data points from the surface, the customer can select a criteria for that 

surface by comparing the data to the underlying geometry. A single acceptance criteria may 

be specified over the entire cast surface, or multiple criteria may be specified for various areas 
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of the casting in order to reduce the variation of interpretation using the methods discussed in 

this section. 

 

IV. Discussion 

The quantitative standard eliminates the discrepancies between the manufacturer’s and 

customer’s interpretation of inspection criteria, as seen in the qualitative standards. The 

reduced complexity of the evaluation criteria and variation from qualitative inspection allows 

for a clearer understanding of expectations.   

The quantitative standard uses hard data to evaluate whether or not the surface is or is 

not acceptable and does not rely on an individual’s sensory capability. This hard data does not 

differentiate between the types of abnormality present, which is beneficial if an unexpected 

abnormality appears on the final part and was not taken into consideration by the customer 

when specifying the surface. Additionally, the percent of the surface that is classified as 

abnormal, which was specified in only one of the qualitative methods, is specified within the 

standard and can be modified, if desired, allowing the customer to better relay his or her 

requirements. These aspects of the quantitative standard allow for a clearer communication 

of expectations of cast surface specifications between the manufacturer and customer. 

Work is ongoing by the authors to develop methods to automate the data collection 

and data analysis. Ultimately these techniques would be integrated into a portable scanning 

device that a user could enter the specified VSR values and point the scanner at the 8 by 8 

centimeter surface patch in question and it would determine if the surface was acceptable. The 

intent is that this device would be used to assist the manual visual inspection process; 

however, future efforts could include this methodology in an automated inspection process. 
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V. Conclusions 

Surface standards for metal cast surfaces help to determine the acceptability of surface 

quality. Implementation of the quantitative inspection standard will increase the quality of 

metal cast surfaces by improving communication between manufacturers and customers in 

the interpretation of requirements. Methods to collect and clean point cloud data for use in 

this standard are currently being developed to increase repeatability and reproducibility when 

calculating components of the VSR.  This includes the development of algorithms for the 

underlying geometry of the scanned part. Future work includes exploring the feasibility of an 

automated inspection process to eliminate the need for human interaction in the process. 
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CHAPTER 5: EVALUATION OF SLICING METHODOLOGIES TO 

DETERMINE UNDERLYING GEOMETRY OF CAST METAL 

SURFACES 
 

A paper submitted to Journal of Materials Processing Technology. 

Michelle M. Voelker7 and Frank E. Peters8 

 

Abstract 

The geometry of cast metal surfaces is complex, and in reverse engineering 

applications, the task of identifying the true geometry of the part is challenging. This is due 

to the inherent roughness and surface variants, or abnormalities, caused by the nature of the 

casting process. In addition to abnormalities due to fusion and porosity, among others, non-

uniform mold movements and metal shrinkage of the part will cause variation in the part’s 

original geometry. This geometry of the part including shrinkage, or underlying geometry of 

the casting, is used in evaluating the baseline roughness and abnormality level in the 

Quantitative Inspection Acceptance Criteria for Cast Metal Surfaces, and without this 

geometry, an accurate means of calculating surface parameters of castings does not exist. This 

paper outlines a slicing process to estimate the underlying geometry of castings for use in the 

standard. Various fitting methods for the two-dimensional slices are explored to evaluate the 

effect each method has on accurately representing the actual part’s geometry and surface 

characteristics while minimizing the effects of abnormalities on the end product. 
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I. Introduction 

The proposed standard for Quantitative Inspection Acceptance Criteria for Cast Metal 

Surfaces (Appendix A) allows for quantitative specifications for inspection [1, 2]. The 

standard allows point cloud data to be analyzed to calculate components of the Voelker 

Surface Ratio (VSR), including the baseline roughness, abnormality level, and abnormality 

percentage. However, without standard methods to collect and clean this data, the 

repeatability and reproducibility is highly variable. A process for measuring the components 

of the standard must be outlined so the inspection process is consistent among manufacturers. 

This will require methods in order to determine the underlying geometry to customize the 

calculations based on the actual geometry of the part after molding and post-shrinkage, which 

would vary from part to part and give inconsistent measurements of the surface. This article 

proposes algorithms to determine the underlying geometry of metal castings for use in this 

standard. 

 

II. Previous Work 

The evaluation of current contact and non-contact methods for evaluating surface 

parameters was explored. This information was used to determine the mathematical gap for 

the evaluation criteria of the digital standard. Methods were evaluated to explore the general 

proof of concept of the process.  

Previous work included the evaluation of the standard parameters using alternative 

methods to non-contact scanning. This included comparisons of the casting to the original 

CAD model, contact profilometers, and non-contact profilometers. 
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The first method explored was to compare the point cloud data to an original solid 

computer model. This nearly perfect geometric model of the casting could easily be compared 

to a scan of the actual cast part to identify variation between the two. However, this method 

was not considered feasible due to the variability between the part and model after 

manufacturing from contraction, among other geometric variations. These variations would 

not allow for an accurate calculation of the surface parameters of the standard.  

To evaluate contact methods, a MahrSurf SD 26 surface profilometer was used. The 

profilometer software is designed to calculate the roughness by eliminating waviness in the 

sample; however, unlike machining, the waviness and roughness are not cyclical, which 

makes filtering more difficult. For example, too much of the surface variation for roughness 

was filtered out with the waviness for rougher parts. Rougher parts also more frequently gave 

incomplete readings due to the curvature and height of abnormalities exceeding the range on 

the profilometer. Additionally, since this method only provided data for a three-inch, two-

dimensional profile, it was not representative of the entire cast surface. 

The Zygo Surface Profiler was also examined. This non-contact, three-dimensional 

profilometry method took a surface scan of a one-centimeter square. The filtering functions 

for roughness and waviness appeared to be similar to the contact method. Much like the 

contact method, this method was not feasible due to the very small surface area the sample 

could cover on the part and the time it took to collect data. 

To evaluate current scanning methods, several cast surface samples and replications 

were evaluated. Three sample casting surfaces were scanned manually using a Faro Edge scan 

arm. The scan data was saved as a point cloud text file and imported into commercial software 

for evaluation. The point clouds were not subsampled or manipulated prior to running the 



65 

 

 

software. Two methods used for the initial evaluations of the surface included localized 

roughness (comparison of points to surrounding points) and shape fitting (comparison of 

points to best fit plane). The analysis was completed within the software for the proof of 

concept.  

Figure 5.1 shows a flat sample casting evaluated based on the localized roughness and 

shape fitting methods. For the localized roughness (left), the abnormalities, noted by an arrow, 

were evident in most cases, and the shape fitting method was successful at identifying 

abnormalities (right). Figure 5.2 shows the D5 SCRATA comparator evaluated using both 

methods. The localized roughness, pictured left, clearly identifies the abnormalities. For shape 

fitting, right, the abnormalities are still visible to an extent; however, the color mapping shows 

an area on the comparator that is a greater distance (blue) from the geometric shape, a plane. 

This indicates the comparator is curved. This causes an inaccurate representation the 

roughness due to the curvature in the sample. In order to get an accurate measurement of the 

roughness, the surface must be compared to a surface accurately representing the underlying 

geometry of the scanned surface.  

Figure 5.3 shows the E3 SCRATA comparator results. The abnormality, marked with 

an arrow, is evident and roughness consistent for the best fit plane, right; however, the 

localized roughness, left, is not identifying the flat surface on the top of the abnormality as 

abnormal. This is because the average deviation in elevation of the unit vectors of surrounding 

points is minimal. 
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Figure 5.1—Localized roughness versus best fit plane distance on sample casting 

 
Figure 5.2—Localized roughness versus best fit plane on D5 SCRATA plate 

 
Figure 5.3—Localized roughness versus best fit plane on E3 SCRATA plate 



67 

 

 

From the results, the localized roughness did not properly identify all abnormalities, 

or anomalies of the surface exceeding three times the baseline roughness. In the E3 SCRATA 

plate, the abnormality was large and had a smooth face. In this case, only the edges of the 

abnormality were detected. Since the points on the top of the abnormality were at the same 

elevation relative to the surrounding points, the local roughness, or change in elevation, was 

minimal and failed to identify the specific location as abnormal. Similarly, the best fit plane 

fell short when determining parameters for non-planar, or non-geometric, shapes. Regardless 

of whether or not a part is designed to be a specific shape, the resulting manufactured part 

will not be identical to the design due to the nature of the casting process. For example, if a 

cast feature was designed to be a planar, non-uniform shrinkage during cooling may have 

occurred causing the geometry to stray slightly from the intended geometry. Therefore, if a 

plane was fit to a scan of the surface in the surface fitting method, the deviations may be 

skewed as seen in Figure 5.4. These variations could make the difference between whether or 

not a part passes or fails an inspection; in fact, the Linear Fit may fail due to the abnormality 

percentage exceeding that of the acceptance criteria in the example. Therefore, these methods 

cannot be considered appropriate for standard parameter calculations. 

The localized roughness and shape fitting methods used in this case study are not 

sufficient to calculate the parameters of the standard. A consistent method to calculate these 

parameters is necessary so there is agreement among suppliers in the interpretation of the 

standard. In order to consistently achieve this, the underlying geometry, or true geometry of 

the casting, can be used as a baseline to calculate the parameters from. This will allow for 

inherent variation in the casting process while consistently delivering a reliable value for 

inspection to the standard.  
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III. Exploration of Slicing Methodology for Underlying  

Geometry 

 

The digital standard proposed by Voelker and Peters [3] quantifies surfaces based on 

deviations of data obtained from digital scanners from the underlying geometry. The 

quantifiable parameters include the baseline roughness, abnormality level, and abnormality 

percentage. The baseline roughness is the roughness average of the cast surface excluding 

abnormalities, or anomalies of the surface. The abnormality level is the maximum allowed 

deviation from the actual part geometry, and the abnormality percentage is the percentage of 

the surface contained in the region bounded by twice the baseline roughness and the 

abnormality level. Inspecting castings using the new digital standard can improve 

communication between the customer and manufacturer in addition to reducing the 

discrepancies between inspectors’ interpretations; however, the parameters must be calculated 

consistently based on reference geometry to achieve repeatable results. Not only will the 

underlying geometry enable a consistent means of calculating the parameters of the standard, 

but it can also be used in other applications such as reverse engineering of castings.  

The underlying geometry dictates all calculations for the components of the 

specification. The end product of the underlying geometry algorithms is a smooth surface that 

accurately represents the casting free of surface roughness and abnormalities. This surface 

will then be compared to the actual digital surface in order to calculate the surface roughness, 

abnormality level, and abnormality percentage.  

As previously discussed, fitting a geometric shape using shape fitting methods or using 

a CAD model of the part to compare to the scan of the actual part does not allow for the 

inherent deviations in geometry resulting from the casting process. Additionally, profilometry 

software using filters for roughness and waviness do not properly accommodate for the 
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noncyclical variation and abnormalities in the cast surface. Determining the underlying 

geometry of the casting will not only aid in the identification and measurement of 

abnormalities, but it will provide a consistent method in calculating the actual baseline 

roughness.  

This paper explores slicing methods to calculate the underlying geometry and was 

chosen based on its simplicity and calculation speed. Using the original point cloud, this 

method aimed to eliminate roughness and abnormalities in order to calculate the underlying 

geometry. The method was evaluated based on its ability to eliminate abnormalities and the 

baseline roughness when compared to the original point cloud as described in the following 

paragraphs.  

Determining a best fit surface for a point cloud with complex geometry is not an easy 

task. In order to reduce the complexity, the surface will be examined in two-dimensional data 

sets. This can be compared to the process of integration of three-dimensional calculus where 

the double integral splits the surface into two two-dimensional parts. Rapid prototyping 

technologies also use this technique to simplify the construction of three-dimensional objects 

by only examining the cross section of the model at incremental locations. Similarly for the 

slicing method, the digital representation of the cast surface will be sliced in order to simplify 

the surface into a series of two-dimensional data. First, the point cloud will be sliced into 

small, unidirectional slices of points of a given width, which will be condensed into a single 

two-dimensional data strip. Each subsection will be examined and a curve will be fit through 

the set of data points to represent the underlying geometry at each slice. The slices will then 

be compiled and a mesh will be created across slices in order to create a composite surface to 

compare to the point cloud. A generalization of this process is broken down in Figure 5.5. 
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This process will be completed for angles of 0, 45, and 90 degrees to eliminate the effects of 

skewed fitting due to linear 

indications parallel to the 

slices. Once three surfaces 

are constructed, the 

intersections of the surfaces 

will be identified, and the 

medial surface will be 

selected for the final 

underlying geometry.  

Details of this process are 

shown in the flow chart in 

Figure 5.6.   

 
Figure 5.6—Break down of slicing algorithms including importing the point cloud, slicing the point 

cloud, and determining the underlying geometry through fitting curves to the slices 

 

Based on slicing procedure studies in rapid prototyping [4], the ideal method of slicing 

to most accurately represent the underlying geometry would be to compress the points in each 

Figure 5.5—Slicing method for calculating underlying 

geometry A) original point cloud, B) slice and condense data, C) 

fit curve to 2D segments of data, D) create surface across curve 
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slice to the center in order to fit a two-dimensional curve through it. In rapid prototyping 

applications, choosing to contact the nominal geometry at either end of the slice causes over 

or under sizing of the part [3]. Similarly for determining the underlying geometry, the less 

distance the points must travel to be compressed, the more accurate the underlying geometry. 

For simplicity, Figure 5.7 shows an example of the compression of two-dimensional slices 

into lines of data. For the three-dimensional point cloud data, slices will be made in the z-

direction and the resulting slice “shape” can be seen in the x-y plot of data. Regardless of how 

the points are compressed, the resulting shape, or plot, will be identical with exception of the 

positioning relative to the original part. In the cases of two-dimensional shapes, the main body 

of the part will be oversized since the compression takes into account all data points in the 

slice. However, as the size of the slice approaches zero, the difference in the positioning of 

the two compression methods approaches zero. 

 
Figure 5.7—Effects on a) sliced original shape from b) central and c) extrema compression 

  

Potential risks associated with fitting data to casting surfaces includes the effects from 

the presence of abnormalities and roughness variation. This is because extreme variations may 

cause any fitting function to be skewed when passed through an extremely rough region or 

abnormality, resulting in a function not accurately representing the underlying geometry of 

the casting. This will be explored in depth by looking at theoretical cross-sections of data to 
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see which curve fitting function will best accommodate for the varying levels of abnormalities 

on different geometries.  

Three variations of three sample surface profiles were constructed, as seen in Table 

5.1, to analyze effects of the geometry and 

abnormalities on the slicing methods. The 

surface profiles consisted of flat, curved, and 

wavy to see how each fitting technique 

accommodated each profile.  

Profiles under each geometry were identical with exception to the set area where an 

abnormality was introduced, as seen in Figure 5.8. For a surface with no abnormality, the 

general surface roughness remained consistent across the abnormal region. For a surface with 

an abnormality, the abnormal region introduced a protrusion or depression in addition to 

roughness across the abnormal region. For a surface with a removed abnormality, no data was 

present for the abnormal region. 

An additional ten flat surfaces were constructed with variations in surface profile 

characteristics.  These characteristics include roughness, scaling, point density, abnormality 

height, and abnormality width. 

The characteristics described in this paragraph are the default for all flat samples 

unless otherwise noted. Samples ranged from -1.00 to 2.55 units along the x-direction and -

25.0 to 25.0 units in y-direction. The increment in the x-values was 0.05 units, which would 

be representative of a point cloud that was cleaned in order to reduce redundant data. The 

roughness profiles were randomly generated to represent the actual variation of a cast surface 

slice. No abnormalities were present in the roughness, scaling, and point density samples. 

Table 5.1—Sample profiles 
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Exceptions to these criteria for specific flat samples will be described in detail in the following 

paragraphs. 

 
Figure 5.8—Example of curved surface profiles: Type 1) profile with no abnormalities, Type 5) 

abnormality present, and Type 8) abnormality removed from data set 

 

 Two roughness characteristics were explored. First, an alternating roughness profile 

was constructed. In this profile, the y-data was cyclical such that every other value cycled 

from positive to negative. This cyclical profile is similar to the surfaces seen in machining 

processes. The second profile had a random roughness, which is more representative of cast 

surfaces. These surfaces were constructed using a random number generator between -25 and 

25 given the aforementioned constraints on the alternating roughness profile. 

The scaling characteristic manipulated values on the y-axis. The original profile for 

the scaling comparison met the default requirements. The reduced profile used the exact same 

x-values as the normal profile; however, the y-values were scaled down by 100. 
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Three point density characteristics were evaluated, which manipulated the total 

number of data points in the data set. The 100% point density used the default requirements 

mentioned previously. For the 50% point density, every other x-value in the profile was 

eliminated, which reduced the point density to half of the original. Therefore, the increment 

in the x-values was 0.10 units. The point density was doubled from the original for the 200% 

point density with x-values at 0.025 unit increments. 

For the abnormality characteristics, four new surface profiles were constructed based 

off of the random roughness profile from the roughness characteristic data set. This profile 

was also compared to the abnormality height and width characteristics since it did not contain 

any abnormalities. Abnormality height consisted of tall and short abnormalities. Tall 

abnormalities reached up to 60 units on the y-axis, and short reached up to 30 units. 

Abnormality width consisted of wide and narrow abnormalities. Wide abnormalities were 

1.50 units on the x-axis, and narrow were 0.75 units. All abnormalities were centrally located 

in the sample profile. The abnormality direction, protrusion versus depression, was not 

explored since the fitting methods and the lack of normal vectors associated with each point 

could not differentiate the two. 

Various methodologies were explored to analyze how each fitting or filtering method 

represented the underlying geometry. The following fitting methods were evaluated: 

segmenting, mid-point locus, polynomial, and moving average.  

Each fitting method was compared to the ideal underlying geometry, which was 

determined by hand for each profile, using the roughness average (Ra). For the flat surface 

profiles, the ideal underlying geometry was at y = 0 for all x-values. The coefficient of 

determination, or R-squared value, was not used due to the high variation in roughness 
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between sample profiles. Since each surface profile contained unique surface roughness 

values, the Ra could not be compared across each sample profile directly; however, the values 

could be compared for a single sample profile across fitting methods. To make a direct 

comparison of a single fitting method across surface profiles, the Ra values were normalized. 

To normalize the values, the Ra of each surface profile was calculated in comparison to the 

ideal underlying geometry (Rprofile). Then the Ra from each fitting method, given a specific 

surface profile (Rmethod | profile), was divided by Rprofile resulting in the normalized roughness 

(%Ra) as seen in Equation 5.1.  

                                                             %𝑅𝑎 =
𝑅𝑚𝑒𝑡ℎ𝑜𝑑 | 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑅𝑝𝑟𝑜𝑓𝑖𝑙𝑒
                                       (Eq. 5.1) 

Since the Ra of any given data set cannot be less than zero, the %Ra also cannot be less 

than zero. If the fitting method was identical to the ideal underlying geometry, Rmethod | profile 

would equal 0.00 resulting in a %Ra of 0.00%. A %Ra equal to 0.00% would indicate the 

fitting method is a perfect representation of the ideal underlying geometry. Fitting methods 

where the %Ra is greater than 100% indicate that the actual surface profile more accurately 

represents the ideal underlying geometry than the fitting method represents the ideal 

underlying geometry. In essence, the lower the %Ra, the better the fitting method represents 

the ideal underlying geometry. 

 

Segmenting 

A segmented filter is a simple method to eliminate non-uniform waviness from a 

surface profile. This method, also known as high-pass filtering, segments the data into equal 

sample lengths along the x-axis [4]. Each segment is then fit to straight lines. Additionally, 

much like with the slice size as discussed previously, the ideal segment length must be 
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identified in order to increase the accuracy of the estimated underlying geometry. If the 

segment length is too long, it will not accurately represent smooth curvatures in the geometry, 

which will result in a jagged, ruled surface approximation. However, if the segments are too 

short, they will not cover enough data points to fit a line through in order to eliminate the 

variation in the surface roughness. The parameters used in this methodology included a 

sample length of 1/3 and 1/6 the total length of the profile, which will be referred to as Seg 3 

and Seg 6, respectively.  

 

Mid-point Locus  

The mid-point locus line can also eliminate non-uniform waviness from a profile. In 

this method, a window of a specified width 

is moved across the profile along the x-axis 

and the average height is plotted in the 

center of the window. Typically, the 

window should overlap the previous region when it is shifted, however, the shifting distance 

does not have to be uniform [5]. The parameter combinations used in this method including 

the sample width, which is the fraction of the total sample length, and overlap, which is the 

fraction of the width that is overlapped, can be seen in Table 5.2.  

 

Polynomial 

Additionally, polynomial filters can be used to eliminate waviness. For short lengths 

of data, polynomial curves are fit to the data using least-squares method [6]; however, by 

continually increasing the degree of polynomial, the Ra of the line will inherently decrease. 

Table 5.2—Parameters for mid-point locus line 
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To avoid unintentional overfitting and manual intervention, a third degree polynomial was fit 

to the profile, Order 3. Additionally, a best fit was manually selected by the user to most 

closely fit the ideal underlying geometry, Order Best. 

 

Moving Average 

Weighing functions, such as a moving average iterative weighing function, can also 

be used to minimize the effects of outliers [6]. In this method, the data is sorted based on its 

x-value, and each point is replaced by the average value of the surrounding points. The period 

parameter in this method represents the number of total points used in calculating the average. 

The parameters used in this methodology included a period 5 and period 11 moving average, 

MA5 and MA11, respectively.  

 

IV. Results 

To evaluate the overall fitting methods, the sample statistics were calculated on the 

%Ra for sample profiles Type 1-9 of each fitting method. Additionally, a paired t-test was 

conducted to determine if the differences in the test results were statistically significant using 

a p-value cutoff of 0.05. The results from this analysis can be seen in Table 5.3.  

As seen in the data table, the Order Best fitting method had the lowest mean %Ra and 

had a statistically significant difference in means compared to six of the nine other methods; 

however, it is noted this method was highly manual compared to all other methods, which 

were strictly calculations. It is also noted the L-1/3-1/2 and Order 3 fitting methods had a 

mean and standard deviation much greater than the other methods. 
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To evaluate how the geometry and presence of abnormalities affected the fitting 

methods, sample statistics were calculated on the %Ra across all fitting methods of each 

geometry and abnormality. Again, a paired t-test was conducted to determine if the differences 

in the test results were statistically significant using a p-value cutoff of 0.05. The results from 

this analysis can be seen in Table 5.4. 

 

It is important to note from this data, the geometry does not have a significant impact 

on the %Ra; however, the wavy geometry had increased values for the mean and standard 

deviation. The presence of abnormalities, on the other hand, did show a statistically significant 

difference between the profile with an abnormality and the same profile with the abnormality 

data omitted. It is also noted profiles without abnormalities have a higher standard deviation, 

and profiles with abnormalities removed have a mean at least half of that of the profiles with 

and without abnormalities.  

Table 5.3—Sample statistics on fitting methods’ 

%Ra based on sample profiles Type 1-9 (n = 9) 

 

Table 5.4—Sample statistics on geometry and 

abnormalities’ %Ra based on sample profiles 

Type 1-9 (n = 3) 
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The sample statistics were calculated on the %Ra for the flat sample profiles of each 

fitting method to evaluate the overall fitting methods. They were also calculated across all 

fitting methods of each flat surface profile to evaluate how the surface profile characteristics 

affected the fitting methods. Paired t-tests were also conducted to determine if the differences 

in the test results were statistically significant using a p-value cutoff of 0.05. The results from 

these analyses can be seen in Table 5.5 and 5.6.  

 

Of the 45 total t-tests conducted on the difference of means between fitting methods 

for flat profiles, 24 were considered statistically significant. Additionally, the Order 3 fitting 

method had the highest mean, overall. When comparing the result of the flat surface profiles 

with results from sample profiles Type 1-9, MA11 and Seg 6 have a lower %Ra on average 

than MA5 and Seg 3 respectively. Similarly, the mid-point locus line with the width of 1/3 has 

a higher %Ra than the width of 1/6. 

Table 5.5—Sample statistics on fitting methods’ 

%Ra based on flat sample profiles (n = 10) 

 

Table 5.6— Sample statistics on surface profile 

characteristics’ %Ra based on flat sample 

profiles (n = 1 except for characteristics [tall, 

short, wide, narrow] n = 2) (right) 
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From this data, the roughness characteristic showed a significant difference in means 

between the alternating and random roughness with the %Ra being lower for the alternating 

roughness. Scaling the data appeared to have no effect on the %Ra. It is also noted although 

the point density did not have a statistically significant difference between the means, the %Ra 

appears to increase as the point density increases. For all abnormality characteristics, height 

and width, the p-values from the paired t-test were less than 0.0001, which indicates a very 

strong statistical significance the means differ. In general, as the height and width of the 

abnormality increases, so does the %Ra. Overall, the standard deviation for the flat surface 

profile characteristics is much lower in comparison to the other data sets. (A graphical 

representation of the results tables can be seen in Appendix B.) 

 

V. Discussion 

The slicing methodology proposed in this paper created a simple process for 

estimating the underlying geometry. By analyzing various fitting methods for slices with 

different geometries and characteristics, insight was gained into how well each method 

estimated the underlying geometry.  

In general, the geometry of the part does not influence the effectiveness of the fitting 

method. On the Type 3 sample profile, the irregularity of the wavy surface curvature made it 

difficult for the various methods to fit to the surface. For the Order 3 fitting method, the profile 

deviated significantly from the actual profile, as seen in Figure 5.9, which increased the mean 

and standard deviations for wavy profiles and the Order 3 fitting method. However, if using 

a segmenting method, specific attention must be given to the bend radius of the part. When 
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fitting straight lines to curved surfaces, much like the triangulation process in rapid 

prototyping, error due to the chordal deviation between the curved and flat surfaces exist. This 

error will increase for any curved surface if the segment increases.  

By comparing the %Ra within a specific method, ideal parameters can be determined. 

The results between the sample statistics 

on fitting methods for flat surface 

profiles and surface profiles Types 1-9 

were compared to determine if specific 

experimental parameters yield 

consistently lower %Ra values. For the 

segmenting method, the greater number 

of segments led to a lower %Ra. Logically, this could be attributed to smaller segment lengths, 

which more tightly fit to the actual curvature of the surface profile; however, as mentioned 

previously, the individual data points will have a greater impact on the segment if there are 

too few of them, which could skew the estimated underlying geometry in areas with sparse 

data or fail to eliminate any of the surface roughness. The mid-point locus line method had 

two parameters to evaluate: the width interval and the overlap of the window. As seen in the 

sample statistics for the fitting methods, the overlap did not significantly impact the %Ra; 

however, the smaller width of the interval tended to yield better results in regards to the 

representation of the ideal underlying geometry. Finally, the moving average method tended 

to improve the fit to the ideal underlying geometry when the period was increased. Although 

these generalities regarding surface parameters hold true for the tested values, changes should 

be carefully considered prior to use as extreme changes in these parameters could have 

Figure 5.9—Third order polynomial fit to a wavy 

surface profile 
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detrimental results. Additionally, fitting methods may vary based on the slice length. To avoid 

poorly estimated underlying geometry, one must attempt to achieve slices over the entire 

surface that are similar in length and test the parameters of the desired fitting method on a 

sample profile in order to verify its acceptability. 

End effects must be considered when using these fitting methods. Since the mid-point 

locus line method plots only data in the center of a sampling window, no data exists toward 

the ends of the surface profile. For the moving average methods, the true period of data at the 

end of the surface profiles is less than what was originally specified. This is because the 

average is taken using an equal number of points on each side of a specific data point, resulting 

in a one-sided average if there are only points on one side of the specific data point. It is 

common practice to fit a straight line to the ends of the data sets in order to minimize these 

effects [5]. 

The presence of abnormalities also strongly impacted the ability of the fitting method 

to estimate the ideal underlying geometry. When comparing sample statistics on the %Ra of 

abnormalities, surface profiles where abnormalities were removed had a mean over half of 

those without abnormalities. This can be attributed to the absence of data across the abnormal 

region, which reduces the variation across the sample profile falsely reducing the %Ra. A 

drawback exists in the segmenting method, however, when a segment begins on the edge of 

a removed abnormality. If the slope of the segment is calculated from only a few data points 

that are continually increasing, it may result in a false feature, which will dramatically increase 

the %Ra. An example of this from the Type 7 surface profile can be seen in Figure 5.10 where 

the segment was set based off of two data points. Besides this exception, generally surfaces 
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with the abnormalities removed more closely estimated the ideal underlying geometry than 

those with abnormalities. Similarly for flat surfaces, increasing the width and the height of 

the abnormality significantly increased the %Ra. This is due to the fitting methods being 

skewed toward the outlier data in the abnormality. 

Recall when evaluating the 

roughness profile the alternating 

roughness had a mean %Ra 

statistically lower than the random 

roughness profile. The cyclical 

effect caused when alternating 

between positive and negative 

values allowed fitting methods, such as the segmenting, midpoint locus, and moving average 

methods, to centrally focus since they were not skewed one direction or the other due to an 

increased number of data points falling on one side of the underlying geometry, also known 

as an abnormality. Based on this observation, fitting methods, such as the moving average 

method, may not seem desirable; however, if one implements multiple iterations of the 

moving average method, the effects of abnormalities on the estimated underlying geometry 

will be minimized. A drawback to the multiple iterations exists when a standard is not present 

compromising the repeatability and reproducibility of this method; this is similar to smoothing 

operations seen in commercial software, which can be highly manual and difficult to replicate. 

In order to successfully implement slicing methods to estimate the underlying 

geometry, the user must not only keep in mind the benefits and drawbacks to each fitting 

Figure 5.10— Segment set based on two data points near 

the removal of an abnormality in the abnormal region 
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methodology, but they must realize the limitations of the methodology as a whole. These 

include the geometry orientation, the overfitting of data, and the presence of abnormalities. 

 

Geometry Orientation  

The orientation of the surface is important when slicing data for manipulation. In this 

study, slices were taken along the z-axis, and the cross-sectional area on the x-y plane was 

analyzed based on ordering the points by their x-values. Since the data enters the system as a 

point cloud, the order of the points is random, so ordering the points is necessary to complete 

the specific techniques covered in this paper that treat the data set as a function of points. The 

use of normal vectors would be beneficial in determining this orientation. In rapid 

prototyping, the interior of a slice is determined by observing the order of points in polygonal 

chains or using line crossing algorithms, which would allow for easy calculation of the normal 

vectors to the surface; however, often times surface scans consist of partial scans of the surface 

making it difficult to determine the normal vectors of the surface, since this data is typically 

not obtained through simple scans. An example of this can be seen in Figure 5.11. By viewing 

the point cloud in Figure 5.11a, one can assume the order of the points and geometry of the 

surface, Figure 5.11b. However, when choosing a default ordering technique, such as ordering 

by the x-values, a different geometry is portrayed, Figure 5.11c.  

In addition, the orientation of the geometry must minimize the difference in slice 

profile length across the entire surface. For example, a square surface rotated at 45 degrees, 

or a diamond, will have high variation in slice length comparing the corners to the tangential. 

Since the corners will have less data in each slice, in some cases only a few data points, the 
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edge data may have to be discarded in order to maintain integrity of the estimated underlying 

geometry from the other slicing orientations. 

 
Figure 5.11—Effects of orientation on slices of the x-y plane a) original point cloud, b) fit based on 

desired geometry, c) fit based on orientation 
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Overfitting 

A risk of the inherently rough surface profiles of cast surfaces is overfitting data. The 

random roughness and presence of abnormalities can skew the estimated underlying geometry 

calculated through various fitting methods. An example of overfitting can be seen in Figure 

5.12. The moving average filter is easily influenced by series of abnormal points, which pull 

the estimated underlying geometry toward the point cluster. This effect can also be seen by 

fitting an increasing order of polynomial or a spline to the surface profile. If overfitting occurs, 

abnormalities may not be correctly 

identified causing unnecessary 

rework (false alarms) or 

unacceptable surface quality 

(misses) of the castings.  

 

Abnormalities 

As seen in the sample statistics for both Type 1-9 and flat sample profiles, the presence 

of abnormalities increased the mean %Ra, regardless of fitting method. This indicates a single 

iteration of the proposed methods is not enough to reduce the effects of abnormalities, or 

clusters of outlier points, on the estimated underlying geometry. Therefore, it would be ideal 

if the surface analyzed was absent of abnormalities, or if abnormalities are present, they are 

removed. As demonstrated previously, the absence of data may cause some fitting methods’ 

effectiveness in estimating the underlying geometry to decrease, as was demonstrated in 

Figure 5.10. Methods to identify abnormalities for removal prior to estimating the underlying 

Figure 5.12—Overfitting of the MA11 estimated 

underlying geometry from roughness and outliers 
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geometry, as well as to fill in the absent data with a curved surface representative of the actual 

surface, would allow for a more accurate representation of the ideal underlying geometry.   

 

VI. Conclusions 

The underlying geometry algorithms discussed in this paper will aid in the calculation 

of parameters for use in the digital surface inspection standard for castings. This paper has 

identified the benefits and drawbacks of the slicing methods presented. Utilizing slicing 

methods simplifies the surface into two-dimensional parts in order to reduce the complexity 

of calculations required in estimating the underlying geometry. This estimated underlying 

geometry will aid in the identification and measurement of abnormalities, and it will provide 

a consistent method in calculating the actual baseline roughness.  

Future work of this research includes refining the slicing process, exploring alternative 

methods to estimate the underlying geometry, and identifying methods to eliminate 

abnormalities.  To refine the slicing process, the tri-direction slicing method will be explored 

to analyze the effects of selecting the medial surface for estimated underlying geometry in 

addition to methods to orient the point cloud effectively for manipulation. A subsampling 

method to estimate the underlying geometry will also be explored. Additionally, various 

means of eliminating abnormalities and approximating absent data will be explored to 

improve the effectiveness of the fitting algorithms.  
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CHAPTER 6: AN EVALUATION OF SUBSAMPLING 

METHODOLOGIES FOR UNDERLYING GEOMETRY 

APPLICATIONS IN CAST METAL SURFACES 
 

A paper submitted to International Journal of Cast Metals Research. 

Michelle M. Voelker9 and Frank E. Peters10 

 

Abstract 

Due to the nature of the casting process, cast surfaces are inherently complex, and in 

reverse engineering applications, it is often difficult to model the actual geometry in absence 

of surface roughness, abnormalities, and shrinkage after the part is cast causing the actual 

geometry to differ from that of the original part model.  This geometry, known as the 

underlying geometry, is used to evaluate parameters of the Quantitative Inspection 

Acceptance Criteria for Cast Metal Surfaces: the baseline roughness, abnormality level, and 

abnormality percentage. Without the underlying geometry, a consistent manner to calculate 

these surface parameters does not exist. This paper evaluates subsampling methods as a 

potential means to estimate the underlying geometry of castings for use in the standard. 

Various considerations in the use of these methods to minimize the effects of abnormalities 

and roughness, while capturing the actual geometry and surface characteristics of the casting, 

are detailed.  
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I. Introduction 

The Quantitative Inspection Acceptance Criteria for Cast Metal Surfaces was 

developed to quantify specifications for inspection [1, 2, 3]. In this standard, a digital 

representation of the cast surface is analyzed to calculate components of the Voelker Surface 

Ratio (VSR), including the baseline roughness, abnormality level, and abnormality 

percentage. Standard methods to clean the data and calculate these values are essential in 

reducing variation in this process. By laying out a process to calculate these values, the 

inspection process can be both repeatable and reproducible, so the variation among inspectors 

from the customer and manufacturer is minimized. This process requires a standardized means 

of calculating the underlying geometry, which is the actual geometry of the part following the 

casting process. This article explores the limitations and benefits of subsampling 

methodologies to determine the underlying geometry of metal castings for use in this standard.  

 

II. Previous Work 

The evaluation of slicing algorithms [4] to simplify the complexity of the cast surface 

was explored. In this work, point clouds were sliced into two-dimensional data sets at 0, 45, 

and 90 degrees to reduce the effects of linear defects. Four different methods with varying 

parameters were used to evaluate their effectiveness of estimating the true underlying 

geometry. These included segmenting, a mid-point locus, polynomial, and moving average 

fitting methods of the original data. Two to four variations of each were evaluated using 

different parameters. For the segmenting method, different segment lengths were evaluated. 

For the mid-point locus, different interval widths and overlaps were evaluated. For the 
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polynomial fit, a set order polynomial and a best fit were evaluated. Finally, for the moving 

average method, different periods were evaluated.  

Surface profiles with a hand calculated ideal underlying geometry were used for 

evaluation. The first set of surface profiles included various geometries (flat, curved, and 

wavy surface profiles) and abnormalities (abnormalities not present, present, and removed). 

The second set of profiles were all flat and evaluated the effects of roughness, scaling, point 

density, abnormality height, and abnormality width on the effectiveness of the fitting methods.  

Each fitting method was then evaluated against each surface profile. Then, the 

roughness average was calculated to compare the actual profile to the fitting method. Since 

the roughness varied from part to part, the roughness averages could not be compared across 

parts; however, the roughness averages of each method for the same part could be compared. 

To compare them across samples to identify an overall preferred method, a normalization of 

the roughness averages had to occur. To normalize these values, each roughness average was 

divided by the roughness average obtained from comparing the ideal underlying geometry to 

the actual surface profile. This resulted in a normalized roughness average in comparison to 

the ideal underlying geometry. For a normalized roughness average of 0.0 indicates the fitting 

method used is a perfect representation of the ideal underlying geometry; however, a 

normalized roughness greater than 1.0 indicates the fitting method is beyond the roughness 

average of the surface profile itself compared to the ideal underlying geometry. These values 

were averaged for each category of evaluation. The normalized values were then compared to 

each other in a paired t-test using a p-value of 0.05 to identify if there was a statistical 

significance between means. 
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The results of the study showed significant differences between certain surface 

profiles; however, an overall best fitting method was not apparent. Of the various surface 

profile characteristics, the following did not show a statistical difference between means: 

geometry, scaling, and point density. When evaluating roughness, an alternating, or cyclical, 

surface profile, often seen from machining operations, will allow for a better approximation 

of the underlying geometry compared to a random roughness profile, but this would not be 

feasible for estimating a casting surface due to the inherent variation in the surface due to the 

molding process. Abnormality height and width also showed a significant difference among 

samples. In general as the abnormality height and width increase, the less accurately fitting 

methods could represent the ideal underlying geometry. Additionally for the surfaces with 

varying geometry, it was found that removing abnormalities had a significant impact on the 

overall effectiveness of the fitting methods.  

Additionally, several conclusions about the fitting methods could be drawn from this 

data. First for a polynomial method, it was not ideal to fit a set order of polynomial to the 

surface, since it resulted in a large quantity of error from the actual surface profile and ideal 

underlying geometry. Ideally, a polynomial could be manually fit to the data, but this manual 

intervention would be time consuming in a manufacturing environment. Next for the 

segmenting method, a larger number of segments led to a more accurate representation of the 

underlying geometry; however, it is important to note that if the number of data points in the 

segment approaches two, the minimum number of data points to form a segment, overfitting 

can occur. Likewise, with a moving average filter, overfitting can occur if the period is too 

short. Finally, for both the moving average and the mid-point locus fitting methods, end 

effects could occur skewing the ends of the data set. This could occur from the decreasing 
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period to one side of the moving average method or the start of the mid-point locus estimated 

line beginning and ending at the mid-point of the observation window. These parameters 

should vary based on the length of the data slice, so if a constant parameter is desired for a 

specified surface, all slices must be approximately the same length. All of these parameters 

must be monitored for use of these fitting methods to assure the estimated underlying 

geometry accurately represents the ideal.  

From these results, conclusions were drawn about the overall effectiveness of slicing 

methods. These include the geometry orientation, overfitting of data, and the presence of 

abnormalities. Since point cloud data sets of surfaces do not have a preassigned order, the 

point cloud must be appropriately oriented such that the two-dimension slice on the x-y plane 

is a function. If this is not the case, the fitting methods could misinterpret this data, which 

would result in poor estimations of the underlying geometry. Second, overfitting the estimated 

underlying geometry to the original data could result in unacceptable abnormalities passing 

inspection. Finally, the presence of abnormalities skews these fitting methods so that the 

estimated underlying geometry is pulled toward the peak of the abnormality. To overcome 

these issues, abnormalities could be removed in order to reduce their effects on the estimated 

underlying geometry.  

 

III. Methodology 

The underlying geometry is used in calculating all components of the VSR. The ideal 

underlying geometry would remove all roughness and abnormalities of the surface resulting 

in a smooth model to accurately represent the complex geometry of the cast surface. This 
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surface will be compared to the original point cloud to calculate the components of the VSR: 

baseline roughness, abnormality level, and abnormality percentage.  

The slicing methods provided one means in estimating the underlying geometry; 

however, they depended on the orientation of the geometry, which requires processing the 

data prior to the execution of these methods. Additionally, the slicing method required three 

slicing directions in order to cancel out the effects of linear indications that may fall parallel 

to the slice, which would result in skewed data due to the large width of the abnormality in 

this situation. Finding a method less reliant on pre-processing and requiring less repetitive 

computational analysis would be ideal for estimating the underlying geometry in a 

manufacturing environment.  

This method explores subsampling methods to estimate the underlying geometry. This 

method was chosen based on its 

usability in comparison to the 

slicing method. This method 

aims to eliminate roughness and 

abnormalities from the original 

point cloud in order to estimate 

the underlying geometry. 

Evaluation of this method was 

based on its ability to remove 

roughness and abnormalities in 

comparison to the original point 

cloud.  

Figure 6.1—Subsampling method for calculating 

underlying geometry A) original point cloud, B) subsample 

point cloud, C) combine subsampled regions via 

triangulation, etc., D) create composite mesh by combining 

subsampled regions 
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The subsampling process breaks down the geometry of a part into smaller regions. A 

generalization of this process is broken down in Figure 6.1. 

First, the original point cloud is subsampled according to 

the desired method. Next, the subsampled regions are 

evaluated to provide an estimate of the underlying 

geometry in a specific region. Next, the underlying 

geometries from each region are combined to create a mesh 

of the entire surface.  

The surfaces used to evaluate subsampling fitting methods are from actual castings or 

plastic replications of castings. Five types of castings were evaluating, designated Types 0 

through 4, with three castings for each type. Type 0 consisted of castings that were generally 

flat with no abnormalities. Type 1 consisted of unique geometry castings with no 

abnormalities. Type 2 consisted of generally flat castings with abnormalities. Type 3 consisted 

of castings that had unique geometries and linear abnormalities. Type 4 were industry casting 

examples with no specific geometry and abnormality requirements. These types are displayed 

in Table 6.1 based off of their geometry and abnormalities. Each part was classified by the 

type designation followed by the assigned part number from the set of three parts (ie: T0P2 is 

the second part of the Type 0 classification). 

Since the Quantitative Inspection Acceptance Criteria for Cast Metal Surface calls for 

an inspected surface of 8 centimeters by 8 centimeters, these dimensions were used to tape 

off a square area on the surface of the part. The taped off area could not have any edges of the 

part, as an edge would indicate a boundary between two surfaces needing to be inspected 

separately. Once the cast surface was prepared, they were scanned manually using a Faro 

Table 6.1—Part type based on 

geometry and abnormalities 
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Edge scan arm. Scans were taken on each part three times by one operator. This was to assure 

if incomplete data was collected, the other samples could serve as a back-up. The operator 

was required to take two complete scans of the part orthogonally to each other in the same 

data file to assure the density of data was high enough at all points to evaluate the data and to 

assure no holes were missing in the data. The scan data was saved as a point cloud text file 

and the most complete scan was chosen from the three samples for each part. The point clouds 

were then subsampled to a point density of 0.2 millimeters to eliminate redundant data and 

trimmed to remove areas that were scanned beyond the taped off region.  

Various subsampling methodologies were explored to evaluate how each estimated 

the underlying geometry. The following subsampling methods were evaluated: point 

sampling, strategic sampling, geometric shape sampling, and grid sampling. These methods 

were chosen as a simple means of evaluating the effects of the roughness and abnormalities 

on the cast surface. The methods were treated as if they were the ideal underlying geometry 

of the casting, and the original point cloud of the cast surface was then compared to the 

underlying geometry as in the digital standard. The differences between the original point 

cloud and underlying geometry were calculated, along with the areal roughness average (Sa). 

The Sa is similar to the roughness average (Ra) in that an average of the absolute value of each 

data point from the underlying geometry is taken; however this calculation is conducted over 

the entire surface as opposed to a single, two-dimensional profile. Scalars were assigned to 

each point on the original point cloud to represent this difference, which were color coded for 

easier visualization. These representations will be referred to as “color-mappings” of the 

samples. These scalars include the following: blue for scalar < 0.0, green for scalar = 0.0, and 

red for scalar > 0.0 millimeters from the underlying geometry. From the physical casting, 
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areas considered abnormal or irregularities in surface roughness by visual inspection were 

noted. An attempt was made to identify these areas in each of the color-mapped samples to 

evaluate if the method was successful at detecting these surface characteristics. In theory, if 

these irregularities can be identified by a visual inspection, which is the current industry 

standard, they will need to be identifiable in the digital representation. Areas not identified in 

the visual inspection process but can be seen in the digital representation would not be 

considered crucially identifiable, and therefore, would be considered as unnecessary noise. 

 

Point Sampling 

For the point sampling method, the point cloud representation of the cast surface was 

reduced in order to smoothen the surface. First, the point cloud was be subsampled in order 

to reduce the number of data points. This intends to reduce the surface roughness from the 

data in order to give an approximate representation of the underlying geometry. Once the 

point cloud had been subsampled, the points will be transformed into a mesh creating a surface 

to compare to the original point cloud using two methods: triangulation and Poisson surface 

reconstruction.  

Triangulation was utilized at point densities of 2.0, 5.0, and 10.0 millimeters. The 

original point density of 0.2 was also evaluated as a baseline to compare the reduced clouds. 

When color-mapped, the scalars assigned to this 0.2 millimeter cloud would be zero; since all 

the original points were used as vertices in the triangulation, there would be no difference 

between the original point cloud and estimated underlying geometry. Uniform point densities 

were used in order to create a watertight, triangulated mesh of the surface in commercial 

software. In this software, Delaunay triangulation was used as a global fitting method for the 
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point cloud. The Delaunay method uses a circle criterion such that “the circumcircle through 

the vertices of any triangle…will not include any other vertices” [5]. However, one limitation 

to this method is all points are used as part of the mesh, which can cause a rough surface 

representation since the vertices of the triangulated surface are rigid [6]. 

With the potential for rough surfaces in triangulation, screened Poisson surface 

reconstruction was also evaluated. This method used the same point clouds from the 

triangulation method in order to make a direct comparison of the color-mappings for 

evaluation. Prior to subsampling the point clouds, the normal vectors for each data point were 

estimated using commercial software. Unlike the triangulation methods discussed, the 

Poisson method uses both global and local fitting methods. As opposed to connecting the data 

points with straight lines, like the triangulated method, a b-spline function is fit between points 

based on their normal vectors to create a smooth transition between points, which give the 

surface approximation between points a more realistic representation of the cast surface 

geometry [7]. Additionally, not all the data points from the subsampled region are used in the 

final underlying geometry estimation. This is because the Poisson function utilized in this 

method weighs the individual data points in comparison to the surface gradients associated 

with the normal vectors to smoothen the surface; this smoothing identifies a single point and 

represents the surrounding points as a local plane [7]. 

 

Strategic Sampling 

This method is similar to the point sampling method; however, obvious abnormalities 

were manually removed prior to subsampling. This method was only evaluated on Types 2 

and 3 (parts with abnormalities). In order to locate the abnormalities, the original cast surface 
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was observed and perceived abnormalities were identified. These abnormalities were then 

located on the digital representation of the surface, and the data points associated with these 

abnormalities were removed. After the abnormalities were removed, the same methods used 

for point sampling were followed to determine if this had any effect on estimating the 

underlying geometry and identifying abnormalities.  

 

Geometric Shape Sampling 

The previous work discussed in the slicing methodologies [4] fit a single geometric 

shape to the entire surface. In this method, the surface will be fit to numerous geometric shapes 

using random sample consensus (RANSAC), which fits geometric shapes to noisy data even 

with many outliers [9]. This process is summarized in the following paragraph. 

The process begins with a set quantity of geometric shapes; these include plane, 

cylinder, sphere, cone, and torus geometries. Then, the parameter for minimum points to be 

sampled in order for a geometric shape to be considered was set arbitrarily at 1000. This 

means a geometric shape must be able to account for at least 1000 points in the cloud to be 

selected for use.  The RANSAC algorithm then randomly samples the point cloud assigning 

an estimated normal for each point. These normal vectors are then compared to the various 

geometric shapes and scored based on the ability of the shape to fit the points. By 

manipulating the parameters of each shape (ie: radius of the sphere), the angle between each 

point and the geometry is minimized. Through each iteration, the highest scoring shape is 

selected, and the points used to determine this shape are eliminated from the next iteration. 

This process is continued until all data points have been explained by a geometric shape. By 
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comparing each set of points to the geometric shape they explain, a color-map can be created, 

and all subsampled regions can be combined to create a composite of the surface. 

 

Grid Sampling 

Similarly to the geometric shape sampling method, grid sampling identifies a best fit 

geometric shape (plane) to represent the data; however, small patches on the surface are 

analyzed as opposed to the entire surface. This method breaks the surface into a grid and 

analyzes each grid patch as a separate surface. The grid parameters evaluated over the surface 

were 4 by 4 units (2.0 square centimeter patches), 8 by 8 units (1.0 square centimeter patches), 

and 16 by 16 units (0.5 square centimeter patches). Similarly to a proposed method for die 

castings [10], a plane is fit using the least-squares method to each patch on the grid.  

 

IV. Results and Discussion 

Comparisons of each of the original point clouds to the estimated underlying geometry 

were analyzed to determine the benefits and drawbacks of each subsampling method. Sa values 

were not used to draw conclusions about how well the estimated underlying geometry 

compared to the ideal underlying could not be made, since the ideal underlying geometry was 

not known. In fact, these values provided no insight into the comparison of the methods since 

low values did not necessarily mean the estimated underlying geometry was a good 

representation of the ideal underlying geometry, but instead low values indicated if the 

estimated underlying geometry was a good representation of the original point cloud itself. 

Therefore, the visual comparisons were used to evaluate the effectiveness of the methods to 

identify abnormalities and roughness.  
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As discussed previously, visual inspection was used to identify areas of interest, 

including roughness and abnormalities, of the physical cast surface. Go and no-go criteria 

were assigned based on the whether or not the subsampling method could detect each area of 

interest noted from visual inspection. Areas were also noted where indications appeared on 

the color-mappings but were not identified through visual inspection. An example of this can 

be seen in Figure 6.2. In each case, the cause behind why the area of interest did or did not 

appear on the color-mapping was 

identified through further 

investigation. This was done for 

both the areas of interest identified 

and not identified through visual 

inspection.  

Subsampling reduces the complexity of the cast surface; however, some risks and 

limitations exist based on the method chosen. These include the point density, abnormalities, 

and sampling method of the cast surface.  

 

Point Density 

An obvious risk to the point sampling method is determining the ideal amount the 

point cloud should be reduced. If it is reduced too much, there may not be enough data points 

left to construct an accurate estimate of the underlying geometry, especially for complex 

geometries. A color-mapping of a part with complex geometry, a fairly smooth surface, and 

one abnormality can be seen in Figure 6.3. As the point density increases, the ability of the 

estimated underlying geometry to define the actual geometry of the part improves. The red 

Figure 6.2—Example of areas of interest A) identified 

through visual inspection and B) not identified through 

visual inspection on a color-mapping of T2P3 5.0 

millimeter Poisson sample 
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and blue curved 

regions on the 

upper and left areas 

of the color-

mapping indicate 

the estimated 

underlying 

geometry is not accurately representing the sharp curvature of the part; however, the gradual 

curvature of seen on the right area of the part appear to be fitting the estimated underlying 

geometry better since there is less red and blue in this region. In contrast, if the cloud is not 

reduced enough, there will still be inherent variation in the mesh, which is not representative 

of the underlying geometry and will prevent abnormalities from being identified, as indicated 

with the arrows in the figure.  

Increased noise can occur in the color-mappings of surfaces with lower point densities. 

As seen in Figure 6.4 moving from the original point density to a lesser one, more surface 

indications of potential abnormalities appear. This is because as the point density decreases, 

interpolation of the surface must occur between points; for example with the triangulation 

method, the interpolation is based off of the facets between data points.  This could be 

accommodated for by pursuing non-uniform subsampling methods with varied triangle sizes 

to more accurately represent the actual surface geometry [9]. On the other hand moving from 

a low point density to the original, less indications are present; in fact on the original cloud, 

no indications are present. This is because the estimated underlying geometry used all of the 

original points to form a surface. Therefore, the point cloud must be reduced to a point density 

Figure 6.3—Color-mapping of complex geometry part (T4P2 Poisson 

sample) at point densities of 5.0, 2.0, and 0.2 millimeter (left to right) with 

arrow indicating the location of a potential abnormality 
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less than that of the original point cloud, or the mesh constructed based off of these points 

will show no difference compared to the original point cloud.  

Figure 6.4—Picture of T2P1 casting (left) and color-mappings of triangulated underlying geometry 

estimates at point densities 0.2, 2.0, 5.0, and 10.0 millimeters (left to right) 

 

Abnormalities 

There are inherent risks associated with estimating the underlying geometry using 

subsampling methods when abnormalities are present. If a sampled point is located on an 

abnormality, the estimate of the underlying geometry will be skewed toward it, and the 

abnormality will not appear as severe as it really is, if it appears at all. An example is shown 

in Figure 6.5. When the abnormality was present during the estimation of the underlying 

geometry, points on the abnormality were chosen as part of the point sampling process. When 

these points were used during surface reconstruction of the underlying geometry, they were 

skewed toward the abnormality, which caused the difference between the original point and 

the estimated geometry to be minimal and made the abnormality appear less severe as seen in 

the left color-mapping. When points on the 

abnormality were not included in the 

sampled points, the abnormality was more 

visible and its actual geometry was more 

accurately represented in the right color-

mapping. This shows that in order to use 

subsampling methods effectively, the 

Figure 6.5—Example of point sampling of 

T2P1 Poisson subsampled at 2.0 millimeters 

with abnormalities present (left) and 

abnormalities removed (right)  



105 

 

 

abnormalities must be removed or avoided when subsampling prior to estimating the 

underlying geometry.  

 

Sampling Method 

Limitations exist with each subsampling method in regards to the random selection of 

points on a surface. These points play an important role in the estimation of the underlying 

geometry, and are key factors in the elimination of roughness and abnormalities.   

The selection of points in the sampling process is important to get an accurate estimate 

of the underlying geometry. Local minima and maxima on the surface can skew the 

underlying geometry estimate if they are selected though point sampling. These local extrema 

can cause high variation in the underlying geometry, which gives inaccurate results when 

calculating the baseline roughness. Additionally, if only minima are selected (or maxima), the 

variation in the underlying geometry will be minimized; however, sampled points that are not 

minima (or maxima) will appear as if they are outliers. An example of this can be seen in 

Figure 6.6. A majority of the surface appears blue on the color-mapping indicating the scalars 

are less than 0.0. This is because when the surface was subsampled, only the high points on 

the surface were selected, which caused the rest of the surface to be negatively offset from the 

estimated underlying geometry. This could be avoided by taking local averages of points on 

the surface to reduce the effects of these local extrema. Also as mentioned previously, if 

subsampled points are located on an abnormality, it will skew the underlying geometry for 

that location and cause issues when calculating abnormality levels since they will more likely 

be considered a part feature as opposed to an abnormality. To avoid this, sampled points must 

not exist on the abnormalities, or the abnormalities must be removed prior to sampling. 
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Similarly to the sampling process issue, the grid sampling method will not eliminate 

the effects of abnormalities from the individual grid patches. This is due to the method’s 

inability to differentiate abnormalities from surface features. Additionally, the grid size was 

shown to have a major effect on the estimated underlying geometry. First, the grid size needed 

to be maximized to decrease the effects the roughness had on the plane. The smaller the 

patches are, the more sensitive the best fit plane would be to outliers. Second, the grid size 

needed to be minimized to more accurately represent the curvature of the cast surface 

geometry. To accommodate for the complex surfaces of the castings, b-spline surfaces could 

be utilized to smoothen the overall estimated underlying geometry model; however, it is 

important to note b-spline surfaces may not eliminate all of the noise caused by the surface 

roughness due to the order of b-spline used for fitting (high order is less sensitive to noise) 

and the size of the patch (larger patch increases the number of control points on the b-spline) 

[11]. A study on parametric surface reconstruction [12] analyzed surface patches in this 

manner using Gaussian processes to model in Euclidean space, which allows for data 

interpolation for surface computations, much like the subsampled surfaces discussed in this 

paper. This process used “isometric mapping” in order to essentially unroll the shape to reduce 

Figure 6.7—Example of 

discontinuities between grid patches 

on color-mapping of T1P1with two 

square centimeter patches 

 

Figure 6.6—Example of locally extreme points being 

selected on the color-mapping of T3P3 Poisson with 10.0 

millimeter point density and abnormalities removed 
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its complexity without changing the spatial relationship between points [12]. This method was 

not previously explored since it cannot accommodate for extreme changes in the surface, such 

as abnormalities; however, these method could be explored further if abnormalities are 

removed prior to data manipulation. Finally, continuity between surfaces on the grid is ideal 

to prevent inconsistencies at grid boundaries, as seen in Figure 6.7. This could be corrected 

by taking a more global approach through an analysis of surrounding surface patches. For 

instance in a study of surface reconstruction of bone point clouds, the patches used tangential 

vectors along the boundaries to achieve C1 continuity for b-spline patches [13].  

For the RANSAC method, the surface was subsampled by regions of similar shape. 

This method proved to be highly variable as a random sampling of points in all samples 

resulted in different geometric shapes each time. Additionally, as discovered in previous work 

where only one geometric shape was selected [4], the complexity of the surface curvature was 

not able to be accurately described by these shapes. The parameter for the minimum required 

points to fit a shape to was modified; however, an ideal setting was unable to be determined 

to give an accurate estimate of the underlying geometry. When the number of points was 

increased, less shapes were fit to the surface and the results approached one shape as studied 

in the previous work [4]; however, when the number of points was decreased, many shapes 

were fit to the surface preventing identification of the roughness and abnormalities. These 

algorithms are intended to explain a point cloud as a series of geometric shapes in the presence 

of noisy data [8]; however, this benefit to reverse engineering parts to an model similar to the 

original computer model does not take into account the complex geometry of the surface and 

shrinkage post molding.  
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VI. Conclusions 

The evaluation of subsampling methods discussed in this paper will aid in the 

advancement of underlying geometry estimation of cast metal surfaces. This paper has 

identified the benefits and drawbacks of the subsampling methods presented. Subsampling 

methods can be used reduce the complexity of calculations required in estimating the 

underlying geometry and provide a standard means of identifying and measuring 

abnormalities and the actual roughness.  

Future work of this research includes refining the subsampling process, identifying 

methods to eliminate abnormalities, and exploring the feasibility of automating underlying 

geometry algorithms.  To refine the subsampling process, traditional methods for smoothing 

rough surfaces will be incorporated to reduce variability from randomly selecting local 

maxima or minima. From there, a complete surface evaluation process will be completed to 

compare to the slicing methodologies [4]. Additionally, various means of eliminating 

abnormalities and approximating absent data will be explored to improve the effectiveness of 

the fitting algorithms. A semi-automated inspection process to enhance the visual inspection 

qualification process and verify acceptance of visually inspected surfaces will be explored in 

coordination with a software program to calculate the VSR parameters in order to give 

feedback to the user in order to aid in selection of surface criteria, identification of rework 

areas, and calibration of inspectors. 
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CHAPTER 7: GENERAL CONCLUSIONS 
 

General Discussion 

Inspecting castings to verify the quality of a part is critical for foundries to maintain a 

high level of customer confidence. Current methods to evaluate cast metal surfaces require an 

inspector to visually and tactilely inspect a part to identify surface abnormalities, such as 

porosity and inclusions, and determine if they are acceptable. The manufacturer must correctly 

interpret the inspection criteria set by the customer in order to meet the design specifications. 

Current visual inspection standards are qualitative and make it difficult to interpret these 

standards. Often times, the interpretation of what is acceptable differs from the customer to 

manufacturer and even from inspector to inspector. In this thesis, the visual inspection of cast 

metal surfaces was explored in depth, and improvements to current methods were proposed. 

Understanding sources of error in the visual inspection process allows for management 

to improve and monitor environmental and human factors with the most impact; however, 

there still exists a high variation among inspectors due to the subjectivity of the standards. In 

Chapter 3, the risk of Type I and II errors were evaluated based off of varying states of 

environmental and human factors in the inspection process. Human capabilities and 

environmental factors had the greatest impact on the overall errors; however, each individual 

factor contributing to these areas has little impact by itself. In the worst case scenario, the 

probability of a Type I error is 92.9%, while the probability of a Type II error is 82.3%. Even 

under the best case scenario, the Type I and II errors are 17.8% and 29.8%, respectively. This 

signals a need for a more quantitative standard to evaluate the surface of a casting.  

In Chapter 4 digital standard is proposed, which specifies three parameters to allow 

the customer to communicate their exact needs in regards to surface finish to the 
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manufacturer: the baseline roughness, the abnormality level, and the abnormality percentage. 

These parameters are calculated based off of a part’s true geometry post shrinkage in absence 

of surface roughness and abnormalities, or underlying geometry.  

Since the underlying geometry differs from the part’s intended geometry, or computer 

modelled geometry, methods were explored in Chapter 5 to estimate the underlying geometry 

from a point cloud of the part’s surface. In the slicing method, geometry orientation was an 

important factor to improve the accuracy of the fitting method to the ideal underlying 

geometry. Additionally, the risk of overfitting to the point cloud was identified, and the 

presence of abnormalities proved to dramatically skew the data, which hindered the fitting 

process.  The proposed methods were compared and contrasted in order to identify which 

approach should be explored further to calculate the ideal underlying geometry. Once an ideal 

method is identified, it will be used as a standard method to calculate the underlying geometry 

in order to create consistency among inspectors at both the customer and manufacturer.  

The work completed in this thesis will raise awareness of the risk associated with 

current visual inspection methods for cast metal surfaces. The new, digital standard will 

reduce the variation in this inspection process allowing greater confidence in the parts leaving 

the manufacturer. Additionally, the standard will allow the customer to improve 

communication with the manufacturer in order to achieve the quality of surface required for 

their specific needs. 

 

Recommendations for Future Research 

Three main focuses exist for future research in the development of the digital standard 

for cast metal surface inspection. These areas include completing of the standard for 
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implementation in industry, refining methods to estimate the underlying geometry, and 

developing user-friendly tools to help the customer and manufacturer understand the 

specification criteria. 

First, the standard must be completed and introduced to industry partners. Information 

regarding the ideal point density, or resolution, required to identify areas of interest on varying 

levels of surface roughness are currently being explored to include as guidelines in the 

standard, seen in Appendix A. In addition, industry samples from different molding processes 

are being evaluated in order to provide suggested baseline roughness criteria for customers to 

specify. The Steel Founders Society of America (SFSA) has been working in partnership with 

the research team at Iowa State University. Feedback from industry partners at SFSA meetings 

and conferences allowed the development of the standard to be collaborative in order to 

increase buy-in from the standard’s users and improve the chances of a successful 

implementation into industry.  

Next, methods to estimate the underlying geometry need to be refined. A standardized 

process, independent of the digital standard, can be developed in order to reduce the variation 

resulting from the use of different methods to determine the underlying geometry. This most 

likely will include the exploration of methods to remove abnormalities prior to calculating the 

underlying geometry, since the presence of abnormalities has proven to skew the estimated 

underlying geometry, or an iterative process to reduce the effects of abnormalities on the 

underlying geometry. Once the ideal method is established, other standards can be converted 

to the digital standard notation in order to ease companies’ transitions to the digital standard. 

A place holder for these conversions can be seen in the Quantitative Inspection Acceptance 

Criteria for Cast Metal Surfaces in Appendix A.   
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Finally in order for these algorithms to be feasible in a manufacturing environment, 

two tools should be developed. The first tool is a software that will aid the customer in 

selecting a specification criteria for their parts. The second tool will be used by the customer 

and manufacturer for training and verification purposes. 

First, a software program can be developed for customers to see how their 

specification criteria can be interpreted and to train inspectors on the new standard. The 

software will take a point cloud, determine the underlying geometry, and compare the original 

point cloud to the underlying geometry in order to calculate the parameters of the VSR. This 

information will then be used with the new quantitative surface inspection in order to provide 

outputs of roughness and abnormality levels. The program should have the ability for the user 

to change the VSR input values to allow them to visually see the differences between 

specification criteria on a sample scanned surface. Ideally, the parameter adjustments would 

color code the parameters using three colors to identify the following data points: 1) points 

considered the baseline roughness, 2) points considered abnormalities, and 3) points outside 

the acceptable range considered unacceptable based on the specified criteria. The proposed 

tool is outlined in Appendix C.  

Second, a scanning tool could be developed in order to instantaneously scan a surface 

of a part in question and notify the user if the part is acceptable or not under specific criteria. 

The handheld tool will take a small sample scan of a part surface and compare it to a given 

specification criteria set by the user. After scanning the part, the device will tell the user 

whether or not the area is considered acceptable in terms of the abnormality level and baseline 

roughness. Alternatively, the user could scan part of the surface without abnormalities to 

check and set the baseline roughness, and then scan an area with an abnormality to determine 
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what the maximum abnormal point is to determine if the abnormality needs to be reworked in 

order to be deemed acceptable under the acceptance criteria.  

This future research will improve the inspection process for cast metal surfaces. Once 

the digital standard and ideal method to determine the underlying geometry is complete, 

implementation will begin at various companies. As with any new product, method, or idea, 

there will be early adopters who will highly influence the future of the standard, and others 

may choose to use current methods until the improvement in results at other companies is 

noticed. To ease implementation, suggested conversions from the current standards and 

roughness values based on the molding process will be provided. Additionally, the 

development of user-friendly tools will allow for the user to accurately assign the acceptance 

criteria they desire, act as a referee tool in training visual inspection operators, and provide a 

way of quickly checking the part for acceptability. All of these research areas will aid in 

achieving the main goals of decreasing the variability in cast metal surface inspection and 

improving communication between the customer and manufacturer.  
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APPENDIX A: QUANTITATIVE INSPECTION ACCEPTANCE 

CRITERIA FOR CAST METAL SURFACES 
 

Designation: AXXX -16 

1. Scope 

    1.1 This standard covers the quantitative 

inspection acceptance criteria for the surface of 

metal casting.  

   1.2 The acceptance criteria is based on three 

main classification levels: the baseline surface 

roughness, abnormality level, and abnormality 

percentage.  

   1.3 This standard includes additional 

requirements in annexes: 
 

    Suggested Acceptance Levels for           Annex A1 

        Cast Surfaces 
 

   1.4 This standard includes additional 

requirements in appendixes: 
 

   Corresponding Conversions from C-9      Appendix X1 

       Standard (ANSI/ASME B46.1) 

   Corresponding Conversions from       Appendix X2 

       SCRATA Standard (A802/A802M) 
 

   1.5 Descriptions of terms related to this 

standard are in Section 2. 

   1.6 This standard does not purport to address 

all of the safety concerns, if any, associated 

with its use. It is the responsibility of the user 

of this standard to establish appropriate safety 

and/or health practices to determine the 

applicability of regulatory limitations prior to 

use.  

 

2. Terminology 

   2.1 Definitions for terms specific to this 

standard: 

   2.1.1 abnormality, n—any anomaly of the 

surface, not part of random variation due to 

surface roughness, exceeding the baseline 

roughness. Any point on the surface of the part 

exceeding twice baseline roughness is 

considered abnormal. 

   2.1.2 abnormality percentage, n—the 

maximum percentage of the specified surface 

area that contains abnormalities falling within 

specification. 

   2.1.3 baseline roughness, n—the roughness 

average of the cast surface disregarding any 

form of abnormality present. 

   2.1.4 underlying geometry, n—the surface 

geometry in absence of random variation due to 

surface roughness and abnormalities. The 

underlying geometry may differ from the 

intended geometry due to contraction and other 

dimensional changes. 

   2.1.5 VSR, n—the Voelker Surface Ratio is 

the specified ratio of baseline roughness to 

abnormality level to abnormality percentage 

for cast metal surfaces. The VSR specification 

on a print shall be noted, “VSR [baseline 

roughness] – [abnormality level] – 

[abnormality percentage].” 

 

3. Ordering Information 

   3.1 The inquiry and order should specify the 

following information:  

   3.1.1 Acceptance Level—A single acceptance 

level can be specified for the entire casting 

surface, or multiple acceptance levels may be 

specified for different locations on a single part 

based on part function. 

   3.1.1.1 Baseline Roughness—The overall 

surface roughness shall be specified, in 

millimeters, by its maximum acceptable value 

for use. 

   3.1.1.2 Abnormality Level—The abnormality 

level represents the absolute distance of an 

abnormality from the underlying geometry. 

Abnormality levels shall be specified by its 

maximum acceptable value for use. If an 

abnormality level is not specified, a default 

value of two times the baseline roughness, over 

the entire specified surface, shall be assigned.  

   3.1.1.3 Abnormality Percentage—The 

abnormality percentage shall be specified by 

the purchaser as a percentage noted by a 

number between 0 and 100. If an abnormality 

percentage is not specified, a default value of 5, 

over the entire specified surface, shall be 

assigned.  

   3.2 The specification shall be noted with the 

VSR value. Example: VSR 0.03 – 0.08 –2 

would indicate a baseline roughness of 0.03 

millimeters, and abnormalities up to 0.08 
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millimeters across a maximum of 2% of the 

inspected surface. 

   3.2.1 If the abnormality percentage and/or the 

abnormality level are not specified, the default 

values of 5 and twice the baseline roughness 

shall be assigned, respectively, and they may be 

omitted from the specification notation.  

Example: To indicate a baseline roughness of 

0.01 millimeters, and abnormalities up to 0.02 

millimeters across a maximum of the default 

value of 5% of the inspected surface, any of the 

following notations are acceptable: 

       VSR 0.01 – 0.02 – 5 

       VSR 0.01 – 0.02  

       VSR 0.01  

 

4. Dimensions, Mass and Permissible 

Variations 

   4.1 Dimensional accuracy, resulting from 

contractions and other variables, is not 

addressed in this standard. 

   4.2 This standard only considers the surface 

roughness that is calculated from actual 

underlying geometry of the casting. 

   4.2.1 Baseline roughness shall be calculated 

with the underlying geometry considered 

nominal. 

   4.2.2 Abnormalities shall be measured based 

on the deviation from the underlying geometry. 

 

5. Acceptance Standards 

   5.1 Suggested levels of acceptance for this 

standard are found in Annex A1. 

   5.2 Point densities for scanned surfaces are 

being evaluated in order to require a minimum 

point density for the standard for consistency 

purposes.  

   5.3 Surface criteria exceeding those covered 

by this standard shall be a matter of agreement 

between the purchaser and the manufacturer. 

 

6. Conversion from Other Surface 

Inspection Standards 

   6.1 The conversion to other standards is 

approximate and includes the C-9 Cast 

Microfinish Comparator and the Steel Castings 

Research and Trade Association (SCRATA) 

Comparator Plates. 

   6.1.1 Conversions for the C-9 Standard are 

listed in Appendix X1. 

   6.1.2 Conversions for the SCRATA Standard 

are listed in Appendix X2. 

 

7. Keywords 

   7.1 castings; inspection standards; 

quantitative 

 

8. Supplemental Requirements 

   The following supplementary requirements 

shall apply only when specified by the 

purchaser in the purchase order or contract. 

   8.1 Unusual visual conditions are not 

addressed by this standard. 

   8.1.1 Unusual visual conditions include 

discoloration and evidence of rework. 

   8.1.2 Unusual visual conditions shall be a 

matter of agreement between the purchaser and 

the manufacturer. 

   8.2 Chaplets, or inserts, are not permissible 

under this standard. 

   8.2.1 Requirements pertaining to chaplets or 

inserts shall be a matter of agreement between 

the purchaser and the manufacturer. 

 

 

ANNEXES 

 

(Mandatory Information) 

 

A1. Suggested Acceptance Levels for Cast Surfaces    

 

Industry samples from different molding processes are being evaluated in order to provide suggested 

baseline roughness criteria for customers to specify. 
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APPENDIXES 

 

(Non-mandatory Information) 

 

X1.  CORRESPONDING CONVERSIONS FROM C-9 STANDARD (ANSI/ASME B46.1)  

 

X1.1 The following gives approximate 

conversions corresponding to the C-9 

Microfinish Comparator. 

 

X1.2 Listed equivalents are approximate and are 

based on averages of three profilometer readings 

from three different locations on the available 

standard comparator. These values will be set 

once a standardized procedure for determining 

the underlying geometry is finalized.    

 

 

X2.  CORRESPONDING CONVERSIONS FROM SCRATA STANDARD (A802/A802M)  

  

X2.1 The following gives approximate 

conversions corresponding to the Steel 

Castings Research and Trade Association 

(SCRATA) Comparator Plates. 

 

X2.2 Listed equivalents are approximate and 

are based on averages of three profilometer 

readings from three different locations on the 

available standard comparators. These values 

will be set once a standardized procedure for 

determining the underlying geometry is 

finalized. 

 

X2.3 Abnormality levels take into 

consideration the point with the maximum 

deviation from the underlying geometry, either 

peak or valley, regardless of whether or not the 

abnormality is that of the stated “surface 

feature” of the corresponding standard. 

Example: Maximum deviation for comparator 

J1 results from a nonmetallic inclusion, not 

from a weld.  

 

X2.4 The abnormality percentage is the surface 

area of all abnormalities falling within 

specification divided by the total surface area 

of the specified surface.
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APPENDIX B: GRAPHICAL REPRESENTATION OF SLICING 

METHODOLOGY RESULTS 
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APPENDIX C: PROPOSED SOFTWARE PROGRAM TO EVALUATE 

THE VOELKER SURFACE RATIO PARAMETERS 
 

This appendix outlines the proposed software program to evaluate the Voelker Surface 

Ratio (VSR) parameters. The proposed program (tool) will use the standard process for 

calculating the underlying geometry once an ideal method is determined. 

 

Purpose:  

This tool will be developed for customers to see how their specification criteria can be 

interpreted and to train inspectors on the new standard.  

 

Benefits:  

Benefits of this tool include the following: 

 Customers can use this tool to evaluate the criteria they want to specify. 

 Manufacturers can use this tool to help train and calibrate inspectors. 

 Surfaces can be checked against the VSR using go/no-go criteria. 

 A visualization of areas falling outside the VSR criteria is provided to identify defects 

or potential rework areas. 

 Companies can use scanning devices they already own for use with this program. 

 

Overview:  

This tool will take a point cloud, determine the underlying geometry, and compare the original 

point cloud to the underlying geometry in order to calculate the parameters of the VSR. This 

information will then be used with the new quantitative surface inspection in order to provide 

outputs of roughness and abnormality levels. The tool is interactive allowing users to visually 

see the differences between VSR specification criteria on a sample scanned surface.  

 

Process: 

1. Determine underlying geometry 

2. Calculate the deviation of each data point from underlying geometry 

3. Plot each point (original point cloud) and assign a scalar to the point to represent the 

deviation from underlying geometry 

4. Input each of the VSR parameters 

5. Color points according to their classification based on the VSR inputs 

a. Baseline roughness points: blue 

b. Abnormalities: yellow 

c. Defect (points falling outside of the specified criteria): red 

6. Provide a Yes/No determination on each parameter so the user knows which parameter 

is failing 

7. Provide an overall Yes/No so the user knows if the part is considered acceptable 

overall based on the specified VSR 

 

 

A sample user interface is provided (Figures 1 and 2) on the following page as an example. 
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Figure 1—Initial VSR inputs resulting in an unacceptable part based on the acceptance criteria 

 

 
Figure 2—Modified VSR inputs (increased abnormality level) resulting in an acceptable part based 

on the acceptance criteria 

 

Integration:  

There are many potential options for integrating this program into already existing software. 

This includes creating a plugin for commercial software, such as Geomagic, or an open source 

software, such as CloudCompare. Alternatively, the program could be developed as a 

standalone interface with an opportunity for expansion with the development of the handheld 

scanning tool to verify these parameters. 
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