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ABSTRACT 

A new inter-rater agreement metric (IRRA) was developed for measuring 

agreement between multiple research coders when they code activities as they observe 

student problem-solving sessions. The complex nature of the student data includes 

activities that 1) are dependent on prior activities, 2) are ordinal data types, 3)  can occur 

at any point in time, and 4) can reoccur. The assumptions used in traditional inter-rater 

agreement metrics are violated in this context and may lead to erroneous conclusions in 

particular datasets. In this study, coded activities are considered to be a sequence codes 

that can be analyzed using a string matching algorithm. We evaluated the metric’s 

performance by simulating the variability of coders in a controlled fashion. The results 

show that the algorithm performed well as an inter-rater agreement metric over a wide 

range of conditions. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Student pathways during problem solving have been studied to understand the 

rationale a novice student uses while solving a problem and how the novice strategy 

differs from an expert pathway (Antonenko, et al., 2011). Expert pathway strategies differ 

from novice pathways because of the amount of knowledge gained from prior domain 

experience (Ericsson, 2006). Protocol analysis is widely used to characterize novice and 

expert behavior by articulating cognitive activities (Ericsson & Simon, 1993).  

In protocol analysis, research coders use a coding scheme to assign codes to 

activities they observe as students solve problems. A coding scheme is a finite set of 

codes and descriptions of the possible activities. Each coded activity has a code, start 

time, and end time. Ideally, two research coders analyzing the same data for a student 

should produce the same set of coded activities. The degree of agreement between sets 

varies because even with training, coders interpret observed behavior differently. In 

studies involving multiple coders, a high degree of agreement is necessary to make valid 

conclusions. Inter-rater agreement metrics measure the similarity of results from multiple 

coders (Gwet, 2001). 

The goal of this research is to develop and evaluate a new method for comparing 

coded activity sets produced by two or more research coders. 

1.2 Statement of the problem 

Measuring inter-rater agreement in student pathway studies is difficult because of 

the complex nature of the coded data. Inter-rater measurements typically focus on data 

types such as discrete, nominal, or ordinal datasets (Tinsley & Weiss, 1975). For 
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continuous data, statistical methods such as analysis of variance have been used (Neter, 

1996). Comparing coded activity sets is challenging because: 1) coded values depend on 

prior activities, 2) activity types are nominal or categorical, 3) coded activity times are 

continuous variables, and 4) coded activity types appear multiple times throughout the 

analysis. Numerous metrics have been used to measure agreement between research 

coders, but there is no definitive metric.  

1.3 Purpose of the study 

The goal of this study is to develop a new comparison method based on a string-

editing algorithm and evaluate its suitability as an agreement metric for coded activity 

sets. Protocol analysis is a new problem domain for string-editing algorithms; however, 

similar algorithms have been used and proven effective in a variety of applications 

including string comparisons, computational biology, signal processing, text retrieval, 

and social sciences (Abbot & Forrest, 1986; Navarro, 2001). These algorithms measure 

the cost associated with transforming one sequence of elements into another. Without this 

study a sufficient measurement quantifying coder bias in all protocol analysis datasets 

does not exist which can lead to incorrectly evaluated datasets from research coders. 

1.4 Significance of the study 

We propose a new method for measuring agreement between multiple research 

coders in contexts where reoccurring activities can be coded as a sequence of alphabetical 

characters (i.e., a sequence of activities). When this method indicates a high degree of 

agreement, research coders may perform protocol analysis studies independently as 

coders are capable of accurately applying the coding scheme. A low degree of agreement 
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indicates that activity descriptions may be too ambiguous, the coding scheme needs to be 

modified, or research coders need more training.  

Training increases the level of inter-rater agreement among coders (Pulakos, 

1984). In some instances reoccurring training may be beneficial because individual raters 

may change judgments over time (Myford & Wolfe, 2009). An inter-rater metric, such as 

the one proposed in this study, can be used as an indicator for the degree of proficiency of 

coders. 

1.5 Definition of terms 

Activity –Used synonymously with code and corresponds to a cognitive activity in 

a coding scheme having n codes. 

Coding XML (Extensible markup Language) Files – defined by a schema, this 

file is exported by the ANVIL annotation software program (Kipp, 2001) which contains 

a research coder’s set of coded activities. 

Inter-rater agreement – Multiple coders agree on the interpretation of student 

pathway activities. 

Edit distance – Used synonymously with Levenshtein distance to measure the 

minimum number of insert, delete, and substitution operations to change one sequence 

into another. 

Protocol Analysis – The process that a research coder uses to articulate the 

cognitive activities of a student recorded as audio and video data (See Appendix A).  

Research coder –Individual who performs the coding of activities, also referred to 

as a rater. 
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Student pathway – A sequence of cognitive activities performed by a student 

while solving a problem. 

 

1.6 Thesis organization 

The remainder of this thesis is organized as follows. Chapter 2 provides a 

literature review on three relevant topics: 

1) Traditional views of inter-rater agreement within content analysis 

2) Algorithms used in sequence analysis 

3) Shortcomings of a sequence analysis approach 

Chapter 3 presents some of the issues with existing inter-rater agreement metrics. 

In Chapter 4 we describe the new method and the evaluation methodology. The results 

and conclusions are presented in Chapter 5. Chapter 6 is a discussion of opportunities for 

future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Inter-rater agreement metrics 

Content analysis as defined by Kolbe and Burnett is “an observational research 

method that is used to systematically evaluate the symbolic content of all forms of 

recorded communication” (Kolbe & Burnett, 1991 pg. 243). The analysis of these 

communications depends on the goal of the study and the level of detail required (e.g., 

sentences, words, or letters). Inter-rater agreement is “the extent to which the different 

judges tend to assign exactly the same rating to each object” (Tagg, 2007 pg. 98). There 

are numerous inter-rater metrics that have been used to measure the degree of agreement. 

Typically, these metrics have values between 0.0 (no agreement) and 1.00 (perfect 

agreement).  

One of the first measures, percent agreement, or Holsti’s agreement (Holsti, 

1969), is easy to calculate and understand, but does not take into consideration the 

probability of agreeing by chance. Not being able to consider the probability of chance 

agreement is problematic as a value close to 1.0 would not always represent true 

agreement between raters. The problem becomes more severe when there are few 

classification categories in the coding scheme and the probability of being correct by 

chance becomes larger.  

Scott’s Pi (Scott, 1955) does take into consideration chance agreement, yet can 

only be used for nominal or categorized data for two raters. Fleiss later generalized 

Scott’s Pi to any number of raters given a nominal dataset (Fleiss, 1971). Both Scott’s Pi 

and Fleiss’ Kappa take into consideration chance-agreement, yet assume coders have 
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distributed their codes uniformly over the entire set of codes. If this assumption is 

violated, the statistic is biased towards reduced agreement (Craig, 1981). 

Cohen’s Kappa (Cohen, 1960) was based on Scott’s approach to nominal data, but 

includes a different measurement of chance agreement. This was accomplished using the 

concept of a multiplicative marginal. Craig reported that Cohen’s Kappa was the most 

frequently used and well understood inter-rater statistic in the 1980’s (Craig, 1981) and is 

still widely used today. Some weaknesses of Cohen’s Kappa include the inability to 

handle missing data, unequal sample sizes, and different informational types (such as 

ratio, interval, and polar data). It is also limited to pairwise comparisons between raters. 

 Krippendorff’s Alpha (Krippendorff, 1980) addressed the ability to handle any 

number of raters and additional data types. Krippendorff’s Alpha has been shown to be a 

better metric for some applications (Hayes & Krippendorff, 2007). However, it is much 

more complex in usage than Cohen’s Kappa and is implemented in statistical software 

(Hayes & Krippendorff, 2007). 

All these traditional inter-rater measurements, while applicable in many cases, do 

not consider activity timing in measuring agreement. In some contexts, the time of an 

occurrence can be very important in determining agreement. Rater 1 may state that an 

activity starts at time t = 0 units while Rater 2 coded the same activity as occurring at 

time t = 100 units. The raters are in agreement on the activity, but in disagreement on the 

timing of its occurrence. Additionally, all traditional methods assume independent 

observations which are not the case in protocol analysis research as future activities are 

based on prior activities.  
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2.2 Algorithms used in sequence analysis 

A sequence, or categorical time series, is a listing of elements (MacIndoe & 

Abbott, 2004). These elements can be defined as: 

 A state at a point in time (e.g., employed vs. non-employed) 

 A physical object (e.g., base pair of DNA) 

 An event (e.g., dance step) 

These elements are associated with fixed portions in time (e.g. every month) or 

are the result of a specific action (e.g. accepted a job offer). Sequence analysis is the 

study of comparing these ordered arrangements. If we describe student behavior while 

solving engineering problems as a sequence of activities, then sequence analysis is 

applicable. Sequence analysis has its roots in the classical approximate string matching 

problem in the field of computer science and can be solved by numerous dynamic 

programming techniques (Levenshtein, 1966; Sellers, 1974; Masek & Paterson, 1980).  

Additional sequence analysis algorithms have been studied, such as the longest 

subsequence problem in which the goal is to evaluate the longest matching subsequence 

within two different strings (Illiopoulos & Rahman, 2009). Only a subset of relevant 

approximate sequence matching techniques are reviewed here; for a comprehensive 

review of the string matching problems and applications refer to Navarro (2001). 

Given any two sequences of equal length the Hamming distance identifies 

differences by counting the number of positions where the characters in the two strings 

are different (Hamming, 1950). While effective, this algorithm requires two strings of 

equal length and cannot evaluate differences in positioning. To address this limitation, the 

Levenshtein distance, commonly referred to as the edit distance, is a metric uses the 
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transformational operations of insertion, deletion, and substitution of strings 

(Levenshtein, 1966). This algorithm not only lifts the restriction that strings be of equal 

length, but adds the ability to check character positions. The Hamming distance between 

the two strings “transform” and “ransform” is 9, but the edit distance is only 1 because a  

“t” can be inserted (i.e., 1 operation) at the beginning. Levenshtein distance is bounded 

between 0 (strings are the exactly the same) and the maximum length of the two strings 

(the two strings are completely different).  

Needleman and Wunsch (1970) described an algorithm that uses the same concept 

of Levenshtein distance but uses two additional arrays. The first array, a conversion 

matrix, is used as a cost reference when converting a character to another character. The 

second parameter is a penalty factor, the cost of an insertion operation per character. 

These two parameters allow a cost adjustment for a specific operation. Because of the 

different cost structure, the metric is no longer bounded between 0 and the maximum 

length of the two sequences.  

The Needleman and Wunsch algorithm has been referred to as the evolutionary 

distance when measuring the difference between two nucleotide sequences (Sellers, 

1974) and optimal matching when measuring the distances of social event sequences over 

time (Abbott & Forrest, 1986). There is a substantial amount of recent research on 

optimal matching which is “the most frequently used technique for comparing 

sequences” (Brzinsky-Fay & Kohler, 2010 pp. 360). For additional applications of 

optimal matching see Kruskal (1983), Brzinsky-Fay & Kohler (2010), and Blanchard et 

al. (2012).  
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In the Needleman and Wunsch approach (1970), conversion matrices largely 

influence the final result and therefore, a proper conversion matrix must be carefully 

chosen. If the conversion matrix is invalid, the distance between sequences is inaccurate 

due to linked relationship between the arrays and the results. When the Needleman and 

Wunsch algorithm is used with a unit-cost conversion matrix and penalty gap, then it is 

equivalent to the Levenshtein distance. 

These algorithms have been used to search large databases for similarity between 

two sequences, such as amino acid sequences. Heuristic algorithms have been introduced 

to deal with the large number of comparisons that must be performed (Alschul et al. 

1990; Mabroukeh & Ezeife, 2010). These methods do not provide the same level of 

accuracy as the previously mentioned algorithms, but the computational time is greatly 

reduced, providing added value when comparing large datasets. 

 

2.3 Limitations of the sequence approach 

Although sequence algorithms are extremely useful, some limitations exist that 

should be recognized when evaluating their use in measuring similarity (Dijkstra & Taris, 

1995). A number of issues related to using optimal matching algorithms have been 

discussed (Abbot, 1995; Abbot, 1997; Abbott & Forrest, 1986; Lesnard, 2006).  

One shortfall is the ability to validate the conversion matrix, which determines the 

cost when certain elements are displaced, removed, or substituted. This is central to the 

algorithm’s decision making process. String editing algorithms make minimization 

choices based on the cost of converting one sequence to another (See Appendix B). 

Therefore, the final distance is highly sensitive to the conversion matrix associated with 
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the algorithm (Wu, 2000). If an accurate determination of the costs between elements 

cannot be performed, then the distance is inaccurate (Wu, 2000). 

Sequence algorithm structures can only classify discrete data. If continuous data is 

used then a discrete approximation is necessary. Next, sequence algorithms do not 

consider the significance of activities or whether a series of activities causes changes in 

downstream activities (Dijkstra & Taris, 1995; Wu 2000; Elzinga, 2003). For example, a 

protocol analysis starting with an activity Calculating is not possible before the student 

completes the activity Reads Problem Description. Yet, these algorithms will calculate a 

distance as if it were possible with no indication of any error.  

Another limitation is that sequence algorithms are indifferent to the direction of 

time (Wu, 2000). For example, the difference between sequences {A, B, C, D} and {B, 

C, D} is 1 using a unit cost edit distance algorithm. The same is true for sequences {A, B, 

C, D} and {A, B, C, B}. When the timing of an activity is important in measuring the 

similarity of two sequences, such as in some applications of optimal matching, these 

algorithms may not be appropriate. 

In response to these shortcomings, Lesnard (2006) recommends that sequence 

algorithms be treated as sequence arithmetic. Lesnard describes sequence algorithms as 

“an abstract operation, in this respect not very different from calculating the arithmetic 

mean of a series of numbers … substitution operations are just some of the building 

blocks of the abstract process of assessing the degree of similarity between sequences” 

(pg. 10). 
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CHAPTER 3: USING INTER-RATER AGREEMENT METRICS 

FOR STUDENT PATHWAY DATA 

 

3.1 Explanation of inter-rater agreement vs. reliability 

In many applications the terms inter-rater agreement and reliability are used 

interchangeably. We follow the convention of Tinsley & Weiss (1975) on the difference 

between the two measures of similarity. Inter-rater agreement statistics measure the 

differences in values between two coders (raters) while evaluating a subject under similar 

circumstances. “When judgments are made on a numerical scale, interrater agreement 

means that the judges assigned exactly the same values when rating the same person” 

(Tinsley & Weiss, 1975 pp. 359). They recommend that differences between coders when 

rating an individual subject should be evaluated with an inter-rater agreement metric.  

Inter-rater reliability differs in the way it quantifies the relationship between two 

coders over the evaluation of multiple subjects. Inter-rater reliability is usually reported 

in terms of linear correlation or ANOVA analysis (Tinsley & Weiss, 1975).  

We illustrate the difference between agreement and reliability using the two 

hypothetical datasets shown in Tables 1 & 2. Inter-rater agreement focuses on single 

subject comparisons. When there is little agreement for individual subjects, reliability can 

still be high as shown in Table 1. Rater 2 in Table 1 always evaluates a subject three units 

greater than Rater 1 (i.e., no agreement). The relationship between raters is highly 

correlated (reliable) so that given a single rater’s rating the second rater’s evaluation may 

be predicted with high precision.  
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Data can also have high inter-rater agreement, but little reliability as shown in 

Table 2. Raters have disagreement on only one of five subjects. Yet, it is more difficult to 

understand the relationship between the raters so the reliability (correlation) is lower than 

in Table 1. The quantitative relationship between agreement and reliability is analogous 

to the relationship between accuracy and precision in a numerical dataset. Each metric 

provides a different viewpoint of the same story.  

 

Table 1: Low Agreement & High 

Reliability dataset 

Subject 

Number 
Rater 1 Rater 2 

Subject 1 1 4 

Subject 2 3 6 

Subject 3 4 7 

Subject 4 2 5 

Subject 5 3 6 

Mean 2.8 5.8 

Correlation: 1.00 

Table 2: High Agreement & Low 

Reliability dataset 

Subject 

Number 
Rater 1 Rater 2 

Subject 1 4 4 

Subject 2 3 3 

Subject 3 4 4 

Subject 4 3 3 

Subject 5 3 5 

Mean: 3.8 4.0 

Correlation: 0.22 

 

In summary, having a high degree of inter-rater reliability does not ensure high 

inter-rater agreement or vice versa. With the Tinsley & Weiss (1975) definitions in mind, 

the goal of this research is to provide a robust inter-rater agreement metric for n coders 

evaluating a single student pathway. Coder reliability over multiple student pathways was 

not considered.  

3.2 Cohen’s Kappa 

Cohen’s Kappa is one of the most popular statistics for inter-rater agreement 

(Craig, 1981). However, Cohen’s Kappa has two issues for coded sets. 1) Kappa can only 

be calculated between two coders and 2) cannot take into account a timing error on the 
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activity scheme as a whole. The second issue occurs as coders are evaluating categories 

over a period of time. This limitation is illustrated using a simple coded activity set 

shown in Tables 3 and 4. The data is further divided into one-second intervals because 

each activity can have a variable amount of time. 

Table 3: Cohen’s Kappa calculation - Coder 1 results 

Activity Start Time End Time Code 

Finding information 0 5 A 

Monitoring their status 5 10 B 

Finding information 10 20 A 

Monitoring their status 20 25 B 

Calculating 25 35 C 

 

Table 4: Cohen’s Kappa calculation - Coder 2 results 

Activity Start Time End Time Code 

Finding information 0 2 A 

Monitoring their status 2 7 B 

Finding information 7 17 A 

Monitoring their status 17 22 B 

Calculating 22 32 C 

 

By partitioning the observations into one second time intervals we obtain the 

following sequences.  

Rater 1: AAAAABBBBBAAAAAAAAAABBBBBCCCCCCCCCC 

Rater 2: AABBBBBAAAAAAAAAABBBBBCCCCCCCCCC--- 

The sequences are of unequal length (35 codes versus 32 codes) and each code 

has the same duration (one second). Unequal lengths are common in student protocol 

analysis studies so sequences are made to be of equal length by inserting blanks in the 

remaining time slots. These coded sequences are not the same, but highly similar. Coder 
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2 coded activities lag three seconds behind Coder 1. Coders are in strong agreement, but 

a disagreement on timing yields unfavorable results.  

Cohen’s Kappa statistic treats all 35 one-second intervals as independent 

observations. A two dimensional confusion matrix (see Table 5) shows the relationship 

between coders at each second. Each column is a code assigned by Coder 1 and the row 

elements shows the number of codes assigned by Coder 2. In the same way, each row is a 

code assigned by Coder 2 and the column elements are the codes assigned by Coder 1. 

The matrix values are the summation of all activities by each rater.  

Table 5: Confusion matrix for coders 1 and 2, highlighted indicates agreement 

  
Coder 1 

   

 

 
A B C Blank  

Row 

totals 

C
o
d
er

 2
 A 9 3 0 0 
 

12 

B 6 4 0 0 
 

10 

C 0 3 7 0 
 

10 

 Blank 0 0 3 0 
 

3 

        

 

Column 

totals 
15 10 10 0 

 
35 

 

The total number of samples is given by 

   ∑∑   

 

   

 

   

 ( ) 

where aij represents a single matrix entry value in row i and column j.  

To compute Cohen’s Kappa the first step is to calculate observed agreement of 

events the two research coders agreed upon (OA). This can be found by summing the 

values across the diagonal and dividing by the number of observations or 
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∑ ∑    

 
   

 
   

 
       ( )  

The OA equation  

   
     

  
 

 

equates 0.57. Observed agreement (OA) is the percent agreement, or Holsti’s 

method (Holsti, 1969). The original dataset (Tables 3 and 4) provided an example of 

strong agreement offset by a constant 3 seconds and Holsti’s method does a poor job 

quantifying that relationship declaring that raters agree 57% of the time. 

Unlike Holsti’s method, Cohen’s Kappa accounts for chance agreement. The 

expected frequency (ef) is calculated by multiplying the row total by the column total and 

dividing by the total number of ratings or 

     
∑   
 
   ∑   

 
   

 
  ( )  

Expected frequency (ef) can be calculated across the entire matrix (Table 6) 

however, the main concern is only the entries of agreement. These entries can be found 

across the diagonal in parenthesis.  

Table 6: Expected frequency (ef) values highlighted summing to expected agreement  

  
Coder 1 

   

 

 
A B C blank 

 

Row 

totals 

C
o
d
er

 2
 A 9 (5.14) 3 0 0 

 
12 

B 6 4 (2.86) 0 0 
 

10 

C 0 3 7 (2.86) 0 
 

10 

 blank 0 0 3 0 (0.0) 
 

3 

        

 

Column 

totals 
15 10 10 0 

 
35 



16 

 

 

Expected agreement (EA), defined as  

     
∑ ∑     

 
   

 
   

 
       ( ) 

uses the expected frequency (efij) by summing the values across the diagonal of 

the expected frequency matrix (see Table 6).  

Consequently, the expected agreement (EA) or entries expected to be correct by 

coder guessing, is 10.86 of the 35 total samples in this dataset. Finally, Cohen’s kappa 

(K) is defined as 

   
     

    
 ( ). 

For this example, we obtain 

  
         

      
     . 

According to the scale suggested by Landis & Koch (1997) Tables 3 and Table 4 

indicate only fair agreement.  

 Another more extreme example is given by the following two sequences: 

Rater 1: ABCDEFGH 

Rater 2: BCDEFGH 

where here the behavioral activities are not parsed by one second intervals. The set of 

events are off by a position of one activity (A). Cohen’s Kappa produces value of 0.00 in 

this example. 

No traditional inter-rater measurement can account for this kind of lagging 

behavior over time periods (Cohen, 1960; Fleiss, 1971; Holsti, 1969; Krippendorf, 1980; 

Scott, 1955).  



17 

 

CHAPTER 4: INTER-RATER METRIC FORMULATION FOR 

STUDENT PATHWAY SEQUENCES 

4.1 Definition of a sequence 

A sequence, also known as a categorical time series, is a listing of elements 

(Abbot, 1995) and can be defined as an ordered set of n elements, S = { a1, a2, …an }. 

Letters (i.e., codes) are often used to define a sequence element rather than the full 

activity description. Codes make it easier to write and understand the sequence of 

activities. Table 7 is an example of a very simple sequence in a coded activity set. 

Table 7: Sequence of recurrent activities 

Activity Description Code 

Cumulative 

sequence of 

activities 

Describing a problem description A A 

Finding Information B AB 

Drawing a diagram C ABC 

Picking information D ABCD 

Drawing a diagram C ABCDC 

 

Sequences have certain characteristics that can distinguish them from each other. 

First, sequence elements can either be unique or repeatable. If an event in a sequence is 

unique and cannot be repeated, it is a nonrecurrent sequence. If a sequence represents 

sampling elements with replacement, it is a recurrent sequence. In Table 7 the sequence 

is recurrent because the element Drawing a diagram (C) appears twice. Sequences can 

have dependencies between their elements. This property is similar to a stochastic 

Markov process where the n+1 state depends on the nth state. An example of this 
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scenario would be that it is more likely the activity Calculating to immediately follow 

Drawing a diagram/figure. 

4.2 Basis for the metric 

String matching algorithms can be viewed as a type of spell checker measuring 

the distance from one word to another in a dictionary. Given that comparisons are always 

performed pairwise, the inter-rater agreement metric must address comparisons of three 

or more coders. The student video and audio data have a defined length and therefore 

both protocol analysis outputs are similar in length, but not typically equal due to the 

coders applying codes within continuous time within the coding software (Kipp, 2001). 

Therefore, Hamming distance (1950) is automatically excluded as a potential candidate 

because it assumes equal lengths.  

For each insertion, deletion, or substitution, unique costs can be associated with 

each operation. When comparing student pathway data, an assumption was made that all 

costs are equal to 1. This assumption ensures that the maximum dissimilarity is the 

maximum length of the two sequences (i.e. sequences are completely different), and 

assumes all coding disagreements are equally important. Typically, costs of transforming 

one code to another are inversely proportional to the frequency of each code being 

substituted for another (Lesnard, 2006). Common transformational errors in text analysis 

would be less costly and rare transformation errors would be associated with higher costs.  

According to Chapter Wu (2000) introducing a conversion matrix without proper 

analysis could yield incorrect distance measurements if not carefully evaluated and the 

data to validate the matrix was not available. Also, the Needleman and Wunsch (1970) 

algorithm is bounded by the conversion matrix and therefore, more difficult to normalize. 
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Levenshtein distance, or Needleman and Wunsch with a unit cost conversation matrix, 

constrains the distance between 0 (sequences are exactly the same) and the maximum 

length of the two sequences (sequences are completely different).  

4.3 Notation 

m:  sequence 1 length 

n:  sequence 2 length 

v: matrix defined of dimensions n x m 

i: matrix v row iterator (0 to m) 

j: matrix v column iterator (0 to n) 

k: single pairwise combination of two coder sequences 

NR: number of coders (raters) evaluating single student pathway  

NC: total number of coder combinations 

EDk: Edit distance between coder combination k 

NEDk: Normalized edit distance (dissimilarity) between coder combination k 

Sk: Similarity for coder combination k 

IRRA: Average similarity among all coders (NR)  

4.4 Metric algorithm 

Based on the coded activity set properties and the assumption that all 

transformation costs are 1, the algorithm chosen for implementation of the edit distance 

was a dynamic programming algorithm (Wagner & Fischer, 1974). This is due to its ease 

of implementation and computational efficiency in calculating a unit cost edit distance. 

The dynamic programming algorithm for calculating the edit distance for one pair of 

coder sets is shown in Figure 1.  
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Matrix, v[m][n], is created where m is the length of the first code set and n is the 

length of the second code set. The rest of the algorithm minimizes the costs associated to 

transformational operations to this matrix. A detailed example walkthrough of the 

algorithm can be found in Appendix B. 

int MinEditDistance(string seq1, string seq2) 

{ 

int m = seq1.length(); 

int n = seq2.length(); 

 

//Define first row of cost matrix 

for (int i = 0; i <= m; i++) { 

     v [i][0] = i; 

} 

 

//Define first column of cost matrix 

for (int j = 0; j <= n; j++) { 

      v [0][j] = j; 

} 

 

//Find the minimum distance for each cell in the matrix by evaluating minimum of //1 + 

cell left, above, and left above  

for (int i = 1; i <= m; i++) { 

  for (int j = 1; j <= n; j++) { 

         if(seq1[i] == seq2[ j ]) then  

                  v[i][j] = v[ i–1][ j–1] 

             else  

                   v[i][j] = 1 + min (min (v[i][j–1], v[i–1][j], v[i–1][j–1]) ) 

     } 

} 

 

//Return the final value in the cost matrix 

return v[m][n] 

} 

Figure 1: Minimum Edit distance pseudocode, returns single edit distance (EDk) 

 

The algorithm returns one value, v[m][n], the scalar minimized edit distance for a 

single pairwise combination of the research coders (EDk). Similar to Scott’s Pi or 

Cohen’s Kappa, sequence editing algorithms perform a single pairwise comparison of 
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sequences. To provide an average rating among all research coders, all combinations of 

coders must be considered. Given a list of three research coders, each performing a 

protocol analysis on a student solving a problem, the unique pair-wise combinations 

between raters {1, 2}, {1, 3}, and {2, 3} are shown in Table 8. 

Table 8: Unique pairwise combinations for three coders (k1, k2, k3) 

k = 1 k = 2 k = 3 

{1, 2} {1, 3} {2, 3} 

  

One weakness of the edit distance is that it strictly provides a magnitude value 

and lacks the ability to take into consideration the length of the sequences being 

compared. The edit distance can be normalized by dividing by the maximum possible edit 

distance (maximum length of two sequences). This can only be done with when all costs 

are 1. Otherwise, the distance is bounded by values determined by the conversion matrix. 

The normalized edit distance has a value between 0 and 1 and is found by 

dividing the scalar value edit distance (EDk) by the maximum length of the two 

sequences (strings) being compared. The normalized edit distance for combination k of 

two code sequences, is given by  

      
   

   (      (                   ))
  ( )  

Equation (6) measures the amount of dissimilarity between 0 and 1, with 1 

corresponding to the maximum dissimilarity. Since similarity (Sk) is the complement of 

dissimilarity (NEDk), it follows that 

            ( ). 



22 

 

Equation (7) is limited in that it provides only similarity between two pairwise 

sequences. The total number of unique combinations (NC) is given by 

   (
  
 
)   

   

  (    ) 
   ( ) 

where NR is the number of research coders. 

Average similarity is the sum of all    divided by the total number of unique 

coder combinations (NC). This yields a singular normalized distance for the agreement of 

N research coders for a single student pathway dataset. This inter-rater agreement (IRRA) 

metric is the average similarity and is given by 

      
∑   
  
   

  
   ( )  

IRRA has a value between 0 (no agreement) and 1 (complete agreement) for any 

number of coders. Typical studies use three coders or less, therefore, estimates of the 

variance of    would be inaccurate.  

4.5 Evaluation methodology 

The following steps were performed to evaluate the suitability of IRRA as an 

inter-rater agreement metric.  

Step 1) Generate coded activity sets for analysis 

To evaluate IRRA in a controlled manner, a protocol analysis simulator was 

created so that parameters affecting similarity could be varied. In addition, the simulator 

allowed the creation of any number of coded activity sets (representing coders) which are 

otherwise limited by the actual number of coders in a study. The simulator uses a set of 

probability distributions to produce random perturbations of the original coded activity 
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set which represents the “true” set of codes for a which is randomly generated. The 

parameters that are used to control the perturbations are as follows. 

Length of code (sec) – The duration of an activity has a uniform distribution 

  (   )  

Agreement – This is the probability of success, p, for a Bernoulli random variable 

indicating whether a code in the original coded activity set will remain unchanged (i.e., 

success is no change and a failure results in a perturbation). Therefore, the total number 

of perturbations has a binomial distribution. Using Monte Carlo simulation, we generate a 

value (success or failure) from the Bernoulli distribution for each code.  

If it is a success, then there are three equally likely perturbations – delete the 

code, modify the code, or insert a new code. If a code is deleted, then all subsequent 

codes are shifted on the time scale by the duration of the deleted code. If a code is 

modified, then 70% of the time a new code value is randomly generated and 30% of the 

time the duration of the code is modified by randomly generating a new Length of code.   

A value of 0.0 for Agreement would produce complete random datasets, while a 

value of 1.00 corresponds to the same sequence.  

Repetitions –This parameter specifies the number of different research coders or 

protocol analyses being performed on a single recorded student session.  

File Length (min/max) – The length of the original coded activity set has a 

uniform distribution   (   )  

Time between codes (sec) – Mean empty (blank) time between activities where 

time between activities has an exponential distribution. 

The parameters are specified as shown in the example in Figure 2.  
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Figure 2: Protocol Analysis Simulator Parameters 

 

After specifying the parameters, the simulator generates the codings in ANVIL 

(Kipp, 2001) compatible XML files. These files have the same structure as those 

recorded manually by coders. An example of the file structure is shown in Figure 3. 

 
Figure 3: Protocol Analysis Simulator Output 

 

 Coder 

Name 

 Activity 

Description 

 Start/End Time 

 Activity 

Category 
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Three sample datasets were generated using the simulator in order to evaluate 

parameter effects on IRRA. For each variable tested 300 independent simulations were 

generated each representing a new student pathway to be analyzed by the coders. Each 

time a parameter was changed for a dataset 300 additional simulations were run. 

4.6 Effect of variation in activity agreement 

This dataset was designed to evaluate the effect of varying levels of agreement on 

IRRA. Simulator values were Agreement were varied between at 0.00 and 0.95.   

Dataset 1 Simulation Parameters: 

Agreement: 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.95 

Repetitions: 3 

Coding Length: 10.0 – 20.0 min 

Time between codes (sec): 5 

Length of a code (sec): 3 – 120 

4.7 Effect of number of coders  

The number of coders should not affect the overall average, yet should decrease 

the standard deviation among independent observations. The Repetitions parameter was 

varied in the simulator to study the effects of increasing the number of coders. The 

activity time variation was set at a medium level as compared with the first dataset. The 

numbers of research coders tested was: 3, 5, 10, and 20. For the case of 20 coders a total 

of 6000 coded XML files were generated (20 coders x 300 student pathways) for 

evaluation. Agreement of 0.80 was chosen as it provided the most uncertainty, or 

variance, from Dataset 1 results to study the effects of increasing coders. 

Dataset 2 Parameters: 
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Agreement: 0.80 

Repetitions: 3 | 5 | 10 | 20 

Coding Length: 15 - 20 min 

Time between codes (sec): 2 

Length of a code (sec): 30 – 60 

4.8 Effect of number of activities 

The final dataset examined the effect of number of activities on IRRA. The 

Coding Length parameter was varied while the Length of a code parameter was set to a 

constant. Time between codes is the inverse of frequency of codes and was fixed at 2 

seconds. An Agreement value of 0.80 was chosen as it resulted in the most variation in 

Dataset 1.  

Dataset 3 Simulation Parameters: 

Agreement: 0.80 

Repetitions: 3 

Coding Length: 10 | 20 | 40 | 80 min 

Time between codes (sec): 2 

Length of a code (sec): 30 

 

Step 2) Transform XML files into coded sequences 

The XML files from Step 1 were transformed into coded sequences based on the 

mapping in Table 9. The activities were segmented into one second intervals before 

calculating IRRA. Without first parsing into one second intervals, the codes would be of 

varying lengths. Furthermore, not parsing by one second allows two coded sets to have 
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identical code sequences, but different times associated with individual code activities 

which is less than ideal. Times related with no activities are associated with a Blank 

activity in order to distinguish time slots with no activity apart from those with activities 

before applying the measurement. 

Table 9: Activity code map 

Category of 

Activity Activity Description 

Short-hand letter 

representation 

Information Reading problem description A 

Information Finding Information B 

Information Picking Information C 

Information Deselecting Information D 

Reasoning Connecting Multiple phenomena E 

Reasoning Drawing a diagram/figure F 

Reasoning Writing an equation G 

Reasoning Identifying relevant phenomena H 

Reasoning Stating an assumption I 

Reasoning Describing a relevant principal J 

Reasoning Justifying phenomena, assumption, … K 

Metacognitive Developing a plan L 

Metacognitive Monitoring their status M 

Metacognitive Evaluating their approach N 

Metacognitive Justifying their plan or evaluation O 

 

Step 3) Evaluate and analyze coded sets  

A separate application was developed, the protocol analysis evaluator, to 

automate Step 2 and apply the IRRA metric. The evaluation process was separated from 

the simulation process to remove any dependencies. Upon successful assessment the 

evaluator results were transferred to JMP statistical software to be analyzed. A boxplot 

was used to visualize differences between simulated agreement and IRRA and the 

correlation was calculated to quantify the relationship.   
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CHAPTER 5: RESULTS 

5.1 Varying code agreement 

Increasing the levels of the Agreement parameter increases the average IRRA 

(Table 10) based on three simulated coders. 

Table 10: Average IRRA versus Agreement Parameter 

 

Agreement Parameter 

 

0 0.2 0.4 0.6 0.8 0.95 

Average 

IRRA 
0.122 0.161 0.263 0.459 0.69 0.914 

 

The correlation coefficient (R) is 0.94 for the Agreement parameter and IRRA, 

indicating a strong linear association between the two variables (Rodgers & Nicewander, 

1988). This provides support that IRRA is an effective metric for inter-rater agreement. A 

nonlinear region was found for Agreement values less than 0.4 (see Figure 4). The 

boxplot whiskers represent the minimum and maximum observations of IRRA for 

designated Agreement values. Agreement of 0.4, 0.6, and 0.8 yield a higher IRRA 

variance than that of very high or very low agreement.  
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Figure 4: Boxplot of IRRA metric observations varying code agreement 

 

The IRRA samples had a large minimum to maximum observation interval for 

each set of parameters which was influenced by the uniformly generated Length of Code 

parameter. This caused high activity sample variation which generated between 5-400 

codes.  

The mean was evaluated for all simulated variables represented by 300 samples 

each. Confidence intervals surrounding the mean do not overlap as indicated by the width 

of the calculated 99% confidence intervals (Table 11). The mean confidence intervals of 

Agreement 0.0 and 0.2 are the closest to overlapping, but still provide statistically 

significant results. 
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Table 11: Means and standard deviations of agreement levels for 300 samples each 

Agreement 

Level 
Mean 

Std 

Dev 

Lower 

99% 

Upper 

99% 

0% 0.1216 0.0521 0.1138 0.1293 

20% 0.1611 0.0548 0.1529 0.1693 

40% 0.2631 0.0719 0.2523 0.2738 

60% 0.4587 0.0703 0.4482 0.4693 

80% 0.6895 0.0788 0.6778 0.7013 

95% 0.9138 0.0614 0.9046 0.923 

 

When the Agreement parameter is 0.0, there is complete randomness amongst 

coders. This represents a scenario where coders are purely guessing because the data is 

difficult to interpret or the coders are poorly trained. The mean posted for Agreement = 

0.0 is 0.1216 (see Table 11). However, any value up to approximately 0.30, though rare, 

is possible given random parameters (as seen in Figure 4). The level of agreement was 

used as a control for complete randomness. A similar technique was recommended in 

other string-editing algorithms to determine a baseline (Sellers, 1974). In this dataset, 

values in the range of 0.30 to 1.00 are only achieved by having some level of agreement 

between coders.  

5.2 Varying number of coders 

By varying the number of coders, we address the issue of how many coders 

should be used in protocol analysis. Simulations were performed with an agreement level 

of 0.80 and each dataset had 300 observations. As the number of coders increase, the 

minimum to maximum interval of IRRA measurement values decrease resulting in more 

reliable estimates of inter-rater agreement (see Figure 5). There are observed diminishing 
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returns in minimum to maximum IRRA intervals as an increase from 10 to 20 coders 

provides a smaller interval gain than 3 to 5 coders.   

 

 
Figure 5: Boxplot of IRRA metric observations varying research coders 

 

Additionally, there is a decrease in variation from 3 coders to 20 coders which is 

observed in the histogram interval (See Figures 6 & 7). It was found the IRRA metric at 

Agreement 80% converged around value 0.68. 
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Figure 5: Histogram of 80% Agreement with 3 coder evaluations 

 

 
Figure 6: Histogram of 80% Agreement with 20 coder evaluations 
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5.3 Varying the number of activities 

Dataset 3 was defined to evaluate the effects of increasing the number of 

activities, or codes, on IRRA. As in previous datasets, all codes are parsed by one second 

before applying the custom IRRA measurement in order to avoid codes of unequal code 

length. The results found that increasing the number of the codes has little effect on the 

average value (see Table 12) but decreased observed measurement variation and 

minimum and maximum intervals (Figure 7). The result is consistent with statistical 

sampling because as the number of activities increase the estimate of the standard 

deviation decreases. The implication in this context is that datasets with relatively few 

activities are unlikely to provide meaningful results unless the activities are easily 

interpreted. These results can provide guidance for researchers in designing their “think-

aloud” scenarios so that there are sufficient activities.  

Table 12: Varying Coding lengths 

 Coding length (min) 

 

20 40 80 160 

Average IRRA 

Measurement 0.698 0.694 0.688 0.687 
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Figure 7: Boxplot of IRRA varying code frequencies 

 

Increasing the length of a protocol analysis decreases the variation between 

independent observations. When protocol analysis studies increase in time the variation 

between coders decrease as the IRRA is able to more accurately predict a measure for 

agreement. Similar to number of coders there was a diminishing return on increasing the 

coding length. The results indicate, based on the simulator parameters, coding sets above 

80 minutes long do not provide any substantial variance reduction.   
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusion and future work 

We formulated a new inter-rater agreement metric based on previous work in 

string matching. The metric uses the Levenshtein Distance, an algorithm designed for 

determining differences in strings. In studies involving multiple coders, a high degree of 

agreement is necessary to make valid conclusions. The performance of the metric was 

evaluated using a simulator that generated coded activity sets. Codes were parsed into 1 

second intervals before applying the measurement; otherwise the activities would have 

varying duration. We found strong correlation (R= 0.94) between simulated agreement 

and the IRRA metric. Agreement results in Chapter 5.1 provided suggested inter-rater 

intervals for future evaluations utilizing the IRRA measurement (Table 13).  

Table 13: Coder agreement suggested intervals  

Coder agreement range 

None 0 - 0.20 

Low 0.20 - 0.40 

Medium 0.40 - 0.60 

High 0.60 - 0.80 

Very high 0.80 - 1.00 

 

Even though there was high correlation between agreement and IRRA, there was 

significant observed variance in the IRRA estimates as can be seen in the overlap of 

distributions (Figure 4). Increasing the number of coders and increasing the number of 

codes decreased the variation of IRRA.  

 The datasets in Chapter 3.2 that were incorrectly evaluated by Cohen’s Kappa are 

compared to the IRRA metric (Table 14 & 15). The results indicate the custom IRRA 
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metric can handle all datasets available in protocol analysis as opposed to only 

subsection. 

Table 14: Comparing Cohen’s Kappa to IRRA metric example 1 

Rater Sequence 
Cohen’s 

Kappa 

Custom 

IRRA 

Metric 

1 AAAAABBBBBAAAAAAAAAABBBBBCCCCCCCCCC 

0.38 0.91 

2 AABBBBBAAAAAAAAAABBBBBCCCCCCCCCC--- 

 

Table 15: Comparing Kohen’s Kappa to IRRA metric example 2 

Rater Sequence 
Cohen’s 

Kappa 

Custom 

IRRA 

Metric 

1 ABCDEFG 

0.00 0.86 

2 BCDEFG- 

 

 It is worth noting the custom IRRA metric, similar to other inter-rater 

measurements, cannot evaluate a bad coder. A bad coder is a researcher who does not 

know how to correctly identify the proper protocol analysis activities. The measurement 

evaluates the similarity, or distance, between coders evaluating activities. The possibility 

still exists that all coders have similar results, but all apply a similar incorrect 

methodology in protocol analysis surveys. One possible solution to this problem is to 

compare a research coder in training to that of an expert research coder until their results 

become similar enough for independent work. Another solution is to create training 

datasets where the behavioral actions are known and verified. Training research coders 

can evaluate the training sets until reaching a threshold IRRA value. Both these scenarios 
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are not the main purpose of the custom IRRA metric, however the measurement can 

provide additional uses in student to expert research. 

Opportunity for future work includes refining this approach in order to determine 

more appropriate boundaries for coder agreement states by determining the relationship 

of parameters. Another opportunity of exploration is varying the parsing, or separation, 

timings for protocol analyses. Analyzing at lower parse times, such as one second, the 

algorithm favors transformational operation substitution over insertion or deletion due to 

quantity of data. The custom IRRA measurement may be able to provide similar results 

with less data than traditional methods. It is expected that increasing this interval will 

reduce the variance of many estimates.  

A large improvement in reducing variation and increasing the ability to 

hierarchically cluster related sequences (Corpet, 1988) could be gained by using an 

algorithm with a conversion matrix and penalty gap matrices. However, additional 

research is required before adding these components because changing conversion 

matrices can have significant consequences (either good or bad) on the magnitude of the 

measurement (Wu, 2000). One way to calculate a conversion matrix in text matching is to 

have costs inversely proportional to the transition rates (Lesnard, 2006). In this 

methodology more common typing mistakes are less costly than uncommon blunders 

which allow identification of the most probably correctly spelled word to replace the 

incorrect word. However, this does not transfer in the same respect to inter-rater 

agreement. A proposed solution is to have more difficult to recognize code 

disagreements, such as Monitoring their status in place of Evaluating their approach 
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activity cost less than a more easily distinguishable action disagreement such as 

identifying Drawing a figure/diagram in place of a Calculating activity.  

Another alternative for an inter-rater agreement metric beyond string-editing 

algorithms is hidden Markov chains. This approach has been used for the same sequence 

analysis problem domain as string-editing algorithms (Rabiner, 1989) (Hughey & Krogh, 

1996). A probabilistic approach may be able to improve insights into more of the 

behaviors of student pathway sequences in addition to providing a reliable quantitative 

metric.  
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APPENDIX A 

 

 

Figure A: Visualization of two independent student pathways after a protocol analysis is performed by a coder
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APPENDIX B 

Suppose we are given the following two strings:  

 

String 1- thesis 

String 2 - oasis 

 

1) The first step is to start forming a table of the costs or all transformations. 

Here we assume a unit cost of 1 for all transformations. 

 

2) Complete Table 1– Convert String 1: “” to String 2: “”, “o”, “oa”, “oas”, 

“oasi”, “oasis” 

 

Table 1: Converting “” to “oasis” 

 

  o a s i s 

 

0 1 2 3 4 5 

t 1     

 

Table 1 explains the required steps to convert String 1: “” to String 2: “” is 0 steps 

as none of the characters are equal.  

 

To convert String 1: “” to String 2: “o” is 1 step. 

 

To convert String 1: “” to String 2: “oa” is 2 steps, etc. 

 

3) Next, we add a row converting the cost of String 1: “t” to characters of 

String 2 (Table 2)  

 

Table 2: Converting "t" to "oasis" position letters “t” and “o” 

 

  o a s i s 

 

0 1 2 3 4 5 

t 1 ? 

     

 

Cost of converting String 1: “t” to String 2: “” in Table is obviously equal to 1.  

 

Determining the cost of converting String 1: “t” to String 2: “o” is a bit more complex as 

it is a minimum cost value associated with the following transformational operations. 
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1) Add 

 Calculate 1 plus the cost of converting “t” to “” (the left position) 

  Costs = 1 + 1 = 2 

 

2) Remove 

 Calculate 1 plus the cost of converting “” to “o” (the above 

position) 

 Cost = 1 + 1 = 2 

 

3) Change 

 Calculate 1 plus the cost of converting “” to “” (up and to the left 

position) 

 Cost = 0 + 1 = 1 

 

Therefore, the minimum cost to the missing value in Table 2 is 1 which 

corresponds to the change operation. This cost will be added to the matrix in the missing 

location. 

 

4) Continue with the next entry in the matrix 

 

Table 3: Converting "t" to "oasis" position letters “t” and "oa” 

 

  o a s i s 

 

0 1 2 3 4 5 

t 1 1 ?       

 

Convert String 1: “t” and String 2: “oa” using the minimum of the three 

transformational operations. 

 

1) Add 

 Calculate 1 plus converting “t” to “o” (the left one position) 

 Cost = 1 + 1 = 2 

 

2) Subtract 

 Calculate 1 plus converting “” to “oa” (the up one position) 

 Cost = 2 + 1 = 3 

 

3) Change 



45 

 

 Calculate 1 plus converting “” to “o” (up and to the left position) 

 Cost = 1 + 1 = 2 

 

The minimum cost for the entry in Table 3 is 2 which can be added to the matrix 

in the missing location. 

 

5) Continue with the next entry in the matrix 

 

Table 4: Comparing "t" to "oasis" position letters “t” and "oas" 

 

  o a s i s 

 

0 1 2 3 4 5 

t 1 1 2  ?     

 

6) Continue filling in the matrix using the same methodology 

 

Table 5: Completed cost matrix between "thesis" and "oasis" 

 

  o a s i s 

  0 1 2 3 4 5 

t 1 1 2 3 4 5 

h 2 2 2 3 4 5 

e 3 3 3 3 4 5 

s 4 4 4 3 4 4 

i 5 5 5 4 3 4 

s 6 6 6 5 4 3 

 

Each matrix includes a minimum cost path, or pathway chosen determined by 

minimizing the costs associated with each operation (this example all costs are 1). The 

minimum cost path in the cost matrix is highlighted in the completed Table 5. There may 

be more than one path of equal values in order to reach the minimum cost. In this 

example the three paths that provide the minimum costs correspond to the following 

word changes: 

 



46 

 

 

t h e s i s 

- o a s i s 

 

t h e s i s 

o - a s i s 

 

t h e s i s 

o a - s i s 

 

The last column in the last row of the completed cost matrix indicates the 

minimum distance between the two strings (aka edit distance). In this example, the edit 

distance is 3. The distance by this method is bound between 0 (words are the same) and 6 

(completely different). 


