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ABSTRACT 

 

In response to concerns regarding the serious environmental and social issues 

associated with conventional food distribution systems, consumer demand for regionally-

produced food is growing. Regional food hubs are playing a critical role in meeting this 

growing demand. Food hubs aggregate, distribute, and market regionally-produced food, 

with a goal of promoting and supporting environmental and social sustainability. They 

provide an alternative distribution channel through which small and mid-sized producers can 

access wholesale markets, and they improve consumer access to regional food at competitive 

prices. Despite the benefits they provide, food hubs struggle to maintain profitability, and 

they face many challenges to growth and success. In particular, they are often unable to 

achieve the logistical and operational efficiencies that characterize conventional large-scale 

food distribution. This is partly due to a lack of implementation of efficiency-enhancing 

conventional supply chain practices in food hub operations. One possible method of 

improving food hub efficiency targets their inbound logistics operations. This thesis studies 

the inbound operations of a regional food hub in Iowa, with a focus on the scheduling of 

producers’ deliveries to the food hub.  

 This thesis proposes a hybrid simulation modeling framework to show how the 

advantages of both discrete event simulation (DES) and agent-based model (ABM) can be 

leveraged to address socio-technical problems in regional food supply chains.  The 

usefulness of this hybrid methodology is demonstrated through the development of an 

empirically-based hybrid simulation model of the inbound logistics operations of a food hub 

in Iowa. ABM was used to model the decision-making process of producers for scheduling 
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their deliveries. DES was used to model the inbound operations of the food hub, including 

the receiving and storing of the goods brought by the producers. Four different versions of 

the hybrid simulation model are used to examine the effectiveness of various policies in 

encouraging producers to schedule their deliveries, as well as the impacts of producer 

scheduling on food hub efficiency and effectiveness. Experimental results suggest that 

different incentives vary in their degree of effectiveness, and increasing the percentage of 

producers who schedule their deliveries is unlikely to improve overall system operations by 

itself – in order for all participants to benefit, the food hub manager must also adjust the 

hub’s inbound operations to account for producers who refuse to schedule. This hybrid model 

will help guide policy recommendations to food hub managers to make their inbound 

operations more efficient and effective.  
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CHAPTER 1 

INTRODUCTION 

 

Regional Food 

  The demand for regionally-produced food has seen sharp growth over the last decade, 

due to its perceived social, environmental, and economic benefits. Increasingly, consumers are 

choosing food that is produced in the same region in which they live, rather than food from the 

conventional food supply system. Regionally-produced food sales via both direct-to-consumer 

and intermediated marketing channels are increasing: from 2006 to 2014, the number of farmers’ 

markets, school districts with farm-to-school programs, and  regional food hubs in the United 

States have increased by 180%, 430%, and 288%, respectively (Low, et al., 2015). According to 

the National Grocery Association, 87.2% of consumers regard the availability of locally-grown 

produce and other locally-produced food as being important in their grocery shopping decisions 

(Tropp, 2014).  Locally-grown and organic food is not only in high demand at the farmers’ 

market and natural food retailers but also in conventional markets (Farnsworth, McCown, Miller, 

& Pfeiffer, 2009). Consumers’ reasons for preferring regionally-produced food vary widely, 

including: ensuring the nutrition, quality, freshness, and safety of their food, saving money, 

health concerns, environmental consequences of globalized and industrialized agriculture, farm 

animal welfare, fair trade, food security, concerns over the environment and the treatment of 

farm workers, a desire to support the local economy and build a connection with the person who 

produced their food (Brown A. , 2002; Brown C. , 2003; Wolf, Spittler, & Ahern, 2005). 

  Traditionally, the most common market channel for the regional food produced by small- 

and medium-scale producers has been direct-to-consumer. Producers typically get better prices at 

the farmers’ market than through wholesale outlets (Myers, 2011), and farmers’ markets are 
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ideal venues for producers who have limited quantities of a large variety of products. However, 

these direct-to-consumer outlets are highly labor intensive and are not very profitable for 

producers on average (Tropp, 2014). This is because of low sales volumes, competition from 

multiple sellers, and high transportation and marketing costs (LeRoux, Schmit, Roth, & Streeter, 

2010).  To avoid the challenges associated with direct-to-consumer sales, many small- and 

medium-scale producers would prefer to sell to large-scale institutional customers (e.g., grocery 

stores, restaurants, schools), either directly or through a distributor.  Many of these institutional 

customers are also interested in developing a connection with local producers, in order to fulfill 

growing demand for local food.  However, producers face many obstacles. In particular, 

individual farm operators often lack individual capacity to meet buyer requirements for product 

volume, quality, consistency, variety or extended availability. They are also challenged by a lack 

of distribution, processing, and marketing infrastructures that would give them wider access to 

larger-volume customers (Tropp, 2014). High logistics and transportation costs also limit 

producers’ ability to tap into wholesale markets (Bosona, Gebresenbet, Nordmark, & Ljungberg, 

2011; Diamond & Barham, 2012) 

 

 

Regional food hubs 

  Intermediated marketing channels provide producers an alternative to farmers’ markets 

and other direct-to-consumer channels, potentially reducing marketing and transportation costs 

for the participating producers (Low, et al., 2015).  One type of intermediated channel that has 

experienced tremendous recent growth in popularity is the regional food hub.  The USDA 

defines a food hub as “a business or organization that actively manages the aggregation, 

distribution and marketing of source-identified food products primary from local and regional 

producers to strengthen its ability to satisfy wholesale, retail and institutional demand” (Barham, 
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et al., 2012). Food hubs act as regional aggregation points for producers, facilitating logistics for 

wholesale channels and offering non-direct-marketing services for their products.  Unlike 

farmers’ markets, food hubs give producers the opportunity to access comparatively larger-

volume markets by providing them with a convenient drop-off point for their food to be 

distributed to multiple customers, which may include individual consumers, restaurants, and/or 

institutions (e.g., hospitals, universities, schools).   They can play an instrumental role in 

increasing small producers’ operations.   

  In many ways, food hub operations are quite similar to those in conventional food supply 

chains. Acting as an aggregator and distributor, a food hub must be expert and efficient at 

handling and transporting highly perishable goods. It must manage the procurement of products 

from multiple farmers and ensure on-time arrivals to the warehouse.  Internally, the food hub’s 

operations include correct product placement in inventory locations, inventory tracking, 

processing and repackaging as necessary, order picking, and loading orders onto delivery trucks 

for distribution to customers. 

  However, conventional food distributors’ focus mostly on profit, and producers are 

typically exploited with short-term contracts where only they bear the risks and do not get an 

equal share of the profits. Relationships between buyers and suppliers are constructed as 

competitive and even adversarial (Stevenson & Pirog, 2013).  By contrast, local and regional 

food supply chains focus on both financial performance and the well-being of all stakeholders. In 

fact, one a food hub’s primary objectives is to strengthen local producers’ capacity and increase 

their access to markets (Farm Credit East; Wallace Center at Winrock International; Morse 

Marketing Connections; Farm Credit Council, 2013).  Unlike conventional food distributors, 

they strive to provide fair pricing and increased market access to their producers, and they often 
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offer them development services, such as training and assistance with crop planning, business 

and farm management, quality control techniques, and insurance (Moraghan & Vanderburgh-

Wertz, 2014). Food hubs try to ensure that profits are shared fairly with the producers, who are 

treated as strategic partners with rights and responsibilities and are involved in decision-making 

processes (Rogoff, 2014; LeBlanc, Conner, McRae, & Darby, 2014). Food hubs are also 

committed to purchasing goods from small and mid-sized local growers and consider them to be 

partners, rather than suppliers (Woods, Velandia, Holcomb, Dunning, & Bendfeldt, 2013).  Food 

hubs also aim to provide exceedingly high levels of quality, variety, and food traceability to their 

customers. Because of the significant differences in their objectives and inherent supply chain 

structures, adopting the efficiency-enhancing operations and logistics methods of the 

conventional system can be challenging and even counterproductive for food hubs. 

 

 

Challenges 

  Despite the benefits that food hubs can provide to an RFSC, a 2013 national food hub 

survey indicated that food hubs are not profitable on an average (Fischer, et al., 2013). Food hubs 

in the United States typically operate at a close to break-even level. The financial data of 48 food 

hubs surveyed across United States indicates that the highest performing (i.e., top 25%) food 

hubs earn only a 4% profit with an average of -2%. The typical food hub operates at a close to 

break-even level with a gross margin of only 14.5% to cover profit and overhead expenses (Farm 

Credit East; Wallace Center at Winrock International; Morse Marketing Connections; Farm 

Credit Council, 2013).  This data suggests that there is a need for a better understanding of food 

hub practices in order to increase their overall operational efficiency (Fischer, et al., 2013). 

Innovations in conventional food supply chains related to quality assurance, distribution 
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efficiency, food traceability, market information management, and product development have 

been recommended for adoption by RFSCs for their long-term growth and sustainability 

(Rogoff, 2014). Such methods could help food hubs reduce their warehousing and transportation 

costs, which have proven to be difficult for many food hubs to manage (Mittal, Zugg, & Krejci, 

2016). In particular, food hubs could greatly benefit from the application of traditional supply 

chain management techniques to their inbound operations. Inbound operations at a warehouse 

include receiving goods, performing quality inspection checks, and storing goods at the desired 

inventory storage locations.  

  One critical component of efficient and effective inbound operations is scheduling the 

deliveries of goods to the warehouse.  Knowing in advance what is coming into the warehouse 

allows managers to preplan receiving activities for the day, enabling better warehouse labor 

utilization and allowing sufficient time for quality inspections of received material.  

Conventional supply chains typically have a large number of suppliers with enormous volumes, 

and unscheduled deliveries would create a huge burden on warehouse receiving operations, as 

well as long queues for the suppliers waiting for service. A study conducted on the inbound 

operations of retailers in Sweden mentions the need for fixed supplier arrival times as their first 

priority (Ljungberg & Gebresenbet, 2004). This helps them to plan their receiving operations in 

advance, enabling better labor utilization and allowing more time for quality inspections of 

received material, thereby benefiting customers. Without this information, managers face 

random delivery arrivals, which can result in inefficiencies and long queue times for carriers.  

  Regional food hubs, which have comparatively smaller operations, do not typically 

assign fixed delivery times to their suppliers (Mittal & Krejci, 2015). Requiring producers to 

schedule their deliveries is often viewed by food hub managers as an unnecessary burden on the 
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producers, since they are known to highly value their autonomy (Krejci & Beamon, 2015) and 

prefer to deliver according to their convenience. Fixing producer arrival times could also 

potentially affect their transportation costs if they are unable to schedule at their preferred time, 

as they might be combining their deliveries to the food hub with other deliveries in the area for 

better resource utilization and reduced overall travel distance and time.  

  However, unscheduled deliveries can negatively impact the food hub. As a consequence 

of the unscheduled and irregular delivery times, preventative quality checks and proper inventory 

put-away procedures are often curtailed in an effort to speed up the receiving process and reduce 

producer queue time at the warehouse. One of the major challenges faced by food hubs in Iowa 

is that many of their producers often arrive for delivery simultaneously, typically at the end of 

the day, rather than spreading delivery times uniformly throughout the delivery period (Huber, 

2015). As a result, queues form and producers must wait for service from food hub personnel. 

This is inconvenient for the producers who must wait, but it is also problematic for the food hub 

operations.  As the queue length increases, service time tends to decrease, thereby negatively 

affecting the quality of service (Anand, Pac, & Veeraraghavan, 2011). For a food hub, “quality 

of service” is related to the quality check and inventory placement of delivered goods. 

Unscheduled deliveries force food hub personnel to speed up their receiving process, leaving less 

time for quality checks and inventory put-away, which increases the likelihood of errors in 

product placement in storage locations.  

  Another result of unscheduled deliveries is ineffective labor utilization. As per a 2013 

national food hub survey, employee salaries occupied the second largest expense for most hubs, 

at an average of 23% of total revenues (Fischer, et al., 2013).  Almost all of the food hubs in 

United States use some volunteer labor for carrying out their operations. While volunteer labor 
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can help save on labor costs, using volunteers can also have drawbacks related to efficiency and 

consistency (Matson, Thayer, & Shaw, 2015). This can lead to customer dissatisfaction if poor-

quality or incorrect products leave the warehouse undetected (Huber, 2015; Grimm, 2015).  

Therefore, food hubs should try to manage an effective balance between their paid and volunteer 

labor. 

  Given these potential problems, one might expect that food hub managers would require 

producers to schedule their deliveries. However, since meeting the needs of producers is one of 

the major objectives of a food hub, a food hub manager may choose not to enforce a delivery 

schedule in an effort to support the producers.  For example, the Iowa Food Cooperative (based 

in Des Moines, Iowa) has given its producers the option of scheduling their deliveries online in 

advance by selecting preferred delivery time slots. However, very few producers actually 

participate. In one typical example, out of 57 producers, only 14 opted to schedule their 

deliveries, and few among those producers actually delivered in the time window they indicated 

on the schedule (Huber, 2015). Similar observations have been made by the Iowa Valley Food 

Cooperative (Grimm, 2015).   

  It would be valuable for food hub managers to have a better understanding of the 

conditions that would encourage producers to schedule their deliveries to the food hub, as well as 

the impacts of scheduling on food hub performance.  This would help them to make good 

strategic decisions to improve their inbound operations.  

 

Evaluating Supply Chain Performance 

Evaluating supply chain performance can facilitate better understanding of the supply 

chain and increase its overall performance (Chen & Paulraj, 2004; Shepherd & Günter, 2011). 
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Supply chain performance is typically measuredin terms of cost and customer responsiveness 

(Beamon 1999). Costs include inventory and operational costs, while customer responsiveness 

includes lead time, stockout probability and fill rate. There are different ways to evaluate supply 

chain performance. Chen and Paulraj (2004) surveyed the supply chain management literature 

and identified three kinds of studies aimed at the improvement of supply chain performance: 

1) Operation studies focus on the development of mathematical models 

2) Design studies focus on the development of deterministic analytical models, 

stochastic analytical model, and simulation models 

3) Strategic studies evaluate how to align the supply chain as per a firm’s strategic 

objectives 

  Modeling is a way to recreate and experiment with a real system on a computer when 

experimenting with the real system is expensive or difficult (Borshchev & Filippov, 2004). There 

are various methods used to model supply chain systems. Beamon (1998) identified four 

different modeling methods to evaluate supply chain performance: 

1) Deteministic analytical models - Variables are known and specified 

2) Stochastic analytical models - At least one variable is unknown and is assumed to 

follow a particular probability distribution 

3) Economic models  

4) Simulation models  

  Analytical techniques and optimization approaches have limits in evaluating complex 

supply chains (Owen, 2013). Closed form solutions do not always exist or can be very difficult to 

find (Borshchev & Filippov, 2004). In contrast, simulation allows for systematic testing and 

investigation of supply chain performance by performing various experiments without 
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intervening with the real system (Van der Vorst, Tromp, & Zee, 2009; Schieritz & Grobler, 

2003). Three of the most popular simulation techniques used to model supply chains are (Owen, 

2013): 

1) Discrete-event simulation (DES) 

2) Agent-based model (ABM) 

3) System dynamics (SD) 

  However, most of the simulation techniques in the area of supply chain management and 

logistics have been used in isolation (Mustafee, et al., 2015).  Hybrid simulation (i.e., combining 

one or more simulation techniques) can be used to develop models of complex real-life problems 

in logistics and supply chain management in a more realistic way than by using a single 

modeling methodology.  

                                                              

 

Motivation for This Study 

  There are three key aspects that motivate this research: 
 

1) Need for structured research to address challenges in RFSCs 

2) Lack of models in the existing literature to address RFSC management policies 

3) Need of a hybrid simulation framework to better understand the complex nature of 

supply chains 

 The growing emergence of local food indicates the need for developing alternate logistics 

and supply chain management techniques to improve the performance of RFSCs (Gebresenbet, 

Ljungberg, Nordmark, & Cardoso, 2013). Many researchers have mentioned that food supply 

chains in general and regional food supply chains specifically are not as developed as the supply 

chain systems of automotive or electronic industries (Ahumada & Villalobos, 2009). This is 

because moving niche products from farm to market is more complex and expensive than 
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moving conventional farm products. The smaller volumes handled and the need to keep niche 

products separate from bulk commodities add to the cost of handling and shipping (Vanwechel, 

Vachal, & Berwick, 2009). Stroink (2013) mentions that lack of systematic supply chain 

management structures, and numerous false starts and experiments are the reasons for failures of 

many food hubs. Therefore in such multi-layered complex supply chains, there is a need for 

structured methodology to address challenges in RFSCs (Ting, Tse, Ho, Chung, & Pang, 2014). 

Also as RFSCs are relatively new, their logistics experience is still being developed, and they 

have significant room for further performance improvement. Nearly one-third (of N=106) of the 

food hubs in the United States began their operations within the last 2 years, and most had been 

in operation for 5 years or less (66 hubs, or 62%) (Fischer, et al., 2013). 

 There are few state-of-the-art models for RFSC management, and there is a need for 

more research in this area in order for them to be on par with the conventional supply chains 

(Ahumada & Villalobos, 2009). The literature suggests that very few models have been 

developed for the management of shipping and receiving operations of a warehouse, and most of 

the literature available in this area addresses strategies for cross docking warehouses. Therefore, 

case studies and computational tools for warehouse design and operations will help to bridge the 

significant gap between academic research and practical application, and therefore, represent a 

key need for the future (Gu, Goetschalckx, & McGinnis, 2007).  

 Simulation is still the most widely used technique for warehouse performance evaluation 

(Gu, Goetschalckx, & McGinnis, 2007).  However, these simulation techniques have been used 

in isolation. Hybrid simulation can be used to better understand complex supply chains by 

leveraging the advantages of multiple simulation modeling paradigms. The research presented in 

this thesis bridges this gap by developing an empirical hybrid simulation model of inbound 
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operations of a food hub, which is validated using the real outputs from the food hub’s 

operational database. 

  A flowchart representing the logic supporting the motivation and research direction in 

this thesis is shown in Figure 1. 

 

Thesis Organization 

  Chapter 2 describes advantages and limitations of different simulation techniques to 

evaluate supply chain performance, followed by advantages and limitations of hybrid simulation 

models. Then, previous work on the development of empirical simulation models is discussed, 

followed by a discussion of the existing research on evaluating regional food supply chains. In 

Chapter 3, four versions of an empirical hybrid simulation model are described in detail. Chapter 

4 describes the verification and validation of the simulation model with the actual conditions of 

the system under study. This is followed by descriptions of key experimental results. In Chapter 

5, conclusions from this research are presented, limitations of this study are explained, and the 

need for future work is identified. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Supply Chain Management 

There are a number of definitions of supply chain management that exist in the literature. 

(Beamon, 1998) defined supply chain management as an integration between different entities to 

achieve common predefined goals: “A supply chain may be defined as an integrated process 

wherein a number of various business entities (i.e., suppliers, manufacturers, distributors, and 

retailers) work together in an effort to: (1) acquire raw materials, (2) convert these raw materials 

into specified final products, and (3) deliver these final products to retailers.”  Similarly, (Chopra 

& Meindl, 2007) state: “A supply chain consists of all parties involved, directly or indirectly, in 

fulfilling a customer request. The supply chain includes not only the manufacturer and suppliers, 

but also transporters, warehouses, retailers, and even customers themselves.”  Modern supply 

chains are very complex and are composed of multiple stages, including manufacturers, 

suppliers, distributors, and consumers. Each of these stages can be further broken down into sub-

systems. For example, a manufacturer contains many sub-systems, such as warehouses, 

production lines, and material handling systems.  These stages and their constituent sub-systems 

are physically and socially interconnected (Behdani, 2012). Physical connections include the 

flow of goods (e.g., transportation of material from a supplier to manufacturer via trucks), as 

well as the flow of information (e.g., a manufacturer sharing its inventory status with its 

suppliers). Socially connections include the connections between supply chain stages through 

contracts and agreements.  Thus supply chains can be viewed as socio-technical systems 

(Behdani, 2012). 
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  Supply chain stages and sub-systems are heterogeneous - they have different needs, 

objectives, and decision-making behaviors (Behdani, 2012). They also have different geographic 

locations, unique cultures, and different technological capabilities (Behdani, 2012). Figure 2 

illustrates the structure of a typical supply chain. 

 

Figure 2. A typical supply chain structure (derived from Chang and Makatsoris 2001). 

  Supply chains also have a process-oriented structure, including loading and unloading 

activities at warehouse docks, complex processes at different stations on production lines, and 

queuing systems. Thus the overall performance of a supply chain is the resultant output behavior 

of physical and social interactions that occur between its various interconnected and 

heterogeneous stages and subsystems, as well as the processes that occur within each individual 

stage and sub-system.  

 

 

Simulation in supply chain management 

  Three most popular simulation modeling techniques used to model supply chains are 

DES (Discrete Event Simulation), ABM (Agent-Based Model) and SD (System Dynamics) 

(Owen, 2013). The following section describes each of these techniques and their advantages and 

limitations with respect to supply chain management. 
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Discrete event simulation 

  Discrete event simulation (DES) is the most widely used simulation technique in the 

operations research literature for modeling systems which can be viewed as queuing networks 

(Moradi, Nasirzadeh, & Golkhoo, 2015). DES is used to model stochastic and dynamic systems 

where system state variables change at discrete points in time (known as an “events”) (Heath, 

Buss, Brailsford, & Macal, 2011). DES has been classified into two major “worldviews”: one is 

process-oriented and the other is event-oriented (Heath, Buss, Brailsford, & Macal, 2011; 

Behdani, 2012). In the process-oriented worldview, passive entities move through various system 

processes, where each process requires a certain amount of time (usually stochastic).  In the 

event-oriented worldview, the state of an entity at any given time is a function of its initial state 

values along with the sequence of events assigned to that entity that have occurred by that time 

(Heath, Buss, Brailsford, & Macal, 2011). In both the approaches, the entities are passive 

objects, and their behaviors are predefined by the modeler (Behdani, 2012; Heath, Buss, 

Brailsford, & Macal, 2011). The process-oriented framework is the most commonly used DES 

framework, and most commercial software uses this framework. Figure 3 shows the basic 

process-oriented DES approach, with entity e entering a queue (Q) to wait for service, followed 

by processing at Process A, and finally exiting the system. 

 

 

Figure 3. Process-oriented approach of DES. 

 

  Many studies using DES have been conducted in the domain of supply chain 

management (Terzi & Cavalieri, 2004), including food supply chains. DES is also the dominant 

simulation technique used to evaluate the performance of manufacturing systems (Helal, 2007). 
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DES has been used to study warehouse operations, which involves loading, unloading, and other 

warehouse-specific activities (Liong & Loo, 2009; Deshpande, Yalcin, Zayas-Castro, & Herrera, 

2007). Liong and Loo (2009) used DES to develop a strategy to optimize the residence time of 

delivery trucks at warehouses and found that the truck drivers have to wait in long queues when 

there is no scheduling of arrivals. The simulation results show that scheduling the truck arrivals 

reduces drivers’ wait times and average time in the system. 

  One strength of DES is its capability of modeling heterogeneous entities (Behdani, 2012). 

DES is an excellent modeling technique for simulating networks of queuing systems in which the 

processes are very well predefined (Siebers, Macal, Garnett, Buxton, & Pidd, 2010). Also, DES 

tools can provide excellent visualization and animation, which is a powerful way to verify, 

validate, and explain the simulation model. Despite these many advantages, DES also has 

limitations. DES does not provide good-quality approximations of continuous behaviors in 

systems, thereby limiting its accuracy (Helal, 2007; Lee, Cho, Kim, & Kim, 2002). Additionally, 

the entities in a DES are passive objects whose behavior is governed by rules and flowcharts that 

are predefined by the modeler (Borshchev & Filippov, 2004). Finally, DES models are very data-

intensive, and multiple replications of a simulation must be performed to understand the actual 

behavior of the system, which can potentially lead to long runtimes (Viana, Brailsford, Harindra, 

& Harper, 2014). 

 

Agent-based simulation 

 

  Real-time decision making by an individual supply chain actor is difficult to incorporate 

into a DES model, because very strict assumptions pertaining to human choices need to be made 

in order to accommodate human behavior in a DES (Dubiel & Tsimhoni, 2005). By contrast, 

ABM is well-suited to modeling complex systems involving decision making among 
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autonomous and interacting entities. An agent is a uniquely defined autonomous and self-

directed entity which exists in an environment (North & Macal, 2007; Brailsford S. , 2014). In 

ABM, agents interact with each other and with their environment directly or indirectly as per 

their behavioral rules, which are defined by the modeler at an individual level (Figure 4).  

 
 

Figure 4. Heterogeneous agents interacting with each other and with the environment in a 

typical ABM. 

  In ABM, autonomous agents make decisions and take action to achieve their objectives. 

They are able to observe the outcomes of these decisions, compare these outcomes with the 

intended results, and take corrective action as needed.  The nonlinear interactions of these 

decisions, actions, and adaptations among many agents within the same system can result in 

overall system-wide behavior that emerges over time (Huanhuan, Yuelin, & Meilin, 2013).  Such 

emergent system behavior can be difficult to predict without the use of an ABM.  The 

interactions among heterogeneous actors in a supply chain make ABM a particularly suitable 

technique for modeling supply chains (Schieritz & Grobler, 2003; Janssen & Ostrom, 2006).  

ABM has been used in the field of logistics and transportation management, including proposing 

new strategies in courier services (Knaak, 2006) and in the areas of air and road traffic 

management (Davidsson, Henesey, Ramstedt, Törnquist, & Wernstedt, 2005). 
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  One disadvantage of ABM is its high computational requirements (Scerri, 2010). Also, if 

there is insufficient empirical data to accurately model a real-life system, the resulting ABM may 

misrepresent the system and yield inaccurate and misleading outputs (Siebers, Macal, Garnett, 

Buxton, & Pidd, 2010). As with DES, ABM must be run multiple times, as a single run of the 

model might not provide sufficient statistical information to the modeler (North & Macal, 2007).  

System dynamics 
 

System dynamics (SD) is defined as “the study of information-feedback characteristics of 

industrial activity to show how organizational structure, amplification (in policies), and time 

delays (in decisions and actions) interact to influence the success of the enterprise” (Forrester J. , 

1958; Forrester, 1961). In system dynamics, aggregate entity behaviors are represented by 

interacting feedback loops and are assumed to describe the behavior of a system (Borshchev & 

Filippov, 2004). System dynamics model are best described as stock and flow models. Stocks are 

used to represent the state of the system, and flows indicate the rate of increase or decrease in the 

levels of the stocks. The dynamic state of the system arises from the effects of positive and 

negative feedback loops. If it is given that variable X affects a variable Y; a positive feedback 

means that if the value of X increases, so does the value of Y, whereas a negative feedback 

means that as the value of X increases, Y decreases. Hence, the overall net effect of all the 

feedback loops cannot be identified from the causal loop or influence diagram, as the same 

system belongs to several feedback loops and it is very difficult to identify which feedback loop 

drives the system behavior (Heath, Buss, Brailsford, & Macal, 2011). A system dynamics model 

showing the influence diagram from (Borshchev & Filippov, 2004; Sterman, 2000) is shown in 

Figure 5. 
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Figure 5. A system dynamics model of “product diffusion” in the form of a stock and flow 

diagram (Borshchev & Filippov, 2004). 

  In Figure 5, “Potential Adopters” become “Adopters” at an “Adoption Rate” that depends 

upon the rate of promotion of “word of mouth” and through “advertising”. The total “Adoption 

Rate” is the sum of “advertising” effectiveness (i.e., the rate at which potential adopters convert 

to adopters) and the adoption rate due to “word of mouth” (i.e., the contact rate at which 

potential adopters come into contact with the adopters). The main disadvantage of this type 

modeling is that items in the individual stocks are indistinguishable. Thus heterogeneous entities 

can’t be modeled. In reality, every entity in the system might have different adoption rates due to 

“advertisement”. Also, the “word of mouth” adoption rate might differ between two different 

adopters. Therefore, aggregating the adopters into one or a reasonably finite number of stocks 

can distort the results (Borshchev & Filippov, 2004). Another drawback of system dynamics is 

that the structure of the supply chain is predetermined, which is not generally applicable to real 

supply chains and especially to RFSCs (Schieritz & Grobler, 2003).  

  However, SD has advantages if the modeling is to be done at a system level. SD 

simulation has been used in supply chain management to support strategic decision making in the 

areas of inventory management, demand amplification, supply chain redesign and in 

international supply chain management (Angerhofer & Angelides, 2000). System dynamics has 
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also been used to identify effective policies and optimal parameters to make strategic decisions 

in a food supply chain (Georgiadis, Vlachos, & Iakovou, 2005). The authors implemented the 

developed methodology for transportation capacity planning in a major Greek fast-food 

restaurant supply chain. There is often insufficient data available to model manufacturing 

systems in detail, and SD can be very useful to support strategic decisions.  However, the quality 

of the simulation results is inadequate for modeling systems at an operational level (Helal, 2007).  

 

ABM vs DES – A long Controversy 
 

  There has been a long controversy in the literature regarding whether ABM can be 

modeled as DES models and vice versa, and if there is really a need for both the simulation 

methodologies. This section describes this controversy and argues that both of these simulation 

methodologies are necessary to model complex supply chains.  

  ABM and DES are both discrete time simulations. It is possible to model queuing 

systems using ABM (Pugh, 2006; Borshchev & Filippov, 2004), but queuing systems of any 

significant complexity are difficult to model in the agent-based environment, due to high 

computational requirements (Pugh, 2006). Agent actions can be modeled as events in a DES, and 

agent interactions can be represented via the arrival, service, and exiting processes. However, 

doing so will exponentially increase the number of events in the DES, making the model 

inefficient and hard to analyze (Chan, Son, & Macal, 2010).  

  To compare the two methodologies, DES model and ABM have been developed in 

parallel to study the fitting room operations of a retailer in the U.K. The study found that both 

models performed equally well but concluded that the DES model was easier to build and 

validate than an equivalent ABM (Majid, Aickelin, & Siebers, 2009). The emergent behavior of 

an ABM could be incorporated in DES using timed triggers or probabilities, but this requires an 
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iterative approach, with a couple of cycles of using results of one model to improve the other 

model. Also, making any significant changes to the modeled system would require updating both 

models, thus repeating the iterative movement (Heath, Buss, Brailsford, & Macal, 2011).  

  There is significant evidence from the literature to support the need for both ABM and 

DES. Siebers, et al. (2010) concluded that true ABM in OR doesn’t exist. Therefore, they 

developed a hybrid ABM-DES model in which a process-oriented framework was represented 

using a DES model, and the passive entities of the DES were replaced by the active agents of the 

ABM.  Behdani (2012) mentions that DES is appropriate if the focus of the model is on the 

logistics of order fulfillment and delivery.  However, modeling interactions between the 

customers and manufacturers is beyond the fundamental concepts and standard procedures of 

discrete event modeling. The author also concluded that although efforts have been made to 

include active entities in DES models, if the active entities are required, ABM may be 

conceptually more appropriate. Heath et al. (2011) suggests that in DES, once an entitiy begins 

processing, it is difficult to interrupt that processing if there are any changes in the environment 

after the processing has begun. Also, it is easy to model queuing behavior as well as the 

processing of entities that require multiple sources in DES. In some ABM toolkits, it is really 

difficult to model this type of behavior (Heath, Dolk, Lappi, Sheldon, & Yu, 2009). The authors 

recommend using a two-model approach, rather than trying to construct a single model with both 

ABM and DES attributes. In this approach two models are built using two different software 

packages (one for DES and the other for ABM), and use these models to inform each other. This 

will enable the modeler to leverage the strength of both modeling paradigms. Table 1 

summarizes the important differences between the three simulation techniques described above 

in relation to a supply chain context ( (Behdani, 2012; Heath, Buss, Brailsford, & Macal, 2011; 
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Schieritz & Grobler, 2003; Helal, 2007; Moradi, Nasirzadeh, & Golkhoo, 2015; Sumari, Ibrahim, 

Zakaria, & Ab Hamid, 2013). 

Table 1. Comparison of three most popular simulation techniques in supply chain management. 

 

 

Basis of 

comparison

System Dynamics Discrete Event 

Simulation

Agent Based 

Simulation

Comments

1 Purpose Strategic decision 

making at a system 

level

Optimize, precise 

prediction and 

comparing 

scenarios

Study emergent 

behavior of the 

system due to 

interacting 

autonmous agents

2 Problem scope Strategic level as it 

is a top down 

approach and 

modelling is done 

at a system level

Operational level 

to capture more 

details

Operational level 

to capture more 

details

SD is used mainly at strategic 

level to evaluate policies, 

whereas DES and ABM is used 

for decision making at 

operational level 

3 Modeling approach Top down 

approach

Bottom up 

approach

Bottom up 

approach

4 Unit of analysis Structure of the 

system

Rules assigned to 

entitities

Rules assigned to 

agents

5 Model components Feedback loops Queues, activities 

and processes

Agents and 

environment

6 Control 

parameters

Flow rate Time of queue Agents interaction

7 Nature of model Deterministic Stochastic Stochastic

8 Amount of data 

required

Low High High That’s why DES and ABM are 

more accurate, but if there is 

inadequate data and the 

decisions are to be made at 

the system level, SD is 

preferred over DES and ABM.

9 Accuracy Low High High Accuracy is low in SD due to 

aggregate behavior of entities

10 Predictabality Low High High

11 Structure of the 

system

Fixed Not fixed (Process 

is fixed)

Not fixed

12 Hetrogenity No distinctive 

entities, aggragate 

behavior of the 

entities is assumed 

Distinctive and 

hetrogenous 

entities

Distinctive and 

hetrogenous 

entities

SD has no micro level entities, 

whereas in DES microlevel 

entities are passive and in ABS 

microlevel entities are active 

agents which interacts with 

each other and the 

environment (Strength of ABM 

and DES over SD)13 Entitiy behavior Active entities Passive entities Active - 

autonomous 

entities (agents) 

Strength of ABS over DES
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Table 1. (Continued) 

 
 

Basis of 

comparison

System Dynamics Discrete Event 

Simulation

Agent Based 

Simulation

Comments

14 Interactions Average value of 

interactions are 

modeled

Interactions 

possible at physical 

level (for example: 

manufacturing 

lines connected to 

the warehouse)

Interactions 

possible at physical 

and social level 

(social level 

includes formal 

and informal 

interactions among 

the agents)

Strength of ABS over DES and 

SD

15 Adaptiveness No adaptiveness at 

individual level

No adaptiveness at 

individual level

Adaptiveness at 

individual level

Memories of entities and 

agents to learn and adapt their 

behaviors based on experience

16 Time steps Continuous Discrete Discrete

17 Nestedness Hard to present Not usually 

presented

Straightforward to 

present

18 Emergence Debatable because 

lack of modeling of 

one system lvel

Debatable because 

of pre-defined 

system properties

Capable to capture 

because modeling 

is done at two 

distinct level, agent 

and environment

The system level behavior in a 

complex system which 

emergence from the behavior 

of individual components and 

their interactions

19 Self-organizaton Hard to capture 

due to aggregate 

behavior of the 

entities

Hard to capture 

due to passive 

entities

Capable to captue 

because of 

modeling 

autonomous 

agents

Self organization means 

emergence of the system due 

to only local interactions 

among the agents and entities 

in the system and without any 

presence of external factors 

20 Co-evolution Hard to capture as 

system structure is 

fixed

Hard to capture as 

the processes are 

fixed

Capable as the 

network structure 

is modified by 

agents interactions

Co-evolution corresponds to 

change in the states of entities 

and agents due to their 

adaptive nature along with 

change in the physical 

components of the system21 Path dependency Debatable as no 

explicit 

consideration of 

history to 

determine future 

state

Debatable as no 

explicit 

consideration of 

history to 

determine future 

state

Capable to capture 

because current 

and future state 

can be explicitly 

defined based on 

system history

Path dependency means, 

current and future states and 

decision in a complex system 

depend upon previous states, 

actions or decisions, rather 

thean simple on current 

conditions 22 Animations and 

graphics

System behavior is 

difficult to be 

identified from 

graphics and 

animations

Easy to understand 

with the help of 

animations and 

graphics 

System behavior is 

difficult to be 

identified from 

graphics and 

animations

Graphical representation 

sometimes helps the modeler 

to verify and validate the 

model

23 Experimentation in 

the model

Experimentation 

done by changing 

the system 

structure

Experimentaion 

done by changing 

the process 

structure

Experimentation 

done by changing 

the agent rules and 

system structure
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Hybrid Simulation 
 

  To integrate human decision making and behavior with the capabilities of DES, 

researchers have combined DES with ABM to form hybrid simulations (Huanhuan, Yuelin, & 

Meilin, 2013). Hybrid simulation enables researchers to leverage each individual methodology’s 

strengths and analyze systems that could not be realistically modeled using a single approach 

(Powell & Mustafee, 2014; Zulkepli, Eldabi, & Mustafee, 2012). The literature suggests that 

hybrid simulation modeling is a growing trend, but the concept is still in the early stages of 

development (Eldabi, et al., 2008).  

  Hybrid simulation has been used to simulate transportation evacuation and disaster 

response systems (Zhang, Chan, & Ukkusuri, 2011). ABM was integrated with DES to simulate 

the movement of people in a theme park, in which people interact with other people and objects 

in the park to reach their destination (Dubiel & Tsimhoni, 2005). A hybrid (DES-ABM) model 

of patients in a clinic in the United Kingdom incorporated patient interactions into the clinic’s 

fundamental queuing problem (Viana, Rossiter, Channon, Brailsford, & Lotery, 2012; Brailsford, 

Viana, Rossiter, Channon, & Lotery, 2013). The authors mention that in order to incorporate the 

social care side (i.e., patient interactions) with the fundamental queuing problem of the clinic, 

using a hybrid methodology was a desirable option. This enabled them to realistically capture the 

actual system, which could not have been easily done using a single simulation technique. A 

similar model for the treatment of chlamydia was developed (Viana, 2011). In this system, many 

patients book appointments, but due to long wait times, patients may leave the clinic without 

getting tested, and the infection spreads. This further increases the proportion of infected people 

in the community and the demand for the clinic. In this case the queuing behavior is captured by 

a DES model (built using Simul8), and the effect of spreading infection leading to increased 

demand of clinic is captured by an SD model (built using Vensim). Although hybrid simulations 
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leverage the strengths of different simulation methodologies, they require much more effort to 

develop and are computationally difficult to execute (Heath, Buss, Brailsford, & Macal, 2011; 

Moradi, Nasirzadeh, & Golkhoo, 2015). Also, the increased complexity that results from using 

multiple methodologies means that hybrid models are difficult to validate, since simpler models 

are generally easier to validate (Barton, Bryan, & Robinson, 2004). 

 

 

Execution strategies for hybrid simulation 

  Mustafee, et al. (2015) mention three different execution strategies for hybrid simulation 

models. The first strategy involves two different modeling packages for different simulation 

techniques, with the output of one serving as the input to the other, and the operation is done 

manually. This methodology has been applied by (Zulkepli, Eldabi, & Mustafee, 2012) to 

develop and run a hybrid DES-SD model of an Integrated Care system in healthcare. The second 

strategy also involves two modeling packages, but the integration between them is automated.  

Examples include the use of Excel to link a DES-SD model (Viana, Brailsford, Harindra, & 

Harper, 2014) and the use of a distributed simulation system to link an ABM-DES model 

(Mustafee, Sahnoun, Smart, Baudry, & Louis, 2015). The third approach to hybrid simulation 

model execution is through the use of a single modeling package that supports multiple modeling 

paradigms. For example, the hospital workflow model (a combination of ABM, DES, and SD 

methodologies) and an ABM-DES model of a material handling process in an assembly line  

were both developed and run using AnyLogic (Djanatliev & German, 2013; Hao & Shen, 2008). 

 

 

Empirical Simulation Models 

 

  The use of empirical research methods in operations management supports the 

development of theory (Filippini, 1997). Empirical research also provides a strong foundation for 
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making realistic assumptions in simulation modeling and enables a better understanding of the 

system under study (Flynn, Sakakibara, Schroeder, Bates, & Flynn, 1990). Although much of the 

existing research on ABM is theoretical and abstract, there has been an increasing trend of 

combining ABM with empirical data (Janssen & Ostrom, 2006).  Providing input values to ABM 

variables and parameters through social survey data demonstrates a strong empirical foundation 

for the development of these models (Sopha, Klöckner, & Hertwich, 2013).  In particular, 

integrating ABM with empirical research can lead to a better representation of the human 

decision-making process.  For example, an ABM was developed to study the diffusion of water-

saving innovations in households in Southern Germany (Schwarz & Ernst, 2009). The 

information on the household agents was gathered through a telephonic survey. Brown and 

Robinson (2006) developed an empirical ABM to study the selection of residential locations 

within an urban system in southeastern Michigan. The authors used a survey to collect 

information on residents’ preferences, and the survey data was used to inform the ABM.  

 

 

Evaluating RFSC Performance 

  Many analytical methods have been adopted to evaluate RFSCs. Route and load 

optimization methodologies using analytical software (e.g., GIS and Route LogiX) have been 

proposed for regional food distribution systems (Bosona & Gebresenbet, 2011; Bosona T. , 

Gebresenbet, Nordmark, & Ljungberg, 2011). Craven, Mittal and Krejci (2016) proposed a 

coordinated transportation system among the four food hubs in Iowa to help them better meet the 

supply and demand of local food and reduce their overall distribution costs. Nordmark, et al. 

(2012) used empirical and analytical methods to study the impact of internet-based systems and 

evaluate environmental and economic impacts due to transportation optimization in local food 
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supply chains. Demir and Demir (2014) developed an integer programming model to evaluate 

the transportation performance of 62 organic fresh produce farmers in Istanbul.  

  Using simulation is cost-effective and can enable useful investigations and system 

improvement implementations without experimenting with the real world systems (Schieritz & 

Grobler, 2003; Towill, Naim, & Wikner, 1992).  However, a literature survey done by (Soysal, 

Bloemhof-Ruwaard, Meuwissen, & van der Vorst, 2012), suggests that very few simulation 

models have been developed in sustainable food logistics management. Jansen, et al. (2001) 

developed a DES model to analyze the implementation of a multi-compartment distribution 

system in a catering supply chain in the Netherlands. DES has been used to evaluate the 

performance of  a supply chain for chilled food products (Van der Vorst, Beulens and van Beek 

2000), as well as comparing different transport modes in terms of logistics cost, energy use, CO2 

emissions, and product quality decay (Van der Vorst, Tromp and Zee 2009). Vorst (1998) 

developed a computer simulation model to study the effect of uncertanitites on food supply chain 

performance. Krejci and Beamon (2015) used ABM to study the impacts of the farmer 

coordination on the emergence of different types of RFSC structures over time. Their model 

captures price negotiations between farmer and distributor agents. Bora and Krejci (2015) used 

ABM to evaluate various supplier selection policies in RFSCs. 

  We are unaware of any simulation models in the existing literature that address RFSC 

management policies. This thesis proposes and demonstrates the need for hybrid simulation to 

evaluate RFSCs through the development of an empirically-based hybrid simulation model to 

study the inbound logistics operations of a regional food hub in Iowa. 
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CHAPTER 3 

HYBRID SIMULATION MODEL 

This section describes a hybrid simulation model of inbound operations at a regional food 

hub in Iowa. The food hub operates as an online grocery store and sell products directly to its 

customers. The food hub has two order cycles per month. An order cycle consists of the four 

stages described below: 

1) Inventory listing – Producers list the products that they are willing to sell in the current 

order cycle on the food hub webpage. 

2) Shopping period – Every order cycle has a “cart open” period of six days, in the week 

prior to the distribution week. Throughout this period, food hub members may add 

products to their online shopping carts via the food hub webpage. 

3) Receiving process – As per the customer orders, each producer delivers products to the 

food hub warehouse. The producers may either deliver their products on the day prior to 

the distribution day (i.e., the day that products are distributed to customers) or on the 

distribution day. The volunteers at the food hub inspect the products to ensure that the 

delivered items and quantities match the orders, and that the quality of the products is 

acceptable. The volunteers then place the products in the appropriate storage locations by 

product category. 

4) Delivery process – After all of the products have been received, the food hub sorts and 

delivers the products to multiple distribution points throughout central Iowa, where the 

customers pick up their orders. 
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The timeline diagram of the food hub describing all four stages of an order cycle is 

shown in Figure 6. 

 

Figure 6. Timeline diagram describing four stages in an order cycle at the food hub. 

The hybrid simulation model described in this section is focused on the receiving process 

at the food hub, which includes the arrival of the food hub producers to the hub, the quantity 

check and quality inspection by the volunteers, and the placement of the goods in storage. The 

food hub considered in this study has enabled its producers to schedule the dates and times of 

their deliveries via an online on the day prior to the distribution day and three on the distribution 

day) for their delivery to the food hub. However, as described in Chapter 1, small and mid-sized 

producers highly value their autonomy. As a result, only approximately 25% of the producers 

schedule their deliveries in advance, and only a few of those who use the schedule actually show 

up in their chosen time slot (Huber, 2015). Unscheduled deliveries result in speeding up the 

receiving process by the food hub personnel due to many producers arriving at the same time, 

thus leaving less time for quality checks and inventory put-away. This increases the likelihood of 

errors in product placement in storage locations and leads to customer dissatisfaction, due to 

poor quality of products, or wrong delivery. 
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This thesis describes a hybrid simulation (DES-ABM) model that employs an ABM to 

capture food hub producers’ delivery scheduling decisions and behaviors and a DES model to 

represent the food hub’s receiving process, with the DES model providing feedback to the ABM. 

These models run in a sequence as shown in Figure 7.  In Stage 1, the ABM (created using 

NetLogo 5.1.0) determines the producer agents’ scheduling decisions and generates the arrival 

times of the producers at the food hub warehouse according to these decisions. These arrival 

times become the input to Stage 2, which is a DES model (developed using Arena 14.7) of 

inbound operations at the warehouse.  This model generates the queue time of each producer as 

he waits his turn to be served by a volunteer for receiving. The queue time serves as an input to 

the producer agents in the ABM.  The data exchange between these two separate models is 

performed manually, using the read/write functions of both software platforms.  

 

Figure 7.  Hybrid simulation (ABM-DES) model overview. 

 

Agent-Based Model 

As described in Chapter 1, agent-based modeling (ABM) is well-suited to modeling 

heterogeneous components in a supply chain. In a regional food supply chain that is 

intermediated by a food hub, these components may include producers, the food hub, consumers, 

and the volunteers who work at the food hub. However, in the ABM described in this thesis, only 

one of these components is represented as an agent: the producers. 
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This ABM is used to analyze producers’ decisions to schedule their deliveries before 

arriving to the food hub. These decisions are often influenced by multiple factors. For example, 

producers often like to combine multiple deliveries in the same area, coordinate their deliveries 

with other activities, and coordinate and share deliveries with other producers. The decision to 

schedule is also subject to the producers’ desire to maintain their autonomy and flexibility.  

Small and mid-sized producers associated with the food hub (i.e., farmers) are known to highly 

value their autonomy, and they are often willing to make significant sacrifices to maintain it 

(Krejci & Beamon, 2015). However, one of the main incentives for selling products through a 

food hub is the convenience of avoiding multiple direct-to-consumer transactions.  

This thesis describes an empirical ABM that was developed using data from a survey of 

the producers associated with the Iowa Food Cooperative (a food hub based in Des Moines, 

Iowa) and informal interviews with the food hub manager. The producer survey questionnaire 

targets behavioral components that include different factors affecting producers’ decisions to 

schedule their deliveries. The detailed survey questionnaire and its explanation is provided in 

Appendix A. 

 

Parameterization of the ABM 

The main strength of ABM is its ability to implement human decision-making processes. 

The agent attributes and behavioral response functions in an ABM require knowledge from 

empirical sources (Smajgl, Brown, Valbuena, & Huigen, 2011). In the development of an 

empirical ABM, two fundamental steps are required: development of appropriate behavioral 

categories, and scaling the real-world sample to the whole ABM population level. The 

population size (i.e., the total number of agents in the ABM) can be anywhere from 20 to many 
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millions, and therefore it becomes necessary to collect empirical data from a sample of the real-

world population, which will represent the agents in the ABM (Smajgl, Brown, Valbuena, & 

Huigen, 2011). Therefore, the first step in the parameterization framework includes collecting 

the empirical data from the sample of population under study. However, it is important that the 

agent population appropriately reflects the actual heterogeneity of the real-world objects that it 

represents (Brown & Robinson, 2006). In order to identify the potential factors that affect 

producers’ decision to schedule their deliveries, the relevant literature (including journal articles, 

case studies published by the U.S. Department of Agriculture and the National Good Food 

Network, and manuals published by food hubs in United States) was reviewed, and informal 

interviews with two subject matter experts (i.e., food hub managers in Iowa) were conducted 

(Huber, 2015; Grimm, 2015). This was followed by a survey of 25 producers, which was 

conducted during the delivery process of one of the order cycles at the Iowa Food Cooperative. 

Social surveys can serve as the source of information about the heterogeneity present in agents 

that are being represented in ABM, provided that the survey questions relate directly to the agent 

attributes in the model (Brown & Robinson, 2006).  Due to missing values of key parameters for 

one of the respondents, the responses of 24 of these producers were used to develop the 

empirical ABM. The survey data was used to develop producer agent attributes, thereby 

providing input parameters for the simulation.  

Based on the literature and the discussions with the food hub managers, six factors were 

initially identified as the potential reasons which might affect producers’ decisions to schedule 

their deliveries before arriving to the food hub: 

1) Producers may combine their deliveries with other activities and other deliveries in the 

area near the food hub. 
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2) Producers may combine their deliveries with other producers located near their farm. 

3) Producers may be affected by their harvesting schedule, if they harvest on the day of 

delivery to the food hub.  

4) Producers may value flexibility in delivery times to avoid placing any constraints on their 

schedules. 

5) Access to the internet (which is required to schedule a delivery) may be inconvenient for 

a producer.  

6) Producers may value reductions in in queue time at the food hub while waiting for 

service from volunteers. 

  These factors informed the design of the producer survey.  The objective of the survey 

was to gather information on how the six factors described above impact producers’ scheduling 

decision. The survey also consisted of questions related to producers’ current level of satisfaction 

of doing business with the food hub, their geographical locations, how their behavior to schedule 

will change if the food hub provides certain incentives and other potential factors which are not 

listed in the survey but play a significant role in their scheduling decision.  At the end, every 

producer was asked to rank all the factors (including those when food hub provides incentives to 

the producers for scheduling the delivery) in the decreasing order of their importance in their 

scheduling decision. 

All the survey respondents were producers associated with the food hub and all but one 

were aware that the food hub gives an option to schedule their delivery online. Two of the six 

factors that were hypothesized to affect producers’ delivery scheduling decisions (internet access 

and combining deliveries with other producers) were rarely mentioned by the surveyed 

producers.  Therefore, these two factors were removed from further analysis. Some of the other 
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factors which came from the responses that affected producers’ scheduling decision and were not 

included in the producer survey included weather conditions, ignorance, volunteering at the food 

hub, delivering freshest products to the customers and family commitments. We have not 

considered these factors in our model as they were not applicable on all the producer population. 

The detailed survey results corresponding to different attributes of the ABM and DES models 

have been included in the respective model descriptions.  

The second step in the ABM parameterization framework involves scaling up the 

empirical data to the entire population of agents. To accomplish this, cluster analysis was 

performed on the survey data to identify sample agents with similar behavioral patterns (Yim & 

Ramdeena, 2015). Only those variables associated with the behavioral attributes of agents in the 

ABM were considered in the cluster analysis (Sopha, Klöckner, & Hertwich, 2013). Behavioral 

attributes were derived from the producers’ responses to the following survey questions, where 

the response was given on a 5-point Likert scale (1 as “not likely” and 5 as “highly likely”). 

1) How likely is it that combining your deliveries with other activities and other deliveries 

in the area near the food hub affects your decision to schedule the delivery? 

2) How likely is it that your harvesting and packing schedule affects your decision to 

schedule the delivery? 

3) On scale of 1 to 5 (1 is “least satisfied” and 5 as “most satisfied”) what will be your 

satisfaction level for the different waiting times to have your products inspected and 

checked in by the IFC volunteers? (Refer Appendix A, question number 9, for the 

different waiting times included in the survey) 
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4) If the food hub offers you a priority delivery option (i.e. go to the front of the line for 

receiving) as an incentive to schedule, how likely is it that you would be scheduling your 

delivery? 

5) How will your decision to schedule the delivery change for the different monetary 

incentive levels provided by the food hub? (Refer Appendix A, question number 14, for 

the different monetary incentive levels included in the survey) 

6) If you interact with other producers, how often do you share the experiences you have 

with the food hub? 

Hierarchical clustering analysis (Ward’s Method) was used to identify different clusters 

(Punj & Stewart, 1983; Krejci, Stone, Dorneich, & Gilbert, 2015). The sample data was not 

standardized before clustering, since all responses were on a same scale. Squared Euclidean 

distance was used to generate the agglomerative schedule (Appendix B) to determine the 

coefficient values (i.e., the distance between two combined clusters) at each stage of hierarchical 

clustering. The increase in coefficient values indicates that the clusters that are combined at any 

given stage are more heterogeneous than the previous combinations (Yim & Ramdeena, 2015). 

The agglomerative schedule shows that the first notable increase in the coefficient value occurs 

at stage 20. Therefore the 24 surveyed producers were grouped into four clusters and were 

identified from a unique producer id by visually inspecting the dendrogram as shown in Figure 8. 

Table 2 provides a summary of the responses to the six behavioral survey questions for 

each of the four clusters. For all the questions, higher the average response values, higher is the 

impact, but for the queue time, it is vice versa. If the average value of the responses is 1, then it 

has been assumed that the particular factor doesn’t affect producers’ scheduling decision. The 
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value for these average responses for each cluster on the scale of 1 through 5 (1 as “low impact” 

and 5 as “impact”) are also indicated in Table 2.  

 

Figure 8.  Dendrogram for hierarchical cluster analysis from producers’ survey data. 

The producers in Cluster 1 consist of 6 producers. They consider waiting time and 

priority delivery option by the food hub as moderately important in their scheduling decision. 

However, other activities and deliveries in the area near to the food hub highly drives their 
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decision to schedule the delivery. Harvesting schedule is less important in their decision making. 

They would highly consider scheduling the delivery if the food hub provides monetary 

incentives and are moderately expressive with respect to sharing their business experiences with 

the other food hub producers.   

There were 5 producers in Cluster 2. Waiting time at the food hub, priority delivery 

option and monetary incentives have moderate impact while other activities in the area have high 

impact on their scheduling decision. These producers don’t harvest and pack their products on 

the day of the delivery therefore this factor doesn’t impact their scheduling decision at all. They 

also don’t communicate much and don’t share their business experiences with the other food hub 

producers. 

Cluster 3 comprised majority of the respondents. Waiting time moderately affects their 

scheduling decision, but if they have been provided with priority queue option for scheduling, 

they would highly consider scheduling the delivery. Their scheduling decision is moderately 

driven by other deliveries and activities near the food hub area and harvesting schedule 

moderately affects their scheduling decision. They would be moderately affected by the 

monetary incentives option and the likelihood of sharing their experiences with the other 

producers is very less. 

Cluster 4 consisted of 4 producers who are highly satisfied with their business with the 

food hub. It’s only the waiting time which has a very less impact on their scheduling decision, 

and no other factor is responsible in their decision making to schedule the delivery. Their 

scheduling behavior will not be affected much due to monetary incentives provided by the food 

hub, and they moderately share their positive or negative experiences with the other food hub 

producers.  
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Table 2.  Behavioral response of four clusters to six attributes. 

 

After clustering, the sample data was translated into behavioral representations for the 

whole population using the method called up-scaling. Up-scaling can be done in two ways 

(Smajgl, Brown, Valbuena, & Huigen, 2011; Berger & Schreinemachers, 2006): 

1) Proportionately – Assumes the sample is representative of the whole population. 

Cluster #
Queue 

time

Priority 

delivery

Other 

activities

Harvesting 

schedule

Monetary 

incentive

Sharing 

experience
Description

Cluster 1

(N = 6, 

25%)

2.76 3.00 5.00 1.33 4.00 3.33

Queue time at the food hub is moderately 

important, priority delivery will moderately impact 

their scheduling decision, other activities in the area 

highly impact their scheduling decision, harvesting 

schedule impact on their scheduling decision is very 

less, high impact of monetary incentive on 

scheduling decision, likelihood of sharing experience 

with other producers is moderate

Cluster 2

(N = 5, 

20.8%)

2.37 3.40 4.80 1.00 1.80 2.20

Queue time at the food hub and priority delivery 

will moderately impact their scheduling 

decision,other activities in the area high impact 

their scheduling decision, harvesting schedule 

doesn't impact their scheduling decision, moderate 

impact of monetary incentive on scheduling 

decision, likelihood of sharing experience with other 

producers is low

Cluster 3

(N = 9, 

37.5%)

3.14 3.89 2.67 3.67 3.00 2.33

Queue time at the food hub is moderately 

important, priority delivery will highly impact their 

scheduling decision, other activities in the area 

moderately impact their scheduling decision, 

harvesting schedule moderately impact their 

scheduling decision, moderate impact of monetary 

incentive on scheduling decision, likelihood of 

sharing experience with other producers is low

Cluster 4

(N = 4, 

16.7%)

3.50 1.00 1.00 1.00 1.25 3.00

Queue time at the food hub is less important, 

priority delivery will not impact their scheduling 

decision, other activities in the area doesn't impact 

their scheduling decision, harvesting schedule 

doesn't impact their scheduling decision, low 

impact of monetary incentive on scheduling 

decision, likelihood of sharing experience with other 

producers is moderate
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2) Disproportionally – If the sample can’t be assumed to be correct representation of the 

whole population, alternative approaches (e.g., Monte Carlo Approach, using census 

and GIS data) are employed.    

According to its historical sales data, the food hub considered in this study is doing 

business with an average of 70 producers per order cycle. The ABM includes 72 producer agents 

who are delivering products in every order cycle to the food hub. In order to up-scale the data 

from 24 agents to the model population size of 72, the strategy of Schreinemachers et al. (2009) 

was adopted, wherein proportional cloning was used to scale the sample data to agent population. 

The number of agents in this study was equal to the number of Thai farm households in reality. 

They surveyed around a quarter of farm households, and used sampling weights (inverse 

probability of selection) to multiply households inside the ABM. Therefore each farm household 

appeared about four times in the model. The average of the 24 responses to the six behavioral 

questions were up-scaled proportionally by cluster to 72 producer agents in the ABM. Therefore 

each cluster appeared three times in the ABM. 

 

ABM Overview 

Each of the 72 producer agents in the ABM decides in each time-step whether or not they 

will schedule their delivery to the food hub.  This decision is informed by factors that are either 

1) indirectly related to the food hub or 2) directly related to the food hub.  Indirect factors 

include the producer’s preference to combine their food hub delivery with other 

activities/deliveries in the area and their harvesting schedule. These two factors were ranked as 

the most important by the most of the surveyed producers. Each producer agent is assigned a 

probability that their decision to schedule their delivery will be affected by these indirect factors 
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in a given time-step.  The value of this probability is based on survey responses. The probability 

has been assigned based on average value of the responses to these factors within each cluster. 

Higher the average response value for a cluster, higher is the probability that the factor will 

affect producers’ scheduling decision. It has been assumed that the probability decreases linearly 

from 0.8 to 0, if the response value decreases from 5 to 1.  3 out of 24 respondents in the survey 

mentioned that they don’t combine their delivery with other deliveries and activities in the area 

near the food hub. Figure 9 shows the response of 21 producers in the survey on how their 

decision to schedule the delivery gets affected due to this factor. The response was taken on a 5 

point Likert scale with 1 as “not likely and 5 as “highly likely”. 

 

Figure 9.  Survey data showing the effect of other deliveries and activities in the area near to the 

food hub on producers’ decision to schedule the delivery. 

Also, 12 out of 24 survey respondents mention that they don’t harvest, pack or label their 

products on the day of the delivery. Figure 10 shows the response of the remaining 12 producers’ 

on how their decision to schedule affects based on their harvesting schedule. The response was 

taken on a 5 point Likert scale with 1 as “not likely” and 5 as “highly likely”. 
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Figure 10. Survey data showing the effect of harvesting schedule on producers’ decision to 

schedule the delivery. 

If a producer’s decision in any given cycle is not affected by these indirect factors, then it 

will be influenced by factors that are directly related to the producer’s previous experiences with 

the food hub.  Specifically, the producer recalls whether he was satisfied with his scheduling 

decision in the previous cycle or not. His level of satisfaction is based on two different 

components: autonomy (i.e., flexibility in delivery) and convenience. In the model, it is assumed 

that the degree of autonomy that a producer experiences depends upon the flexibility he has in 

choosing times to deliver goods to the food hub. The level of convenience that a producer agent 

experiences depends upon the amount of time that he spends waiting in a queue to receive 

service from personnel at the food hub during a delivery.  

Every producer has a time preference for delivering their goods to the food hub. The food 

hub currently offers 11 one-hour time slots in its online schedule from which the producers can 

choose to deliver their goods. These time slots are available between 9:00 am to 5:00 pm on the 

day prior to the distribution day and from 8:00 am to 11:00 am on the distribution day in every 
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order cycle. The surveyed producers were asked about their preferences for each of the 11 time 

slots, on a scale of 1 to 5, where 5 is most satisfied and 1 is least satisfied. Figure 11 shows the 

satisfaction level of the 24 producers surveyed for each of the 11 time slots (1 – 8 represents 

receiving day 1 time slots, 9 – 11 represents receiving day 2 time slots). On delivery day 1, slot 

number 2 and 6 are highly preferred by the producers to deliver their products. While on delivery 

day 2, most of the producers preferred to deliver in the last two time slots. 

 

Figure 11. Satisfaction level of 24 survey respondents to deliver the products in 11 time slots. 

It is assumed that this preference does not change over the course of a simulation run.  

The slots are assumed to be filled on a first-come-first-served basis, and it is assumed that if a 

producer schedules his delivery in a given time slot, he is guaranteed to arrive at the food hub in 

that time slot.  

The utility that a producer gains from autonomy in each delivery cycle depends upon his 

ability to schedule his delivery for his preferred time slot, or better yet, to avoid scheduling 
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altogether. The producer’s utility due to autonomy (UA) is defined on a scale from 0 to1 (where 0 

and 1 represent the worst and best possible outcomes, respectively). UA is assigned a value of 1 if 

the producer doesn’t schedule his delivery. If a producer decides to schedule his delivery, he will 

first check the availability of his most-preferred time slot. If the slot is not full (i.e., it has not 

reached its maximum capacity), he will schedule his delivery for this time. If the time slot is full, 

he will check for availability in his second most-preferred time slot, and so on, until he is able to 

successfully schedule. This is because, all the 24 producers responded in the survey, that if there 

most preferred time slot is not available, they will schedule the delivery in their next preferred 

time slot. In this case UA decreases linearly from 0.8 to 0, with a value of 0.8 when he get his 

most-preferred time slot and 0 if he get his least-preferred time slot.  

A producer agent’s utility due to convenience (UC) is a function of producer queue time 

(Q) at the food hub. Previous research has shown that an inversely proportional relationship 

exists between customer waiting time in queue and customer satisfaction (Davis & Heineke, 

1998). However, for producers that are supplying food to regional food hubs, this is not 

necessarily the case – for a variety of reasons, not all producers are concerned about the time 

they have to wait in queue for their products to get checked in. For example, some of the 

producers spend time volunteering at the food hub when they come to drop of their products, so 

waiting time in queue doesn’t affect their satisfaction level at all. In the survey, producers were 

asked about their satisfaction level on a scale from 1 to 5 for 7 different wait time ranges (where 

5 is “most satisfied” and 1 is “least satisfied”). Figure 12 shows the producers’ response to 

satisfaction level in the survey corresponding to 7 different ranges of waiting times with 1 as 

“least satisfied” and 5 as “most satisfied”.  
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Figure 12.  Survey data showing satisfaction level of 24 producers for the 7 different waiting 

times range at the food hub. 

Utility due to convenience (UC) is defined on a scale of 0.2 to 1. UC is assigned a value of 

1 if the producer’s queue time (Q) yields the highest satisfaction level (i.e., 5), and it decreases 

linearly to a value of 0.2 if the queue time results in the minimum satisfaction level (i.e., 1). 

Figure 13 shows how UC varies for each cluster as the waiting time increases based on the 

producers’ responses in the survey. 

  The overall utility (U) of a producer’s decision is a weighted combination of UA and UC, 

given by: U = WAUA + WCUC, where WA and WC are measures of the producer’s relative preference 

for autonomy and convenience, respectively.  Every producer has a satisfaction threshold, and if 

his scheduling decision yields a level of satisfaction that falls below this threshold, he will update 

his decision-making strategy in an attempt to improve it. To define this satisfaction in terms of 

utility, every producer is assigned a constant threshold utility value (UT) of 0.88, below which a 

producer will be dissatisfied. It is calculated by assuming that a producer will be satisfied if he 



54 
 

gets at least his most-preferred time slot for scheduling the delivery (UA = 0.8)  and his wait time 

in the queue is in the range of highest satisfaction level (UC = 1), with WA = 0.6 and WC = 0.4. Table 

3 and Table 4 summarize all of the variables and parameters used to describe the state of a producer 

agent in the ABM. 

 

Figure 13. Variation of UC vs waiting time for each cluster. 

Table 3. ABM variables. 

# Variable Description Source Possible values 

1 producer_combine_delivery Producer combine his delivery 

with other deliveries and 

activities in the area in an order 

cycle 

Producer 

survey 

1 – if yes 

0 – if no 

2 producer_harvest Producer harvest on the day of the 

delivery in an order cycle 

Producer 

survey 

1 – if yes 

0 – if no 

3 producer_schedule_delivery Producer decision to schedule the 

delivery 

ABM 1 – if yes 

0 – if no 

4 producer_slot_number Time slot number in which the 

producer decides to deliver the 

products at the food hub 

ABM 1 - 8 (day prior to 

distribution day) 

9 – 11 (on 

distribution day) 
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Table 3. (Continued) 

# Variable Description Source Possible values 

5 producer_delivery_day Arrival day of the producer ABM 1 – day prior to 

distribution day  

2 – distribution day 

6 producer_arrival_time Arrival time of the producer in 

the chosen time slot on a  given 

delivery day 

ABM - 

7 producer_queue_time (Q) Time spent by the producer in 

queue waiting for his turn to get 

the products checked in 

DES - 

8 producer_utility_queue_time 

(UC) 

Utility gain by a producer due to 

waiting time in an order cycle 

DES-ABM 0.2 to 1 

9 producer_utility_autonomy (UA) Utility gain by a producer due to 

his decision to schedule the 

delivery and availability of his 

preferred time slots 

ABM 0 to 1 

10 producer_overall_utility (U) Weighted utility of a producer ABM 0 to 1 

 

Table 4. ABM parameters. 

# Parameter Description Source Possible values 

1 producer_number Unique number assigned to each 

producer agent in ABM  

- 1 - 72 

2 producer_combine_probability Probability that the producer will 

not schedule the delivery if he 

combine it with other activities 

and other deliveries  

Producer 

survey 

0 to 1 

3 producer_harvest_probability Probability that the producer will 

not schedule the delivery if they 

harvest on the same day 

Producer 

survey 

0 to 1 

4 producer_time_slot_satisfaction Satisfaction level of producers to 

deliver in each of the 11 time 

slots 

Producer 

survey 

1 to 5 (1 as least 

satisfied and 5 as 

most satisfied) 

5 weight_queue_time (WC) Weight of queue time in the 

aggregate utility function in the 

decision making process of the 

producer 

Experimental 0 to 1 

6 weight_autonomy (WA) Weight of autonomy in the 

aggregate utility function in the 

decision making process of the 

producer 

Experimental 0 to 1 
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Table 4. (Continued) 

# Variable Description Source Possible values 

7 

 
producer_threshold_utility (UT) Utility below which the producer 

will not be satisfied with the 

decision 

Experimental 0 to 1 

8 max_slot_capacity Maximum number of producers 

allowed to choose a particular 

time slot for scheduling their 

delivery  

Experimental 6 – 18 

 

Discrete Event Simulation (DES) 

DES model captures the activities of the inbound receiving operations in the food hub, 

including quality inspection and storage of the goods brought by the producers. The receiving 

process of the food hub considered in this thesis is shown in Figure 14.  The entities in the DES 

model represent the producer agents of the ABM. The four attributes of these entities are the 

quantity and the category of the goods they are selling through the food hub in every order cycle, 

and their arrival times and waiting times at the food hub. The receiving operations are divided 

into four stages in the DES:  the arrival of producers at the food hub, queuing for service, 

receiving service from the food hub personnel, and exiting the food hub.  

 

Figure 14.  Receiving process at the food hub. 
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Producer arrival times that are determined by their scheduling decisions. Upon arrival, if 

there are unoccupied receiving personnel available, an arriving producer will immediately be 

served; otherwise, the producer will wait in a queue for service.  Receiving time is known to be 

dependent upon product attributes. For example, milk will have a different receiving time than an 

equivalent volume of vegetables/meat. It is necessary for the receiving personnel to count the 

quantity and types of milk containers and ensure that these match the values on the producer’s 

invoice, as well as inspecting the products’ expiry dates.  Vegetable deliveries must be 

reconciled to the producer’s invoice, but they also undergo a quality inspection. For example, 

every bag of potatoes must be carefully inspected for sprouted or green potatoes, which is a very 

time-consuming process. Therefore, quality inspection and product placement time are a function 

of both the quantity delivered and the product category. The food hub in this study has 

categorized the products sold by its producers into four different categories, which are 

summarized in Table 5. 

Table 5. Four different types of product categories at the food hub. 

Serial # Product Type Description 

1 NON Shelf-stable goods 

2 FROZ Frozen goods 

3 REF Refrigerated goods 

4 PLANTS & INVENTORY Plants and dry goods kept as inventory at the food hub 

 

The probability distributions that define the receiving times of products in the DES model 

depend on the quantity of goods sold by the producers in each of the four different categories. 

The storage strategies adopted by the food hub for each of the four product categories are 

described below.  
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NON – Shelf-stable goods 

“NON” includes the shelf-stable goods (e.g.,   salsa, flour, potatoes) sold by the 

producers that do not require refrigeration. “NON” goods are stored on shelves in the food hub 

warehouse according to customer member identification numbers. Figure 15 schematically 

illustrates how the products in the “NON” category of the food hub considered in this study are 

stored. The receiving time for “NON” goods depends on the number of customer orders for these 

items. 

 

Figure 15.  Storage of “NON” goods at the food hub. 

 

FROZ – Frozen goods 

“FROZ” includes frozen meat products and other frozen goods (e.g., ice cream), which 

are stored in freezers in the food hub warehouse. The goods of each producer are stored at a 

unique location in the freezer, which is labeled by the producer’s name. Customer orders are 

stored in order of increasing identification number, with the smallest number in the front of the 

freezer and largest at the back. Figure 16 shows how “FROZ” products are stored at the food 

hub. The receiving time of the frozen goods depends on the number of customer orders within a 

producer’s delivery. 



59 
 

 

Figure 16.  Storage of “FROZ” goods at the food hub. 

 

REF – Refrigerated goods 

“REF” includes all the vegetables, fruit, and dairy products. These items are stored 

according to the producer in refrigerators in the food hub warehouse.  This storage scheme is 

similar to that of the “FROZ” products, but the refrigerated items are not arranged according to 

customer identification number. Figure 17 shows the typical storage strategy of “REF” products 

for one particular producer at the food hub. 

 

Figure 17.  Storage of “REF” goods at the food hub. 
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Plants and inventory goods 

The inventory goods are stored in a similar way as that of “REF” products, but as they are 

shelf-stable goods they are stored on shelves that are designated to each individual producer. The 

plants are also stored according to their producer and are arranged in the order of increasing 

customer identification number, as with the “FROZ” products. The overall layout of the food hub 

warehouse under study is shown in Figure 18. The layout shows the arrangement of refrigerators, 

freezers, dry good shelves, and inventory storage area. 

 

Figure 18.  Facility layout of the food hub. 
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Data collection 

The volume of products sold in each of the four product categories in the past year was 

identified for each of the 24 producers surveyed using the food hub’s sales database. Table 6 

describes this data for one order cycle.  This data was up-scaled to 72 producer agents using the 

hierarchical cluster analysis described previously. 

Table 6. Description of data for each of the four product categories. 

Serial # Product Type Data Description 

1 NON Total number of individual packages brought by the producer labelled 

as “NON” 

2 FROZ Total number of customers served by a producer  

3 REF Total number of individual packages of “REF” products 

4 PLANTS & INVENTORY Total counts of plants and inventory goods brought by the producer 

 

The data acquired for receiving time at the food hub per unit of each product type is 

based on a time study conducted at the food hub. The time-study was conducted by capturing the 

minimum and maximum time taken to receive and store the products for a sample of producers 

in each product category. This time-study data was then used to assign the receiving time for 

each product category based on the data type as mentioned in Table 5.  The range of receiving 

times for each of the four product categories is shown in Table 7. In the DES model the receiving 

time for per unit in each of the four product categories is drawn from a triangular distribution 

with minimum and maximum values as shown in Table 7 and the median value as the average of 

these maximum and maximum values.  
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Table 7. Receiving time values for all the three product categories. 

Serial # Product Type Unit  Minimum time 

(minutes) 

Maximum 

time (minutes) 

1 NON Number of orders 0.44 1 

2 FROZ Number of customers per producer 0.89 1.18 

3 REF Number of orders 0.2 0.3 

4 Plants & 

Inventory goods 

Plants - Number of customers per 

producer 

0.89 1.18 

Inventory goods – Number of orders 0.2 0.3 

 

The number of resources (i.e., food hub personnel) in the DES model is based on the 

actual number of volunteers available at the food hub over a period of two days for the receiving 

process. On the day prior to the distribution day (delivery window of eight hours), an average of 

two volunteers are available; and on the distribution day (delivery window of three hours), six 

volunteers are available in the entire time window for the receiving process. Given a producer’s 

arrival time, arrival time slot, and quantity and category of products, the DES model outputs the 

queue time for each producer. The flowchart of the DES model built using Arena (14.7) is shown 

in Figure 19. 

Table 8 summarizes the input and output variables used in the DES model. All of the 

input variables used in the DES model are either informed by the ABM or derived from the food 

hub’s sales database. The parameters used in the DES model related to the receiving process are 

summarized in Table 9 and have been derived by the food hub manager based on his expert 

knowledge of the food hub’s operations (Huber, 2015).  
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Figure 19. Flowchart of the Arena simulation model. 

Table 8.  DES variables. 

# Variable Description Source Possible values 

1 producer_arrival_time Arrival time of the producer at the 

food hub as per his time slot 

preferences 

ABM - 

2 producer_scheduling_decision Producer decision if he has scheduled 

the delivery in advance or not 

ABM 0 – not scheduled 

1 - scheduled 

3 producer_delivery_day Day of delivery of the producer ABM 1 – delivery day  1 

2 – delivery day 2 

4 producer_queue_time Time spent by the producer in queue 

waiting for his turn to get checked in 

DES - 

5 average_queue_time_day1 Average waiting time of the producers 

on the day prior to the distribution day 

DES - 

6 average_queue_time_day2 Average waiting time of the producers 

on the day of distribution 

DES - 

7 resource_utilization_day1 Man hour utilization rate for the 

receiving process on the day prior to 

the distribution day 

DES 0 – 100 % 

8 resource_utilization_day2 Man hour utilization rate for the 

receiving process on the distribution 

day 

DES 0 – 100 % 
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Table 9. DES parameters. 

# Parameter Description Source Possible values 

1 producer_number Unique number assigned to each 

entity in DES corresponding to 

the agent in the ABM 

ABM 1 - 72 

2 receiving_time_category1 Time required to check in and 

store per unit of products sold by 

the producer in category 1 

Time study 

at the food 

hub 

TRIA(0.2,0.25,0.3) 

3 receiving_time_category2 Time required to check in and 

store per unit of product sold by 

the producer in category 2 

Time study 

at the food 

hub 

TRIA(0.44,0.72,1) 

4 receiving_time_category3 Time required to check in and 

store products sold by the 

producer in category 3 for one 

customer 

Time study 

at the food 

hub 

TRIA(0.89,1.02,1.1

8) 

5 receiving_time_category4 Time required to check in and 

store per unit of products sold by 

the producer in category 4 

Time study 

at the food 

hub 

TRIA(0.2,0.25,0.3) 

6 number_resource_day_1 Number of volunteers available 

to check in and store the 

products on the day prior to the 

distribution day 

Food hub 

resource 

data 

2 

5 number_resource_day_2 Number of volunteers available 

to check in the products on the 

distribution day 

Food hub 

resource 

data 

6 

6 producer_quantity_category_1 Average quantity of products in 

category 1 sold by the producer 

in last year  

Food hub 

historical 

sales data 

- 

7 producer_quantity_category_2 Average quantity of products in 

category 2 sold by the producer 

in last year  

Food hub 

historical 

sales data 

- 

8 producer_quantity_category_3 Average quantity of products in 

category 3 sold by the producer 

in last year  

Food hub 

historical 

sales data 

- 

9 producer_quantity_category_4 Average quantity of products in 

category 4 sold by the producer 

in last year  

Food hub 

historical 

sales data 

- 

 

 

Hybrid Simulation Model 

In this section we have described the four different versions of the hybrid simulation 

model developed. All the four versions of the model were used to observe the producers’ 

behavior to schedule the delivery under different conditions. Model I i.e. the “Status quo” 
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represents the current condition at the Iowa Food Cooperative, with producers making their 

scheduling decision based on several factors as described above in the ABM. In rest of the three 

models, interventions by the food hub have been modeled to encourage producers to schedule the 

delivery. In Model II, it has been considered that the food hub will provide an option of priority 

queue to the producers who schedule their delivery. In Model III, it has been considered that the 

food hub rewards the producers with monetary incentives as well as priority queue for 

scheduling their delivery. In Model IV, it has been assumed that the food hub will provide 

feedback to the producers on how their inbound operations get affected due to unscheduled 

deliveries. The effect of this feedback along with sharing this feedback information among the 

producers has been modeled to observe the producers’ overall scheduling decisions. 

 

Model I – Status Quo  

The simulation begins with the ABM.  In the first delivery cycle, it is assumed that all of 

the producers will make their decision to schedule their deliveries based on the two indirect 

factors (i.e., their decision to combine the delivery with other activities/other deliveries near the 

food hub location and their harvesting schedule). If any one of these factors affects their decision 

to schedule the delivery (i.e. not to schedule), it is assumed that the producers will arrive in one 

of their most preferred (with satisfaction level of 5) time slots. However, if these two factors are 

not affecting producers’ scheduling decision, it is assumed that they will first try to schedule the 

delivery in one of their most preferred time slot. If all of their most preferred time slots are not 

available to schedule due to capacity restrictions on the time slots, they will try scheduling in 

their second most preferred time slot and so on until they are able to successfully schedule the 

delivery. The actual producer arrival times to the food hub are assumed to be uniformly 
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distributed within the chosen time slots.  These arrival times are written to an output file and 

become inputs to the DES. 

At this point, the simulation switches to the DES.  Upon arrival to the food hub, the 

producer (i.e., entity) will either receive service from food hub personnel immediately, or he will 

wait for service in the queue. The service time is the time required to receive the product into 

inventory, which includes a quantity check, quality inspection, and product placement in storage 

which is dependent on the product quantity and category brought by the producer to the food 

hub.  The producer’s queue time is written to an output file, which becomes an input file to the 

ABM. The producer’s queue time (Q) is then used to calculate his utility due to convenience 

(UC). Also, as per the producer’s decision to schedule his delivery in the previous cycle, he will 

calculate his utility due to autonomy (UA). The producer’s overall utility (U) is then calculated 

using the weighted utility function.  

From the second order cycle, the producer will first determine his scheduling decision 

due to combining delivery with other activities and harvesting schedule. If these factors don’t 

affect his decision to schedule, then the producer compares his overall utility (U) of the previous 

cycle with the threshold utility (UT). If U is greater than UT, then he will maintain his current 

strategy to schedule/not schedule; otherwise, he will reverse his decision. 

This process of deciding on a scheduling policy, arriving at the food hub, queueing, 

receiving service, and updating the scheduling policy based on different factors and utility 

outcomes, occurs for each of the 72 producer agents in every time-step, where one time-step is 

equivalent to one two-week delivery cycle for the food hub.  The overall process is shown in 

Figure 20. 
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Figure 20. ABM- DES model overview (Status Quo). 

 

Food hub interventions 

In order to encourage producers to schedule their deliveries, food hub managers should 

take corrective actions as necessary in order to improve their inbound operation’s efficiency and 

to avoid lost sales due to bad quality or wrong products reaching the customers. In order to 

reduce these errors, food hubs can consider encouraging producers to schedule their deliveries by 
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providing them with monetary incentives or better performance ratings, providing them 

alternative delivery options, re-allocate their labor working hours as per the arrival pattern of the 

producers increasing their number of employees, or by having dedicated and trained labor for 

quality inspection process.  

The implications of two types of measures by the food hub manager are studied in this 

thesis: providing producers with an option of priority delivery (i.e., they can jump to the front of 

the queue, if any) or giving producers monetary incentives if they have scheduled their drop-off 

times in advance. 

 

Model II - Priority delivery incentive 

Previous research shows that customers do not like to wait and consumers will go to any 

extent to reduce their wait time, like jumping the queue or paying a premium to avoid waiting 

(Pàmies, Ryan, & Valverde, 2015). Conventional companies like airlines and theme parks 

provide priority entry to customer in return for a cost which becomes a significant source of their 

revenue (Alexander, MacLaren, O’Gorman, & White, 2012). The author mentions that if the 

customer pays for not waiting in the long queues then the value directly relates to the difference 

between their waiting time and that of customers in the main queue. However, priority queue 

sometimes give a negative impression to the customers in the main queue as treating some 

customers as VIP (McGuire & Kimes, 2006). In the current operations of the food hub, there is 

no option for the producers who have scheduled the deliveries in advance to get a priority check 

in. They have to wait in long queues because of many producers showing up at the same time 

without scheduling the delivery, even if they have scheduled the delivery in the time slot they 
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have arrived. In order to benefit the producers who have scheduled the delivery in advance we 

have included a priority delivery option for them at the time of check in. This incentive, 

illustrated schematically in Figure 21, shows the current and the future conditions of the food 

hub receiving strategy.  

 

Figure 21. Priority delivery option to the producers who schedule their delivery times in 

advance.  
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The surveyed producers were asked about how their decision to schedule their deliveries 

to the food hub would change if the food hub provided them with an option of priority delivery. 

Figure 22 shows the response of 24 producers in the survey, on how the priority delivery options 

affects their scheduling decision with 1 as “not likely” and 5 as “highly likely”. 

 

Figure 22.  Survey data showing the effect of priority queue option on the scheduling decision of 

the producers. 

The decision-making process if the producer is provided with an option of priority 

delivery is shown in Figure 23. The corresponding snapshot of the flowchart from the DES 

model is shown in Figure 24. A summary of the hybrid ABM-DES model incorporating the 

priority delivery option in the producers’ decision-making process is shown in Figure 25.  
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Figure 23. Producer decision-making process with priority delivery option. 
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Figure 24. Snapshot of the Arena simulation model flowchart with priority delivery option. 
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Figure 25. Hybrid simulation (ABM-DES-ABM) model overview with priority delivery option. 

 

Model III - Monetary incentives 

Suppliers tend to improve quality if an organization provides incentives to the best 

performing suppliers (Modi & Mabert, 2007). Incentives motivate the supplier to implement the 

improvements suggested by the buying organization. Firms can motivate suppliers by giving 

incentives in the form of sharing the achieved cost saving, recognizing suppliers performance 
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through awards or giving them consideration for increased volumes (Giunipero, 1990; Krause, 

Handfield, & Scannell, 1998; Modi & Mabert, 2007). In order to incorporate the possibility of 

the food hub’s offering monetary incentives producers who schedule their deliveries, a third 

stage was added to the hybrid simulation model, as shown in Figure 26.  

 

Figure 26.  Hybrid simulation (ABM-DES-ABM) model overview with food hub agent. 

In this version of the hybrid model, a food hub manager agent is included. The food hub 

manager calculates the food hub’s revenue in the last n cycles, where n is an experimental value 

in the model. Based on the revenue generated, the food hub manager decides to provide 

producers a certain percentage of their total sales after the next n cycles as a reward if they 

schedule their delivery in advance before arriving at the food hub. The overall decision-making 

process of the producer if provided with priority delivery and monetary incentive options is 

shown in Figure 27.  Figure 28 shows the response of 24 producers on how their decision to 

schedule the delivery will affect for the four different monetary incentives level provided by the 

food hub with 1 as “not likely” and 5 as “high likely”.   
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Figure 27.  Hybrid simulation (ABM-DES-ABM) model overview with monetary incentives and 

priority delivery option. 
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Figure 28.  Survey data showing the effect of monetary incentives on producers scheduling 

decision. 

Model IV - Food hub – producer and producer - producer interactions 

Suppliers feel motivated to improve if the buying firms communicate with the suppliers 

and provide feedback on their performance (Carr & Pearson, 1999). Communication between a 

supplier and buying firms can be of two types. First one is the traditional communication e.g. 

phone, fax or face-to-face. Second type of communication is advanced communication which 

includes computer-to-computer links, enterprise resource planning (ERP) systems or electronic 

data interchange (EDI). Since the sophisticated systems required in the advanced communication 

methods are not yet well implemented in RFSC, regional food hub managers could implement 

traditional communication techniques to communicate with the suppliers to improve their 

performance. Also, Leek, Turnbull and Naude (2003) found in their empirical study that 

traditional communication is perceived to be more useful by the buying firms as compared to the 

advanced communication techniques.     
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Supplier performance could increase if the knowledge transfer occurs between the 

network of suppliers. For example, Toyota rewards the supplier who makes an exceptional 

knowledge sharing contribution among the network members by giving that supplier additional 

business or paying it a bonus for its contributions (Nishiguchi, 1994).  

To incorporate the above two conditions in the hybrid simulation model developed, we 

have assumed that the food hub manager will communicate with the producers who didn’t 

schedule their delivery in an order cycle, and inform them about the inconvenience caused in the 

food hub inbound operations due to unscheduled deliveries. In the survey, respondents have been 

asked about their satisfaction level while doing business with the food hub. Figure 29 shows the 

response of 24 producers in their survey for their satisfaction level of doing business with the 

food hub, with 1 as “least satisfied” and 5 as “most satisfied”.  

 

Figure 29.  Survey data showing satisfaction level of the survey respondents with respect to 

doing business with the food hub.  
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We have used this factor as a probability which will affect producers’ decision to 

schedule the delivery in the next cycle if the feedback is given to them by the food hub. It has 

been assumed in this model that higher the satisfaction level of the producer with respect to 

doing business with the food hub, higher is the probability that the producer will account food 

hub feedback in his decision in the next cycle. The probability value has been assigned to 0.8 if 

the producer satisfaction level is 5, and is assumed to be linearly decreasing to a value of 0, if the 

satisfaction level decreases to 1. Also the producers who change their decision due to this 

feedback may convey this information to the other food hub producers thus inspiring them to 

schedule the delivery.  

In the survey, we have asked how often the producers share their experiences amongst 

them they have with the food hub. This is an important parameter in the ABM, as the producers’ 

decisions can be influenced by information they gain via interactions with other producers 

between delivery cycles. For example, they may discuss whether or not they are scheduling their 

deliveries and the degree to which scheduling has benefitted them in reducing the queue time at 

the food hub. 3 out of 24 producers mention that they don’t interact with the other food hub 

producers when they deliver their products at the food hub. Figure 30 show the response of 21 

producers, on how often they share their experience while doing business with the food hub with 

the other food hub producers. The response was captured on the 5 point Likert scale with 1 as 

“never share” and 5 as “always share”. 

We have used this response as a probability of interaction between the two producers. 

The scale of this probability is defined similarly as described above for the customer satisfaction 

level. This interaction among the producers could emerge as all the producers in the system start 

scheduling the delivery as they would realize the benefits of it like less waiting time at the food 



79 
 

hub altogether. In this model, we have assumed that this producer-producer interaction happens 

between a random producer and a producer who gets feedback from the food hub and schedules 

the delivery in the next cycle. 

 

Figure 30. Survey data showing how often producers share their business experience with food 

hub with the other food hub producers. 

The snapshot of NetLogo model (Figure 31) shows the different producer agents for one 

order cycle. The agents in “blue” color represent the producers who got feedback from the 

producers and decided to schedule the delivery in the next cycle. Agents in “green” color show 

the producers who decided to schedule the delivery in the next cycle due to information passed to 

them from the “blue” agents. 
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Figure 31. NetLogo model showing food hub – producer and producer-producer interactions. 
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CHAPTER 4 

SIMULATION RESULTS AND DISCUSSION 

 

There are typically a variety of stakeholders involved with the development and outputs 

of a model, including the model developers, decision makers who will use the information from 

results of the model to inform their decisions, and individuals affected by these decisions. 

Therefore, it is highly important that the model and its results are correct (Sargent, 2005). This 

section describes the process of verification and validation for the proposed hybrid simulation 

model.  

Verification of the hybrid simulation model 

Model verification is often defined as “ensuring that the computer program of the 

computerized model and its implementation are correct” (Sargent, 2005). The hybrid simulation 

model described in this thesis was verified by running the model under specific experimental 

conditions and confirming that the input and output variables were consistent with respect to the 

specified input conditions and assumptions. We have analyzed the outputs under three different 

conditions:  

1) Condition 1 – It was assumed in the model that all 72 producer agents will deliver in 

every order cycle and producer will deliver in only one of the 11 time slots assigned by 

the food hub.  

Output verification – The total number of producers delivering to the food hub and the 

total number of producers arriving in each of the 11 time slots in every order cycle was 

always 72.  
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2) Condition 2 - A producer’s autonomy will be 1 if the producer doesn’t schedule the 

delivery. However, if the producer schedules the delivery, the autonomy decreases 

linearly from 0.8 to 0 as his satisfaction level for a time slot decreases from 5 to 1.  

Output verification - When there is no capacity limit on the time slots in the model, the 

autonomy of all the producers was greater than or equal to 0.8 in every order cycle (i.e., 

each producer was able to schedule in his most-preferred time slot).  

3) Condition 3 - Time slot capacity was fixed to 6 on distribution day 1 and 18 on 

distribution day 2, and every producer was asked to schedule their deliveries as per their 

preference level for the time slots  

Output verification – In every order cycle, none of the slots has more producers arriving 

than the maximum slot capacity 

 

Model I – Status Quo 

One strength of empirical simulation models is their ability to be validated with 

independent external data. Model validation is usually defined as “substantiation that a 

computerized model within its domain of applicability possesses a satisfactory range of accuracy 

with the intended application of the model” (Schlesinger, et al., 1979). The initial version of the 

hybrid simulation model of the food hub (i.e., Model I) was validated using the historical data 

validation technique (Sargent, 2005). This includes comparing outputs of the developed 

simulation model with existing historical data of the same system, provided the historical data is 

completely independent of the simulation input variables and parameters. 

 The food hub considered in this study has not placed any capacity restrictions on any of 

the 11 time slots for scheduling the delivery (Huber, 2015). Model I represents the same 
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conditions as that of current food hub operations (i.e., the status quo). This version of the model 

was run under three different experimental conditions by varying the producers’ weights on 

autonomy (WA) and convenience (WC) in the producers’ utility function. As per the survey data, 

17 out of 19 producers who correctly answered the ranking question considered flexibility in 

schedule (autonomy) as more important than waiting time in queue (convenience) in their 

decisions to schedule the delivery. Therefore, in all three experiments, the weight on autonomy 

was kept higher than the weight on convenience in an effort to validate the model. For each 

experimental scenario, 10 replications of 120 time-steps each were run (where one time step is 

equivalent to one “two-week delivery cycle” of the food hub considered in this study). The initial 

20 time steps were considered as a warm-up period, to allow the system to stabilize. Therefore, 

the final 100 of 120 time-steps were considered for analyzing the simulation results. 

 Simulation results for the three scenarios with different combinations of weights on 

autonomy and convenience are summarized in Table 10. Figure 32 shows the total number of 

producers who have decided to schedule their deliveries in each time step over the course of the 

simulation run for all the three scenarios. The simulation results show that the average number of 

producers scheduling their deliveries increases as the weight on convenience increases. As the 

weight on autonomy (WA) was increased from 0.7 to 0.8, there was a large decrease in the 

average number of producers scheduling the delivery and reduced variability.  
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Table 10. Summary of number of producers scheduling the delivery for Model I. 

Serial 

# 

Different weight combinations of 

autonomy and convenience 

Average number of 

producers scheduling 

the delivery 

Standard 

deviation  

% of total 

producers 

1 

Scenario 1 - (WA) – 0.6, (WC) – 0.4 

 

15.65 0.78 21.74 

2 

Scenario 2 - (WA) – 0.7, (WC) – 0.3 

 

13.48 0.77 18.73 

3 
Scenario 3 - (WA) – 0.8, (WC) – 0.2 

3.58 0.59 4.97 

 

 

Figure 32. Number of producers scheduling the delivery in each time step for Scenario 1, 2 and 

3 of Model I. 

In order to verify that the change in weights significantly affects producers’ behaviors, a 

student t-test was performed. Table 11 provides the p-values and the associated conclusions.  
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Table 11. Statistical analysis of the outcomes of three tested scenarios in Model I. 

Serial # Comparison  t statistic p value  Conclusion 

1 Scenario 1 vs Scenario 2 

 

-10.84 < 0.00001 H0: μ1 = μ2 is rejected, scenario 1 and 

scenario 2 are significantly different from 

each other 

2 Scenario 1 vs Scenario 3 

 

-38.96 < 0.00001 H0: μ1 = μ2 is rejected, scenario 1 and 

scenario 3 are significantly different from 

each other 

3 Scenario 2 vs Scenario 3 

 

-31.56 < 0.00001 H0: μ1 = μ2 is rejected, scenario 2 and 

scenario 3 are significantly different from 

each other 

 

Statistical analysis shows that the three scenarios are significantly different from each 

other, as the p-values were all nearly zero. Current operations of the food hub considered in this 

study have approximately 25% producers scheduling their deliveries in each order cycle. As the 

only difference in the input parameters for all the three scenarios is the difference in combination 

of weights, and since Scenario 1 yields the simulated percentage of participants that is closest to 

the actual system (21.74%), it was concluded that (WA) – 0.6, (WC) – 0.4 represents the most 

accurate combination of weights in the producer decision-making process.  

Also, in the real food hub system, many producers tend to arrive in the later time slots to 

deliver their products (Huber, 2015). Figure 33 shows the simulated number of producers 

arriving in each of the 11 time slots for Scenario 1. The simulation results show a pattern that is 

similar to the real system, with many producers arriving at the end of the receiving time. Thus 

the hybrid simulation model has been validated for two different independent metrics, which 

were not used in the development of the model. 
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Figure 33. Number of producers arriving in each time slot for Scenario 1 of Model I. 

 Figures 34 through 37 summarize the results of running Model I for the critical measures 

of system performance: total number of scheduling producers, utilization rate of food hub 

personnel, and producer queue time at the food hub. Figure 34 shows number of producers 

arriving on delivery days 1 and 2. On average, 40.2 of 72 producers (55.83%) arrive on day 1 

and the remaining 31.8 (44.16%) arrive on day 2. On average, 6.8 of the producers arriving on 

day 1 (16.9%) are scheduling the delivery and 8.9 of the producers arriving on day 2 (28%) are 

scheduling the delivery. 
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Figure 34. Comparison of number of producers arriving and scheduling the delivery on day 1 

and day 2 for Scenario 1 of Model I. 

Combining multiple deliveries and other activities with the delivery to the food hub was 

identified as one of the potential reasons that producers fail to schedule their deliveries. Figure 

35 compares the average number of producers not scheduling their deliveries per order cycle due 

to combining multiple deliveries in the area and harvesting schedule. On average, 34.4 of the 72 

producers (47.7%) do not schedule their deliveries in an order cycle due to multiple deliveries 

and other activities in the area and 15.2 (21.1%) due to their harvesting schedule uncertainty. 

Figure 36 shows the average man hour utilization rate on day 1 and day 2, calculated 

using the following expression: 

𝑀𝑎𝑛 ℎ𝑜𝑢𝑟 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = ( 
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑛 ℎ𝑜𝑢𝑟𝑠 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑚𝑎𝑛 ℎ𝑜𝑢𝑟𝑠
 ) 

A total of 2 volunteers are available for 8 hours on receiving day 1 (i.e., 16 man hours) and 6 

volunteers are available for 3 hours on day 2 (i.e., 18 man hours). As Figure 34 shows, fewer 

producers arrive on day 2 (44.16%) and there are more man hours available, resulting in a lower 
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average utilization on day 2 (0.5) than on day 1 (0.7). However, this represents the utilization 

rates as averages over each day. As Figure 33 shows, very few producers arrive in the 1st, 3rd and 

5th slot on day 1; therefore, the utilization rate for these specific time slots will be significantly 

less than the average. Also, on delivery day 2, the utilization rate in slot 11 on day 2 will be 

higher than the average rate 0.5. 

 

Figure 35. Average number of producers not scheduling their deliveries due to multiple 

deliveries and harvesting schedule for Scenario 1 of Model 1. 

  

Figure 37 shows the average queue times of the producers on day 1 and day 2. The longer 

average queue time on day 1 is a result of variability in producer arrival times (especially a 

greater number of producers arriving in the 2nd and 6th slots of day 1), with only 2 volunteers 

available for the receiving process. This is because the food hub manager has not placed any 

capacity limits on the time slots. As such, many producers arrive at the same time slot (as per 

their preferences), whether they scheduled their deliveries or not.  
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Figure 36. Average man hour utilization rate on day 1 and day 2 for Scenario 1 of Model I. 

 

Figure 37. Average queue time on day 1 and day 2 for Scenario 1 of Model I. 
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Originally, it was expected that the average queue time would decrease as more 

producers decided to schedule their deliveries. In order to test this, the average queue time for the 

three different scenarios of Model I were compared. The results exhibit variability in the number 

of producers scheduling their deliveries as the weights on autonomy and convenience (WA and 

WC, respectively) were changed. Figures 38 and 39 show the average queue times on day 1 and 

day 2 versus the number of producers scheduling their deliveries on the respective days in the 

three scenarios. Interestingly, the average queue times on day 1 very slightly increased from 

Scenario 1 to Scenario 2 and from Scenario 2 to Scenario 3. The average queue time on day 2 

increases from Scenario 1 to Scenario 2 and decreases from Scenarios 2 and 3. The statistical 

analysis shows that the average queue time for day 1 and day 2 is similar for all the three 

scenarios with α = 0.05. This outcome makes intuitive sense - as there is no capacity limit on the 

time slots, the number of producers arriving in each time slot depends only on their preferences 

for the time slots, regardless of whether they are scheduling the delivery or not. This is because, 

if a producer decides not to schedule, he will arrive in one of his most preferred time slot and if a 

producer decides to schedule the delivery, as there is no capacity restrictions on the time slots, he 

get to schedule and arrive in his most preferred time slot. This leads to nearly the same number 

of producers arriving in each time slot for all the three scenarios irrespective of number of 

producers scheduling the deliveries and hence the average queue time within the scenarios 

doesn’t differ significantly. 
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Figure 38. Average queue time vs number of producers scheduling the delivery on day 1 for 

Scenarios 1, 2, and 3 of Model I. 

 

 

Figure 39. Average queue time vs number of producers scheduling the delivery on day 2 for 

Scenarios 1, 2, and 3 of Model I. 

 

 

 



94 
 

Food Hub Interventions 

This section describes the effects of various policies that the food hub can adopt to 

encourage producers to schedule their deliveries. The Scenario 1 weights (WA= 0.6, WC = 0.4) 

were used because they are assumed to represent the most accurate combination of weights in the 

producers’ decision-making process. 

Model II – Priority delivery option by the food hub 

When the food hub provided an incentive of priority delivery to the producers who 

scheduled their deliveries, an average of only 12.33 producers (17.13%) scheduled the delivery. 

This outcome shows that the priority delivery option can actually demotivate the producers who 

were already scheduling. Figure 40 shows the number of producers scheduling the delivery and 

the ones who are actually benefiting from the priority delivery incentive in each time step. As 

described in Chapter 3, a producer will be consider benefitted from the priority delivery option, 

if his waiting time in the queue at the food hub even after getting priority delivery, falls in the 

time range of his maximum satisfaction level. This satisfaction level for the wait time ranges 

have been identified from the producers’ survey data. In 20% of the order cycles even if a 

producer schedules the delivery, he is not able to benefit from the priority delivery incentive 

provided by the food hub (Figure 41). This is because even if the producer is allowed to jump to 

the front of the queue, he may still have to wait until at least one of the volunteers is available for 

the receiving process. If this wait time does not yield a satisfactory utility level, the producer will 

not schedule his delivery in the next cycle, as he did not experience any benefits from 

scheduling. Figure 42 shows the number of producers in each time step who scheduled the 

delivery specifically because of the benefit resulting from the priority delivery incentive in the 
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previous cycle. On average, only 2.2 producers (3.3%) were motivated by this incentive to 

schedule their delivery in the next cycle. 

 
 

Figure 40. Number of producers scheduling and benefiting from the priority delivery incentive in 

each time step of Model II. 

 

 

Figure 41. Average overall number of producers scheduling and benefiting from the priority 

delivery incentive in Model II. 
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Figure 42. Number of producers scheduling in each time step in Model II due to benefits of 

priority delivery in the previous cycle. 

Recommendation to the food hub - The priority delivery option will likely only benefit 

the food hub under certain conditions: 

1) The food hub should place a capacity limit on the number of producers who are allowed 

to schedule their deliveries in each time slot .Otherwise, having more producers schedule 

their deliveries will not necessarily lead to a more balanced workload at the food hub, 

because there are certain time slots which many producers tend to prefer (e.g., the last 

time slot in day 2).  This will cause dissatisfaction and possibly resentment among the 

producers who, even after scheduling the delivery, must wait in long queues to get their 

products checked in. 

2) To benefit the entire system, enough producers must schedule their deliveries to outweigh 

the costs of the “freeloaders” who do not schedule. If the food hub merely puts capacity 

limits on the time slots, there will be many producers who will arrive at the same time 

slots whether they schedule or not, and it will create disillusionment among the producers 
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who scheduled their deliveries but had to wait in the queue for a long time anyway. To 

demonstrate the effects of placing a capacity limit on the time slots when there is a 

priority queue incentive, the average number of producers who schedule was captured for 

a modified version of Model II.  Given that the average time for a food hub volunteer to 

check in a producer is 16.8 minutes, to have the shortest possible queue times, each 

volunteer should check in three producers per hour. Therefore, on day 1, a capacity limit 

of 6 was assigned to all 8 time slots, and on day 2, a capacity limit of 18 was assigned to 

all three time slots. Figure 43 shows that the average number of producers scheduling the 

delivery is almost the same as that of previous case when there were no limits on the time 

slots, with an average of 12.4 producers (17.2%) scheduling. A t-test comparing the two 

averages gives a p-value of 0.55, which clearly shows that the scenarios are not 

significantly different from one another, indicating that putting limits on the time slot 

capacities does not affect the producers’ decisions. 

 

Figure 43. Average number of producers scheduling and benefiting from the priority delivery 

incentive if the food hub puts capacity limit on the time slots in Model II. 
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Figure 44 shows a comparison of the number of producers arriving in each time slot 

when the food hub provides a priority delivery incentive to the producers (Model II - with and 

without capacity limits) with the status quo (Model I). There is no significant difference in the 

arrival patterns in the different time slots, as very few producers are scheduling the delivery, and 

every producer is getting his most preferred time slot irrespective of any capacity constraint put 

on the time slot if they are scheduling the delivery. 

 

Figure 44.  Number of producers arriving in each time slot when the food hub provides priority 

delivery benefit to the producers for scheduling (Model II) versus the status quo (Model I). 
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Model III – Monetary and priority delivery incentives 

When the food hub offers a monetary incentive along with the priority delivery incentive 

to those producers who schedule their deliveries, on average 42 producers (58.3%) schedule, at 

an average incentive level of 3.79% of total producer sales. This incentive level is calculated by 

taking the mean of the monetary incentives range as asked in the survey. For example, if the food 

hub decides to provide between 1 to 3 % of total sales of a producer as a monetary incentive to 

the producers for scheduling the delivery, it has been considered that the mean of this incentive 

range is provided by the food hub in all the iterations of the Model III. Also it has been 

considered that a maximum of 6% of total sales of a producer is provided by the food hub as a 

monetary incentive to the producers for scheduling the delivery. However, a food hub would 

need to carefully assess the tradeoff between the cost of providing the incentive and the 

operational benefits of having more producers schedule their deliveries. 

In this model it has been assumed that the food hub has imposed a capacity limit on the 

time slots. On day 1, a capacity limit of 6 was assigned to all 8 time slots, and on day 2, a 

capacity limit of 18 was assigned to all three time slots. Figure 45 shows the number of 

producers scheduling in each time step and the monetary incentive level provided by the food 

hub in corresponding time steps. The R-square value when linearly fitting the monetary incentive 

percentage values versus number of producers scheduling the delivery is 0.75, which indicates a 

linear relationship between the two. A t test was performed to test the null hypothesis (H0: β1 = 

0). The p-value of the t test was < 0.0001, confirming this linear relationship. Figure 46 shows 

the average queue times on day 1 and day 2. There is 21.12 % decrease in average queue time on 

day 1 from the current conditions at the food hub (i.e., Model I), and on day 2 the average queue 

time is almost the same. 
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Figure 45.  Number of producers scheduling the delivery and percentage monetary incentive of 

a producer total sales provided by the food hub in each time step of Model III.  

 

Figure 46. Average queue time on day 1 and day 2 if the food hub provides monetary incentive 

benefits to the scheduling producers in Model III. 
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Recommendation to the food hub – Even though the number of producers scheduling the 

delivery increases by 168.37% as compared to the current food hub operating conditions, the 

average queue time on day 1 decreases only by 21.12%. The potential reason for this is that 

many producers prefer particular time slots, while in some slots very few producers show up. 

Figure 47 compares the number of producers arriving in each time slot for Models I and III. 

Though more producers schedule their deliveries and the food hub has put capacity limits on the 

time slots, these limits are often exceeded because of the arrival of unscheduled producers. The 

2nd and 6th slots have the maximum number of producers arriving on day 1. The average queue 

time has not decreased significantly as the number of producers arriving in those two time slots 

has not decreased significantly. The average queue time on day 1 is high due to around 8.6 

producers arriving in the 2nd slot and 10.8 producers in the 6th slot for the status quo conditions. 

However, when more producers are scheduling due to monetary and priority queue incentives, 

the number of producers scheduling in this time slot doesn’t decrease significantly. This may 

also lead to fewer producers scheduling their deliveries due to long wait times, despite 

scheduling in advance. Therefore, in addition to providing monetary incentives, the food hub 

should also re-allocate its volunteer labor to have more volunteers working during the the most-

preferred time slots of the producers. 

As mentioned in the results of Model II, the priority delivery incentive will be useful for 

the food hub to implement if  capacity limits are placed on the time slots and if enough producers 

schedule their deliveries that the overall system benefits. This recommendation is explained with 

the outcomes of Model III. Figure 48 shows the comparison of number of producers who are 

unaffected by the monetary incentives but schedule their deliveries due to the benefits of priority 

delivery in the previous cycle in Model III and the number of producers who are scheduling their 
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delivery due to priority delivery benefits in previous cycle in Model II (without capacity limits 

on time slots). In Model III capacity limits were placed by the food hub on the time slots and also 

58.3% of the producers were scheduling the delivery on average in an order cycle. The average 

number of producers scheduling the delivery got increased as compared to Model II due to the 

monetary incentives provided by the food hub. This resulted the system with more uniform 

arrival time of producers in the 11 time slots, which leads to greater benefits to the producers 

who are scheduling the delivery due to priority delivery incentive. In Model III an average of 6.8 

producers (9.4%) scheduling their deliveries due to only priority delivery benefits, which three 

times larger than the number of producers who scheduled when there were no capacity limits and 

only around 12.3% of the producers scheduled their deliveries in Model II.  

 

Figure 47.  Number of producers arriving in each time slot when the food hub provides 

monetary incentives to the producers for scheduling (Model III) versus the status quo (Model I). 
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Figure 48. Comparison of number of producers who are not affected by monetary incentives 

provided by the food hub but schedule due to benefits of priority delivery in the previous cycle in 

Model III vs number of producers who schedule the delivery due to priority delivery option in 

Model II (without capacity limit on time slots). 

 

Model IV – Agent interactions 

Figure 49 shows the number of producers scheduling their deliveries in each time step for 

Model IV, when the food hub provides feedback to the producers with respect to scheduling their 

deliveries. On average, 40 producers (55.85%) schedule their deliveries in each cycle. In this 

model, the probability that an interaction between two producers will lead to scheduling is 

assumed to be 50%. 

Figure 50 shows the number of producers scheduling the delivery due to feedback from 

the food hub to the producers and due to successful interactions among the food hub producers in 

each time step for Model IV. Due to food hub–producer interactions, on average 19.8 producers 

(27.57%) schedule their deliveries in the next cycle (Figure 51). The average percentage of 
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successful interactions between the food hub and a producer is 61.92%, which is the ratio of the 

number of producers to which the food hub gives the feedback to the number of producers who 

become motivated to schedule the delivery in next cycle based on the feedback. Also, on 

average, 2.9 producers (4%) schedule their deliveries upon becoming motivated by other food 

hub producers. On average, 14.9 % of the time a producer is able to motivate another producer to 

schedule the delivery in the next cycle.  

 

Figure 49. Number of producers scheduling the delivery in each time step when the food hub 

provides feedback to the producers and producers interact with each other to share information 

in Model IV. 

Recommendation to the food hub – It is evident from Figures 47 and 52 that even if more 

producers schedule their deliveries (58.3% and 55.85%), 2nd and 6th time slots are having more 

number of producers coming, due to the individual preferences of the producers who schedule or 

doesn’t schedule the delivery. Also in 1st, 3rd and 5th time slot, very few producers show up. 

Therefore the food hub should consider re-allocation of their volunteer labor in order to reduce 

producer queue time and efficiently utilize their resources. 
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Figure 50. Number of successful food hub-producer and producer-producer interactions in 

Model IV. 

 

Figure 51. Number of successful interactions between the food hub and a producer and between 

two producers in Model IV. 
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Figure 52. Number of producers arriving in each time slot when food hub provide provides 

feedback to the producers for scheduling (Model IV) versus the status quo (Model I). 
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CHAPTER 5 

CONCLUSION 

General Conclusions 

Producer delivery scheduling has the potential to improve a regional food hub’s inbound 

operations by helping it to appropriately allocate its resources and provide better service to its 

customers through better product quality and fewer order errors. This will likely increase 

customer loyalty and business for the food hub, thereby improving the economic growth 

opportunities and quality of life for participating small and mid-sized producers. However, 

encouraging producers to schedule their deliveries can be very challenging for a food hub 

manager. Producers greatly value their autonomy, and they tend to resist having constraints 

placed on their ability to set their own schedules, although some producers may be willing to 

give up some autonomy in exchange for greater convenience or a financial incentive.  Producers’ 

delivery scheduling decisions may also be influenced by social interactions that they have with 

one another, in which they share information about their experiences with scheduling.  As a 

result, predicting the effects of specific management policies on producer scheduling behavior 

and subsequent system-wide outcomes is very difficult  

To address this problem, an empirical hybrid simulation model of the inbound logistics 

operations at a regional food hub in Iowa was developed. The model was used to study the 

impacts of producers’ delivery scheduling behavior on food hub warehouse operations and to 

analyze the feasibility and outcomes of implementing various corrective actions.  Discrete event 

simulation was used to represent the arrivals and queueing behavior of producers at the 

warehouse, and agent-based modeling was used to represent producer decision making and 
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interactions.  This hybrid model was informed by empirically-derived human and system data, 

which reflected the actual heterogeneous decision-making processes and behaviors of the food 

hub’s participants.   

Four versions of the model were described in this thesis. In Model I, the current operating 

conditions at the food hub were captured. This model was validated using the food hub’s 

historical data, which is independent of the input data that was used to construct the model. 

Models II, III, and IV were used to observe the effects of different food hub policies on 

producers’ scheduling behavior. Experimental results from Model II suggest that, if implemented 

inappropriately, incentives can be counterproductive. The results also indicate that increased 

producer scheduling by itself does not necessarily improve system outcomes.  Although advance 

scheduling provides useful information to the food hub manager, if he does not act on this 

information (e.g., by scheduling more receiving personnel to work during the producers’ most-

preferred time slots), neither the food hub nor the producers will benefit.   

This thesis demonstrates the need for a hybrid modeling methodology to realistically 

represent complex sociotechnical behaviors in regional food supply chains. Because agent 

interactions were not included in Models I and II, it may have been possible to develop these 

versions of the model using DES alone. However, using DES to model the interactions between 

the food hub and producers and among the producers in Models III and IV would have 

impractical. Also, modeling the process-oriented framework (e.g., the priority delivery queuing 

behavior in Model II) would have been extremely difficult to model and validate using ABM.  
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Limitations and Future Work 

The outcomes of this research can help food hub managers to frame policies that will 

improve the effectiveness and efficiency of their inbound operations. In future research, it would 

be interesting to observe how the agents belonging to different behavioral clusters respond to 

different food hub policy implementations. This will help the food hub manager determine how 

best to structure incentives to obtain optimal results. For example, producers in Cluster 1 are 

highly influenced by monetary incentives. However, the results show that even when monetary 

incentives are offered by the food hub, producers arrival times are concentrated in particular time 

slots due to the producers who refuse to schedule their deliveries. Therefore, the food hub might 

consider modifying the monetary incentive by informing the producers that they will receive the 

benefit only if they arrive in the less desirable time slots. It would be interesting to observe how 

the behavioral patterns of the producers who were scheduling regularly because of the monetary 

incentive might change with the implementation of a modified policy.  

Additionally, incorporating greater heterogeneity among agents in the system may enable 

a more realistic representation of the system. In the model presented in this thesis, the utility 

functions for each producer agent were assumed to be identical. In a future version of the model, 

heterogeneous utility functions based on individual preferences for autonomy and convenience 

will be included, based on survey data. Other producer-specific factors could also be 

incorporated. For example, product type may influence the decision to schedule – requirements 

for scheduling flexibility can greatly vary for shelf-stable, frozen, and refrigerated goods.  The 

distance that a producer must travel to deliver goods to the food hub warehouse may also impact 

scheduling decisions. 
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Another possible future development of the model presented in this thesis is the inclusion 

of multiple Iowa food hubs, enabling the collection of information from a wider variety of 

producers and food hub managers.  This would improve the generalizability of the model and 

would allow implications from experimental results to be extended to other food hubs, thereby 

increasing the model’s usefulness as a decision support tool for food hub managers. 

Model IV was developed to demonstrate the usefulness of ABM in modeling food hub 

operations.  Future work will include producers’ interactions based on their arrival patterns at the 

food hub. Such interactions could occur between the producers who are waiting in the queue at 

the food hub, leading to shared knowledge and experiences.  The impact of these social 

interactions on producers’ behaviors toward the food hub would be interesting to explore using 

ABM. 

The possibility of using simulation software that has both ABM and DES capabilities 

(i.e., AnyLogic), or using distributed simulation techniques to automate the integration of two 

different simulation platforms is currently being explored. This will potentially speed up the 

execution of the simulation runs, making experimentation more efficient.   

Regional food hubs provide a potential solution to the problem of unmet and growing 

demand for regionally and sustainably-produced food in the United States.  However, financial 

constraints and a strong social mission often prevent them from employing conventional supply 

chain practices in their operations. Helping food hub managers to address the complex challenge 

of balancing operational efficiency and social responsibility is critical to food hub success, which 

has implications for the long-term viability of regional food systems and their participants.   
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APPENDIX A  

PRODUCER SURVEY QUESTIONNAIRE 

 

The purpose of this survey is to gather information on the factors that influence your decision 

to schedule the delivery at the food hub.  

The data collected in this survey will be used to help the food hub managers to take strategic 

decisions in order to improve their warehouse operations efficiency. 

Your answers to the survey questions will be kept confidential.  

Please feel free to contact Dr. Caroline C. Krejci at Iowa State University, if you have any 

questions or concerns at ckrejci@iastate.edu.  

Thank you in advance for your contribution in conducting this research study!  

 

Questions for food hub producers. 

General information 

1) What is your producer ID? 

 

2) How satisfied are you with your business with the food hub? 

 

a. Extremely satisfied 

b. Very satisfied 

c. Moderately satisfied 

d. Not very satisfied 

e. Not at all satisfied 

3) How far do you live from the food hub? 

a. < 5 miles 

b. >=5 miles and < 15 miles 

c. >= 15 miles and < 30 miles 

d. >= 30 miles and <  45 miles 

e. >= 45 miles 
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Scheduling behavior 

4) How do you deliver your products to the food hub? 

a. Ship the products  

b. Deliver yourself 

c. Someone else deliver on your behalf 

d. Other________________________________________________________ 

5) Are you aware that the food hub gives an option to schedule your delivery online? 

a. Yes 

b. No 

6) How often do you schedule the delivery online before arriving to the food hub? 

a. Every cycle 

b. Every alternate cycle 

c. Once in 2 months 

d. Once in 3 months 

e. Once in 6 months 

f. Never 

7) On the scale of 1 to 5 (“1” as least preferred, “5” as most preferred), what is your preference for 

delivery in each of the following time slots? 

a. Day before delivery day (Wednesday) 

I. 9:00 – 10:00 a.m.    Least preferred ---1---2—3—4—5---Most preferred 

II. 10:00 – 11:00 a.m.   Least preferred ---1---2—3—4—5---Most preferred 

III. 11:00 – 12:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 

IV. 12:00 – 1:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred  

V. 1:00 – 2:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 

VI. 2:00 – 3:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 

VII. 3:00 – 4:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 

VIII. 4:00 – 5:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 
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b. On delivery day (Thursday) 

IX. 9:00 – 10:00 a.m.   Least preferred ---1---2—3—4—5---Most preferred 

X. 10:00 – 11:00 a.m.   Least preferred ---1---2—3—4—5---Most preferred 

XI. 11:00 – 12:00 p.m.   Least preferred ---1---2—3—4—5---Most preferred 

8) If your most preferred time slot(s) is/are not available, would you still schedule the delivery in a less 

preferred available slot? 

a. Yes 

b. No 

9) On the scale of 1 to 5 (“1” is least satisfied and “5” as most satisfied) what will be your satisfaction 

level for the following waiting times to have your products inspected and checked in by the IFC 

volunteers? 

a. < 5 minutes    Least satisfied---1---2—3—4—5---Most satisfied 

b. >=5 and < 10 minutes   Least satisfied---1---2—3—4—5---Most satisfied  

c. >=10 and <15 minutes   Least satisfied---1---2—3—4—5---Most satisfied 

d. >=15 minutes and <20 minutes Least satisfied---1---2—3—4—5---Most satisfied 

e. >= 20 minutes and  <25 minutes Least satisfied---1---2—3—4—5---Most satisfied 

f. >= 25 minutes and < 30 minutes Least satisfied---1---2—3—4—5---Most satisfied 

g. > 30 minutes    Least satisfied---1---2—3—4—5---Most satisfied 

10) Are you the producer of the items that you are delivering? 

a. Yes 

b. No 

11) Do you typically incorporate your delivery with other activities in the area? 

a. Yes 

b. No 
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11.a. If YES, what activities? 

a. For full time employment 

b. For other deliveries 

c. For personal activities 

d. Other: _________________________________________________ 

11.b. If YES, how likely is it that this affects your decision to schedule the delivery?  

Not likely---1---2—3—4—5---Highly likely 

12) How good is the internet connectivity at your residence/ workplace? 

Low---1---2—3—4—5---High 

13) How often do you combine/ coordinate the deliveries to the food hub with other producers? 

a. Every cycle 

b. Every alternate cycle 

c. Once in 2 months 

d. Once in 3 months 

e. Once in 6 months 

f. Never 

13.a. If the food hub offers you monetary incentives to coordinate/share the delivery, how likely 

would you be to coordinate your delivery with other producers? 

Not likely---1---2—3—4—5---Highly likely 

14) How will your decision to schedule the delivery change for each of the following monetary incentive 

levels provided by the food hub? 

a. <1% of your total sales (in one cycle)     No effect---1---2—3—4—5---Always schedule 

b. >=1 and < 3% of your total sales  No effect---1---2—3—4—5---Always schedule 

c. >=3 and <5% of your total sales  No effect---1---2—3—4—5---Always schedule 

d. >=5 % of your total sales   No effect---1---2—3—4—5---Always schedule 
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15) If the food hub offers you priority delivery (i.e. go to the front of the line for receiving) as an 

incentive to schedule, how likely would you be to schedule your delivery? 

Not likely---1---2—3—4—5---Highly likely 

16) Do you interact with other food hub producers? 

a. Yes 

b. No 

16. a. If YES, how many producers on average do you interact within an order cycle? 

c. 1 

d. 2 

e. 3 

f. 4 

g. 5 or more 

16.b. If you interact with other producers, how often do you share the experiences you have with 

the food hub? 

Never---1---2—3—4—5---Always 

17) Do you harvest, pack and label the products on the day of delivery? 

a. Yes 

b. No 

17.a. If YES, how likely is it that this affects your decision to schedule the delivery? 

Not likely---1---2—3—4—5---Highly likely 

18) With “1” as most influential and “8” as least influential, rank the following factors according to how 

strongly they affect your decision to schedule the delivery: 

a. Convenience of internet access      ___ 

b. Flexibility in delivery       ___    

c. Wait time for product inspection/check in by volunteers   ___ 

d. Combine/coordinating delivery with other producers   ___ 
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e. Combining your delivery with other activities near the food hub  ___ 

f. Monetary incentives from the food hub     ___ 

g. Priority delivery incentive from the food hub    ___ 

h. Harvesting and packing schedule     ___ 

19) Are there any other factors that influence your decision to schedule your delivery at the food hub? 

Factor 1:  __________________________________________________________________ 

Factor 2:  __________________________________________________________________ 

Factor 3: ___________________________________________________________________ 

Factor 4: ___________________________________________________________________ 

19.a. If there are any other factors, where within the 8 factors mentioned above (question #20) 

would you rank these factors?  

Factor 1 between _____and _____ (mention the ranks associated with the factors) 

Factor 2 between _____and _____ 

Factor 3 between _____and _____ 

Factor 4 between _____and _____ 
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APPENDIX B  

AGGLOMERATIVE SCHEDULE 

 

 




