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ABSTRACT

In order to feed the worldOs growing population, an interdisciplinany sff
needed. In this thesis, operatioaseaarch tools of mathematical modeling, optimization,
and simulation are used improveanexisting plant beedingmethod,genomic selectian
To do this, a new methodalled optimal populationalue (OPV) selections proposed
In this paper, OPV selection is first defined as an optimization pralanselecta
breeding populationsing a population metric, instead of individual metridsen OPV
selectionis thoroughly tested in a simulation study agaihsexisting methods of
genomic selection, weighted genomic selection, and optimal haploid value selection.
From the resultsfahe simulation studyp toan8.3%, or 0.58 base standard deviations,
greater mearesponse can be expected than when usidgitnaal genomic selection.
These results suggdbat populatiorbased selection methods are a promising future

research diretion.



CHAPTER |

GENERALINTRODUCTION

Ensuringthe global food supply for theext century willbe anenormous
challenge atheworldOgopulation continues to groly 2050,there will be gredicted
nine billion peopleg(Godfray, et al., 2012)n order to feed these people, total food
production will need to increase amidst the obstacles of climate change, land scarcity,
soil degradaon, weeds, disease, and egthile in anenvironment wth less genetic
diversity thann previous decadg3 he Royal Society of London, 2009)

One fieldworking to feedhe future world populatiois plant breedingThe
National Association of Plant BreedéB916)defines plant breeding #ise process of
improving plants by combining parent plants and selecting those progeny with the most
potentialto meet the populationOs neé¢tsvever the problemof ensuring a sufficient
food supplyis complex andequires morghan just improving cultivarsFor examplein
developing countries a significant proportion of the current food supply is lost due to
poor supply chain infrastructure such as insufficient transportation, cold storage, and
finance system@odfray, et al., 2012)n order toutilize improvements tdood
production, these logistical gaps will need to be filkkdditionally, future food
productionmay be plagued by constraints of land, water, and erfeegywer, 2011)As a
result, in order to maximiz@od production, tradeoffs witleedto befully assessed.
Since the scope of this problem goes beyond the role of traditional plant breeding, an

interdisciplinary approacis needed.



Operationgesearchs onedisciplinethat might beapplicable when facing global
food production constrainta the nekcentury. Operationesearch uses a diverse set of
problem solving tools, such as optimization, simulation, mathematical modeling, and
statistics, in order to make better decisions and improve effici@wshat is Operations
Research?0, 2018Yith respet toimpending food production problepaperations
researcltan assist inlesignng transportation systems to minimize food waste or allocate
land, water, and energy resources suchytiledd is maximizedBeyond these problems,
operations research teégnes can be useful in plant breeding specific probl&ms.
example pperations resear@pproaches hawdreadybeen applied to gene stackif¥yu,
Wang, & Beavis, 2011and multiallelic introgressiorfHan, Wang, Beavis, & Cameron,
2016)

In this thesisoperations researc¢hols are applied to genomic select{@5)in
order to improvehe mearresponse to selectio@hapter llprovidesa detailed literature
review onGS. Within the literature revieythree critical parts t&Sare discussed:
forming the training population, building a prediction model, and using the estimated
marker effects for selection. In Chapter #jpurnal paper discussing a new approach to
GSis given The paper proposesnew method calledptimal populationvalue (OPV)
selectionand defines OPV selection as optimization problenRather tharevaluating
and selecting individuals to form a breeding population as in existing methods, sets of
individuals are evaluated together and the best set of individuals is selectitermine
whether populatioitbased selection strategies, such as OPV selection, can generate more

response on average than individbaked selection strategi@ssimulation study was



performed using empirical dat@hen,theresults aralescribedFindly, general

conclusions of the research and future work are providEthapte IV .



CHAPTER I

LITERATURE REVIEW

Markerassisted selection (MAS) aims to incorporate genotypic information into
selection decisiond.ande & Thompsonl990) In MAS, genetic markers that have
strongstatistical associations with quantitative trattil(QTL), or loci controlling the
trait of interest, are first identified using arbitrary significance thresholds. Then, marker
effects, or the predicted irapt of the marker on the trait of interest, are estimated for
significant markergHeffner, Sorrells, & Jannink, 2009)his twostep process results in
a responsémited bythe amount of variance explained by the QTL detected in
significance testingMeuwissen & Goddard, 1996However, since this twetep process
ignores small effect markers deemed insignificant, only a fraction ebtdlevariance
will be explainedGoddard & Hayes, 2007)

GSattempts to address this limitation of MAS. In GS, genavite genetic
markers and phenotypic observations frotraming populatiorare used to estimate
marker effect§Meuwissen, Hayes, & Goddard, 200thstead of first identifying
significant markerss in MAS, GS uses all markers to train the prediction model. By
doing this, GSavoids onanajor pitfallof MAS, i.e.identifying QTL. As a result, GS can
achieve a high prediction accuracy, or a stromgelation between the sum of marker
effects, calld genomic estimated breeding values (GEBVSs), and the sum of QTL effects,
called true breeding values (TBVs), of the validation populgtiteuwissen, Hayes, &

Goddard, 2001)This has had a profound impact on what is possible within breeding



programs andds revolutionized animal breedifigayes, Bowman, Chamberlain, &
Goddard, 2009)

As a result, the potential impact of GS in plant breeding is being widely discussed
(Desta & Ortiz, 2014; Heffner, Sorrells, & Jannink, 2009; Jannink, Lorenz, & lwata,
2010;Lorenz, et al., 2011)n particular, a number of simulation and empirical studies
have been performed to investigate GSOs ability to increase genetic gain in crops. One
simulation studycompared GS and Markéssisted Recurrent Selection (MARS) in a bi
parental maize breeding prograthshowedthat the response to GS was greater than that
to MARS (Bernardo & Yu, 2007)where response is defined!ds the breederOs
equation! ! !, 1, and! is selection intensity and is a function of the propartbthe
population selected, is prediction accuracy, and is the additive genetic standard
deviation(Falconer, 1981)Similarly, in empirical studies on-piarentalHeffner,

Jannink, lwata, Souza, & Sorrells, 20Rhd multifamily (Heffner, Janink, & Sorrells,
2011)wheatpopulations, GS resulted greater prediction accuracy than MAS. From the
breederGequation previously defined, thiseater relative accuracy reported should lead
to an increase in response. While the findings of thesigestshow that GS can increase
response in plant breeding, several other studies have additionally noted that GS allows
for more breeding cycles per unit time. In these studies, this translated into a significant
advantage for GS in response per unit t{Beyene, et al., 2015; Heffner, Lorenz,

Jannink, & Sorrells, 2010; Wong & Bernardo, 2Q08)

Although GS has reportedly outperformed more traditional plant breeding
methods such as MAS and MARS, successful implementation of GS depends on three

conditions: () the trainingpopulationmust adequately reflect the test population, (ii)



effects must be estimated accurately, and (iii) the estimated effects must be used in a way
that predicts the reproductive merit of the plant or animitl respect to a breedirggpal.

In generalfor condition (i) to be satisfiethe training populatiomust be large,
have a sufficient number of markers, anclosely related to the test population. In the
earliest GS study, prediction accuracy was greater with a larger training population than
with a smaller training populatiqiMeuwissen, Hayes, & Goddard, 20015ince then,
the same observations were madéarley(Zhong, Dekkers, Fernando, & Jannink, 2009)
andmaize(Rincent, et al., 20123)JatasetsSimilarly, prediction accuracy in GS tends to
improve with increasing marker densftyorenzana & Bernardo, 200Bgcause high
density markers tend to be infcient linkage disequilibrium (LD) with QTI(Zhong,
Dekkers, Fernando, & Jannink, 2000pwever, if extensive LD already exists within the
population, a relatively small training population and relatively few markers can be used
without much reductiomi prediction accuracfl.orenz, Smith, & Jannink, 201 abier,
FernandoandDekkers (2007gxplained thiphenomenon. There, accuracy was shown
to be decomposable into accuracy from genetic relationships and accuracy from LD.
Thus, extensive LD within population is sufficient for relatively high prediction
accuracy. Likewise, a high degree of coancestry is sufficient for relatively high prediction
accuracyFurther work related ttraining populationsias been completed to optimally
select training set@sidro, et al., 2014; Rincent, et al., 20B2)d to merge historical
training setgAsoro, Newell, Beavis, Scott, & Jannink, 2011; Muir, 2007; Rutkoski, et
al., 2015)or training sets from separated populatifids Roos, Hayes, & Goddard, 2009;

Lund, etal., 2011)



To address condition (iig number of statistical methods have been proposed
since the inception of G8Vhile many other models exist, such as, variations of Bayesian
models as discussedkisrkkSinen and Sillanp$2012) LASSO method$§Oguiu,
SchulzStreeck, & Piepho, 2012hybrid LASSO best linear unbiased predicti@iLUP)
methodgqLi, Wang, & Bao, 2015)and other¢Desta & Ortiz, 2014; Gianola & Van
Kaam, 2008; Solberg, Sonesson, Woolliams, & Meuwissen, 2808)e of the most
common methods are ridge regres#dtJP (RR-BLUP; Meuwissen, Hayes, &

Goddard, 2001; Whittaker, Thompson, & Denham, 20§éhomic BLURVanRaden,

2008) and Bayes BMeuwissen, Hayes, & Goddard, 200h) RR-BLUP, each marker

is assiged an effect from a normal distribution with the same variance. By using a
statistical technique called ridge regression, these effects are shrunk towards zero to
avoid collinearity, which can arise from having more explanatory variables than
observationsln GBLUP, a genomic relationship matrix is used to predict marker effects.
Instead of capturing expected relationships, as in pedigree models, GBLUP captures the
realized relationships that occur due to the probabilistic inheritance of alleles
(MeuwissenHayes, & Goddard, 2013vhich is called Mendelian sampling. While the
explanation of RFBLUP and GBLUP models differ here, under a few basic assumptions
they have been shown to be equivalgfdbier, Fernando, & Dekkers, 2001) BayesB,

the constrainbf equal marker variances is relaxedstéad Bayes B models marker

effects as random draws from a normal distributiotih@imarkeidependent variance

drawn from an inverted clsquaredlistribution Additionally, markers are given a

probability,! , of receiving no effecfMeuwissen, Hayes, & Goddard, 2001)



While much research has been devoted to conditions (i) and (ii), only three
approachs to condition (iii) are known to existhe typical way of handling condition
(iii) is to perform truncation $ectionon GEBVs(Meuwissen, Hayes, & Goddard, 2001)
This procedure is thought to maximize response in the following generation since the
selection differential is maximized for a given proportion sele(ffattoner, 1981)
However, maximizing response thie next generation is not always optimal when trying
to maximize longterm response due to premature fixation of all@B&bson, 1994)To
prevent allele fixation, a method was proposed that weights rare and favorable alleles
more than common or unfaaisle allele(Goddard, 2009)To do this, markers are given
a weight scaled according to allele frequen¢itsyes, Bowman, Chamberlain, &
Goddard, 2009)Iin turn, weigh$ are applied teither the sign of the estimated marker
effect(Goddard, 2009)r theestimated marker effects in the GEBV calculations
(Jannink, 2010)Truncation selection is then carried out on the weighted GEB\/S.
selection methodas called weighted genomic selection (WGS) and was tested in a
simulation study. The results indicatibét weighting markers sacrifices shtegtm gains
somewhat, but quickly makes up for it in subsequent genergfiansink, 2010)In
another approach to condition (iii), truncation selection based aptheal haploid
values (OHVs) was proposed, where OHYV is the selection limit of §Diaetwyler,
Hayden, Spangenberg, & Hayes, 201B)this way, OHV selection combined ideas of an
upper selection limifCole & VanRaden, 2018nd an ideal genotyg&emper,
Bowman, Prye, Hayes, & Goddard, 2012)he OHV selectiorapproach to condition

(iif) was shown to increase gains and preserve diversity better than selection based on



GEBVs insimulated wheat breeding program that usedbled haploid (Daetwyler,
Hayden, Spangenber§ Hayes, 2015)

Based on the success of WGS and OHV, it is clear that truncation selection of
GEBVs is not optimal when considering time horizons longer than one generation.
However, neither WGS nor OHV selection methods were proven optimal either. This
suggests there are potentially better methods yet to be discovered. With the massive scale
of global food productiofFAQO, 2015) these future discoveries could result in a

significant retun.
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CHAPTER i

SELECTION ON OPTIMAL POPULATON VALUE INCREASES GENETIC GAIN
RELATIVE TO EXISTING GENOMIC SELECTION METHODS

Abstract

In the original genomic selection (GS) method, individuals are selected based on
the sum of their estimated marker effe&tsown aggenomic estimated breeding values
(GEBVs). Due to significant correlation between GEBVs and true breeding values, this
approach t@sShas resulted in rapid genetic gain. Since then, howep@malhaploid
value (OHV) selection and weighted genomic seecq(WGS) have been proposed as
extensions to the original GS method to facilitate efficient development of doubled
haploids and to improve lorigrm response, respectively. In simulation studies, these
methods were shown to separately outperform GS ufferent assumptions. However,
further improvements exist. In this papeptimal populationvalue(OPV) selection is
introduced as selection based on the maximum possible haploid value iset siithe
population. Instead of evaluating the breedirggitof individuals, as in GS, OHV
selection, and WGS, the proposed method evaluates the breeding merit of a set of
individuals together. After testing OPV selection thoroughly across two populations and
under 15 parameter combinations, OPV selection wasd to achieve up to 8.3%, or
0.58 base standard deviations, more response than GS. Additionally, it statistically
outperformed both extensions to GS: WGS and OHV selection. These results suggest a
new paradigm foselection methodi® which an individuaDs value is dependent upon its

compatibility with others.
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Introduction

Genomic selectiofGS)was proposed as a method to capture effects of all
quantitative trait loc{QTL; Meuwissen, Hayes, & Goddard, 2001y GS, genomavide
genetic markers and phetypicobservations are used to estimate marker effects that can
subsequently be useddocuratelypredict breeding values of individuals that have only
been genotypefMeuwissen, Hayes, & Goddard, 200A¥ a result of this prediction
accuracy, G®asbeenrecognized as a potentially viable wayatturately select for
cultivar improvement programs plant breedingBernardo & Yu, 2007)as well as for
allowing more breeding cycles per unit of tifkéeffner, Lorenz, Jannink, & Sorrells,
2010)

Even thaigh GS has been shown to accurately predict breeding values and has
allowed for more breeding cycles per unit time, two extensions have been proposed
improve it The first, weighted genomic selection (WGBas proposed to increase the
frequency of rare faorable allelesn the population in order to maximize lobtgrm
respons€Goddard 2009) In a simulation study, WGS was shown to increase response
after just a few generatioiidannink, 2010)Iin the secon@xtensionthe optimal haploid
values(OHVs) of the individualwereused for selection. This was proposed shown to
improve response idoublel haploidbreeding program@aetwyler, Hayden,
Spangenberg, & Hayes, 2015)

While GS and both extensions perform well, further improvenanetpossible
All three methods perform truncation selectionimaividual metrics. However, after
several generations of randamossingand recombinatiarit is likely thatcontributions

from many founder linesan be foundh each line. Therefore, it is importanatithe
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selected lines in each generation are compatible with the other lines selected. This
suggests an individual lineOs value is dependent on the other lines within the selected
breeding population.

In this article, anextensiorof OHV selection(Daetwyer, Hayden, Spangenberg,
& Hayes, 2015)optimalpopulationvalue (OPV) slectionis proposedin OPV
selection, msteadf selecting théndividuals with the greatest optimal haploid valuie
subset of the population with the combined maximum haplaide is selectedlo
compare tts proposed method with existing metlsp@PV ®lection,GS (Meuwissen,
Hayes, & Goddard, 200)VGS (Jannink 2010) andOHV selection(Daetwyler,
Hayden, Spangenberg, & Hayes, 20a# first definednathematicallyThen a
simulation studyvith empiricaldata from an inbred maize populatisrusedo analyze
themethoa@elative abilityto improve responsenaintaina modifiedupper selection
limit of the populatior{Cole & VanRaden, 201 1andmaintaintotal additive gnetic
variance The objectives of this paper are to (i) improweanresponse and (ii)

investigate the potential of populatidased selection methods.

Selection Methods
In this section, fouselection methodare describedrlo startthree existing
selection methodare mathematically definddr convenienceGS (Meuwissen, Hayes,
& Goddard, 2001,)WGS (Jannink, 201Q)and OHVselection(Daetwyler, Hayden,
Spangenberg, & Hayes, 201%hen, the proposed selection method, Gieléctionis
definedasan extension of OH\gelection For this definition, an optimization

formulation is used for clarity.
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While there may be some similarities between the formulas of existing methods

and the érmula of the proposed method, the selection proceki$estremendously.In
each of theexisting methods, truncation selection is performedeamomic estimated
breeding valuesGEBVS), weighted GEW's, or OHVs, respectively. In OPselection,
subses of the popilation are evaluated amits. After all possible suises of the

population have been evaluatédeunit with the best OPV is selected.

Genomicselection

In this selectionmethodthe! lines with the largest GEBVs, wheGEBYV is
definedin (1), are selecte(Meuwissen, Hayes, & Goddard, 200[) (1), theGEBYV of
line! is given byl , ! ., is a genotype arrayith ! marker loci, a ploidy of , and!

lines and!, is the estimatetharkereffect vector

N Z! v 1IN

Weighted genomic slection

At least two versions aVGSare known to existGoddard, 2009; Jannink, 2010)

For this paper, lineswere selected based on the weighted GEBVscalculated using

(2). For these calculationthe estimatednarkereffectwas weightedising the frequency

of the most beneficiallele in the population at that loguienoted , (Jannink, 2010)
Additionally,! . is a genotype array withmarker loci, a ploidy of , and! lines,

and!, is the estimatectharkereffect vector.

s Z!!..# WERLRTITY
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Since! | '* is undefined wheh, ! !, arule was set to assume! ! for these cases. It
is important to nathat whent , ! !, every member in the population has the same
allele. Thus assuming , ! ! has an equal effect on all lines.

Optimal haploid value selection
For this selectiomethod the! lines with the lagest OHVare selected

(Daetwyler, Hayden, Spangenberg, & Hayes, 2006l of line! was defineds

oL !Z!"!# NP NN

1

where! !, 1 Y, T, L1001 110 1, listhegenotype at locus within the
haplotype segment. Herg,!! Il 11111 1 where! is the length of the haplotype segment,
I is the number of haplotype segments in the genbmis the ploidy!! is the lineand

I, is theestimatednarke effect at locug within haplotype segmelht

Optimal population value selection

As an extension tOHV selection(Daetwyler, Hayden, Spangenberg, & Hayes,
2015) OPV selectionis introducedFor this method, the breeding populatairsize!
that maximizes OPV, defined in (4), is selected. OPV can be interpreded as
generalization of upper selection ling@ole & VanRaden, 2011p varying haplotype
lengths, rather than just haplotypes with a length of one m&kere this generalization
can differ from the upper selection lingescribedy Cole and VanRaden (201ahd
incorporates the idea of varying haplotype lengDeetwyler, Hayden, Spangenberg, &
Hayes, 2015)OPV will be usedo describe this value. When upper selection limit edus

in the rest of the papat,will specificallybe referring td4) with a haplotypdength of
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one markepnly. Mathematically, OPV is defined as

OPV ! | !Zm!axl!"!# (1 Ve )L
!

where! !, 1 Y, T, 110011 1 s the inde of the line, and , !, , !, ! | and
I, are defined as in OH¥election An example comparing OHV selection and OPV
selection is given in Figure 1.

In thisselectiormethod,OPV is maximized under two constraini&he first
constraint limits te number of lines that can be selected for crosSinat is, no more
than! lines can be used to maximi@®V. The second constraint used with this method
restricts consideration of candidate breeding populations of $@enly those that have
a GEBVgreater than or equal to theean GEBV of theurrent population. As an
optimization problem, this cdoeinterpreted asnaximizing the overalbotentialeffect of
selectinga limitednumberof linessuch that the respongeselectioris expected to be
positive. Thisoptimization problem is given i(b). In this optimization problemi , ! !I
are the binaryndicatbr variables that determine if lifeis selected!(, ! 1) oris not

selected!(, ! 0).

"% I !Z!";!# oy trg (!t )0

By !!!!!!!!!!!!!!Z d, 1

"= :"'# Ly 2 !!|! L

From (5), it can be seen thdiversity at gparticularlocusis beneficial in that the

maximum allele effect is assuméddhat is, loci with both favorable and unfavorable
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alleles assume the value of the favorable allétavever, tiis does not necessarily mean
that allele fixation igpenalized. In this methodixed alleles are not penalized when loci

are fixed for favorable allelebutarepenalized otherwise.

Line 1 Line 2 Line 3 Line 4
4 1 3 4 0 0 0 0
5 5 4 5 0 0 0 2
0 0 0 0 0 7 6 6
OHV: 18 OHV: 18 OHV: 14 OHV: 16
Select:q=2

OHYV Selection OPV Selection
Line 1 Line 2 Line 1 Line 3
4 1 3 4 4 1 0 0
5 5 X 4 5 5 5 X 0 0
0 0 0 0 0 0 0 7
Ideal Progeny* Ideal Progeny**
4 4 4 4
5 5 5 5
0 0 7 7

"#$%&() An example comparing OHV selection amdimplified version 0OPV selection in which a filter
is notadded In each colored box, the haplotype value is given. Ideal progeny* indicates a progeny that is
possible after one generation. Ideal progeny** indicates a progeny that is possibleredtgetierations.
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Simulation

In silico breeding process mdel
The plant breeding process considered inghger is defined as a repetitive
process composed of @valuation, selection, pairing, areproductiorstep each cycle

andis shown in Figur@. The process is

initialized by inputting an Initial Population

I"#$HUMRHS%& (") of size! and setting  ;_

A

I'l 1. Then,the process starts with the
Evaluation ——

evaluation of the current state of the I
population. Once the current state has be Selection
evaluated! lines are selected with a l
selection method. After selection, lines a Ralmg =t
paired randomly. Finally, paired lines are l
Reproduction

crossed tgroduce a new population of

size! . This population is then considerec
No

to be thé"#$#%88#$%&'(") 'of

generatiol ! !'! I This process is
Yes

repeated until the final generatidt¥$ ,
Final Population

has been completed. Doubled haploid

production is nbconsideredln order to

. Figure 2: A diagram of the basic breeding process
compare GSWGS,OHV selectionand  considered in this paper. For this process, no doubled

haploid production is considered.
OPV selection thisbreeding processas
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implementedn silicoin MATLAB . Pseudecodeof thesimulation frameworks
provided inAppendix A.

In each generatioof the simulationthe current stteof the populatiorwas
evaluatedirst. Forthe evaluationof responsean additive modeklas assumed to
accurately depidhe true phenotype of a lirfelill, Goddard, & Visscher, 2008)
Furthermore, the fact that the marker effects are estimates oi@3 ignoredinsteadit
wasassumd that the marker effects that were estimated are the true effect of having that
marker. The resulting additive model used is givefd)nwherethetrue breeding value
(TBV) of a given lind is!, and! ;.4 is the genotype array of the population indexed by
loci numbert, gameté , and line! . The major allele effect vector is denotedThe
constant can be interpreted as the population mean! angl a random error ternk.or

these simulations, an err@mrm ofe, ! ! was used.

N Z!!..# AT

E
The rationale for ignoring QTL effects and considering marker effects as true
effects is as follows. Since our goal is to improve lestimated marker effects are used
assuming markeeffects as true effects allows fiwe evaluationof the selectiomethods
independent afmarker prediction model$f QTL determind TBVs, theevaluations of
the selectiormethodswvould be subject to Type | and Il errors if markers haen
estimatednaccuratelyThereforejt is assumedhat the lines with the largest sum of
estimated marker effectse thebest linesand that the selectianethodthat achieves a
population with the best lines evaluated in this way is best. This is equivalentrtg aayi
selectiormethodis best if it achieves the best GEBVs after selecéatditionally, for all

simulation studiean error term of, ! ! wasusedrather than an error term scaled to
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some heritability levelAny other error term would incorporate nois® evaluation of
the selectiomethodsThe implementation df6) is provided inAppendix B

For these simulations, the response was calculated as the change in mean TBV
where mean TBV in any generation is giveryad, /! . At times, response perdma
standard deviation is used. For this, base standard deviation was defined as the standard
deviation of TBVs in the initial populatioAdditionally, in each generatiothe modified
upper selection limiandtotal additive genetic varian¢ealconer, 198) were evaluated,
wherethe modifiedupper selection limivas calculated as (4) with a haplotype
segment length set to one marker ameretotal additive genetic varianeeasdefined
as

"H$%&'%(O)* | Xttt Ly (7)

with !, defined aghe minor allele frequency at locand!, is the effectThe
implementatios of theupper selection limiandtotal additive genetic variance
evaluation methodareprovided inAppendcesC and D respectively

Following evaluation, sektionandparing occur. Irtheselectionstep GS,WGS,
OHYV selection or OPVselectionwereused For the implementations of these methads i
is important to note that although G8GS and OHVselectionare canputationally
simple, solving (bfor OPVselectionis difficult. Instead of solving the optimization for
OPV selection a heuristic method was uséthe basic heuristic used was to make
repeated pairvge swap®f members in the current candidate breeding population with
those not in the currepstindidate breeding populatidha swap improves the OPV of the
candidate breeding populatidhenthe swags kept. Otherwise, it is discardadd the

current candidate breeding population iskeatk to its previous stat€his process
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continues untiho single member of the breeding population can be substitutetioout.
guarantee the positigeneticgain constrainin (5),a GEBV filter was used prior t©OPV
selection This filter restricted the lines consideried selection tasome top percentage of
lines Thistop percenageGEBYV filter was treated as a parameter for the simulation
studies.The pseudecodefor GS,WGS,OHYV selection and OP\selection
implementationss given inAppendices, F, G andH, respectivelyAfter the breeding
population isselected the selected lines peredrandomly The implementation of
random pairings givenin Appendixl.

In order to replicate the true reproduction proceash offspringvasdetermined
probabilistically accordingp a recomimation rate vector. This vector is indexed by
locus numbet, where elemernty is defined as the probability of a recombination event
occurring between locud ! and locud. In other words, for some gameétendexed by
L by Pary )P MO0t Y|t gy )- A special case of this
defined for the first locus of each chromosofoewhich it is assumet] ! 11 |
Myt rr b, 1 The details of thismplementation argiven in

Appendix J

Data

For this paperthe 369inbred maiz€Zea nayssubspecies mays)Uinesstudied
in Leiboff et al. (2015Wwere genotypedsing RNASeq(Barbazuk, Emrich, Chen, Li, &
Schnable, 20079nd tGBSSchnable, Liu, & Wu, 2013)merged with gnotyping by
sequencingingle nucleotide @ymorphisms (SNPyom Romay et al. (2013and

phased using Beag(Browning & Browning, 2008)For each of the 369 linesdse
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results yielded SNPat approximately 1.4 million loci spread across ten chromosomes
with a total length of approximately BoMorgansFor efficiency reasons, data framly
300 of the linesvere selectetbr further processinglo prepare remaining datar
simulation, all of the chromosomes from a line were concatenated along their first
dimension to create an approximat&ly million x 2 matrix. Each cell in that matrix was
then assigned a value of either 010 or O00 for having the major or minor allele,
respectively. All lines were then concatenated together along their third dimension to
create an approximaly 1.4 millionx 2 x 300 array, which will be referred tolasFrom
I, two random samples of 25 starting genotypes were sampleduttplacement from
the population of 300 genotypes. For each sample, every line was crossed with every
other line once. For eadfithese crossesnly one offspring was generated. This
producedwo populations of 300 individuals. These populations wilthked Initial
Population 1 and Initial Population 2 and will tenoted ' and! ', respectively

The phenotype data ustat this study was retrieved frobreiboff et al. (2015)
and consisted of 369 shoot apical meristamephenotypes. These phenotypes, along
with the corresponding genotypes from abavere used to estimate marker effects using
theBayesB model(Meuwissen, Hayes, & Goddard, 200mplemented in GenSel
(Fernando & Garrick, 20097 his produced vector ofestimatée markereffectsfor
major alleles at each of the approximately 1.4 million SMisch will bereferred to as
!

To estimate theeconbination rates used in this stydlye maize rested
association mpping (NAM;Yu, Holland, McMullen, & Buckler, 2008)opulation was

used as a starting poif@utof the 1,144genetic markexin theNAM population 133
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were removed because the orderingsvben physical and genetic positions were
inconsistent. The remaining 1,011 markers were used to estimate the genetic positions of
the SNR by linearinterpolaton between the flanking NAM markers of each SK¥ce

the genetic positions of the SNPs werénested, recombination rates were calculated for
eah chromosome using HaldaneOs mappingtifan. For simulation purposes, a

probability of 0.5 was assigned at the beginning of each chromosomeOs recombination
rate vector. Then, all recombination rate eestwere concatenated along the first

dimension to form , an approximately 1.4 million x 1 vector.

Experimental setup

To test the proposedethodagainst existing selection methods, a full factorial
experiment was performed with two factdrstial Population and Selectidiethod For
theInitial Population factor, the populatioh$and! ' weretreated atevels. For the
Selection Methodactor,22 differentmethodswere efined and are given in Figure 3

Thesemethod are comprised of anGS, one WGS, five OH¥electionand 15 OPV

Model Number Selection Method Name Selection Method Type Filter Percentage Number of Haplotype S (per chr )
1 GS Genomic Selection - -
WGS Weighted Genomic Selection -
3 OHV CHR OHV Selection 1
4 OHV 2/Chr OHV Selection 2
5 OHV 3/Chr OHV Selection 3
6 OHV 6/Chr OHV Selection 6
7 OHV 12/Chr OHV Selection - 12
8 OPV 50 Chr OPV Selection 50 1
9 OPV 50 2/Chr OPV Selection 50 2
10 OPV 50 3/Chr OPYV Selection 50 3
11 OPV 50 6/Chr OPV Selection 50 6
12 OPV 50 12/Chr OPV Selection 50 12
13 OPV 30 Chr OPV Selection 30 1
14 OPV 30 2/Chr OPYV Selection 30 2
15 OPV 30 3/Chr OPV Selection 30 3
16 OPV 30 6/Chr OPV Selection 30 6
17 OPV 30 12/Chr OPYV Selection 30 12
18 OPV 10 Chr OPV Selection 10 1
19 OPV 10 2/Chr OPV Selection 10 2
20 OPV 10 3/Chr OPYV Selection 10 3
21 OPV 10 6/Chr OPYV Selection 10 6
22 OPV 10 12/Chr OPV Selection 10 12

Figure 3: Descriptions of the selection methods used in the full factorial experiment.
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selectioormethods Foreachof these selectiomethods 10% of the population is
selectedin OHYV selectionrmethodsandOPV selectionrmethodsthe haplotypéength
parameter can be varied. For this experiment, the haplotype lengthyaried between
one chromosome, 1/2 chromosome, 1/3 chromosome, 1/6 cboome, and 1/12
chromosomas in the research on OHV select{@aetwyler, Hayden, Spangenberg, &
Hayes, 2015)Furthermore, in OP8electiorthe filter percentag@arameter was varied
between 10, 30, and 50%ere, the filter percentage is the top percentage of the
population, with respect to GEBVSs, to consider@V selection Filters greater than
50% were not considered since no more than 50% of the population is needed to
maximize longterm respons@Cockerham & Burrows, 1980)

For eachexperiment, the numbef bnes selected each generatanmd population
size were held constant 3@ and 300, respectively. Additionally, the constamias set
in the first generabin such that the mean TBA the population was zer®his full

factorial of 44 experiments wasn for 10 generations and f60 completereplications

Data analysis

The mean responses of the 22 differaethod were compared usifaikeyOs
Honesly Significant Difference Procedufer multiple comparisons atsgnificance
thresholdof 0.05 All significance testing was completed in MatiR015a) with the
functions @novar® and @ultcompar® from the Statistics and Machine Learning
Toolbox.Then,plots were generated tualitatively compare upper selection limits and
total additive genetic variancas well as to compare trends when gsiPVselectionat

various haplotype lengths and filter percentages.
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Results

Sekction method comparison

In this simulation study 22 selection methods were compared for their ability to
generate genetic gain, maintain the upper selection limit of {nalgteon, and maintain
total additive genetic variance

In Figure 4the graphicalresultssimulation studyare given with respect to mean
response. From this bar graph, it can be seen that whengsteith Initial Population 1
the greatestevenresponses are the result of OPV selectiethods. The best of these
severmethods is OPV 30 2/Chr, followed by OPV 30 3/Chr, OPV 50 3/Chr, OPV 50

2/Chr, OPV 30 6/Chr, OPV 30 Chr, and OPV 50 Chr, respectively. The best method that
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Figure 4: Comparison plots of total mean response and standard error of mean response for all 22
selection methods after 10 generations. On the left, results are given for Initial Population 1. On the right,
results are given for Initial Population 2.
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was not in théamily of OPV selection methods was OHV 2/Chvhen multiple
comparison proceduregere usedo test for significant differences in meaasponses,
each of the topeyenmethods are statistically different than the bottom 16 methods for
Initial Population 1Notally, there is @otal 0f8.3% or 0.58 base standard deviations,
improvement irmeanresponsavhen comparing OPV 30 2/Chith GS and a 4%, or
0.32 base standard deviatiomsprovemenin mean responsghen comparing OPV 30
2/Chr with OHV 2/Chr Similar to these resul{ghe top six selection methods when using
Initial Population 2vere OPVselectionmethodsListed from best to worst, these were
OPV 30 2/Chr, OPV 10 6/Chr, OPV 30 Chr, OPV 50 2/Chr, OPV 30 3/Chr, and OPV 50
Chr. For this sarting populabn, the best method that was not in the family of OPV
selection methods was Gl.terms of percent improvement, the best OPV method for
Initial Population2 only out performs GS by 0.7%, or 0.03 base standard deviadiuhs,
outperforms the best OHV meitth by 3.2%or 0.12 base standard deviatioHswever,

it is important to note that even though the resultsititl Population 2 has six OPV
selection methods performing the best, none of thadestatistically different results
than GSThis point isesmphasizedby the inclusion oOPV 10 6/Chiin the top sixwhich

is equivalent to GS because of the 10% GEBYV fill¢ghen comparing OH\$election

and GS improval mean responseavere observedhile using OHVselectionwith one,

two, threg and sixhaplotype segments per chromosome and Initial Population 1.
However, this outcome was not observed in Initial Populatidm [itial Population 2,

all OHV selection methods performsthtistically worse than G8VGS performed worse

than GSwith bothInitial Population 1 and Initial Population & .table of meamesponses
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Figure 5: Comparison plots of mean response at different time horizons. On the top, results are given for
Initial Population 1. On the bottom, results are given for Initial Popul&tio

and standard errors of each selection method with each initial population is provided in
Appendix K.

To demonstrate how the overall best performing GEMctiormethod compares
to GS and the overall best performing Old®lectionrmethod prior to generation 10, a
plot of the overall mearesponses is given in Figureld the plot of Initial Population 1,
OHV2/Chrand GS perform approximately the same in the first generation, with OPV 30
2/Chrperformingworse. By generatioB, OPV 30 2/Chr overtakes both OHV 2/Chr and
GS.Thisadvantagén meanresponsés maintained through generation However, in
generatiory OHV 2/Chr surpasses GS and rapidly increases genetic gain. By generation

10, OHV 2/Chr is approaching OPV 30 2/CWen the initial population was set to
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Initial Population 2, all three methods perform approximately the same through the first
generation. In the second generation, OPV 30 2/Chr generated a small advantage that was
maintained through generation.10 genertion 10, OHV 2/Chmnearlyreaches the
response level of G& table of overall mean responses in each generatidwith each
initial populationis providedin Appendix L for OPV 30 2/Chr, OHV 2/Chr, and GS.

With respect to total additive genetic varian©HV 2/Chr outperformed both
OPV 30 2Chr and GS, as shown in Figurel® this figure, OHV 2/Chr total additive
genetic variance curve peaks later and higher than the other two selection methods.
Additionally, OHV 2/Chr maintains its total additive géinesariance longer. When
considering the other two methods, OPV 30 2/Chr tends to decline more slowly after
peaking than GS, although their peaks are at similar total additive genetic variance levels.
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Figure 6: Comparison plots abtal additivegenetic variancat different time horizons. On the left, results
are given for Initial Population 1. On the right, results are given for Initial Population 2. Note the scales of
the axes are different for Initial Population 1 and Initial Population 2.
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Figure 7: Comparison plots of upper selection limits at different time horizons. On the left, results are
given for Initial Population 1. On the right, results are given for Initial Population 2.

In terms of maintaining the populationOs upper seldatitinthese three
methods performed similarly. However, on average across both initial populations and all
time periods OPV 30 2/Chr appeared to perform slightly better than OHV 2/Chr and GS.

A plot of upper selection limit curves with respect to gemamnas given inFigure 7

Trends in OPV selection nethods

In this section, comparison plots of mean response, upper selection lintitand
additive genetic varianae given to clearly demonstrate the trends that are common to
all OPV selectionrmethodsSince these trends are common to all methdeisionstration
on onlyoneOPV selectionmethodsuffices b show these trends. The methptistted in

this section were specifically chosen for illustration purposes.
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In Figure8, a comparison plot ofarying filter percentages is gindor Initial
Population 1 and Baplotype segments per chromosomehis plot, as filter percentage
decreases the rate of shtmtm response increases, there is a greaderctionin upper
selection limit, andotal alditive genetic variancis maintained for fewer generatians
This trend was observed for all quantities of haplotype segments per chromasome
well asfor Initial Population2.

When a plot of varying haplotype segments was made for €f¢tionwith a
50% filter and Initial Population 1, a similar trend was observed. In this plot, as the
number of haplotype segments per chromosdeteeasethe rate of shotterm response
increases, there is a greateductionin upper selection limit, anibtal addtive genetic
varianceis maintained for fewer generatianihis plot is show irFigure9 and is similar
to plots50 and 30% filters. With a 10% filter, changes in the number of haplotypes had

no effectsince the selection percentage is also 10%
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Discussion

Selectionmethod comparison

From the results presented, it is clear that OPV 30 2j@terates thgreatest
meanresponse through 10 generatiodswever,OPV 30 2/Chr did not preserve the
total additive genetic variandetter than OHV 2/Chr, nor did OPV 30 2/Chr perform
notably bettethan OHV 2/Chr or G$& terms of maintaining the uppszlection limit.
For this reasarit is not suspected thatther of thesenetricsindividually arethe key
driving force behinddPV 30 2/ChrGaiccessinstead asubtle differenceis suspected
OPV selectionmethods treat the population as a collaborativié In each generation,
lines witha highly desirabl&aplotype segment are selected, paired randomly, and
crossed. Sice the most desirable haplotype segmargsmaintained each generation and
randomly cossed, eventually they will be prayaed throughout the population. This
will inevitably result in recombinants with multiplelscted hapltype segments because
selectechaplotype segmentgefrom distinct noroverlapping sections of the genome
Howevae, this has some limitations:or instance, in each generation of this simulation
only 30 lines were selecte@ihat means, if optimal haplotype segmeméseall in
separate lineshen at mostthebest 3thaplotypesegmentgould be selectedThis
implies that onlyselection ofat least as many lines as haplotype segments considered can
guarantee the optimal haplotype at each segment is selected.

In these simulations, the performance of the Gigléctiormethod was
inconsistent. When InitidPopulation 1 was use®HV selectionwith one, twothree
and sixhaplotype segments outperformed GS with a maximu#B8a®6 difference in
genetic gain. This result closely matches a previous study in whichgelgktion

outperformed GS with less thanexmual to 3 haplotype segments per chromosome. In
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that study, a +3% difference in genetic gain was observed betweers€étifionand
GS(Daetwyler, Hayden, Spangenberg, & Hayes, 2015 important to note again that
for these simulationdoubledhaploid production was not considered, whatlggests
doublel haploid production may not be necessary to benefit from S#Paction
However, in this study a second starting populatvas usedo test the robustness of all
selectioormethods. With Initial Poputeon 2, it was found that GS outperformed all OHV
selectioormethodsWhile doubledhaploid production is expected to have a minor
positive impact on the difference between OHV and B&etwyler, Hayden,
Spangenberg, & Hayes, 2018)is not expected to rka up the large difference observed
in this experimentAdditionally, OHV with two, three, six, and twelve haplotype
segments outperformed OHV with one haplotype segment. This suggestsatiatly
significant genetic gain is only achieved by accumulating multiple generations of
recombinatior(Daetwyler, Hayden, Spangenberg, & Hayes, 201bis hypothesissi
supported by theelativelylow total additive genetic varian@é Initial Population 2
compared to Initial Population 1, when the upper selection liofitee two populations
are similar.This pointindicateshatbeneficial allelegxist within the populatigrbut are
at low frequenciethus potentidy requiremore recombinatioto see a naible response
WGS was also considered in this simulation study.fban responsesults did
not suggest any clear benefitWiGS for this data set, which varies from previously
published researgdannink, 2010)However, inthis studythree orders afnagnitude
more markeswere usedhan in the previous study, whicbuld lead to a cumulative

effectof manyweightedsmall effect locdrowning out the signal from large effect loci.
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Since OP\selectionoptimizes OPV, which is closely related to the upper
selection limit, it is not surprising that OPV 30 2/@maintained the upper selection limit
better, on average, th&@HV 2/Chr and GSHowever, this difference was minahdue
to the relatively long ha@lotype segments and low filter percentadjiso, because of the
relatively long haplotype segmer@S and OHV 2/Chhad, at timesa better upper
selection limit.This happendy chancewhen haplotype segments are long, since the
optimization of OPV difers from optimization of the upper selection limit

However,a greateupper selection limit does nperfectlycorrelate withmore
variationwithin the populationThis was demonstrated when OHV 2/Chr resulted in
significantly moretotal additive genét varianceghan OPV 30 2/Chand GS As
explained inDaetwyler, Hayden, Spangenberg, and Hayes (2@H3Y selects based on
the sum of favorable haplotype segments in a line without incentivizing multiple
beneficial haplotypes atsanglesegment. Therefe, there is not a selection pressure
towards homozygosityvhich allows for better maintenance of diversitya similar
way, OPV 30 2/Chr selects a breeding populatmform an optimal haploidut bases
selectionon thesum of the populaticwide best haplotypesegmerd. That means there
is not a strong selectigressure to develop homozygositr is there selection pressure
on most of the genotypeThese two observations are expected as the cause of the greater
total additive genetic variande OPV 30 2/Chr compared to GS. Whereas, it is suspected
that OPV 30 2/Chr performs worse than OHV 2/Chr becpas&ularhaplotype are
stronglyselectedor individually throughout the populatioherefore, these haplotypes

will eventually tend to dminate the population
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Trends in OPV slectionmethods

When comparing varying filter percentage used with GBMction it is clear
thatas filter percentage decreases the rate of-¢drt response increases, there is a
greater reduction in upperlsetion limit, andtotal additive genetic variance
maintained for fewer generatiarkhis is expected and can be understood in terms of the
optimization formulation presented in (8¥hen filterpercentage is increased, (5) is
relaxed. This leads to an objective function as good or better than the problem that has
not been relaxed. Since the objective function maximizes OPMyilhigend to increase
theupper selection limitHowever, relaxinghe filter percentage i(b) implies the mean
GEBYV of the next generation can be less than the proliianhhés not been relaxed.
Sinceoptimizing OPV does not guarantee the lines with the gge&EBYV will be
chosenthemean GEBV of the next generatiaiil tend todecrease i increasing filter
percentagd.ikewise,total additive genetic varianég maintained at a higher level for
longer when filter percentage is increastkis isbecause OPV can be thoughtadsely
as a measure of diversgjnceOPV is a weighted measure of beneficial alleles that exist
in the populationThus, maximizing OPV mintains significant levels dbtal additive
genetic variancéonger.

Another trend that can be seen is for Gf&léctionto better maintaithe upper
selection limitwith an increasing number baplotypesegmentsAdditionally, the rate of
shortterm response is reduced and a significant levidtaf additive genetic variance
maintained for longeOnce again, this can be understood by considésndJpper
selection limit is equivalent to OPV with a haplotype segroénne marke Since (5)

optimizes OP\at a given haplotype lengtthe upper selection limit calculation wilénd
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to be largest when the haplotype segment leofythe OPV calculabn is close to one
marker Another way is to view this i® considelOPV asa model of the upper selection
limit. When the number of haplotype segments is increasefidéhieéy of themodel
increasesTo understand the tendency for shemnm response decrease with more

haplotype segments, consider the extremes. Assume each marker was considered a

separate haplotype. Then, optimization is based on an optimal line that may require more

than a milion recombination events and is, therefarsachievabé in all practical

situations Conversely, if only a few haplotype segments are considered in each line, then

the optimization is based on a line achievable in the $@ort. As a result, better lines
may be realized at a nearer time horiadhen consideng total additive genetic

variance significant levels were maintained for londpercause there iscarrelation
betweera greater upper selection linasihdan increasing number of haplotype segments.
As stated for varying filter percentagéss isbecause OPV can be thought of lelgsas

a measure of diversity.

Impact on total maize production

A possible 8.3% improvement in response over the course of a 10 yearnvpesiod
demonstrated in this papéWhile this is a seemingly minor improvementyats a huge
impact when considering the scope of global maize production. For example, maize
production in 2003 was estimated to be 645,164,993 metric tons. In 2013, estimated
production was 1,017,536,85detric tongFAO, 2015) Over the course of this @ar
period, production increased by 372,371,861 metric. tbimaprovements were instead
8.3% greater over this time period, in 2013 the world would have produced 30,906,865

more metric tons of maiza 2013 Although this is a simplified example thasames
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perfectly replicable results for all populations of maize, while assuming the same results
hold when using real maize with QTL instead of perfectly estimated marker values and
whenthere are varyintgvels of heritability, it gives some idea of wiepossible with

these minor improvements in response.

Validity of results

It is important to note that the marker effetts,were not reestimated at any
time throughout theesimulations This means thawhile amethod®ability to
accunulate benficial alleles at QTLis actually of interesthe method®ability to
accumulate markers associated with beneficial alleles ati@ffie initial populations
measuredThis measurement system is expected to be a valid substitute if the model used
to esimate the effects in thiaitial populationis accurate, and the prediction mddel
accuracy largely results from capturing markernikage disequilibriuml(D) with
QTL. This is becaus# has been shown that accuraegults from both LD and genetic
relationships, and that accuradegm genetic relationshipdeclinesrapidly (Habier,
Fernando, & Dekkers, 2007)o mitigate losses in accuracy dtedeclining genetic
relationshipsBayesB was used testimate marker effects. BayBdends tacapture
markers in LD with QTLbetter tharbest linear unbiased predictiorethodgHabier,
Fernando, & Dekkers, 2007; Zhong, Dekkers, Fernando, & Jannink, 200%as been
shown toremain accurate for up @ generationfVeuwissen & Goddard, 2010)
Furthermorea large number of SNPs were used in these simuldbanakethe
accuracy of estimated effects more robust to changes {@zhénhg, Dekkers, Fernando,

& Jannink, 2009)which is likely to happen aftéihe population has been simulated for
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several genetmns.By using Baye$, simulating only up to 10 generatiomsdusinga

large number of SNPs, it expeced thatthe conclusions made in this papeevalid.

Conclusion

In this papera new selection method was presenbestead of using evaluations
of individual lines to select the breeding population, a candidate breeding population was
selectedasa unit While this presents some challenges, such as solving a combinatorial
optimization problem, it was shown to outpenfoexisting methodim a series of
simulation experimenthat spanned 10 generations and used data from an inbred maize
population The statistically detectable improvementsneanresponse, although the
best casenly a modest 8% better than G8ver 10 generationsould result in
significantgainsin theworldwide production of maizén addition to improving
response, OP¥electionhasdemonstratethe ability tomaintain the upper selection
limit betterthan previousnethods such as GS, WGS, &V selection This means
thatwhile responsenay begin to plateawnfixed beneficial alleles still exist in the
populationand could tanslate into subsequent gainghe future Future research related
to OPV selection will focus on demonstrating tbbustness of the selection method
improving response by accounting for deadlines either by varying selection intensities or
haplotype lengths with timend by logically picking between candidate breeding

populations with the same OPV
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CHAPTER IV

GENERAL CONCLUSIONS AND FUTURE WORK

As the worldOs population continues to grow, so does the challenge of feeding
everyone. In order to produce enough food to meet the demand in 2050, an
interdisciplinary approach is needed. In this thexerationgesearchools were applied
to GSin order to increase respon¥¢hile operations researa¢bols have been applied to
plant breeding systems before, this pgpewridesfurther proof of concept for the
integration of optimization, simulation, and mathewatmodeling into plant breeding
systems.

Within this paper, a new approaithGS calledOPV selection, wastudied
Rather than evaluating breeding merit on an individual b@$t¥, selectionevaluates
breeding merit on a population basis. This enstiratindividuals selected would be, to
some degree, complementary. As a re€)RY selection achieved greater mean
response than the oth@Stechniques. While the improvements to response were only
8.3% in the best case, this could result in signiti¢gaprovements to the global maize
production.More importantly howeverthis thesisdemonstratechie potential of
incorporating population information into selection decisions. By doingahisw and
potentially fruitfuldirection ofGShas been opededo further research.

Althoughthere are many conceivable ways to select on a populationro#ses
future, OPV selection should be fully vetted fir§to do this, three follovup studies are

recommended.
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1) Investigate selection methods beyd@dgeneations This is important for
several reasons. One such reason is to investigate whether OHV ever surpasses OPV or if
it just approacheasymptotically, as seen FigureAdditionally, it is important to see if
OPV methods that maintain variation and upper selection limits more effectively, such as
those with a 50% filter or with and 1zhaplotype segments per chromosome, result in
greater longterm response than OPV 30 2/CMiost importanthowever several
breeding programseed tdoe comparedFor instance, could some combination of OPV
selectiormethods, at varying filter percentages and haplotype numbers, b used
breeding programt® maintain a high upper selection limit while geatarg shorterm
rapid gains? The results of this extension could be relevant to commercial breeders that
are motivated by sheterm gains, while unsure of lorigrm consequences of selection
based on shoterm gains.

However, in order to do this théBV model used in this paper needs to be
modified. While this paperOEBV modellimits the amount ohoise allowed intéhe
comparisonsthe reliability of this modeinaydecay below satisfactory levels after 10
generationgHabier, Fernando, & Dekkers, Z00Meuwissen & Goddard, 2010h order
to extend this work beyond 10 generatip@9 L should be simulateshd the prediction
model should be updated regulaiyp do thisthe procedure found iihong, Dekkers,
Fernando, and Jannink (2009)proposed

2) Account for variable time horizonBased on the breederOs equation, GS is
optimal when selecting for the next generation. Howeaber results of thpurnal paper
in Chapter Il suggest th&S maynot be optimal when selecting for time horizons

beyondone generation.fiis indicates a time dependency. Therefarepptimal selection
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method must account for the time horizon.Lim, Meuwissen, S¢rensen, and Berg
(2015) aproject deadline was incorporatedweightedgenomicselection. For this
method,more weight is assigned to rare favorable alleles than common favalialde
in earlier generations. As time approaches the deadline, all weights converge to 010 and
the weighted selection method reduces to(IB& Meuwissen, S¢rensen, & Berg, 2015)
Anotherpossibleway to incorporata time horizorwith existingselection strategies
could beto vary selection intensityror this approach, lines are selected in each
generation, wherkis the number of generations remaining until the time horikba.
rationale for this method follows from backwards induction. Assumetibgbal is to
achieve the single besBV by some time horizon. Then, in the year prior to that
generation some pas best suited to achieve that gdakewise, each parent rastihave
a pair of parents thaire best suitetbr achievingthem This rationale continues until the
current generation is reached, resulting in selectithi ifies for crossingAnother
option is to varnhaplotype length with when using OP\selecton or OHV selection
This approach is based on the idea thatnumbenf haplotype segments should reflect
the number of recombination events that caepected Daetwyler, Hayden,
Spangenberg, & Hayes, 201H)the deadline is fidher away, thegumulatively more
recombination eventsould be expected. Therefore, more haplotype segments should be
consideredTo take full advantage dhis, however, there shouddsobe a proportional
changen the sze of the breeding population.

3) Select the ppulation subkset with the most probabilistic maximum QRYie
implementation of OPV selection did not include logic for intelligently selecting between

multiple subsets of the population with the same OPV. In the future, thaeaiNith the
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most probabiity of realizing themaximum possibl©PV should be selected. One
promising way to do this efficiently is with an extension of predicted parental (tddure
Wang, Beavis, & Cameron, 201®)more than two linedn this extension, the
probability of acheving a perfect line aftérgenerationsvould becalculated for a
candidatébreeding population siZ€ . The candidate breeding population with the

greatest predicted parental value would then be chosen.
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APPENDIX A

PSEUDGCODE FOR THE IMPLEMENTATION OF THE BASIC BREEDING
PROCESS

Simulation Framework: Basic Breeding Process

1. ReadExperiment Parameters
2. For eachGeneration

3 Update Data

4. SelectBreeding Population
5. Pair Breeding Population
6 CrossPairs

7.End

8. Return Data
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APPENDIX B

PSEUDGCODE FOR THE IMPLEMENTATION OF THEVALUATION OF TRUE
BREEDING VALUE

Function: TBV Evaluation

LD I"E#S%#&IN"#$%&'(# 1111 I
1.Read! ' and!
2.Calculate!, ! ¥ !} !, forall!

3. Return !
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APPENDIX C

PSEUDGCODE FOR THE IMPLEMENTATION OF THEEVALUATION OF THE
UPPER SELECTION LIMIT

Function: OPV Evaluation

"1 "ESOH&NIME 11T

1.Read! ' and!

2.Set!"#$%&, ! I"# NI 0L, U b e neg e e 1 for all
Lo

3Set!"# | 11/

4.For!! 1un

5. gL' 1"H#3%4&

6.End

7" L LI

8.Return "# }
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APPENDIX D

PSEUDGCODE FOR THE IMPLEMENTATION OF THE EVALUATION OF THE
TOTAL ADDITVE GENETIC VARIANCE

Function: Total Variance Evaluation

| 1I"H$96&$ &I T "HSVH&N I"H#SY&S (SH(") 11 11T {
1.Read! ' and!

2.Setl, ! 11,1 1 foralll!l 11

3. For!! 11

4, For! 1

5. For! I 1mn

6. £l 11

7. T P
8. Else

9. I
10. End

11. End

12.End

13.Set!, | 1,00 L LU L L L forallt oty
14.Set!"#$% !, 1 11 (1, L1, foralltt 1

15. Set"#$%&'%#"( | |

16.For!1 111

17, I"HS%&%6H" | I"H$%&'YH"( ! I"#$% !
18.End

19. Return I"#$%& %#"( }
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APPENDIX E

PSEUDGCODE FOR THE IMPLEMENTATION OF GENOMIC SELECTION

Function: Genomic Selection

PULIM$od "H$%& 1
1.Read!',!, and!
2.Calculate!, ! ¥ !}, !, forall!

3. Order ! ! according to descending order!of
4.Return ! ., forall! ! 1111}
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APPENDIX F

PSEUDGCODE FOR THE IMPLEMENTATION OF WEIGHTED GENOMIC
SELECTION

Function: WeightedGenomic Selection

LT RSO HS%& (Y, LTI
1.Read! ', !, and!

2.Set!, ! Iyt 1 forallt !t rumn
3.For! !t 1t

4, For! 1

5. For! I 1mn

6. £l 11

7. T P
8. Else

9. I
10. End

11. End

12.End

13.Set!, ! 1,00 L L L Lforalltl oty
14.For !l 1" -

15. if1"g ()! !

16. = A P
17. Else

18. Mg L
19. End

20. IfI"gg 111!

21. "ge 1
22. End

20.End

21.Calculate!, ! Y iy 1 1I"S 111 for all !
22. Order ! ' according to descending order!of
23.Return ! j., forall! ! it 1r }
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APPENDIX G

PSEUDGCODE FOR THE IMPLEMENTATION OF OH\GELECTION

Function: OHV Selection

PULoggodty 1 eS|
1.Read!'',!,!, and!"#$

2.Calculate! i, ! !, !, forall!,! , and!
3.For! 1t runt

4 For! 1t 1nn

5 Set!"# 'l L andi"# ! ! |

6. For !l I"#l L Lum gy,

7. Calculate!"# 11 1,j, | I"# |
8 Calculate!"# 11 1,j, | I"# |
9. End

10. Set! "#$%& , | I"# |

11. Set! "#$%& , | I"# |

12. End

13. Set!" 1y, ! 1"# WTI"E#$%E ! 1"#$% !
14.  Set!"#$ Ly, ! MES 1, LML,
15.End

16.Set!"#$ 1, I P LIMES
17. Order ! ' according to descending order!ti#$%
18.Return !}, forall! ! 111111}
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APPENDIX H

PSEUDGCODE FOR IMPLEMENTATION OF OPV SELECTION

Function: OPV Selection

PULoggodty e {
1.Read!'',!,!, and!"#$

2.Calculate! i, ! !, !, forall!,! , and!
3.For! 1t runt

4, For! 1t 1nn

5. Set!"# 'l L andi"# ! ! |

6. For !l 1"#$(1) ! Tu" gt 11

7. Calculate!"# 11 1,j, | I"# |
8. Calculate!"# 11 1,j, | I"# |
9. End

10. Set! "#$%& , | I"# |

11. Set! "#$%& , | I"# |

12. End

13. Set!" 1y, U I"# NI1"#$%E ! I"#$% !
14. Set!"I#$ Iy, I M#$ L, 1",
15.End

16.Set!"#$ 1, I P LIMES

17. Order ! ' according to descending order!ti#$%
18.For ! 1t

19.  Set!"#$%!, ! !

20.  Set!"#$%!, ! I"#$%!

20.End

21.Set!!1"# 11

22.While ' 1"# 1 |

23.  For! ! run

24. Set!"#$% ! 1"#3$%!

25. Set!"!" 1, I 1"#$!, forall! ! !

26. For Each! ! {tuir 131 1"#$%

27. fri

28. Set!"#$%3$"& | | 1"#1$%&H#S%. "#$%!
29. Else If! | |

30. Set!"#$%3$"& | | 1"#1$%&H#SYR"#$%! ! |
3L Else

32. Set

"#$5%$ & | 1"#IS%E&HIY " H#S% ¢y ! "HSEY !

33 End

34 End

35. For Each "#$%%$"& |
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36. Set
L N N IHE%08 rasvsra 1), | HSB 1 rrsves i1,
I L 10 HS%8y pusoesia 1 | IHSY 1) pusossre 1 1]

37. Setl"# | |
38. For!! tuui |

39. Calculate!"# | 1" 1,1 I'#
40. End

41. Set!"#$%$"&'()* ! || I'#

42, End

43,  Set!"#$%&! !"#$%$"& ;1 where! is the index of the largest
"#$%$"&'()*

44. End

45,  Setcheck=1

46. For!! tnn

47. If 1S90, | "HS |
48. Set!!1"# | |
49. End

50. End

51 Set!"#$%! , | 1"#$%! |

52.End

53.Set! juy ! 115, forall!! Il Il where! ! I"#$%!
54.Return !’ }
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APPENDIX |

PSEUDGCODE FOR THE IMPLEMENTATION OF RANDOM PAIRING

Function: PairRandomly

PEL IS I"H$% 11 {
1.Read! '

2. Order!! ' randomly
3.Return!' }




58

APPENDIX J

PSEUDGCODE FOR THE IMPLEMENTATION OF REPRODUCTION

Function: Cross

R YN NI
1.Read!', !, and!

2.For! !

©CONOPROONO O A W

et
For! I i !!i—!

Generate!"#$ |1 1"#$%8&" 1 11 and!"#$ || I"#$%&' 1111
For!! 1uu
IfI#$ 1,1 1
Set!"#$ I, ! |
Else
Set!"#$ I, ! |
End
IfI#$ 1,1 1
Set!"#$ I, ! |
Else
Set!"#$ I, ! |
End
End
Set!"# 111
Setl"# 111
For!! 1u
Calculate!"# || 1"#$ 1,1 I"# |
Calculate!"# | | 1"#$ 1,1 I"# |
Calculate!"#$ 1,1 I"# 1" Il
Calculate!"#$ 1,1 I"# 1lI"g# 1l
End
For!! 1u
If 1"#$ 1,11
Set!"#$%$ !, ! 1,
Else
Set!"#$%$ !, ! 1,
End
If 1"#$ 1,11
Set!"#$%$ !, ! 1,
Else
Set!"#$%$ !, ! 1,
End
End
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32. Calculate! ! ((! ! !)!i,_—)! !

33, SEtI"HE% by | NHISUEHSIE #S%S | | gamete! !
34. End

35. End

36.Set! ' 1 11"4$% !

37.Return!'l'}
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APPENDIX K

MEAN AND STANDARD ERROR OF EACH SELECTION METHODOS TOTAL
RESPONSE

Population 1 Population 2
Order Selection Method | Mean Response (x 10°) | Standard Error (x 10°) | Selection Method | Mean Response (x 10°) | Standard Error (x 10°)
1 OPV 30 2/CHR 2.135 0.005 OPV 30 2/CHR 1.066 0.003
2 OPV 30 3/CHR 2.134 0.004 OPV 10 6/CHR 1.064 0.003
3 OPV 50 3/CHR 2.125 0.005 OPV 30 CHR 1.061 0.002
4 OPV 50 2/CHR 2.120 0.004 OPV 50 2/CHR 1.059 0.003
5 OPV 30 6/CHR 2.114 0.006 OPV 30 3/CHR 1.059 0.002
6 OPV 30 CHR 2.112 0.005 OPV 50 CHR 1.058 0.003
7 OPV 50 CHR 2.102 0.005 GS 1.058 0.004
8 OHV 2/CHR 2.045 0.009 OPV 10 CHR 1.056 0.004
9 OHV 3/CHR 2.043 0.011 OPV 10 2/CHR 1.054 0.005
10 OPV 50 6/CHR 2.030 0.005 OPV 10 3/CHR 1.051 0.005
11 OPV 30 12/CHR 2.026 0.005 OPV 10 12/CHR 1.050 0.004
12 OHV CHR 2.009 0.010 OPV 50 3/CHR 1.041 0.003
13 OPV 10 6/CHR 1.986 0.015 OHV 2/CHR 1.033 0.003
14 OPV 10 12/CHR 1.986 0.017 WGS 1.021 0.002
15 OPV 10 CHR 1.985 0.016 OPV 30 6/CHR 1.019 0.003
16 OPV 10 3/CHR 1.983 0.016 OHV 3/CHR 1.017 0.003
17 OPV 10 2/CHR 1.982 0.016 OHV 6/CHR 1.004 0.004
18 OHV 6/CHR 1.981 0.012 OHV 12/CHR 0.987 0.004
19 GS 1.971 0.016 OHV CHR 0.976 0.005
20 OHV 12/CHR 1.953 0.012 OPV 30 12/CHR 0.919 0.004
21 WGS 1.911 0.009 OPV 50 6/CHR 0.891 0.004
22 OPV 50 12/CHR 1.877 0.005 OPV 50 12/CHR 0.774 0.004
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APPENDIX L
MEAN RESPONSE OF OPV 30 2/CHR, OHV 2/CHR, AND GS IN ALL
GENERATIONS
Generation Mean Response (x 10°)
Population |Selection Method 0 1 2 3 4 5 6 7 8 9 10
OPV 30 2/Chr 0 0.555 1.228 1.499 1.644 1.792 1.916 1.998 2.054 2.098 2.135
1 OHV 2/Chr 0 0.613 0.930 1.253 1.488 1.642 1.754 1.848 1.924 1.996 2.045
GS 0 0.612 1.339 1.467 1.609 1.729 1.800 1.847 1.883 1.914 1.941
OPV 30 2/Chr 0 0.335 0.535 0.661 0.762 0.855 0.922 0.968 1.005 1.038 1.066
2 OHV 2/Chr 0 0.325 0.499 0.605 0.709 0.789 0.856 0.910 0.957 0.997 1.033
GS 0 0.336 0.513 0.640 0.760 0.844 0.901 0.945 0.982 1.013 1.040




