
1 

 

 

Production planning in different stages of a manufacturing supply chain under multiple 

uncertainties 

 

by 

 

Goutham Ramaraj  

 

 

 

A thesis for Master submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

 MASTER OF SCIENCE 

 

 

Major: Industrial Engineering  

 

Program of Study Committee: 

Guiping Hu, Major Professor  

Lizhi Wang 

Stephen Vardeman 

 

 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2017 

 

 

Copyright © Goutham Ramaraj, 2017. All rights reserved.



ii 

 

`DEDICATION 

 

In dedication to my family for their unconditional support. 



iii 

 

TABLE OF CONTENTS 

              Page 

ACKNOWLEDGMENTS ......................................................................................... iv 

ABSTRACT………………………………. .............................................................. v 

CHAPTER 1 GENERAL INTRODUCTION ....................................................... 1  

References    ................................................................................................... 5 

 

CHAPTER 2 A TWO-STAGE STOCHASTIC PROGRAMMING MODEL FOR 

PRODUCTION LOT-SIZING AND SCHEDULING UNDER DEMAND AND RAW 

MATERIAL QUALITY UNCERTAINTIES............................................................ 6 

 Abstract   ......................................................................................................... 6 

 2.1 Introduction .................................................................................................... 7 

 2.2 Problem statement .......................................................................................... 12 

2.3 Model formulation ......................................................................................... 14 

 2.3.1 Mathematical notations ......................................................................... 14 

2.3.2 Deterministic model .............................................................................. 14 

 Objective function ................................................................................. 15  

Constraints ............................................................................................ 17 

2.3.3 Two stage stochastic programming model ........................................... 20 

 2.4 Case study  ..................................................................................................... 22 

2.4.1 Data sources .......................................................................................... 23 

2.4.2 Scenario generation and reduction ........................................................ 27 

Scenario generation ............................................................................... 27  

Scenario reduction ................................................................................ 31 

2.4.3 Analysis for the deterministic case  ...................................................... 33 

2.4.4 Analysis for the stochastic case ............................................................ 35 

2.5 Conclusion  .................................................................................................... 40 

References    ................................................................................................... 41 

 

CHAPTER 3 PRODUCTION PLANNING WITH A TWO-STAGE STOCHASTIC 

PROGRAMMING MODEL IN A KITTING FACILITY UNDER DEMAND AND YIELD 

UNCERTAINTIES. ................................................................................................... 47 

 Abstract   ......................................................................................................... 47 

 3.1 Introduction .................................................................................................... 48 

 3.2 Problem statement .......................................................................................... 54 

3.3 Model formulation ......................................................................................... 55 

 3.3.1 Mathematical notations ......................................................................... 55 

3.3.2 Deterministic model .............................................................................. 56 

 Objective function and constraints........................................................ 57  

3.3.3 Two stage stochastic programming model ........................................... 60 

 3.4 Case study  ..................................................................................................... 63 

3.4.1 Data sources .......................................................................................... 63 

3.4.2 Scenario generation and reduction ........................................................ 67 



iv 

 

Scenario generation ............................................................................... 68  

Scenario reduction ................................................................................ 73 

3.4.3 Analysis for the deterministic case  ...................................................... 75 

3.4.4 Analysis for the stochastic case ............................................................ 77 

3.5 Conclusion  .................................................................................................... 81 

References    ................................................................................................... 82 

 

CHAPTER 4 CONCLUSION .................................................................................. 87 

  



v 

 

ACKNOWLEDGMENTS 

 

I would like to take this opportunity express my profound sense of gratitude to those who 

have helped me throughout my research work and the writing of this thesis. 

First and foremost, my major professor, Dr.Guiping Hu,  for her guidance and continuous 

support throughout the completion on this thesis.  Her timely advice, meticulous scrutiny, and 

scientific approach have helped me to a very great extent to accomplish this task. The 

conversations that we had during our weekly meetings not only helped to get invaluable 

feedback on my work but also provided me immense motivation for completing my graduate 

education.       

I would also like to thank my committee members, Dr.Lizhi Wang and Dr. Stephen 

Vardeman for their guidance and support throughout the course of this research. I would like to 

thank Zhengyang Hu, my research partner, for taking out time from his busy schedule to meet 

with me and for providing valuable feedback on my work.  

In addition, I would also like to thank my family of friends, and the department faculty 

for making my time at Iowa State University a wonderful experience. Most importantly, I would 

like to thank my parents, my brother and my fellow-cyclone, Aparna Sahajan, for your 

unconditional love, support and much needed encouragement. You guys have helped me learn 

that nothing is beyond the reach of our dreams.  

 



vi 

 

ABSTRACT 

 

This thesis focuses on designing stochastic programming models for production planning 

at different stages in a manufacturing supply chain under multiple sources of uncertainties. 

Various decision makers along the manufacturing supply chain often have to make planning 

decisions with embedded risks and uncertainties. In an effort to reduce risks and to ensure that 

the customer demand is met in the most efficient and cost effective way, the production plans at 

each stage need to be strategically planned. To assist production planning decisions, a two-stage 

stochastic programming model is developed with the objective of minimizing the total cost 

including production, inventory, and backorder costs. The proposed framework is validated with 

case studies in an automobile part manufacturer with real data based on literature. The results 

demonstrate the robustness of the stochastic model compared with various deterministic models. 

Sensitivity analysis is performed for the production capacity parameter to derive managerial 

insights regarding lot-sizing and scheduling decisions under different scenarios.
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CHAPTER 1.  GENERAL INTRODUCTION 

 

Production planning is important in a manufacturing facility to ensure efficient, and 

effective utilization of resources. It typically involves sequencing and scheduling the production 

batches, determining the optimal batch quantities and prioritizing the batches.   In reality, the 

planning of the production processes is often conducted under a variety of uncertainties, such as 

demand, machine availability, worker efficiency, etc. Therefore, it is important to take the 

uncertainties into consideration when making the production decisions.   

There has been significant body of literature on production planning in manufacturing 

systems under uncertainty. Ho categorizes the uncertainties observed in manufacturing system 

into environmental and system uncertainties [1]. While environmental uncertainties include 

demand and supply uncertainties, production system uncertainties are related to the production 

processes itself, such as machine availability, operational yield, and production quality 

uncertainties. Different strategies for modelling the production planning processes under 

uncertainty have been developed and applications in a variety of industries have been discussed 

in the literature [2, 3, 4].        

The modelling framework in the literature can be categorized into four classes of 

conceptual, analytical, artificial intelligence, and simulation  models which was originally 

proposed by Giannoccaro and Pontrandolfo [5]. The analytical models used for production 

planning are based on different operations research techniques, mainly linear programming, 

stochastic programming, mixed integer programming, Markov decision process, and multi-

objective programming. The areas of application, as identified by Mula et al., include capacity 
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planning, manufacturing resource planning, inventory management and supply chain planning 

[6].      

Production planning involves a number of stakeholders spanning across the 

manufacturing supply chain such as raw material suppliers, manufacturers, distributors, and 

customers. Figure 1 shows the schematic of the supply chain of a typical automobile 

manufacturer. All the stages are inter-connected that the uncertainties in a stage can influence the 

operations planning and decision-making in another stage. For example, an uncertainty in the 

quality or the lead time of the parts to be assembled could impact the production sequence due to 

parts availability. This disrupts the production planning at the assembly line feeding system as 

their operations are planned according to the initial production plan.  

In the existing literature, production planning studies have been focused on the 

modelling approaches and the application areas, the stages along a manufacturing supply chain 

have not been studied carefully. In this thesis, we address the problem of production planning in 

different stages in the manufacturing system under a variety of uncertainties. We also highlight 

how the uncertainties propagate across different stages and highlight how they influence the 

business decisions in these stages.  

 

 

Figure 1: Supply chain of a typical automobile manufacturer 
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To gain a better understanding of production planning under uncertainty and to provide 

a foundation for the research, we briefly discuss some existing literature. Kitting system, which 

is a part of stage 1 of the supply chain, is one of the most widely used assembly line feeding 

system. Som et al. analyzed the kitting process of a multi-product, multi-level assembly system 

under uncertainty. They derived the processes that describe the input and output streams of the 

assembly system. The distribution of time between the kit completions was also derived [7]. 

Leung and Wu developed a robust optimization model to solve the aggregate production 

planning problem under uncertainty. They also presented the analysis of the tradeoff between 

solution and model robustness [8]. This study would apply to stage 2 in the manufacturing 

supply chain discussed above. Gupta and Maranas proposed an approach based on stochastic 

programming for managing demand uncertainty in supply chain planning. In their proposed 

framework, the decisions related to manufacturing (Stage 2) were the here and now decisions 

and the logistic decisions (Stage 3) were modeled as the wait and see decisions. The key features 

of their model were highlighted through a case study [9].        

Many researchers have worked on both the deterministic and the stochastic versions of 

the decision-making models for production planning. Two-stage stochastic programming 

modeling approach has not been utilized extensively, which is a major motivation for this study. 

Modelling the production planning problems using a two-stage stochastic programming 

framework is one of the major contributions of our work. We are among the pioneers to adopt a 

two-stage stochastic programming framework to solve lot-sizing and scheduling problems at 

different stages along a manufacturing system. Through the proposed mathematical framework, 

we also highlight how the uncertainties affect the decision-making process in different stages of 

a supply chain.  
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In this thesis, we aim to fill in the gaps in studies related to production planning under 

uncertainty in a manufacturing environment. Through our study, we propose a two-stage 

stochastic programming framework for planning the production process at different stages in the 

supply chain. The objective is to minimize the total costs such that the downstream customer 

demands are met in the most efficient and cost effective way.  

The remainder of the thesis is structures as follows: Chapter 2 provides a model for 

production lot-sizing and scheduling under demand and raw material quality uncertainties. A 

comparison of the implementation results from the deterministic and the stochastic models is 

also presented. In Chapter 3, we present a modelling approach to plan the production processes 

in an assembly line feeding kitting facility under demand and yield uncertainties. The influence 

of the uncertainties on the business decisions is also highlighted and discussed. Conclusions of 

the thesis and some future research directions are provided in Chapter 4.  
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CHAPTER 2.  A TWO-STAGE STOCHASTIC PROGRAMMING MODEL FOR 

PRODUCTION LOT-SIZING AND SCHEDULING UNDER DEMAND AND RAW 

MATERIAL QUALITY UNCERTAINTIES 

Modified from a paper to be submitted to Production Planning and Control  

Goutham Ramaraj, Zhengyang Hu and Guiping Hu 

 

Abstract 

Production planning and scheduling focus on efficient use of resources and are widely 

used in the manufacturing industry, especially when the system operates in an uncertain 

environment. The goal of this paper is to provide a two-stage stochastic programming framework 

for a multi- period, multi-product, lot-sizing and scheduling problem considering uncertainties in 

both demand and the quality of raw materials. The objectives are to determine the number of 

units to be produced and the production sequence so that the total production costs are 

minimized. The decisions made in the first stage include the basic production plan along with the 

production quantities and sequences, which are later updated with recourse decisions on 

overtime production made in the second-stage. To demonstrate the proposed decision-making 

framework, a case study for a manufacturing facility producing braking equipment for the 

automotive industry was conducted. The results show that the stochastic model is more effective 

in production planning under the uncertainties considered. The managerial insights derived from 

this study will facilitate the decision-making for determining optimal production quantities and 

sequences under uncertainties. 

Keywords: Production planning, lot-sizing and sequencing, stochastic programming, demand 

uncertainty, quality uncertainty 
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2.1 Introduction 

Production planning plays an important role in improving overall manufacturing system 

performance, especially when a system operates in an uncertain environment. Uncertainty in 

product demand, processing time, and quality of raw materials are among the common types of 

uncertainties that characterize production environments.  To develop a robust production plan, it 

is important that the uncertain parameters are considered in the production planning process, 

because neglecting them will affect production efficiency and system performance [1]. This 

research focuses on a multi-period, multi-product, lot-sizing and scheduling problem under 

uncertainty.  

The planning horizons for the decision-making process in production planning models are 

typically classified into three categories: long-term, medium-term, and short-term planning. 

Long-term planning primarily focuses on strategic long-term decisions such as equipment, 

product, and process choices whereas medium-term and short-term planning involve making 

decisions on material flow, and production lot-sizing and sequencing for optimizing overall 

performance. Typically, the time range for the short-term decisions is within a day [2]. In this 

paper, our focus is on the production lot-sizing and scheduling problem, which can be classified 

as short-term to medium-term production planning. 

Many studies have been conducted by researchers over the years to solve the production lot-

sizing and scheduling problem using a variety of techniques. The classical economic order 

quantity (EOQ) model marked the start of research on lot-sizing problems [3,4]. To bridge the 

gaps in the EOQ model, like stationary demand and no capacity constraints, other models like 

the economic lot scheduling problem (ELSP) and the Wagner-Whitin problem (WW) evolved 

[5]. While the ELSP considers an infinite planning horizon with capacity restrictions, WW 

assumes a finite planning horizon with dynamic demand. The latest models that have combined 



8 

 

both the capacitated and the dynamic lot-sizing approaches include the discrete lot-sizing and 

scheduling problem (DSLP), the continuous lot-sizing and scheduling problem (CSLP), the 

proportional lot-sizing and scheduling problem (PLSP), and the general lot-sizing and scheduling 

problem (GSLP). DSLP works with the assumption that not more than one product can be 

produced per period which is not present in CLSP. PLSP overcomes the limitation of CLSP by 

using the remaining capacity for scheduling a second product within the same period. GSLP 

deals with the lot-sizing and scheduling of several products on a single capacitated machine [2].  

Some of the characteristics, as identified by Karimi et al., that influences the modelling and the 

complexity of lot-sizing and scheduling models include number of levels in a production system, 

number of products manufactured, demand and capacity constraints [2]. To classify the different 

modeling approaches used for lot-sizing and scheduling problems, Guimaraes et al. presented a 

new framework as shown in Figure 2 [6]. The discrete time models for lot-sizing and scheduling 

are classified based on two main dimensions: technique and time structure. The different classes 

within these dimensions are defined by both the technique and time structure used. The two main 

approaches based on the first dimension are product oriented (PO) and sequence oriented (SO) 

formulations. Based on the dimension of time structure, the framework classifies the models into 

micro-period (mP) and macro-period models (MP). Multiple setups are allowed in MP models, 

while mP models allow only a single setup per micro-period. The framework further classifies 

the models into single lot (SL) and multiple lot (ML), based on the number of production lots of 

each product allowed to start within a time period. In our paper, the sequence of production lots 

in a machine is modeled as per the product oriented, single lot, macro-period model. To depict an 

example, consider the production sequence {1-4-3-2} as shown in Figure 3. If a macro-period 

model is used, the following setups will be selected to establish the production sequence: (1-4) 

(4-3) (3-2). Setup (1) was carried over from the previous period, and setup (2) will be carried 
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over to the next period. Whereas for a micro-period model each setup state of (1) (2) (3) (4) 

would be captured separately to establish the changes in the sequences.      

 

Figure 2: Classification framework for lot-sizing and scheduling problems [6] 

There is significant body of literature on the topic production lot-sizing and scheduling. 

The solution techniques and their application on real-world problems have been discussed in 

various industries such as textiles, beverages, tobacco, paper, and pharmaceuticals. Araujo et al. 

developed a mixed-integer programming model for solving the lot-sizing and scheduling 

problem in a manufacturing setting considering the sequence-dependent costs and times [7]. 

Almada et al. proposed a mixed integer programming formulation to solve a short-term 

production planning and scheduling problem in a glass container industry. They used a 

Lagrangian decomposition based heuristic for generating good feasible solutions [8]. Silva and 

Magalhaes studied a discrete lot-sizing and scheduling problem found in the textile industry. 

They presented a heuristic approach for minimizing tool changeovers and the quantity of the 

product delivered after a due date [9]. In Gnoni et al. a hybrid modeling approach was used to 

solve a production planning problem of a manufacturing plant producing braking equipment. The 

developed hybrid model was comprised of a mixed-integer linear programming model and a 

simulation model [10]. Marinelli et al. proposed a robust optimization model for a capacitated 

lot-sizing and scheduling problem in a packaging company producing yoghurt. They developed 
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an effective two-stage optimization heuristic for scheduling orders on a production line based on 

real data from a company [11]. In Diaby et al., a robust mixed-integer linear programming model 

was formulated and solved using Lagrangean relaxation to address the capacitated lot-sizing and 

scheduling problem [12]. Chen et al. proposed a robust optimization model for scheduling 

independent jobs on parallel machines to minimize makespan. Significant improvement from the 

existing algorithms was reflected in the computational tests performed [13].         

 

Figure 3: Example of production sequence path [6]  

Application of deterministic and stochastic versions of mathematical models have been 

popular among the researchers studying production lot-sizing and scheduling problem. But very 

few have discussed the application of stochastic programming to these problems under 

uncertainty. Escudero et al. solved a multi-period, multi-product production planning problem 

with random demand using a multi-stage stochastic model [14]. Leung and Wu developed a 

robust optimization model to determine optimal production loading plan and workforce level for 

an aggregate production planning problem in an uncertain environment. The costs involved with 

production, labor, inventory, hiring and layoff were considered for the study [15]. In the study 

conducted by Bakir and Byrne a stochastic linear programming model based on a two-stage 

deterministic equivalent problem was used for addressing a multi-period, multi-product 

production planning problem with stochastic demand [16]. Hu and Hu studied the application of 

a two-stage stochastic programming framework for solving a lot-sizing and scheduling problem 
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in an automotive part manufacturing plant [17]. Unlike the study conducted by Hu and Hu, our 

study models the dynamics of multiple uncertainties in a manufacturing environment, which is 

more practical. The two uncertainties are modelled separately and integrated into the two-stage 

stochastic programming model to aid better decision-making. We also discuss how the recourse 

actions gets influenced by the presence of multiple uncertain parameters in the model. 

Brandimarte developed a multi-stage mixed-integer stochastic programming model for solving a 

multi-item capacitated lot-sizing problem with uncertain demand. They also tested the 

advantages of a stochastic model over a deterministic one by conducting computational 

experiments [18]. Khor et al. studied the capacity expansion problem in petroleum refinery under 

uncertainty using a two-stage stochastic programming model and robust optimization models 

[19].  

In the literature on production planning under uncertainty, typically only one uncertain 

factor is considered. In practice, there can be more than one uncertain factor, each with their own 

dynamics and behavior over time that can have an impact on the recourse decisions made in a 

manufacturing environment. Kazemi et al. proposed a multi-stage stochastic programming 

approach for a production planning problem with uncertainties in both demand and the quality of 

the raw materials. A hybrid scenario tree was developed by integrating the demand and the yield 

scenarios to formulate a stochastic programming model with full recourse for demand and simple 

recourse for yield [20]. Unlike our problem, the study conducted by Kazemi et al. does not 

include determining the overtime production quantities and the optimal production sequence. 

Although Mukhopadhyay and Ma developed a two-stage stochastic model to understand how a 

firm’s procurement and production decisions are influenced by demand and quality uncertainties, 

their study did not involve any decision-making regarding production lot-sizing and scheduling 

[21]. The novelty of this study lies in integrating two different uncertainties (demand and quality 
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of raw materials) to be used in a two-stage stochastic programming model to solve a production 

lot-sizing and scheduling problem in a manufacturing setting. The application of two-stage 

stochastic programming framework to tackle the lot-sizing and scheduling problem under 

uncertainty can be regarded as another major contribution of this paper as not many studies have 

discussed this application.      

The remainder of the paper is organized as follows. In the next section, the problem 

statement for the lot-sizing and scheduling is presented. In section 3 we describe a deterministic 

linear programming model and the two-stage stochastic programming model for production lot-

sizing and scheduling with random demand and raw material quality. In section 4, the application 

of the developed framework to a case study for an automotive part manufacturer is presented 

along with the comparison of computational results from both models. Our concluding remarks 

and further research directions are discussed in section 5.       

2.2 Problem Statement 

Production planning and scheduling are important tools that provide decision support for 

production activities in the manufacturing industry. The presence of uncertainties, which are 

common in most production environments, make the decision-making processes complex and 

challenging.  

A typical manufacturing system schematic is shown in Figure 4. Raw materials are collected 

and accumulated at internal/external warehouses of the manufacturing plant. They are then 

shipped to the assembly line to be processed and assembled to produce final products for 

customers. These finished products are then transported to downstream sites or directly to 

customers.  
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Figure 4: Manufacturing system under study 

As Ho [22] discussed, the uncertainty that affects production processes in the real word 

can be both system and environmental. Environmental uncertainty is related to uncertainties 

beyond the production process, such as demand and supply uncertainty. System uncertainty 

includes uncertainties within the production process, such as lead time, quality, and yield 

uncertainties. The planning of the production process in a manufacturing plant is highly 

dependent on the demand for manufactured products from customers. The availability of quality 

raw materials from suppliers is also of vital importance to strike a balance between the inbound 

materials and outbound products.  Neglecting these uncertainties in production planning will 

result in unsatisfactory and inefficient production plans.  

The goal of this paper is to provide a two-stage stochastic programming framework for the 

production lot-sizing and scheduling problem considering uncertainties in both demand and the 

quality of raw materials.  The results from this paper will facilitate the decision-making for 

determining optimal production quantities and sequences under uncertainties. 
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2.3 Model Formulation 

In this section, the deterministic and the stochastic versions of the model for the production 

planning problem studied are introduced. The objective is to determine the number of units to be 

produced and their production sequence so that total costs are minimized. A deterministic 

mathematical formulation is first described and then extended to a stochastic setting, assuming 

product demand and quality of raw material to be uncertain with known probability distributions. 

The stochastic programming model has a two-stage structure to accommodate the decision-

making process for planning production activities. The decision-maker makes certain decisions 

in the first stage, after which a random event occurs that affects the outcome of the first stage 

decisions. A recourse decision can then be made in the second stage, after the actual values of 

the first stage decision variables are realized. The second-stage decisions can compensate for the 

non-optimal effects of the first stage decisions [23]. In this paper, we extend the two-stage 

stochastic programming model originally developed by Hu and Hu to address the uncertainty 

from raw material quality along with the uncertainty in demand among the customers [17].           

2.3.1 Mathematical Notations 

The mathematical notations for the model formulation are included in  

 

Table 1. A production facility with a set of products I and a planning horizon consisting 

of T periods is considered. It should be noted that both I and J are used to indicate the same sets 

of final products as they are used to model the change-overs between the products.  

2.3.2 Deterministic Model 

The deterministic model assumes all parameters in production lot-sizing and the 

scheduling problem are known with complete certainty.   
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Before the model formulations are discussed, we introduce the assumptions made to clearly 

define the problem we investigate. 

 Backorders are allowed, so the demand does not need to be fulfilled all the time.  

 Initial inventory is assumed to be zero and the inventory level is calculated at the end of 

each planning period. 

 The demand of a product in a specific time period is independent of its demand in the 

previous period. 

 The quality of the raw material in a particular time period is independent of its quality in 

the previous period.  

 Both the uncertainties are product independent; that is, the uncertainty of one product 

does not have any effect on the uncertainty of another product.   

 There is a limit on the resources available for regular time and over time production and 

the same setup can be used for both. 

 Setups are carried over to adjacent periods; that is, the last setup in the previous period 

will become the first setup in the following period. 

 The uncertainties in demand and the quality of raw materials are independent of each 

other. 

 The maximum number of setup changes allowed per product per time period is one.   

Objective Function 

The objective function minimizes the total cost involved in the production process, which 

is defined as the sum of the production, inventory, backorder, and raw material costs. The cost 

from the regular time production is  . The term  

is the setup cost for changeover from product i to product j. No setup cost is incurred between 

identical products. The terms   
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are the overtime production cost, the inventory cost, and the backorder cost, respectively. Lastly, 

 is the cost of the raw materials consumed in the production 

process. 

 

Table 1: Notations for the deterministic model 

Subscripts 

          1, 2….N  Products 

          1, 2….N  Products   

          1, 2….T  Time periods 

Parameters 

        Demand for product  in period  

          Inventory holding cost per unit of product  for one period  

          Backorder cost per unit of product  for one period 

      Time capacity of the machine in period   

          Processing time of one unit of product   

         Regular time processing cost per unit of product   

         Overtime processing cost per unit of product   

        The maximum regular time production quantity of product  in period  

      Setup cost for changeover from product  to product  

      Setup time for changeover from product  to product  

           Maximum overtime ratio  

           Number of products 

          Cost of raw material per unit 

      The units of raw material consumed per product   

Decision Variables 

         Inventory level of product  by the end of period  

        Backorder level of product  by the end of period  

        Regular time production quantity of product  in period  

        Over time production quantity of product  in period  

      1 if a changeover from product  to product  is performed in period . Binary Variable  

        1 if a setup of product  is carried over from period  to period . Binary Variable 

        Production order of product  in period . Integer variables start from 1. 
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In sum, the objective function can be formulated as follows:  

Minimize Z = 

 

All the regular time production resources are used before starting overtime 

production, since the unit production cost is lower for regular time production than for 

overtime production. Also, backorders are allowed only when the inventory is reduced to 

zero. Another thing to notice in this model is that only the first T-1 periods are considered as 

there are no production resources in the last period. Other than inheriting a setup from a 

previous period, no production happens in the last period. This is done to hold a positive 

demand for the flow balance constraint of the model.  

Constraints  

Inventory balance constraints (1) and (2) satisfy demand either from inventory, 

backorder, or production within the current period.  Neither the inventory   nor the 

backorder  can be positive at the same time even though they can both be zero at the same 

time. If one is positive, then the other must be zero. Inequality (3) is a production quantity 

constraint that limits the maximum quantity that can be produced during regular time in a 

particular time period. In this constraint, the setups are represented by either   = 1, which 

denotes that a setup is carried over from previous period t-1, or by    = 1, which 

denotes that the setup is taken over in period t.  The product will not be produced in that time 

period if neither of these occurs. According to our assumptions,  and  will not be 
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equal to one simultaneously, as a setup cannot be carried over from the previous period if it is 

already taken over in a period.   

                                                            (1)       

                                 (2) 

                               (3)  

 

Constraint (4) ensures that the sum of total production time and the required setup 

time does not exceed the available capacity. The limitation on the overtime production 

quantity is set by constraint (5).  Overtime production is regulated by both government and 

company policies to be not more than  percent of regular production time. Therefore, the 

overtime production quantity is restricted to be less than or equal to a fraction of the regular 

time production quantity.  

                              (4) 

                                                                                (5) 

     

Constraint (6) enforce an initial setup to be taken over at the beginning of each 

period. Constraint (7) ensures a balanced flow of setups and is applied through the first T-1 

periods, as the last period is a dummy period with zero demand. The left-hand side is the sum 

of setups directed towards product i, and the right-hand side is the sum of the setups directed 

away from product i. If there are no setup changes in period t, the machine product setup is 

carried over to period T + 1. For a product i,   when the setup of the product is carried 

over from period t – 1 and   if only one setup of the product is used in that 
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period. If product i is the only product that we want to produce in that period, then   

, as this setup will be carried over to the next period. Otherwise, a setup change must be 

performed, making . Through this constraint, the setup of the machine is traced 

and also ensures that both the left- and right-hand sides do not exceed 1.      

                                                                              (6) 

 

                                         (7) 
 

Constraint (8) ensures that there is no production in the last period, which is a dummy 

period that is added to the planning horizon. Unless there is an extremely high demand that 

can cause backorders to be carried out to the last period, the inventory in the last period will 

always be zero as long as the demand can be met in the normal production planning horizon. 

In practice, there might be situations of subtours in production sequences that start and return 

to the same setup state without connecting all the nodes. Subtours that form a perfect loop 

and that can happen in single lot model are classified as simple disconnected subtours. Other 

types of subtours like the α subtours and complex disconnected subtours require more than 

one identical setup per period [24].      

Out of the many approaches have been proposed to prevent subtours, we use the one 

developed by Hasse, where a decision variable is used to capture the order of processing the 

production lots in each time period [25]. In our model constraint (9) is used for subtour 

elimination. 
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2.3.4 Two-stage stochastic programming model 

Demand of the products and raw material quality are among the influential uncertain 

parameters in a manufacturing context. To assist the decision-making in a stochastic setting, 

these uncertainties must be incorporated into the modeling framework.  

In this study, product demand and quality of the raw materials are selected as the 

uncertain parameters to be investigated. Determining appropriate representation of the 

uncertain parameters is among the most important steps in incorporating uncertainties into 

production planning problems. Two distinct methods for representing uncertainties can be 

identified, the scenario-based approach and the distribution-based approach [26]. In this 

study, the uncertainties are represented by a set of discrete scenarios capturing how the 

uncertainty might play out in the future. Each scenario is a discrete value of demand, or the 

number of defective raw material parts per million (ppm) that is associated with a 

probability. Several such scenarios are generated to represent the known continuous 

distribution of the uncertain parameters. 

The two-stage stochastic programming model aims to determine the optimal 

production plan to meet uncertain demand and uncertain raw material quality. We use a 

subscript s to represent scenarios of uncertain demand and uncertain quality of raw material 

that are associated with a probability  .  Since we assume independence among the two 

uncertainties, the probability of the scenarios  is obtained by multiplying the independent 

probabilities of uncertain demand and uncertain quality scenarios. The two-stage stochastic 

programming problem is formulated as follows:  
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Minimize Z = 

 

 

 

Subject to 

Constraints  and  

                                                                   

                                    

                                     (12) 

   The actions that must be made before the uncertainties are realized are the first stage 

decision variables. The recourse decisions that are made in the second stage after the 

uncertainty is realized are called the second stage decision variables. In this production 

planning model, the first stage decision variables include  , which 

define the baseline production plan and determine regular time production quantity and the 

sequence of production. The second stage decision variables ( determine 

the inventory level, backorder level, and overtime production quantity, respectively.  

Constraints   and  are the first stage constraints; they remain the same 

as in the deterministic model, and they are the same in all scenarios. The constraints  
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and  that involve the second stage variables change based on the stochastic scenarios. 

Therefore, they are replaced with constraints  and .  

In this study, we use a moment matching method to generate the scenarios to be used in 

the model. It is one of the most commonly used methods for scenario generation. The main 

aim is to generate a set of outcomes and their associated probabilities so that the statistical 

properties of the approximating distribution match the specified statistical properties. To 

achieve this, the differences between the statistical properties of the constructed distribution 

and the known specifications are minimized, subject to nonnegative probabilities that sum to 

one [27]. The number of scenarios generated determines the computational effort in solving 

scenario-based optimization problems. The huge number of scenarios generated as a result of 

time-dependent uncertain parameters limits tractability [28]. Thus, in this paper we use a 

scenario reduction technique for the demand scenarios to approximate the original scenarios 

with a smaller subset that can approximate the original scenario set well. The scenario 

generation and reduction methods will be discussed in detail in section 4.  

2.4 Case Study 

To highlight the proposed framework for managing uncertainties in demand and quality 

of raw materials in production planning, the model is applied to a manufacturing system 

producing braking equipment for the automotive industry. Uncertainties in production 

planning tend to propagate to the upstream and the downstream entities in a supply chain and 

usually increases the variance of costs to the company, increasing the likelihood of decreased 

profit [29].  

In this study, we consider a facility that manufactures three types of hydraulic braking 

actuators (P1, P2, and P3) as required by the customers of the original equipment 



23 

 

 

marketplace. The facility also carries out assembly of the raw materials P1B and P2B, 

received from an upstream supplier, required for manufacturing the final products. For most 

of the production planning models the planning horizon is divided into a small number of 

long time periods that in most cases represents one week or one month [6].For this study, we 

consider a multi-product and a multi-period problem with a six-month planning horizon that 

is partitioned into time slots representing one month each.  The main goal is to minimize the 

total costs involved in production by determining an optimal production plan. All the input 

parameters, except demand and the quality of raw materials, are assumed to be known with 

certainty.  

2.4.1 Data Sources 

 As discussed earlier, the manufacturing facility assembles three types of hydraulic 

braking actuators (P1, P2, and P3) whose demands are uncertain and can vary according to 

probability density functions as shown in Table 2.  The demand for all three products are 

Weibull distributed with their respective shape and scale parameters. The historical monthly 

demand data for a three-year period are fitted to obtain the distributions [10].      

Table 2: PDF of monthly demand 

Monthly Demand  

  P1 P2 P3 

PDF Weibull Weibull Weibull 

Scale 518 38 169 

Shape 1.51 2.76 2.27 

Mean 467.25 33.82 149.7 

Variance 99422 175.4231 4877.8 

Skewness 1.06 0.25 0.47 

Kurtosis 4.35 2.78 2.98 
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Probability distribution functions of the quality of the raw materials are generated by 

analyzing the survey data of 91 suppliers of Japanese and US automakers [30]. The ppm 

values of the defective raw materials for all the three products are assumed to be normally 

distributed with the moments as shown in Table 3. We assume that the demands and the 

quality of raw materials of the products are independent of each other [28, 29].   

Table 3: PDF of raw material quality 

           Quality Defects (ppm) 

 P1 P2 P3 

PDF Normal  Normal Normal 

Mean 254 254 254 

Variance 6581 6581 6581 

Kurtosis 3.00 3.00 3.00 

 

The changeovers from one setup to another involve a cost and require significant 

setup times, which makes the lot-sizing and the production scheduling problem more 

complex. Thus, it is important to evaluate different combinations of production sequences to 

optimize the total cost of production. Setup times and operation times of the three products 

are listed in Table 4 and 

 

Table 5, respectively [10]. Setup costs are proportional to the setup times by a 

specified factor, which is set to be 0.2805 [33]. 

 

Table 4: Setup times  

Setup Times (min/setup) 

  P1 P2 P3 

P1 0 270 90 

P2 180 0 270 

P3 90 180 0 
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Table 5: Operation Times 

Operation Times (min/unit) 

  P1 P2 P3 

Operation Time 6 6.6 7.2 

 

The inventory costs and the time capacities available (including failure and repair 

time) are listed in Table 6 and  

Table 7. The regular time production costs are in listed Table 8. Overtime production 

costs and backorder costs are established as proportional to the regular time production costs 

with the factors set at 1.5 and 2, respectively [31 ,32].   

 

Table 6: Inventory costs 

Inventory Costs($/unit) 

  P1 P2 P3 

Inventory Cost 0.16 0.15 0.38 

 

 

Table 7: Time capacities 

Time Capacities (min) 

Month Capacity 

1 6087 

2 5367 

3 6087 

4 6087 

5 4407 

6 4407 
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Table 8: Regular production costs 

Regular Time Production Costs ($/unit) 

  P1 P2 P3 

Production Cost 254.08 254.08 254.08 

 

The number of units of raw materials that are consumed per product are given in 

Table 9. The unit cost of raw materials is considered to be $8 [36].  

Table 9: Raw material requirement per product 

Number of units of raw materials  

required per product 

                                                                                    Units 

P1 4 

P2 4 

P3 5 

 

To handle the demand in peak periods, employees might need to work for a longer 

time, exceeding the overtime limit set by government and company policies. This would 

result in fatigue and reduced employee efficiency and is therefore not considered in the 

production planning model. Therefore, for this study, the overtime production limit is set at 

20% of the regular time production [34].   

Along with inventory holding cost, setup cost, and production costs, it is important to 

determine the optimal production batch quantity for the proper evaluation of a production 

planning model [37]. Many researchers have carried out sensitivity analysis of the input 

parameters used in their mathematical model, to study the effects they have on the decisions 
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made in the production planning process. Park investigated the effectiveness of integrating 

the production and distribution planning in a manufacturing setting. He also conducted 

sensitivity analysis on input parameters, including production capacities, to check the 

effectiveness of the integration [38]. In this study, we examine the solutions obtained by 

varying the parameter , which is the maximum regular time production quantity for a 

product in a particular time period.  We consider four different production quantities of 90%, 

100%, 110% and, 120% of the mean values of demand. The insights obtained will help in 

evaluating the tradeoffs and in making managerial decisions for the production planning 

process.     

2.4.2 Scenario generation and reduction 

Determining how to represent the uncertainties involved in the multi-stage stochastic 

programming problem is one of the major challenges. The presence of random variables with 

multi-dimensional and continuous distributions in the model makes the problem 

computationally difficult to solve. In such cases, the method of scenario generation is applied 

to replace the distribution with a set of discrete outcomes and associated probabilities [27].  

However, time dependent uncertainties in the model result in a huge number of scenarios that 

make it intractable to solve the mathematical program. Thus, it is important and necessary to 

reduce the original scenario set further to a smaller subset that still represents reasonably 

good approximations [4,13].    

Scenario Generation 

For this study, the moment matching method is used to generate the scenarios. To 

present the model used, we introduce the following notation. The statistical properties of the 

random variable are first defined and described. They are denoted by m and are present in a 
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set S that consists of all specified statistical properties.  The specified value of the statistical 

property m in S is defined by . In this model,  is the weight and  is the 

mathematical expression of the statistical property m in S. We consider all the statistical 

properties to be equally weighted. M represents a matrix of zeros and ones, whose number of 

rows equals the length of  and whose number of columns equals the number of nodes in 

the scenario tree [27]. To maintain the essential properties, each property m creates multiple 

realizations of uncertainty  with respective probabilities . For instance, if we want to 

capture the variance of the distribution, then  will be the value of the variance that is 

given as an input parameter to the model, and   will be the mathematical expression 

of the variance which is . The constraints  and of 

the model make sure that the probabilities add up to one and are each non-negative. The 

realizations of the uncertainties are generated in such a way that there is a match between the 

statistical properties of the approximating distributions and the specified statistical properties. 

This is done by minimizing the difference between them.     

  

 

                                        

 

 

For demand uncertainty, the four moments of mean, variance, skewness, and kurtosis 

are used for moment matching whereas for the quality uncertainty, the mean, variance, and 

kurtosis are used. The model is rerun until an objective value that is zero or close to zero is 
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obtained, as this shows a good match between the statistical properties of the generated 

outcomes and the specified properties [27].     

For this study we assume that the uncertainties are product independent: that is, the 

uncertainties in both the demand and quality of the raw material of one product have no 

effect on the other products [31]. Apart from this, we also assume that the two uncertainties 

are independent of each other, and that the realization of the uncertainties in each time period 

does not depend on the outcomes of the previous periods. According to these assumptions, 

the realizations of the uncertainties will be exactly the same in every time period as the value 

of the specified statistical properties does not change with time.    

Using the moment matching method described above, a 6-period scenario tree for 

demand uncertainty is generated for three products.  As four moments are used for generating 

the scenarios, the total number of the specified statistical properties in the set S is 72 while 

the total number of m is 18. The minimum number of outcomes that is necessary to obtain a 

perfect match is determined using the formula  Therefore, the minimum  

that is required for 72 specified statistical properties is 4, and we use 5 as the number of 

outcomes in each time period as it gives a better representation of the probability distribution 

than the model using 4 outcomes. A total of  scenarios are generated by sampling the 

underlying distribution and solving the non-linear optimization problem using the General 

Algebraic Modeling System (GAMS). Table 10 shows the summary of the scenarios in the 

first period. There is a perfect match between the outcomes and the specified scenarios with 

the objective value turning out to be zero. The demand scenario tree generated is shown in 

Figure 5. 
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Table 10: Demand scenarios for first period 

Outcome                                                                                    Probability Demand of 

 

Demand of 

  

Demand of 

 
1 0.223 64.305 30.729 132.143 

2 0.233 439.817 54.927 54.700 

3 0.177 574.24 28.886 199.126 

4 0.100 1246.83 8.819 299.724 

5 0.268 463.232 30.696 157.906 

 

 

Figure 5: Demand scenario tree 

 

A single period scenario tree is also generated for the raw material quality 

uncertainty. For this tree, the  value, which is the minimum number of outcomes in each 

period, is set as 3. A total of three scenarios are generated and the realizations of all three 

products remains the same as they follow the same probability distribution. Table 11 shows 

the summary of the quality scenarios generated. Since the uncertainty in quality is assumed 
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to be product independent, all the combinations of product-wise quality scenarios are 

calculated to be used in the model. As a result, a total of 27 quality scenarios are obtained, as 

shown in Figure 6. 

 

Table 11: Quality scenarios generated 

Outcome                                                                                    Probability Quality of 

 

Quality of 

 

Quality of  

 
1 0. 33 243.393 243.393 243.393 

2 0.12 272.453 272.453 272.453 

3 0.55 256.338 256.338 256.338 

   

 

Figure 6: Quality scenario tree 

 

Scenario Reduction 

For this study, the common scenario reduction method of fast forward selection 

(FFS) is used to obtain a smaller subset of the original scenario set. The idea behind the FFS 

method is to select a subset of scenarios with a predefined cardinality in order to minimize 

the distance between the reduced and the remaining set of scenarios [40].    

We briefly describe the general concept of the FFS method for reduction of 

scenarios. A scenario here is defined as , with its corresponding probability . The 
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set of scenarios that remain unselected till the iteration is denoted by .   The 

nomenclature used and the steps involved are discussed below. 

 

Table 12: Nomenclature used for FFS 

 Number of scenarios in the original set 

 Scenario  

 Probability of scenario  

 Non-negative function of  norm 

 Unselected scenario set till the iteration 

 Distance between scenario  and  at  iteration 

 Total weighted distance of each scenario  with 

other scenarios at  iteration 

 Selected subset from the original set of scenarios 

 

Procedure of FFS: 

Step 1. Compute the distance of the scenario pairs for :  

 

Step 2. Compute the weighted distance of each scenario to the other scenarios: 

 

                Choose   

                Set   

Step 3. Update the distance matrix using the scenario selected in the previous step.  

Let ; compute:  

 

and 
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choose  

 

set       

Step 4. If the number of selected scenarios is less than the required number, return to Step 2. 

Step 5. Add to the probability of each selected scenario the sum of the probabilities of all 

unselected scenarios that are near it; ie.,  for any   and  

 for any    [39] [28].  

 

After scenario reduction, a total of ten scenarios of demand and their associated 

probabilities were selected to be used in the model. These scenarios were combined with the 

27 quality scenarios to obtain a total of 270 scenarios. The implementation results of using 

these scenarios in both the deterministic and stochastic models are discussed in the next two 

sub sections.                        

 

2.4.3 Analysis for the deterministic case 

The deterministic lot-sizing and scheduling model was run for four different cases of 

maximum production quantities, and the results obtained are summarized in Table 13.  

In the deterministic case, the overall cost decreases with the increase in the maximum 

production quantity allowed per product per time period ( ). This is mainly because with 

more regular time production capacity, more products can be produced in the regular 

production time. There is no backorder cost for any of the cases, as the demand for the 
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products can be met with overall production resources. Even though there is overtime 

production happening in the first case, it is no longer required in any of the other cases, as all 

the product demand can be met with regular time production. The overall cost remains the 

same for the second and third cases, showing that the maximum production quantity limit 

makes no contribution to the overall cost for these two cases. There is an inventory cost 

associated with the fourth case, showing that more products are manufactured in advance and 

kept in inventory, which can be used later to satisfy the demand and thus save some setup 

changeover cost. The raw material cost remains unchanged for all the four cases showing that 

the raw material quality is insensitive to the parameter ( ). If there is no restriction on the 

maximum allowed production quantity, all the products  will be produced in the first 

period followed by the required quantities of the products and . This is because the 

demand for  and  are high, and producing them early and keeping them in the inventory 

will add to the inventory costs, which is undesirable.  

 

Table 13: Summary of results from deterministic model (Cost in $) 

 

Maximum 

Production Quantity: 

% of Mean Demand 

TOTALS 

Regular time  

production 

cost 

Overtime  

production 

cost 

Setup 

cost 

Raw material 

cost 

Inventory 

cost 

Overall 

cost 

90% 892877 148813 505 135473 0 1177888 

100% 992086 0 505 135473 0 1128063 

110% 992086 0 505 135473 0 1128063 

120% 992086 0 429 135473 16 1128003 

 

Even though the setup costs are identical for the first three cases, the sequences in 

which the products are manufactured are different. The production sequence obtained for the 

first case with the maximum production quantity as 90% of the mean demand is shown in 
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Table 14. In the first time period , product  is manufactured first, followed by products 

 and . As product  is the last type of product to be manufactured in period , this 

setup will be carried over and will become the first setup of period  It is observed that the 

production quantity in regular time production is limited by the time capacity and the 

maximum allowed production quantity in each time period.  

 

Table 14: Deterministic model production sequence   

Time periods/ 

Products 
      

 

3 1 2 3 1 2 

 

2 3 1 2 3 1 

 

1 2 3 1 2 3 

  

 

2.4.4 Analysis for the stochastic case 

The uncertainties considered in this study include the demand of the products and the 

quality of the raw materials required to manufacture the products. Similar to the deterministic 

case, four different cases of the maximum production quantities are investigated and the 

results are tabulated as shown in  

 

Table 15.  

Different parameters are used to compare the results obtained from both the 

deterministic and the stochastic models. The deterministic solution, also called the EV 

(expected value) solution is obtained by using the expected values of the parameters from the 

stochastic scenarios in the deterministic model. The RP (recourse problem) solution is 
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obtained from the stochastic model. The solution obtained by applying the decisions in the 

deterministic case to the stochastic environment is called EEV (expected results of EV). The 

VSS (value of stochastic solution) for a minimization problem is defined as VSS = EEV – 

RP, and it measures the effectiveness of the stochastic model over the deterministic one. The 

EVPI (expected value of perfect information) provides a benchmark for the value of 

collecting additional information. It estimates the value that the decision-maker is willing to 

pay for perfect forecasts of the future. This value can then be used to decide whether the 

methods of collecting more information should be pursued or not. The wait and see solutions 

(WS) are the solutions obtained for scenarios where the decision-maker makes no decision 

until all the random variables are realized.    

The comparison of the test results for different values of maximum allowed 

production quantities are shown in Figure 7 and Figure 8. In the stochastic case, the value of 

RP decreases as the maximum allowed production quantities increase because of more 

flexible production capabilities and regular time production resources. It should be intuitively 

clear that the WS solutions are lower than the RP solutions for a minimization problem, as 

seen in Figure 7. The EVPI value increases with the increase in the maximum production 

quantity because, with increased flexibility and production resources, the decision-maker will 

be willing to pay more for getting accurate forecasts of the future. Some of the demand 

values of the products are extreme and getting accurate forecasts of them in a limited 

production resources setting does not add value. This is why the EVPI values are low for the 

cases with lower limits for the maximum production quantities. Apart from having a 

decreasing trend, the deterministic solution (EV solution) also appear to have the lowest 

values for total cost, as they do not consider any parameters used in the model to be 
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uncertain. From Figure 7, EEV has the highest values for the total cost, as they are the 

expected results of EV, that is obtained by applying the deterministic case decisions to the 

stochastic environment.  

 

Table 15: Summary of results from stochastic model (Cost in $) 

Max Production Quantity- 

% of Mean Demand 

EV WS RP EEV EVPI VSS 

90% 1234258 1723200 1745851 1751578 22651 5726 

100% 1189012 1494400 1548738 1561211 54338 12473 

110% 1167925 1339300 1412556 1490384 73256 77829 

120% 1167858 1269700 1352675 1485102 82975 132427 

 

 

 

 

Figure 7: Comparison of test results for different values of production quantity 
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Figure 8: Comparison of VSS and EVPI values for different values of production quantity 

 

The VSS values for the stochastic model also increase with the increase in the 

maximum allowed production quantities, indicating a corresponding increase in the criticality 

of the uncertain factors considered in the study. Even though the start is slow, the VSS values 

increase drastically as the maximum allowed production quantities increase, as seen in Figure 

8. This is because, with more flexible production resources and capabilities, it becomes more 

beneficial for considering the uncertainties in the decision-making process. With a restriction 

on the maximum production quantities, the model is unable to quickly adapt to the 

uncertainties. However, with flexibility the model quickly reacts to the uncertainties and 

meets the extreme demands by producing extra products. 

The production sequence obtained for the first case with the maximum production 

quantity as 90% of the mean demand is shown in Table 16. In time period , product  is 

manufactured first, followed by product . Product  is not manufactured in this time 

period.  The deterministic and stochastic models resulted in different strategies for allocating 

the production resources and for sequencing the production activities. Therefore, considering 
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uncertainty in the mathematical formulation for production planning in a manufacturing 

system would have effects on the production quantities as well as the production sequences. 

For the different production quantity limits considered in this study, the inventory costs 

mostly remain close to zero, showing that investing in production inventory control will not 

be effective in reducing the overall cost.      

 

Table 16: Stochastic model production sequence 

Time Periods/ 

Products 
      

 

1 2 3 1 2 2 

 

3 1 2 3 1 0 

 

2 3 1 2 3 1 
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2.5 Conclusion 

Production planning is the process of the effective allocation and use of resources such as 

materials and production capacities to meet the requirements of customers. Due to the 

significance of the different production related costs, the planning of production lot-sizing 

and scheduling activities plays an essential role in optimizing the costs.       

This paper provides a two-stage stochastic programming framework for a multi-period, 

multi-product lot-sizing and scheduling problem with uncertain demand and quality of raw 

materials. The first stage makes regular time production quantity and sequencing decisions 

while the second stage determines the use of overtime production resources including 

inventory and backlog. The optimization model facilitates decision-making for lot-sizing and 

sequencing decisions in a stochastic manufacturing setting.  

The proposed approach was applied for production planning in a manufacturing company 

producing braking equipment under demand and quality uncertainties. The results indicated 

that the uncertain parameters play a significant role in production planning. It is observed 

that the parameter of maximum number of production quantity that is allowed to be produced 

in a particular time period has a significant impact on the production planning process. The 

results show that the stochastic model is more effective in production planning under the 

uncertainties considered especially with flexible production resources and capabilities.  This 

is reflected in the increase in the VSS values as the maximum allowed quantity increases.      

In summary, this paper provides a framework for making production lot-sizing and 

scheduling decisions under uncertainties. Although different parameters involved in 

production planning were reviewed, a need for further research is identified. Firstly, we 

assume that demand and the quality of raw materials are time independent. However, these 
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factors may vary based on their previous values. Secondly, we consider only two sources of 

uncertainties and more uncertainty factors can be considered. Thirdly, sensitivity analysis of 

scenario generation, demand and quality parameters can be performed which might require a 

significant amount of meaningful raw data. Fourthly, the stability of the results can be tested 

by generating more scenario sets. Lastly, the quality of the scenario sets obtained through the 

scenario reduction techniques can be tested to determine how good their representation is of 

the actual scenario set. We shall address these limitations in our future research.   
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CHAPTER 3.  PRODUCTION PLANNING WITH A TWO-STAGE STOCHASTIC 

PROGRAMMING MODEL IN A KITTING FACILITY UNDER DEMAND AND 

YIELD UNCERTAINTIES 

 

Manuscript to be submitted Journal of Operations Management  

Goutham Ramaraj, Zhengyang Hu and Guiping Hu 

Abstract 

The assembly line feeding system is a major part of a manufacturing shop floor. The 

uncertainties in the production system pose a significant threat on the downstream operations 

as the decisions could impact the entire manufacturing supply chain. Therefore, it is vital to 

plan the production at the assembly line feeding system to satisfy the downstream operations 

and customer demands effectively. The main objective of this study is to develop a two-stage 

stochastic programming framework for lot-sizing and scheduling the production activities at 

a kitting facility to support a manufacturing plant. The demand of the kits and the yield of the 

kitting workers are the two sources of uncertainties considered in this study. The first-stage 

decisions include the baseline production schedule and the workforce requirement, while the 

second-stage makes recourse decisions on overtime production. The proposed decision-

making framework is validated on a multi-period, multi-product case study involving a 

kitting facility supporting a manufacturing plant producing braking equipment. The 

uncertainties are introduced as discrete scenarios that are generated using a scenario 

generation method. These scenarios are reduced to a smaller subset of scenarios to improve 

the computational tractability without losing the probabilistic representation. The main 

conclusion of the study is that uncertainties have significant impacts on kitting planning 

decisions and that the proposed two-stage stochastic programming model was robust in 

determining optimal production plans under uncertainty. 
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3.1 Introduction 

The assembly line feeding system constitutes one of the major pillars of a manufacturing 

process. It controls and ensures the conveyance of materials from the external/internal 

warehouses to the work-centers in an assembly line in right quantities and at the right time.  

The two widely used line feeding systems are line side stocking and kitting [1]. Line side 

stocking stores all the required components in bulk quantities along the line side storage 

locations that are replenished frequently from an internal supermarket within the 

manufacturing facility.  As the parts at the supermarkets get depleted, they are replenished by 

an external warehouse facility using Kanban-based policies. A typical line side stocking 

system is shown in Figure 9. 

In a kitting system, as shown in Figure 10, all the components that are required to 

assemble a product are collected in a kit container and are delivered to an assembly line in 

accordance with the production schedule. Kits are usually assembled in an external kitting 

facility or at an internal kitting area within the facility therefore no pallet/box inventories are 

stored at the line side storage locations for these parts.  Both systems have their own 

advantages and disadvantages and a decision to select the right system for a manufacturing 

plant needs to be made depending on the level of customization of the products manufactured 

and the storage space constraints within the facility.  
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Figure 9: An Example of Line Side Stocking 

 

Among product customization, the number of variant parts in the product 

manufactured is one of the major parameters that need to be considered before the assembly 

line feeding system is designed.  Variant components are the parts that have multiple variants 

of the same product that needs to be assembled on a product based on the variant selected by 

the customer. This would require the product to be delivered to the line right on time for the 

assembly of the product requested by the customer. Space constraints at line side locations is 

another factor that influences the decision of selecting the best line feeding system. The 

process is complicated by the size of the parts assembled, ranging from small to bulk parts, 

and their rate of consumption, low, medium to high runners. Storing a full pallet of each part 

to be assembled near work-centers requires a very large production area and causes 

inconvenience to the operators in travelling large distances to obtain the parts/components 

required for the assembly process. The adoption of kitting system in many industries has 

helped to address the parts storage space issues and to better streamline the flow of material 

to the assembly line.  
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Figure 10: An Example of Kitting System 

 

As per Choobineh and Mohebbi, a kit is collection of components/parts required for 

the assembly/production of a product [2]. The advantages of kitting, as stated by Bozer and 

McGinnis, include easy handling of the materials to workstations, increased productivity, 

easy changeover of product type, and removal of non-value adding activities from the 

assembly process [3]. Due to the inherent system and environmental uncertainties within a 

manufacturing plant, the planning of the kitting operations plays a crucial role in determining 

the level of productivity and the efficiency of the assembly activities of the final product. 

Some of the common uncertainties in a manufacturing environment include demand, yield 

and quality uncertainties [4]. Some of these uncertainties within the manufacturing plant tend 

to affect the upstream operations like the line feeding operations. For example, the change in 

the production sequence due to issues like part quality and availability creates demand 

change for the kits that in turn affects the upstream kitting operations. Apart from this, the 

uncertainties within the kitting facilities like the worker yield uncertainty further makes the 

operations planning process more complex and challenging. Despite of these challenges, the 
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existing literature suggests that the kitting based line feeding system has been widely adopted 

by many industries. Toyota has set up a new kitting process called the Set Pallet System 

(SPS), at their manufacturing facility at San Antonio. This new system has helped the 

company to eliminate the involvement of the operators in the part picking process. Some of 

the other benefits include more value-added time by the operators, cleaner work areas and 

visual control, and fewer part selection errors [5].         

In spite of the popularity of the kitting based line feeding system for manufacturers, 

there appear to be very few studies on kitting production planning. Ramachandran and Delen 

analyzed the dynamics involved in a simple kitting process of a stochastic assembly system 

where two independent streams feed into an assembly process. The findings from their study 

provide manufacturing system designers variety of control parameters to effectively analyze 

the system performance [6].  Caputo et al. developed a detailed descriptive mathematical 

model for kitting operations planning, allowing resources planning and valuation of system’s 

economic performances [7]. Selcuk and Bulent proposed a mathematical model to design a 

kitting system by obtaining the optimum values for the design parameters. The tour period, 

the number of kitting workers, and the quantities of the kits are the parameters used in their 

study [8]. Gunther et al. proposes a heuristic solution procedure to solve the component 

kitting problem faced by electronics manufacturers. Their close to optimum results show that 

heuristic based approach is computationally efficient [9]. De Souza et al. conducted a study 

on how to pack parts in available containers to meet the assembly line workstation 

requirements with minimum cost over the entire planning horizon. An integer programming 

model was used to solve the line feeding problem [10]. Brynzer and Johansson carried out a 

number of case studies on the design and performance of kitting and order picking systems. 
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Some of these studies conducted were in the terms of location of the order picking activity, 

work organization, picking method, information system and equipment [11].  Limère et al. 

proposed a mathematical model to evaluate the allotment of parts to one of the two main 

material supply systems: kitting or line side stocking. The results show that a hybrid system 

with some parts kitted and other stored near line side is preferred over the exclusive use of 

any one material supply system [12]. Hanson and Medbo conducted a study to determine 

how kitting affects the time efficiency in a manual assembly process. Four cases studies of 

automobile assembly were conducted to determine the parts that needs to be kitted and the 

order in which the assembly operations needs to be performed [13].    

In practice, production planning of kitting operations is most likely to be performed in 

an uncertain environment as the demand of the kits and the yield of the kitting workers are 

often not known for sure. Even though many researchers have extensively studied the 

planning of production activities in a kitting system, very few have considered the stochastic 

nature of the manufacturing environment. Our study takes into consideration the uncertainties 

in a kitting process which can be regarded as one of the major contributions of this paper. 

Choobineh and Mohebbi conducted a study for material planning for production kits under 

demand and procurement lead time uncertainty [2]. A comprehensive simulation study was 

conducted to investigate the impacts of demand and procurement lead time uncertainty on 

system performance. Unlike the simulation modeling approach, in our study we use a 

different modeling approach based on mathematical programming to assist the decision-

making process in a kitting system under uncertainty. In terms of application, we are the 

pioneers to adopt a two-stage stochastic programming approach for a kitting specific 

production planning problem. Even though production planning under uncertainty is one of 
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the major areas of application for optimization tools using mathematical modeling, not many 

studies discuss the use of two-stage stochastic programming framework for solving 

problems. In addition, this study considers two sources of uncertainties simultaneously in in 

one decision-making framework since it is common to often encounter situations with 

multiple uncertain parameters. In the existing literature for production planning problems, 

majority of them discuss the effect of only one uncertainty in a manufacturing environment. 

This paper is among the few studies that consider the effects of multiple uncertainties, which 

is more practical in a manufacturing environment. This is another major contribution of this 

study.   

As suggested by literature and industrial practitioners, business decisions made at a 

line feeding system is critical and need to be carefully planned as it involves a number of 

players across the entire manufacturing supply chain. The purpose of this study is to propose 

a two-stage stochastic programming approach for production planning for a kitting system 

under demand and yield uncertainties. The objective of the model is to minimize the total 

kitting cost by finding the optimum kitting schedule and lot size. The novelty of the study 

lies in modeling multiple uncertainties using two-stage stochastic programming to solve a 

kitting specific production planning problem in a manufacturing setting.  

The remainder of the paper is structured as follows: Section 2 provides the problem 

statement including the assumptions in the study. Section 3 presents the deterministic model 

and the stochastic model for the production planning problem. Discussion of the results from 

a case study based on an automotive part manufacturer are provided in Section 4 and finally, 

conclusions are provided in Section 5.  
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3.2 Problem statement 

Production planning is a crucial step in a manufacturing environment especially when the 

system operates in a stochastic environment. Efficient production planning helps in 

optimizing the use of plant resources and in streamlining the conveyance of material to the 

assembly line. The schematic of the manufacturing system considered for this study is shown 

in Figure 11. Some of the uncertainties within the manufacturing system tend to propagate 

across the manufacturing supply chain, affecting the operations in the upstream and 

downstream facilities. For example, the uncertainty in customer demand affects the planning 

of the assembly process inside the manufacturing plant. Likewise, the uncertainties within the 

plant like the parts quality uncertainty and lead time uncertainty affects operations planning 

at the line feeding system. Whenever a change is made to the production sequence, it disrupts 

the kitting operations as they are planned based on the production sequence. This uncertainty 

in the demand of raw material/kits can lead to delay in the delivery of the kits to the 

manufacturing facilities, which can lead to line shut down and thus economic loses. Apart 

from this, the uncertainties within the line feeding system like the worker yield uncertainty 

further makes decision-making complicated and challenging.     

 

Figure 11: Manufacturing System Studied 
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In this paper, a mathematical framework based on two-stage stochastic programming is 

developed to assist decision-making in an assembly line feeding kitting system under 

uncertainty. The objective is to find the optimal decisions on kit production quantities and 

kitting sequences. The results from this paper can provide guidance and managerial insights 

to make decisions related to production lot-sizing and scheduling in a kitting facility under 

demand and worker yield uncertainties. The proposed framework can contribute to address 

and manage the uncertainties in a kitting facility.     

3.3 Model formulation 

In this section, we first present a deterministic mathematical formulation for the problem 

studied. Then the model is extended to a two-stage stochastic programming framework to 

address uncertainties in kit demand and worker yield in a kitting facility. A two-stage 

stochastic programming model is designed to accommodate flexible decision-making 

mechanism that can respond to events as they unfold. The decision maker has the option to 

compensate for the non-optimal effects of the first stage decisions through the recourse 

decisions made in the second stage of the decision-making process [14].  

3.3.1 Mathematical notations  

To describe the lot-sizing and scheduling problem addressed in thus study, we 

consider a kitting facility with N kits indexed by i, j = 1,….,N  to be kitted over a time 

horizon of T periods, indexed by t = 1,…,T . Both the indexes i and j are used to denote the 

same set of kits produced at the kitting facility to model the changeovers between the kits. 

The mathematical notations associated with the problem studied are included in Table 17.     

Table 17: Notations for the mathematical formulation 
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Subscripts 

          1, 2….N  Kits 

          1, 2….N  Kits   

          1, 2….T  Time periods 

 

Parameters 

     Demand for kit  in period  

        Inventory holding cost per unit kit  for one period 

        Backorder cost per unit kit  for one period 

   Time capacity of a kitting worker in period   

      Processing time of unit kit  in period   

       Regular time processing cost per unit kit   

       Overtime processing cost per unit kit   

      The maximum regular time kitting quantity of kit  in period  

    Setup cost for changeover from kit  to kit  

    Setup time for changeover from kit  to kit  

      The units of kits  processed by a worker in time period   (yield of a worker) 

         Maximum overtime ratio  

         The monthly wage of a worker     

         Number of kits 

 

Decision Variables 

        The number of kitting workers in time period  

        Inventory level of kit  by the end of period  

       Backorder level of kit  by the end of period  

       Regular time production quantity of kit  in period  

       Over time production quantity of kit  in period  

     1 if a changeover from kit  to kit  is performed in period . Binary Variable  

       1 if a setup of kit  is carried over from period  to period . Binary Variable 

       Production order of kit  in period . Integer variables start from 1. 

 

3.3.2 Deterministic model  

This model aims to determine the optimal production lot size and sequence to satisfy 

the customer demand effectively.   
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Before the modelling approaches are introduced, we present the assumptions to clearly 

define the problem considered for this study. 

 Inventory is evaluated at the end of each planning period with the starting inventory 

level at the beginning of the planning horizon to be zero. 

 The kit demand and the worker yield in a specific time period is independent from the 

previous time period. 

 Both uncertainties are independent of kits and of each other. 

 Limited resources are available for production, both for regular time and overtime 

production. 

 The maximum setup for each product in a single time period is one. The same setup is 

used for both regular time and overtime production. 

 The setup can be carried over to following time period. 

 Backorders are allowed, so the kit demand does not need to be fulfilled for every time 

period.    

   

Objective function and constraints 

The objective function of the deterministic model captures the combined costs 

incurred in the kitting process. The costs include production, inventory, backorder and labor 

costs. The costs from regular time and over time production of kits are denoted by terms 

 and  respectively in the objective function. The terms 

are the setup 

changeover cost, inventory cost, and the backorder cost respectively. Lastly, the labor costs 

incurred for the kitting process is represented by the term  The decisions 
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include the production quantity for both regular time and overtime production, production 

schedule, inventory and backorder levels and the kitting workforce requirement. Specifically, 

,  , , , , , , and  constitute the decision variables used in the study 

and they clearly define the production and workforce requirements for the kitting process.  

The objective function is as follows:  

Minimize Z = 

 

Subject to  

                       (1) 

                             (2) 

                                (3) 

                           (4)      

                                  (5) 

               (6)   

                                              (7)   
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                                         (7) 
 

                          (9) 

 )                                                                        (10)

  

  The decision variables in the model are constrained by a set of constraints 

represented with Eqs. (1) to (10). The balance between the production and demand of the kits 

are maintained by the inventory balance constraints Eqs. (1) and (2). The inventory from a 

previous period is considered to maintain the balance. Based on worker efficiency, the 

regular and overtime production quantity is subject to constraint Eq. (3). Eq. (4) restricts the 

total regular time production quantity irrespective of whether a setup change is performed or 

the setup is carried over from a previous period. A setup carryover happens when  = 1 and 

a setup changeover happens when  = 1. Both these terms is restricted to be 1 at the 

same time. The constraint on time capacity is achieved through Eq. (5). The limitation on the 

overtime production quantity is defined through Eq. (6). Eq. (7) guarantees that the initial 

setup is performed at the beginning of each time period. The balance of flow of the setups is 

maintained by Eq. (8). It ensures that the setup is ready to be kitted either at the beginning of 

the period or at the beginning of the next period depending on the position of the product in 

the production sequence. Eq. (9) makes sure that there is no production in the last time 

period, which is considered as a dummy period for this study. The subtours in the production 

sequence is eliminated by Eq. (10).    
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This mathematical formulation takes a deterministic view of the lot-sizing and the 

scheduling problem by considering all the model parameters to be known with certainty. This 

assumption of complete knowledge of the parameter values, although desirable from the 

modeling point of view, is highly optimistic. In practice, most kitting and manufacturing 

environments are characterized by a variety of uncertainties. There have been lots of efforts 

to address uncertainties in the production planning problem in the existing body of literature. 

Kazaz proposed a two-stage stochastic programming model for olive oil production planning 

under yield and demand uncertainty [15]. Gurnani et al. studied supply management in an 

assembly system with random yield and random demand. They developed a cost function to 

determine the combined component ordering and assembly decisions for the firm [16].  The 

importance of incorporating these uncertainties into the production planning models has 

motivated our study. In Section 3.3, a two-stage stochastic programming framework 

considering demand and yield uncertainties is presented.     

3.3.3 Two-stage stochastic programming model   

Two-stage stochastic programming is an effective modeling approach for production 

planning under uncertainty [14]. The demand of the kits and the yield (efficiency) of the 

kitting workers are the uncertainties considered in our study. The probability distributions for 

these uncertainties are represented with discrete scenarios. We use a subscript s to represent 

the scenarios with a probability Prs, which is obtained by multiplying the individual 

probabilities of demand and yield uncertainties as they are assumed to be independent of 

each other. The two-stage stochastic programming model is formulated as follows:  

Minimize Z = 
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Subject to 

Constraints (7), (8), and (10) 

                                                                 

                        

                      (13) 

                                                                        (14) 

                                                            (15) 
 

                       (16) 
 

                           (17) 

                                  

In the above formulation, the variables Kt and Yijt, Zit, and Vit are the first stage 

decisions while the Xits, Oits, Iits, and Bits are the second stage, recourse decisions. The first 

stage decisions that include the baseline production schedule and the workforce requirement 

are made before the uncertainties in kit demand and worker yield are realized. The second 
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stage decisions, which include production quantities (regular time and overtime), inventory 

and backorder levels are made after the two sources of uncertainties are realized.  

While some constraints are retained from the deterministic formulation, others are modified 

according to the scenarios. Eqs. (7), (8), and (10) are the first stage constraints and remain the 

same as the deterministic model. The remaining Eqs. (11) to (17) describe the second stage 

constraints.  

One of the foremost steps to incorporate uncertainties into the production planning 

models is to determine the appropriate representation of the uncertain parameters. Gupta and 

Maranas identified two distinct methodologies for representing uncertainty, scenario-based 

approach and distribution-based approach [17]. While the scenario-based approach describes 

the uncertainty by a set of discrete scenarios each with an associated probability, distribution-

based approach assigns a probability distribution to the continuous range of potential 

outcomes. For this study, we adopt the scenario-based approach. Each scenario is a discrete 

value of kit demand or yield of a worker. A scenario set is generated to represent the 

uncertain parameters.  

Computational efficiency is among the most important characteristic to be considered 

when choosing the approach to decide the set of scenarios to represent uncertainties. In our 

study, we use a moment matching method to generate scenarios by discretizing the 

underlying distribution of uncertain parameters [18].  This is a widely-used scenario 

generation method, especially when the distribution functions of the marginals are unknown. 

In such cases the marginals are described by their moments (mean, variance, skewness, 

kurtosis etc.) instead [19]. To reduce the computational burden and to approximate the 

probability distribution with a smaller subset that is close to the original distribution, we 
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make use of a scenario reduction technique [20, 21]. Both the scenario generation and 

scenario reduction techniques used in this study is discussed in detail in section 4.           

3.4 Case study 

In this section, the proposed approach for production planning under uncertain 

demand and yield is implemented for a kitting facility that supports a manufacturing plant 

producing braking equipment for the automotive industry. In the facility considered in this 

study, three types of hydraulic braking actuators, P1, P2, P3, are manufactured. The assembly 

process of these three actuators require three kits that are specific to the product 

manufactured. Based on the classification framework proposed by Guimaraes et al. for lot-

sizing and scheduling problems, the planning horizon for the large bucket models is 

partitioned into small number of long time periods, representing, in most cases, a week or 

month [22]. For this study, we consider a multi-period multi-product problem with a six-

month planning period that is divided into time slots of a month each. The main objective is 

to minimize the total costs involved in the kitting process to meet the needs of the upstream 

customers in the most cost effective way. All the input parameters used for this study, except 

the demand of kits and the yield of the kitting workers, are assumed to be known with 

complete certainty.   

3.4.1 Data sources  

  As discussed earlier, the case study is based on a kitting facility that produces three 

types of kits (Kit1, Kit2, Kit3) for the assembly of three actuators (P1, P2, P3) in a 

manufacturing facility. Both the kit demands and the yield of kitting workers are uncertain 

and are distributed according to the probability density functions (pdf’s) defined in  
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Table 18 and Table 19. The distributions for the monthly demand is assumed to be the same 

for the original equipment and its kits and is obtained by fitting the historical data of a three 

year period [23]. The data for yield of the kitting workers is obtained from the study 

conducted by Zhang et al. using real data from a manufacturing facility [24]. As many other 

studies in literature, we also assume the yield for all the three kits to be normally distributed 

with the moments as shown in Table 19 [25, 26, 27]. It is assumed that the demand of the kits 

and the yield of the kitting workers are independent of each other [27, 28].     

 

Table 18: PDF of monthly demand 

Monthly Demand 

  Kit1 Kit2 Kit3 

PDF Weibull Weibull Weibull 

Scale 518 38 169 

Shape 1.51 2.76 2.27 

Mean 467.25 33.82 149.70 

Variance 99422 175.42 4877.80 

Skewness 1.06 0.25 0.47 

Kurtosis 4.35 2.78 2.98 

 

 

Table 19: PDF of worker yield 

Product yield of workers 

 Kit1 Kit2 Kit3 

PDF Normal  Normal Normal 

Mean 60.69 51.59 43.70 

Variance 9.10 9.10 9.10 

Kurtosis 3 3 3 

 

Setup costs for kitting include the costs of making changes to the kitting equipment, 

and moving materials or equipment. This would include the labor costs involved for making 
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the changes and cost of lost opportunity of kitting a profitable output when the kitting 

operations were idle. The changeovers between the kits would also require significant times 

as the process and the equipment required for kiting would be different for different parts, 

making the lot-sizing and scheduling decisions more complex. Setup and operation times for 

the kitting process studied are listed in Table 20 and Table 21 [23]. The cost for the setup is 

set to be proportional to the setup time by a specified factor of 0.2805 [29].  

Table 20: Setup Times 

Setup Times (min/setup) 

  Kit1 Kit2 Kit3 

Kit1 0 270 90 

Kit2 180 0 270 

Kit3 90 180 0 

 

Table 21: Operation Times 

Operation times (min/unit) 

  Kit1 Kit2 Kit3 

Operation time 6 6.6 7.2 

 

Error! Reference source not found. shows the time capacities available (including 

failure and repair time). The regular time kit production costs are shown in  

Table 23. Just like the setup costs, both overtime production and backorder costs are 

set proportional to the regular time production costs with the factors at 1.5 and 2, respectively 

[23, 24].  

Table 22: Time Capacities 

Time capacities (min) 

Month Capacity 

1 6087 

2 5367 

3 6087 
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4 6087 

5 4407 

6 4407 

 

Table 23:Regular time production and Inventory costs 

Regular time production and inventory 

costs ($/unit) 

  Kit1 Kit2 Kit3 

Production cost 254.08 254.08 254.08 

Inventory cost 0.16 0.15 0.38 

 

The average daily production rate of a kitting worker is 2.89 kits. Their corresponding 

production rates (yields) for different levels of efficiency are given in  

Table 24. To calculate the labor cost of a worker in a time period, the regular time 

labor cost is set at $18 per hour and it is assumed that the company operates 8 hours a day 

and 21 days in a month [24].   

 

Table 24: Kitting worker production rate 

Worker Efficiency Production rate 

100% 2.89 

85% 2.46 

72% 2.08 

 

For this study the maximum overtime ratio is set at 20% of regular time production to 

eliminate the possibility of a decrease in worker productivity due to exceeding the overtime 

limits set by the government and the company policies [24].  

For a mathematical modeling problem it is important to conduct sensitivity analysis to 

understand the impact of the changes in the input sources on the system output. Jamal et al. 

identified batch size as a parameter that is equally important as other parameters like the 
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inventory, holding, backorder and production costs. An optimal batch quantity depends 

mainly on the rate of production and the demand pattern of the final products [30].  Park also 

emphasizes the importance of production capacity parameters in production and distribution 

planning problems. He conducted sensitivity analysis of the input parameters used in his 

model to investigate the level of their effects on the problem studied [31]. Hu and Hu 

formulated a two-stage stochastic programming model to determine the optimal lot-size and 

production sequence under demand uncertainty. They conducted sensitivity analysis on the 

production capacity parameter to investigate the tradeoffs and to provide valuable insights on 

decision making under uncertainty [32]. Since the production capacities is one of the 

important parameters based on the literature, we conduct a sensitivity analysis for our study 

using the parameter , which is the maximum regular time production quantity for a kit in a 

particular time period. We consider four different values for the allowed production 

quantities, 90%, 100%, 110% and, 120% of the mean values of demand. This will help 

understand how different values of production quantities impact the production planning 

decisions under uncertainty.       

3.4.2 Scenario generation and reduction  

The representation of the underlying stochastic process is one of the major concerns 

in stochastic programming [33]. Random variables represented by continuous or discrete 

distributions makes the computation process more tedious. To address this issue, the 

distributions are replaced with a set of discrete outcomes. In this study, we use a non-linear 

programming method proposed by Hoyland and Wallace to generate a limited number of 

discrete outcomes that meet specified statistical properties [34]. The number of scenarios 

generated has a direct influence on the computation requirements and accuracy when solving 
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the mathematical model. So it is important to identify the right presentation of the 

probabilistic distributions [21]. Another common approach adopted is to use scenario 

reduction techniques that control the approximation’s goodness-of-fit according to 

probability metrics [19]. In this study, we use the forward selection scenario reduction 

method to obtain a smaller subset of the generated scenarios. Both methods are discussed in 

detail in the subsections below.  

 

Scenario generation  

In our study, we use the moment matching method for scenario generation. The 

concept of moment matching is to minimize the distance between the generated scenarios 

with those of the observed data process. Following the notation presented by Hoyland and 

Wallace, define P as a set of all specified statistical properties and PVALi as the observed value 

of the specified statistical property i from P [34]. Then let V be the number the number of 

random variables, T be the number of stages and Rt be the number of conditional outcomes in 

each stage t. Define the outcome vector x of dimension V.R1 + V.R1.R2 + …+V.R1.R2….Rt 

that means there are R1.R2….Rt outcomes of each variable v = ( 1, …, V) in stage t = (1,…,T). 

The probability vector p is of dimension R1 + R1.R2 + R1.R2…Rt. The function  is the 

mathematical expression of the statistical property i in P and M is the matrix of zeros and 

ones whose number of rows is equal to p and number of columns equals the number of nodes 

in the scenario tree.  Finally, let wi, be the weight of statistical property i in P.  

The vectors x and p are generated by solving the non-linear optimization problem: 
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For scenario generation with moment matching method, one can use as many 

moments and state-dependent statistical properties as desired. For the kit demand uncertainty 

in our model the four moments of mean, variance, skewness and kurtosis are used to generate 

the scenarios. Since the underlying distribution for yield uncertainty is a normal distribution, 

only mean, variance and kurtosis are used as the moments for scenario generation. The model 

has multiple optimal values since it a non-linear optimization problem. Therefore, it is run 

until a satisfactory objective value that is zero or close to zero is obtained [34].   

 

The realizations generated with the method discussed above would be the same in 

every time period for both the uncertainties. This is because the value of the specified 

statistical properties remains the same for all time periods and due to the assumption that 

both the uncertainties are independent of each other and their realizations in each time period 

does not depend on their values in the previous periods. We also assume that the 

uncertainties are product independent, that is the kit demand and the yield of the kitting 

workers of one product has no influence on the corresponding parameters of other products 

[35].  

 

For the kit demand uncertainty, a scenario tree with three products and six time 

periods is generated. The total number of specified statistical properties in the set P is 72 and 

the value of i is 18. We generate 5 scenario outcomes in each time period whose value is 
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obtained using the formula . The approximation of the probability 

distribution is observed to be better with 5 outcomes than with 4 outcomes that was obtained 

from the formula. The non-linear optimization problem was solved using General Algebraic 

Modeling System (GAMS) to generate a total of 56 scenarios for the kit demand uncertainty. 

The objective value obtained was zero indicating a perfect match between the specified 

properties and the generated scenarios. The kit demand scenarios for all the six periods are 

tabulated in Table 25 and the scenario tree generated is shown in Figure 12: Kit demand 

scenario tree. 

 

Table 25: Kit demand scenarios for first period                    

 Time- 

Period 

 1 2 3 4 5 6 

Kit 

Demand 

Outcome1 

P1= 0.223 

Kit1 64.305 64.305 64.305 64.305 64.305 64.305 

Kit2 30.729 30.729 30.729 30.729 30.729 30.729 

Kit3 132.143 132.143 132.143 132.143 132.143 132.143 

Outcome2 

P2= 0.233 

Kit1 439.817 439.817 439.817 439.817 439.817 439.817 

Kit2 54.927 54.927 54.927 54.927 54.927 54.927 

Kit3 54.700 54.700 54.700 54.700 54.700 54.700 

Outcome3 

P3= 0.177 

Kit1 574.24 574.24 574.24 574.24 574.24 574.24 

Kit2 28.886 28.886 28.886 28.886 28.886 28.886 

Kit3 199.126 199.126 199.126 199.126 199.126 199.126 

Outcome4 

P4= 0.100 

Kit1 1246.83 1246.83 1246.83 1246.83 1246.83 1246.83 

Kit2 8.819 8.819 8.819 8.819 8.819 8.819 

Kit3 299.724 299.724 299.724 299.724 299.724 299.724 

Outcome5 

P5= 0.268 

Kit1 463.232 463.232 463.232 463.232 463.232 463.232 

Kit2 30.696 30.696 30.696 30.696 30.696 30.696 

Kit3 157.906 157.906 157.906 157.906 157.906 157.906 

 

 



71 

 

 

 

Figure 12: Kit demand scenario tree 

 

Similarly, a scenario tree with 56 scenarios with five outcomes in each time period is 

generated for the kitting worker yield uncertainty. The summary of the yield scenarios 

generated for the first time period is shown in Table 26 and the scenario tree generated is 

shown in Figure 13.    
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Table 26: Yield scenarios for first period 

 Time- 

Period 

 1 2 3 4 5 6 

Worker  

Yield 

Outcome1 

P1= 0.152 

Kit1 53.747 53.747 53.747 53.747 53.747 53.747 

Kit2 45.512 45.512 45.512 45.512 45.512 45.512 

Kit3 37.659 37.659 37.659 37.659 37.659 37.659 

Outcome2 

P2= 0.298 

Kit1 62.841 62.841 62.841 62.841 62.841 62.841 

Kit2 54.446 54.446 54.446 54.446 54.446 54.446 

Kit3 43.08 43.08 43.08 43.08 43.08 43.08 

Outcome3 

P3= 0.196 

Kit1 60.981 60.981 60.981 60.981 60.981 60.981 

Kit2 51.121 51.121 51.121 51.121 51.121 51.121 

Kit3 44.129 44.129 44.129 44.129 44.129 44.129 

Outcome4 

P4= 0.120 

Kit1 61.954 61.954 61.954 61.954 61.954 61.954 

Kit2 49.791 49.791 49.791 49.791 49.791 49.791 

Kit3 44.987 44.987 44.987 44.987 44.987 44.987 

Outcome5 

P5= 0.234 

Kit1 61.57 61.57 61.57 61.57 61.57 61.57 

Kit2 53.218 53.218 53.218 53.218 53.218 53.218 

Kit3 47.4 47.4 47.4 47.4 47.4 47.4 

 

 

 

Figure 13: Worker yield scenario tree 

 

 



73 

 

 

Scenario reduction 

To make our two-stage stochastic programming model computationally tractable, we 

make use of a scenario reduction technique based on fast forward selection (FFS) to 

accomplish this task. The FFS algorithm successively computes the distances between the 

generated scenarios to select the most representative ones.  

We briefly review the FFS method used as follows [19, 36]. A scenario is defined as a 

path from the root node to the node in the last stage, denoted by si, with i = 1, 2,…, N. The 

probability of a particular scenario is represented by pi , which the conditional probabilities 

of all the nodes over the entire path. The nomenclature used for the model and the steps 

involved in the process is discussed below: 

 

Table 27: Nomenclature used for scenario reduction 

 Number of scenarios in the original set 

 Scenario  

 Probability of scenario  

 Non-negative function of  norm 

 Unselected scenario set till the iteration 

 Distance between scenario  and  at  iteration 

 Total weighted distance of each scenario  with other 

scenarios at  iteration 

 Selected subset from the original set of scenarios 

     

Procedure of FFS: 

Step 1. Compute the distance of the scenario pairs for :  

 

Step 2. Compute the weighted distance of each scenario to the other scenarios: 
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                Choose   

                Set   

Step 3. Update the distance matrix using the scenario selected in the previous step.  

Let ; compute:  

 

and 

 

choose  

 

set       

Step 4. If the number of selected scenarios is less than the required number, return to Step 2. 

Step 5. Add to the probability of each selected scenario the sum of the probabilities of all 

unselected scenarios that are near it; ie.,  for any   and  

 for any    . 

Using the method discussed above, the 56 scenarios that were generated for demand and yield 

uncertainties were reduced to 10 most representative scenarios for each uncertainty 

considered in the study. The two-stage stochastic programming model was finally run for 100 

combined scenarios of kit demand and worker yield uncertainties. The results and the 
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findings obtained for both the deterministic and stochastic models are discussed in the 

sections below.  

 

3.4.3 Analysis for the deterministic case  

The deterministic model for the lot-sizing and scheduling problem was run for four 

different values of the maximum allowed production quantity. The implementation results 

are summarized in Table 28.  

It can be observed that the overall kitting costs keep decreasing as the parameter of 

maximum allowed production quantity ( ) is relaxed. This is because, as the maximum 

production quantities increase, more kits are produced during regular time production which 

is cheaper than overtime production. The lowest kitting cost is obtained for the case of 120% 

as in this case more kits are produced beforehand and stored in the inventory to meet the 

future customer demand. Even though this increases the inventory costs, it helps in saving 

more on the setup costs thus decreasing the overall costs. It can be observed that the overtime 

production cost is associated only with the first case as overtime production is no longer 

required as the maximum production quantity is made more lenient. There is no inventory or 

backorder cost involved when the maximum allowed production quantity equals the kit 

demand as more labors are employed to do the kitting process that increases the kitting cost. 

The regular time production cost remains the same for the first two cases showing that the 

parameter  has no effect on the production costs for these two cases.      
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Table 28: Summary of results from the deterministic model (Cost in $) 

 

Max production 

quantity- 

% of mean demand 

Totals 

Regular 

time  

production 

cost 

Overtime  

production 

cost 

Setup  

cost 

Labor  

cost 

Inventory  

cost 

Backorder  

cost 

Overall 

cost 

90% 892877.27 144330.91 504.90 139104.00 24.43 5975.96 1182817.46 

100% 992085.85 0.00 504.90 145152.00 0.00 0.00 1137742.75 

110% 989097.87 0.00 504.90 139104.00 27.67 5975.96 1134710.40 

120% 989097.87 0.00 429.17 139104.00 46.08 5975.96 1134653.07 

 

Even though some of the costs of the four cases studied are similar, the kitting 

sequences that is resulted are different for different cases. The kitting sequence resulted for 

the first case with the parameter  set to 90% of the mean kit demand is shown in Table 29. 

Product  is manufactured first in the time period , followed by products  and . The 

setup of product  will be carried over and will become the first setup of period , as it is 

the last type of product to be manufactured in period  . The time capacity and the 

maximum allowed production quantity limits the regular time produc tion quantity.   

 

Table 29: The kitting sequence from the deterministic model (90% of mean demand) 

Time Period/ 

Kit 

T1 T2 T3 T4 T5 T6 

       

Kit1 2 2 2 3 1 2 

Kit2 1 3 1 2 3 1 

Kit3 3 1 3 1 2 3 

       

Kt 8 8 8 7 8 7 

 

 



77 

 

 

3.4.4 Analysis for the stochastic case  

Similar to the deterministic case, the two-stage stochastic programming model was 

analyzed for the four cases of the parameter  , which is the maximum production quantity 

allowed in the time period t. The summary of the results obtained is included in Table 30.   

The uncertainties that were considered for this study include kit demand uncertainty and 

kitting worker yield uncertainty. To evaluate the performance of the two-stage stochastic 

programming model and to compare the results from the deterministic and stochastic models, 

we use the following metrics: Expected Value solution (EV), Wait and See solution (WS), 

Recourse Problem solution (RP), Expected results of EV solution (EEV), Value of Stochastic 

solution (VSS), and Expected Value of Perfect Information (EVPI).  

In wait and see situations the decision maker makes no decisions until all random 

variables in the model are realized. These solutions are called WS solution in literature. The 

stochastic programming solution is the RP solution. In real life problems, it is often important 

to evaluate the tradeoff between investing in better forecasting technology or to make 

decisions with the current information on hand. The EVPI metric is used for determining the 

worth on collecting additional information. It is the difference between the solutions RP and 

WS where the order of the metrics depends on whether the problem is a maximization or a 

minimization problem. The EV solution is obtained by using the expected values of the 

parameters in the stochastic scenarios as the numerical values in the deterministic case. The 

solution obtained by applying the decisions in the deterministic case to stochastic 

environment is the expected results of EV solution otherwise known as the EEV solution. 

The worth of using a stochastic model over a deterministic one is measured using the metric 

VSS. It is calculated using a four-step process. First the mean-value problem is solved to get 
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the first stage solutions. Next, the problem is solved for all the scenario with the first stage 

decisions fixed. Thirdly, a weighted average of the optimal objective value of each scenario 

is taken to get the EEV solution. Finally, the difference between EEV and RP gives the VSS 

solution since the problem dealt with is a minimization problem.     

The comparisons of the test results are shown in Error! Reference source not 

found. and Error! Reference source not found.. The values of the RP solution decreases as 

the parameter of  is relaxed because of increased flexibility and availability of production 

resources. As expected, the WS solutions are observed to be lower than the RP solutions. 

There is an increasing trend in the EVPI value over the first three cases studied. This is 

because investing in better forecasting will be more worthwhile when the production 

resources are abundant. But a decrease in the value of EVPI is observed from the 3rd case to 

the 4th case, that shows that beyond a certain limit it is not worth to pay for more accurate 

information as the demand could be met with the available resources. From Error! 

Reference source not found., EV solutions have the least cost among the four metrics it is 

compared with as its values are obtained by eliminating the uncertainties from the models. 

Also, it can be observed that the EEV solutions are having the highest cost as they are the 

expected value solutions of EV.   

 

Table 30: Summary of the results from the stochastic model (Cost in $) 

Max production 

quantity- 

% of mean demand 

EV WS RP EEV EVPI VSS 

90% 1350134.15 1790520.44 1811583 1811583 21062.466 0 

100% 1258534.04 1580985.66 1611270 1708847 30284.565 97577.1 

110% 1227312.88 1407629.16 1446663 1607540 39033.86 160877 

120% 1218498.42 1326440.77 1362434 1649444 35993.472 287010 
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Figure 14: Comparison of test results for four cases of production quantities 

 

From Error! Reference source not found., the VSS values increases drastically as the 

maximum allowed production 

quantities ( ) increase. As the production capacities and resources increases and as more 

kits are manufactured, it makes more sense to consider the uncertainties to model the kit lot-

sizing and scheduling problem. The kitting sequence and workforce requirement for each 

time period ( ) obtained from the two-stage stochastic model for the first case with  set 

at 90% of mean demand is shown in Table 31. The differences in the sequences resulted from 

the deterministic and stochastic models shows that the kitting sequence along with the kitting 

quantities is also sensitive to the uncertainties considered in this study.   
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Figure 15: Comparison of VSS and EVPI for four cases of production quantities 

 

 

Table 31: The kitting sequence from the stochastic model (90% of mean demand) 

Time 

Period/ Kit 

T1 T2 T3 T4 T5 T6 

Kit1 2 2 2 3 1 2 

Kit2 1 3 1 2 3 1 

Kit3 3 1 3 1 2 3 

 

Kt 9 9 9 9 9 8 
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3.5 Conclusion 

An assembly line feeding system constitutes an important part of a manufacturing 

system. The decisions would impact many stakeholders across the manufacturing supply 

chain. Therefore, it is essential to plan the line feeding activities in the most efficient and cost 

effective way. In this paper, we presented a two-stage stochastic programming framework to 

address the problem of lot-sizing and scheduling in a kitting facility under uncertainties in kit 

demand and worker yield. Both uncertainties were modelled as a dynamic stochastic process 

and presented as a scenario tree. The first-stage decisions included the baseline production 

schedule and workforce requirement while the production, inventory, and backorder 

quantities were the recourse decisions at the second stage.        

A case study was conducted to validate the model and derive managerial insights on 

production planning decision-making under uncertainty. It is observed that uncertainties have 

significant impact on kitting operations planning decisions and that the proposed two-stage 

stochastic programming model is robust when compared to the deterministic model, in 

determining optimal lot sizes and production schedules under uncertainties. Sensitivity 

analysis was conducted on production capacity parameter and impacts have been analyzed 

for a variety of scenarios. The insights derived from this study will help in making sensible 

managerial decisions in an assembly line feeding system supporting a manufacturing shop 

floor and aid in managing and mitigating the risk exposure of the company’s manufacturing 

through efficient planning of operations.  

In summary, this study highlights the importance of integrating the uncertainties into the 

decision-making model for production planning under uncertainty. Although we aim to 

design the decision-making model to reflect the real decision-making scenario in a 
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manufacturing environment, this study is still subject to a few limitations which suggest 

future research directions. Firstly, besides uncertainty in demand and yield, various other 

uncertainties exist in manufacturing, such as lead time, and quality uncertainty. More sources 

of uncertainties need to be considered to better reflect the reality. Secondly, we assume the 

two sources of uncertainties we considered are independent. In reality, there may be 

interactions between the uncertain factors, which may lead to dependency considerations. 

Lastly, the stability of the scenarios generated and the level of approximation of the scenarios 

obtained through the scenario reduction technique can be studied to investigate the efficiency 

and effectiveness. We shall address these in future studies.  
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CHAPTER 4.  CONCLUSION 

Production planning is a vital part of a manufacturing process, but the presence of 

uncertainty makes the decision-making process very complicated. This thesis aims to develop 

an optimization model framework and apply it to production planning problems in two 

different stages in a manufacturing supply chain under multiple uncertainties. The proposed 

framework was demonstrated and validated with two case studies related to an automobile 

equipment manufacturer.  

Our first study involved production planning in a manufacturing unit under multiple 

sources of uncertainty. The customer demand and raw material quality were the uncertainties 

considered to come up with optimal decisions on production lot-sizes and sequences. Even 

though this study captured the interactions between the stages 2 and 3 in a manufacturing 

supply chain, the impact of these uncertainties in facilities further downstream (stage 1) was 

not discussed. This extend of influence of these uncertainties on planning decisions made in 

downstream systems made us curious and motivated us to conduct our second study.      

For our second study, we developed a two-stage stochastic programming framework 

for production planning in a kitting facility under multiple uncertainties. The model 

developed was applied to a kitting facility and the optimal business decisions were found by 

considering the demand of the kits and the yield of kitting workers as uncertain parameters. 

The implementation results obtained from both these studies showed significant difference 

between the deterministic and stochastic results. Hence, it is safe to conclude that the 

stochastic models offer solutions that are superior and robust when compared to the 

deterministic model solutions. It was also evident that the decisions are influenced by the 



88 

 

 

parameter of the maximum allowed of regular time production quantity through the 

sensitivity analysis that was carried out.    

In summary, it has been demonstrated that uncertainties in a manufacturing 

environment have significant impact on the business decision along the supply chain. It can 

be observed that considering the uncertainties explicitly in the decision-making models will 

lead to more robust production planning decisions. Even though an extensive study was 

conducted, there is still limitations for this study which suggest future research directions. 

First, the proposed models assume the uncertainties are independent of each other. However, 

in reality, there may be dependency between the uncertainties which may require new model 

formulations and solution technique studies. Second, other sources of uncertainties such as 

supplier lead time, and machine failure uncertainty can be considered when formulating the 

decision-making model. Lastly, more sophisticated scenario generation and scenario 

reduction methods for the stochastic programming model can better approximate and 

represent the uncertainties. Additional analysis can be conducted on uncertainty 

representation. We shall address these in the future studies.  

 

     

 

 


