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ABSTRACT 

This thesis investigated the impact of manufacturing process modifications for the 

bulk manufacture of curcumin implants for diabetic neuropathy pain relief. A homogeneous 

mixture of poly(caprolactone) (PCL) and curcumin was blended using cryomilling as an 

alternative to the solvent mixing method. Cryomilling was selected due to its faster 

processing time and reduced cost of materials in comparison to the solvent method. X-ray 

diffraction (XRD) was used to characterize the resulting mixture to determine the efficacy of 

cryomilling as an option for blending curcumin and PCL powders. In addition to cryomilling, 

compression molding was selected as the manufacturing method to allow for the creation of 

implant molds featuring threaded geometry on the millirod surface. Implants were 

subsequently evaluated in vitro for 30 days. Curcumin loaded millirod implants with 

complex threaded surface geometry were found to have a higher, but not significant, percent 

mass loss after degradation and average daily curcumin release than the cylindrical implants.  

It can be concluded that the utilization of cryomilling for the creation of curcumin loaded 

implants in bulk is an easier to manipulate and more cost effective method of combining PCL 

and curcumin without sacrificing implant effectiveness. 
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CHAPTER I: GENERAL INTRODUCTION 

Diabetic neuropathy stems from nerve damage caused by elevated blood sugar levels 

for a prolonged period of time. Neuropathy in diabetics usually manifests in the legs and feet 

and the resulting pain is difficult to manage [1-4]. Current accepted anti-inflammatory agents 

to manage neuropathy pain, such as tricyclic antidepressants, pregabalin, or duloxetine, carry 

negative side effects including dizziness, weight gain, or arrhythmias [1]. There is a need for 

an active treatment to help with the management of pain caused by neuropathy that gives 

patients better pain relief without the negative side effects.   

Curcumin is a natural polyphenolic found in turmeric (Curcuma longa) that has been 

shown to disrupt inflammatory pathways in cells [5-7]. Additional studies have linked 

curcumin to modulation of curcumin to anti-oxidant factors [8]. The ability for modulation of 

these pathways is increasingly important as diabetes and inflammation are linked [9, 10]. 

The major challenge facing curcumin as a viable anti-inflammatory agent is its low 

bioavailability due to poor absorption and rapid metabolism of the compound when ingested 

[11]. Therefore it is necessary to encapsulate curcumin in order to ensure that the compound 

maintains its effectiveness as an anti-inflammatory agent. Encapsulation would protect the 

compound from premature release into the body and allows for continued release over the 

life of the implant. To increase the drug effectiveness, curcumin should not be introduced to 

the body orally, but rather implanted locally to the site of discomfort or intraperitoneally [12-

14].  

Previous work has successfully created cylindrical curcumin implants [14], but little 

work has been done on the effect of different geometries on drug release rate. Other studies 

have linked an increased surface area to higher implant degradation and drug release rates 
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[15]. Bansal et al. did an in vivo evaluation of curcumin loaded polymer implants in 

subcutaneous tissue in rats to confirm its effectiveness as a chemopreventive delivery system 

[16]. By modifying the shape of the implant to increase surface area, the release rate of the 

dose can be customized. The proposed implant geometry for this research is a cylinder with a 

threaded surface feature, allowing for additional surface area while maintaining ease of 

manufacture.  

The rationale for using a threaded implant geometry is that the implant shape 

increases surface area while providing texture for the implant to anchor to the fascia 

connective tissues in the body to reduce implant mobility after insertion. Fabrication of this 

implant was done via compression molding using poly(caprolactone) acid (PCL) 

incorporated with curcumin. 

Curcumin was encapsulated with molded PCL to achieve controlled sustained release 

at the implant site. PCL is a Federal Drug Administration (FDA) approved polymer for 

human clinical use due to its proven biocompatibility and low toxicity. This product does not 

accumulate in vital organs and is created in the process of carbohydrate metabolism. 

Controlling the surface area of the implant will regulate drug release. 

One combination ratio of curcumin and PCL was fabricated: 15% curcumin-85% 

PCL, in two different geometry types: threaded or cylindrical. The drug load percentage was 

selected from the previously tested loading range of 2-50%, of which drug loads greater than 

10% had constant drug release [14]. In order to have the curcumin suspended in the PCL, 

samples were cryomilled to reduce particle size and blend the two components. The resulting 

polymer-curcumin mixture underwent compression molding at 71 °C. Samples were then 

extracted from the mold and processed to remove any flash or residual material.  
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Implants were then placed in amber vials in a solution of 10 mLs phosphate buffer 

solution (pH 7.4) and supplemented with 10% v/v bovine calf serum to simulate the body 

environment. Vials were incubated at 37° C on a shaker table at 150 rpm. Implant media was 

changed every 48 hours and the implants were weighed to determine total percent mass loss. 

Degradation media was analyzed via spectrophotometer to confirm average curcumin release 

per day of degradation. 

 XRD analysis of the cryomilled curcumin polymer mix retained a key characteristic 

peak of curcumin near the 10° mark. This peak was not present in the solvent mixed 

curcumin and PCL indicating that cryomilling does not mask the major characteristic peak of 

curcumin to the extent that solvent mixing does. The results from the degradation showed 

that the degradation of the threaded geometry implant had a significant increase in the 

percent mass loss and the average daily release of curcumin over cylindrical curcumin loaded 

implants.  

 

Thesis Organization 

 The format of this thesis is as follows. Chapter 2 is a literature review encompassing 

previous research involving curcumin as an anti-inflammatory agent, curcumin based 

implants, and evaluation of created implants. Chapter 3 covers previous research related to 

drug delivery systems that led to this project. Chapter 4 contains the manuscript to be 

submitted to the Journal of Manufacturing Processes and covers the main experiment of this 

thesis outlining the effect of geometry shape on in vitro degradation behavior of curcumin 

implants. A general conclusion can be found in Chapter 4 in addition to future work.   
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CHAPTER II: LITERATURE REVIEW 

2. 1 Painful Diabetic Neuropathy 

According to the American Diabetes Association, 30 million Americans have 

diabetes and 60-70% of diabetics suffer from diabetic neuropathy [17]. Painful diabetic 

neuropathy (PDN) is associated with numbness in the legs and feet, but can be described as a 

stabbing or burning sensation in severe cases. Although the pain from PDN is not life 

threatening, it does impact a diabetic’s quality of life as numbness can lead to an increased 

risk of falling, ulcers or amputation [18, 19].  

Neuropathy in diabetics is caused by the increased demand of nerve endings in the 

body due to elevated glucose levels in the blood for an extended period of time. The excess 

glucose in the cell system results in additional glycolysis that can overload the electron 

transport chain resulting in the creation of reactive oxygen species (ROS) [20]. Increased flux 

through different signaling pathways also result in oxidative stress and inflammatory injury 

[20, 21]. 

  

2.2 Synthetic Drugs Used for Painful Diabetic Neuropathy 

 Complete relief for diabetic neuropathy pain is difficult to achieve, as there are no 

treatments currently on the market that relieve associated pain completely. Since PDN is 

highly correlated to hyperglycemia, strategies to control a patient’s glycemic index are 

generally considered the first step in PDN management [1, 22, 23].  However, certain kinds 

of antidepressants and antiepileptic drugs have had some effect on reducing pain perception 

in patients. 
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Tricyclic antidepressants like amitriptyline work by preventing reuptake of 

noradrenaline and serotonin in the brain, allowing these neurotransmitters to collect and 

effectively block pain signals along the spinal cord [24]. Like most antidepressants, 

determining actual dosage requires trial and error and patients may not see any changes in 

pain for several weeks after starting the medication. Amitriptyline is not without its side 

effects which can include dizziness, dry mouth, and weight gain [25-27]. More serious side 

effects can include seizures, hallucinations, or hypersensitivity syndrome [28, 29].  

Antiepileptic drugs are also currently being used to manage neuropathy pain. Some 

commonly prescribed antiepileptics for PDN include gabapentin and pregabalin. Gabapentin 

is well tolerated medication with minor side effects such as drowsiness. However a crossover 

study comparing gabapentin and amitriptyline for PDN pain relief found amitriptyline to 

provide greater pain relief [30]. Pregabalin is another commonly prescribed medication for 

the treatment of PDN, and while it is mostly well tolerated, it has rare side effects that 

include acute renal failure and acute angle glaucoma [1]. 

As previously mentioned, pain relief for diabetic neuropathy is difficult to manage, 

even with the introduction of an antidepressant or antiepileptic drug. In many of the studies 

looking at the efficacy of these drugs for mitigating PDN pain, a drug therapy is considered 

successful with a 50% reduction in pain [1]. Current offerings leave patients with PDN 

having to trade off potentially serious side effects for incomplete pain management.  

 

2.3 Non-Pharmaceutical Alternatives 

2.3.1 Capsaicin 
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Several studies have analyzed the efficacy of topical capsaicin creams to help treat 

PDN symptoms. Capsaicin is responsible for the pungent trigeminal sense of heat during 

consumption of peppers. Repeated application of capsaicin to skin has been shown to 

inactivate nociceptors resulting in decreased sensitivity to heat and mechanical stimuli [31]. 

However, application of creams must be done using gloves to reduce the risk of cross 

contamination of capsaicin to other parts of the body, such as the face. Introduction of 

capsaicin to open wounds is not recommended and patients may experience localized burning 

or stinging at the application site during the first week of treatment [1]. A review of capsaicin 

efficacy found moderate improvements in treatment of neuropathic pain, but stated that 

capsaicin creams may be better as an adjunct therapy or sole therapy for patients who are 

intolerant of other types of pain management [32]. 

 

2.3.2 Traditional Chinese Medicine 

 Traditional Chinese medicine (TCM) is an ancient form of healthcare in China that 

utilizes herbal medicines in addition to acupuncture and massage [33]. Over 80 herbal 

medicines have been characterized with antidiabetic effects, 10 of which are frequently used 

for diabetes and related complications [34, 35]. The main compound prescribed for diabetes 

is Radix astragali, which is derived from Astragalus membranceus [36]. The active 

polysaccharides in R. astragali are thought to modulate hypoglycemia in patients in addition 

to having an anti-inflammatory effect by disrupting several different inflammatory pathways 

[9]. Ginseng (Radix ginseng) is another common TCM that is used for management of 

hyperglycemia through increased production and sensitivity to insulin [37]. However the 

largest challenge facing the herbal component of TCM is acceptance and quantification of 
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the effects of herbal remedies. Future use of these homeopathic remedies depends heavily on 

the validation and analysis of active compounds in TCM through modern evaluation 

techniques and controlled studies.  

 

2.3.3 Curcumin 

Curcumin is a minor component found in the spice turmeric. Curcuminoids, 

consisting primarily of curcumin and cyclic curcumin, make up roughly 2%-9% of turmeric 

and can be extracted in a variety of means [38]. As a drug, curcumin has been shown to be an 

effective anti-inflammatory agent in previous studies for a variety of diseases including 

cancer and cardiovascular disease [39-41]. Curcumin has also shown anti hyperglycemic 

effects in previous studies with type 2 diabetics [42]. As mentioned earlier, control of a 

patient’s glycemic index is a key component to managing PDN. 

However, curcumin is rapidly metabolized into glucuronides and curcumin sulfates 

by the body when orally ingested, requiring large initial doses to be ingested for therapeutic 

effects to be seen [43]. Cheng et al. reported no dose limiting toxicity at 8,000 mg/day of 

curcumin, and similar studies confirm no toxicity at dosages as high as 12,000 mg/day [44, 

45].   Analysis of serum concentrations in humans taking 8,000 mg doses showed a peak 

concentration of 3.6 μM of curcumin one hour after oral intake which then held steady at 0.6 

μM for the next 20 hours [44]. This facilitates the need to encapsulate curcumin to ensure 

that the active compounds remain effective systemically. Attachment of curcumin to other 

components like liposomes, polymers and surfactants have been shown to reduce the 

degradation of curcumin [46]. An implantation device loaded with curcumin and placed 
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subcutaneously or intraperitoneally in the body would bypass the digestive system and liver 

and allow for higher curcumin levels in plasma [47].  

 

2.5 Cryomilling  

 In order to create an effective polymer-drug matrix, previous curcumin implant 

studies have utilized solvent evaporation to encapsulate the hydrophobic spice [14, 48-50]. 

This method requires that the curcumin be dissolved in dichloromethane (DCM) while the 

polymer be dissolved in ethanol. These two solutions would then be mixed together and their 

solvents would be evaporated off overnight [14].  

In order to more rapidly create a polymer-drug matrix, cryomilling can be used to 

reduce the processing time to under an hour, depending on the parameters set. Cryomilling 

subjects samples to low temperatures through the use of liquid nitrogen. At this low 

temperature, materials are beyond their crystalline point making them very brittle. 

Cryomilling utilizes this key material property change to mix and refine the particle size. One 

of the large advantages to utilizing cryomilling is that no solvents are required for mixing, 

especially since both ethanol and DCM can be hazardous when handled [51, 52]. Using a 

solvent also runs the risk of having residual solvent remain in the PCL and curcumin mixture. 

Gupta et al. evaluated the residual levels of DCM in solvent mixed PCL and curcumin via 

GC-MS and found no DCM at a detection level of <1.6 ppm [15]. Estimates of the cost of 

liquid nitrogen have been previously stated as $1/L [53]. However, the cost of liquid nitrogen 

to operate the cryomill from the Iowa State Chemistry Stores is $0.85/L. In comparison, 200 

proof ethanol and dicholormethane currently go for $100/L and $58/L respectively when 

purchased through Sigma Aldrich (does not include cost of shipping).  Using the small 
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benchtop cryomill [SPEX Sample Prep Freezer Mill 6770 (Metuchen, NJ, USA)] 2L of 

liquid nitrogen can process 5.70 g of PCL and curcumin mixture. This is enough to fabricate 

72 threaded geometry implants for a cost of $0.023 per implant.  To solvent mix the same 

mass of PCL and curcumin, about 12.60 mL of dicholormethane and 6 mL of ethanol are 

required to dissolve the individual implant components prior to combination. This would 

produce 72 threaded geometry implants at a cost of $0.023 per implant but does not include 

additional waiting costs incurred for solvent evaporation. 

Previous work has looked at the efficacy of creating large quantities of curcumin and 

polymer blends via cryomilling [54]. Based on their findings, Wegiel et al. determined 

cryomilling was an effective method of creating amorphous curcumin and polymer powders 

in large quantities. However, no mixing of PCL and curcumin was done in this study.  

 

2.6 Drug Delivery Implants 

 

Figure 2.1: Types of implantable drug delivery systems, their implantation devices, and 
example in vivo implantation locations [55]. 

 
 

 

Wolinsky (2012) 
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2.6.1 Implants 

 The previously mentioned pharmaceutical solutions for PDN pain management are 

administered in a form that is taken orally. This route normally results in the metabolism of 

the drug in the liver and is transported through the body via the bloodstream.  However, a 

growing trend in drug delivery systems research is the investigation of drug loaded 

implantable or injectable self-assembling devices as a method to deliver more effective doses 

to the area of need. After implantation, the device degrades, simultaneously releasing the 

loaded drug into the immediate area. An implant specifically designed for diabetic 

neuropathy pain relief would ideally be designed to be minimally invasive, easy to insert into 

the target area, and provide effective relief for an extended period of time. There are several 

different types of implants currently being researched for drug delivery applications that 

could be used for PDN management including hydrogels, films, wafers and millirods. Some 

of the drug delivery options, implant locations, and implant devices can be found in Figure 

2.1. 

 
2.6.2 Hydrogels 

Hydrogels are composed of hydrophilic polymer chains that can absorb large amounts 

of water and can be made in stable or degradable forms [56]. There is no set chemical 

formulation that characterizes a hydrogel, as many different material combinations can be 

utilized to obtain a hydrogel with the desired liquid loading characteristics [57-59].These gels 

are easily mixed with small molecule hydrophilic drugs, and inclusion of hydrophobic 

domains within a hydrogel can help with the dispersion of hydrophobic drugs [60].  

Applications for hydrogels in drug delivery include cancer and treatment of 

inflammatory bowel disease (IBD). Localized delivery of chemotherapeutics would minimize 
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damage to healthy cells as some anti-cancer drugs cannot distinguish between cancer cells 

and normal cell tissue [61].  Guo et al. created a linoleic acid conjugated poloxamer hydrogel 

for the application of long term delivery of anti-cancer drugs resulting in the disruption of 

Akt 1 signals [62]. Similarly, chitosan hydrogels loaded with a variety of anti-cancer drugs 

including paclitaxel and camptothecin have been evaluated as alternative delivery 

mechanisms in different cancer types with some success in vitro and in vivo [63, 64].  In 

another application, a negatively charged ascorbyl palmate hydrogel was created for the 

delivery of anti-inflammatory drugs for IBD treatment [65]. Evaluation of the hydrogel in 

mice found a decreased severity of the disease in mice treated with the drug loaded hydrogel. 

Utilization of the hydrogel also limited the spread of the anti-inflammatory drugs to other 

parts of the body, as the serum concentration for the hydrogel group was lower than that of 

the control group using the free form of the drug.  

  One of the challenges facing hydrogels is during the implantation phase. 

Thermosensitive hydrogels remain in an aqueous form at room temperature for easy injection 

into a target site. Once at body temperature it assembles into a gel [63]. However this 

solution still runs the risk of clogging the needle or premature gelation in the syringe itself 

[60]. 

 
2.6.3 Polymeric Films 

 Polymeric films are another method of drug delivery implants that have been 

explored for inclusion into soft tissues [55]. A common method for film creation is casting 

which involves the introduction of the liquid polymer to a mold and allowing it to cure. 

Depending on the mold, additional processing to alter the size and shape may be needed [66]. 
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Materials like silk, PLGA, PVA, and PCL have previously been successfully cast into films 

for drug delivery purposes [67-70].  

Electrospinning is another method of manufacturing polymer films through the 

creation of fibers by applying a voltage to a needle and grounding the system to a collecting 

plate [71]. The charge difference across the system helps to draw the polymer fibers from the 

polymer when it is deformed into a Taylor cone [72]. Electrospun mats can be created using 

a variety of polymers including silk, PLA, and PCL [73-75]. The thread diameter and mat 

thickness can be controlled through several parameters including time, needle gauge, 

pumping rate, voltage, and distance between the needle and the collecting plate [76]. 

Applications for electrospun mats center on active wound healing and infection prevention 

through the incorporation of drugs [77]. Uses for mats as wound dressings could include 

application external to the body to assist in burn healing, or internally to the body as a way to 

assist healing following surgery [78]. In a PDN relief application the mat would need to be 

implanted to achieve the desired prolonged degradation characteristics. 

 

2.6.4 Wafers 

 The Gliadel Wafer is the only FDA approved current market solution for patients 

requiring brain cancer treatment [79]. The Gliadel Wafer has been used in over 20,000 

procedures in the US since its launch in 1997 [80]. The wafer is deposited in a cavity of the 

brain following removal of the primary tumor [55]. Because implants are placed intra-

cranially, the effective chemotherapeutic can directly target cancerous cells in the immediate 

surroundings without the challenges of navigating the blood-brain barrier as with systemic 

chemotherapy options. A recent study by Boateng et al. created freeze dried wafers as drug 
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delivery devices for wound healing applications [81].  However, due to their physical 

characteristics, wafers are not able to be implanted via injection and must be placed 

surgically in the body, or through open wounds [55]. 

 

2.6.5 Millirods 

 Millirods are thin, preformed polymeric cylinders that can serve as extended drug 

release devices. This type of drug release solution is currently being used in the market for 

long term contraception. Progestin millirods are injected sub-dermally and can provide three 

years of contraception protection [82]. Current research is exploring millirod implants as a 

potential chemopreventive solution. In addition to an easy implantation method, millirods 

can be made using several different types of manufacturing methods including casting and 

melt extrusion [55]. At small scales, sacrificial encapsulation of the polymer in silastic tubing 

is a method of achieving millirods through melt extrusion [14]. For larger bulk scales a 

sacrificial manufacturing method is not the most efficient or cost effective route of implant 

creation. Casting, compression molding, or continuous extrusion using a fixed die would be 

manufacturing methods utilized at a larger scale. Millirods are excellent candidates for bulk 

manufacture as the main point of customization would be at the point of implantation, 

allowing for the production of implants in bulk.  

 

2.7 Effect of Geometry on Degradation 

Degradation of polymer implants tends to happen in one of two forms: surface or bulk 

erosion [83-85]. Factors affecting the degradation and erosion of a polymer can include 

chemical interactions between polymer and drug, pH of the environment, or by the addition 
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of copolymers [83]. Understanding and modeling erosion behavior of drug delivery devices 

is complicated by the introduction of water to the polymer implant which may result in 

swelling and changes in pH [83]. Geometry has only recently gained traction as a way to 

alter functionality of a drug delivery implant [86]. Findings from a study by Burkersroda et 

al. measured the degradation of cylindrical polymer matrices and found that polymers were 

able to undergo both types of degradation profiles depending on geometry and degradation 

parameters [84].  Klose et al. evaluated PLGA films and microparticles and found that the 

geometry of the delivery devices to have a large impact on the release profiles for drugs [68].  

 The focus around geometry in drug delivery systems tends to center around the 

efficacy of vascular and endothelial carriers [87, 88]. These have typically taken the form of 

microspheres, but continued research in the kinetics and release properties of different 

geometry carriers has led to the creation of ellipsoids and disks [88].  Non-spherical delivery 

devices are thought to have an advantage as vascular delivery systems due to their high 

surface area to volume characteristics allowing for increased environment interactions and 

the potential to reach more diverse targets in the body [86]. However not much work has 

been done specifically on the impact of complex geometry on drug release rates for 

subcutaneous or intraperitoneally targeted millirod implants beyond changes in millirod 

diameter [14]. 

One of the few examples of long term implantable polymer drug delivery devices 

with complex geometries was a honeycomb structure created by Yang et al [89]. This study 

was done as a proof of concept for the microfabrication and drug release kinetics. However 

there was no in-depth discussion relating the surface area to the release rate. 
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 Bansal et al. reported that with an increase in surface area there was an increase in 

observed drug release [14].  Through the evaluation of cylindrical implants at varying 

diameters it was also determined that the increased size of an implant also sees an increase in 

the surface area of the implant resulting in increased drug diffusion into the environment 

surrounding the implant. Based on this knowledge, our study chose to compare millirod 

implants with similar cylindrical forms for easy implantation, but with drastically different 

surface areas to determine the impact on drug release. 

 

2.8 Summary of Literature 

Diabetic neuropathy is a fairly common adverse symptom stemming from sustained 

increased blood glucose levels resulting in pain in the legs and feet that can lead to 

amputation [2, 18]. Antidepressants and antiepileptic drugs are the current medications used 

to mitigate the pain of diabetic neuropathy, yet successful treatment under these therapies is 

only able to achieve a 50% reduction in patient pain [1, 26, 27]. There is a need for a natural, 

long term treatment for the reduction of painful diabetic neuropathy that utilizes a drug with 

lower risk of adverse side effects. Curcumin is one such drug that exhibits anti-inflammatory, 

antioxidant, and anti-hyperglycemic effects with no dose limiting toxicity at high dosages 

[39, 41, 44]. However encapsulation is required for curcumin to remain bioavailable in the 

body. By combining curcumin and PCL via cryomilling, the additional time and materials 

needed for solvent evaporation mixing can be forgone in an effort to streamline the process 

of manufacturing for scale up. Previous millirod work determined that an increase in surface 

area saw an increased drug release rate [14].  
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CHAPTER III: PRELIMINARY WORK 

 

Prior to investigating the main hypothesis of this thesis, unpublished research relating 

to drug delivery was explored. Two different types of drug delivery systems, electrospun 

mats and hydrogels, were initially pursued for applications in alternative chemotherapy 

delivery and scaffolds for stimulating cell proliferation respectively. Techniques and 

learnings from these works helped in the development of the thesis research as outlined in 

Chapter 4. 

 

3.1 Electrospinning of Silk 

The initial goal of this work was to develop a non-systemic chemotherapy drug 

delivery device for the treatment of local breast cancer recurrence. Investigation was focused 

on finding a method of drug delivery that was not utilized for chemotherapy solutions. 

Selection of materials was based on high performing polymers with low in vivo toxicity. The 

manufacture of this delivery system also needed to be repeatable and scalable for ease of 

manufacturing purposes.  

 Ultimately this project continued previous work from the iMED laboratory on the 

evaluation of electrospun polymer blends, including PCL and polyglycolide, for use as drug 

delivery systems [90, 91]. As mentioned previously in section 2.6.1, electrospinning is a 

method of creating micro or nano scale diameter polymer fibers by utilizing an electric field. 

The experimental setup can be found in Figure 3.1. By applying a high voltage to a polymer 

loaded syringe needle and grounding the collecting plate, a large charge differential is 

created. A syringe pump slowly releases polymer from the syringe tip and the voltage 
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deforms the polymer bead creating a Taylor cone. This results in the release of fine diameter 

polymer fibers that are collected on the grounded plate. These polymer mats have a high 

surface area to volume ratio which is beneficial in drug release [75]. In contrast to previous 

iMED studies silk was selected as the main polymer component for electrospinning due to its 

beneficial properties as a biomaterial. Silk fibroin extracted from Bombyx mori cocoons have 

been found to have comparable degradation rates to other synthetic polymers, but with a 

reduced inflammatory response over PLA or collagen films [92]. Silk films have been used 

in combination with chemotherapeutic drugs like doxorubicin for in vivo breast cancer 

evaluation with positive results. The films showed a decrease in tumor weight and reduced 

metastatic spread, in addition to outperforming all other tested treatments [67].  

 Attempts to create silk electrospun mats were based on previous research 

methodologies [74, 93, 94]. Extraction of silk fibroin followed the protocol set forth by 

Rockwood et al [94]. Briefly, B. mori cocoons were opened and the silkworms were removed 

before being added to boiling water and sodium bicarbonate to degum the cocoons. After 

degumming, the remaining silk fibroin was dissolved in lithium bromide and the resulting 

solution was added to a dialysis cassette. Following dialysis, the resulting fibroin solution 

was centrifuged. Parameters used for electrospinning the fibroin solution were as follows: 

Pump rate was 0.02 mL/minute, voltage was set to 15 kV, silk concentration was 8% by 

weight and was combined with a 5 mL of a 5% PEO solution dissolved in water, and distance 

from the collecting plate was 10 cm. After electrospinning, PEO was dissolved using 70% 

vol/vol ethanol and allowed to dry. Spun fibers prior to PEO removal can be seen in Figure 

3.2.  
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Despite successfully electrospinning a small amount of silk fiber on one occasion it 

was determined that long term storage of fibroin via lyophilization was needed to continue 

pursuing this material option long term due to the process intensive requirements to prepare 

the silkworm cocoons for use. Freeze drying the dissolved fibroin concentrates it, but also 

makes it stable for extended periods of time at room temperature [94]. This is in contrast to 

the silk fibroin in the solution form, which must be chilled at 4 °C and runs the risk of gelling 

rendering it useless for an electrospinning solution. 

 
Figure 3.1: General electrospinning set up [95]. 

 

Figure 3.2: SEM image of PEO/silk fibers prior to the removal of PEO. 

Ziabari (2009) 
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 The ultimate design for this drug delivery system was a two stage drug delivery 

system. The electrospun silk fiber mat loaded with either a chemotherapeutic or anti-

inflammatory drug would be spun first. A second polymer, like PLGA, loaded with a second 

drug would be spun directly on the silk mat. Testing would have determined the efficacy of 

the two different release profiles.  

 

3.2 Hydrogels for Cell Growth 

 A smaller project was done in collaboration with the Sakaguchi Lab at Iowa State 

University looking at the use of hydrogels as a medium to promote adult hippocampal stem 

cell proliferation. The main objective of the collaborative research was to have the hydrogel 

in a pipette tip used for cell culture. This was part of a larger experiment to create complex 

internal geometry in a cell proliferation scaffold to help guide the movement and growth of 

stem cells.  Table 3.1 shows the materials and quantities used for the hydrogels that were 

created. Briefly, using a calibrated pipette, each of the materials in Table 3.1 were added to a 

clean test tube in the order listed. The catalyst, TEMED, is the last to be added, and with its 

addition the ingredients react and start to foam. The foam was mixed using a scoopula for an 

additional minute and allowed to sit in a vacuum oven for 20 minutes before the addition of 

the dehydrating agent.  

Two methods of manufacture were attempted. The initial attempt tried to mix the 

hydrogel directly in the pipette tip. The small end of a 1,000 μL pipette tip was enclosed 

using Parafilm prior to introducing the chemicals to be mixed. In order to accommodate the 

smaller container size, the listed ingredient amounts were divided by five.  Despite covering 

the exit hole of the pipette tip, very little hydrogel was formed in the space due to the high 



21 
 

 

levels of foaming following the addition of the TEMED catalyst. This resulted in very little 

residual hydrogel left behind in the pipette tip. Future attempts made the hydrogel external to 

the pipette tip. This was done by creating the hydrogel in a test tube as previously mentioned, 

but transferring it to an aluminum foil lined petri dish prior to the vacuum drying and 

dehydration steps. This resulted in a hydrogel disk that allowed for geometry modification of 

the hydrogel prior to inserting it in the pipette tip. This method also allowed for more direct 

control on the amount of hydrogel that could be added to the pipette tip.  

Following creation, hydrogel samples were sterilized using a 70% ethanol solution 

before entering the cell culture hood and allowed to dry overnight in the UV hood prior to 

cell culture [96]. A small sample of the hydrogel was introduced to test plates containing 

Dulbecco’s Modified Eagle Medium (DMEM) and adult hippocampal stem cells were then 

added to the hydrogel via pipette. DMEM was selected to visually identify the pH changes of 

the cell medium during proliferation [97]. Evaluation of the culture after 24 hours determined 

that the hydrogel formulation was not compatible with cell culture as the environment was 

too basic for sustained cell growth due to the purple/blue color of the DMEM [98]. 

 

Table 3.1: Chemicals used to create hydrogels for the pipette tip project. 
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CHAPTER IV: BULK MANUFACTURE OF COMPLEX GEOMETRY MILLIROD 

IMPLANTS AND THEIR DEGRADATION AND DRUG DELIVERY 

CHARACTERISTICS 

 

A paper to be submitted to the proceedings for the 2016 North American Manufacturing 

Research Conference  

Melissa Slagle, Iris V. Rivero 

 

ABSTRACT 

This study evaluated the impact of manufacturing process modifications aimed at the 

bulk manufacture of curcumin implants for diabetic neuropathy pain relief. 

Poly(caprolactone) (PCL) and curcumin were blended using cryomilling as an alternative to 

the solvent mixing method which has higher manufacturing and time delay costs. X-ray 

diffraction (XRD) was used to characterize the resulting mixture to determine the efficacy of 

cryomilling as an option for blending curcumin and PCL powders. By adopting compression 

molding as a manufacturing method we were able to create implant molds featuring threaded 

geometry on the millirod surface. Implants were subsequently evaluated in vitro for 30 days. 

Curcumin loaded millirod implants with a complex threaded surface geometry were found to 

have a higher, but not significant, percent mass loss after degradation and average daily 

curcumin release than the cylindrical implants. It can be concluded that the utilization of 

cryomilling for the creation of curcumin loaded implants in bulk is an easier to manipulate 

and more cost effective method of combining PCL and curcumin without sacrificing implant 

effectiveness. 
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Keywords: implant, controlled drug release, curcumin, surface geometry, bulk 

manufacture 

 

4. 1 INTRODUCTION 

 Type 2 diabetes is the most prevalent form of diabetes in the United States affecting 9.3% 

of the total population [1]. This form of diabetes is more commonly associated with obesity or 

lack of physical activity resulting in reduced insulin production and sensitivity [2]. In addition, 

type 2 diabetics may also suffer from additional painful or debilitating conditions as a result of 

diabetes related complications. These can include blindness, amputations, kidney problems, and 

neuropathy [1]. Of these adverse diabetic complications, 50% of diabetics experience neuropathy 

in some form, which often manifests in foot and leg pain [3, 4]. A particular form of this 

condition, painful diabetic neuropathy (PDN), remains difficult to treat, as a 50% reduction in 

pain is considered a successful treatment [5]. Current solutions for PDN treatment include the 

use of cyclic antidepressants or antiepileptic drugs, both of which have negative side effects that 

may include dizziness, blurred vision, or weight gain [5]. 

 Curcumin is a natural anti-inflammatory agent found naturally occurring in the spice 

turmeric. Many studies have been done to evaluate the impact of curcumin on various diseases 

including several different types of cancer, asthma, cardiovascular disease, and diabetes [6-13]. 

Despite the positive effects curcumin exerts as an anti-inflammatory agent, it has been shown 

that curcumin has poor bioavailability when taken orally [14]. One option to overcome this 

challenge is through encapsulation of curcumin within a polymer matrix. This type of drug 

delivery is most notably used for effective birth control through subcutaneous implantation that 

provides protection for 3 years [15]. This type of solution is ideal for treatment applications that 
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require sustained treatment over a long period of time. As PDN is a chronic disease currently 

without a cure, an implantable drug delivery device would provide an alternative method of pain 

management without jeopardizing patient quality of life.   

 Previous literature has developed cylindrical millirods impregnated with curcumin as a 

potential chemopreventive solution [7, 16-18]. Implants were manufactured using the solvent 

mixing method to create a curcumin polymer matrix. PCL was selected as the polymer as it is a 

Federal Drug Administration (FDA) approved polymer for human clinical use due to its proven 

biocompatibility and low toxicity. After removal of the solvents overnight, the molten curcumin 

and polymer was extruded through silastic tubing and cooled prior to removal from the tube. 

Based on the findings from Bansal et al. it was confirmed that an increase in implant surface area 

via changes in the diameter created an increase in drug release rate of curcumin [18]. With that 

knowledge, we wanted to test the effects of a drastic change in implant geometry on the 

degradation and drug release rate of curcumin. However, in order to achieve this geometry an 

alternative method of manufacturing was needed. Through the use of a custom compression 

mold we developed a threaded cylindrical implant to compare against a traditional cylindrical 

implant. With the drastic increase in surface area it is expected that the threaded geometry 

implants will have an increased drug release rate. Additionally, it is expected that the 

manufacturing modifications will help in scaling up manufacture of implants without 

compromising quality. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

Poly (caprolactone) 50,000 molecular weight was purchased from (Capa 6506, Perstorp, 

Sweden). Phosphate-buffered saline powder (pH 7.4) and bovine calf serum (BCS) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Additional BCS was purchased from 

Hyclone (Logan, UT, USA). Curcumin (98% pure) was purchased from Acros Organics (Morris 

Plains, NJ, USA). No further analysis was done on any of the received materials. 

 

4.2.2 Cryomilling 

PCL was combined with curcumin at a 15% w/w ratio. Milling was done using a SPEX 

Sample Prep Freezer Mill 6770 (Metuchen, NJ, USA). PCL and curcumin were combined in a 

grinding vial and placed in the grinding chamber. The vial was precooled for 15 minutes prior to 

the start of grinding cycles. The mill was programmed for 5 cycles, a 2 minute cool time, and a 3 

minute run time at a rate of 10 cps.  

 

4.2.3 XRD Evaluation of Cryomilled PCL and Curcumin 

 In order to determine if the cryomilling process generated a homogeneous mixture of 

PCL and curcumin, XRD analysis was done over a full angle spectrum in a Rigaku Miniflex 600 

XRD analysis unit (Tokyo, Japan). The voltage and current X-ray generator applied were 40 kV 

and 15 mA respectively. A scintillation counter (SC-70) was used as the detector. Scan range 

was from 1.01 to 60 degrees at a step width of 0.02 degrees. The XRD profiles were analyzed 

using the integrated X-ray powder diffraction software, PDXL, version 2.1.3.4. 
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4.2.4 Compression Molding 

 Implants were created using two custom molds. The cylindrical rod mold created 

implants with a 2 mm diameter, while the threaded rod mold had an implant diameter of 1.5 mm 

in order to accommodate machining capabilities for the introduction of threads. Molds were 

loaded into a model 4386 model Carver hydraulic press (Wabash, IN, USA). Blank PCL 

implants were created using 50,000 molecular weight PCL at a plate temperature of 71° C. 

Curcumin loaded PCL implants were created using the cryomilled PCL and curcumin at a plate 

temperature of 71°C and compressed with 1,200 psi.  Implants were removed from the molds 

and separated from the mold stem before evaluation. Implants for both geometries were cut to a 

length of 1.30 cm. The average threaded implant mass was 22.0 ± 0.75 mg and the average 

cylindrical implant was 49.9 ± 1.04 mg. 

 

4.2.5 In Vitro Evaluation 

Implants were studied in vitro by submerging each sample (n=3 for each condition, 12 

total implants) in 10 mL of PBS solution (pH 7.4) in 20 mL amber vials. In order to better mimic 

the in vivo environment, the PBS was supplemented with BCS (10% v/v). The sample implants 

were incubated at 37° C and agitated at 150 rpm on a shaker table (I24 New Brunswick 

Incubator Shaker, Eppendorf, Germany). Samples were measured at every media change every 

48 hours.  

 

4.2.6 Spectrophotometer Characterization 

   In order to validate curcumin was present in degradation media, 1 mL of ethanol was 

added to media to solubilize residual curcumin. Media from curcumin samples was collected 
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every 2 days, n=3. Absorbance of the media was measured spectrophotometrically (DU 720, 

Beckman Coulter, CA, USA) at 430 nm as previously established [19].  A standard curve was 

used to determine the quantitative relationship between absorbance values and curcumin 

concentration present in the degradation media. Curcumin concentration range was from 100 μg-

700 μg. 

 

4.2.7 Scanning Electron Microscopy (SEM) 

 Evaluation of surface area features and the effects of degradation on physical properties 

of implants was studied using a Jeol JCM-6000 benchtop SEM (Tokyo, Japan). Implants were 

evaluated prior to in vitro degradation and after 30 days of degradation. Samples were mounted 

using carbon tape and analyzed at 15 kV.  

 

4.2.8 Statistical Analysis 

Percent mass loss values were analyzed using a two way ANOVA with significance set at 

p < 0.05. ANOVA factors were defined as geometry and curcumin loading. Percent mass loss 

values were averaged over the 30 day period for a sample size of n=3. Statistical significance for 

average daily drug release was determined using a standard two tailed t-test. Differences were 

considered significant for values where p < 0.05.  Normal distribution and equal variances were 

assumed.  
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4.3 RESULTS 

4.3.1 XRD Evaluation of Cryomilled PCL and Curcumin 

 Figure 4.1 shows the XRD profile for the cryomilled PCL and curcumin at an 85% to 

15% ratio respectively. Comparison peaks for 100% curcumin and 100% PCL are also shown in 

Figure 4.1. This result shows that PCL and curcumin mixture has a distinct profile curve unique 

from its constituent parts. Figure 4.2 shows the XRD analysis of a solvent mixed matrix of PCL 

and curcumin in the same 85-15% ratio. There was a noticeable difference at the 10 degree point 

in the XRD characteristic peaks of the cryomilled curcumin and PCL powder in comparison to 

the solvent mixed PCL and curcumin solid dispersion. The first large characteristic peak for 

curcumin is found at the 10 degree point, and a reduced version of that peak can be found on the 

cryomilled XRD profile, but not the solvent mixed profile. 

 

4.3.2 In Vitro Results 

 In vitro release profiles for both the original cylindrical geometry and the new 

threaded geometry implants without drug loading can be found in Figure 4.3. Due to drastically 

different geometries, the starting masses for the threaded and cylindrical implants were not 

directly comparable by mass loss. Instead, percent mass loss was used to analyze changes in 

implant weight. There was no significant difference in the average percent weight loss over 30 

days of degradation between the two geometries without curcumin loading. 
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Figure 4.1: XRD profiles of 85% PCL and 15% curcumin in relation to neat PCL and curcumin 

profiles. 
 
 
 

 

Figure 4.2: XRD profiles of cryomilled 85% PCL and 15% curcumin in comparison to solvent 
mixed PCL and curcumin in the same ratio. 
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Figure 4.3: Graph of percent mass loss findings across all groups. 
 

The percent mass loss of curcumin loaded PCL cylindrical millirods (1.59 ± 0.884) was 

not significantly different from that of the blank PCL rod mass loss (0.813 ± 0.399). Similarly, a 

comparison of blank threaded PCL implants (0.837 ± 0.62) to curcumin loaded PCL threaded 

implants (3.39 ± 1.31) did not have a significantly higher average percent mass loss over the 

PCL only sample. Lastly, a comparison of average cumulative mass loss for curcumin loaded 

implants with threaded and cylindrical geometries shows that the curcumin loaded threaded 

geometry (3.39 ± 1.31)  did not have a significantly higher percent mass loss over 30 days than 

the cylindrical geometry implant with curcumin (1.59 ± 0.884). Table 4.1 shows the ANOVA 

results for the percent mass loss data.  No interactions were found to be significant at a sample 

size of three. Figure 4.4 shows sample daily percent mass loss trends for the two curcumin 

loaded implants with different geometries. 

Table 4.1 ANOVA of Cumulative Mass Loss Percentages (n=3) 
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Figure 4.4: In vitro release profiles over 30 days of degradation by percent mass loss of 15% 
curcumin loaded implants between the two different geometry types. There are no significant 

differences between treatments. 
 

4.3.3 Spectrophotometry Characterization 

The results of the spectrophotometry characterization can be found in Figure 4.5. 

Curcumin concentration was analyzed every 2 days and those values were averaged to determine 

the average daily release rate over the period of 30 days. Using the standard curve to relate 

absorbance values to μg/day release found that the threaded geometry implant had a significantly 

higher average daily release than the cylindrical geometry after accounting for mass differences.  

Threaded geometry implants released an average of 47.98 ± 0.11 μg/day, while cylindrical 

geometry implants released 33.00 ± 0.06 μg/day.  
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Figure 4.5: Average daily curcumin release values over the course of 30 days in vitro 

degradation. * denotes statistical significance. 
 

4.3.4 SEM Analysis 

 Scanning electron microscope analysis of both cylindrical and threaded millirods can be 

found in Figure 4.6. After in vitro degradation a noticeable change in surface morphology was 

observed in both geometry types. At 30 days of degradation the cylindrical implant began 

showing signs of small surface holes where there were none previously.  

 Estimated threaded implant surface area was calculated using the following equation 

[20]: 
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Where a is the inner thread diameter, b is the outer thread diameter, c is the pitch length, and d is 

the length of the implant. Surface area for the threaded geometry implant was found to be 72.4 

mm2.  
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Figure 4.6: SEM images for sample millirods before and after in vitro degradation. (A) 
Cylindrical curcumin loaded millirod implant before degradation. (B) Cylindrical curcumin 
loaded millirod after 30 days of in vitro degradation. (C) Threaded curcumin loaded implant 

prior to degradation. (D) Threaded curcumin loaded implant after 30 days of degradation. 
 

4.4 DISCUSSION 

Solvent mixing has been the primary method for creating the polymer drug matrix. 

However, this method requires additional materials in the form of solvents to dissolve the drug 

and the polymer, as well as time to remove the solvent from the mixture after the drug and 

polymer were combined. This is usually done overnight in a vacuum environment. The end 

product is a solid curcumin and polymer mass that must undergo additional processing prior to 

A B 

C D 
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being converted into its final form. Removing solvents from the polymer matrix creation would 

reduce manufacturing material costs in addition to a reduction in material processing time. 

Cryomilling can be executed in minutes rather than hours, and the end product is a powder that is 

easy to introduce into molding or extruding applications. A comparison of the XRD profiles for 

both solvent mixed and cryomilled PCL and curcumin shows similar overall trends. Peaks 

indicate diffraction intensity at different angles. These peaks are unique to crystals within a 

structure and can be used to identify differences in materials present in the sample [21]. Despite 

maintaining relatively similar peak trends, near the 10 degree mark the cryomilled mixture has a 

defined peak not present in the solvent mixed sample. This peak is a reduced intensity version of 

the curcumin characteristic peak that appears at the same degree. This retention of a main 

characteristic peak for curcumin may point to a better method of mixing without compromising 

the compound integrity. A study by Wegiel et al. utilized cryomilling as a method to create larger 

quantities of amorphous curcumin and poly(vinylpyrrolidone) mixtures [22]. From this we can 

conclude that cryomilling serves as an effective alternative method for creating a homogeneous 

powder polymer matrix in bulk manufacturing quantities. 

Additionally, the use of silastic tubing works well for small scale production of implants 

with a basic cylindrical geometry. Based on previous literature, modification of surface area is a 

way to increase drug release rate, but use of tubing limits changes to modifying diameter size 

and production volume. The use of a mold would allow for production of 8-12 implants at a time 

in addition to the potential incorporation of new surface geometries with a reduced amount of 

materials consumed during the process. Both the cylindrical and threaded geometry implants for 

this study were created through the use of a mold. This allowed for minimal post manufacturing 
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processing while allowing for the addition of complex surface geometry to the threaded implants 

that was previously not attainable. 

 In vitro degradation of the cylindrical geometry in comparison to the threaded geometry 

without drug loading was not statistically significant.  By comparing each drug loaded implant 

geometry type to its respective blank implant counterpart it was determined that increased 

surface geometry in combination with curcumin loading was not significant for percent mass loss 

degradation. Both the curcumin loaded cylindrical implant and the curcumin loaded threaded 

implant showed greater percent mass loss degradation than the blank PCL implants, however, 

due to the small sample size statistical significance was not obtained.  

 A comparison of the curcumin loaded cylindrical implant and the curcumin loaded 

threaded implant showed the threaded geometry had a 46.9% greater percent mass loss over the 

cylindrical geometry during degradation. However, an analysis of variance was run on the 

average percent mass loss values and showed no significant values at p < 0.05 indicating that a 

larger sample size is required to confirm that drug loading is a statistically significant parameter. 

Analysis of the percent mass loss from Figure 6 indicates a steady decreasing trend over the 30 

day period. No burst release kinetics were observed for either implant geometry. SEM analysis 

of the threaded implants before and after degradation show that the threaded surface geometry 

was still present and visible after 30 days of degradation. Surface area for the threaded geometry 

implant was 72.4 mm2, which is a 9.3% increase in surface area over a cylindrical implant of the 

same diameter.  

 Spectrophotometer analysis of the degradation serum showed after accounting for 

differences in implant masses that the threaded geometry implants had a higher average μg/day 

release than the cylindrical geometry. This confirms the hypothesis that an increase in surface 
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geometry would increase the drug release rate. A 100 mg cylindrical implant with a diameter of 

3.22 mm and a 20% drug load created by Gupta et al. had an average daily release of 98 µg/day 

and a cumulative release of 9.8% in 20 days [17]. Implants created for this study were not 

directly comparable to the previous findings due to differences in weight, volume, and drug load. 

However, extrapolation of mass and drug loading of the cylindrical geometry to better match the 

previous study gave an average daily release of ~70 μg/day. Differences in implant length and 

diameter would create significant differences in implant volume from the comparison implant 

and may account for discrepancies in average daily release between the two studies. 

 By using bulk manufacture of implants a cost savings could be imparted on the 

consumer. However, bulk manufacture limits the amount of customization available for the 

patient at the point of manufacture. Rather, customization for an individual patient would happen 

at the point of implantation. Customization could include the number of implants needed, the site 

of implantation, or post manufacturing modification, such as a change in implant length, to better 

meet patient dosing needs to manage neuropathy pain. The implant would be best utilized as an 

adjunct treatment to tricyclic antidepressants and antiepileptic drugs, or as a standalone pain 

relief option for patients intolerant or unaffected by current drug therapies.  

 

4.5 CONCLUSION  

 There is a current need for additional treatment solutions to help manage the symptoms of 

PDN without the negative side effects of the current off label prescribed drugs. Curcumin 

presents an attractive anti-inflammatory agent and glycemic regulator, but is plagued by low 

bioavailability when taken orally. By altering the shape geometry through the introduction of 

threads, an increase in percent mass loss, although not statistically significant at this sample size, 
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was observed for curcumin loaded implants. The threaded geometry implants also showed a 

higher μg/day release of curcumin in vitro than their cylindrical counterparts. By modifying 

previously used manufacturing methods, this threaded geometry feature for subcutaneous 

implants can be easily scaled up for larger manufacturing needs. 
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CHAPTER V: CONCLUSIONS & FUTURE WORK 

5.1 Conclusions 

 This thesis has summarized literature on painful diabetic neuropathy and the challenges 

that surround pain relief for those affected. Current medications in use for treatment do not fully 

relieve pain and can adversely affect quality of life for those who suffer from PDN. There is a 

need for the creation of alternative pain relief therapies specifically targeting the treatment of 

painful diabetic neuropathy.   

Effective strategies to control PDN have been to target hyperglycemia overall or block 

inflammatory and oxidative signals in cells. Curcumin is a natural compound found in the spice 

turmeric that has been shown to have anti-hyperglycemic, anti-inflammatory, and antioxidant 

effects in cells. Curcumin has been successfully used for in vivo evaluation studies focused on 

the compound’s effectiveness against diabetes. However when taken orally, curcumin has 

limited bioavailability as the digestive system metabolizes most of the active compounds. In 

order to increase the effectiveness of the compound, curcumin needs to be encapsulated. The 

focus of this research was to determine if changes to the manufacturing process for encapsulating 

curcumin in a polymer matrix would be viable options in a bulk manufacturing setting. 

Two primary manufacturing improvements to the creation of curcumin loaded millirod 

implants were established. The first is the use of cryomilling as a mixing method for the creation 

of homogeneous PCL and curcumin blends. The second was the incorporation of compression 

molding to allow for more complex surface geometry inclusions in an implant. These geometry 

inclusions were found to increase the percent mass loss of the implant in addition to increasing 

the average daily drug release over a standard cylindrical implant.  
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5.2 Review of Contribution 

 By utilizing cryomilling as a method of mixing curcumin and PCL compounds, the ease 

of manufacture of millirod implants in a scaled up manufacturing setting is greatly improved 

over solvent mixing methods. Introduction of compression molding as the main manufacturing 

process allows for previously unattainable implant surface geometries that impact implant 

degradation rate in addition to reducing the amount of materials consumed over the silastic 

tubing extrusion method. These modifications to the manufacture process are an essential step in 

moving curcumin implants from benchtop to market. 

 

5.3 Future Work 

Future studies will look at the impact of increased cryomilling time, and therefore smaller 

particle size, on average daily release of curcumin and percent mass loss implants. Evaluation of 

storage capabilities also needs to be done to determine the number of days before a PCL and 

curcumin matrix becomes crystalline. Crystallinity in curcumin is not ideal as amorphous solid 

dispersions are more soluble but less stable [54]. This study would be similar to the crystalline 

stability studies done by Wegiel, et al. [54]. The effective shelf life of the amorphous cryomilled 

powder would be crucial when considering a bulk manufacturing timeline in addition to the 

movement of finished implants through the supply chain. Another area of future work will 

include effective implant locations in vivo.
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