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ABSTRACT 

 

In this dissertation, mathematical programming models and statistical analysis tools 

have been formulated and designed to study the strategic and optimal solutions to allocate 

the resources and manage the risk for the renewable energy and precision agriculture. The 

dissertation, which consists of four papers, lies at the interface of optimization, simulation, 

and statistical analysis, with a focus on decision making under uncertainty for biofuel 

process design, renewable energy supply chain management and precision agriculture. 

Bio-oil gasification which integrates fast pyrolysis and gasification processes is a 

relative new conversion technology and this integrated biofuel production pathway has 

been promoted to take advantage of economies of scale and logistic efficiency. The design 

of the supply chain networks, especially under uncertainties, is one of the most important 

decisions faced by the biofuel industry. In the first paper, we proposed a two-stage 

stochastic programming framework for the biofuel supply chain optimization problem 

considering uncertainties, including biomass supply availability, technology advancement, 

and biofuel market price. The results show that the stochastic factors have significant 

impacts on the decision on fast pyrolysis plant locations, especially when there is 

insufficient biomass. Also, farmers' participation can have a significant impact on the 

profitability and robustness of this supply chain design.  

Another major challenge faced by the cellulosic biofuel industry is that investors 

are hesitant to take the risk to construct commercial scale production facilities. Techno- 
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economic analysis (TEA) has been widely adopted to overcome this challenge. The optimal 

facility locations and capacities as well as the logistic flow decisions for biomass supply 

and biofuel distribution should be incorporated into techno-economic analysis as well. In 

the second paper, the author aims to provide a new method that integrated the supply chain 

design into the techno-economic analysis as well by evaluating the economic feasibility of 

an integrated pathway on biomass pyrolysis and bio-oil gasification. The results indicate 

that hybrid fast pyrolysis and bio-oil gasification pathway is more suitable for a 

decentralized supply chain structure while biomass gasification pathway is more suitable 

for a single centralized facility supply chain structure. 

Feeding millions of people throughout the world who face hunger every day is a 

formidable challenge. Precision agriculture has attracted increasing attention in the 

community of farmland management. Farmland management involves a sequence of 

planning and decision-making processes, including seed selection and irrigation schedule. 

In the third paper, a mixed integer programming optimization model is proposed to provide 

decision support on seed selection and irrigation water allocation for customized precision 

farmland management. The results show that significant increase of farmers’ annual profit 

can be achieved by carefully choosing irrigation schedule and type of seed. The proposed 

model can also serve as a risk analysis tool for farmers facing seasonal irrigation water 

limits as well as a quantitative tool to explore the impact of precision agriculture. 

The effect of limited water on corn grain yield is significant and management 

decisions are essential to optimize farmers’ profits, particularly under stochastic 
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environment. The fourth paper takes uncertainties such as crop price, irrigation water 

availability and precipitation amount into consideration. A multi-stage stochastic 

programming is formulated to evaluate the effects of structure of decision making process 

on farmers’ income. The case study results indicate multi-stage stochastic programming is 

a promising way for farmland management under uncertainties and can increase farmers’ 

income significantly. 

In order to enhance the data utilization and results interpretation, statistical methods 

such as Monte-Carlo simulation considering parameter interactions, linear regression 

analysis, and moment matching method for scenario generation are also applied. The 

overarching goals of this dissertation is to quantify and manage the uncertainties along the 

modeling process and provide proper mechanisms that lead to optimal decisions. The 

outcomes of the research have the potential to accelerate the commercialization of second 

generation of biofuel and lead to sustainable utilization of water resources. The insights 

derived from the research contributed to the decision making process under uncertainties. 
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CHAPTER 1 GENERAL INTRODUCTION 

 

1.1 Background 

As a potential substitute for petroleum-based fuel, biofuels are playing an 

increasingly important role due to their economic, environmental, and social benefits. 

Biofuels include first generation biofuels made from sugar, starch, vegetable oil, etc., 

second generation biofuels made from non-food crops such as corn stover, switchgrass, 

forest, etc., and third generation biofuels mainly from algae. However, the 2007-2008 

global food crisis was claimed to be related to biofuels production, and this food vs. fuel 

debate sets barriers for first generation biofuels from consumable grain and lipids [1]. 

Alternatively, the feedstocks for second generation biofuels are less land and water 

intensive, which will not result in significant negative impact on the food market [2]. On 

the other hand, farmland management under climate change and population growth is a 

pressing challenge that has become increasingly important due to food security 

considerations. Precision agriculture has attracted increasing attention in the community of 

farmland management. Over the years, the precision agriculture philosophy has enriched 

from simply "farming by soil" to a comprehensive system including irrigation planning, 

phenotypic selection, farm equipment guidance systems, product quality and 

environmental management etc. [3-5]. As the demand for agricultural products increases, 

water and arable land has become significant factors when considering agricultural 
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production decisions. In summary, renewable energy and precision agriculture are 

emerging fields with increasing importance due to food, energy and water consideration.  

US Environmental Protection Agency (EPA) revised the Renewable Fuel Standard 

in 2007, which aims to accelerate the domestic biofuel production and consumption. The 

RFS2 mandates that by the year 2022, at least 36 billion gallons per year of renewable fuels 

will be produced and blended into the transportation fuel, of which at least 16 billion 

gallons per year should be produced from cellulosic biomass feedstock [6]. However, the 

targeted cellulosic biofuel volume requirement for 2013 was revised down to be only 14 

million gallons, which is significantly lower than the original target. This is mainly due to 

the high capital investment and logistic challenges in cellulosic biofuel. The supply chain 

activities of harvest, collection, storage, preprocessing, handling, and transportation 

represent one of the biggest challenges to the cellulosic biofuels industry, especially under 

siginificant uncertainties. Thus, it is timely and meaningful to study the economic 

feasibility of the commercialization of cellulosic biofuel considering the supply chain 

design under uncertainties.  

Feeding millions of people throughout the world who face hunger every day is a 

formidable challenge. Precision agriculture has attracted increasing attention in the 

community of farmland management. Each year, farmers have to make decisions about 

what crops to plant. Farmers need to select the types of seeds and plan for irrigation 

carefully to achieve maximum profits. Thus, crop planning and irrigation water 

management on a farm scale are imperative for improved agricultural productivity and 
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sustainable development [7]. The lack of decision making tools under uncertainties for 

renewable energy supply chain design and precision agriculture management serves the 

major motivation for this dissertation study.  

One major challenge faced by the cellulosic biofuel industry is that investors are 

hesitatant to take the risk to construct commercial scale production facilities, and lack of 

facility cost information for the real production systems prohibit the improvement of 

production system to reduce costs and uncertainty [8]. Techno- economic analysis (TEA) 

has been widely adopted to overcome this challengue. There is an increasing literature on 

TEA for biofuels production pathways with a range of feedstock and final products [9-11]. 

However, the process design and techno-economic analysis of the integrated pathway have 

not been studied extensively.  

There has been a growing body of literature on crop rotations at a regional scale 

[12, 13], land use patterns, and policy and environment issues on a farm scale [14]. 

Mathematical programming has been widely used in farmland management and supply 

chain network design. Shah [15] reviewed the previous studies in modeling, planning, and 

scheduling with some real world examples to summarize the challenges and advantages of 

supply chain optimization. Eksioglu et al [16] formulated a model to determine the 

numbers, locations, and capacities of the biorefineries, and conducted a case study for 

Mississippi in the U.S. to illustrate and verify the optimization model. Sethi et al [7] 

modeled a linear programming problem to find maximum annual net return under different 

soil types, cropping patterns, and types of agriculture. One of the biggest challenges of 
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food and energy industry is the decision making under uncertainties. Most of the literature 

assumes all the parameters in the system are deterministic. However, these industries are 

highly affected by the uncertainties such as market price, biomass yield, farmers' 

participation, and technology advancement. As a result, it is of vital importance to consider 

the uncertainties in the decision making process.  

1.2 Introduction of Individual Components 

The individual components of this dissertation are introduced in more detail in this 

section. In the first paper, an advanced biofuels supply chain is proposed to reduce biomass 

transportation costs and take advantage of the economics of scale for a gasification facility. 

In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast 

pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation 

fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to 

maximize biofuel producers' annual profit considering uncertainties in the supply chain for 

this pathway. The first stage makes the capital investment decisions including the locations 

and capacities of the decentralized fast pyrolysis plants as well as the centralized 

biorefinery, while the second stage determines the biomass and biofuels flows.  

A case study of Iowa is presented to illustrate and validate this supply chain design 

and optimization model. The results show that uncertain factors such as biomass 

availability, technology advancement, and biofuel price can be pivotal in this supply chain 

design and optimization. The locations of fast pyrolysis plants and logistic decisions are 

sensitive to uncertainties while the capacity levels are insensitive. The stochastic model 



5 
 

outperforms the deterministic model in the stochastic environment, especially when there 

is insufficient biomass. In addition, farmers' participation has a significant impact on the 

decision making process. It is appropriate and necessary to apply a stochastic programming 

framework to deal with the uncertainties, especially at a low farmers' participation level. 

As farmers' participation increases, the supply chain design and optimization model will 

become more profitable and more robust against the uncertainties along the supply chain.  

In the second paper, a techno-economic analysis method considering logistic 

configurations is proposed. The economic feasibility of a low temperature biomass 

gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification 

are evaluated and compared with the proposed method in Iowa. The results show that both 

pathways are profitable, biomass gasification pathway could achieve an Internal Rate of 

Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification 

pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. 

The supply chain analysis results show BMG pathway is more economically feasible than 

BOG pathway in Iowa when realistic supply chain configurations and constraints are 

considered. Different production pathways could have its preferred supply chain structure. 

BOG pathway is more suitable for a decentralized supply chain structure while BMG 

pathway is more suitable for a single facility supply chain structure. The supply chain 
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configuration demonstrates the trade-off between feedstock shipping cost and the capital 

investment of multiple facilities in different scenarios. 

The sensitivity analysis shows that the MSP is most sensitive to internal rate of 

return, fuel yield, biomass feedstock cost, and fixed capital investment. A Monte-Carlo 

simula- tion considering interactions among parameters is also proposed and conducted. 

Both cases in the Monte-Carlo simulation results for single 2000 MT/D facility show that 

the range of MFSP is about 4–7 $/ GGE for BMG pathway. These results indicate that even 

through BMG pathway has better economic performance than BOG path- way, both 

pathways are at high risk at this point. In addition, assumptions for distribution as well as 

its variance covariance structure can take significant impact on the uncertainty analysis. 

In the third paper, a farm-level precision farmland management model based on 

mixed integer linear programming is proposed. Farmland management involves several 

planning and decision making tasks including seed selection and irrigation management. 

Optimal decisions are designed for pre-season planning of crops and irrigation water 

allocation. The model captures the effect of size and shape of decision scale as well as 

special irrigation patterns. The authors illustrate the model by a case study based on a farm 

in California, the U.S. and show the model is economically optimal and flexible. The 

results show that threefold increase of annual net profit for farmers could be achieved by 

carefully choosing irrigation and seed selection. Although farmers could increase profits 

by applying precision management to seed or irrigation alone, profit increase is more 

significant if farmers apply precision management on seed and irrigation simultaneously. 
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The proposed model can also serve as a risk analysis tool for farmers facing seasonal 

irrigation water limits as well as a quantitative tool to explore the impact of precision 

agriculture.  

The fourth paper is an extention of the third paper by considering uncertainties such 

as crop price, irrigation water availability, and precipitation amount. A multi-stage 

stochastic programming is formulated to maximize farmer's annual profit. The first stage 

decisions including the seed type selection and plant population selection, while the later 

stage determine the irrigation schedule. The case study based on a farm in Nebraska show  

that taking corn price, precipitation amount, and irrigation water availability uncertainties 

into consideration can increase farmer’s profit. In the stochastic programming results, more 

conservative first stage decisions are made such as select high drought resistance seed. 

These decisions preform more robust in the stochastic environment. These results indicate 

multi-stage stochastic programming is a promising way for farmland management under 

uncertainties and can increase farmers’ income significantly. 

1.3 Dissertation Structure 

The remainder of the dissertation is organized as follows. The first paper on supply 

chain design under uncertainty for advanced biofuel production based on bio-oil 

gasification is present in Chapter 2 and has been published in Energy [17]. In Chapter 3, 

we present the second paper on techno-economic analysis of biofuel production 

considering logistic configurations and has been published in Bioresource Technology 

[18]. In Chapter 4, we present the third paper on a Farm-level Precision Land Management 
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Framework Based on Integer Programming. This paper has been published in PLOS ONE. 

In Chapter 5, we propose a multi-stage stochastic programming for farmland management 

under uncertainties. This chapter of dissertation is preparing to submit to European Journal 

of Operational Research. Finally, Chapter 6 concludes the dissertation and proposed 

possible future research directions.  
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CHAPTER 2 SUPPLY CHAIN DESIGN UNDER UNVERTAINTY FOR 

ADVANCED BIOFUEL PRODUCTION BASED ON BIO-OIL 

GASIFICATION1 

 

Abstract 

An advanced biofuels supply chain is proposed to reduce biomass transportation 

costs and take advantage of the economics of scale for a gasification facility. In this supply 

chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, 

and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized 

biorefinery. A two-stage stochastic programming is formulated to maximize biofuel 

producers' annual profit considering uncertainties in the supply chain for this pathway. The 

first stage makes the capital investment decisions including the locations and capacities of 

the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the 

second stage determines the biomass and biofuels flows. A case study based on Iowa in the 

U.S. illustrates that it is economically feasible to meet desired demand using corn stover 

as the biomass feedstock. The results show that the locations of fast pyrolysis plants are 

sensitive to uncertainties while the capacity levels are insensitive. The stochastic model 

outperforms the deterministic model in the stochastic environment, especially when there 

                                                
1 This chapter of dissertation has been published in Energy 
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is insufficient biomass. Also, farmers' participation can have a significant impact on the 

profitability and robustness of this supply chain. 

2.1 Introduction 

As a potential substitute for petroleum-based fuel, biofuels are playing an 

increasingly important role due to their economic, environmental, and social benefits. 

However, the 2007-2008 global food crisis was claimed to be related to biofuels production 

[1], and this food vs. fuel debate set barriers for first generation biofuels from consumable 

grain and lipids. Alternatively, second generation biofuels are produced from nonedible 

plant residues or dedicated energy crop, such as corn cobs, corn stover, switchgrass, 

miscanthus, and woody biomass. As a result, the feedstocks for second generation biofuels 

are less land and water intensive, which will not result in significant negative impact on 

the food market [2]. According to the revised Renewable Fuel Standard (RFS2) established 

in 2007, at least 36 billion gallons per year of renewable fuels will be produced by 2022 in 

the U.S., of which at least 16 billion gallons per year will be from cellulosic biofuels [19]. 

However, the targeted cellulosic biofuel volume requirement for 2013 was revised to be 

only 14 million gallons, which is significantly lower than the original target. This is mainly 

due to the high capital investment and logistic challenges in cellulosic biofuel. The supply 

chain activities of harvest, collection, storage, preprocessing, handling, and transportation 

dealing with uncertainties represent one of the biggest challenges to the cellulosic biofuels 

industry. Thus, it is timely and meaningful to study the economic feasibility of the 
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commercialization of cellulosic biofuel considering the supply chain design under 

uncertainties. 

Biomass can be converted to transportation fuels through a variety of production 

pathways, including biochemical and thermochemical platforms. One example of 

biochemical pathways is corn ethanol production from fermentation. Another example is 

the thermochemical conversion of biomass to produce transportation fuels, which has 

recently moved to the forefront of biofuel research and development. Fast pyrolysis and 

gasification are two of the most prominent technologies for thermochemical conversion of 

cellulosic biomass. 

Fast pyrolysis thermally decomposes organic compounds in the absence of oxygen, 

and the products include bio-oil, bio-char, and non-condensable gases [20]. Fast pyrolysis 

reactors typically run at temperatures between 400 ºC and 600 ºC and can produce 

approximately 70% (by weight) bio-oil [21]. The other 30% is split between non-

condensable gases (e.g., carbon dioxide or methane) and bio-char. The non-condensable 

gases and bio-char could be combusted to provide heat for the facility. In addition, bio-

char is mostly organic carbon which can be sequestered or gasified to produce syngas [22]. 

Bio-oil has three to five times the energy density of raw biomass [23]. However, due to the 

high viscosity and acidity, bio-oil needs to be upgraded to be used as transportation fuels. 

The bio-oil upgrading has proven to be a challenging process due to low conversion 

efficiency and fuel quality. Unlike fast pyrolysis, biomass gasification runs at a much 

higher temperature (800 ºC - 1300 ºC) and is a relatively mature technology. The syngas 
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produced from the biomass gasification process will typically go through the Fischer-

Tropsch synthesis to produce liquid transportation fuels [1]. However, commercialization 

of biomass gasification has been hampered by its high capital and operating costs due to 

the challenges of transporting bulky solid biomass over a long distance, processing solid 

feedstock at high pressure, and removing contaminants from the product gas stream. The 

techno-economic analysis of biomass gasification by Swanson et al. claims that the 

minimum fuel selling price is $4-5 per gallon of gasoline equivalent and the capital 

investment requirement is $500-650 million for a 2000 metric tons per day facility [9]. 

It is thus necessary to reduce system cost and improve supply chain efficiency to 

improve the economic feasibility and competitiveness of the advanced biofuel production 

pathways. To reduce feedstock transportation cost, it has been suggested that biomass can 

be converted to bio-oil via fast pyrolysis near harvest sites, and then the bio-oil can be 

transported to an upgrading plant for transportation fuels production [24]. In this paper, the 

proposed hybrid production pathway is to combine the two prominent thermochemical 

production pathways. Biomass fast pyrolysis produces bio-oil in relatively small 

processing plants at distributed locations so that the transportation of bulky biomass over 

a long distance can be avoided. After mild hydrotreating, the bio-oil is then transported to 

a centralized gasification facility to produce transportation fuels. This pathway could also 

simplify syngas cleanup as ashes in biomass played a significant role in the gasification 

process [25]. It should be recognized that a centralized plant has advantages such as 
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economies of scale, an inventory buffer storage reduction, and administration overhead 

cost savings [26]. 

One of the biggest challenges of the advanced biofuel production industry is the 

design of supply chain networks under uncertainties. There is rich literature on supply 

chain network design. Shah reviewed the previous studies in modeling, planning, and 

scheduling with some real world examples to summarize the challenges and advantages of 

supply chain optimization [15]. An et al. compared the supply chain research of petroleum-

based fuel and biofuel [27]. Eksioglu et al. formulated a model to determine the numbers, 

locations, and capacities of the biorefineries, and conducted a case study for Mississippi in 

the U.S. to illustrate and verify the optimization model [16]. Nixon et al. used a goal 

programming model to deploy a pyrolysis plants supply chain in Punjab, India [28]. Most 

of the literature on biofuel supply chain design assumes all the parameters in the system 

are deterministic. However, the biofuel industry is highly affected by the uncertainties 

along the supply chain such as biomass supply availability, technology advancement, and 

biofuel price. For example, the biomass feedstock supply is highly dependent on biomass 

yield and farmers' participation. As a result, it is of vital importance to design the biofuel 

supply chain considering the uncertainties along the supply chain. Kim et al. considered a 

two-stage stochastic model using bounds of the parameters to determine the capacities and 

locations of the biorefineries [29]. Alex et al. formulated a mixed integer linear 

programming model to determine optimal locations and capacities of biorefineries [30]. 

Osmani et al. used stochastic optimization to deal with the uncertainties in biomass yield 
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and price as well as biofuel demand and price [31]. Since thermochemical pathways to 

produce cellulosic biofuel is a relatively recent technology advancement, decentralized 

supply chain design have not been studied extensively, especially scenario under 

uncertainties. This paper aims to provide a mathematical programming framework with a 

two-stage stochastic programming approach to design the supply chain network 

considering uncertainties along the supply chain. The production pathway under 

consideration is bio-oil gasification, with bio-oil production from biomass fast pyrolysis at 

decentralized facilities and syngas production and fuel synthesis in a centralized 

gasification facility. This model provides methodological insights for decision makers on 

the capital investment decisions and logistic decisions for the biofuel supply chain. 

The remainder of the paper is organized as follows: in Section 2.2, the problem 

statement for the biofuel supply chain design is presented. Then, we discuss the 

deterministic mixed integer linear programming model and the two-stage stochastic 

programming models in Section 2.3. A case study of Iowa is conducted to illustrate and 
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validate the optimization model in Section 2.4. Finally, we conclude the paper in Section 

2.5 with summary and potential research directions. 

2.2 Problem Statement 

As mentioned, one of the most important decisions faced by the biofuel industry is 

the design of the supply chain networks, especially under system uncertainties. This 

provides the major motivation for this study. 

The supply chain system schematics for the bio-oil gasification pathway are shown 

in Figure 2.1. Biomass is collected and consolidated at the county level. Biomass is 

collected and consolidated at the county level. Biomass is then transported to the 

decentralized fast pyrolysis facilities to be converted to bio-oil. Mild-hydrotreated bio-oil 

is transported to a centralized gasification facility to produce transportation fuels. It is 

assumed that each biomass feedstock supply location/county can serve multiple fast 

pyrolysis facilities, and that each fast pyrolysis facility can acquire feedstock from multiple 
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biomass supply locations. The locations for the decentralized fast pyrolysis facilities and 

centralized gasification facility are assumed to be the centroids of counties. 

 

Figure 2.1 System schematics of supply chain 

The supply chain network design of biofuel production is highly affected by 

uncertainties along the supply chain such as biomass supply availability, technology 

advancement, and biofuel price. The biomass supply availability is highly dependent on 

crop yields and farmers' participation, the conversion rates are affected by technology 

advancement and operating conditions, and the biofuel price would change based on 

market conditions and enacted policies. Thus, it is of vital importance to make the supply 

network design decisions with system uncertainties taken into consideration. Stochastic 
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programming is one of the most widely used modeling frameworks to study decision 

making under uncertainties. 

The goal of this paper is to provide a two-stage stochastic programming framework 

for the biofuel supply chain optimization problem considering uncertainties. The 

comparison and analysis of the results provide methodological suggestions on capital 

investment and logistic decisions. The insights derived from this study can contribute to 

the body of knowledge in decision making under uncertainties. 

2.3 Model Formulation 

In this section, we introduce the deterministic and stochastic models for this biofuel 

supply chain design problem. The objective is to maximize the annual profit in a biofuel 

network based on the hybrid production pathway of bio-oil gasification. The deterministic 

mixed integer linear programming model is firstly introduced as a baseline model and then 

the two-stage stochastic model is presented to address the uncertainties in the supply chain 

design problem. The stochastic programming framework bears the concept of recourse, 

which means some decisions (recourse actions) are taken after uncertainties have been 

realized. In other words, first-stage decisions are made by taking some factors’ future 
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effects into account. In the second stage, the actual value of the variables becomes known 

and some corrective actions can be taken [32]. 

2.3.1 Mathematical notations 

The mathematical notations are summarized in Table 2.1.  

Table 2.1 Notations for deterministic model 

Subscripts 
𝒊 1,2, … , 𝐼 Biomass supply locations 
𝒋 1,2, … , 𝐽 Candidate fast pyrolysis facility locations 
𝒌 1,2, … , 𝐾 Biofuel demand locations 
𝒍 1,2, … , 𝐿 Allowed fast pyrolysis capacity levels 
𝒎 1,2, … ,𝑀 Candidate refining facility locations 

Decision Variables 
𝒙𝒊𝒋 Amount of biomass transported from supply location 𝑖 to candidate fast 

pyrolysis facility location 𝑗 
𝒚𝒋𝒎 Amount of bio-oil transported from candidate fast pyrolysis facility location 𝑗 to 

candidate refining facility location 𝑚 
𝒛𝒎𝒌 Amount of biofuels transported from refining facility location 𝑚 to demand 

location 𝑘 
𝒂𝒋𝒍 Whether a fast pyrolysis facility of capacity level 𝑙 is planned at candidate 

facility location 𝑗 (binary variable) 
𝒈𝒎 Whether a refining facility is planned at candidate refining facility location 𝑚 

(binary variable) 
Parameters 
B Total budget 
𝑪𝑼𝑷 Capital cost of the centralized refining facility 
𝑪𝒍
𝑪𝒂𝒑 Capital cost of the decentralized fast pyrolysis facility at level 𝑙 
𝑷𝒌 Biofuels price at demand location 𝑘 
𝑫𝒌 Biofuels demand at demand location 𝑘 
𝑷𝒆𝒌 Penalty for not meeting the demand at demand location 𝑘 
𝑷𝒆𝒌? Penalty for exceeding the demand at demand location 𝑘 
𝑪𝒊𝑪𝒐𝒍 Unit biomass collecting cost at supply location 𝑖 
𝑪𝑴𝑶 Unit conversion cost from dry biomass to bio-oil 
𝑪𝑶𝑭 Unit conversion cost from bio-oil to biofuels 
𝑪𝒊𝒋𝑩𝑴 Unit biomass shipping cost from supply location 𝑖 to candidate fast pyrolysis 

facility location 𝑗 
𝑪𝒋𝒎𝑩𝑶 Unit bio-oil shipping cost from candidate fast pyrolysis facility location 𝑗	to 

candidate refining facility location 𝑚 
𝑪𝒎𝒌𝑩𝑭  Unit biofuel shipping cost from candidate refining facility location	𝑚 to demand 

location 𝑘 
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 Table 2.1 continued 

𝑼𝒍 Capacity of fast pyrolysis facility at level 𝑙 
𝑽 Capacity of refining facility  
𝑺𝒊 Available biomass feedstock at location 𝑖 
𝜶 Sustainability factor 
𝜷 Conversion factor from wet biomass to dry biomass 
𝜸 The loss factor of biomass during collection and transportation 
𝜽𝟏 Conversion ratio, metric ton of bio-oil per metric ton of dry biomass 
𝜽𝟐 Conversion ratio, metric ton of biofuels per metric ton of bio-oil 
𝜹 Availability factor 

2.3.2 Deterministic model 

In the deterministic mixed integer linear programming model, all the system 

parameters are assumed to be known with certainty.  

The objective function is to maximize the annual profit, which can be defined as 

the revenue from selling the biofuels subtracted by the total system costs along the supply 

chain including the potential penalties. Penalties are imposed on the unmet demand which 

is based on the assumption that the producers have to purchase fuels form other sources to 

satisfy unmet demand.  Penalties are also imposed for the surplus production due to 

additional inventory holding and storage costs. A variety of system costs have been 

considered in the model including facility capital investment cost, biomass collection cost, 

biofuel conversion cost, and logistics cost. 

Firstly, the total capital cost for the decentralized fast pyrolysis facility at level 𝑙 

is	 𝐶P
QRS𝑎UPV

PWX
Y
UWX . With the assumption that the facilities have an 𝑛-year operation life 

and an interest rate of	𝑖, the annual amortized capital cost is [ [\X
]

[\X ]^X
( 𝐶P

QRS𝑎UPV
PWX

Y
UWX +

𝐶ab) . Secondly, the cost of collection biomass from different feedstock location is 

𝐶[QdP𝑥[U
Y
UWX

f
[WX . Thirdly, 𝐶gh 1 − 𝛾 𝛽 𝑥[Uf

[WX  is the fast pyrolysis conversion cost 
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from biomass to bio-oil and 𝐶hl 𝑦Ung
nWX

Y
UWX  is the conversion cost from bio-oil to 

biofuel at the gasification and upgrading biorefinery. Lastly, the logistics costs include the 

biomass shipping cost from biomass feedstock locations to fast pyrolysis facility locations, 

the bio-oil shipping cost from fast pyrolysis facility locations to gasification and upgrading 

biorefinery location, and the biofuel shipping cost from gasification and upgrading 

biorefinery location to demand locations.  

In sum, the objective function can be formulated as follows: 

𝑚𝑎𝑥 𝜁 = 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 − 𝑐𝑜𝑠𝑡

= (𝑃x 𝑧nx

g

nWX

)
z

xWX

− { 𝐷x − 𝑧nx

g

nWX \

∗ 𝑃𝑒x + 𝑧nx

g

nWX

− 𝐷x
\

∗ 𝑃𝑒x? } − {
𝑖 𝑖 + 1 �

𝑖 + 1 � − 1 ( 𝐶P
QRS𝑎UP

V

PWX

Y

UWX

+ 𝐶ab) + 𝐶[QdP𝑥[U

Y

UWX

f

[WX

+ 𝐶gh 1 − 𝛾 𝛽 𝑥[U

f

[WX

+ 𝐶hl 𝑦Un

g

nWX

Y

UWX

+ 𝐶[U�g𝑥[U

Y

UWX

f

[WX

+ 𝐶Un�h𝑦Un

g

nWX

Y

UWX

+ 𝐶nx�l𝑧nx

z

xWX

g

nWX

} 

The constraint (1) is included to ensure that the sum of capital cost of decentralized 

fast pyrolysis facilities and centralized biorefinery does not exceed the total budget.  

𝐵 ≥ 𝐶ab + 𝐶P
QRS𝑎UPV

PWX
Y
UWX                                                                   (1)   

The total amount of biomass transported from supply location 𝑖 to all the candidate 

fast pyrolysis facility locations should not exceed the available feedstock at that supply 

location as denoted in constraint (2). 𝛼 is the sustainability factor which is the percentage 
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of biomass that has to leave in the field to sustain the soil nutrients. 𝛿 is the availability 

factor which is defined as the ratio of the available biomass to collectable biomass.  This 

factor represents the social factors that could impact the biomass availability for biofuel 

production such as farmers’ willingness to participate [33]. 

𝑥[U
Y
UWX ≤ (1 − 𝛼)𝛿𝑆[, ∀𝑖                                                                        (2) 

The facility capacity limits are included in the model in constraint (3) and constraint 

(4). The loss factor 𝛾 ∈ [0,1) is the fraction weight loss of biomass during the collection, 

transportation, and unloading process and 𝛽 is the conversion ratio from wet biomass to 

dry biomass on the weight basis. 

𝑈P𝑎UPV
PWX ≥ 1 − 𝛾 𝛽 𝑥[Uf

[WX , ∀𝑗          (3) 

𝑉𝑔n ≥ 𝑦Un
Y
UWX , ∀𝑚                                                                            (4) 

There should be no more than one fast pyrolysis facility planned in each candidate 

facility location as shown in constraint (5).  In addition, only one centralized refining 

facility will be constructed in one region of interest (typically one state) as denoted in 

constraint (6).  

𝑎UPV
PWX ≤ 1, ∀𝑗                                                                                        (5) 

𝑔ng
nWX = 1                                                                                           (6) 
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We assume that biomass is converted to bio-oil with conversion efficiency 𝜃X and 

bio-oil is converted to biofuel with conversion efficiency	𝜃� on the weight basis. Thus, we 

have the following conversion balance constraints (7) and (8): 

1 − 𝛾 𝛽𝜃X 𝑥[Uf
[WX = 𝑦Ung

nWX , ∀𝑗      (7)                                               

𝜃� 𝑦Ung
nWX

Y
UWX = 𝑧nxz

xWX
g
nWX                                   (8)                                                      

In summary, this mixed integer linear programming model aims to maximize the 

annual profit considering the capital investments and logistics decisions. This deterministic 

model provides the baseline for the stochastic programming model in the next sections. 

2.3.3 Two-stage stochastic programming model 

Feedstock availability, fuel price, capital costs, logistic costs, and technology 

advancement are among the most influential stochastic parameters along the biofuel supply 

chain [34]. These uncertainties can be incorporated into the stochastic modeling framework 

to assist decision making. 

In this section, the two-stage stochastic programming model is discussed 

considering the uncertainties of the biomass availability, technology advancement, and 

biofuel prices. The stochastic parameters in this model are assumed to be discretely 

distributed. We use subscript 𝑠 to represent scenario with corresponding probability 𝑃𝑟� 
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and this subscript is also incorporated into the decision variables and parameters. The two-

stage stochastic programming model is formulated as follows:  

𝑚𝑎𝑥 𝜁 = −
𝑖 𝑖 + 1 �

𝑖 + 1 � − 1 𝐶P
QRS𝑎UP +

V

PWX

Y

UWX

𝑃𝑟�{ (𝑃x�𝑧nx�

g

nWX

)
z

�WX

�

�WX

− ( 𝐷x − 𝑧nx�

g

nWX \

×𝑃𝑒x + 𝑧nx�

g

nWX

− 𝐷x
\

×𝑃𝑒x? )

− ( 𝐶[QdP𝑥[U�

Y

UWX

f

[WX

+ 𝐶gh 1 − 𝛾 𝛽 𝑥[U�

f

[WX

+ 𝐶hl 𝑦Un�

g

nWX

Y

UWX

+ ( 𝐶[U�g𝑥[U�

Y

UWX

f

[WX

+ 𝐶Un�h𝑦Un�

g

nWX

Y

UWX

𝐶nx�l𝑧nx�

z

xWX

g

nWX

))} 

𝑠. 𝑡.				 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠	 1 , 5 , (6).	

𝑥[U�
Y
UWX ≤ 1 − 𝛼 𝛿𝑆[�, ∀𝑖, ∀𝑠                 (9)                                                                          

𝑈P𝑎UPV
PWX ≥ 1 − 𝛾 𝛽 𝑥[U�f

[WX , ∀𝑗, ∀𝑠	          (10)                                                                       

𝑉𝑔n ≥ 𝑦Un�
Y
UWX , ∀𝑚, ∀𝑠	                                            (11)                                            

1 − 𝛾 𝛽𝜃X,� 𝑥[U�f
[WX = 𝑦Un�g

nWX , ∀𝑗, ∀𝑠	                              (12)                                               

𝜃�,� 𝑦Un�g
nWX

Y
UWX = 𝑧nx�g

nWX , ∀𝑠	                                              (13)                

𝑥[U�, 𝑦Un�, 𝑧nx� ≥ 0, 𝑎UP, 𝑔n ∈ 0,1 , ∀𝑖, 𝑗, 𝑘,𝑚, 𝑙, 𝑠   (14) 

The first-stage decisions involve variables which should be decided before the uncertainties 

are realized. After the uncertainties are realized, the second-stage decisions are made. In 
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this supply chain network design model, the first-stage decision variables include the 

binary variables	𝑎UP	and	𝑔n, which make the capital investment decisions including the 

facility locations (decentralized fast pyrolysis and centralized refining facilities) and 

capacities of the decentralized fast pyrolysis facilities. The second-stage decision variables 

𝑥[U�, 𝑦Un�, and	𝑧nx�	determine the biomass and biofuels flows. 

Constraints (1), (5), and (6) are the first-stage constraints, these constraints remain 

the same in all scenarios and they are same as in the deterministic linear program model. 

The rest of the constraints change based on the stochastic scenario. The rest of the 

constraints change based on the stochastic scenario. Note that this model is a generic 

method to deal with uncertainties in a supply chain and can be adapted to other types of 

uncertainties and supply chain settings. 

One of the most commonly used methods for scenario generation is the moment 

matching method. This method aims to construct a set of scenarios with corresponding 

probabilities such that the statistical properties of the approximating distribution match the 

specified statistical properties based on historical data or reality. This is achieved by 

minimizing the differences between the statistical properties of the constructed distribution 

and the known specifications, subject to nonnegative probabilities that sum up to one [35]. 

2.4 Case Study 

We apply the supply chain design framework for a case study based on Iowa in the 

U.S. to illustrate and validate the optimization model. Iowa possesses the largest quantity 
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of corn stover in the United States and has been one of the leading states of corn ethanol 

and soybean biodiesel production [36]. With an abundance of cellulosic biomass, Iowa has 

potential for cellulosic biofuel production via thermochemical conversion processes. 

2.4.1 Data sources 

The centroids of 99 counties of Iowa are chosen as candidate biomass (corn stover 

in this case study) supply locations, the potential sites for distributed fast pyrolysis 

facilities, and the candidate location for the centralized gasification facility. The annual 

corn stover yield is estimated based on corn grain yield with the residue harvest index of 

0.5 (i.e., 50% of the dry mass of the corn plant is grain and the rest 50% is stove) [37]. The 

weight of #2 corn at 15.5% moisture is applied to calculate the corn grain yields [38]. The 

county level corn production and yield data from 2003-2012 are collected from the 

National Agricultural Statistics Service (NASS), United States Department of Agriculture 
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(USDA) [39]. The average county level corn stover yield in Iowa for 2003-2012 is shown 

in Figure 2.2 with the darkness of the shade corresponding to the corn stove yield. 

 

Figure 2.2 Average corn stover yield in Iowa (2003-2012) 

In addition, the collectable corn stover is limited by growing conditions, soil 

nutrient levels, and method of harvest. Montross et al. reported the collection efficiencies 

of using three strategies in Kentucky: bale only to be 38%; rake and bale to be 55%; and 

mow, rake, and bale to be 64% [40]. Schechinger and Hettenhaus reported collection 

efficiencies of 40% to 50% without raking and 70% with raking in large-scale stover 
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collection operations in Nebraska and Wisconsin [41]. Lindstrom suggested that a 30% 

removal rate would not significantly increase soil loss [42]. Later, Papendick et al. shows 

that a 30% removal rate results in 93% soil cover after residue harvest [43]. The National 

Resource Conservation Service (NRCS) suggests that a minimum of 30% of stover cover 

must remain in the field to prevent soil erosion [44]. In this analysis, we assume the 

sustainability factor to be 0.3, which means at least 30% of the stover must be left in the 

field to promote soil health. 

The collection cost for corn stover is different for each county due to the differences 

in collection quantities and collection methods. The collection cost utilized in this case 

study is based on the regression analysis from Graham et al. [45]. Biomass loss factor, 

which accounts for possible mass loss during loading, transportation, and unloading of the 

biomass, is assumed to be 0.05 in this analysis. 

The total gasoline demand of Iowa is based on the state-level gasoline consumption 

data from the Energy Information Administration (EIA) [46]. Weekly retail gasoline prices 

for the Midwest area from 2003 to 2012 are also from EIA [47]. Gasoline demand of each 

demand area is assumed to be proportional to the population of metropolitan statistical 

areas (MSAs). The partitions and population information of Iowa MSAs are based on U.S. 

Census Bureau [48].  

All the biomass suppliers, biorefineries, and demand locations are assumed to be at 

the county centroids. Transportation distances for biomass, bio-oil and biofuels are 

calculated using the great circle distance, which is defined as the shortest distance between 
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the two locations on a sphere surface.  In addition, the actual distances have been adjusted 

to account for the difference in the transportation methods by the circuit factors from the 

Congressional Budget Office [49]. 

The fixed transportation cost of corn stover via truck is $5.34/metric ton and the 

variable cost of $0.23/metric ton-mile [50]. The transportation cost of bio-oil via truck is 

assumed to be equal to the national average truck shipping cost of $0.312/metric ton-mile 

based on Bureau of Transportation Statistics (BTS). The transportation cost of biofuel via 

pipeline is assumed to be equal to the national average oil pipeline cost, which is 

$0.032/metric ton-mile [51]. The cost data have been adjusted to the 2012 US dollars. 

In the fast pyrolysis process, the biomass is converted into bio-oil (53-78%), char 

(12-34%), and gas (8-20%) [52]. The bio-oil yield is assumed to follow the normal 

distribution based on the experimental results from Iowa State University. In this study, 

the fluidized bed reactor is employed in the fast pyrolysis which has an average conversion 

ratio of 0.63 from biomass to bio-oil on weight basis [53]. The conversion ratio from bio-

oil to biofuel is not available due to lack of experimental data. Limited experiment shows 

high carbon conversion of gasification but low efficiency from syngas to fuel (due to the 

diverse H�/CO	 ratio). Raffelt et al. reported a conversion ratio of 0.156 on weight basis 

for slurry (80% bio-oil and 20% char) gasification [52]. We assume that the conversion 

ratio from bio-oil to biofuel follows a normal distribution with an average of 0.20 on weight 

basis. With these assumptions, the average fuel yield for the pathway under analysis would 

be 31.2 million GGE per year for the plant size to of 2000 metric ton biomass per day 
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facility. This is consistent with reported fuel yield of 29.3-58.2 million GGE per year for 

2000 metric ton per day facility [54]. 

Wright et al. reported that the capital cost of centralized gasification plant with a 

capacity of 550 million GGE per year is about 1.47 billion [55]. The capital cost of 

distributed fast pyrolysis facility with a capacity of 2,000 metric ton per day is $200 million 

[53]. The commonly used scaling factor of 0.6 (the “sixth-tenth rule”) is applied to estimate 

capital cost for facilities with other capacity levels. In this study, we consider three capacity 

levels of distributed fast pyrolysis facilities: 500, 1000, and 2000 metric ton per day. 

According to RFS2, at least 36 billion gallons per year of renewable fuels will be produced 

by 2022, which is about 28% of the national gasoline consumption. In this study, we 

assume the centralized gasification and upgrading plant has a capacity of 550 million GGE 

per year, which could satisfy more than 30% of the gasoline consumption in Iowa. Thus, 

we only need to consider one centralized bio-oil gasification and upgrading facility in this 

case study. 

It is assumed that all the facilities have a 20-year operation life and an interest rate 

of 10%; the online time of all the facilities is 328 days per year (equivalent capacity factor 

of 90%). In the following two sections, the computational results of the biofuel supply 

chain design for both deterministic case and stochastic case are presented.  

2.4.2 Analysis for deterministic case 

In the deterministic case, 17 distributed fast pyrolysis plants will be built, and all 

of them are at the highest capacity level (2000 metric ton per day). This is mainly due to 
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the budget limit and economies of scale. The centralized gasification plant is planned to be 

located in Hamilton County. The optimal locations for these facilities are shown in  

Figure 2.3.The shaded areas are biomass feedstock suppliers (71 counties) in this 

case. These counties are mainly located at the central and northern part of Iowa, which 

have a higher yield of corn and thus have better availability for corn stover. Several 

previous studies [17, 56] showed similar site selection decisions, but there are more 

biomass feedstock counties involved in our case. The counties' locations of distributed fast 

pyrolysis plants illustrate the trade-off between biomass collection as well as transportation 

cost and bio-oil transportation cost. 

 

Figure 2.3 Optimal facilities locations in deterministic case 
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In general, feedstock production and logistics constitute more than 35% of the total 

production cost of advanced biofuel [57], and logistics associated with moving biomass 

from farmland to biorefinery can make up 50% to 75% of the feedstock cost [58] includes 

the annual itemized costs in deterministic case. Total shipping cost accounts for 14% of 

the total cost; biomass collecting cost accounts for 18% of the total cost; total capital cost 

accounts for about 25% of the total cost; conversion cost accounts for 43% of the total cost. 

In the category of shipping cost, biomass shipping cost is the most significant (54%). These 

results are consistent with the range reported in the literature [57, 58].  

Table 2.2 Annual itemized costs in deterministic case (million dollars) 

Biomass collecting cost 416.93 
Total capital cost 604.33 
    Capital cost of the centralized refining facility 184.06 
    Capital cost of the fast pyrolysis facility  420.27 
Total shipping cost 334.04 
   Biomass shipping cost 181.99 
   Bio-oil shipping cost 146.80 
   Biofuel shipping cost 5.25 
Conversion cost 1020.20 
Total 2375.51 

2.4.3 Analysis for stochastic case  

The uncertainties under consideration include biomass availability, technology 

advancements, and biofuel price. Technology advancement uncertainty is represented by 

the probabilistic distribution of two conversion ratios. Historical data for corn stover yield 

and retail gasoline prices are available to estimate the distributions. In this case study, 

moment matching method has been employed to generate the probabilistic scenarios. 

Statistics such as mean, variance, skewness, and kurtosis are used for moment matching. 
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This non-linear optimization problem is solved by applying a heuristic of changing an 

initiating value until a satisfactory solution is obtained. The General Algebraic Modeling 

System (GAMS) is utilized to solve the moment matching problem, and a scenario tree 

with a size of 16 is generated. A summary of scenarios in the stochastic model is included 

in Table 2.3. 

Table 2.3 Scenario summary 

Scenario Probability Corn Stover Yield 
(metric ton/acre) 

Gasoline Prices 
($/Gallon) 

Conversion 
Ratio 𝜽𝟏 

Conversion 
Ratio 𝜽𝟐 

1 0.0128 2.2066 2.2035 0.4961 0.1825 
2 0.0114 2.1568 2.5758 0.4476 0.1810 
3 0.1269 2.9174 2.4271 0.7770 0.2197 
4 0.1130 3.1437 4.5391 0.6242 0.1993 
5 0.1116 2.9115 4.4923 0.6243 0.1984 
6 0.1078 2.9048 3.4381 0.6253 0.1959 
7 0.1092 2.6570 3.5253 0.6229 0.2097 
8 0.1255 2.9986 3.2187 0.6206 0.1963 
9 0.0531 2.7582 3.3948 0.6198 0.1961 
10 0.0100 2.1041 2.5689 0.3952 0.1875 
11 0.0288 2.7502 3.3767 0.5742 0.1917 
12 0.0164 2.6637 3.2652 0.5465 0.1925 
13 0.0259 2.7056 3.3314 0.5897 0.1944 
14 0.0143 2.6095 3.1129 0.5376 0.1945 
15 0.1231 3.1086 4.0164 0.6265 0.1950 
16 0.0100 2.0942 2.8036 0.3858 0.1562 

In the stochastic case, 17 distributed fast pyrolysis plants are proposed, and all of 

them are at the highest capacity level. This is the same as the deterministic case and 

indicates that the capacity levels are insensitive to uncertainties. The numbers of biomass 

feedstock sites (counties) involved in the stochastic case vary based on scenarios with a 

maximum of 79 counties. Nine scenarios (with a total probability of 0.6) need biomass 

supply from more than 71 counties. The optimal locations for these facilities are 
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represented in Figure 2.4. The shaded areas are the union set of the biomass feedstock sites 

involved in all of the stochastic scenarios (81 counties). 

 

Figure 2.4 Optimal facilities locations in stochastic case 

In both the deterministic and stochastic cases, 17 distributed fast pyrolysis plants 

are proposed but they are not at the same locations. The plants are all proposed to be built 

at the highest capacity level to reduce the capital cost due to the economies of scale. The 

centralized gasification plant will be constructed at Hamilton County in both cases, which 

is at the center of high corn yield counties.  

Despite the similarities of both cases, differences exist for the supply chain network 

configurations. In the stochastic case, it is preferable to build the fast pyrolysis plants 

farther away from the centralized gasification and upgrading plant because biomass 
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collection sites are more distributed due to the uncertainties in biomass feedstock supply 

availability. Thus, this supply chain network demonstrates the management of the trade-

off between biomass availability and transportation costs. 

The yearly profit in the deterministic case is 154.53 million dollars. For 

comparison, the numerical value of parameters used in deterministic case are the expected 

value of those parameters from the stochastic scenarios, thus this deterministic solution is 

also called the expected value solution (EV). The solution in the stochastic case is known 

as recourse problem solution (RP). In this case study, the yearly profit from the recourse 

problem is 129.57 million dollars. If we apply the decisions in deterministic case to the 

stochastic environment, we will get the expected yearly profit with the EV solution. This 

is called expected results of EV solution (EEV), which is 129.11 million dollars in this case 

study. The value of the stochastic solution (VSS) could be defined as	𝑉𝑆𝑆 = 𝐸𝐸𝑉 − 𝑅𝑃. 

The VSS is about 0.46 million dollars, which is the direct economic benefit of considering 

uncertainties in the decision making process. 

2.4.4 Discussion on the impact of farmers’ participation 

Although significant literature has investigated the environmental consequences of 

biomass collection from the field, limited studies have taken the social factors such as 

farmers’ willingness to participate into consideration. However, the farmers’ willingness 

to participate makes a direct impact on the biomass feedstock availability. Recently, an 

Iowa farmer survey conducted by Tyndall et al. shows that only 17% of farmers in Iowa 

show interest in harvesting their stover and about 37% are undecided [36]. These results 
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suggest that about half of the farmers will not collect the corn stover in the near future. In 

the base case scenario, the availability factor is assumed to be 0.4, and the influence of this 

availability factor on the supply chain design is also investigated in this study. In this 

section, we discuss the impact of farmers’ participation, which is represented as the 

availability factor 𝛿  in the model, on the decisions in both the deterministic case and 

stochastic case. 

For the deterministic case, if the availability factor 𝛿 is less than 0.23, which means 

no more than 23% of the farmers would participate in corn stover collection in each county, 

the objective function value is equal to zero. In this case, this biofuel supply chain system 

is not profitable and it is optimal not to construct any facilities. When the availability factor 

𝛿 is in the range of 0.23 to 0.36, the system is profitable but it could not satisfy the biofuel 

target of the entire state. Recall that the goal is to satisfy at least 30% of the gasoline 

consumption in Iowa, which is about 517 million GGE per year. Thus, at least 33000 metric 

ton dry biomass per day is needed at distributed fast pyrolysis plants. The biofuel supply 

target will be met if the availability factor 𝛿 is larger than 0.36.   

Table 2.4 provides the annual itemized costs and profit for a variety of availability 

factors. The total capital cost, biomass collection cost, and total shipping cost increase 

when the availability factor 𝛿 increases from 0.3 to 0.4. This is because of the increase of 

the facilities' production and capacities. It should be noted that when the biofuel production 

capacity can meet the target biofuel demand, the total shipping cost and biomass collection 

cost will decrease as the availability factor increases. After that, the total capital cost will 
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not change since the same number and capacities of facilities are planned. As a result, the 

yearly profit will increase as the availability factor increases. In summary, the system cost 

will decrease and yearly profit will increase with increase in the farmers' participation 

because there is more flexibility in choosing the biomass suppliers and better decisions can 

be reached. 

Table 2.4 Annual itemized costs and profit for different δ (million dollars)  

𝜹 0.3 0.4 0.5 0.6 0.7 
Profit 69.246 154.53 200.92 232.09 256.43 
Total capital cost 530.21 604.39 604.39 604.39 604.39 
Biomass collecting cost 347.72 416.93 409.46 402.17 398.69 
Total shipping cost 296.27 334.04 295.13 271.24 250.38 
Conversion cost 840.14 1020.20 1020.20 1020.20 1020.20 

Comparing Figure 2.5 to  

Figure 2.3, it is observed that the locations of fast pyrolysis plants are more 

centralized when availability factor 𝛿 is equal to 0.7 and we only need 40 counties (rather 

than 71 when 𝛿 is equal to 0.4) to supply the biomass. These results not only illustrate the 

phenomenon that the locations of fast pyrolysis plants are sensitive to uncertainties, but 

also suggest  that the optimal supply chain decisions will be improved by increasing 
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biomass availability due to the additional flexibilities in choosing the biomass harvesting 

sites and will consequently reduce total system cost [17, 31]. 

 

Figure 2.5 Optimal facilities locations in deterministic case (δ=0.7)  

Table 2.5 shows the value of the stochastic solution (VSS) will decrease as the 

availability factor increase. The VSS will reduce to zero when the availability factor is 

larger than 0.5. It can be observed from the model that as farmers’ participation increase in 

Iowa, the supply chain design and optimization model will become more robust. On the 

other hand, since the advanced biofuel industry is still at its infancy, the farmers’ 

participation is currently at a relatively low level. Therefore, it is beneficial to apply 

stochastic programming framework to deal with the uncertainties and improve the decision 
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making. This analysis provides the decision makers another insight to improve system 

resiliency by increasing farmers’ participation.  

Table 2.5 VSS for different δ 

𝜹 EV RP EEV VSS 
0.3 69.25 56.25 55.74 0.51 
0.4 154.53 129.57 129.11 0.46 
0.5 200.92 171.82 171.76 0.06 
0.6 232.09 200.93 200.93 0 
0.7 256.43 222.74 222.74 0 

2.5 Conclusion  

Cellulosic biofuels play an increasingly important role in meeting RFS2 and 

reducing energy dependence. The hybrid thermochemical production pathway of bio-oil 

gasification which combines fast pyrolysis and gasification is one of the promising 

production pathways for advanced biofuel production. In this production pathway, widely 

distributed small-scale fast pyrolysis processing plants could avoid transporting bulky solid 

biomass over a long distance and a centralized gasification and fuel synthesis facility could 

take advantage of the economies of scale. Due to the significance of supply chain related 

system costs, the design of biofuel supply chain networks plays an essential role in the 

commercialization process. 

This paper provides a mathematical programming framework with a two-stage 

stochastic programming approach to deal with the uncertainties in the biofuel industry. The 

first stage makes capital investment decisions including the locations and capacities of 

facilities while the second stage determines the biomass and biofuels flow. This model is a 

generic method for handling uncertainties in a supply chain and can be easily adapted to 
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deal with other uncertainties and be applied to other supply chain problems. The 

optimization model provides methodological suggestions for decision makers of capital 

investment decisions and logistic decisions in the stochastic environment. 

A case study of Iowa is presented to illustrate and validate this supply chain design 

and optimization model. The results show that uncertain factors such as biomass 

availability, technology advancement, and biofuel price can be pivotal in this supply chain 

design and optimization. The locations of fast pyrolysis plants and logistic decisions are 

sensitive to uncertainties while the capacity levels are insensitive. In addition, farmers' 

participation has a significant impact on the decision making process. It is appropriate and 

necessary to apply a stochastic programming framework to deal with the uncertainties, 

especially at a low farmers' participation level. As farmers' participation increases, the 

supply chain design and optimization model will become more profitable and more robust 

against the uncertainties along the supply chain. 

In summary, this paper provides a modeling framework to study the advanced 

biofuel production pathway under uncertainty. Our study is subject to a number of 

limitations. Firstly, we assume the sustainability factor and farmers' participation are the 

same for each county. However, these factors may vary based on the land characteristics 

and agricultural management practices. Additional constraints such as water use 

constraints [59] can be included to better describe biomass availability. Secondly, we 

assume the transportation cost within counties is negligible, which could impact the supply 

chain design and decision making. Thirdly, we consider three sources of uncertainties and 
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more uncertainty factors can be considered. Last but not least, only one set of scenarios is 

generated in this paper; more scenarios could be generated to test the stability of the 

stochastic results. We shall address these limitations in our future research. 
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CHAPTER 3 TECHNO-ECONOMIC ANALYSIS OF BIOFUEL PRODUCTION 

CONSIDERING LOGISTIC CONFIGURATIONS2 

 

Abstract 

In the study, a techno-economic analysis method considering logistic 

configurations is proposed. The economic feasibility of a low temperature biomass 

gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification 

are evaluated and compared with the proposed method in Iowa. The results show that both 

pathways are profitable, biomass gasification pathway could achieve an Internal Rate of 

Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification 

pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. 

A Monte-Carlo simulation considering interactions among parameters is also proposed and 

conducted, which indicates that both pathways are at high risk currently. 

3.1 Introduction 

As a renewable substitute for petroleum fuels, biofuels have attracted increasing 

attention for economic, environmental, and energy security considerations. First-

generation biofuels could be relatively easily converted to transportation fuels but lead to 

food versus fuel dilemma. Cellulosic biofuel feedstock such as corn stover, switchgrass, 

and woody biomass does not compete with food supply but highly recalcitrant [2]. US 

                                                
2 This chapter of dissertation has been published in Bioresource Technology 
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Environmental Protection Agency (EPA) revised the Renewable Fuel Standard in 2007, 

which aims to accelerate the domestic biofuel production and consumption. The Revised 

Renewable Fuel Standard (RFS2) mandates that by the year 2022, at least 16 billion gallons 

per year of cellulosic biofuels will be produced and consumed in the US [6]. However, 

cellulosic biofuel production has been significantly below the blending targets established 

by the RFS2 due to technical immaturity and feedstock availability issues [8]. 

Lignocellosic biomass could be converted into bio-oil via pyrolysis, and the 

biomass pyrolysis can be followed by bio-oil cracking, gasification, or hydroprocessing to 

produce transportation fuels [60]. The mechanism research shows that fast pyrolysis of 

cellulose biomass yields to products such as pyrans, furans, and linear small molecular 

compounds [61]. The pyrolysis behaviors and structural features are significantly affected 

by the process conditions [62]. Researchers also use thermogravimetric analysis coupled 

to Fourier transform infrared spectroscopy to analysis the evolution of typical pyrolysis 

products [63].  

The major challenge faced by the cellulosic biofuel industry is that investors are 

not willing to take the risk to construct commercial scale facilities, and lack of real facility 

cost information for the production systems prohibit the improvement of production system 

to reduce costs and uncertainty [8]. Techno-economic analysis (TEA) has been widely 

adopted to overcome this dilemma. Process models are developed to simulate the 

production systems at a commercial scale. Materials and energy balances are developed. 

Cost analysis is then employed to evaluate the economic feasibility of the production 
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system at commercial scale [64]. TEA, as a simulation approach, is highly dependent on 

the model assumptions, which could lead to significant inaccuracy and even errors. 

Another major barrier for commercialization of cellulosic biofuels is transporting 

bulky solid biomass over a long distance. This is mainly caused by the low energy density 

of lignocellulose biomass and a large collection radius due to the limitation of biomass 

availability. In general, logistics cost for transport biomass from farmland to biorefinery 

can make up 50% to 75% of the feedstock cost [65] and more than 35% of the total 

production cost of advanced biofuel is feedstock cost [57]. 

TEA studies typically focus on the technical and economic performance for a single 

facility and neglect the upstream biomass collection and transportation as well as the 

downstream biofuel transportation and distribution. However, with the importance of 

supply chain configurations in the economic feasibility evaluation of cellulosic biofuels, 

TEA should incorporate the supply chain configurations explicitly rather than the simplify 

assumption of a flat feedstock cost and biofuel price at the facility gate. Recently, 

researchers have worked on incorporating pre-determined simple supply chain 

configurations to estimate biomass feedstock cost for integrated pathways [66, 67]. 

However, in reality, feedstock availability, logistic cost, biofuel demands will all affect 

evaluation of economic feasibility [68]. This serves as the major motivation for this 

proposed approach to incorporate logistic settings into the techno-economic analysis. 

There has been an increasing body of literature on supply chain network design for 

the biofuel industry [17, 68, 69]. Design and management of logistic flow includes the raw 
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materials, work-in-process, and finished products from source of raw materials to the point 

of consumption [26]. In order to incorporate supply chain design into TEA study, logistic 

information such as biomass availability, transportation cost, and demands distributions is 

necessary. A decision method and optimization model is necessary to determine the 

optimal facility locations and capacities as well as the logistic flow decisions for biomass 

supply and biofuel distribution.  

The remainder of the paper is organized as follows: in Section 2, the proposed TEA 

method with logistic settings is introduced. In Section 3, we illustrate the method with a 

case study of comparing two competitive pathways in Iowa, namely low temperature 

biomass gasification pathway and fast pyrolysis (FP) integrated with bio-oil gasification 

pathway. Finally, the paper concludes with a summary of research findings in Section 4. 

3.2 Materials and Methods 

In this section, the proposed TEA method with logistic configurations is introduced. 

Materials and conversion pathways are chosen based on current technology and feedstock 

availability. Methods for technical and economic analysis are discussed. 

3.2.1  TEA method with logistic settings 

This proposed TEA method with logistic configurations contains three main steps: 

cost estimations based on traditional standalone TEA, design and evaluation of supply 

chain configurations, and economic feasibility assessment under realistic supply chain. In 

the first step, the investment for a single facility based on a traditional standalone TEA 

literature is evaluated. An assessment on the relationship between plant sizes and economic 
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performance based on the rules of economies of scale and time value of money provide 

candidate plant sizes for the supply chain design. The second step is to design the biofuel 

supply chain configurations based on the conversion pathway and feedstock availability of 

the region under assessment. Mathematical models are formulated to provide the decision 

support for the supply chain design. The third step includes economic performance 

assessment considering the logistic configurations, and risk assessment with Monte-Carlo 

simulation.  

The motivation of this proposed TEA method is to introduce supply chain design 

into traditional TEA to achieve a more comprehensive analysis and realistic economic 

assessment results. In the conventional TEA which has been commonly used in the 

literature, assumptions such as flat feedstock cost and biofuel price at the facility gate have 

been adopted [9, 11, 53]. These assumptions have received significate concerns. In this 

proposed TEA with logistic considerations, no uniform feedstock prices at facility gates 

are assumed. Instead, feedstock cost is estimated by the farm gate collection cost and the 

shipping cost from farm to facility. The feedstock collection costs vary due to collection 

methods and quantities. A regression analysis is employed to estimate collection cost [45]. 

The feedstock (crop residuals, such as corn stover) availability is assumed to be 

proportional to the crop yield. The feedstock shipping cost, the intermediate product 

shipping cost, and the biofuel shipping cost are all assumed to be proportional to the 

shipping distance. Biofuel market prices are based on U.S. Energy Information 
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Administration (EIA) projection, and the biofuel demand amounts and locations are based 

on the population distribution in the geographic region. 

3.2.2 Materials and technologies 

To illustrate the proposed TEA method, a case study based on Iowa is conducted. 

Corn stover has been chosen as the cellulosic biomass feedstock in this study due to its 

abundance in Iowa (Wilcke and Wyatt, 2002). The final biofuel product is assumed to a 

drop-in fuel which is ready for vehicle consumption.  

In this study, we have thus chosen integrated pathway with fast pyrolysis and bio-

oil gasification to illustrate the proposed TEA method. It has been suggested that hybrid 

pathways, such as integrating fast pyrolysis and downstream upgrading process such as 

gasification would be a viable option for commercial scale. This is due to the flexibility to 

accommodate a decentralized supply chain structure and also advantage of economies of 

scale (Li et al., 2015; Manganaro and Lawal, 2012).   
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On the other hand, low temperature (870℃) biomass gasification pathway has 

typically been brought up for comparison with the integrated bio-oil gasification pathway. 

Therefore, the conversion pathways under consideration in this study include low 

temperature biomass gasification pathway and hybrid fast pyrolysis with bio-oil 

gasification pathway. BMG (biomass gasification) and BOG (bio-oil gasification) are used 

as abbreviations for these two pathways in the following sections. 

3.2.3 Technical analysis 

The conversion process models and mass and energy balance information are based 

on the existing literature (Li et al., 2015; Swanson et al., 2010). Figure 3.1 shows the 

process flow diagrams for biomass gasification pathway and integrated bio-oil gasification 

pathway. The main assumptions such as capital cost estimation, plant size, target IRR, and 

facility life are the same in both studies, while the balance of plant (BOP) and annual 

operating hour rate are in similar range which is typical in TEA studies (11% and 0.85 in 
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BMG TEA while 12% and 0.9 in BOG TEA) [10, 53]. These assumptions are preserved in 

this study to reflect the similarity as well as slight differences between these two pathways. 

 

Figure 3.1 Process flow diagrams for biomass gasification pathway (a) and bio-oil 
gasification pathway (b) 

3.2.4 Economic analysis 

An nth plant scenario with facility life of 20 years is considered in this study. 

Estimations for capital investment, installed equipment cost, and annual operating cost are 

based on the literature (Li et al., 2015; Swanson et al., 2010). The capital and operating 

costs for different capacities are estimated based on the rules of economies of scale and 

time value of money. The economies of scale refers to the concept that the cost per unit of 



49 
 

output would generally decrease with the increasing scale of a facility [70]. Eq. (1) is 

adopted to estimate costs from the base costs.  

𝑐𝑜𝑠𝑡�¡¢ =
f
f£

∗ 𝑐𝑜𝑠𝑡¤ ∗
�[¥¡]¦§
�[¥¡£

�
       (1) 

𝑐𝑜𝑠𝑡¤  is the base equipment cost, 𝑠𝑖𝑧𝑒¤  is the size of base equipment, 𝐼¤  is the 

inflation index of the base year. 𝑐𝑜𝑠𝑡�¡¢ is the new equipment cost, 𝑠𝑖𝑧𝑒�¡¢ is the size of 

new equipment, 𝐼 is the inflation index of the calculated year. 𝑛 is the scaling factor with 

a typical range from 0.6 to 0.8. "Sixth-tenth rule" is typically adopted in TEA studies[71]. 

However, since BMG and BOG pathways are both relatively immature, a more 

conservative scaling factor of 0.7 is used in this study [66]. All monetary figures have been 

adjusted to 2013 dollars based on inflation. The income tax rate is assumed to be 39%. The 

biofuel market price is assumed to be 3.5 $/GGE, which is the average gasoline projection 

price by EIA for the next twenty years [72]. 

3.3 Results and Discussion 

In this section, the results for the case study with the proposed method are 

discussed. 

3.3.1 Cost estimations for supply chain design 

In the supply chain design and analysis, the main results of economic performance 

for a single facility from conventional TEA are adopted. Candidate plant sizes are chosen 
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based on a single facility economic performance analysis at different capacities. Capital 

cost and operation cost at candidate plant sizes are also evaluated. 

For a 2000 metric ton per day (MT/D) plant, fuel yield for BMG is about 293 MT/D, 

while the fuel yield for BOG is 239 MT/D. The total capital investment (TCI) for BMG is 

559.9 million dollars and TCI for BOG is 510 million dollars. The minimum fuel selling 

prices (MFSPs) for these pathways are 5.43 $/GGE and 5.59 $/GGE respectively. These 

high MFSPs reflect the current status of technology. Table 3.1 summarizes the breakdown 

of the capital costs and operating costs. These results indicate that for a single plant size of 

2000 MT/D, the BOG has a lower TCI while BMG pathway has a higher fuel yield. As a 

result, BOG and BMG pathways perform similarly in terms of MFSP. 
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Table 3.1 Breakdown capital costs and operating costs 

Pathway BMG BOG 
Installed cost breakdown for nth plant (million dollar) 
Preprocessing   25.5   25.4 
Gasification   31.7   22.6 
Syngas cleaning   32.9   23.2 
Fuel synthesis   66.0   47.4 
Hydroprocessing   33.1   25.1 
Power generation   43.7   NA 
Fast Pyrolysis & Combustion   NA   84.4 
Air separation unit   21.9   15.4 
Balance of plant   30.6   29.2 
Total installed cost 285.3 273.0 
nth plant results (million dollar) 
Indirect cost 120.4   92.0 
Fixed capital investment 486.8 444.0 
TCI 559.9 510.0 
Annual operating cost for nth plant (million dollar) 
Fixed costs   13.5   13.4 
Variable costs   14.6     9.5 
Feedstock   57.3   54.3 
Capital depreciation   24.7   21.9 
Average income tax   20.2   17.9 
	

It should be noted that multiple facility sizes are considered in the biofuel supply 

chain design and configuration phase. Figure 3.2(a) illustrates the changes in facility IRR 

and MFSP at different facility sizes of BMG. Similar trend for BOG can be observed as 

shown in Figure 3.2(b) [11]. If we assume the MFSP to be 3.5 $/GGE, the relationship 

between the facility IRR and capacity could be analyzed. For BMG pathway, any facility 

capacity larger than 1900 MT/D would give a positive IRR and a 10% IRR is achieved at 

6000 MT/D. These results indicate that for both pathways, plant size of 2000 MT/D is near 
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the break-even point, and a larger plant size is favorable due to the economies of scale. The 

candidate plant sizes have been chosen to be 2000 MT/D, 4000 MT/D, and 6000 MT/D. 

	

 
 

Figure 3.2 Variation of MFSP and IRR with plant sizes for biomass gasification pathway 

(a) and bio-oil gasification pathway (b) 
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According to RFS2, at least 36 billion gallons per year of renewable fuels will be 

produced by 2022, which is approximately 28% of the national gasoline consumption. In 

this study, the biofuel demand for Iowa is set to be 550 million GGE per year, which could 

satisfy about 30% of the gasoline consumption in Iowa.  

The capital and operating costs for base size of facility are based on existing 

literature [9, 11, 53]. Key parameters used in supply chain design model such as annual 

operation costs and capital investment costs are summarized in Table 3.2. Note that the 

annual operation costs only include fixed operation costs and variable operation costs. The 

operation costs do not include income tax, feedstock cost, and capital depreciation because 

these costs would be included in the supply chain model.  

Table 3.2 Key economic parameters at different plant sizes 

Scenario Plant size Annual fuel 
output (million 
GGE per year) 

Capital cost 
(million dollar) 

Annual 
operation cost 
(million dollar) 

BMG   2000   32   560   32 
BMG   4000   65   909   58 
BMG   6000   97 1208   82 
BMG 34000 550 4069 397 
FP   2000  NA     63   26 
FP   4000  NA   102   36 
FP   6000  NA   136   65 
BOG 42000 550 3398 254 
BOG＋FP 42000 550 4300 471 
	

3.3.2 Supply chain design  

The supply chain system schematics for BMG and BOG pathways are shown in 

Figure 3.3. Biomass is firstly collected at county level, and transported to the biorefinery 

facility (facilities) to produce transportation fuels. The biofuels are then distributed to 
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demand areas which are based on metropolitan statistical areas. It is assumed that each 

biomass feedstock location can support multiple facilities, and that each facility can acquire 

feedstock from multiple biomass supply locations. The locations for all biomass feedstock 

sites, biorefineries, and demand sites are assumed to be the centroids of counties. Mixed 

integer linear programming models are employed to decide the optimal plant sizes and 

locations of the facilities to maximize the profit. The mathematical models are adapted 
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from literature [68]. The General Algebraic Modeling System (GAMS) software is used to 

obtain numerical results.  

 

Figure 3.3 Supply chain configurations for each scenario 
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Four scenarios are considered in this study, two for BOG pathway and two for BMG 

pathway. In the first scenario, the supply chain contains one centralized 42000 MT/D BOG 

facility with multiple decentralized fast pyrolysis facilities with variable plant sizes 

converting biomass to bio-oil (Figure 3.3(a)). In the second scenario, only one integrated 

42000 MT/D facility with both bio-oil gasification and fast pyrolysis at the same site 

(Figure 3.3(b)). In the third scenario, multiple BMG facilities at different plant sizes would 

be constructed to satisfy the biofuel demand (Figure 3.3(c)). In the fourth scenario, only 

one centralized 34000 MT/D BMG facility will be constructed to satisfy the demand 

(Figure 3.3(d)). The geographical locations and sizes of the facilities are determined 

optimally with the mathematical models.  

The supply chain configuration designs are based on existing literature [68] , 

industrial relevancy, and comparison consistency. The plant sizes in the third scenario with 

multiple biomass gasification facilities are set to be chosen from 2000 MT/D, 4000 MT/D, 

and 6000 MT/D based on the analysis in section 3.1. The plant sizes of decentralized fast 

pyrolysis plants in the first scenario are also set to be chosen from 2000 MT/D, 4000 MT/D, 

and 6000 MT/D for consistent comparison. 

3.3.3 Numeral results  	

The computational results of each scenario are presented and discussed in this 

section. First scenario achieves an IRR of 3.32% with a total project investment of 4,481 

million dollars. Second scenario yields an IRR of 2.21% with a total project investment of 
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4,300 million dollars. Third scenario would have an IRR of 1.80% with a total project 

investment of 6,949 million dollars. Fourth scenario would have an IRR of 10.00% with a 

total project investment of 4,069 million dollars. The fourth scenario achieves the highest 

IRR and requires the smallest investment. 

Table 3.3 provides the annual itemized costs for each scenario. The results 

demonstrate the trade-off between feedstock shipping cost and the capital investment under 

a variety of supply chain configurations. By adding 181 million dollars capital investment, 

the first scenario could increase the IRR by 1.1% comparing to the second scenario. These 

additional capital investments will lead to a saving of over 200 million dollars on shipping 

cost per year. This’s mainly because the decentralized fast pyrolysis facilities could 

decrease the biomass shipping cost significantly without significantly increasing capital 

investment [73]. These results indicate that BOG pathway is more suitable for 

decentralized supply chain structure. 

Table 3.3 Annual itemized costs (million dollars) 

Scenario 1 BOG (D) 2 BOG (C) 3 BMG (D) 4 BMG (C) 
Biomass collection cost   445   475   378   380 
Biomass shipping cost   181   411   169   305 
Bio-oil shipping cost      16   NA   NA   NA 
Biofuel shipping cost       6       6       4       6 
Operation cost   631   471   469   397 
Capital depreciation   195   187   302   177 
Income tax   185   171   248   271 
Total 1660 1710 1570 1530 
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On the other hand, comparing between the third and fourth scenario, although the 

third scenario could save about 148 million dollars on shipping cost per year, additional 

135 million dollars costs on capital depreciation and 72 million dollars on operation cost 

per year would incur. In other words, the saving in shipping cost could not offset the 

increase in capital investment and annual operation costs. These results show that the effect 

of economies of scale is more significant than decentralized supply chain to decrease the 

logistic costs for BMG pathway. This is due to the high capital investment of this biofuel 

production pathway. Therefore, larger facility is preferred for BMG pathway even through 

it cost would have more feedstock shipping cost. 

Comparing between the two pathways, i.e., compare the first scenario with the third 

scenario, and compare the second scenario with the fourth scenario, the biomass collection 

cost as well as biomass shipping cost are higher for BOG pathway under both supply chain 

structures because more biomass feedstock is needed in BOG pathway due to lower fuel 

conversion yield. In the meantime, the operation cost is higher for BOG pathway under 

both supply chain structures than BMG pathway, which is due to the process complexity. 

These results indicate that at the current stage of technology, BMG pathway has higher 

efficiency of energy conversion than BOG pathway. In addition, these comparisons show 

that different production pathways could have its preferred supply chain structure. 
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Decentralized supply chain structure is more suitable for BOG pathway, while centralized 

supply chain structure works better with BMG pathway. 

Figure 3.4 shows the facility locations and plant sizes in each scenario. The 

darkness in county indicates the corn stover yield, darker color means higher yield. The 

shaded areas represent the countries that provide the biomass feedstock, and star symbols 

represent the locations of biofuel demand. The black dots represent the locations of the 

decentralized facilities and the black square represents the location of the centralized 

facility. 42 counties will support ten 4000 MT/D and one 2000 MT/D decentralized 

facilities in the first scenario, and the centralized facility is located in Hamilton County 

(Figure 3.4(a)). 47 counties will support the centralized facility in the second scenario, 

which is also located in Hamilton County (Figure 3.4(b)). 38 counties will support five 

6000 MT/D and two 2000 MT/D decentralized facilities in the third scenario (Figure 

3.4(c)). 37 counties will support the centralized facility located in Wright County, which 

is next to Hamilton County (Figure 3.4(d)). 
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Figure 3.4 Optimal facility locations in each scenario 
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All scenarios prefer to build facilities in the northern part of Iowa which has higher 

corn yield, thus higher biomass availability. The majority of the decentralized facilities in 

the first scenario are built at the moderate plant size (4000 MT/D) while the majority of the 

decentralized facilities in the third scenario are built at the highest plant size (6000 MT/D). 

This is because the effect of economies of scale is more significant for BMG pathway. 

Centralized supply chain configuration needs more involved counties than decentralized 

supply chain configuration for both pathways. Because decentralized facilities could 

collect biomass from nearby counties which has higher biomass availability. On the other 

hand, BOG pathway needs more biomass feedstock than BMG pathway for both supply 

chain configurations due to its lower conversion efficiency. As a result, the supply chain 

of BOG pathway involves more countries as feedstock suppliers and the locations of 

decentralized facilities are more distributed. 

3.3.4 Discussions	

Typically, point estimators of MFSPs and IRR are provided as the economic 

assessment results. As a simulation method, the results of TEA are highly dependent on 

the assumptions. Sensitivity analyses have been adopted as a paradigm to evaluate 

uncertainties in the parameters. The sensitivity analyses in traditional TEA adjust a single 

parameter at a time and evaluate the impact on MFSP, IRR or net present value (NPV). 

This method could not account for the interactions between the parameters since those may 

not always be independent. Recent TEA literature also includes the Monte-Carlo 

simulations as a part of uncertainty analysis which can incorporate simultaneous changes 
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for multiple parameters [10, 64]. However, the arbitrary selection of the probability 

distributions and assumption of independence weaken its superiority to the sensitivity 

analyses. This serves as the major motivation to conduct Monte-Carlo simulation 

considering interactions between parameters in this study. Multivariate distribution of key 

factors can be assigned when the correlations of the parameters are not negligible. Monte-

Carlo simulation of BMG pathway for a single 2000 MT/D facility is conducted in this 

section to illustrate this method. 

Based on the sensitivity results of BMG pathway, TCI, feedstock cost, and 

compressor install factor have the most significant impact on MFSP [9]. In this Monte-

Carlo simulation, IRR, TCI, feedstock cost (FC), and compressor install factor (CIF) are 

selected as key parameters for analysis. IRR is added for a consistent comparison with 

BOG pathway. The probability distributions of these parameters are chosen based on 

literature. 5000 Monte-Carlo simulation runs are conduced and analyzed using R software. 

The simulation results are used to analyze the empirical distribution of MFSP and give 

interval estimators of MFSP. These estimators could capture the economic feasibility of 

BMG pathway under uncertainty.  

Triangular distributions and normal distributions are commonly suggested 

distributions for parameters in the literature [74]. Two cases are considered in this study. 

In the first case, all of these parameters are assumed to follow triangular distributions with 

the same ranges used in the sensitivity analysis due to data availability limitation. In the 

second case, these variables are assumed to follow multivariate normal distribution with 
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means vector 𝜇 equal to their base level and variances equal to one sixth of the range of 

their triangular distributions. Analysis based on similar settings for BOG pathways are 

available in literature [11].  It shows that the normal distributions case has a larger mean 

for MFSP (5.46 $/GGE to 6.23 $/GGE). Both cases show that more than 66% of runs have 

MFSP exceeding 5 $/GGE. Note that these results are based on the independent 

assumptions among parameters. 

Furthermore, in order to capture the interactions among parameters, the correlation 

coefficient of TCI and CIF 𝜌 is assumed to be 0.5 to illustrate the positive correlations 

between these two parameters while other correlations are assumed to be zero to indicate 

independence. In other words, these four parameters follow multivariate normal 

distribution in Eq. (2). 

 𝑁 𝜇, Σ ,			𝑤ℎ𝑒𝑟𝑒		𝜇 = 𝜇f®®, 𝜇lQ, 𝜇¯Qf, 𝜇Qfl ?	 

𝑎𝑛𝑑	Σ =

𝜎f®®� 0
0 𝜎lQ�

0														 0
0															 0

0					 0
0					 0

𝜎¯Qf� 𝜌𝜎¯Qf𝜎Qfl
𝜌𝜎¯Qf𝜎Qfl 𝜎Qfl�

    (2) 

Figure 3.5(a) includes the probability density function of MFSP from MC 

simulation. The normal distributions scenario has a higher mean than the triangular 

distribution scenario (5.5 $/GGE to 4.5 $/GGE) and this is consistent with the BOG 

literature [11]. The empirical cumulative distribution of MFSP is shown in Figure 3.5(b). 

These results show that 33% of the simulation runs yield a MFSP that are less than 5 $/GGE 

and 15% of the runs have a MFSP that exceed 6 $/GGE in the triangular distribution 
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scenario. Meanwhile, in the normal distribution scenario, 12% of the simulation runs yield 

a MFSP that are less than 5 $/GGE and 25% of the runs have a MFSP that exceed 6 $/GGE. 

Both distributions show the range of MFSP is about 4-7 $/GGE. A 95% confidence interval 

based on empirical distribution is [4.2, 6.7] $/GGE for triangular distribution scenario and 

[4.5, 6.7] $/GGE for normal distribution scenario. The wide range of MFSP and their high 

probability to exceed 6 $/GGE are consistent with the Monte-Carlo simulation results of 

BOG pathway. These confidence intervals also verified that both pathways seem to be 

economically not attractive for a 2000 MT/D facility. In addition, assumptions for 

distribution as well as its variance covariance structure can take significant impact on the 

uncertainty analysis. 

 

(a) 
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(b) 

Figure 3.5 Probability density function (a) and empirical cumulative distribution (b) of 

MFSP from MC simulation  

The analyzes show that BMG pathway could achieve an IRR of 10.00% and BOG 

pathway could achieve an IRR of 3.32% by assuming the biofuel market price is 3.5 

$/GGE. IRR and MFSP are indicators of economic feasibility for a pathway. Based on the 

literature, TEA studies of a single 2000 MT/D facility typically set IRR to be 10% and 

evaluate the MFSP to compare against prevailing market price. The MFSP of 

thermochemical cellulosic biofuel pathways ranges from 1.82 $/GGE to 7.32 $/GGE due 

to variations in technical settings and assumptions [8]. There are also studies use IRR as 

analysis output. For instance, the expected value of facility IRR is 13.1% for bio-oil 

upgrading pathways and 8.4% for bio-oil gasification of biohydrogen under biofuel market 

price [10, 64]. As indicated in Figure 3.2, single facility IRR is highly affected by plant 

sizes and fuel selling prices. However, an IRR higher than 10% often indicates an attractive 
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investment. It’s known that the biofuel producer not only could gain profit by selling 

biofuel, but also could generate revenue by selling the renewable identification numbers 

(RINs) credits [75]. RINs are used to demonstrate compliance with the RFS. Cellulosic 

RINs price was about 0.78 $/RIN in 2012 and 0.42 $/RIN in 2013 [76]. As shown in Figure 

3.6, with a cellulosic RINs price of 0.5 $/RIN, BMG pathway could achieve an IRR of 

16.22% and BOG pathway could achieve an IRR of 9.53%, which would make both 

pathways more economic competitive. 

 

Figure 3.6 The relationship between RIN price and IRR 

In this section, the results in above analysis are summarized to provide a 

comprehensive comparison between BOG pathway and BMG pathway. 

For a single plant size of 2000 MT/D without consider the supply chain 

configurations, the economic performance of BOG and BMG pathways are similar in terms 

of MFSP. For a single facility, the break-even point of plant size is 1900 MT/D for both 
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pathways. BOG pathway could achieve a 10% IRR at plant size of 5000 MT/D while BMG 

pathway could achieve 10% IRR at plant size of 6000 MT/D. Large plant size is preferred 

for both pathways due to the economies of scale. 

The supply chain analysis results show BMG pathway is more economically 

feasible than BOG pathway in Iowa when realistic supply chain configurations and 

constraints are considered. Different production pathways could have its preferred supply 

chain structure. BOG pathway is more suitable for a decentralized supply chain structure 

while BMG pathway is more suitable for a single facility supply chain structure. The supply 

chain configuration demonstrates the trade-off between feedstock shipping cost and the 

capital investment of multiple facilities in different scenarios. 

Both cases in the Monte-Carlo simulation results for single 2000 MT/D facility 

show that the range of MFSP is about 4-7 $/GGE for BMG pathway. These results indicate 

that even through BMG pathway has better economic performance than BOG pathway, 

both pathways are at high risk at this point. 

This study is subject to a number of limitations. First, the supply chain parameters 

such as fuel prices, shipping costs are assumed to be deterministic, stochastic should be 

considered in future study. Second, the capital and operation cost at different plant sizes 

are roughly estimated by economies of scale. Future study could achieve a more precise 

estimate by modeling the diversity of parameters such as scaling factors and labor costs. It 
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should be noted that as a general framework, other biofuel production pathways could be 

evaluated considering supply chain configurations using the same procedures.   

3.4 Conclusion 

In the paper, a new TEA method considering supply chain configurations has been 

introduced. The proposed approach is illustrated with a case study to compare two 

competitive pathways in Iowa. The results indicate that biomass gasification pathway has 

better economic performance than hybrid fast pyrolysis and bio-oil gasification pathway 

under current technology status. Hybrid fast pyrolysis and bio-oil gasification pathway is 

more suitable for a decentralized supply chain structure while biomass gasification 

pathway is more suitable for a single centralized facility supply chain structure.  
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CHAPTER 4 A FARM-LEVEL PRECISION LAND MANAGEMENT 

FRAMEWORK BASED ON INTEGER PROGRAMMING3 

 

Abstract 

Farmland management involves several planning and decision making tasks 

including seed selection and irrigation management. A farm-level precision farmland 

management model based on mixed integer linear programming is proposed in this study. 

Optimal decisions are designed for pre-season planning of crops and irrigation water 

allocation. The model captures the effect of size and shape of decision scale as well as 

special irrigation patterns. The authors illustrate the model with a case study on a farm in 

the state of California in the U.S. and show the model can capture the impact of precision 

farm management on profitability. The results show that threefold increase of annual net 

profit for farmers could be achieved by carefully choosing irrigation and seed selection. 

Although farmers could increase profits by applying precision management to seed or 

irrigation alone, profit increase is more significant if farmers apply precision management 

on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis 

tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to 

explore the impact of precision agriculture.   

                                                
3 This chapter of dissertation has been published in PLOS ONE 
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4.1 Introduction 

Farmland management under climate change and population growth is a pressing 

challenge that is becoming increasingly important due to food security considerations. The 

Institute for Operations Research and the Management Sciences (INFORMS), the leading 

professional association in analytics and operations research along with industrial interests, 

encouraged researchers to address the problem of feeding millions of people throughout 

the world who face hunger every day. There has been a growing body of literature on crop 

rotations at a regional scale [12, 13], land use patterns, and policy and environment issues 

on a farm scale [14]. Precision agriculture has attracted increasing attention in the 

community of farmland management. Over the years, the precision agriculture philosophy 

has enriched from simply "farming by soil" to a comprehensive system including irrigation 

planning, phenotypic selection, vehicle guidance systems, product quality and 

environmental management etc. [3-5]. As the demand for agricultural products increases, 

water and arable land become significant factors to improved agricultural production. Each 

year, farmers have to make decisions about what crops to plant given knowledge about the 

soil on their respective farms. Farmers need to select seed and plan for irrigation carefully 

to ensure maximum benefit from farming. Thus, crop planning and irrigation water 

management on a farm scale are imperative for improved agricultural productivity and 

sustainable development [7]. 

At the farm scale, farmers have a particularly strong incentive to optimize their 

water usage when the irrigation water price is high and the volume of available water is 
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limited [77]. However, optimal usage of irrigation water resources requires efficient 

techniques and decision making support. There are mainly two approaches for this. On one 

hand, seed hybrid selection is one method to improve water utilization. With the 

development of phenotype prediction and genotype selection, it is possible to utilize the 

high yield and drought resistant crop seeds. These new seed types give a farmer more 

flexibility to plant a variety of seeds on a farm, but also increase the difficulty for optimal 

pre-season seed planning. Alternatively, it is suggested that deficit irrigation is a more 

efficient method for water usage [78]. Deficit irrigation refers to the method that distributes 

a limited amount of irrigation water to satisfy essential water needs of plants [79]. Deficit 

irrigation could increase system benefits by saving water recourses, at the cost of individual 

benefits, by decreasing crop water allocation, especially during less critical periods of 

water demand. There are two major methods to implementing deficit irrigation for 

farmland. The first is to increase the interval between irrigation events. In other words, 

continue to irrigate with the same amount of water per irrigation as in the past but decrease 

the irrigation frequency (increase the number of days between irrigations). The second 

method of deficit irrigation is to irrigate at the same frequency as normal, but apply less 

water at each irrigation so that only a partial saturation level is achieved [80]. 

Mathematical programming has been widely used in farmland management, 

especially in irrigation management. Singh reviewed the literature in modeling, planning, 

and optimization of irrigation management with a focus on applications of different 

modeling techniques [81]. Sethi et al. developed a linear programming optimization model 
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to find maximum annual net return for cropping and groundwater management [7]. The 

model was applied to a coastal river basin in India under different soil types, cropping 

patterns, and types of crops. Georgiou and Papamichail used simulated annealing and a 

gradient descent algorithm for reservoir and crop planning optimization [79]. Their method 

accounted for variable reservoir inflows and climate variability for crop planning. Wardlaw 

and Bhaktikul applied a genetic algorithm to optimize the delivery of water flows to 

minimize the distribution losses of an open race irrigation distribution system [82]. The 

major constraints in this study related to in-field soil moisture balances as well as canal 

capacities. Nagesh Kumar et al. used genetic algorithms for real-time reservoir operation 

management of multiple crops [83]. The study aimed to maximize the total yields from all 

crops considering reservoir inflow, the heterogeneous nature of soils, and crop response to 

the level of irrigation. Brown et al. used simulated annealing for on-farm irrigation 

scheduling considering seasonal water limits [77]. The objective was to maximize farm 

profit and was evaluated with a time-series simulation based on realistic plant growth 

models. Smout and Gorantiwar presented a water allocation linear programming model for 

optimizing the use of irrigation water to a medium irrigation scheme in India [84]. The 

model captured the deficit irrigation for each crop-soil-region combination. Yamout and 

El-Fadel developed a linear programming for setting policies for optimal water resources 

allocation on a regional scale [85]. Based on their study, the factors that greatly affect the 
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water allocation scheme include profitability, public acceptability, and the effect of 

resources depletion.  

It should be noted that most of existing studies focus on large scale management, 

such as, optimal irrigation and crop management on regional scale, and optimal scheduling 

for irrigation reservoir system. However, optimal on-farm level planning and irrigation 

scheduling remain a challenge from the research and practical perspectives [3]. For the 

studies focused on-farm level management, the granularity is typically a whole farm level, 

such as irrigation scheduling and crop rotation for the entire piece of land. Additional 

investigations are necessary to study the effect of the precision levels for on-farm 

management. In summary, majority of the literature focus on maximizing economic 

benefit, while maximizing yield and water use effectiveness were also adopted in several 

studies. Crop selection and irrigation management are among the main decisions to be 

made. Realistic constraints such as seasonal water limits, the heterogeneous nature of soils, 

and crop response to the level of irrigation applied are often considered. In this study, the 

proposed model aims at maximizing economic benefit by applying optimal decisions on 

crop selection and irrigation management. Seasonal water limits, soils features are 

considered. In addition, spatial structure and management scales are also considered in the 

proposed model to achieve a farm-level precision land management. 

Corn, which is widely used for grain processing, food, beverages, livestock feed, 

and ethanol, takes up to one-third of cropland in the U.S. and is the nation's biggest crop 

economically. Corn receives the most irrigation water overall of American crops: 
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approximately 19 billion cubic meters annually [86]. Eighty-seven percent of irrigated corn 

in the U.S. is grown in high or extremely high water stress regions such as the Great Plains 

and the Central Valley in California, and over half of it depends on groundwater from the 

over-exploited High Plains aquifer. Extreme weather events due to climate change affect 

the corn industry significantly. For instance, irrigation water costs have soared to 

$0.89/cubic meter in 2015 from approximately $0.11/cubic meter in 2014 in the Fresno-

based Westlands Water District due to severe drought in California. The devastating 

Midwest drought of 2012 drove corn prices to a record of $315/metric ton. These facts 

provided motivations for this study. 

Motivated by the gap between theoretical decision making challenges and the 

pressing application need in reality, the objective of this study is to develop a mixed integer 

linear programming model to provide decision support for customized precision farmland 

management. In the proposed model, decisions for pre-season seed selection and irrigation 

scheduling are made based on management properties such as types of soil, spatial 

structure, and management scales under a series of realistic constrains. Careful 

consideration was given to the model framework so that it could easily account for weather 

stochasticity in the future. 

The remainder of the paper is organized as follows: in Section 2, the problem 

statement for the farm-level precision land management model is presented. The basic 

mixed integer linear programming model is introduced in Section 3. The authors illustrate 

the method with a case study in California and discuss the extension and modification of 
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the basic model in Section 4. Finally, the paper concludes with a summary of research 

findings and potential research directions in Section 5. 

4.2 Problem Statement 

Farmland management involves a sequence of planning and decision-making 

processes, the primary decision includes the scales and options of management. This paper 

focuses on solving two problems for farm-level precision land management. The first 

problem is to select the optimal crop management options within a customized 

management scale. The management options include seed type selection and irrigation 

frequency. The second problem is to choose the suitable management scale (size and shape) 

for these options. In other words, the model aims to assist the farmers to find the balance 

between precision level and management effort. 

The "land unit" is defined as the minimum size over which management options 

are applied. The shape of a land unit is assumed to be square and the size of a land unit is 

informed by the measurement accuracy of soil types, agricultural working space, irrigation 

scale, and other physical limitations. Land unit could be viewed as the most precise block 

for a decision making level in farmland management. On the other hand, "decision unit" is 

defined as the farmer chosen scale for practical land management, which is a trade-off 

between convenience and precision. The size of decision unit could be any integer multiple 

of a land unit while the shape of a decision unit is a rectangle. A decision unit could be as 

small as one land unit or as big as the whole farmland. All the treatments and management 

options such as seed type selection and/or irrigation frequency setting in a decision unit are 
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the same (among all land units in that decision unit). Based on these definitions, the 

problems could be a restatement of how to choose the scale of the decision unit and how 

to make optimal management option decisions within each decision unit. The hierarchical 

structure between land units and decision units make the proposed model flexible such that 

it can be extended to a farm that contains multiple disjoint pieces of land as well as to apply 

it to larger scales. 

Several assumptions were made in the proposed model. It is assumed that the 

irrigate system already exists and it could apply different management options for each 

decision unit. It is also assumed that soil types will only affect the ability of holding water; 

they have the same nutrition levels [87]. The amount of water used in each irrigation is 

based on soil types, and the soils will achieve their saturated level after each irrigation [88]. 

It is assumed that irrigation will stop when the crops are dead. It should be noted that 
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additional spatial constraints are included in the case study section to achieve a 

comprehensive analysis. 

4.3 Model Formulation 

In this section, the mixed integer linear programming model for farmland 

management problem is introduced. The objective is to maximize the farmer's annual net 

profit when considering a specific farm. 

4.3.1 Mathematical notations 

The mathematical notations are summarized in Table 4.1. 

Table 4.1 Notations for proposed model 

Subscripts 
𝑟 1,2, … , 𝑅 irrigation frequency 
𝑠 1,2, … , 𝑆 seed type 

𝑖(𝑟, 𝑠) 1,2, … , 𝐼 management option 
𝑗 1,2, … , 𝐽 land condition (soil types) 
𝑚 1,2, … ,𝑀 location of land unit in the horizontal axis 
𝑛 1,2, … , 𝑁 location of land unit in the vertical axis 

𝑢(𝑚, 𝑛) 1,2, … , 𝑈 land unit (and its location) 
𝑣 1,2, … , 𝑉 decision unit 

Binary decision Variables 
𝑥[´ whether management option 𝑖 is used in land unit 𝑢 
𝑦µ´ whether irrigation frequency option 𝑟 is used in land unit 𝑢 
𝑧�´ whether seed type 𝑠 is used in land unit 𝑢 

Parameters 
𝐴 size of total farmland 
𝐵· set of land unit in decision unit 𝑣 
𝐸 size of land unit 
𝐶d overhead cost (cash and non-cash) 
𝐶¢ unit cost for water 
𝐶[U
¸  fixed cost of each irrigation for management option 𝑖 used for land 

condition 𝑗 
𝐶[Un other farm operating cost for management option 𝑖 used for land 

condition 𝑗 
𝐿U´ land conditions 𝑗 for land unit 𝑢 
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Table 4.1 continued 

𝑊[U amount of water needed for irrigation when management option 𝑖 used 
for land condition 𝑗 

𝑌[U unit maize yield when management option 𝑖 used for land condition 𝑗 
𝑌 minimum yield requirement for the farmland 
𝐵n budget limit for other farming cost 
𝐵¢ budget limit for irrigation 
𝑅» unit revenue for selling biomass  
𝑃 unit market corn price 
𝑊P irrigation water limitation per season 
𝑊S unit pre-irrigation water amount 
𝑍 objective value 
𝛼 residues index 
𝛽 sustainability factor 
𝛾 water use efficiency 

4.3.2 Objective function 

The objective is to maximize the farmer's annual net profit, which is defined as the 

total revenues subtracted by total system costs during the farming process. The binary 

decision variable 𝑥[´ represents whether management option 𝑖 is used in land unit 𝑢. The 

total revenues include revenue from selling crop grain as well as net revenue from selling 

the by-product crop residues. For example, corn stover, which is the residue after 

harvesting the corn grain, is an important feedstock for production of second generation 

biofuels [18]. Alpha (𝛼) is the residues index that is defined as the mass ratio between crop 

grain and biomass residues. Beta (𝛽) is the sustainability factor which is the percentage of 

biomass residue that has to be left in the field to sustain the soil nutrients. 

Evapotranspiration, also known as crop water use, is defined as the water removed from 

the soil by evaporation from the soil surface and transpiration by the plants. Evaporation 

can account for 20% to 30% of growing season evapotranspiration. Gamma (𝛾) is defined 



79 
 

as the water use efficiency, the ratio between evapotranspiration and total purchased 

irrigation water. Table 4.2 summarizes the mathematical formulation of components in the 

objective function. 

Table 4.2 Components in the objective function 

Component Mathematical formulation	
Crop sales revenue 𝑥[´a

´WX
Y
UWX

f
[WX 𝐿U´𝑌[U𝐸𝑃		

Residue sales revenue 𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´𝑌[U𝐸𝛼(1 − 𝛽)𝑅»/(1 − 𝛼)		

Other farming operating cost 𝑥[´a
´WX

Y
UWX

f
[WX 𝐶[Un𝐿U´𝐸		

Water purchasing cost 𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´𝑊[U𝐶¢/𝛾		

Irrigation labor and equipment 
cost 

𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´𝐶[U

¸𝐸		

A variety of system costs have been considered in the model including labor costs, 

irrigation costs, machinery costs, seed costs, chemicals costs, cash overhead, and non-cash 

overhead. Cash overhead consists of various cash expenses during the year that are 

assigned to the whole farm such as insurance, office expenses, machinery maintenance, 

and field supervisors' salary. Non-cash overhead includes capital recovery cost (annual 

depreciation and interest costs) for equipment and other farm investments. In order to have 

a concise expression and focus on the impact of irrigation water management, several costs 

including labor costs, machinery costs, seed costs, and chemicals costs are lumped into a 

single cost called "other farm operating costs". Irrigation cost includes water purchasing 

cost and a fixed cost of labor and equipment. 𝐶d represents the overhead cost per acre (cash 

and non-cash). The objective function is thus defined as follows. 

max
¿ÀÁ

𝑍 = 𝑥[´
a

´WX

Y

UWX

f

[WX
𝐿U´ 𝑌[U𝐸𝑃 + 𝑌[U𝐸𝛼 1 − 𝛽 𝑅» 1 − 𝛼

− 𝑥[´
a

´WX

Y

UWX

f

[WX
𝐿U´ 𝐶[Un𝐸 + 𝐶[U

¸𝐸 +𝑊[U𝐶¢ 𝛾 − 𝐶d𝐴 
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4.3.3 Constraints 

The farming process requires upfront investment, which affects a farmer's cash 

flow. Farmers set up budget limits for certain cost categories. Constraint (1) ensures the 

total irrigation cost is below its budget. Constraint (2) ensures that other farm costs are 

below budget limit. No budget limit is set for overhead cost since it is independent from 

management decisions. For the consideration of food safety and a stable market, the 

government will encourage farmers to produce at least certain amount of crop in some 

cases. Similar total yield constraints are needed when there is a contract for a yield 

mandate. These situations are indicated in Constraint (3). Meanwhile, as a vulnerable and 

valuable resource, the amount of irrigation water is often limited in a growing season. This 

irrigation water limitation is reflected in Constraint (4). Constraint (5) ensures that the 

management decisions of land units are the same within a certain decision unit. Constraint 

(6) ensures that the irrigation frequency decisions are uniform within a certain decision 

unit. Constraint (7) ensures that the seed type selection decisions are uniform within a 

certain decision unit. It is noteworthy that the decision unit for irrigation is not necessarily 

the same as the decision unit for seed type. Only one type of decision could be made for 

each land unit, as indicated in Constraints (8) and (9). Constraints (10) and (11) govern that 

comprehensive decisions should be chosen from the union feasible region for each 
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individual decision. The binary nature of decision variables are defined in the Constraint 

(12). 

𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´ 𝐶[U

¸𝐸 +𝑊[U𝐶¢ 𝛾 ≤ 𝐵¢     (1) 

𝑥[´a
´WX

Y
UWX

f
[WX 𝐶[Un𝐿U´𝐸 ≤ 𝐵n       (2) 

𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´𝑌[U𝐸 ≥ 𝑌       (3) 

𝑥[´a
´WX

Y
UWX

f
[WX 𝐿U´𝑊[U 𝛾 +𝑊S𝐴 ≤ 𝑊P      (4) 

𝑥[´＝𝑥[´Â			∀	𝑢, 𝑢? ∈ 𝐵·        (5) 

𝑦µ´＝𝑦µ´Â			∀	𝑢, 𝑢? ∈ 𝐵·        (6) 

𝑧�´＝𝑧�´Â			∀	𝑢, 𝑢? ∈ 𝐵·        (7) 

𝑦µ´®
µWX = 1			∀𝑢         (8) 

𝑧�´�
�WX = 1			∀𝑢         (9) 

𝑥[´ ≤ 𝑦µ´			∀𝑢          (10) 

𝑥[´ ≤ 𝑧�´			∀𝑢          (11) 

𝑥[´, 𝑦µ´, 𝑧�´ ∈ 0,1 		∀𝑖, 𝑟, 𝑠, 𝑢       (12) 

4.4 Case Study 

In California, the total area planted for field corn was 210 436 hectares (520,000 

acres) with the highest corn grain production occurring in Central Valley. Meanwhile, the 
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overextended Central Valley aquifer is one of the most vulnerable water resources, which 

could create additional risks for the $65 billion-a-year corn industry [86]. As an irrigated 

summer crop, the amount of irrigation applied to California field corn will largely 

determine how much water is available to the crop. Thus, it is imperative to implement 

precision farm management in this area. In this section, a farm located in Yolo County, 

Central Valley, California, is selected to conduct a case study and illustrate the proposed 

model. The size of the land is 65.56 hectares (162 acres) and the shape of the land is square. 

Extensions of the basic model on different implementation conditions are also discussed. 

4.4.1 Data source 

In the Central Valley, corn planting occurs from March through June and the time 

to mature is about 80 days to 130 days depending on the variety. Broadly, corn 

development can be divided into the vegetative stage that lasts through tassel and the 

reproduction stages that include silking, pollination, and grain filling. Since the plants don't 

consume much water in the early vegetative stage (first 4weeks) and do not need much 

irrigation, this study only considers the reproduction stages which involves irrigations 

(approximately 15 weeks). A variety of soil textures are present in the farms used for field 

corn production. Sandy soils are preferred for early plantings because they warm rapidly 

in the spring. Heavier soils are productive, provided they are well drained and properly 

irrigated. The soil information up to 0.91 meters (36 inches) in depth is collected using the 

Web of Soil Survey. This information is used to define six integrated soil types (sand, 

loamy sand, sandy loam, loam, silt loam or clay loam, and clay) based on the Unified Soil 
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Classification System (USCG). The water holding capacity of the soil types are adapted 

from literature [89, 90]. As shown in the upper part of  Figure 4.1, there are five different 

types of soil in this farmland. Type 1 is the sand soil and Type 5 is the clay soil. This piece 

of land is divided into 324 land units and each land unit is a square with an acreage of 0.2 

hectares (0.5 acres). If there are more than one soil type in a land unit, majority vote is 

applied to decide the soil type for that land unit, as shown in the lower part of Figure 4.1. 

 

Figure 4.1 Satellite map (upper) and integrated map (lower) for soil types 

The Central California Irrigation District (CCID) is one of the largest irrigation 

districts in the Central Valley, serving over 1,600 farms across more than 57870 hectares 
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of prime farmland. The price of irrigation water is volatile and varies significantly by 

location, water usage, and water type (well water or surface water). In this study, farmers 

use both well and surface water at an average price of $0.073/cubic meters ($90/acre-foot). 

Seasonal irrigation water limits are set when insufficient water is available due to weather 

conditions and government regulations. For example, the CCID set seasonal irrigation 

water limits to be 2664 cubic meters (2.16 acre-feet) in 2014 and 3700 cubic meters (3 

acre-feet) in 2015. The baseline of total water available is set to be 3083 cubic meters (2.5 

acre-feet) per season in the case study. Six irrigation frequencies are available for selection 

(every day, every week, every other week, every three weeks, every four weeks, and never). 

Irrigation cost and overhead cost information are based on estimates from the Natural 

Resources Conservation Service (NRCS) and University of California Cooperative 

Extension [91]. Currently, almost all corn grown in California is irrigated by surface 

irrigation. In this study, the surge irrigation system is used with a water use efficiency of 

0.6, meaning that 40% of the purchased water is lost during transportation, irrigation, and 

soil penetration. A pre-irrigation of 822 cubic meters (8 acre-inches) is applied in March. 

Other farm operating costs are estimated as $1333/hectare ($358 for machinery, $91 for 

labor, and $884 for Seed, chemicals); and these costs are uniformly applied [92]. 

Researchers from the University of California, Davis, reported a yield range from 

12.54 to 18.81 metric ton per hectare with a minimum 1131 cubic meters survival water 

requirement for corn. In this analysis, twelve candidate grain corn seeds are created: three 

seeds for each of four major seeds types, including stringy, drought, smart, and extravagant. 
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These seeds have different levels of drought resistance and have a yield range from 13.17 

to 18.81 metric ton per hectare [93]. These seeds share the same time needed to mature 

with a total evapotranspiration of approximately 63.5cm. The planting density is on 

average 83950 per hectare for each seed type. The average annual price received by U.S. 

corn producers from marketing years 2000 to 2015 is $141/metric ton, with a range from 

$71.65/metric ton to $271.26/metric ton according to the National Agricultural Statistical 

Service (NASS) of the U.S. Department of Agriculture. The baseline for corn market price 

in the case study is set at $141/metric ton. Corn stover could be used to serve as an abundant 

source of winter feed for cattle, and can also be used as the feedstock for biofuel production. 

The annual corn stover yield is estimated based on corn grain yield with a residue harvest 

index of 0.5, meaning 50% of the above ground biomass is grain and the amount of corn 

stover is the same as grain [68]. Papendick and Moldenhauer [94] showed that a 30\% 

removal rate results in 93\% soil cover after residue harvest. Thus, the sustainability factor 

(𝛽) is set to be 0.3. It is assumed that the farm under consideration does not have a baler 

and therefore prefers to sell unharvested stover and let the buyer do harvesting. The unit 

revenue for selling unharvested cornstalks is $35 per metric ton [95]. All cost data have 

been adjusted for inflation to 2015 U.S. dollars. 

4.4.2 Results for Model I 

Model with Constraint (1) to Constraint (4), and Constraint (12) is defined as the 

Model I. The objective function and major constraints are consistent with the literature [7, 

84]. In Model I, the size of a decision unit is set to be equal to the land units. Spatial 
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structure and management scales are included in other models which will be defined later. 

Figure 4.2 shows that the managing option decisions are mainly chosen by the soil 

conditions; sandy land needs irrigation more frequently while clay land needs less 

irrigation. All decision unit chose the same seed type. 

 

Figure 4.2 Irrigation decisions for basic model 

These results are consistent with a "farming by soil" philosophy [3]. Part of the 

sandy land is idle due to the total irrigation water amount limitation. The net profit for this 

65.56 hectare of farmland is $29,615, which yields to a marginal profit of $451.85/hectare. 

In order to have a baseline for comparing with previous literature and different model 

settings, a baseline scenario is introduced. In the baseline scenario, the size of a decision 

unit is set to be the entire land (uniform decisions for the whole farmland). The model 

yields to an average profit of $113.22/hectare under this scenario. University of California 
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Cooperative Extension reported an average profit range of $72.65/hectare to 

$135.91/hectare under same corn price with similar conditions [91]. The baseline 

scenario’s profit located at higher part of this range. The average profit of $113.22/hectare 

from baseline scenario will be used for comparison between difference models.  

Comparing results from Model I with the baseline scenario, although the Model I 

increase the profit significantly, these results require the most precise level of management, 

for example, valves in the surge irrigation system need to be switched at each irrigation. 

Model I should be regarded as the practice with highest precision requirements, which will 

serve as the upper bound on profitability. 

4.4.3 Risk analysis 

It should be noted that selection of modeling parameters is critical for the analysis 

results. In reality, the parameters in the model can exhibit great uncertainty due to market 

fluctuations, and extreme weather events. Sensitivity analyses, which consider the 

influence of one parameter on the objective at a time by assuming other parameters as 

constant, have been adopted as a paradigm to evaluate uncertainties in the parameters and 

their influence [11]. The parameters under investigation include corn market price 𝑃 , 

irrigation water price 𝐶¢ , other farm operating cost 𝐶[Un , overhead cost 𝐶d , water use 

efficiency 𝛾, and seasonal water limit 𝑊P. The ranges of corn market price 𝑃 and irrigation 
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water price 𝐶¢ are based on historical data, while the ranges of other parameters under 

investigation are ±25% of the base level. 

As shown in Figure 4.3, the parameters with largest impact on annual net profit are 

corn market price 𝑃 and irrigation water price 𝐶¢. The significant variation of these two 

parameters leads to high leverage for the annual net profit. Corn market price is influential 

because it is the key factor for gross income. The trigger price of corn market price for 

growing is $115.35/metric ton; corn market price lower than this point will lead to 

insufficient profit to cover farm costs. On the other hand, the termination price of irrigation 

water price is $0.28/cubic meters; irrigation water price that is higher than this point will 

make farming unprofitable. Extremely high irrigation water prices due to special weather 

events will affect net profit significantly. The annual net profit is also sensitive to other 

farm operating cost 𝐶[Un, and water use efficiency 𝛾, which gives us insight about potential 

directions to increase annual net profit. 

 

Figure 4.3 Sensitivity analysis of model parameters on annual net profit 
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Due to market fluctuations and climate change, making decisions under specific 

scenarios became a widely concerning problem. In 2014 and 2015, several California 

irrigation districts could not provide irrigation water for Class II lands, which refers to soils 

with moderate limitations that reduce the choice of plants or require moderate conservation 

practices. Farmers of these lands have to pay for private well water at an auction price over 

$0.41/cubic meters, and the water suffers a loss factor related to the field's distance from 

the well source. A third of the Westlands district’s farmland (242811 hectares) were left 

unplanted in 2014 due to especially high irrigation water prices. The local government 

asked the farmers to conduct risk analysis before making decisions [96]. A risk analysis 

tool based on our basic model could be easily applied to these farmlands and give 

appropriate recommendations. The analysis shown already indicates that corn market 

prices and irrigation water prices are dominating parameters for annual net profit. The 

simultaneous change of corn market prices and irrigation water prices by assuming other 

parameters hold constant can give us insight about the profit region. As shown in Figure 

4.4, Region A is the nonprofitable region and Region B is the profitable region. If the 



90 
 

speculated corn market price is relatively low and the irrigation water price is relatively 

high, farmers should change the crop type or leave the land idle to avoid further loss. 

 
 

Figure 4.4 Contour plot (upper) and surface plot (lower) for profit region, Region A is the 

nonprofitable region and Region B is the profitable region, the darkness indicates the 

profit level 
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4.4.4 Discussion 

In this section, some special cases are discussed to illustrate the flexibility of the 

basic model. Additional constraints are included to make the model robust under different 

realistic assumptions such as spatial structure and management scales. 

Spatial relationship among land units are an essential part of the farmland model. 

In this section, the effect of size and shape of decision unit on annual profit are discussed. 

Even though precise farmland management will lead to more profit, it requires more 

management effort. The precision level and standardization level constitute a pair of 

tradeoffs. It is more realistic to make decisions on a larger scale and on a regular shape. In 

other words, each decision unit should contain multiple neighboring land units, and all land 

units in the same decision unit should share the same seed type and irrigation frequency. 

Three decision unit shape structures are investigated, namely square structure, row 

structure, and column structure. Meanwhile, several decision unit sizes are considered in 

order to find out the effect of scales. 

Constraint (5) is added to the Model I; this new set of constraints ensure that the 

management decisions are uniform within a certain decision unit. This new constrained 

model will be referred to as Model II. Model I is a special case of Model II with the scale 

of decision units equal to the land unit. 

Sixteen scenarios are generated based on the size, shape, and number of decision 

units. The first scenario, which applies uniform decision for the whole farmland, is the 

theoretical lower bound for this model and serves as a baseline for comparison. The gain 
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ratio is defined as the annual net profit ratio between a certain scenario and the first 

scenario. Table 4.3 summarizes the annual net profit and gain ratio for each scenarios. As 

increasing the numbers of decision units (decreasing the size of decision units), the gain 

ratio is increased in general. These results indicate that detailed precision farmland 

management will bring high net profit. It also shows that the square structure is preferred 

because it has a higher gain ratio for the same size of decision unit and it has better 

flexibility. Table 4.3 also shows that the marginal benefit (of having more decision units) 

decreases. A highest gain ratio of 3.99 could be achieved by applying the philosophy of 

precision farm management. 

Table 4.3 Effect of decision unit 

Scenari
o  

 Number of decision 
unit  

 Shape of decision 
unit  

 Net profit 
(dollar)  

Gain 
ratio 

1 1  Square   7423 1.00 
2 2  Row    9954 1.34 
3 2  Column    8003 1.08 
4 3  Row   11009 1.48 
5 3  Column   15157 2.04 
6 4  Square   20672 2.78 
7 6  Row   13765 1.85 
8 6  Column   15157 2.04 
9 9  Row   16104 2.17 
10 9  Column   16516 2.22 
11 9  Square   20816 2.80 
12 18  Row   15918 2.14 
13 18  Column   16516 2.22 
14 36  Square           27148 3.66 
15 81  Square             27915 3.76 
16 324  Square              29615 3.99 

Up to this point, the model assumed that the decisions about seed type selection and 

irrigation frequency design are made simultaneously within each decision unit. However, 
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due to the limitation of irrigation system, applying different irrigation frequencies to each 

decision unit may be cumbersome. Motivated by this practical limit, now the model allows 

different precision levels (size and shape of decision unit) between seed type selection and 

irrigation frequency design. Variables 𝑦µ´  and 𝑧�´  are introduced to indicate that each 

decision unit for seed type selection could have multiple irrigation frequencies and vice 

versa. Constraints (6) to (11) are added to Model II, and this new model is referred to as 

Model III. Model II can be viewed as a special case of Model III with a certain irrigation 

pattern. 

Although Model III could capture any regular size and shape of decision unit in 

theory, three special irrigation patterns are investigated considering the irrigation system 

limitation, namely, Pattern 1: same irrigation frequency for each row (contains eighteen 

land units); Pattern 2: same irrigation frequency for each column (contains eighteen land 

units); and Pattern 3: same irrigation frequency for the whole farmland. 

For each irrigation pattern, sixteen scenarios of seed type precision levels are 

investigated. These scenarios have the same definitions as in Model II. One dimension of 

precision management could be applied using Model III. On one hand, the authors want to 

find out the effect on annual profit by changing the precision level of seed type alone under 

certain irrigation patterns. On the other hand, the authors also want to investigate the effect 

on annual profit by changing the precision level of irrigation frequency alone under certain 

precision level of seed type selection. Under the same precision level of seed type selection, 
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"relative gain for customized irrigation" (RGI) is defined as the net profit ratio between the 

highest profit (from Pattern 1, Pattern 2 or Model II) and profit for Pattern 3. 

Table 4.4 summaries the annual net profit for three irrigation patterns under sixteen 

scenarios of seed type precision levels. As shown in the last column of Table 4.4, the RGI 

ranges between 2.00 to 2.42, which means that if the farmers have already decided the 

precision level of seed types selection, approximately 100% to 142% increase of net profit 

could be achieved by applying customized irrigation management.  

Table 4.4 Effects of special irrigation patterns 

Scenario Net profit (dollar) RGI 
Pattern 1 Pattern 2 Pattern 3 

1 15529 16516  7423 2.22 
2 15041 16516  7423 2.22 
3 14484 16516  7423 2.22 
4 14814 16516  8100 2.04 
5 15529 16516  7423 2.22 
6 15529 16516  8781 2.35 
7 15403 16516  8100 2.04 
8 14590 16250  7423 2.19 
9 16104 16516  8184 2.02 
10 14610 15411  7592 2.18 
11 15878 16533  9681 2.15 
12 16104 16403  8201 2.00 
13 15894 16516  7522 2.20 
14 17345 15882 11235 2.42 
15 17718 18150 12111 2.30 
16 19001 18265 13404 2.21 
Best gain ratio 2.56 2.46 1.81  

These increases are more significant under square decision units for seed type 

selection. On the other hand, if the farmers only allow precision management on seed type 

selection and use uniform irrigation frequency for the whole farmland (Pattern 3), the best 
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gain ratio is 1.81. This result indicates that there is limited room for improving the net 

profit if farmers do not allow precision management on irrigation. When farmers allow 

some degree of precision management on irrigation (Pattern 1 and 2), the gain ratio will 

reach its upper bound at approximately 2.5. 

To find out the quantitative relationships between the annual net profit with the 

number and shape of decision units under each irrigation pattern, regression analyses is 

conducted. Based on the hereinabove data analysis, logarithmic functions could be used to 

capture the effect of increasing the number of decision units, and a square structure has 

higher annual net profit under similar conditions. The following linear regression model is 

selected because it fits the data well and is easy to interpret. 

𝑃R = 𝛽¤ + 𝛽X ln(𝑛) + 𝛽� ln 𝑛 𝐼 𝑆ℎ𝑎𝑝𝑒 = 𝑠𝑞𝑢𝑎𝑟𝑒 + 𝜀     (12) 

The response variable 𝑃R is the annual net profit and the explanatory variable 𝑛 is 

the number of decision units. 𝜀 is the random error that is not captured in the regression 

model, which is assumed to follow a normal distribution with mean zero and variance 𝜎�. 

𝐼(∗) is the indicator function which takes value one when conditions are met and takes 

value zero when conditions are not met. 𝛽¤ could be interpreted as the baseline of annual 

net profit when there is only one decision unit. 𝛽X could be interpreted as the increment of 

annual net profit when the natural logarithm of the number of decision units increases by 

one. This increment will change to 𝛽X + 𝛽� when a square structure is selected. The best 

linear unbiased estimates and coefficient of determination(𝑅�) are summarized in Table 
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4.5. These results show that choosing a square structure and having more decision units 

has a positive effect on the annual net profit. The effects of number and shape of decision 

unit are more significant when two dimensional precision management is applied. A 

logarithmic function could describe the accelerated decline of the effects from the number 

of decision units on the annual net profit quite well. 

Table 4.5 Summary of regression analysis 

Parameters Model II Pattern 1 Pattern 2 Pattern 3 
𝛽¤ 10245.2 14707.7 16319.62 7416.06 
𝛽X 2233.4 344.3 65.59 184.06 
𝛽� 1747.2 363.8 239.25 864.08 
𝜎 2583 502.6 275.7 275.3 
𝑅� 0.8738 0.8573 0.8131 0.9815 

In summary, farmers could gain an additional 10%-80% net profit by employing 

precision management on seed type selection under certain irrigation patterns, and farmers 

could gain as much as an additional 142% net profit by working precision management on 

irrigation under certain seed type selection policy. One-dimensional precision management 

is relatively easier to implement but has a lower net profit. Precision management for 

irrigation appears to be more beneficial. 

Besides confirming the dominant effect of crop prices and yields on net profit as 

stated in literature [91], this case study shows that irrigation water price, spatial structure, 

and management scales are also influential factors. The results from this case study show 
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great economic potential of precision farmland management, and this recommendation is 

consistent with the literature [77]. 

• Potential for sustainable water usage 

Although this study is mainly focused on economic analysis, it is important to take 

environmental issues into consideration. Water resources are limited and vulnerable, and 

corn is a thirsty plant. General strategies for coping with limited water include deficit 

irrigation of crops which can be stressed without significant loss of yield or quality, 

improving irrigation efficiency, improving crop genetics to develop varieties more tolerant 

to water stress, or planting other crops. 

Reducing water amounts below what is required for corn will result in biomass 

reduction and grain yield reduction. What is more, the irrigation systems commonly used 

for corn in California do not allow close management of water stress. Thus, significant 

water savings can't be obtained by withholding water from the crop at present. 

However, the method by which water is applied to the field could be improved. 

Strategies to maximize limited water include changes to irrigation management, design, or 

systems. Recall that in Model II and III, it is assumed that each land unit in a decision unit 

receives the same amount of water, which means some land units in a decision unit are 
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over-irrigated and some water resources are wasted. Model I could eliminate this waste by 

having a land unit scale customized irrigation management. 

Properly managed irrigation can apply a relatively uniform amount of water. 

However, application of high frequency may not be feasible with this system because of 

the labor input required for each irrigation. If farmers want to save water resources even 

further by applying deficit irrigation, new irrigation systems should be used such as 

sprinkler irrigation and traveling-gun irrigation. The proposed model could be easily 

modified to consider deficit irrigation. To illustrate this point, assume the irrigation 

technology could allow us to achieve at least partial saturation levels for a decision unit. 

Instead of assuming the corn cannot survive when it receives partial irrigation water, it is 

assumed that the yields of corn are depended by the saturation level. In other words, one 

more dimension of decision, the amount of irrigation water for each decision unit, are 

added in the model framework. 

In summary, Model I is a special case of Model II with 324 decision units. Model 

II is a special case of Mode III with a certain irrigation pattern. These nested relationships 

indicate the flexibility of the proposed model. 

4.5 Conclusions 

In the study, a farm-level precision farmland management problem for pre-season 

seed type selection and irrigation water management is introduced. A mixed integer linear 

program is proposed with discussion on extensions and varieties of the basic model on 

different implementation conditions. Farmland in California serves as a case study to test 
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the model's flexibility and economical optimality. The model gives qualitative descriptions 

and quantitative analysis for the management scale (number and shape of decision units). 

Special irrigation patterns are considered and the results show that the farmer's annual net 

profit could be significantly increased by applying one or two dimensional precision 

management decisions based on the proposed model. This model also serves as a decision 

making and risk analysis tool for farmers facing seasonal irrigation water limits and 

extreme drought conditions. 

Note that this study is subject to a number of limitations. Firstly, the weather 

conditions such as temperature and rainfall are not considered in this model. These weather 

parameters affect the evaporation level of plants, pre-irrigation amount, and moisture level 

of the soil significantly. In addition, as discussed in the risk analysis, the parameters are 

not certain. Thus, a linear programming model with constant coefficients cannot fully 

describe the decision making environment [97]. Other modeling methods such as stochastic 

programming, dynamic programming, and robust optimization could be investigated [68]. 

In addition, multi-period models are needed for deficit irrigation design and invest new 

irrigation system. 

The authors are working on a modified model which could take multi-period 

decisions of the seed hybrid and plant population selection, and amount of irrigation water, 

taking uncertain weather conditions and market price into consideration. This modified 

model would make the irrigation frequency and amount more flexible and precise. A 

stochastic program would be a natural fit to solve this problem; the first stage decision 
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could be which type of plant seeds to grow while the other stage decisions could be the 

land management options such as irrigation amount for each irrigation.  

In the case study presented to illustrate and validate this optimization model only 

considers a certain piece of land. However, the shapes of farmland could affect the 

agricultural machinery paths and the homogeneous features of the soil could affect the 

shapes and sizes of decision units [98]. Motivated by finite element analysis, other future 

work includes develop models that allow different shapes and sizes of decision units in a 

piece of land. Last but not least, the proposed model could be used to evaluate other crops 

as well; and the interaction among plants such as plant population, leaf cover, and water 

competition could be stressed in future research. 
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CHAPTER 5 A MULTI-STAGE STOCHASTIC PROGRAMMING MODEL FOR 

FARMLAND MANAGEMENT UNDER UNCERTAINTIES 4 

 

Abstract 

Farmland management and irrigation scheduling are vital components of 

productive agricultural economy. A multi-stage stochastic programming model is proposed 

to maximize farmer’s annual profit under uncertainties. The uncertainties under 

investigated include crop price, irrigation water availability, and precipitation amount. The 

first stage makes the pre-season decisions including the seed type selection and plant 

population selection, while the later stages determine when to irrigate and how much water 

should be used during each irrigation. The case study based on a farm in Nebraska show 

that a 10.22% profit increase could be achieved by taking corn price and irrigation water 

availability uncertainties into consideration using two-stage stochastic programming 

formulations. An additional 13.08% profit increase could be achieved by also taking 

precipitation amount uncertainties into consideration under multi-stage stochastic 

programming formulations. The stochastic model outperforms the deterministic model in 

the stochastic environment, especially when there is limited water supplies. These results 

                                                
4 This chapter of dissertation is preparing to submit to European Journal of Operational 
Research 
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indicate multi-stage stochastic programming is a promising way for farmland management 

under uncertainties and can increase farmers’ income significantly. 

5.1 Introduction 

As the world population increases and area of arable land decreases, it becomes 

vital to improve the productivity of the available farmland. For thoustands of years, 

drainage basins irrigation has been used to assist in the growing of agricultural crops, 

revegetation of disturbed soils in dry areas and during periods of inadequate rainfall. 

During recent decades, the advent of diesel and electric motors led to systems that could 

pump groundwater out of major aquifers and help increase the crops productivity. 

However, recent concerns have been raised regarding permanent loss of aquifer capacity, 

declining surface and groundwater supplies [99] and increased pumping costs [100]. Thus, 

decision making of management practices under limited water supplies is critical for 

sustainable agriculture and food security. 

Corn is the most widely adopted row crop in the U.S and takes up to one-third of 

cropland nationwide. It has been mainly used as food, livestock feed, and bio-energy 

feedstock. Irrigated corn accounts for nearly 20% of total U.S. corn production while 

occupying only 15% of areas. Eighty-seven percent of irrigated corn in the U.S. is grown 

in high or extremely high water stress regions such as the Great Plains and the Central 

Valley in California, and over half of it depends on groundwater from the over-exploited 
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High Plains aquifer. Corn occupies more irrigated acres in these area than any other crops 

[100] and receives the most irrigation water among all of American crops [86]. 

Evapotranspiration (ET), also known as crop water use, is defined as the water 

removed from the soil by evaporation from the soil surface and transpiration by the plants. 

ET is driven by a tremendous drying force the atmosphere exerts on soil or plant surfaces. 

Hence the magnitude of daily ET will vary with atmospheric conditions. High solar 

radiation and air temperatures, low humidity, clear skies, and high wind increase ET, while 

cloudy, cool and calm days reduce ET. For example, reported seasonal corn ET averages 

around 24 inches in the humid eastern area of Nebraska compared to 28 inches for the more 

semi-arid southwestern region of the state [101]. ET is also affected by growth stage, length 

of growing season, soil fertility, water availability, and the interaction of these factors.  

Deficit irrigation should be considerated where precipitation is low and irrigation 

water supply is restricted. Deficit irrigation refers to the method that distributes a limited 

amount of irrigation water to satisfy essential water needs of plants [79]. Reasons for 

limited water supplies include, but not limited to: restricted capacity of the irrigation well; 

restricted pumping allocations; reduced surface irrigation water supplies etc. When water 

supplies cannot fully compensate for crop ET, yields are reduced comparing to the fully 

irrigated crop. Under water-limited conditions, corn yields typically display a positive 

correlation with total seasonal water use. Grassini et al found that there is a linear 

relationship between potential grain yield and seasonal ET, and this relationship is valid 

across a wide range of grower fields and climatic conditions located in south-central 
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Nebraska [102]. On the other hand, applying additional irrigation beyond seasonal ET 

requirements can lead to leaching and/or water left in the soil. The impact of water stress 

on corn grain yields varies significantly with crop growth stage. 

For corn, the growth stage is divided into five stages: establishment, vegetative, 

flowering, grain filling and ripening. Corn is relativity insensitive to water deficits during 

early vegetative growth and ripening periods because water demand is relatively low. 

Plants can adapt to water stress throughout most of the vegetative period to reduce its 

impact on grain yield [103]. However, corn is much more sensitive to water stress from 

flowering through grain filling stages [103-105]. Severe water deficits during the silking 

and pollination process of the flowering stage will cause silk drying, which will lead to 

little or no grain yield. In addition, insufficient water during the grain filling stage may 

result in reduced yield due to a reduction in grain size. On the other hand, waterlogging 

should be avoided, particularly during the flowering and grain filling stages.  

Key factors that affect the irrigation management decisions include soil 

characteristics, plant features, irrigation methods, and atmospheric factors. Soil 

characteristics such as water holding capacity and infiltration rate could affect water 

movement and root penetration. In addition, some root-restricting layers at shallow depths 

can also restrict root development. Water consumption related plant phenotype includes 

features like crop development time, rooting depth, and seasonal crop water use. These 

features will affect the drought tolerence. Selecting the appropriate plant population is as 

important as choosing the suitable seed type. Lower population could reduce the 
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transpiration component by the crop of ET and require less precipitation and irrigation. 

Irrigation methods determine irrigation water use efficiency. Center pivot sprinkler 

systems can achieve a efficiency of up to 90 percent. However, conventional gated pipe 

irrigation system has only a 50 percent water use efficiency, meaning that half of the water 

is lost during the irrigation process. As a nature source of water for farmland, when and 

how much will the precipitation occur is another key issue for irrigation scheduling. 

Moreover, factors like crops price, precipitation amount, and irrigation water availability 

are not deterministic in real world application. Farming activities are highly affected by 

these uncertainties. Thus, optimization tools for farmland management and irrigation 

scheduling are needed under uncertainties. 

Mathematical programming has been widely used in farmland management, 

especially in irrigation management. Sabu et al used a multi-level approach based on 

dynamic programming to find optimal irrigation allocation on a reginal scale [9]. Brown et 

al used simulated annealing for on-farm irrigation scheduling considering seasonal water 

limits [10]. Georgiou and Papamichail used simulated annealing and a gradient descent 

algorithm for irrigation reservoir and crop planning optimization [5]. Their method 

accounted for variable reservoir inflows and climate variability for crop planning. Ganji et 

al proposed a constraint state formulation for stochastic control of the weekly deficit 

irrigation strategy [11]. The model is based on the first and second moment analysis of the 

stochastic soil moisture state variable and consider the crop water demands uncertainties. 

Although these studies contain some sort of uncertainties, farmland management and 
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irrigation scheduling under uncertainties such as crops price, precipitation amount, and 

irrigation water availability have not been studied extensively.  

Stochastic programming is a mathematical programming method where some of 

the parameters incorporated into the objective or constraints are uncertain. It could reflect 

the dynamic variations of system conditions, especially for sequential decision making 

problems. Stochastic programming has been adopted in water management on reservoir 

system for decision making under uncertainties. Pereira and Pinto proposed a stochastic 

programming framework to minimize the expected operation cost for interconnected 

reservoir system under uncertainty [6]. Huang and Loucks developed an inexact two-stage 

stochastic programming model for water resources decision making under uncertainty [7]. 

Li et al. extended this work to an inexact multi-stage stochastic programming model [8]. 

However, to the best of the authors’ knowledge, few applications to farmland scale 

irrigation management based on stochastic programming were reported. Therefore, the 

feasibility and advantage of modeling farmland management problem via stochastic 

programming should be investgated, which also motivated this study.  

In summary, the effect of limited water on corn grain yield is significant and 

appropriate decisions are needed to optimize farmers’ profits, particularly under stochastic 

environment. Factors like weather conditions, market price, soil characteristics, plant 

features, and irrigation methods should be all taking into consideration when choosing 

irrigation and agronomic practices. In this study, a multi-stage stochastic programming 

model is formulated considering uncertainties such as crops market price, precipitation 
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amount, and irrigation water availability. The first stage makes the pre-season decisions 

including the seed type selection and plant population selection, while the later stages 

determine the irrigation schedule.  

The remainder of this chapter is organized as follows. The problem statement is 

presented in Section 5.2. In Section 5.3, the model formulations are introduced. A case 

study is conducted to illustrate and validate the optimization model in Section 5.4. Finally, 

we conclude the chapter in Section 5.5 with a summary and potential research directions. 

5.2 Problem Statement 

In this study, a multi-stage stochastic programming model is formulated 

considering uncertainties such as crops price, precipitation amount, and irrigation water 

availability. These uncertainties are represented by scenario trees as realization of 

probability distributions or stochastic processes. The objective is to maximize the farmer's 

annual net profit by finding the optimal decisions for seed selection and irrigation schedule. 

There are nine time period (𝑡 = 0,1, . . . ,8;) considered in the model. The time period 0 (𝑡 =

0) is at the beginning of the year, the time period 1 (𝑡 = 1) is at the beginning of the corn 

flowering stage. The time period 1 to 8 (𝑡 = 1, . . . ,8;) corresponds to the eight weeks for 

the flowering and grain filling stages of corn. Crop price and seasonal irrigation water 

availability information are assuming to be released at the beginning of time period 1 (𝑡 =
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1). Precipitation information of these eight weeks are available at the end of 1st to 8th time 

period. 

The decision maker has to take a sequence of decisions at each time period in order 

to maximize profit. In stochastic programming framework, the decision maker makes some 

decisions at the first stage. The outcome of these decision will be affected by some random 

events, the later stage recourse decisions could be made to adjust these effects. In other 

words, stochastic programming gives first-stage decisions and a collection of recourse 

decisions based on each random outcome. In this problem, decision maker makes the pre-

season decisions including the corn seed type selection and plant population selection at 

the first stage (𝑡 = 0). At the beginning of second stage (𝑡 = 1), realization of corn market 

price and seasonal irrigation water availability become available and the second stage 

decisions of how much irrigation water should be put in the field for week one (𝑡 = 1) are 

made. At the beginning of 2nd to 8th time period, similar irrigation schedule decisions are 

made based on available information so far. The precisely decision process has the form: 

 

decision of seed type and plant population→ observation of corn market price and 

seasonal irrigation water limits→ decision of irrigation for 𝑡 = 1→ observation of 
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precipitation for 𝑡 = 1→ . . .→observation of precipitation for 𝑡 = 7 →decision of 

irrigation for 𝑡 = 8. 

 

Crop yield response functions are employed to determine the deficit levels[106]. 

As shown in Equation 1,	𝑌n is the maximum crop yield under full irrigation, 𝑘[ is the crop 

yield response factor to water and is a function of the crop type and the stage of growth, 𝐼 

the total number of crop growth stages, 𝐸𝑇R the actual crop stage evapotranspiration, 𝐸𝑇Ì 

the crop stage evapotranspiration without water stress. 

ÍÎ
ÍÏ
= [1 − 𝑘[(1 −

Ð Î̄
Ð Ñ̄
)[]f

[WX         (1) 

For deficit irrigation of corn, it is suggested that water could be saved to the 

flowering and grain filling stages by reducing irrigation during the vegetative stage, since 

corn is much more sensitive to water stress from flowering through grain filling stage. It is 

assumed that the irrigation will only take place in flowering and grain filling stages. An 

integrated crop yield response factor for flowering and grain filling stage is used to make 

Equation 1 as linear function of irrigation. Decision maker could decide to apply less than 

normal water for each irrigation during the flowering and grain filling stages to maximize 

the farmer's annual net profit. 

5.3 Model Formulation 

The deterministic and stochastic models for this farmland management problem are 

introduced in this section. The deterministic model is firstly introduced as a baseline model 
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and then the multi-stage stochastic programming model is presented to address decision 

making under uncertainties. The objective is to maximize the farmer's annual net profit. 

5.3.1 Mathematical notations 

The mathematical notations are summarized in Table 5.1.  

Table 5.1 Mathematical notations 

Subscripts 
𝑟 1,2, … , 𝑅 Index for plant population levels 
𝑠 1,2, … , 𝑆 Index for seed type 

𝑖(𝑟, 𝑠) 1,2, … , 𝐼 Index for pre-season management option 
𝑤 1,2, … ,𝑊 Index for scenario 
𝑙 1,2, … , 𝐿 Index for deficit levels 
𝑡 1,2, … , 𝑇 Index for time periods (during flowering and grain 

filling) 
Decision Variables 

𝑥[ Whether pre-season management option 𝑖 is applied, binary variables 
𝑦Ó Irrigation water amount used during time period 𝑡, non-negative 

variable 
Dependent Variables 

𝑧Ó Whether irrigation is given during time period 𝑡, binary variables 
𝑑P Whether deficit level 𝑙 in applied, binary variables  
𝑌PÌ Actual yields under deficit level 𝑙, non-negative variables 
𝑀Ó Water available in soil at the beginning time period 𝑡, non-negative 

variables, 𝑀X = 0 
𝐸𝑇ÓR Actual evapotranspiration during time period 𝑡, non-negative variables 
𝐿ÓÔ Leaching water amount during time period 𝑡  

Parameters 
𝐴 Total area of the farmland 
𝐶d Overhead cost (cash and non-cash) 
𝐶¢Ó Unit cost for water 
𝐶[� Unit cost for seed under pre-season management option 𝑖 
𝐶¸ Unit fixed cost of each irrigation 
𝐶[n Unit other farm operating cost for pre-season management option 𝑖  
𝐷P Percentage of the maximum crop stage evapotranspiration achieved in 

deficit level 𝑙  
𝑌[n Maximum unit crop yield when management option 𝑖 used  
𝑌 Minimum yield requirement for the farmland 
𝐵n Budget limit for other farming cost 
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Table 5.1 continued 
 

𝐵¢ Budget limit for irrigation 
𝐺 Unit market corn price 
𝑃¢ Probability for each scenario 
𝐾[ Crop yield response factor to water during flowering and grain filling 

for pre-season management option 𝑖 
𝐸𝑇Ón The crop stage evapotranspiration without any water stress during 

time period 𝑡 
𝑅Ó Total precipitation during time period 𝑡 
𝐻 Soil water holding capacity  
𝑊P Total irrigation water limitation during flowering and grain filling 

season 
𝑊S Unit pre-irrigation water amount 
𝑀» A sufficiently large number used in big-M method 
𝛾 Water use efficiency 
𝜉Ó A random vector and its particular realization at each time period 

5.3.2 Deterministic model 

A mixed integer linear programming model is formulated in this section. All the 

system parameters are assumed to be known with certainty in the deterministic model. 

The objective is to maximize the farmer's annual net profit, which is defined as the 

total revenues subtracted by total system costs. The binary decision variables 𝑥[ represent 

whether pre-season management option 𝑖  is used. The positive decision variables 𝑦Ó 

represent how much irrigation water is used during time period 𝑡. The binary variables 𝑧Ó, 

which are dependent on 𝑦Ó represent whether irrigation is given during time period 𝑡. 

A variety of system costs have been considered in the model including labor costs, 

irrigation costs, machinery costs, seed costs, chemicals costs, cash overhead, and non-cash 

overhead. Cash overhead consists of various cash expenses during the year that are 

assigned to the whole farm such as insurance, office expenses, machinery maintenance, 
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and field supervisors' salary. Non-cash overhead includes capital recovery cost (annual 

depreciation and interest costs) for equipment and other farm investments. In order to have 

a concise expression and focus on the impact of irrigation management, several costs 

including labor costs, machinery costs, and chemicals costs are lumped into a single cost 

called "other farm operating costs". Irrigation cost includes water purchasing cost and a 

fixed cost of labor and equipment. 𝐶d represents the overhead cost per acre (cash and non-

cash). The objective function is thus defined as follows: 

𝑚𝑎𝑥
¿À,ØÙ

{𝐺𝐴 𝑌PÌ
V

PWX

− 𝐴𝐶¢Ó 𝑦Ó 𝛾
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+𝑊S − 

𝐴 𝑥[
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(𝐶[� + 𝐶[n) − 𝐴𝐶¸ 𝑧Ó

¯

ÓWX

− 𝐶d𝐴} 

Constraint (a1) and Constraint (a2) are the period soil moisture continuity 

equations. For each time period, irrigation and precipitation will replenish the soil moisture 

while ET and leaching will consume water. Irrigation and precipitation plus current soil 

moisture should be less than soil water holding capacity and the extra water will leach and 

waste, this requirement is reflected in Constraint (a3).  

𝑀Ó + 𝑦Ó + 𝑅Ó − 𝐸𝑇ÓR − 𝐿ÓÔ = 𝑀Ó\X	 𝑓𝑜𝑟	𝑡 = 1,2, … 7				 	 	 	 (a1) 

𝑀Ó + 𝑦Ó + 𝑅Ó − 𝐸𝑇ÓR − 𝐿ÓÔ ≥ 0				 𝑓𝑜𝑟	𝑡 = 8	 	 	 	 	 (a2)	

𝑀Ó + 𝑦Ó + 𝑅Ó − 𝐿ÓÔ ≤ 𝐻 ∀𝑡        (a3) 
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Constraint (a4) is the definition of deficit level. In order to have a smooth change 

among deficit levels, 101 equidistant levels from 0% to 100% are used. Constraint (a5) and 

Constraint (a6) are the crop yield response functions for water use based on Equation (1). 

Only one deficit level should be selected, this requirement is present in Constraint (a7) 

using binary variables 𝑑P. Constraint (a5) to Constraint (a7) together is the so called “only 

one out of 𝐿 constraints much hold” case. Constraint (a8) ensure only the selected deficit 

level will lead to meaningful actual crop yields. For the computation consideration, the 𝑀» 

should be as small as possible and it is set to be equal to 𝑚𝑎𝑥
P
𝑌PÌ. 

𝐸𝑇ÓR/𝐸𝑇Ón¯
ÓWX = 𝑑PV

PWX 𝐷P										 	 	 	 	 	 	 (a4)	

𝑌PÌ − 𝑥[𝑌[n 1 − 𝐾[ 1 − 𝐷P ≤ 1 − 𝑑P 𝑀»f
[WX  ∀𝑙    (a5) 

𝑌PÌ − 𝑥[𝑌[n 1 − 𝐾[ 1 − 𝐷P ≥ 𝑑P − 1 𝑀»f
[WX  ∀𝑙    (a6) 

𝑑PV
PWX = 1          (a7) 

𝑑P𝑀» ≥ 𝑌PÌ ∀𝑙         (a8) 

As a vulnerable and valuable resource, the amount of irrigation water is often 

limited in the key growing stages. This irrigation water limitation is reflected in Constraint 

(a9). For the consideration of food safety and a stable market, the government will 

encourage farmers to produce at least certain amount of crop in some cases. Similar total 



114 
 

yield constraints are needed when there is a contract for a yield mandate. These situations 

are indicated in Constraint (a10).  

𝐴 𝑦Ó¯
ÓWX /𝛾 ≤ 𝑊P         (a9) 

𝐴 𝑌PÌV
PWX ≥ 𝑌          (a10) 

Total times of irrigation are needed to calculate the fixed cost of labor and 

equipment for irrigation. These costs occur only if the irrigation water amount is above 

zero, as reflected in Constraint (a11). As shown in Constraint (a12), only one seed type and 

plant population could be selected. Constraint (a13) makes a conservative assumption that 

there is no water in soil at the beginning of first time period. Constraint (a14) controls the 

domain of variables. 

𝑀»𝑧Ó − 𝑦Ó ≥ 0 ∀𝑡          (a11) 

𝑥[f
[WX = 1		          (a12) 

𝑀Ó = 0 𝑓𝑜𝑟	𝑡 = 1        (a13) 

𝑥[, 𝑑P ∈ 0,1 , 𝑦Ó, 𝑌PÌ,𝑀Ó, 𝐸𝑇ÓR, 𝐿ÓÔ ≥ 0 ∀𝑖, ∀𝑡, ∀𝑙       (a14) 

5.3.3 Multi-stage stochastic programming model  

In this study, precipitation amount, irrigation water availability, and corn prices are 

selected as the stochastic parameters to be investigated. Scenario trees are used as an 

approximation of probability distributions or stochastic processes. Subscript 𝑤 is used to 

represent index of scenario with corresponding probability 𝑃¢, and the subscript is also 
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incorporated into the decision variables and parameters. The multi-stage stochastic 

programming model is formulated as follows: 

𝑚𝑎𝑥
¿À,ØÙ§
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s.t. 

𝑀Ó¢ + 𝑦Ó¢ + 𝑅Ó¢ − 𝐸𝑇Ó¢R − 𝐿Ó¢Ô = 𝑀Ó\X,¢	 ∀𝑤, 𝑡 = 1,2, … 7				 	 	 (b1) 

𝑀Ó¢ + 𝑦Ó¢ + 𝑅Ó¢ − 𝐸𝑇Ó¢R − 𝐿Ó¢Ô ≥ 0		 ∀𝑤, 𝑡 = 8	 				 	 	 (b2)	

𝑀Ó¢ + 𝑦Ó¢ + 𝑅Ó¢ − 𝐿Ó¢Ô ≤ 𝐻  ∀𝑡, ∀𝑤      (b3) 

𝐸𝑇Ó¢R /𝐸𝑇Ón¯
ÓWX = 𝑑P¢V

PWX 𝐷P	 ∀𝑤				 	 	 	 	 	 (b4)	

𝑌P¢Ì − 𝑥[𝑌[n 1 − 𝐾[ 1 − 𝐷P ≤ 1 − 𝑑P¢ 𝑀»f
[WX   ∀𝑙, ∀𝑤   (b5) 

𝑌P¢Ì − 𝑥[𝑌[n 1 − 𝐾[ 1 − 𝐷P ≥ 𝑑P¢ − 1 𝑀»f
[WX   ∀𝑙, ∀𝑤   (b6) 

𝑑P¢V
PWX = 1  ∀𝑤        (b7) 

𝑑P¢𝑀» ≥ 𝑌P¢Ì   ∀𝑙, ∀𝑤        (b8) 

𝐴 𝑦Ó¢¯
ÓWX /𝛾 ≤ 𝑊¢P  ∀𝑤        (b9) 

𝐴 𝑌P¢ÌV
PWX ≥ 𝑌 ∀𝑤        (b10) 

𝑀»𝑧Ó¢ − 𝑦Ó¢ ≥ 0 ∀𝑡, ∀𝑤          (b11) 

𝑥[f
[WX = 1			          (b12) 
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𝑀Ó¢ = 0, 𝑡 = 1 ∀𝑤        (b13) 

𝑥[, 𝑑P¢ ∈ 0,1 , 𝑦Ó¢, 𝑌P¢Ì ,𝑀Ó¢, 𝐸𝑇Ó¢R , 𝐿Ó¢Ô ≥ 0  ∀𝑖, ∀𝑡, ∀𝑙, ∀𝑤               (b14) 

𝑦Ó¢

	

= 	𝑦Ó¢?, ∀𝑤,𝑤?for	which	𝜉 Ó
¢

	

= 	 𝜉 Ó
¢Â

  ∀𝑡    (b15) 

The first stage decisions involve decisions which must be made before the 

uncertainties are realized. After the uncertainties are progressively realized, the later stage 

decisions are made. In this model, the first stage decision variables are 𝑥[. The later stage 

decision variables are 𝑦Ó¢. Constraints (b12) is the first stage constraints; this constraint 

remain the same in all scenarios, and they are the same as in the deterministic linear 

program model. The rest of the constraints change based on the stochastic scenarios. We 

use the notation 𝜉Ó  ( 𝑡 = 1, . . . , 𝑇 − 1; ) to denote a random vector and its particular 

realization at each time period. The decision at each period (𝑡 = 1, . . . , 𝑇) depends from the 

realization of 𝜉Ó up to time t. Generally, at stage 𝑡	 = 	1, . . . , 𝑇	, the scenarios that have the 

same history 𝜉[Ó]  cannot be distinguished, so we need to enforce the nonanticipativity 

constraints by adding Constraint (b15).  

5.4 Case Study 

We apply the farmland management framework based on stochastic programming 

for a case study on a farm in Cherry County, Nebraska to illustrate and validate the 

optimization model. Half of harvested row crop production in Nebraska are irrigated 

(About 8 million acres), where corn occupies approximately 70 percent of the irrigated 
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acreage [101]. Consequently, improving farmland management and irrigation scheduling 

have significant impact on the water resources and farmers' income. 

5.4.1 Data sources 

 Conservative irrigation management typically assumes a three-foot effective root 

zone for field corn. The soil information up to three feet in depth is collected using the Web 

of Soil Survey. This information is used to define integrated soil types (fine sand, loamy 

sand, sandy loam, fine sandy loam, loam, clay loam, and clay) and water holding capacity 

of these soil types [107]. A farm of size 150 acreage in Cherry County, Nebraska is selected 

for analysis. As shown in Figure 5.1, 95% of the soil is loamy sand and 5% of the soil is 

sandy loam, both of them are coarse soil. The soil water holding capacity is assume to be 

1.1 inch per foot for the whole land [107]. The irrigation water is supplied by center pivot 

sprinkler systems of 800 gallons per minute. The water use efficiencies for center pivots 
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outfitted with low pressure drop nozzles are typically rated at 85% [108], meaning that 

15% of the water is lost during transportation, irrigation, and soil penetration.  

 

Figure 5.1 Satellite map of the selected farm 

The root zone should be wetted at sowing in order to obtain a good germination 

rate and rapid root development. Thus, pre-irrigation at spring are needed to refill the soil 

profile, particularly when there is limited winter precipitation. Since corn does not consume 

much water in the vegetative stage and do not need much irrigation, this study focuses on 
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the irrigation for flowering and grain filling stages (approximately eight weeks). The 

average crop water use for these period is range from 0.2 to 0.32 inches per day [101]. 

The price of irrigation water is volatile and varies significantly by location, water 

usage, and water type (well water or surface water). In this study, it is assumed that farmers 

use well water at an average price of $12/acre-inch. The other farm operating costs and 

fixed irrigation cost are adopted from the Nebraska Water Optimizer Single-Field Version 

(NWO) [109]. The seed features such as drought tolerance, target yields, and suggested 

plant population are based on commercialized crop hybrids. The maximum yields of these 

seeds under full irrigation range from 160 to 230 bushels per acre. 

The corn prices received by U.S. corn producers from 2000 to 2015 were collected 

based on the National Agricultural Statistical Service (NASS) of the U.S. Department of 

Agriculture. The baseline for corn market price in the deterministic case is set at $3.6 dollar 

per bushels. Historical precipitation information of Cherry County is obtained from 

National Oceanic and Atmospheric Administration (NOAA)'s National Centers for 

Environmental Information (NCEI). Detailed discussions on the distribution of corn price, 

precipitation amount, and total water limits are given in the following scenario generation 

section. All cost data have been adjusted for inflation to 2015 U.S. dollars. 

5.4.2 Scenario generation 

Computational methods for solving stochastic optimization problems require a 

discretization of the underlying probability distribution of the uncertain parameters. In 

stochastic programming, scenarios describe possible values that the uncertain parameters 
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may take. The scenario trees are approximations of (continuous) distribution functions 

because they contain only a limited number of outcomes. When the continuous probability 

distribution are used to represent the uncertainties, the Sample Average Approximation 

(SAA) method is often used to generate scenario, for instance via Monte Carlo sampling 

[110, 111]. When the historial data are available but it is not easy to fit them in some well-

known probability distribution, moment matching method is often employed for scenario 

generation [35, 112].  

There is two main requirements for choosing the size of scenario, the first one is 

that the number of scenario should be large enough so that they could represent the 

probability distribution; the second one is that the number of scenario should be relatively 

modest so that it could be solved with reasonable computational effort. Note that stochastic 

programming in general and multistage programs in particular have been known to be 

computationally challenging to solve. Enlarging the size of the scenario will generally 

achieve a better approximation. However, the size of the scenario tree directly impacts the 

computational complexity of stochastic programming models. The stability tests are used 

to test the stability of a scenario generation process for a given size of the scenario. For 

two-stage stochastic programming, the in-sample stability test is used to as a test of the 

internal consistency of a model (scenario generation process). The standard in-sample 

stability test and out-of-sample stability test is not suitable for multi-period trees, as the 

nodes beyond the root do not coincide [113]. The weak out-of-sample stability test for 

multiperiod trees is used to evalue the stability of scenario generation process. The 
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procedure is building two scenario trees and find the corresponding solutions. Then solve 

the optimization model on the first scenario tree with the first stage decisions from the 

second tree, and vice versa. We should get approximately the same optimal objective 

values if the method is out-of-sample stable. In this case study, the size of scenario is set 

to be 200 given the computational power, stability test will be presented in the results 

analysis section. 

Finding the correct distribution is also critical for scenario generation. Since we are 

considering a single year problem, a meaningful corn price should be the average price 

received by farmers after the corn is harvested and ready to sell. The market year of corn 

sales start at September, and six month sales season are considered. In other word, we want 

to find the distribution of average corn price from September to the next February. In order 

to take the most advantage of the available information, this distribution should be 

conditional on the corn price before the sowing season, which is April in Nebraska. 

Shapiro-Wilk normality test of the historical corn price data gives a P-value of 0.838, 

meaning that these conditional data follow normal distribution. The maximum likelihood 

method is used to get the parameter estimations. The mean is the corn price at April minus 

0.147, and the standard deviation is 0.585. the distribution could be presented as 𝑁(𝐺âSµ −

0.147, 0.585).  

As one of the most important weather variable, the methodology for precipitation 

predition is fairly well established and reliable simulation techniques are available [114, 

115]. In this study, a two step process is adopted for precipitation generation: the daily 
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precipitation occurrence (i.e. wet or dry day) is modeld upon a first order two state Markov 

chain and once it rains, the precipitation amount is assumed to follow gamma distribution 

[79, 116, 117]. It is assumed that each week’s precipitation follows its unique gamma 

distribution and the simulation results are then sum up to weekly basis. 

Based on a center pivot sprinkler systems of 800 gallons per minute capacity, the 

theoretically upper bound for eight weeks’ total water availability is 2355 acre-inch. 

However, high application rates of water to coarse textured soils can destroy surface soil 

structure and enhance runoff. Thus, the practical upper bound for total water available is 

2240 acre-inch [101]. The system down time due to maintenance, system failure, 

insufficient groundwater, and electrical load control should also be taken into 

consideration. For example, Nebraska Public Power Districts can be authorized to interrupt 

power up to six 12-hour periods during a week in the “anytime control” mode [107]. The 

lower bound is set to be 1649 acre-inch, or 70% of the theoretical upper bound. Since there 

is not much data to fit a distribution of total water limits, an uninformative uniform 

distribution with range 1649 acre-inch to 2240 acre-inch is assumed in this study.  

Since the distributions of random variables are available, a common approach to 

generate the scenario to a manageable size is by using SAA method based on Monte Carlo 

simulation. It is assumed that these three random variables are independent. The individual 

scenarios in form of a fan are used as input for scenario tree construction and reduction 

based on Heitsch and Römisch’s method [118]. The General Algebraic Modeling System 
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(GAMS)/SCENRED2 is utilized for scenario reduction and later solving the mathematical 

model.  

5.4.3 Measures of information 

Generally, stochastic programming takes advantage of taking more information 

about the future uncertainties into consideration when making decisions. Thus, measures 

of information are needed to discuss the value of stochastic programming and information. 

In two-stage stochastic programming, several approaches based on different levels of 

available information have been widely used in literature. The expected value problem 

solution (EV) is obtained by replacing all random variables by their expected values and 

solving a deterministic program. The expection of expected value problem solution (EEV), 

denotes the expected result of using the solution from the deterministic model EV to the 

stochastic environments. The wait-and-see solution value (WS), denotes the expected value 

of using the optimal solution for each scenario. The solution value of the stochastic model, 

also known as the here-and-now solution, denotes the optimal solution value to the recourse 

problem (RP). 

For the maximization models in particular, the following inequalities are satisfied 

[119]: 

𝐸𝐸𝑉	 ≤ 𝑅𝑃	 ≤ 𝑊𝑆 

There are two concepts mainly used for measuring the information for two-stage 

stochastic programming, namely, the expected value of perfect information (EVPI) and the 

value of the stochastic solution (VSS) [120]. In this context, the 𝐸𝑉𝑃𝐼	 = 	𝑊𝑆 −
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𝑅𝑃	compares here-and-now and wait-and-see approaches, a small EVPI means a small 

addition profit when having prefect information. 𝑉𝑆𝑆	 = 	𝑅𝑃 − 𝐸𝐸𝑉compares the here-

and-now and expected values approaches. A large VSS means that the approximation of 

using EV in the stochasitc environments in bad decisions. 

The WS is still valid in multi-stage stochastic programming, where the decision 

maker assumes to knows at the first stage the realizations of all the random variables. 

However, the EEV for multi-stage stochastic programming is sometimes misleading. It can 

happen that the first stage solution in the EV problem performs better than the solution of 

the RP one, because the RP model contains nonanticipativity constraints in later stages, 

which are ignored (relaxed) when getting EEV [121]. One way to avoid this issue is using 

a chain of values VSSt which takes into account the information until stage t of the 

associated deterministic model [121]. However, these results are valid if only the right hand 

side constraints are stochastic. Another way is to define the value of multi-stage stochastic 

programming (VMS) as the difference between the optimal objective values of the two-

stage (𝑣¯�) and multi-stage formulations (𝑣g�) [122]: 

𝑉𝑀𝑆 = 𝑣g� 	− 𝑣¯�		

This study adopt the second approach because the multi-stage formulations in this 

study involved stochastic left hand side constraints, where the first approach could be 

infeasible due to too many variables are fixed from the deterministic problem. To avoid 

confusion, let 𝐸𝐸𝑉¯� be the expection of expected value problem solution in two-stage 
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stochastic programming. The relative value of two-stage stochastic programming (RVSS) 

and multi-stage stochastic programming (RVMS) are also defined as follows [122]: 

𝑅𝑉𝑆𝑆	 = (𝑣¯� − 𝐸𝐸𝑉¯�)/𝐸𝐸𝑉¯� 

𝑅𝑉𝑀𝑆 = (𝑣g� 	− 𝑣¯�)/𝑣¯�	

However, the lower bound of RVSS and RVMS have more practical significance 

since both the two-stage and multi-stage models are hard to get the optimal solution. Let 

𝑣¸¯� and 𝑣¸g�be the objective value of the best feasible solution of two-stage and multi-

stage models we could get in a reasonable comupational efforts, respectively. Let 𝑣µ¯� be 

the objective value of a relaxation of two-stage model, we could easily find out: 

𝑅𝑉𝑆𝑆	 ≥ (𝑣¸¯� − 𝐸𝐸𝑉¯�)/𝐸𝐸𝑉¯� 

𝑅𝑉𝑀𝑆 ≥ (𝑣¸g� 	− 𝑣µ¯�)/𝑣µ¯�	

The numerical results and interpretations for measures of information are detailed 

discussed in the following results analysis sections. 

5.4.4 Results analysis of deterministic model 

The deterministic model yields to a total profit of $27494, which will be used as 

the objective value of EV solution. The seed with highest yield and highest plant population 

is selected by the model in the deterministic case. This is because under the average total 

water limits and precipitation amount, suitable irrigation decision could lead to no water 

stress. The NWO model under same conditions shows a total profit of $27137, which is 

almost the same the deterministic results. However, the deterministic model is 

oversimplified by using the mean of random variables to make decisions. A nature concern 
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would be what will happen when there is water shortage and deficit irrigation therefore is 

needed? For each scenario, assuming we have prefect information before making decisions, 

the wait-and-see decisions could be found. The basic statistics of objective values for these 

wait-and-see decisions are summarized in Table 5.2. The average objective value of WS 

solutions is $16790. These WS decisions are not implementable, however the WS solutions 

are the upper bound of profits under stochastic environment.s The significant profits drop 

from EV to WS indicates that the EV solution underestimate the effect of stochatic 

environments. Because in the EV solution, the first stage decision is made by ignoring the 

uncertainties. If we apply this EV solution in the stochastic environment, the objective 

value (profits) of 𝐸𝐸𝑉¯� ends up to be $12127.	𝐸𝐸𝑉¯� decisions are easy to get and they 

are implenmentable. However, the performance is not good, as shown in Table 5.2. 

Table 5.2 Basic statistics for WS and EEV objective values (Dollars) 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

WS 0 7220 18350 16790 26980 38440 

EEV -20120 1570 14940 12127 22200 33850 

There is an information gap of $4663 between WS and 𝐸𝐸𝑉¯� solutions, or the WS 

solution is 38.44% higher than the 𝐸𝐸𝑉¯� solution. This gap indicates applying stochastic 

programming may help to gain more value of information and lead to better decisions. 

5.4.5 Results analysis of two-stage stochastic programming model  

Before we go to the multi-stage stochastic programming, the two-stage stochastic 

programming is first investgated to calculate the 𝑅𝑉𝑆𝑆 and verify the benefits of stochastic 
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programming. Two-stage stochastic programming is a sepcial case of stochastic 

programming, which has a much shorter decision process. In the two-stage stochastic 

programming, the first stage still makes (𝑡 = 0) the pre-season decisions including the corn 

seed type selection and plant population selection. At the beginning of second stage (𝑡 =

1), realization of corn market price and seasonal irrigation water limits become available. 

The second stage decisions are how much irrigation water should be put in the field for the 

next eight weeks. These second stage decisions are made at the beginning of second stage. 

Note that the precipitation amount for the next eight weeks is not available when you make 

the second stage decisions, but these preicipitation information will be used to evaluate the 

objective values. The precisely decision process has the form: 

 

decision of seed type and plant population→ observation of corn market price and 

seasonal irrigation water limits→ decision of irrigation for next eight weeks  

 

Constraint (b15) should be changed to Constraint (c15) to reflect the change of 

decision process. Note that the two-stage stochastic programming is a special case of multi-

stage stochastic programming, where decision maker has to make irrigation decision at a 

earlier time period. For maximization problem, the optimal solutions to the multi-stage 

problem will have a profit no less than the optimal solution to the two-stage problem 

because the multi-stage formulation’s solution can adapt to information as it comes in. In 
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other words, more stages allow more recourse and will yield to better (at least no worse) 

solutions.  

𝑦Ó¢

	

= 	𝑦Ó¢?, ∀𝑤,𝑤?for	which	𝜉 ÓW�
¢

	

= 	 𝜉 ÓW�
¢Â

	

, ∀𝑡, ∀𝑢	    (c15) 

The objective value of two stage stochastic programming (𝑣¸¯�) is $13367, which 

yields a 𝑉𝑆𝑆 of $1239 and a 𝑅𝑉𝑆𝑆 of 10.22%. These results could be interpreted as a 

10.22% profit increase could be achieved by taking corn price and total water limits 

uncertainties into consideration when making the preseason decision of seed types seletion 

and plant populations seletion. Note that the uncertainties of precipitation are ignored in 

the two-stage decision process. The EVPI is $3423 which also indicates that having 

additional information could potentially increase profit. 

The same procedure of  scenario generation and model solving are conducted ten 

times. The objective values of two-stage RP and EEV are summarized in Figure 5.2. The 
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𝑣¸¯� for each time range from $13114 to $13933. These relative small ranges indicate that 

the scenario generation process is in-sample stability.  

 

Figure 5.2 The objective values of two-stage RP and EEV for ten runs (Dollars) 

5.4.6 Results analysis of multi-stage stochastic programming model  

The objective value of multi-stage stochastic programming (𝑣¸g�) is $15116, which 

yields a 𝑉𝑀𝑆 of $1749and a 𝑅𝑉𝑀𝑆 of 13.08%. These results could be interpreted as a 

13.08% profit increase could be achieved by taking precipitation uncertainties into 

consideration and use multi-stage decision process when making the preseason decision of 

seed types seletion and plant populations seletion. Weak out-of-sample stability test shows 

that two objective value of multi-stage stochastic programming by swifching the optimal 
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decision is $15116 and $15304, respectively. This results indicate our model has out-of-

sample stability. 

 Table 5.3 summaries the profit, decisions, and cost for different models. In the 

stochastic programming results, more conservative first stage decisions are made such as 

select high drought resistance seed. These decisions preform more robust in the stochastic 

environment. However, all models perfer high plant population, which indicates that the 

benefit of increasing yields is more significant than the drawback of increasing water 

demands for high plant population. It is worth noting that this effect might only hold when 

there is sufficient water (precipitation plus irrigation). Low plant population is still 

recommended at water-limited sites with no irrigation system. 

Table 5.3 Comparison among different models (Dollars) 

Model Deterministic Two-stage SP Multi-stage SP 
Total profit 27494 13367 15116 

Sales of corn 113400 97157 99456 
Production cost 62872 60018 60018 
Irrigation cost 22891 23797 24278 

Seed selection high yield high drought 
tolerance 

high drought 
tolerance 

Plant population high high high 

Although only the first stage decisions are implementable and all the later stage 

decisions are scenario based, it is still meanful to compare the average irrigation amount 

decisions for each model. Figure 5.3 summaries the average irrigation amount from each 

model for each week. As shown in Figure 5.3, the irrigation decisions in deterministic 

model are very progressive since it assumes the precipitation is deterministic and known. 
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The irrigation decisions for two-stage stochastic programming and multi-stage stochastic 

programming share the same pattern but the irrigation decisions for two-stage stochastic 

programming is more conservative. This is because little precipitation information are 

available for two-stage stochastic programming. The multi-stage stochastic programming 

can make recourse irrigation decisions based on the precipitation information at that point. 

  

Figure 5.3 Comparison of weekly irrigation among different models (acre inches) 

Note that the information releasing process is the same for deterministic model, 

two-stage stochastic programming, and multi-stage stochastic programming. The main 

difference among these model is the decision-making process. The deterministic model 

makes all decisions all at once, the two-stage stochastic programming separates the 

decision-making process into two stages, and the multi-stage stochastic programming 

makes sequence of decisions according to the stages. The case study results show that by 
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delaying the decision-making process and considering more information (uncertainties), 

we could have higher profit by choosing better first-stage decisions. 

5.5 Conclusion 

In this study, a multi-stage stochastic programming model for farmland 

management under uncertainties is proposed. The first stage decisions include the pre-

season decisions of  seed types selection and plant populations selection, while the later 

stages determine when to irrigate and how much water should be put in the field during the 

corn flowering and grain filling stages. The uncertainties under investigated include corn 

price, irrigation water limits, and precipitation amount. Their distributions are carefully 

defined based on detailed derivation process. SAA method is used to generate scenarios. 

The case study is based on a farm in Nebraska to illustrate and validate the 

optimization model. The numerical results show that a 10.22% profit increase could be 

achieved by taking corn price and total water limits uncertainties into consideration, and 

an additional 13.08% profit increase could be achieved by also taking precipitation 

uncertainties into consideration. These results indicate stochastic programming is a 

promising way for farmland management under uncertainties and can increase farmers’ 

income significantly. 

Our study is subject to a number of limitations. Firstly, the numerical results 

reported in the case study is the best feasible solution in a reasonable computational time. 

More efficient algorithm and heuristic solutions need to be investigated. Secondly, the case 

study only illustrates the model to a center pivot sprinkler systems with almost 



133 
 

homogeneous soil features in Nebraska. Other irrigation systems and location could be also 

investigated. Thirdly, we consider three sources of independent uncertainties and more 

uncertainty factors can be considered. Last but not least, this model focus on a single year 

profit maximization problem. The evaluation of installation new irrigation system in a 

multi-year horizon is another interesting research problem. We shall address these 

limitations in our future research. 
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CHAPTER 6 SUMMARY AND DISCUSSION 

 

This dissertation consists of four papers, and aims to contribute to the decision making 

methodology under uncertainties for renewable energy and precision agriculture. The 

contributions, limitations, and future works are discussed in this chapter.  

The first paper provides a mathematical programming framework with a two-stage 

stochastic programming approach to deal with the uncertainties in the biofuel industry. The 

first stage makes capital investment decisions including the locations and capacities of 

facilities while the second stage determines the biomass and biofuels flow. This decision model 

focuses on dealing with uncertainties in a supply chain and can be easily adapted to deal with 

other uncertainties and be applied to other supply chain design problems. The optimization 

model also provides managerial suggestions for decision makers on the capital investment and 

logistic decisions in a stochastic environment. This study is subject to a number of limitations. 

Firstly, we assume the sustainability factor and farmers' participation are the same for each 

county. However, these factors may vary based on the land characteristics and agricultural 

management practices. Additional constraints such as water use constraints can be included to 

better describe biomass availability. Secondly, we assume the transportation cost within 

counties is negligible, which could impact the supply chain design and decision making. 

Thirdly, we consider three sources of uncertainties and more uncertainty factors can be 

considered. Last but not least, only one set of scenarios is generated in this paper; more 
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scenarios could be generated to test the stability of the stochastic results. We shall address 

these limitations in our future research. 

In the second paper, a new TEA method considering supply chain configurations has 

been introduced. The motivation of this proposed TEA method is to introduce supply chain 

design into traditional TEA to achieve a more comprehensive analysis and realistic economic 

assessment results. The proposed approach is illustrated with a case study to compare two 

competitive pathways of biofuel prodection in Iowa. The results indicate that biomass 

gasification pathway has better economic performance than hybrid fast pyrolysis and bio-oil 

gasification pathway under current technology status. Hybrid fast pyrolysis and bio-oil 

gasification pathway is more suitable for a decentralized supply chain structure while biomass 

gasification pathway is more suitable for a single centralized facility supply chain structure. 

As for the second paper, future study could achieve a more precise estimate by modeling the 

diversity of parameters such as scaling factors and labor costs. It should be noted that as a 

general framework, other biofuel production pathways could be evaluated considering supply 

chain configurations using the same procedures. 

In the third paper, a farm-level precision farmland management problem for pre-season 

seed type selection and irrigation water management is introduced. A mixed integer linear 

program is proposed and variations of the basic model on different implementation conditions 

have been discussed. A case study based on a farmland in California has been conducted to 

demonstrate and validate the model. The model gives quantitative analysis for the farmland 

management. Special irrigation patterns are considered and the results show that the farmer's 

annual net profit could be significantly increased by applying the precision farming 

management decisions tools based on the proposed model. This model can also serve as a 
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decision making and risk analysis tool for farmers facing seasonal irrigation water limits and 

extreme drought conditions. There are some future research directions based on the third paper 

as well. On one hand, the case study presented to illustrate and validate this optimization model 

only considers a certain piece of land. However, the shapes of farmland could affect the 

agricultural machinery paths and the homogeneous features of the soil could affect the shapes 

and sizes of decision units. Motivated by finite element analysis, models that allow different 

shapes and sizes of decision units in a piece of land. On the other hand, The proposed model 

could be used to evaluate other crops as well; and the interaction among plants such as plant 

population, leaf cover, and water competition could be stressed in future research. 

In the fourth paper, a multi-stage stochastic programming model is formulated for 

farmland management under uncertainties. Precipitation amount, along with other 

uncertainties such as crop market price and irrigation water limits are investigated in the model. 

Optimal solutions for pre-season decisions and irrigation scheduling are given. The case study 

results indicate stochastic programming is a promising way for farmland management under 

uncertainties and can increase farmers’ income significantly. This model contributes not only 

to the precision agriculture but also to protect water resources. There are some future research 

directions motivated by the fourth paper. Firstly, more efficient algorithm and heuristic 

solutions need to be investigated to find optimal solution in a reasonable computational time. 

Secondly, the case study only illustrates the model by a center pivot sprinkler systems with 

homogeneous soil features in Nebraska. Other irrigation systems, soil, and location could be 

also investigated. Thirdly, we consider three sources of independent uncertainties and more 

uncertainty factors can be considered. Last but not least, this model focus on a single year 

profit maximization problem. The evaluation of installation new irrigation system in a multi-
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year horizon is another interesting research problem. We shall address these limitations in 

future research. 
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