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ABSTRACT 
 
 
In order to feed the worldÕs growing population, an interdisciplinary effort is 

needed. In this thesis, operations research tools of mathematical modeling, optimization, 

and simulation are used to improve an existing plant breeding method, genomic selection. 

To do this, a new method, called optimal population value (OPV) selection, is proposed. 

In this paper, OPV selection is first defined as an optimization problem that selects a 

breeding population using a population metric, instead of individual metrics. Then, OPV 

selection is thoroughly tested in a simulation study against the existing methods of 

genomic selection, weighted genomic selection, and optimal haploid value selection. 

From the results of the simulation study, up to an 8.3%, or 0.58 base standard deviations, 

greater mean response can be expected than when using traditional genomic selection. 

These results suggest that population-based selection methods are a promising future 

research direction. 
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CHAPTER I 

GENERAL INTRODUCTION 

 
 

Ensuring the global food supply for the next century will be an enormous 

challenge as the worldÕs population continues to grow. By 2050, there will be a predicted 

nine billion people (Godfray, et al., 2012). In order to feed these people, total food 

production will need to increase amidst the obstacles of climate change, land scarcity, 

soil degradation, weeds, disease, and pests, while in an environment with less genetic 

diversity than in previous decades (The Royal Society of London, 2009). 

One field working to feed the future world population is plant breeding. The 

National Association of Plant Breeders (2016) defines plant breeding as the process of 

improving plants by combining parent plants and selecting those progeny with the most 

potential to meet the populationÕs needs. However, the problem of ensuring a sufficient 

food supply is complex and requires more than just improving cultivars.  For example, in 

developing countries a significant proportion of the current food supply is lost due to 

poor supply chain infrastructure such as insufficient transportation, cold storage, and 

finance systems (Godfray, et al., 2012). In order to utilize improvements to food 

production, these logistical gaps will need to be filled. Additionally, future food 

production may be plagued by constraints of land, water, and energy (Leaver, 2011). As a 

result, in order to maximize food production, tradeoffs will need to be fully assessed. 

Since the scope of this problem goes beyond the role of traditional plant breeding, an 

interdisciplinary approach is needed.  
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Operations research is one discipline that might be applicable when facing global 

food production constraints in the next century. Operations research uses a diverse set of 

problem solving tools, such as optimization, simulation, mathematical modeling, and 

statistics, in order to make better decisions and improve efficiency (ÒWhat is Operations 

Research?Ó, 2016). With respect to impending food production problems, operations 

research can assist in designing transportation systems to minimize food waste or allocate 

land, water, and energy resources such that yield is maximized. Beyond these problems, 

operations research techniques can be useful in plant breeding specific problems. For 

example, operations research approaches have already been applied to gene stacking (Xu, 

Wang, & Beavis, 2011) and multi-allelic introgression (Han, Wang, Beavis, & Cameron, 

2016). 

 In this thesis, operations research tools are applied to genomic selection (GS) in 

order to improve the mean response to selection. Chapter II provides a detailed literature 

review on GS. Within the literature review, three critical parts to GS are discussed: 

forming the training population, building a prediction model, and using the estimated 

marker effects for selection. In Chapter III, a journal paper discussing a new approach to 

GS is given. The paper proposes a new method called optimal population value (OPV) 

selection and defines OPV selection as an optimization problem. Rather than evaluating 

and selecting individuals to form a breeding population as in existing methods, sets of 

individuals are evaluated together and the best set of individuals is selected. To determine 

whether population-based selection strategies, such as OPV selection, can generate more 

response on average than individual-based selection strategies, a simulation study was 
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performed using empirical data. Then, the results are described. Finally, general 

conclusions of the research and future work are provided in Chapter IV. 
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CHAPTER II 

LITERATURE REVIEW 

 
 
 Marker-assisted selection (MAS) aims to incorporate genotypic information into 

selection decisions (Lande & Thompson, 1990). In MAS, genetic markers that have 

strong statistical associations with quantitative trait loci (QTL), or loci controlling the 

trait of interest, are first identified using arbitrary significance thresholds. Then, marker 

effects, or the predicted impact of the marker on the trait of interest, are estimated for 

significant markers (Heffner, Sorrells, & Jannink, 2009). This two-step process results in 

a response limited by the amount of variance explained by the QTL detected in 

significance testing (Meuwissen & Goddard, 1996). However, since this two-step process 

ignores small effect markers deemed insignificant, only a fraction of the total variance 

will be explained (Goddard & Hayes, 2007). 

GS attempts to address this limitation of MAS. In GS, genome-wide genetic 

markers and phenotypic observations from a training population are used to estimate 

marker effects (Meuwissen, Hayes, & Goddard, 2001). Instead of first identifying 

significant markers as in MAS, GS uses all markers to train the prediction model. By 

doing this, GS avoids one major pitfall of MAS, i.e. identifying QTL. As a result, GS can 

achieve a high prediction accuracy, or a strong correlation between the sum of marker 

effects, called genomic estimated breeding values (GEBVs), and the sum of QTL effects, 

called true breeding values (TBVs), of the validation population (Meuwissen, Hayes, & 

Goddard, 2001). This has had a profound impact on what is possible within breeding 
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programs and has revolutionized animal breeding (Hayes, Bowman, Chamberlain, & 

Goddard, 2009). 

As a result, the potential impact of GS in plant breeding is being widely discussed 

(Desta & Ortiz, 2014; Heffner, Sorrells, & Jannink, 2009; Jannink, Lorenz, & Iwata, 

2010; Lorenz, et al., 2011). In particular, a number of simulation and empirical studies 

have been performed to investigate GSÕs ability to increase genetic gain in crops. One 

simulation study compared GS and Marker-Assisted Recurrent Selection (MARS) in a bi-

parental maize breeding program. It showed that the response to GS was greater than that 

to MARS (Bernardo & Yu, 2007), where response is defined as ! !in the breederÕs 

equation, ! ! !!! ! ! , and ! is selection intensity and is a function of the proportion of the 

population selected, !!  is prediction accuracy, and ! !  is the additive genetic standard 

deviation (Falconer, 1981). Similarly, in empirical studies on bi-parental (Heffner, 

Jannink, Iwata, Souza, & Sorrells, 2011) and multi-family (Heffner, Jannink, & Sorrells, 

2011) wheat populations, GS resulted in greater prediction accuracy than MAS. From the 

breederÕs equation previously defined, this greater relative accuracy reported should lead 

to an increase in response. While the findings of these studies show that GS can increase 

response in plant breeding, several other studies have additionally noted that GS allows 

for more breeding cycles per unit time. In these studies, this translated into a significant 

advantage for GS in response per unit time (Beyene, et al., 2015; Heffner, Lorenz, 

Jannink, & Sorrells, 2010; Wong & Bernardo, 2008). 

Although GS has reportedly outperformed more traditional plant breeding 

methods such as MAS and MARS, successful implementation of GS depends on three 

conditions: (i) the training population must adequately reflect the test population, (ii) 
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effects must be estimated accurately, and (iii) the estimated effects must be used in a way 

that predicts the reproductive merit of the plant or animal with respect to a breeding goal.  

In general, for condition (i) to be satisfied the training population must be large, 

have a sufficient number of markers, and be closely related to the test population. In the 

earliest GS study, prediction accuracy was greater with a larger training population than 

with a smaller training population (Meuwissen, Hayes, & Goddard, 2001).  Since then, 

the same observations were made in barley (Zhong, Dekkers, Fernando, & Jannink, 2009) 

and maize (Rincent, et al., 2012) datasets. Similarly, prediction accuracy in GS tends to 

improve with increasing marker density (Lorenzana & Bernardo, 2009) because high-

density markers tend to be in sufficient linkage disequilibrium (LD) with QTL (Zhong, 

Dekkers, Fernando, & Jannink, 2009). However, if extensive LD already exists within the 

population, a relatively small training population and relatively few markers can be used 

without much reduction in prediction accuracy (Lorenz, Smith, & Jannink, 2012). Habier, 

Fernando, and Dekkers (2007) explained this phenomenon. There, accuracy was shown 

to be decomposable into accuracy from genetic relationships and accuracy from LD. 

Thus, extensive LD within a population is sufficient for relatively high prediction 

accuracy. Likewise, a high degree of coancestry is sufficient for relatively high prediction 

accuracy. Further work related to training populations has been completed to optimally 

select training sets (Isidro, et al., 2014; Rincent, et al., 2012) and to merge historical 

training sets (Asoro, Newell, Beavis, Scott, & Jannink, 2011; Muir, 2007; Rutkoski, et 

al., 2015) or training sets from separated populations (De Roos, Hayes, & Goddard, 2009; 

Lund, et al., 2011).  
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 To address condition (ii), a number of statistical methods have been proposed 

since the inception of GS. While many other models exist, such as, variations of Bayesian 

models as discussed in KŠrkkŠinen and SillanpŠŠ (2012), LASSO methods (Ogutu, 

Schulz-Streeck, & Piepho, 2012), hybrid LASSO best linear unbiased prediction (BLUP) 

methods (Li, Wang, & Bao, 2015), and others (Desta & Ortiz, 2014; Gianola & Van 

Kaam, 2008; Solberg, Sonesson, Woolliams, & Meuwissen, 2009), some of the most 

common methods are ridge regression BLUP (RR-BLUP; Meuwissen, Hayes, & 

Goddard, 2001; Whittaker, Thompson, & Denham, 2000), genomic BLUP (VanRaden, 

2008), and Bayes B (Meuwissen, Hayes, & Goddard, 2001). In RR-BLUP, each marker 

is assigned an effect from a normal distribution with the same variance. By using a 

statistical technique called ridge regression, these effects are shrunk towards zero to 

avoid collinearity, which can arise from having more explanatory variables than 

observations. In GBLUP, a genomic relationship matrix is used to predict marker effects. 

Instead of capturing expected relationships, as in pedigree models, GBLUP captures the 

realized relationships that occur due to the probabilistic inheritance of alleles 

(Meuwissen, Hayes, & Goddard, 2013), which is called Mendelian sampling. While the 

explanation of RR-BLUP and GBLUP models differ here, under a few basic assumptions 

they have been shown to be equivalent (Habier, Fernando, & Dekkers, 2007). In Bayes B, 

the constraint of equal marker variances is relaxed. Instead, Bayes B models marker 

effects as random draws from a normal distribution with a marker-dependent variance 

drawn from an inverted chi-squared distribution. Additionally, markers are given a 

probability, ! , of receiving no effect (Meuwissen, Hayes, & Goddard, 2001).  
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While much research has been devoted to conditions (i) and (ii), only three 

approaches to condition (iii) are known to exist. The typical way of handling condition 

(iii) is to perform truncation selection on GEBVs (Meuwissen, Hayes, & Goddard, 2001). 

This procedure is thought to maximize response in the following generation since the 

selection differential is maximized for a given proportion selected (Falconer, 1981). 

However, maximizing response of the next generation is not always optimal when trying 

to maximize long-term response due to premature fixation of alleles (Gibson, 1994). To 

prevent allele fixation, a method was proposed that weights rare and favorable alleles 

more than common or unfavorable allele (Goddard, 2009). To do this, markers are given 

a weight scaled according to allele frequencies (Hayes, Bowman, Chamberlain, & 

Goddard, 2009). In turn, weights are applied to either the sign of the estimated marker 

effect (Goddard, 2009) or the estimated marker effects in the GEBV calculations 

(Jannink, 2010). Truncation selection is then carried out on the weighted GEBVs. This 

selection method was called weighted genomic selection (WGS) and was tested in a 

simulation study. The results indicated that weighting markers sacrifices short-term gains 

somewhat, but quickly makes up for it in subsequent generations (Jannink, 2010). In 

another approach to condition (iii), truncation selection based on the optimal haploid 

values (OHVs) was proposed, where OHV is the selection limit of a line (Daetwyler, 

Hayden, Spangenberg, & Hayes, 2015). In this way, OHV selection combined ideas of an 

upper selection limit (Cole & VanRaden, 2011) and an ideal genotype (Kemper, 

Bowman, Pryce, Hayes, & Goddard, 2012). The OHV selection approach to condition 

(iii) was shown to increase gains and preserve diversity better than selection based on 
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GEBVs in simulated wheat breeding program that used doubled haploids (Daetwyler, 

Hayden, Spangenberg, & Hayes, 2015).  

Based on the success of WGS and OHV, it is clear that truncation selection of 

GEBVs is not optimal when considering time horizons longer than one generation. 

However, neither WGS nor OHV selection methods were proven optimal either. This 

suggests there are potentially better methods yet to be discovered. With the massive scale 

of global food production (FAO, 2015), these future discoveries could result in a 

significant return. 
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CHAPTER III 

SELECTION ON OPTIMAL POPULATION VALUE INCREASES GENETIC GAIN 
RELATIVE TO EXISTING GENOMIC SELECTION METHODS 

 
 

Abstract 
 
 In the original genomic selection (GS) method, individuals are selected based on 

the sum of their estimated marker effects, known as genomic estimated breeding values 

(GEBVs). Due to significant correlation between GEBVs and true breeding values, this 

approach to GS has resulted in rapid genetic gain. Since then, however, optimal haploid 

value (OHV) selection and weighted genomic selection (WGS) have been proposed as 

extensions to the original GS method to facilitate efficient development of doubled 

haploids and to improve long-term response, respectively. In simulation studies, these 

methods were shown to separately outperform GS under different assumptions. However, 

further improvements exist. In this paper, optimal population value (OPV) selection is 

introduced as selection based on the maximum possible haploid value in a sub-set of the 

population. Instead of evaluating the breeding merit of individuals, as in GS, OHV 

selection, and WGS, the proposed method evaluates the breeding merit of a set of 

individuals together. After testing OPV selection thoroughly across two populations and 

under 15 parameter combinations, OPV selection was found to achieve up to 8.3%, or 

0.58 base standard deviations, more response than GS. Additionally, it statistically 

outperformed both extensions to GS: WGS and OHV selection. These results suggest a 

new paradigm for selection methods in which an individualÕs value is dependent upon its 

compatibility with others. 



 11 

Introduction 
 
 Genomic selection (GS) was proposed as a method to capture effects of all 

quantitative trait loci (QTL; Meuwissen, Hayes, & Goddard, 2001).  In GS, genome-wide 

genetic markers and phenotypic observations are used to estimate marker effects that can 

subsequently be used to accurately predict breeding values of individuals that have only 

been genotyped (Meuwissen, Hayes, & Goddard, 2001). As a result of this prediction 

accuracy, GS has been recognized as a potentially viable way to accurately select for 

cultivar improvement programs in plant breeding (Bernardo & Yu, 2007), as well as for 

allowing more breeding cycles per unit of time (Heffner, Lorenz, Jannink, & Sorrells, 

2010). 

 Even though GS has been shown to accurately predict breeding values and has 

allowed for more breeding cycles per unit time, two extensions have been proposed 

improve it. The first, weighted genomic selection (WGS), was proposed to increase the 

frequency of rare favorable alleles in the population in order to maximize long-term 

response (Goddard, 2009). In a simulation study, WGS was shown to increase response 

after just a few generations (Jannink, 2010). In the second extension, the optimal haploid 

values (OHVs) of the individual were used for selection. This was proposed and shown to 

improve response in doubled haploid breeding programs (Daetwyler, Hayden, 

Spangenberg, & Hayes, 2015).  

 While GS and both extensions perform well, further improvements are possible. 

All three methods perform truncation selection on individual metrics. However, after 

several generations of random crossing and recombination, it is likely that contributions 

from many founder lines can be found in each line. Therefore, it is important that the 
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selected lines in each generation are compatible with the other lines selected. This 

suggests an individual lineÕs value is dependent on the other lines within the selected 

breeding population.  

In this article, an extension of OHV selection (Daetwyler, Hayden, Spangenberg, 

& Hayes, 2015), optimal population value (OPV) selection is proposed. In OPV 

selection, instead of selecting the individuals with the greatest optimal haploid values, the 

sub-set of the population with the combined maximum haploid value is selected. To 

compare this proposed method with existing methods, OPV selection, GS (Meuwissen, 

Hayes, & Goddard, 2001), WGS (Jannink, 2010), and OHV selection (Daetwyler, 

Hayden, Spangenberg, & Hayes, 2015) are first defined mathematically. Then, a 

simulation study with empirical data from an inbred maize population is used to analyze 

the methodsÕ relative ability to improve response, maintain a modified upper selection 

limit  of the population (Cole & VanRaden, 2011), and maintain total additive genetic 

variance. The objectives of this paper are to (i) improve mean response and (ii) 

investigate the potential of population-based selection methods. 

 
Selection Methods 

 
In this section, four selection methods are described. To start, three existing 

selection methods are mathematically defined for convenience: GS (Meuwissen, Hayes, 

& Goddard, 2001), WGS (Jannink, 2010), and OHV selection (Daetwyler, Hayden, 

Spangenberg, & Hayes, 2015). Then, the proposed selection method, OPV selection, is 

defined as an extension of OHV selection. For this definition, an optimization 

formulation is used for clarity.  
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While there may be some similarities between the formulas of existing methods 

and the formula of the proposed method, the selection processes differ tremendously. In 

each of the existing methods, truncation selection is performed on genomic estimated 

breeding values (GEBVs), weighted GEBVs, or OHVs, respectively. In OPV selection, 

sub-sets of the population are evaluated as units. After all possible sub-sets of the 

population have been evaluated, the unit with the best OPV is selected. 

 

Genomic selection 

In this selection method, the !  lines with the largest GEBVs, where GEBV is 

defined in (1), are selected (Meuwissen, Hayes, & Goddard, 2001). In (1), the GEBV of 

line !  is given by 𝑉! , ! !"#  is a genotype array with !  marker loci, a ploidy of ! , and !  

lines, and ! !  is the estimated marker effect vector.  

! ! ! ! !"# ! !

!"

!!!!!! ! !  

 

Weighted genomic selection 

At least two versions of WGS are known to exist (Goddard, 2009; Jannink, 2010). 

For this paper, !  lines were selected based on the weighted GEBVs, ! !
! , calculated using 

(2). For these calculations, the estimated marker effect was weighted using the frequency 

of the most beneficial allele in the population at that locus, denoted ! !  (Jannink, 2010). 

Additionally, ! !"#  is a genotype array with !  marker loci, a ploidy of ! , and !  lines, 

and ! !  is the estimated marker effect vector. 

! !
! ! ! !"# ! ! ! !

! ! !!

!"

!!!!! ! !  
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Since ! !
! ! !!  is undefined when ! ! ! ! , a rule was set to assume ! ! ! !  for these cases. It 

is important to note that when ! ! ! ! , every member in the population has the same 

allele. Thus, assuming ! ! ! !  has an equal effect on all lines. 

 

Optimal haploid value selection 

For this selection method, the !  lines with the largest OHV are selected 

(Daetwyler, Hayden, Spangenberg, & Hayes, 2015). OHV of line !  was defined as  

!" ! ! ! ! ! !"#
!

! ! ! !"# ! !
!

!!!!!! ! !  

where ! ! !"# ! ! !"# ! !! !! ! ! ! ! ! , !! !"#  !is the genotype at locus !  within the 

haplotype segment. Here, !" ! ! !! ! ! ! ! ! !  where !  is the length of the haplotype segment, 

!  is the number of haplotype segments in the genome, !  is the ploidy,!!  is the line, and 

! !  is the estimated marker effect at locus !  within haplotype segment!! . 

 

Optimal population value selection 

As an extension to OHV selection (Daetwyler, Hayden, Spangenberg, & Hayes, 

2015), OPV selection is introduced. For this method, the breeding population of size !  

that maximizes OPV, defined in (4), is selected. OPV can be interpreted as a 

generalization of upper selection limit (Cole & VanRaden, 2011) to varying haplotype 

lengths, rather than just haplotypes with a length of one marker. Since this generalization 

can differ from the upper selection limit described by Cole and VanRaden (2011) and 

incorporates the idea of varying haplotype lengths (Daetwyler, Hayden, Spangenberg, & 

Hayes, 2015), OPV will be used to describe this value. When upper selection limit is used 

in the rest of the paper, it will specifically be referring to (4) with a haplotype length of 
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one marker only. Mathematically, OPV is defined as !

𝑂𝑃𝑉 ! ! ! max
!

! !"#
!

! ! !"# !!
!

!!!!!! ! !  

where ! ! !"# ! ! !"# ! !! !! ! ! ! ! ! ,  !  is the index of the line, and ! , !! !"# , !! , ! , and 

! !  are defined as in OHV selection. An example comparing OHV selection and OPV 

selection is given in Figure 1. 

 In this selection method, OPV is maximized under two constraints. The first 

constraint limits the number of lines that can be selected for crossing. That is, no more 

than !  lines can be used to maximize OPV. The second constraint used with this method 

restricts consideration of candidate breeding populations of size !  to only those that have 

a GEBV greater than or equal to the mean GEBV of the current population. As an 

optimization problem, this can be interpreted as maximizing the overall potential effect of 

selecting a limited number of lines such that the response to selection is expected to be 

positive. This optimization problem is given in (5). In this optimization problem, ! ! !! !!  

are the binary indicator variables that determine if line !  is selected (! ! !  1) or is not 

selected (! ! !  0). 

!"# !!!!! ! !"#
!

! ! ! ! !"#
!

! ! !"# !!
!

! 

! ! ! !!!!!!!!!!!!!! 𝑑!

!

! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !"# ! !!"#

!
!

! ! ! ! !"# ! !!"#

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! !! !!!! !!!!!!!!!!!!!!!!!!!!!!! ! !! 

From (5), it can be seen that diversity at a particular locus is beneficial in that the 

maximum allele effect is assumed. That is, loci with both favorable and unfavorable 
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alleles assume the value of the favorable allele. However, this does not necessarily mean 

that allele fixation is penalized. In this method, fixed alleles are not penalized when loci 

are fixed for favorable alleles, but are penalized otherwise.  

 
!
"#$%&'!( ) An example comparing OHV selection and a simplified version of OPV selection in which a filter 
is not added. In each colored box, the haplotype value is given. Ideal progeny* indicates a progeny that is 
possible after one generation. Ideal progeny** indicates a progeny that is possible after three generations. 
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Simulation 

In silico breeding process model  

The plant breeding process considered in this paper is defined as a repetitive 

process composed of an evaluation, selection, pairing, and reproduction step each cycle 

and is shown in Figure 2. The process is 

initialized by inputting an 

!"#$#%&!!"#$%&'(")  of size !  and setting 

! ! ! . Then, the process starts with the 

evaluation of the current state of the 

population. Once the current state has been 

evaluated, !  lines are selected with a 

selection method. After selection, lines are 

paired randomly. Finally, paired lines are 

crossed to produce a new population of 

size ! . This population is then considered 

to be the!!"#$#%&!!"#$%&'(") !of 

generation!! ! ! ! ! . This process is 

repeated until the final generation, !"#$ , 

has been completed. Doubled haploid 

production is not considered. In order to 

compare GS, WGS, OHV selection, and 

OPV selection, this breeding process was 

Figure 2: A diagram of the basic breeding process 
considered in this paper. For this process, no doubled 
haploid production is considered.  
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implemented in silico in MATLAB . Pseudo-code of the simulation framework is 

provided in Appendix A.  

In each generation of the simulation, the current state of the population was 

evaluated first. For the evaluation of response, an additive model was assumed to 

accurately depict the true phenotype of a line (Hill, Goddard, & Visscher, 2008). 

Furthermore, the fact that the marker effects are estimates of QTL was ignored. Instead, it 

was assumed that the marker effects that were estimated are the true effect of having that 

marker. The resulting additive model used is given in (6), where the true breeding value 

(TBV) of a given line !  is ! !  and ! !"# is the genotype array of the population indexed by 

loci number !, gamete ! , and line ! . The major allele effect vector is denoted ! ! . The 

constant !  can be interpreted as the population mean and ! !  is a random error term. For 

these simulations, an error term of 𝜖! ! !  was used. 

! ! ! ! ! ! !"# ! !

!"

! ! ! !!!!! !! !!!!!! ! !  

 The rationale for ignoring QTL effects and considering marker effects as true 

effects is as follows. Since our goal is to improve how estimated marker effects are used, 

assuming marker effects as true effects allows for the evaluation of the selection methods 

independent of marker prediction models. If QTL determined TBVs, the evaluations of 

the selection methods would be subject to Type I and II errors if markers had been 

estimated inaccurately. Therefore, it is assumed that the lines with the largest sum of 

estimated marker effects are the best lines and that the selection method that achieves a 

population with the best lines evaluated in this way is best. This is equivalent to saying a 

selection method is best if it achieves the best GEBVs after selection. Additionally, for all 

simulation studies an error term of ! ! ! !  was used rather than an error term scaled to 
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some heritability level. Any other error term would incorporate noise into evaluation of 

the selection methods. The implementation of (6) is provided in Appendix B.  

 For these simulations, the response was calculated as the change in mean TBV, 

where mean TBV in any generation is given as ! !! ! . At times, response per base 

standard deviation is used. For this, base standard deviation was defined as the standard 

deviation of TBVs in the initial population. Additionally, in each generation the modified 

upper selection limit and total additive genetic variance (Falconer, 1981) were evaluated, 

where the modified upper selection limit was calculated as in (4) with a haplotype 

segment length set to one marker and where total additive genetic variance was defined 

as  

!"#$%&'%()* ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!

!      (7) 

with ! !  defined as the minor allele frequency at loci ! and ! !  is the effect. The 

implementations of the upper selection limit and total additive genetic variance 

evaluation methods are provided in Appendices C and D, respectively. 

 Following evaluation, selection and paring occur. In the selection step, GS, WGS, 

OHV selection, or OPV selection were used. For the implementations of these methods it 

is important to note that although GS, WGS, and OHV selection are computationally 

simple, solving (5) for OPV selection is difficult .  Instead of solving the optimization for 

OPV selection, a heuristic method was used. The basic heuristic used was to make 

repeated pairwise swaps of members in the current candidate breeding population with 

those not in the current candidate breeding population. If a swap improves the OPV of the 

candidate breeding population, then the swap is kept. Otherwise, it is discarded and the 

current candidate breeding population is set back to its previous state. This process 



 20 

continues until no single member of the breeding population can be substituted out. To 

guarantee the positive genetic gain constraint in (5), a GEBV filter was used prior to OPV 

selection. This filter restricted the lines considered for selection to some top percentage of 

lines. This top percentage GEBV filter was treated as a parameter for the simulation 

studies. The pseudo-code for GS, WGS, OHV selection, and OPV selection 

implementations is given in Appendices E, F, G and H, respectively. After the breeding 

population is selected the selected lines are paired randomly. The implementation of 

random pairing is given in Appendix I. 

In order to replicate the true reproduction process, each offspring was determined 

probabilistically according to a recombination rate vector ! . This vector is indexed by 

locus number !, where element ! !  is defined as the probability of a recombination event 

occurring between locus ! ! !  and locus !. In other words, for some gamete !  indexed by 

!, ! ! ! !" ! ! ! ! !! ! ! ! ! ! ! ! ! !" ! ! ! ! !! ! ! ! ! ! ! ! . A special case of this is 

defined for the first locus of each chromosome, for which it is assumed !! ! ! !! !

!" ! ! ! ! ! !! ! ! ! !" ! ! ! ! ! !" ! ! . The details of this implementation are given in 

Appendix J. 

 

Data 

For this paper, the 369 inbred maize (Zea mays subspecies mays L.) lines studied 

in Leiboff et al. (2015) were genotyped using RNA-Seq (Barbazuk, Emrich, Chen, Li, & 

Schnable, 2007) and tGBS (Schnable, Liu, & Wu, 2013), merged with genotyping by 

sequencing single nucleotide polymorphisms (SNPs) from Romay et al. (2013), and 

phased using Beagle (Browning & Browning, 2008). For each of the 369 lines, these 
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results yielded SNPs at approximately 1.4 million loci spread across ten chromosomes 

with a total length of approximately 15.5 Morgans. For efficiency reasons, data from only 

300 of the lines were selected for further processing. To prepare remaining data for 

simulation, all of the chromosomes from a line were concatenated along their first 

dimension to create an approximately 1.4 million x 2 matrix. Each cell in that matrix was 

then assigned a value of either Ò1Ó or Ò0Ó for having the major or minor allele, 

respectively. All lines were then concatenated together along their third dimension to 

create an approximately 1.4 million x 2 x 300 array, which will be referred to as ! . From 

! , two random samples of 25 starting genotypes were sampled without replacement from 

the population of 300 genotypes. For each sample, every line was crossed with every 

other line once. For each of these crosses, only one offspring was generated. This 

produced two populations of 300 individuals. These populations will be called Initial 

Population 1 and Initial Population 2 and will be denoted ! ! and ! ! , respectively.  

The phenotype data used for this study was retrieved from Leiboff et al. (2015) 

and consisted of 369 shoot apical meristem volume phenotypes. These phenotypes, along 

with the corresponding genotypes from above, were used to estimate marker effects using 

the Bayes B model (Meuwissen, Hayes, & Goddard, 2001) implemented in GenSel 

(Fernando & Garrick, 2009). This produced a vector of estimated marker effects for 

major alleles at each of the approximately 1.4 million SNPs, which will be referred to as 

! . 

To estimate the recombination rates used in this study, the maize nested 

association mapping (NAM; Yu, Holland, McMullen, & Buckler, 2008) population was 

used as a starting point. Out of the 1,144 genetic markers in the NAM population, 133 
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were removed because the orderings between physical and genetic positions were 

inconsistent. The remaining 1,011 markers were used to estimate the genetic positions of 

the SNPs by linear interpolation between the flanking NAM markers of each SNP. Once 

the genetic positions of the SNPs were estimated, recombination rates were calculated for 

each chromosome using HaldaneÕs mapping function. For simulation purposes, a 

probability of 0.5 was assigned at the beginning of each chromosomeÕs recombination 

rate vector. Then, all recombination rate vectors were concatenated along the first 

dimension to form ! , an approximately 1.4 million x 1 vector. 

 

Experimental setup 

 To test the proposed method against existing selection methods, a full factorial 

experiment was performed with two factors: Initial Population and Selection Method. For 

the Initial Population factor, the populations ! ! and ! !  were treated as levels. For the 

Selection Method factor, 22 different methods were defined and are given in Figure 3. 

These methods are comprised of on e GS, one WGS, five OHV selection, and 15 OPV 

Figure 3: Descriptions of the selection methods used in the full factorial experiment. 
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selection methods. For each of these selection methods, 10% of the population is 

selected. In OHV selection methods and OPV selection methods, the haplotype length 

parameter can be varied. For this experiment, the haplotype lengths were varied between 

one chromosome, 1/2 chromosome, 1/3 chromosome, 1/6 chromosome, and 1/12 

chromosome as in the research on OHV selection (Daetwyler, Hayden, Spangenberg, & 

Hayes, 2015). Furthermore, in OPV selection the filter percentage parameter was varied 

between 10, 30, and 50%. Here, the filter percentage is the top percentage of the 

population, with respect to GEBVs, to consider for OPV selection. Filters greater than 

50% were not considered since no more than 50% of the population is needed to 

maximize long-term response (Cockerham & Burrows, 1980).  

 For each experiment, the number of lines selected each generation and population 

size were held constant at 30 and 300, respectively. Additionally, the constant !  was set 

in the first generation such that the mean TBV of the population was zero. This full 

factorial of 44 experiments was run for 10 generations and for 60 complete replications. 

  

Data analysis 

The mean responses of the 22 different methods were compared using TukeyÕs 

Honestly Significant Difference Procedure for multiple comparisons at a significance 

threshold of 0.05. All significance testing was completed in Matlab (2015a) with the 

functions ÒanovanÓ and ÒmultcompareÓ from the Statistics and Machine Learning 

Toolbox. Then, plots were generated to qualitatively compare upper selection limits and 

total additive genetic variance, as well as to compare trends when using OPV selection at 

various haplotype lengths and filter percentages.  
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Results 

Selection method comparison 

 In this simulation study 22 selection methods were compared for their ability to 

generate genetic gain, maintain the upper selection limit of the population, and maintain 

total additive genetic variance. 

 In Figure 4 the graphical results simulation study are given with respect to mean 

response. From this bar graph, it can be seen that when starting with Initial Population 1 

the greatest seven responses are the result of OPV selection methods. The best of these 

seven methods is OPV 30 2/Chr, followed by OPV 30 3/Chr, OPV 50 3/Chr, OPV 50 

2/Chr, OPV 30 6/Chr, OPV 30 Chr, and OPV 50 Chr, respectively. The best method that  

Figure 4: Comparison plots of total mean response and standard error of mean response for all 22 
selection methods after 10 generations. On the left, results are given for Initial Population 1. On the right, 
results are given for Initial Population 2. 
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was not in the family of OPV selection methods was OHV 2/Chr. When multiple 

comparison procedures were used to test for significant differences in mean responses, 

each of the top seven methods are statistically different than the bottom 16 methods for 

Initial Population 1. Notably, there is a total of 8.3%, or 0.58 base standard deviations, 

improvement in mean response when comparing OPV 30 2/Chr with GS and a 4.4%, or 

0.32 base standard deviations, improvement in mean response when comparing OPV 30 

2/Chr with OHV 2/Chr. Similar to these results, the top six selection methods when using 

Initial Population 2 were OPV selection methods. Listed from best to worst, these were 

OPV 30 2/Chr, OPV 10 6/Chr, OPV 30 Chr, OPV 50 2/Chr, OPV 30 3/Chr, and OPV 50 

Chr. For this starting population, the best method that was not in the family of OPV 

selection methods was GS. In terms of percent improvement, the best OPV method for 

Initial Population 2 only out performs GS by 0.7%, or 0.03 base standard deviations, and 

outperforms the best OHV method by 3.2%, or 0.12 base standard deviations. However, 

it is important to note that even though the results of Initial Population 2 has six OPV 

selection methods performing the best, none of these had statistically different results 

than GS. This point is emphasized by the inclusion of OPV 10 6/Chr in the top six, which 

is equivalent to GS because of the 10% GEBV filter. When comparing OHV selection 

and GS, improved mean responses were observed while using OHV selection with one, 

two, three, and six haplotype segments per chromosome and Initial Population 1. 

However, this outcome was not observed in Initial Population 2. In Initial Population 2, 

all OHV selection methods performed statistically worse than GS. WGS performed worse 

than GS with both Initial Population 1 and Initial Population 2. A table of mean responses  
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Figure 5: Comparison plots of mean response at different time horizons. On the top, results are given for 
Initial Population 1. On the bottom, results are given for Initial Population 2.  

 
and standard errors of each selection method with each initial population is provided in 

Appendix K. 

To demonstrate how the overall best performing OPV selection method compares 

to GS and the overall best performing OHV selection method prior to generation 10, a 

plot of the overall mean responses is given in Figure 5. In the plot of Initial Population 1, 

OHV2/Chr and GS perform approximately the same in the first generation, with OPV 30 

2/Chr performing worse. By generation 3, OPV 30 2/Chr overtakes both OHV 2/Chr and 

GS. This advantage in mean response is maintained through generation 10. However, in 

generation 7 OHV 2/Chr surpasses GS and rapidly increases genetic gain. By generation 

10, OHV 2/Chr is approaching OPV 30 2/Chr. When the initial population was set to 



 27 

Initial Population 2, all three methods perform approximately the same through the first 

generation. In the second generation, OPV 30 2/Chr generated a small advantage that was 

maintained through generation 10. In generation 10, OHV 2/Chr nearly reaches the 

response level of GS. A table of overall mean responses in each generation and with each 

initial population is provided in Appendix L for OPV 30 2/Chr, OHV 2/Chr, and GS. 

 With respect to total additive genetic variance, OHV 2/Chr outperformed both 

OPV 30 2/Chr and GS, as shown in Figure 6. In this figure, OHV 2/Chr total additive 

genetic variance curve peaks later and higher than the other two selection methods. 

Additionally, OHV 2/Chr maintains its total additive genetic variance longer. When 

considering the other two methods, OPV 30 2/Chr tends to decline more slowly after 

peaking than GS, although their peaks are at similar total additive genetic variance levels.  

 
 

 
 
Figure 6: Comparison plots of total additive genetic variance at different time horizons. On the left, results 
are given for Initial Population 1. On the right, results are given for Initial Population 2. Note the scales of 
the axes are different for Initial Population 1 and Initial Population 2.  

 



 28 

 
 
Figure 7: Comparison plots of upper selection limits at different time horizons. On the left, results are 
given for Initial Population 1. On the right, results are given for Initial Population 2.  

 
In terms of maintaining the populationÕs upper selection limit, these three 

methods performed similarly. However, on average across both initial populations and all 

time periods OPV 30 2/Chr appeared to perform slightly better than OHV 2/Chr and GS. 

A plot of upper selection limit curves with respect to generation is given in Figure 7.  

 

Trends in OPV selection methods 

In this section, comparison plots of mean response, upper selection limit, and total 

additive genetic variance are given to clearly demonstrate the trends that are common to 

all OPV selection methods. Since these trends are common to all methods, demonstration 

on only one OPV selection method suffices to show these trends. The methods plotted in 

this section were specifically chosen for illustration purposes. 
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In Figure 8, a comparison plot of varying filter percentages is given for Initial 

Population 1 and 3 haplotype segments per chromosome. In this plot, as filter percentage 

decreases the rate of short-term response increases, there is a greater reduction in upper 

selection limit, and total additive genetic variance is maintained for fewer generations. 

This trend was observed for all quantities of haplotype segments per chromosome, as 

well as for Initial Population 2.   

 When a plot of varying haplotype segments was made for OPV selection with a 

50% filter and Initial Population 1, a similar trend was observed. In this plot, as the 

number of haplotype segments per chromosome decreases the rate of short-term response 

increases, there is a greater reduction in upper selection limit, and total additive genetic 

variance is maintained for fewer generations. This plot is show in Figure 9 and is similar 

to plots 50 and 30% filters. With a 10% filter, changes in the number of haplotypes had 

no effect since the selection percentage is also 10%.   
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Figure 8: Comparison plots of 50, 30, and 10% filters in OPV selection with three haplotype segments per 
chromosome and Initial Population 1. On the top, comparisons of total additive genetic variance are made. 
In the middle, comparisons of upper selection limit are made. On the bottom, comparisons of mean 
response are made.  
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Figure 9: Comparison plots of 1, 2, 3, 6, and 12 haplotype segments per chromosome in OPV selection 
with a  50% filter and Initial Population 1. On the top, comparisons of total additive genetic variance are 
made. In the middle, comparisons of upper selection limit are made. On the bottom, comparisons of mean 
response are made.!!
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Discussion 

Selection method comparison 

 From the results presented, it is clear that OPV 30 2/Chr generates the greatest 

mean response through 10 generations. However, OPV 30 2/Chr did not preserve the 

total additive genetic variance better than OHV 2/Chr, nor did OPV 30 2/Chr perform 

notably better than OHV 2/Chr or GS in terms of maintaining the upper selection limit. 

For this reason, it is not suspected that either of these metrics individually are the key 

driving force behind OPV 30 2/ChrÕs success. Instead, a subtler difference is suspected: 

OPV selection methods treat the population as a collaborative unit. In each generation, 

lines with a highly desirable haplotype segment are selected, paired randomly, and 

crossed. Since the most desirable haplotype segments are maintained each generation and 

randomly crossed, eventually they will be propagated throughout the population. This 

will inevitably result in recombinants with multiple selected haplotype segments because 

selected haplotype segments are from distinct non-overlapping sections of the genome. 

However, this has some limitations. For instance, in each generation of this simulation 

only 30 lines were selected. That means, if optimal haplotype segments were all in 

separate lines, then, at most, the best 30 haplotype segments could be selected. This 

implies that only selection of at least as many lines as haplotype segments considered can 

guarantee the optimal haplotype at each segment is selected.  

 In these simulations, the performance of the OHV selection method was 

inconsistent. When Initial Population 1 was used, OHV selection with one, two, three, 

and six haplotype segments outperformed GS with a maximum of +3.7% difference in 

genetic gain. This result closely matches a previous study in which OHV selection 

outperformed GS with less than or equal to 3 haplotype segments per chromosome. In 
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that study, a +3% difference in genetic gain was observed between OHV selection and 

GS (Daetwyler, Hayden, Spangenberg, & Hayes, 2015). It is important to note again that 

for these simulations doubled haploid production was not considered, which suggests 

doubled haploid production may not be necessary to benefit from OPV selection. 

However, in this study a second starting population was used to test the robustness of all 

selection methods. With Initial Population 2, it was found that GS outperformed all OHV 

selection methods. While doubled haploid production is expected to have a minor 

positive impact on the difference between OHV and GS (Daetwyler, Hayden, 

Spangenberg, & Hayes, 2015), it is not expected to make up the large difference observed 

in this experiment. Additionally, OHV with two, three, six, and twelve haplotype 

segments outperformed OHV with one haplotype segment. This suggests that relatively 

significant genetic gain is only achieved by accumulating multiple generations of 

recombination (Daetwyler, Hayden, Spangenberg, & Hayes, 2015). This hypothesis is 

supported by the relatively low total additive genetic variance of Initial Population 2 

compared to Initial Population 1, when the upper selection limits of the two populations 

are similar. This point indicates that beneficial alleles exist within the population, but are 

at low frequencies thus potentially require more recombination to see a notable response.  

 WGS was also considered in this simulation study. The mean response results did 

not suggest any clear benefit to WGS for this data set, which varies from previously 

published research (Jannink, 2010). However, in this study three orders of magnitude 

more markers were used than in the previous study, which could lead to a cumulative 

effect of many weighted small effect loci drowning out the signal from large effect loci.  
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 Since OPV selection optimizes OPV, which is closely related to the upper 

selection limit, it is not surprising that OPV 30 2/Chr maintained the upper selection limit 

better, on average, than OHV 2/Chr and GS. However, this difference was minimal due 

to the relatively long haplotype segments and low filter percentage. Also, because of the 

relatively long haplotype segments GS and OHV 2/Chr had, at times, a better upper 

selection limit. This happens, by chance, when haplotype segments are long, since the 

optimization of OPV differs from optimization of the upper selection limit.  

 However, a greater upper selection limit does not perfectly correlate with more 

variation within the population. This was demonstrated when OHV 2/Chr resulted in 

significantly more total additive genetic variance than OPV 30 2/Chr and GS. As 

explained in Daetwyler, Hayden, Spangenberg, and Hayes (2015), OHV selects based on 

the sum of favorable haplotype segments in a line without incentivizing multiple 

beneficial haplotypes at a single segment. Therefore, there is not a selection pressure 

towards homozygosity, which allows for better maintenance of diversity. In a similar 

way, OPV 30 2/Chr selects a breeding population to form an optimal haploid, but bases 

selection on the sum of the population-wide best haplotypes segments. That means there 

is not a strong selection pressure to develop homozygosity, nor is there selection pressure 

on most of the genotypes. These two observations are expected as the cause of the greater 

total additive genetic variance in OPV 30 2/Chr compared to GS. Whereas, it is suspected 

that OPV 30 2/Chr performs worse than OHV 2/Chr because particular haplotypes are 

strongly selected for individually throughout the population. Therefore, these haplotypes 

will eventually tend to dominate the population.   
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Trends in OPV selection methods 

 When comparing varying filter percentage used with OPV selection, it is clear 

that as filter percentage decreases the rate of short-term response increases, there is a 

greater reduction in upper selection limit, and total additive genetic variance is 

maintained for fewer generations. This is expected and can be understood in terms of the 

optimization formulation presented in (5). When filter percentage is increased, (5) is 

relaxed. This leads to an objective function as good or better than the problem that has 

not been relaxed. Since the objective function maximizes OPV, this will tend to increase 

the upper selection limit. However, relaxing the filter percentage in (5) implies the mean 

GEBV of the next generation can be less than the problem that has not been relaxed. 

Since optimizing OPV does not guarantee the lines with the greatest GEBV will be 

chosen, the mean GEBV of the next generation will tend to decrease with increasing filter 

percentage. Likewise, total additive genetic variance is maintained at a higher level for 

longer when filter percentage is increased. This is because OPV can be thought of loosely 

as a measure of diversity since OPV is a weighted measure of beneficial alleles that exist 

in the population. Thus, maximizing OPV maintains significant levels of total additive 

genetic variance longer.  

 Another trend that can be seen is for OPV selection to better maintain the upper 

selection limit with an increasing number of haplotype segments. Additionally, the rate of 

short-term response is reduced and a significant level of total additive genetic variance is 

maintained for longer. Once again, this can be understood by considering (5). Upper 

selection limit is equivalent to OPV with a haplotype segment of one marker. Since (5) 

optimizes OPV at a given haplotype length, the upper selection limit calculation will tend 
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to be largest when the haplotype segment length of the OPV calculation is close to one 

marker. Another way is to view this is to consider OPV as a model of the upper selection 

limit . When the number of haplotype segments is increased, the fidelity of the model 

increases. To understand the tendency for short-term response to decrease with more 

haplotype segments, consider the extremes. Assume each marker was considered a 

separate haplotype. Then, optimization is based on an optimal line that may require more 

than a million recombination events and is, therefore, unachievable in all practical 

situations. Conversely, if only a few haplotype segments are considered in each line, then 

the optimization is based on a line achievable in the short-term. As a result, better lines 

may be realized at a nearer time horizon. When considering total additive genetic 

variance, significant levels were maintained for longer because there is a correlation 

between a greater upper selection limit and an increasing number of haplotype segments. 

As stated for varying filter percentages, this is because OPV can be thought of loosely as 

a measure of diversity.  

 
Impact on total maize production 

 A possible 8.3% improvement in response over the course of a 10 year period was 

demonstrated in this paper. While this is a seemingly minor improvement, it has a huge 

impact when considering the scope of global maize production. For example, maize 

production in 2003 was estimated to be 645,164,993 metric tons. In 2013, estimated 

production was 1,017,536,854 metric tons (FAO, 2015). Over the course of this 10 year 

period, production increased by 372,371,861 metric tons. If improvements were instead 

8.3% greater over this time period, in 2013 the world would have produced 30,906,865 

more metric tons of maize in 2013. Although this is a simplified example that assumes 
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perfectly replicable results for all populations of maize, while assuming the same results 

hold when using real maize with QTL instead of perfectly estimated marker values and 

when there are varying levels of heritability, it gives some idea of what is possible with 

these minor improvements in response.  

 

Validity  of results 

It is important to note that the marker effects, ! ! , were not re-estimated at any 

time throughout these simulations. This means that while a methodÕs ability to 

accumulate beneficial alleles at QTL is actually of interest, the methodÕs ability to 

accumulate markers associated with beneficial alleles at QTL in the initial population is 

measured. This measurement system is expected to be a valid substitute if the model used 

to estimate the effects in the initial population is accurate, and the prediction modelÕs 

accuracy largely results from capturing markers in linkage disequilibrium (LD) with 

QTL. This is because it has been shown that accuracy results from both LD and genetic 

relationships, and that accuracy from genetic relationships declines rapidly (Habier, 

Fernando, & Dekkers, 2007). To mitigate losses in accuracy due to declining genetic 

relationships, Bayes B was used to estimate marker effects. Bayes B tends to capture 

markers in LD with QTL better than best linear unbiased prediction methods (Habier, 

Fernando, & Dekkers, 2007; Zhong, Dekkers, Fernando, & Jannink, 2009) and has been 

shown to remain accurate for up to 10 generations (Meuwissen & Goddard, 2010). 

Furthermore, a large number of SNPs were used in these simulations to make the 

accuracy of estimated effects more robust to changes in LD (Zhong, Dekkers, Fernando, 

& Jannink, 2009), which is likely to happen after the population has been simulated for 
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several generations. By using Bayes B, simulating only up to 10 generations, and using a 

large number of SNPs, it is expected that the conclusions made in this paper are valid. 

 
Conclusion 

 
 In this paper, a new selection method was presented. Instead of using evaluations 

of individual lines to select the breeding population, a candidate breeding population was 

selected as a unit. While this presents some challenges, such as solving a combinatorial 

optimization problem, it was shown to outperform existing methods in a series of 

simulation experiments that spanned 10 generations and used data from an inbred maize 

population. The statistically detectable improvements in mean response, although in the 

best case only a modest 8.3% better than GS over 10 generations, could result in 

significant gains in the worldwide production of maize. In addition to improving 

response, OPV selection has demonstrated the ability to maintain the upper selection 

limit better than previous methods such as GS, WGS, and OHV selection. This means 

that while response may begin to plateau, unfixed beneficial alleles still exist in the 

population and could translate into subsequent gains in the future. Future research related 

to OPV selection will focus on demonstrating the robustness of the selection method, 

improving response by accounting for deadlines either by varying selection intensities or 

haplotype lengths with time, and by logically picking between candidate breeding 

populations with the same OPV. 
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CHAPTER IV 

GENERAL CONCLUSIONS AND FUTURE WORK 

 
 
 As the worldÕs population continues to grow, so does the challenge of feeding 

everyone. In order to produce enough food to meet the demand in 2050, an 

interdisciplinary approach is needed. In this thesis, operations research tools were applied 

to GS in order to increase response. While operations research tools have been applied to 

plant breeding systems before, this paper provides further proof of concept for the 

integration of optimization, simulation, and mathematical modeling into plant breeding 

systems.  

 Within this paper, a new approach to GS, called OPV selection, was studied. 

Rather than evaluating breeding merit on an individual basis, OPV selection evaluates 

breeding merit on a population basis. This ensured that individuals selected would be, to 

some degree, complementary. As a result, OPV selection achieved a greater mean 

response than the other GS techniques. While the improvements to response were only 

8.3% in the best case, this could result in significant improvements to the global maize 

production. More importantly, however, this thesis demonstrated the potential of 

incorporating population information into selection decisions. By doing this, a new and 

potentially fruitful direction of GS has been opened to further research. 

Although there are many conceivable ways to select on a population basis in the 

future, OPV selection should be fully vetted first. To do this, three follow-up studies are 

recommended. 
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1) Investigate selection methods beyond 10 generations. This is important for 

several reasons. One such reason is to investigate whether OHV ever surpasses OPV or if 

it just approaches asymptotically, as seen Figure 5. Additionally, it is important to see if 

OPV methods that maintain variation and upper selection limits more effectively, such as 

those with a 50% filter or with 6 and 12 haplotype segments per chromosome, result in 

greater long-term response than OPV 30 2/Chr. Most important, however, several 

breeding programs need to be compared. For instance, could some combination of OPV 

selection methods, at varying filter percentages and haplotype numbers, be used in 

breeding programs to maintain a high upper selection limit while generating short-term 

rapid gains? The results of this extension could be relevant to commercial breeders that 

are motivated by short-term gains, while unsure of long-term consequences of selection 

based on short-term gains.   

However, in order to do this the TBV model used in this paper needs to be 

modified. While this paperÕs TBV model limits the amount of noise allowed into the 

comparisons, the reliability of this model may decay below satisfactory levels after 10 

generations (Habier, Fernando, & Dekkers, 2007; Meuwissen & Goddard, 2010). In order 

to extend this work beyond 10 generations, QTL should be simulated and the prediction 

model should be updated regularly. To do this, the procedure found in Zhong, Dekkers, 

Fernando, and Jannink (2009) is proposed. 

 2) Account for variable time horizons. Based on the breederÕs equation, GS is 

optimal when selecting for the next generation. However, the results of the journal paper 

in Chapter III suggest that GS may not be optimal when selecting for time horizons 

beyond one generation. This indicates a time dependency. Therefore, an optimal selection 
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method must account for the time horizon.  In Liu, Meuwissen, S¿rensen, and Berg 

(2015), a project deadline was incorporated in weighted genomic selection. For this 

method, more weight is assigned to rare favorable alleles than common favorable alleles 

in earlier generations. As time approaches the deadline, all weights converge to Ò1Ó and 

the weighted selection method reduces to GS (Liu, Meuwissen, S¿rensen, & Berg, 2015). 

Another possible way to incorporate a time horizon with existing selection strategies 

could be to vary selection intensity. For this approach, ! !  lines are selected in each 

generation, where !  is the number of generations remaining until the time horizon. The 

rationale for this method follows from backwards induction. Assume that the goal is to 

achieve the single best TBV by some time horizon. Then, in the year prior to that 

generation some pair is best suited to achieve that goal. Likewise, each parent must have 

a pair of parents that are best suited for achieving them. This rationale continues until the 

current generation is reached, resulting in selection of!! !  lines for crossing. Another 

option is to vary haplotype length with !  when using OPV selection or OHV selection. 

This approach is based on the idea that the number of haplotype segments should reflect 

the number of recombination events that can be expected (Daetwyler, Hayden, 

Spangenberg, & Hayes, 2015). If the deadline is further away, then cumulatively more 

recombination events would be expected. Therefore, more haplotype segments should be 

considered. To take full advantage of this, however, there should also be a proportional 

change in the size of the breeding population.  

 3) Select the population sub-set with the most probabilistic maximum OPV. The 

implementation of OPV selection did not include logic for intelligently selecting between 

multiple sub-sets of the population with the same OPV. In the future, the sub-set with the 
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most probability of realizing the maximum possible OPV should be selected. One 

promising way to do this efficiently is with an extension of predicted parental value (Han, 

Wang, Beavis, & Cameron, 2016) to more than two lines. In this extension, the 

probability of achieving a perfect line after !  generations would be calculated for a 

candidate breeding population size ! ! . The candidate breeding population with the 

greatest predicted parental value would then be chosen. 
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APPENDIX A 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF THE BASIC BREEDING 
PROCESS 

 
 
Simulation Framework: Basic Breeding Process 
1. Read Experiment Parameters 
2. For each Generation 
3. Update Data  
4. Select Breeding Population 
5. Pair Breeding Population 
6. Cross Pairs 
7. End 
8. Return Data 
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APPENDIX B 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF THE EVALUATION OF TRUE 
BREEDING VALUE 

 
 
Function: TBV Evaluation 
! ! !"#$%#&!!!"#$%&'(# ! ! ! ! ! ! {  
1. Read!! !  and !  
2. Calculate ! ! ! ! !"#

!
!" ! !  for all !  

3. Return !  
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APPENDIX C 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF THE EVALUATION OF THE 
UPPER SELECTION LIMIT 

 
 
Function: OPV Evaluation 
!"# ! !"#$%#&!!!"# ! ! ! ! ! !  {  
1. Read!! !  and !  
2. Set !"#$%&! ! ! !"# !! !"# !! ! !!! ! ! ! ! !!" ! ! ! ! ! ! !"# !! ! !! ! ! ! ! ! !! ! ! ! ! !  for all 

! ! !!!! ! ! ! ! ! !  
3 Set !"# ! ! !
4. For ! ! ! !!" !!  
5.  !"# ! !"# ! !"#$%&! !  
6. End 
7. !"# ! ! ! !"#  
8. Return !"#    }  
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APPENDIX D 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF THE EVALUATION OF THE 
TOTAL ADDITVE GENETIC VARIANCE 

 
 
Function: Total Variance Evaluation 
! !"#$%&$"&!' ! !"#$%#&!!!"#$%&$'($#(") ! ! ! ! ! !  {  
1. Read!! !  and !  
2. Set ! ! ! ! ! ! ! ! !  for all ! ! ! !!" !!  
3. For ! ! ! !!" !!  
4.  For ! ! ! !!" !!  
5.   For ! ! ! !!" !!  
6.    If  ! !"# ! !  
7.    ! ! ! ! ! ! !  
8.   Else 
9.     ! ! ! ! ! ! !  
10.    End 
11.   End 
12. End 
13. Set ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  for all ! ! ! !!" !! !
14. Set !"#$% ! ! ! ! ! ! ! ! ! ! ! ! !

!  for all ! ! ! !!" !!  
15. Set !"#$%&'%#'"( ! !  
16. For ! ! ! !!" !!  
17.  !"#$%&'%#'"! ! !"#$%&'%#'"( ! !"#$% ! !  
18. End 
19. Return !"#$%&'%#'"(    }  
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APPENDIX E 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF GENOMIC SELECTION 
 
 
Function: Genomic Selection 
! ! ! !"#"$%!!"#$%&' ! ! ! ! ! ! ! ! {  
1. Read!! ! , ! , and !  
2. Calculate ! ! ! ! !"#

!
!" ! !  for all !  

3. Order  ! !  according to descending order of !  
4. Return ! !"#

!  for all ! ! ! ! ! ! ! ! !   }  
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APPENDIX F 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF WEIGHTED GENOMIC 
SELECTION 

 
 
Function: Weighted Genomic Selection 
! ! ! !"#"$%!!"#$%&"'(")*+#, ! ! ! ! ! ! ! ! {  
1. Read!! ! , ! , and !  
2. Set ! ! ! ! ! ! ! ! !  for all ! ! ! !!" !!  
3. For ! ! ! !!" !!  
4.  For ! ! ! !!" !!  
5.   For ! ! ! !!" !!  
6.    If  ! !"# ! !  
7.    ! ! ! ! ! ! !  
8.   Else 
9.     ! ! ! ! ! ! !  
10.    End 
11.   End 
12. End 
13. Set ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  for all ! ! ! !!" !! !
14. For ! ! ! !!" !!  
15.  If  !"# ! ! ! !  
16.  !"#$ ! ! ! ! ! !  
17. Else  
18.   !"#$ ! ! ! ! ! !  
19.  End 
20. If !"#$ ! ! ! ! !  
21.  !"#$ ! ! ! ! !  
22. End 
20. End 
21. Calculate ! ! ! ! !"#

!
!" ! ! ! !"#$ ! ! !

! ! !! !  for all !  
22. Order  ! !  according to descending order of !  
23. Return ! !"#

!  for all ! ! ! ! ! ! ! ! !   }  
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APPENDIX G 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF OHV SELECTION 
 
 
Function: OHV Selection 
! ! ! !"#"$%!!"# ! ! ! ! ! ! ! ! !"#$!  {  
1. Read!! ! , ! , ! , and !"#$ 
2. Calculate ! !"#

! ! ! !"#
! ! !  for all !, ! , and !  

3. For ! ! ! !!" !! ! !  
4. For ! ! ! !!" !!  
5.   Set !"# ! ! !  and !"# ! ! !  
6.  For ! ! !"# !! ! ! !!" !!"# !! ! !  
7.    Calculate !"# ! ! ! !! !

! ! !"# !  
8.    Calculate !"# ! ! ! !! !

! ! !"# !  
9.  End 
10.  Set ! !"#$%&! ! ! ! !"# !  
11.  Set ! !"#$%&! ! ! ! !"# !    
12.   End 
13.   Set !" ! ! ! ! ! !"# !! ! !"#$%&! ! ! ! ! !"#$%! ! ! ! !  
14.  Set !"!#$ ! !! ! ! !"!#$ ! !! ! ! !" ! ! ! !  
15. End 
16. Set !"!#$ ! !! ! ! ! ! !"!#$ ! !! !  
17. Order  ! !  according to descending order of !"!#$%  
18. Return ! !"#

!  for all ! ! ! ! ! ! ! ! !   }  
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APPENDIX H 

 PSEUDO-CODE FOR IMPLEMENTATION OF OPV SELECTION 
 
 
Function: OPV Selection 
! ! ! !"#"$%!!"# ! ! ! ! ! ! ! ! !"#$!  {  
1. Read!! ! , ! , ! , and !"#$ 
2. Calculate ! !"#

! ! ! !"#
! ! !  for all !, ! , and !  

3. For ! ! ! !!" !! ! !  
4. For ! ! ! !!" !!  
5.   Set !"# ! ! !  and !"# ! ! !  
6.  For ! ! !"#$ ! ! ! !!" !!"#$! ! ! ! !  
7.    Calculate !"# ! ! ! !! !

! ! !"# !  
8.    Calculate !"# ! ! ! !! !

! ! !"# !  
9.  End 
10.  Set ! !"#$%&! ! ! ! !"# !  
11.  Set ! !"#$%&! ! ! ! !"# !    
12.   End 
13.   Set !" ! ! ! ! ! !"# !! ! !"#$%&! ! ! ! ! !"#$%! ! ! ! !  
14.  Set !"!#$ ! !! ! ! !"!#$ ! !! ! ! !" ! ! ! !  
15. End 
16. Set !"!#$ ! !! ! ! ! ! !"!#$ ! !! !  
17. Order  ! !  according to descending order of !"!#$%  
18. For ! ! ! !!" !!  
19.  Set !"#$%! ! ! !   
20.  Set !"#$%! ! ! !"#$%! !  
20. End 
21. Set ! ! !"# ! !  
22. While ! ! !"# ! !  
23.  For ! ! ! !!" !!  
24.   Set !"#$% ! !"#$%! !  
25.   Set !" !" ! ! ! !"#$ ! !  for all ! ! !  
26.  For Each ! ! ! !! ! ! ! ! ! !"#$% 
27.   If  ! ! !  
28.    Set !"#$%$"&! ! ! !"#!$%&#$%&! ! ! !"#$%!  
29.   Else If ! ! !  
30.    Set !"#$%$"&! ! ! !"#!$%&#$%&! !"#$%!! !  
31.   Else 
32.    Set 
!"#$%$"&! ! ! !"#!$%&#$%&! !"#$%! !! ! ! ! ! ! !"#$%! !! ! ! !  
33.   End 
34.  End  
35.  For Each !"#$%$"&! !  
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36.    Set 
!" ! ! ! !"# !! !"# !! ! !"#$%&! ! !"#$%$"& ! ! !

! ! !"#$%! ! ! !"#$%$ !" ! ! !
! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! !"# !! ! !"#$%&! ! !"#$%$"& ! !"
! ! !"#$%! ! ! !"#$%$"& ! !"

! ! !
37.   Set !"# ! !    
38.   For ! ! ! !!" !! ! !  
39.    Calculate !"# ! !" ! ! ! !"#  
40.   End 
41.   Set !"#$%$"&'()* ! ! ! ! !"#  
42.   End 
43. Set !"#$%&! !"#$%$"&! ! ! ! !! !  where !  is the index of the largest 
!"#$%$"&'()* !  
44. End 
45. Set check=1 
46.  For ! ! ! !!" !!  
47.   If  !"#$%! ! ! !"#$%! !  
48.   Set  ! ! !"# ! !    
49.  End 
50.  End 
51. Set !"#$%! ! ! !"#$%! !  
52. End 
53. Set ! !"#

! ! !! !"#
!  for all ! ! ! ! ! ! !  where ! ! !"#$%! !  

54. Return ! !   }  
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APPENDIX I 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF RANDOM PAIRING 
 
 

Function: Pair Randomly 
! ! ! !"#$ !!"#$% ! ! ! !  {  
1. Read!! !   
2. Order !! !  randomly 
3. Return ! !    }  
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APPENDIX J 

 PSEUDO-CODE FOR THE IMPLEMENTATION OF REPRODUCTION  
 
 
Function: Cross 
! ! ! !"#$$ ! ! ! ! ! ! ! !  {  
1. Read ! ! , ! , and !  
2. For ! ! ! !!" !! ! !  
3.  For ! ! ! !!" !! ! !

!

!
!  

4.   Generate !"#$ ! ! !"#$%&' ! ! !! !  and !"#$ ! ! !"#$%&' ! ! !! !  
5.  For ! ! ! !!" !!  
6.   If  !"#$ ! ! ! ! !  
7.    Set !"#$ ! ! ! !  
8.   Else 
9.    Set !"#$ ! ! ! !  
10.   End 
6.   If  !"#$ ! ! ! ! !  
7.    Set !"#$ ! ! ! !  
8.   Else 
9.    Set !"#$ ! ! ! !  
10.   End 
11.  End 
12.  Set !"# ! ! !  
13.  Set !"# ! ! !  
14.  For ! ! ! !!" !!  
15.   Calculate !"# ! ! !"#$ ! ! ! !"# !  
16.   Calculate !"# ! ! !"#$ ! ! ! !"# !  
17.    Calculate !"#$ ! ! ! !"# ! !!"# !!  
18.   Calculate !"#$ ! ! ! !"# ! !!"# !!  
19.  End 
20.  For ! ! ! !!" !!  
21.   If  !"#$ ! ! ! !  
22.    Set !"#$%$ ! ! ! ! !! !

!  
23.   Else 
24.    Set !"#$%$ ! ! ! ! !! !

!  
25.   End 
26.   If  !"#$ ! ! ! !  
27.    Set !"#$%$ ! ! ! ! !! !

!  
28.   Else 
29.    Set !"#$%$ ! ! ! ! !! !

!  
30.   End   
31.  End 
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32.  Calculate ! ! ! ! ! !
!
!
!

! !  

33.  Set !"#$% !"#
! ! !!"#!$%&#$%&(!"#$%$ ! !𝑔𝑎𝑚𝑒𝑡𝑒! !  

34. End 
35. End   
36. Set ! ! ! !!"#$% !  
37. Return ! ! !  }  
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APPENDIX K 

 MEAN AND STANDARD ERROR OF EACH SELECTION METHODÕS TOTAL 
RESPONSE  
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APPENDIX L 

 MEAN RESPONSE OF OPV 30 2/CHR, OHV 2/CHR, AND GS IN ALL 
GENERATIONS 

 
 

 
 


