

Determining an inter-rater agreement metric for researchers evaluating student pathways

in problem solving

by

Austin D. Sullivan

A thesis submitted to the graduate facility

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:

John Jackman, Major Professor

Stephen Gilbert

Connie Hargrave

Iowa State University

Ames, Iowa

2014

Copyright © Austin David Sullivan, 2014. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES ...v

ACKNOWLEDGEMENTS ... vi

ABSTRACT .. vii

CHAPTER 1: INTRODUCTION ..1

1.1 Introduction ..1

1.2 Statement of the problem ...1

1.3 Purpose of the study ...2

1.4 Significance of the study ..2

1.5 Definition of terms ...3

1.6 Thesis organization ..4

CHAPTER 2: LITERATURE REVIEW ...5

2.1 Inter-rater agreement metrics ...5

2.2 Algorithms used in sequence analysis ..7

2.3 Limitations of the sequence approach ..9

CHAPTER 3: USING INTER-RATER AGREEMENT METRICS FOR STUDENT

PATHWAY DATA ...11

3.1 Explanation of inter-rater agreement vs. reliability11

3.2 Cohen’s Kappa ...12

CHAPTER 4: INTER-RATER METRIC FORMULATION FOR STUDENT

PATHWAY SEQUENCES ...17

4.1 Definition of a sequence ...17

4.2 Basis for the metric ..18

4.3 Notation ..19

4.4 Metric algorithm ...19

iii

4.5 Evaluation methodology ..22

4.6 Effect of variation in activity agreement ..25

4.7 Effect of number of coders ...25

4.8 Effect of number of activities ...26

CHAPTER 5: RESULTS ...28

5.1 Varying code agreement...28

5.2 Varying number of coders ..30

5.3 Varying the number of activities ..33

CHAPTER 6: CONCLUSIONS AND FUTURE WORK ...35

6.1 Conclusion and future work ...35

REFERENCES ..39

APPENDIX A ..42

APPENDIX B ..43

iv

LIST OF FIGURES

Figure 1: Minimum Edit distance pseudocode, returns single edit distance (EDk) 20

Figure 2: Protocol Analysis Simulator Parameters ... 24

Figure 3: Protocol Analysis Simulator Output.. 24

Figure 4: Boxplot of IRRA metric observations varying code agreement 29

Figure 5: Histogram of 80% Agreement with 3 coder evaluations 32

Figure 6: Histogram of 80% Agreement with 20 coder evaluations 32

Figure 7: Boxplot of IRRA varying code frequencies .. 34

v

LIST OF TABLES

Table 1: Low Agreement & High Reliability dataset ... 12

Table 2: High Agreement & Low Reliability dataset ... 12

Table 3: Cohen’s Kappa calculation - Coder 1 results ... 13

Table 4: Cohen’s Kappa calculation - Coder 2 results ... 13

Table 5: Confusion matrix for coders 1 and 2, highlighted indicates agreement 14

Table 6: Expected frequency (ef) values highlighted summing to expected agreement ... 15

Table 7: Sequence of recurrent activities .. 17

Table 8: Unique pairwise combinations for three coders (k1, k2, k3) 21

Table 9: Activity code map ... 27

Table 10: Average IRRA versus Agreement Parameter ... 28

Table 11: Means and standard deviations of agreement levels for 300 samples each 30

Table 12: Varying Coding lengths .. 33

Table 13: Coder agreement suggested intervals ... 35

Table 14: Comparing Cohen’s Kappa to IRRA metric example 1 36

Table 15: Comparing Kohen’s Kappa to IRRA metric example 2 36

vi

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Jackman, for all his

encouragement, support, and patience in the development of this thesis. In addition, I

thank you for the guidance you have provided in my academic and professional careers. I

do not believe I would be where I am today without your support. Thank you to my

committee members, Dr. Gilbert and Dr. Hargrave for great insights and support during

this process.

I would like to thank my friends and colleagues who have been there over the

years. I have formed an incredible network of close personal relationships that I look

forward to retaining in the years to come. You have all influenced me both academically

and culturally and I am humbled by the generosity I have been shown. Furthermore, I

would like to thank the department faculty and staff at Iowa State University for making

my adventure an unforgettable experience.

Finally, thanks to my family for if it weren’t for their loving support this would

not have been possible.

vii

ABSTRACT

A new inter-rater agreement metric (IRRA) was developed for measuring

agreement between multiple research coders when they code activities as they observe

student problem-solving sessions. The complex nature of the student data includes

activities that 1) are dependent on prior activities, 2) are ordinal data types, 3) can occur

at any point in time, and 4) can reoccur. The assumptions used in traditional inter-rater

agreement metrics are violated in this context and may lead to erroneous conclusions in

particular datasets. In this study, coded activities are considered to be a sequence codes

that can be analyzed using a string matching algorithm. We evaluated the metric’s

performance by simulating the variability of coders in a controlled fashion. The results

show that the algorithm performed well as an inter-rater agreement metric over a wide

range of conditions.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Student pathways during problem solving have been studied to understand the

rationale a novice student uses while solving a problem and how the novice strategy

differs from an expert pathway (Antonenko, et al., 2011). Expert pathway strategies differ

from novice pathways because of the amount of knowledge gained from prior domain

experience (Ericsson, 2006). Protocol analysis is widely used to characterize novice and

expert behavior by articulating cognitive activities (Ericsson & Simon, 1993).

In protocol analysis, research coders use a coding scheme to assign codes to

activities they observe as students solve problems. A coding scheme is a finite set of

codes and descriptions of the possible activities. Each coded activity has a code, start

time, and end time. Ideally, two research coders analyzing the same data for a student

should produce the same set of coded activities. The degree of agreement between sets

varies because even with training, coders interpret observed behavior differently. In

studies involving multiple coders, a high degree of agreement is necessary to make valid

conclusions. Inter-rater agreement metrics measure the similarity of results from multiple

coders (Gwet, 2001).

The goal of this research is to develop and evaluate a new method for comparing

coded activity sets produced by two or more research coders.

1.2 Statement of the problem

Measuring inter-rater agreement in student pathway studies is difficult because of

the complex nature of the coded data. Inter-rater measurements typically focus on data

types such as discrete, nominal, or ordinal datasets (Tinsley & Weiss, 1975). For

2

continuous data, statistical methods such as analysis of variance have been used (Neter,

1996). Comparing coded activity sets is challenging because: 1) coded values depend on

prior activities, 2) activity types are nominal or categorical, 3) coded activity times are

continuous variables, and 4) coded activity types appear multiple times throughout the

analysis. Numerous metrics have been used to measure agreement between research

coders, but there is no definitive metric.

1.3 Purpose of the study

The goal of this study is to develop a new comparison method based on a string-

editing algorithm and evaluate its suitability as an agreement metric for coded activity

sets. Protocol analysis is a new problem domain for string-editing algorithms; however,

similar algorithms have been used and proven effective in a variety of applications

including string comparisons, computational biology, signal processing, text retrieval,

and social sciences (Abbot & Forrest, 1986; Navarro, 2001). These algorithms measure

the cost associated with transforming one sequence of elements into another. Without this

study a sufficient measurement quantifying coder bias in all protocol analysis datasets

does not exist which can lead to incorrectly evaluated datasets from research coders.

1.4 Significance of the study

We propose a new method for measuring agreement between multiple research

coders in contexts where reoccurring activities can be coded as a sequence of alphabetical

characters (i.e., a sequence of activities). When this method indicates a high degree of

agreement, research coders may perform protocol analysis studies independently as

coders are capable of accurately applying the coding scheme. A low degree of agreement

3

indicates that activity descriptions may be too ambiguous, the coding scheme needs to be

modified, or research coders need more training.

Training increases the level of inter-rater agreement among coders (Pulakos,

1984). In some instances reoccurring training may be beneficial because individual raters

may change judgments over time (Myford & Wolfe, 2009). An inter-rater metric, such as

the one proposed in this study, can be used as an indicator for the degree of proficiency of

coders.

1.5 Definition of terms

Activity –Used synonymously with code and corresponds to a cognitive activity in

a coding scheme having n codes.

Coding XML (Extensible markup Language) Files – defined by a schema, this

file is exported by the ANVIL annotation software program (Kipp, 2001) which contains

a research coder’s set of coded activities.

Inter-rater agreement – Multiple coders agree on the interpretation of student

pathway activities.

Edit distance – Used synonymously with Levenshtein distance to measure the

minimum number of insert, delete, and substitution operations to change one sequence

into another.

Protocol Analysis – The process that a research coder uses to articulate the

cognitive activities of a student recorded as audio and video data (See Appendix A).

Research coder –Individual who performs the coding of activities, also referred to

as a rater.

4

Student pathway – A sequence of cognitive activities performed by a student

while solving a problem.

1.6 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 provides a

literature review on three relevant topics:

1) Traditional views of inter-rater agreement within content analysis

2) Algorithms used in sequence analysis

3) Shortcomings of a sequence analysis approach

Chapter 3 presents some of the issues with existing inter-rater agreement metrics.

In Chapter 4 we describe the new method and the evaluation methodology. The results

and conclusions are presented in Chapter 5. Chapter 6 is a discussion of opportunities for

future research.

5

CHAPTER 2: LITERATURE REVIEW

2.1 Inter-rater agreement metrics

Content analysis as defined by Kolbe and Burnett is “an observational research

method that is used to systematically evaluate the symbolic content of all forms of

recorded communication” (Kolbe & Burnett, 1991 pg. 243). The analysis of these

communications depends on the goal of the study and the level of detail required (e.g.,

sentences, words, or letters). Inter-rater agreement is “the extent to which the different

judges tend to assign exactly the same rating to each object” (Tagg, 2007 pg. 98). There

are numerous inter-rater metrics that have been used to measure the degree of agreement.

Typically, these metrics have values between 0.0 (no agreement) and 1.00 (perfect

agreement).

One of the first measures, percent agreement, or Holsti’s agreement (Holsti,

1969), is easy to calculate and understand, but does not take into consideration the

probability of agreeing by chance. Not being able to consider the probability of chance

agreement is problematic as a value close to 1.0 would not always represent true

agreement between raters. The problem becomes more severe when there are few

classification categories in the coding scheme and the probability of being correct by

chance becomes larger.

Scott’s Pi (Scott, 1955) does take into consideration chance agreement, yet can

only be used for nominal or categorized data for two raters. Fleiss later generalized

Scott’s Pi to any number of raters given a nominal dataset (Fleiss, 1971). Both Scott’s Pi

and Fleiss’ Kappa take into consideration chance-agreement, yet assume coders have

6

distributed their codes uniformly over the entire set of codes. If this assumption is

violated, the statistic is biased towards reduced agreement (Craig, 1981).

Cohen’s Kappa (Cohen, 1960) was based on Scott’s approach to nominal data, but

includes a different measurement of chance agreement. This was accomplished using the

concept of a multiplicative marginal. Craig reported that Cohen’s Kappa was the most

frequently used and well understood inter-rater statistic in the 1980’s (Craig, 1981) and is

still widely used today. Some weaknesses of Cohen’s Kappa include the inability to

handle missing data, unequal sample sizes, and different informational types (such as

ratio, interval, and polar data). It is also limited to pairwise comparisons between raters.

 Krippendorff’s Alpha (Krippendorff, 1980) addressed the ability to handle any

number of raters and additional data types. Krippendorff’s Alpha has been shown to be a

better metric for some applications (Hayes & Krippendorff, 2007). However, it is much

more complex in usage than Cohen’s Kappa and is implemented in statistical software

(Hayes & Krippendorff, 2007).

All these traditional inter-rater measurements, while applicable in many cases, do

not consider activity timing in measuring agreement. In some contexts, the time of an

occurrence can be very important in determining agreement. Rater 1 may state that an

activity starts at time t = 0 units while Rater 2 coded the same activity as occurring at

time t = 100 units. The raters are in agreement on the activity, but in disagreement on the

timing of its occurrence. Additionally, all traditional methods assume independent

observations which are not the case in protocol analysis research as future activities are

based on prior activities.

7

2.2 Algorithms used in sequence analysis

A sequence, or categorical time series, is a listing of elements (MacIndoe &

Abbott, 2004). These elements can be defined as:

 A state at a point in time (e.g., employed vs. non-employed)

 A physical object (e.g., base pair of DNA)

 An event (e.g., dance step)

These elements are associated with fixed portions in time (e.g. every month) or

are the result of a specific action (e.g. accepted a job offer). Sequence analysis is the

study of comparing these ordered arrangements. If we describe student behavior while

solving engineering problems as a sequence of activities, then sequence analysis is

applicable. Sequence analysis has its roots in the classical approximate string matching

problem in the field of computer science and can be solved by numerous dynamic

programming techniques (Levenshtein, 1966; Sellers, 1974; Masek & Paterson, 1980).

Additional sequence analysis algorithms have been studied, such as the longest

subsequence problem in which the goal is to evaluate the longest matching subsequence

within two different strings (Illiopoulos & Rahman, 2009). Only a subset of relevant

approximate sequence matching techniques are reviewed here; for a comprehensive

review of the string matching problems and applications refer to Navarro (2001).

Given any two sequences of equal length the Hamming distance identifies

differences by counting the number of positions where the characters in the two strings

are different (Hamming, 1950). While effective, this algorithm requires two strings of

equal length and cannot evaluate differences in positioning. To address this limitation, the

Levenshtein distance, commonly referred to as the edit distance, is a metric uses the

8

transformational operations of insertion, deletion, and substitution of strings

(Levenshtein, 1966). This algorithm not only lifts the restriction that strings be of equal

length, but adds the ability to check character positions. The Hamming distance between

the two strings “transform” and “ransform” is 9, but the edit distance is only 1 because a

“t” can be inserted (i.e., 1 operation) at the beginning. Levenshtein distance is bounded

between 0 (strings are the exactly the same) and the maximum length of the two strings

(the two strings are completely different).

Needleman and Wunsch (1970) described an algorithm that uses the same concept

of Levenshtein distance but uses two additional arrays. The first array, a conversion

matrix, is used as a cost reference when converting a character to another character. The

second parameter is a penalty factor, the cost of an insertion operation per character.

These two parameters allow a cost adjustment for a specific operation. Because of the

different cost structure, the metric is no longer bounded between 0 and the maximum

length of the two sequences.

The Needleman and Wunsch algorithm has been referred to as the evolutionary

distance when measuring the difference between two nucleotide sequences (Sellers,

1974) and optimal matching when measuring the distances of social event sequences over

time (Abbott & Forrest, 1986). There is a substantial amount of recent research on

optimal matching which is “the most frequently used technique for comparing

sequences” (Brzinsky-Fay & Kohler, 2010 pp. 360). For additional applications of

optimal matching see Kruskal (1983), Brzinsky-Fay & Kohler (2010), and Blanchard et

al. (2012).

9

In the Needleman and Wunsch approach (1970), conversion matrices largely

influence the final result and therefore, a proper conversion matrix must be carefully

chosen. If the conversion matrix is invalid, the distance between sequences is inaccurate

due to linked relationship between the arrays and the results. When the Needleman and

Wunsch algorithm is used with a unit-cost conversion matrix and penalty gap, then it is

equivalent to the Levenshtein distance.

These algorithms have been used to search large databases for similarity between

two sequences, such as amino acid sequences. Heuristic algorithms have been introduced

to deal with the large number of comparisons that must be performed (Alschul et al.

1990; Mabroukeh & Ezeife, 2010). These methods do not provide the same level of

accuracy as the previously mentioned algorithms, but the computational time is greatly

reduced, providing added value when comparing large datasets.

2.3 Limitations of the sequence approach

Although sequence algorithms are extremely useful, some limitations exist that

should be recognized when evaluating their use in measuring similarity (Dijkstra & Taris,

1995). A number of issues related to using optimal matching algorithms have been

discussed (Abbot, 1995; Abbot, 1997; Abbott & Forrest, 1986; Lesnard, 2006).

One shortfall is the ability to validate the conversion matrix, which determines the

cost when certain elements are displaced, removed, or substituted. This is central to the

algorithm’s decision making process. String editing algorithms make minimization

choices based on the cost of converting one sequence to another (See Appendix B).

Therefore, the final distance is highly sensitive to the conversion matrix associated with

10

the algorithm (Wu, 2000). If an accurate determination of the costs between elements

cannot be performed, then the distance is inaccurate (Wu, 2000).

Sequence algorithm structures can only classify discrete data. If continuous data is

used then a discrete approximation is necessary. Next, sequence algorithms do not

consider the significance of activities or whether a series of activities causes changes in

downstream activities (Dijkstra & Taris, 1995; Wu 2000; Elzinga, 2003). For example, a

protocol analysis starting with an activity Calculating is not possible before the student

completes the activity Reads Problem Description. Yet, these algorithms will calculate a

distance as if it were possible with no indication of any error.

Another limitation is that sequence algorithms are indifferent to the direction of

time (Wu, 2000). For example, the difference between sequences {A, B, C, D} and {B,

C, D} is 1 using a unit cost edit distance algorithm. The same is true for sequences {A, B,

C, D} and {A, B, C, B}. When the timing of an activity is important in measuring the

similarity of two sequences, such as in some applications of optimal matching, these

algorithms may not be appropriate.

In response to these shortcomings, Lesnard (2006) recommends that sequence

algorithms be treated as sequence arithmetic. Lesnard describes sequence algorithms as

“an abstract operation, in this respect not very different from calculating the arithmetic

mean of a series of numbers … substitution operations are just some of the building

blocks of the abstract process of assessing the degree of similarity between sequences”

(pg. 10).

11

CHAPTER 3: USING INTER-RATER AGREEMENT METRICS

FOR STUDENT PATHWAY DATA

3.1 Explanation of inter-rater agreement vs. reliability

In many applications the terms inter-rater agreement and reliability are used

interchangeably. We follow the convention of Tinsley & Weiss (1975) on the difference

between the two measures of similarity. Inter-rater agreement statistics measure the

differences in values between two coders (raters) while evaluating a subject under similar

circumstances. “When judgments are made on a numerical scale, interrater agreement

means that the judges assigned exactly the same values when rating the same person”

(Tinsley & Weiss, 1975 pp. 359). They recommend that differences between coders when

rating an individual subject should be evaluated with an inter-rater agreement metric.

Inter-rater reliability differs in the way it quantifies the relationship between two

coders over the evaluation of multiple subjects. Inter-rater reliability is usually reported

in terms of linear correlation or ANOVA analysis (Tinsley & Weiss, 1975).

We illustrate the difference between agreement and reliability using the two

hypothetical datasets shown in Tables 1 & 2. Inter-rater agreement focuses on single

subject comparisons. When there is little agreement for individual subjects, reliability can

still be high as shown in Table 1. Rater 2 in Table 1 always evaluates a subject three units

greater than Rater 1 (i.e., no agreement). The relationship between raters is highly

correlated (reliable) so that given a single rater’s rating the second rater’s evaluation may

be predicted with high precision.

12

Data can also have high inter-rater agreement, but little reliability as shown in

Table 2. Raters have disagreement on only one of five subjects. Yet, it is more difficult to

understand the relationship between the raters so the reliability (correlation) is lower than

in Table 1. The quantitative relationship between agreement and reliability is analogous

to the relationship between accuracy and precision in a numerical dataset. Each metric

provides a different viewpoint of the same story.

Table 1: Low Agreement & High

Reliability dataset

Subject

Number
Rater 1 Rater 2

Subject 1 1 4

Subject 2 3 6

Subject 3 4 7

Subject 4 2 5

Subject 5 3 6

Mean 2.8 5.8

Correlation: 1.00

Table 2: High Agreement & Low

Reliability dataset

Subject

Number
Rater 1 Rater 2

Subject 1 4 4

Subject 2 3 3

Subject 3 4 4

Subject 4 3 3

Subject 5 3 5

Mean: 3.8 4.0

Correlation: 0.22

In summary, having a high degree of inter-rater reliability does not ensure high

inter-rater agreement or vice versa. With the Tinsley & Weiss (1975) definitions in mind,

the goal of this research is to provide a robust inter-rater agreement metric for n coders

evaluating a single student pathway. Coder reliability over multiple student pathways was

not considered.

3.2 Cohen’s Kappa

Cohen’s Kappa is one of the most popular statistics for inter-rater agreement

(Craig, 1981). However, Cohen’s Kappa has two issues for coded sets. 1) Kappa can only

be calculated between two coders and 2) cannot take into account a timing error on the

13

activity scheme as a whole. The second issue occurs as coders are evaluating categories

over a period of time. This limitation is illustrated using a simple coded activity set

shown in Tables 3 and 4. The data is further divided into one-second intervals because

each activity can have a variable amount of time.

Table 3: Cohen’s Kappa calculation - Coder 1 results

Activity Start Time End Time Code

Finding information 0 5 A

Monitoring their status 5 10 B

Finding information 10 20 A

Monitoring their status 20 25 B

Calculating 25 35 C

Table 4: Cohen’s Kappa calculation - Coder 2 results

Activity Start Time End Time Code

Finding information 0 2 A

Monitoring their status 2 7 B

Finding information 7 17 A

Monitoring their status 17 22 B

Calculating 22 32 C

By partitioning the observations into one second time intervals we obtain the

following sequences.

Rater 1: AAAAABBBBBAAAAAAAAAABBBBBCCCCCCCCCC

Rater 2: AABBBBBAAAAAAAAAABBBBBCCCCCCCCCC---

The sequences are of unequal length (35 codes versus 32 codes) and each code

has the same duration (one second). Unequal lengths are common in student protocol

analysis studies so sequences are made to be of equal length by inserting blanks in the

remaining time slots. These coded sequences are not the same, but highly similar. Coder

14

2 coded activities lag three seconds behind Coder 1. Coders are in strong agreement, but

a disagreement on timing yields unfavorable results.

Cohen’s Kappa statistic treats all 35 one-second intervals as independent

observations. A two dimensional confusion matrix (see Table 5) shows the relationship

between coders at each second. Each column is a code assigned by Coder 1 and the row

elements shows the number of codes assigned by Coder 2. In the same way, each row is a

code assigned by Coder 2 and the column elements are the codes assigned by Coder 1.

The matrix values are the summation of all activities by each rater.

Table 5: Confusion matrix for coders 1 and 2, highlighted indicates agreement

Coder 1

A B C Blank

Row

totals

C
o
d
er

 2
 A 9 3 0 0

12

B 6 4 0 0

10

C 0 3 7 0

10

 Blank 0 0 3 0

3

Column

totals
15 10 10 0

35

The total number of samples is given by

 ∑∑

 ()

where aij represents a single matrix entry value in row i and column j.

To compute Cohen’s Kappa the first step is to calculate observed agreement of

events the two research coders agreed upon (OA). This can be found by summing the

values across the diagonal and dividing by the number of observations or

15

∑ ∑

 ()

The OA equation

equates 0.57. Observed agreement (OA) is the percent agreement, or Holsti’s

method (Holsti, 1969). The original dataset (Tables 3 and 4) provided an example of

strong agreement offset by a constant 3 seconds and Holsti’s method does a poor job

quantifying that relationship declaring that raters agree 57% of the time.

Unlike Holsti’s method, Cohen’s Kappa accounts for chance agreement. The

expected frequency (ef) is calculated by multiplying the row total by the column total and

dividing by the total number of ratings or

∑

 ∑

 ()

Expected frequency (ef) can be calculated across the entire matrix (Table 6)

however, the main concern is only the entries of agreement. These entries can be found

across the diagonal in parenthesis.

Table 6: Expected frequency (ef) values highlighted summing to expected agreement

Coder 1

A B C blank

Row

totals

C
o
d
er

 2
 A 9 (5.14) 3 0 0

12

B 6 4 (2.86) 0 0

10

C 0 3 7 (2.86) 0

10

 blank 0 0 3 0 (0.0)

3

Column

totals
15 10 10 0

35

16

Expected agreement (EA), defined as

∑ ∑

 ()

uses the expected frequency (efij) by summing the values across the diagonal of

the expected frequency matrix (see Table 6).

Consequently, the expected agreement (EA) or entries expected to be correct by

coder guessing, is 10.86 of the 35 total samples in this dataset. Finally, Cohen’s kappa

(K) is defined as

 ().

For this example, we obtain

 .

According to the scale suggested by Landis & Koch (1997) Tables 3 and Table 4

indicate only fair agreement.

 Another more extreme example is given by the following two sequences:

Rater 1: ABCDEFGH

Rater 2: BCDEFGH

where here the behavioral activities are not parsed by one second intervals. The set of

events are off by a position of one activity (A). Cohen’s Kappa produces value of 0.00 in

this example.

No traditional inter-rater measurement can account for this kind of lagging

behavior over time periods (Cohen, 1960; Fleiss, 1971; Holsti, 1969; Krippendorf, 1980;

Scott, 1955).

17

CHAPTER 4: INTER-RATER METRIC FORMULATION FOR

STUDENT PATHWAY SEQUENCES

4.1 Definition of a sequence

A sequence, also known as a categorical time series, is a listing of elements

(Abbot, 1995) and can be defined as an ordered set of n elements, S = { a1, a2, …an }.

Letters (i.e., codes) are often used to define a sequence element rather than the full

activity description. Codes make it easier to write and understand the sequence of

activities. Table 7 is an example of a very simple sequence in a coded activity set.

Table 7: Sequence of recurrent activities

Activity Description Code

Cumulative

sequence of

activities

Describing a problem description A A

Finding Information B AB

Drawing a diagram C ABC

Picking information D ABCD

Drawing a diagram C ABCDC

Sequences have certain characteristics that can distinguish them from each other.

First, sequence elements can either be unique or repeatable. If an event in a sequence is

unique and cannot be repeated, it is a nonrecurrent sequence. If a sequence represents

sampling elements with replacement, it is a recurrent sequence. In Table 7 the sequence

is recurrent because the element Drawing a diagram (C) appears twice. Sequences can

have dependencies between their elements. This property is similar to a stochastic

Markov process where the n+1 state depends on the nth state. An example of this

18

scenario would be that it is more likely the activity Calculating to immediately follow

Drawing a diagram/figure.

4.2 Basis for the metric

String matching algorithms can be viewed as a type of spell checker measuring

the distance from one word to another in a dictionary. Given that comparisons are always

performed pairwise, the inter-rater agreement metric must address comparisons of three

or more coders. The student video and audio data have a defined length and therefore

both protocol analysis outputs are similar in length, but not typically equal due to the

coders applying codes within continuous time within the coding software (Kipp, 2001).

Therefore, Hamming distance (1950) is automatically excluded as a potential candidate

because it assumes equal lengths.

For each insertion, deletion, or substitution, unique costs can be associated with

each operation. When comparing student pathway data, an assumption was made that all

costs are equal to 1. This assumption ensures that the maximum dissimilarity is the

maximum length of the two sequences (i.e. sequences are completely different), and

assumes all coding disagreements are equally important. Typically, costs of transforming

one code to another are inversely proportional to the frequency of each code being

substituted for another (Lesnard, 2006). Common transformational errors in text analysis

would be less costly and rare transformation errors would be associated with higher costs.

According to Chapter Wu (2000) introducing a conversion matrix without proper

analysis could yield incorrect distance measurements if not carefully evaluated and the

data to validate the matrix was not available. Also, the Needleman and Wunsch (1970)

algorithm is bounded by the conversion matrix and therefore, more difficult to normalize.

19

Levenshtein distance, or Needleman and Wunsch with a unit cost conversation matrix,

constrains the distance between 0 (sequences are exactly the same) and the maximum

length of the two sequences (sequences are completely different).

4.3 Notation

m: sequence 1 length

n: sequence 2 length

v: matrix defined of dimensions n x m

i: matrix v row iterator (0 to m)

j: matrix v column iterator (0 to n)

k: single pairwise combination of two coder sequences

NR: number of coders (raters) evaluating single student pathway

NC: total number of coder combinations

EDk: Edit distance between coder combination k

NEDk: Normalized edit distance (dissimilarity) between coder combination k

Sk: Similarity for coder combination k

IRRA: Average similarity among all coders (NR)

4.4 Metric algorithm

Based on the coded activity set properties and the assumption that all

transformation costs are 1, the algorithm chosen for implementation of the edit distance

was a dynamic programming algorithm (Wagner & Fischer, 1974). This is due to its ease

of implementation and computational efficiency in calculating a unit cost edit distance.

The dynamic programming algorithm for calculating the edit distance for one pair of

coder sets is shown in Figure 1.

20

Matrix, v[m][n], is created where m is the length of the first code set and n is the

length of the second code set. The rest of the algorithm minimizes the costs associated to

transformational operations to this matrix. A detailed example walkthrough of the

algorithm can be found in Appendix B.

int MinEditDistance(string seq1, string seq2)

{

int m = seq1.length();

int n = seq2.length();

//Define first row of cost matrix

for (int i = 0; i <= m; i++) {

 v [i][0] = i;

}

//Define first column of cost matrix

for (int j = 0; j <= n; j++) {

 v [0][j] = j;

}

//Find the minimum distance for each cell in the matrix by evaluating minimum of //1 +

cell left, above, and left above

for (int i = 1; i <= m; i++) {

 for (int j = 1; j <= n; j++) {

 if(seq1[i] == seq2[j]) then

 v[i][j] = v[i–1][j–1]

 else

 v[i][j] = 1 + min (min (v[i][j–1], v[i–1][j], v[i–1][j–1]))

 }

}

//Return the final value in the cost matrix

return v[m][n]

}

Figure 1: Minimum Edit distance pseudocode, returns single edit distance (EDk)

The algorithm returns one value, v[m][n], the scalar minimized edit distance for a

single pairwise combination of the research coders (EDk). Similar to Scott’s Pi or

Cohen’s Kappa, sequence editing algorithms perform a single pairwise comparison of

21

sequences. To provide an average rating among all research coders, all combinations of

coders must be considered. Given a list of three research coders, each performing a

protocol analysis on a student solving a problem, the unique pair-wise combinations

between raters {1, 2}, {1, 3}, and {2, 3} are shown in Table 8.

Table 8: Unique pairwise combinations for three coders (k1, k2, k3)

k = 1 k = 2 k = 3

{1, 2} {1, 3} {2, 3}

One weakness of the edit distance is that it strictly provides a magnitude value

and lacks the ability to take into consideration the length of the sequences being

compared. The edit distance can be normalized by dividing by the maximum possible edit

distance (maximum length of two sequences). This can only be done with when all costs

are 1. Otherwise, the distance is bounded by values determined by the conversion matrix.

The normalized edit distance has a value between 0 and 1 and is found by

dividing the scalar value edit distance (EDk) by the maximum length of the two

sequences (strings) being compared. The normalized edit distance for combination k of

two code sequences, is given by

 (())
 ()

Equation (6) measures the amount of dissimilarity between 0 and 1, with 1

corresponding to the maximum dissimilarity. Since similarity (Sk) is the complement of

dissimilarity (NEDk), it follows that

 ().

22

Equation (7) is limited in that it provides only similarity between two pairwise

sequences. The total number of unique combinations (NC) is given by

 (

)

 ()
 ()

where NR is the number of research coders.

Average similarity is the sum of all divided by the total number of unique

coder combinations (NC). This yields a singular normalized distance for the agreement of

N research coders for a single student pathway dataset. This inter-rater agreement (IRRA)

metric is the average similarity and is given by

∑

 ()

IRRA has a value between 0 (no agreement) and 1 (complete agreement) for any

number of coders. Typical studies use three coders or less, therefore, estimates of the

variance of would be inaccurate.

4.5 Evaluation methodology

The following steps were performed to evaluate the suitability of IRRA as an

inter-rater agreement metric.

Step 1) Generate coded activity sets for analysis

To evaluate IRRA in a controlled manner, a protocol analysis simulator was

created so that parameters affecting similarity could be varied. In addition, the simulator

allowed the creation of any number of coded activity sets (representing coders) which are

otherwise limited by the actual number of coders in a study. The simulator uses a set of

probability distributions to produce random perturbations of the original coded activity

23

set which represents the “true” set of codes for a which is randomly generated. The

parameters that are used to control the perturbations are as follows.

Length of code (sec) – The duration of an activity has a uniform distribution

 ()

Agreement – This is the probability of success, p, for a Bernoulli random variable

indicating whether a code in the original coded activity set will remain unchanged (i.e.,

success is no change and a failure results in a perturbation). Therefore, the total number

of perturbations has a binomial distribution. Using Monte Carlo simulation, we generate a

value (success or failure) from the Bernoulli distribution for each code.

If it is a success, then there are three equally likely perturbations – delete the

code, modify the code, or insert a new code. If a code is deleted, then all subsequent

codes are shifted on the time scale by the duration of the deleted code. If a code is

modified, then 70% of the time a new code value is randomly generated and 30% of the

time the duration of the code is modified by randomly generating a new Length of code.

A value of 0.0 for Agreement would produce complete random datasets, while a

value of 1.00 corresponds to the same sequence.

Repetitions –This parameter specifies the number of different research coders or

protocol analyses being performed on a single recorded student session.

File Length (min/max) – The length of the original coded activity set has a

uniform distribution ()

Time between codes (sec) – Mean empty (blank) time between activities where

time between activities has an exponential distribution.

The parameters are specified as shown in the example in Figure 2.

24

Figure 2: Protocol Analysis Simulator Parameters

After specifying the parameters, the simulator generates the codings in ANVIL

(Kipp, 2001) compatible XML files. These files have the same structure as those

recorded manually by coders. An example of the file structure is shown in Figure 3.

Figure 3: Protocol Analysis Simulator Output

 Coder

Name

 Activity

Description

 Start/End Time

 Activity

Category

25

Three sample datasets were generated using the simulator in order to evaluate

parameter effects on IRRA. For each variable tested 300 independent simulations were

generated each representing a new student pathway to be analyzed by the coders. Each

time a parameter was changed for a dataset 300 additional simulations were run.

4.6 Effect of variation in activity agreement

This dataset was designed to evaluate the effect of varying levels of agreement on

IRRA. Simulator values were Agreement were varied between at 0.00 and 0.95.

Dataset 1 Simulation Parameters:

Agreement: 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.95

Repetitions: 3

Coding Length: 10.0 – 20.0 min

Time between codes (sec): 5

Length of a code (sec): 3 – 120

4.7 Effect of number of coders

The number of coders should not affect the overall average, yet should decrease

the standard deviation among independent observations. The Repetitions parameter was

varied in the simulator to study the effects of increasing the number of coders. The

activity time variation was set at a medium level as compared with the first dataset. The

numbers of research coders tested was: 3, 5, 10, and 20. For the case of 20 coders a total

of 6000 coded XML files were generated (20 coders x 300 student pathways) for

evaluation. Agreement of 0.80 was chosen as it provided the most uncertainty, or

variance, from Dataset 1 results to study the effects of increasing coders.

Dataset 2 Parameters:

26

Agreement: 0.80

Repetitions: 3 | 5 | 10 | 20

Coding Length: 15 - 20 min

Time between codes (sec): 2

Length of a code (sec): 30 – 60

4.8 Effect of number of activities

The final dataset examined the effect of number of activities on IRRA. The

Coding Length parameter was varied while the Length of a code parameter was set to a

constant. Time between codes is the inverse of frequency of codes and was fixed at 2

seconds. An Agreement value of 0.80 was chosen as it resulted in the most variation in

Dataset 1.

Dataset 3 Simulation Parameters:

Agreement: 0.80

Repetitions: 3

Coding Length: 10 | 20 | 40 | 80 min

Time between codes (sec): 2

Length of a code (sec): 30

Step 2) Transform XML files into coded sequences

The XML files from Step 1 were transformed into coded sequences based on the

mapping in Table 9. The activities were segmented into one second intervals before

calculating IRRA. Without first parsing into one second intervals, the codes would be of

varying lengths. Furthermore, not parsing by one second allows two coded sets to have

27

identical code sequences, but different times associated with individual code activities

which is less than ideal. Times related with no activities are associated with a Blank

activity in order to distinguish time slots with no activity apart from those with activities

before applying the measurement.

Table 9: Activity code map

Category of

Activity Activity Description

Short-hand letter

representation

Information Reading problem description A

Information Finding Information B

Information Picking Information C

Information Deselecting Information D

Reasoning Connecting Multiple phenomena E

Reasoning Drawing a diagram/figure F

Reasoning Writing an equation G

Reasoning Identifying relevant phenomena H

Reasoning Stating an assumption I

Reasoning Describing a relevant principal J

Reasoning Justifying phenomena, assumption, … K

Metacognitive Developing a plan L

Metacognitive Monitoring their status M

Metacognitive Evaluating their approach N

Metacognitive Justifying their plan or evaluation O

Step 3) Evaluate and analyze coded sets

A separate application was developed, the protocol analysis evaluator, to

automate Step 2 and apply the IRRA metric. The evaluation process was separated from

the simulation process to remove any dependencies. Upon successful assessment the

evaluator results were transferred to JMP statistical software to be analyzed. A boxplot

was used to visualize differences between simulated agreement and IRRA and the

correlation was calculated to quantify the relationship.

28

CHAPTER 5: RESULTS

5.1 Varying code agreement

Increasing the levels of the Agreement parameter increases the average IRRA

(Table 10) based on three simulated coders.

Table 10: Average IRRA versus Agreement Parameter

Agreement Parameter

0 0.2 0.4 0.6 0.8 0.95

Average

IRRA
0.122 0.161 0.263 0.459 0.69 0.914

The correlation coefficient (R) is 0.94 for the Agreement parameter and IRRA,

indicating a strong linear association between the two variables (Rodgers & Nicewander,

1988). This provides support that IRRA is an effective metric for inter-rater agreement. A

nonlinear region was found for Agreement values less than 0.4 (see Figure 4). The

boxplot whiskers represent the minimum and maximum observations of IRRA for

designated Agreement values. Agreement of 0.4, 0.6, and 0.8 yield a higher IRRA

variance than that of very high or very low agreement.

29

Figure 4: Boxplot of IRRA metric observations varying code agreement

The IRRA samples had a large minimum to maximum observation interval for

each set of parameters which was influenced by the uniformly generated Length of Code

parameter. This caused high activity sample variation which generated between 5-400

codes.

The mean was evaluated for all simulated variables represented by 300 samples

each. Confidence intervals surrounding the mean do not overlap as indicated by the width

of the calculated 99% confidence intervals (Table 11). The mean confidence intervals of

Agreement 0.0 and 0.2 are the closest to overlapping, but still provide statistically

significant results.

30

Table 11: Means and standard deviations of agreement levels for 300 samples each

Agreement

Level
Mean

Std

Dev

Lower

99%

Upper

99%

0% 0.1216 0.0521 0.1138 0.1293

20% 0.1611 0.0548 0.1529 0.1693

40% 0.2631 0.0719 0.2523 0.2738

60% 0.4587 0.0703 0.4482 0.4693

80% 0.6895 0.0788 0.6778 0.7013

95% 0.9138 0.0614 0.9046 0.923

When the Agreement parameter is 0.0, there is complete randomness amongst

coders. This represents a scenario where coders are purely guessing because the data is

difficult to interpret or the coders are poorly trained. The mean posted for Agreement =

0.0 is 0.1216 (see Table 11). However, any value up to approximately 0.30, though rare,

is possible given random parameters (as seen in Figure 4). The level of agreement was

used as a control for complete randomness. A similar technique was recommended in

other string-editing algorithms to determine a baseline (Sellers, 1974). In this dataset,

values in the range of 0.30 to 1.00 are only achieved by having some level of agreement

between coders.

5.2 Varying number of coders

By varying the number of coders, we address the issue of how many coders

should be used in protocol analysis. Simulations were performed with an agreement level

of 0.80 and each dataset had 300 observations. As the number of coders increase, the

minimum to maximum interval of IRRA measurement values decrease resulting in more

reliable estimates of inter-rater agreement (see Figure 5). There are observed diminishing

31

returns in minimum to maximum IRRA intervals as an increase from 10 to 20 coders

provides a smaller interval gain than 3 to 5 coders.

Figure 5: Boxplot of IRRA metric observations varying research coders

Additionally, there is a decrease in variation from 3 coders to 20 coders which is

observed in the histogram interval (See Figures 6 & 7). It was found the IRRA metric at

Agreement 80% converged around value 0.68.

32

Figure 5: Histogram of 80% Agreement with 3 coder evaluations

Figure 6: Histogram of 80% Agreement with 20 coder evaluations

33

5.3 Varying the number of activities

Dataset 3 was defined to evaluate the effects of increasing the number of

activities, or codes, on IRRA. As in previous datasets, all codes are parsed by one second

before applying the custom IRRA measurement in order to avoid codes of unequal code

length. The results found that increasing the number of the codes has little effect on the

average value (see Table 12) but decreased observed measurement variation and

minimum and maximum intervals (Figure 7). The result is consistent with statistical

sampling because as the number of activities increase the estimate of the standard

deviation decreases. The implication in this context is that datasets with relatively few

activities are unlikely to provide meaningful results unless the activities are easily

interpreted. These results can provide guidance for researchers in designing their “think-

aloud” scenarios so that there are sufficient activities.

Table 12: Varying Coding lengths

 Coding length (min)

20 40 80 160

Average IRRA

Measurement 0.698 0.694 0.688 0.687

34

Figure 7: Boxplot of IRRA varying code frequencies

Increasing the length of a protocol analysis decreases the variation between

independent observations. When protocol analysis studies increase in time the variation

between coders decrease as the IRRA is able to more accurately predict a measure for

agreement. Similar to number of coders there was a diminishing return on increasing the

coding length. The results indicate, based on the simulator parameters, coding sets above

80 minutes long do not provide any substantial variance reduction.

35

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusion and future work

We formulated a new inter-rater agreement metric based on previous work in

string matching. The metric uses the Levenshtein Distance, an algorithm designed for

determining differences in strings. In studies involving multiple coders, a high degree of

agreement is necessary to make valid conclusions. The performance of the metric was

evaluated using a simulator that generated coded activity sets. Codes were parsed into 1

second intervals before applying the measurement; otherwise the activities would have

varying duration. We found strong correlation (R= 0.94) between simulated agreement

and the IRRA metric. Agreement results in Chapter 5.1 provided suggested inter-rater

intervals for future evaluations utilizing the IRRA measurement (Table 13).

Table 13: Coder agreement suggested intervals

Coder agreement range

None 0 - 0.20

Low 0.20 - 0.40

Medium 0.40 - 0.60

High 0.60 - 0.80

Very high 0.80 - 1.00

Even though there was high correlation between agreement and IRRA, there was

significant observed variance in the IRRA estimates as can be seen in the overlap of

distributions (Figure 4). Increasing the number of coders and increasing the number of

codes decreased the variation of IRRA.

 The datasets in Chapter 3.2 that were incorrectly evaluated by Cohen’s Kappa are

compared to the IRRA metric (Table 14 & 15). The results indicate the custom IRRA

36

metric can handle all datasets available in protocol analysis as opposed to only

subsection.

Table 14: Comparing Cohen’s Kappa to IRRA metric example 1

Rater Sequence
Cohen’s

Kappa

Custom

IRRA

Metric

1 AAAAABBBBBAAAAAAAAAABBBBBCCCCCCCCCC

0.38 0.91

2 AABBBBBAAAAAAAAAABBBBBCCCCCCCCCC---

Table 15: Comparing Kohen’s Kappa to IRRA metric example 2

Rater Sequence
Cohen’s

Kappa

Custom

IRRA

Metric

1 ABCDEFG

0.00 0.86

2 BCDEFG-

 It is worth noting the custom IRRA metric, similar to other inter-rater

measurements, cannot evaluate a bad coder. A bad coder is a researcher who does not

know how to correctly identify the proper protocol analysis activities. The measurement

evaluates the similarity, or distance, between coders evaluating activities. The possibility

still exists that all coders have similar results, but all apply a similar incorrect

methodology in protocol analysis surveys. One possible solution to this problem is to

compare a research coder in training to that of an expert research coder until their results

become similar enough for independent work. Another solution is to create training

datasets where the behavioral actions are known and verified. Training research coders

can evaluate the training sets until reaching a threshold IRRA value. Both these scenarios

37

are not the main purpose of the custom IRRA metric, however the measurement can

provide additional uses in student to expert research.

Opportunity for future work includes refining this approach in order to determine

more appropriate boundaries for coder agreement states by determining the relationship

of parameters. Another opportunity of exploration is varying the parsing, or separation,

timings for protocol analyses. Analyzing at lower parse times, such as one second, the

algorithm favors transformational operation substitution over insertion or deletion due to

quantity of data. The custom IRRA measurement may be able to provide similar results

with less data than traditional methods. It is expected that increasing this interval will

reduce the variance of many estimates.

A large improvement in reducing variation and increasing the ability to

hierarchically cluster related sequences (Corpet, 1988) could be gained by using an

algorithm with a conversion matrix and penalty gap matrices. However, additional

research is required before adding these components because changing conversion

matrices can have significant consequences (either good or bad) on the magnitude of the

measurement (Wu, 2000). One way to calculate a conversion matrix in text matching is to

have costs inversely proportional to the transition rates (Lesnard, 2006). In this

methodology more common typing mistakes are less costly than uncommon blunders

which allow identification of the most probably correctly spelled word to replace the

incorrect word. However, this does not transfer in the same respect to inter-rater

agreement. A proposed solution is to have more difficult to recognize code

disagreements, such as Monitoring their status in place of Evaluating their approach

38

activity cost less than a more easily distinguishable action disagreement such as

identifying Drawing a figure/diagram in place of a Calculating activity.

Another alternative for an inter-rater agreement metric beyond string-editing

algorithms is hidden Markov chains. This approach has been used for the same sequence

analysis problem domain as string-editing algorithms (Rabiner, 1989) (Hughey & Krogh,

1996). A probabilistic approach may be able to improve insights into more of the

behaviors of student pathway sequences in addition to providing a reliable quantitative

metric.

39

REFERENCES

Abbot, A. (1995). Sequence analyis: new methods for old ideas. Annual review of

socialogy, 93-113.

Abbott, A., & Forrest, J. (1986). Optimal matching methods for historical sequences.

Journal of Interdisciplinary History, 471-494.

Antonenko, P. D., Ogilvie, C. A., Niederhauser, D. S., Jackman, J., Kumsaikaew, P.,

Marathe, R. R., et al. (2011). Understanding student pathways in context-rich

problems. Education and Information Technologies, 323-342.

Blanchard, P., Buhlmann, F., & Gauthier, J. A. (2012). Sequence Analysis in 2012.

Unpublished paper present at Lausanne Conference on Sequence Analysis.

Brzinsky-Fay, C., & Kohler, U. (2010). New developments in sequence analysis.

Sociological Methods & Research, 359-364.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of

physics problems by experts and novices. Cognitive science, 121-152.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educatinoal and

Psychological Measurement, 20, 37-46.

Cohen's Kappa. (2007). Retrieved 3 23, 2013, from psych.unl.edu:

http://psych.unl.edu/psycrs/handcomp/hckappa.PDF

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic

acids research, 16(22), 10881-10890.

Craig, R. T. (1981). Generalization of Scott's index of intercode agreement. Public

Opinion Quarterly, 45, 260-264.

Dijkstra, W., & Taris, T. (1995). Measuring the agreement between sequences.

Sociological methods and research, 24(2), 214-231.

Elzinga, C. H. (2003). Sequence Similarity A Nonaligning Technique. Sociological

Methods & Research, 32(1), 3-29.

Ericsson, K. A. (2006). The influence of experience and deliberate practice on the

development of superior expert performance. The Cambridge handbook of expertise

and expert performance, 683-703.

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters.

Psychological Bulletin, 76, 378-382.

40

Gwet, K. (2001). Handbook of inter-rater reliability. Gaithersburg, MD: Advanced

Analytics, LLC.

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System

technical journal, 29(2), 147-160.

Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability

measure for coding data. Communication Methods and Measures, 1(1), 77-89.

Holsti, O. R. (1969). Content analysis for the social sciences and humanities. Reading,

MA: Addison-Wesley.

Hughey, R., & Krogh, A. (1996). Hidden Markov models for sequence analysis:

extension and analysis of the basic method. Computer applications in the

biosciences: CABIOS, 12(2), 95-107.

Illiopoulos, C. S., & Rahman, M. S. (2009). A new efficient algorithm for computing the

logest common subsequence. Theory of Computer Systems, 45(2), 355-371.

Kipp, M. (2001). Anvil A Generic Annotation Tool for Multimodal Dialogue.

Proceedings of the 7th European Conference on Speech Communication and

Technology (Eurospeech), 1367-1370.

Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly

Hills, CA: Sage.

Kruskal, J. B. (1983). An overview of sequence comparison: Time warps, string edits,

and macromolecules. SIAM review, 25(2), 201-237.

Landis, R. J., & Koch, G. G. (1977). The Measurement of Observer Agreement for

Categorical Data. Biometrics, 33(1), 159-174.

Lesnard, L. (2006). Optimal matching and social sciences. CREST-INSEE Work. Pap.,

Inst. Natl. Stat. Etudes Econ.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. Sov. Phys. Dokl., 10, 707-710.

Mabroukeh, N. R., & Ezeife, C. I. (2010). A taxonomy of sequential pattern mining

algorithms. ACM Computing Surveys (CSUR), 43(1), Article No. 3.

MacIndoe, H., & Abbott, A. (2004). Sequence analysis and optimal matching techniques

for social science data. Handbook of data analysis, 387-406.

41

Marzal, A., & Vidal, E. (1993). Computation of normalized edit distance and

applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

15(9), 926-932.

Masek, W. J., & Paterson, M. S. (1980). A faster algorithm computer string edit

distances. Journal of Computer and System sciences, 20(1), 18-31.

Myford, C. M., & Wolfe, E. W. (2009). Monitoring rater performance over time: A

framework for detecting differential accuracy and differential scale category use.

Journal of Educational Measurement, 46(4), 371-389.

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing

Surveys (CSUR), 46(4), 31-88.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular

biology, 48(3), 443-453.

Neter, J. (1996). Applied linear statistical models. Chicago: Irwin.

Pulakos, E. D. (1984). A comparison of rater training programs: Error training and

accuracy training. Journal of Applied Psychology, 69(4), 581-588.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Rodgers, J. L., & Nicewander, A. (1988, Feb). Thirteen Ways to Look at the Correlation

Coefficient. The American Statistician, 42(1), 59-66.

Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding.

Public opinion quarterly.

Sellers, P. H. (1974). On the theory of computation of evolutionary distances. SIAM

Journal on Applied Mathematics, 15(1), 787-793.

Tinsley, H. E., & Weiss, D. J. (1975). Interrater reliability and agreement of subjective

judgements. Journal of Couneling Psychology, 22, 358-376.

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal

of the ACM (JACM), 21(1), 168-173.

Wu, L. L. (2000). Sequence analysis and optimal matching methods in sociology: Review

and prospect. Sociological methods and research, 29(1), 41-64.

APPENDIX A

Figure A: Visualization of two independent student pathways after a protocol analysis is performed by a coder

4
1

43

APPENDIX B

Suppose we are given the following two strings:

String 1- thesis

String 2 - oasis

1) The first step is to start forming a table of the costs or all transformations.

Here we assume a unit cost of 1 for all transformations.

2) Complete Table 1– Convert String 1: “” to String 2: “”, “o”, “oa”, “oas”,

“oasi”, “oasis”

Table 1: Converting “” to “oasis”

 o a s i s

0 1 2 3 4 5

t 1

Table 1 explains the required steps to convert String 1: “” to String 2: “” is 0 steps

as none of the characters are equal.

To convert String 1: “” to String 2: “o” is 1 step.

To convert String 1: “” to String 2: “oa” is 2 steps, etc.

3) Next, we add a row converting the cost of String 1: “t” to characters of

String 2 (Table 2)

Table 2: Converting "t" to "oasis" position letters “t” and “o”

 o a s i s

0 1 2 3 4 5

t 1 ?

Cost of converting String 1: “t” to String 2: “” in Table is obviously equal to 1.

Determining the cost of converting String 1: “t” to String 2: “o” is a bit more complex as

it is a minimum cost value associated with the following transformational operations.

44

1) Add

 Calculate 1 plus the cost of converting “t” to “” (the left position)

 Costs = 1 + 1 = 2

2) Remove

 Calculate 1 plus the cost of converting “” to “o” (the above

position)

 Cost = 1 + 1 = 2

3) Change

 Calculate 1 plus the cost of converting “” to “” (up and to the left

position)

 Cost = 0 + 1 = 1

Therefore, the minimum cost to the missing value in Table 2 is 1 which

corresponds to the change operation. This cost will be added to the matrix in the missing

location.

4) Continue with the next entry in the matrix

Table 3: Converting "t" to "oasis" position letters “t” and "oa”

 o a s i s

0 1 2 3 4 5

t 1 1 ?

Convert String 1: “t” and String 2: “oa” using the minimum of the three

transformational operations.

1) Add

 Calculate 1 plus converting “t” to “o” (the left one position)

 Cost = 1 + 1 = 2

2) Subtract

 Calculate 1 plus converting “” to “oa” (the up one position)

 Cost = 2 + 1 = 3

3) Change

45

 Calculate 1 plus converting “” to “o” (up and to the left position)

 Cost = 1 + 1 = 2

The minimum cost for the entry in Table 3 is 2 which can be added to the matrix

in the missing location.

5) Continue with the next entry in the matrix

Table 4: Comparing "t" to "oasis" position letters “t” and "oas"

 o a s i s

0 1 2 3 4 5

t 1 1 2 ?

6) Continue filling in the matrix using the same methodology

Table 5: Completed cost matrix between "thesis" and "oasis"

 o a s i s

 0 1 2 3 4 5

t 1 1 2 3 4 5

h 2 2 2 3 4 5

e 3 3 3 3 4 5

s 4 4 4 3 4 4

i 5 5 5 4 3 4

s 6 6 6 5 4 3

Each matrix includes a minimum cost path, or pathway chosen determined by

minimizing the costs associated with each operation (this example all costs are 1). The

minimum cost path in the cost matrix is highlighted in the completed Table 5. There may

be more than one path of equal values in order to reach the minimum cost. In this

example the three paths that provide the minimum costs correspond to the following

word changes:

46

t h e s i s

- o a s i s

t h e s i s

o - a s i s

t h e s i s

o a - s i s

The last column in the last row of the completed cost matrix indicates the

minimum distance between the two strings (aka edit distance). In this example, the edit

distance is 3. The distance by this method is bound between 0 (words are the same) and 6

(completely different).

