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ABSTRACT

We consider a simple Markovian queue with Poisson arrivals and exponential service times for jobs.

The controller can choose service rates from a specified action space depending on number of jobs in the

queue. The queue has a finite buffer and when full, new jobs get rejected. The controller’s objective is to

choose optimal (state-dependent) service rates that minimize a suitable long-run average cost, subject

to an upper bound on the job rejection-rate (quality-of-service constraint). We solve this problem of

finding and computing the optimal control under two cases: When the action space is unbounded (i.e.

[0,∞)) and when it is bounded (i.e. [0, µ̄], for some µ̄ > 0). We also numerically compute and compare

the solutions for different specific choices of the cost function.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Most of literature in queuing systems and their optimal characterization is devoted to systems that

have holding cost through which the congestion concerns are expressed. The objective in those kind of

problems is to balance the trade-off between effort cost function on one hand and the holding cost on

the other hand. However, there is another way to include congestion in the problem that fits better

in some applications of queuing systems in real-world problems (telecommunication problems, etc.).

The alternative way puts a constraint on the queue overflow probability and controls the quality of

service (or job-rejection rate from another point of view). We consider a finite-buffer queue with effort

cost function, holding cost and the mentioned constraint and provide the solution that minimizes its

associated long-run average cost. The arrivals are assumed to happen according to a Poisson process

and service rates are exponentially distributed. We provide the solution for two different cases: One

with bounded action space and the other with unbounded action space.

Finite-buffer queues are used in modeling static point-to-point wireless link. The long-run average

cost is average energy consumption cost (effort cost function) and holding cost. Seeking the optimal

service rate for the wireless provider that minimizes the long-run average cost is the objective in this

problem.

Following the general idea of constrained Markov decision process (see [2] and [19] for more details)

we add a Lagrangian cost to our problem settings rather than a constraint to facilitate solving the

problem. We refer to this new problem as auxiliary problem. Our Bellman equations are shown to be

quite the same for two cases, therefore utilization of the same methodology is possible. A “verification

theorem”is proved using the theory of birth-and-death processes (see [15] for details) to help us in

characterizing the optimal policy for the auxiliary problem. Based on the optimal solution of auxiliary
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problem and also the existence of one-to-one mapping between the constraint upper bound and the

Lagrangian cost, we are able to find the optimal policy for the main problem.

1.2 Literature Review

There is a rich set of literature associated with queuing systems and optimal policy characterization

for them. The books of Sennot [11] and [10] study a variety of problems related to dynamic controls of

queuing systems and provide background on general methodologies to solve them. The works that are

very close to our work are the works that have specifically studied optimal service rate characterization

or joint admission and service rate control. We will consider these two types of works separately in

following two paragraphs.

As a related work to our problem settings, Stidham and Weber [13] provide a way to prove monotonocity

of optimal service rate in one-server queuing models. They used Bellman equations with undiscounted

cost structure to prove their observations under the assumption of unboundedness of holding cost vector

and boundedness of action space. Under weaker assumptions (less-than-geometric growth for holding

cost vector and no bound on action space), George and Harrison [8] provide an elegant method in

controlling a Markovian queue system with infinite buffer to minimize the long-run average cost. They

use the idea of holding cost truncation to develop an iterative algorithm for finding nearly optimal

policy.The motivation behind their study is the work of Wijngaard and Stidham[16] that consider

characterizing of optimal policy in a certain type of MDP using Bellman equations and the work of Jo

[18] who writes out balance equations for the queue and uses optimization theory in finding the optimal

policy for his problem setting. Like majority of other works in queuing theory (see Stidham and Weber

[13] and Crabill [6] for instance) balancing the trade-off between holding cost and effort cost function

is the key in characterizing the optimal policy in their work. On the other hand, in the work of Ata

[3], he studies the trade-off between effort cost function and the constraint same as ours on the overflow

probability. His work has applications in control of wireless systems.

Some extensions on [8] is the work of Ata and Shneorson [4] and Adusumilli and Hasenbein [1] who

also included admission control in their problem settings.[4] minimized the cost for a problem that the

controller can dynamically change both arrival rates and service rates and use that to address a pricing

problem. The action space is bounded for both arrival and service rates. Adusumilli and Hasenbein
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[1] considered a problem that the controller can simultaneously decide whether or not admit arriving

customers and control service rate. The buffer size is not fixed in their settings and they try to find

the optimal buffer size. Unlike Guo and Hernández [20] for each state the action space is unbounded in

their setting. They also showed that for their Semi-MDP model, one can always stick to a deterministic

policy rather than a probabilistic one in seeking the optimal policy. This observation is an extension

on the book by Hernández and Lasserre [21] that provides some insights on the same-observation for a

discrete-time MDP. Their results are in agreement with Koole [22] who proved monotonicy of optimal

policy for the discounted cost version of their problems with bounded action space.

1.3 Thesis Structure

The structure of this thesis is as follows. Chapter 2 provides a complete description of problem

in words and mathematically. It also provides the methodology to solve the problem. Additionally, it

includes some numerical examples to make the methods clear to reader. Chapter 3 provides a general

conclusion to this thesis and also possible directions of further study.
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CHAPTER 2. RATE CONTROL OF A QUEUE WITH QUALITY-OF-SERVICE

CONSTRAINT UNDER BOUNDED AND UNBOUNDED ACTION SPACES

A different version of this paper to be submitted to the Journal of Stochastic Models

Abdolghani Ebrahimi1 and Arka Ghosh2

MSC2000: primary 60K25, 68M20, 90B22; secondary 60G22, 90B18.

Keywords: stochastic control, dynamic control of queueing networks, queues, dynamic programming,

Markov decision process, power control of telecommunication networks.

Abstract

We consider a simple Markovian queue with Poisson arrivals and exponential service times for jobs.

The controller can choose service rates from a specified action space depending on number of jobs in the

queue. The queue has a finite buffer and when full, new jobs get rejected. The controller’s objective is to

choose optimal (state-dependent) service rates that minimize a suitable long-run average cost, subject

to an upper bound on the job rejection-rate (quality-of-service constraint). We solve this problem of

finding and computing the optimal control under two cases: When the action space is unbounded (i.e.

[0,∞)) and when it is bounded (i.e. [0, µ̄], for some µ̄ > 0). We also numerically compute and compare

the solutions for different specific choices of the cost function.

2.1 Introduction

In this chapter, we investigate a dynamic optimal control of a single-server queue with finite buffer

size N (a positive integer), subject to a constraint on the overflow probability. Arrival of jobs to the

1Dept. of Industrial and Manuf. Systems, Iowa State Univ, Ames, IA 50011, USA; ebrahimi@iastate.edu
2Dept. of Statistics, Iowa State Univ, Ames, IA 50011, USA;apghosh@iastate.edu
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system happens according to a Poisson process with rate λ > 0 (to simplify notation, we assume w.l.o.g

λ = 1) and the service time for completing a job follows the exponential distribution. The service rates

can be chosen by a “controller” depending on the queue-length (backlog in the system) from a specified

action space. If the current queue length is n, the controller chooses a service rate µn from the action

space. Once the buffer is full, the incoming jobs get rejected (See Fig. 2.1). The upper bound on the

buffer overflow rate is β ∈ [0, 1]. The long-run average cost function has two components: a service cost

or effort cost c(x) when the service rate x is chosen and a holding cost hn when the queue-length is n.

In this chapter, we deal with two types of action space: unbounded action space A = [0,∞) and when

the action space is bounded, i.e. A = [0, µ̄] for some µ̄ > 0. In each case, we solve the dynamic control

problem of minimizing the cost subject to the constraint that the buffer overflow probability does not

exceed β. This restriction can be viewed as the job-rejection rate constraint or the quality-of-service

condition. We solve this control problem by constructing a suitable auxiliary control problem where

the constraint appears as the Lagrangian component of the modified cost. Finally, we numerically solve

and compare the solution for different choices of the service and holding costs.

Server
- Service 
rate = 

Buffer 

jobs rejected when buffer 
is full (buffer size =    )

   = number of jobs 
    in system

cost of 
service = 

holding
cost =

jobs arrive 
 at rate 1

Figure 2.1: Schematic diagram of the queueing model with ajustable service rate

There is a vast body of research on dynamic control of queuing systems that uses Markov Decision

Process (MDP) framework (see [14], [12], [11], [5] and the references therein). There has been an in-

crease in the study of such networks in the context of quality management of wireless networks that

are getting more and more prevalent in the modern applications ([3], [9], [17], [7]). The finite buffer
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queueing system serves as a model for a static point-to-point wireless link and the long-run average cost

is a combination of the average energy consumption per unit time (control cost) as well as customer

satisfaction cost (holding cost). The control problem is about finding the optimal rate of service for the

wireless provider that minimizes this cost.

This chapter is closely related to the two articles: [3] and [8]. In [8], the authors consider a similar

queueing system and similar cost function but with infinite buffer (and subsequently no restriction on

overflow probability) and an unbounded action space. The article [3] considers similar queueing system

with finite buffer size and a constraint on the buffer overflow probability, but with bounded action space

and no holding cost. Our article attempts to extend both these papers by considering a more general

cost function that has both service/effort cost and holding cost as well as a constraint on the buffer

overflow rate. We consider a queue with finite buffer size, but address both the cases: Case 1: when the

action space is unbounded as well as Case 2: when the action space is bounded. We use methodology

similar to Ata [3] and [8] in the two cases. In both cases, we solve an auxiliary problem where the buffer

overflow rate is added to the cost as a Lagrangian component and this solution, in turn, gives us the

solution to the original problem with constraint.

Structure of the rest of this chapter is as follows. We describe the model and the main control

problem in detail in Section 2.2. We describe the auxiliary Lagrangian problem and solve it in Section

2.3. In section 2.4, we obtain the solution to the main problem using the solution to the auxiliary

problem. Finally, in 2.5, we illustrate our methodology numerically using specific choices of the cost

functions and model parameters. The Appendix in Section 2.5 discusses the importance of a key

convexity assumption on c(x) as well as provides proof of a Lemma.

2.2 Control Problem Formulation: Main Problem

This section provides the precise mathematical formulation for the queuing system. As described in

the introduction, we consider a simple queueing model with Poisson process arrivals happening at a rate

λ = 1 (Fig. 2.1). The queue has finite storage capacity N , and new jobs get rejected when the buffer is

full. The controller chooses a service rate µn from the action space, depending on the number of jobs in
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the queue n ≤ N . We assume µ0 = 0 and assume µn > 0 when n ≥ 1. For each policy µ = (µ1, . . . , µN )

that the controller chooses, one gets a unique steady state p(µ) = (p0(µ), p1(µ), ..., pN (µ)), that satisfies:

pn(µ) = µn+1pn+1(µ) for n = 0, 1, . . . , N − 1 (1)

and
N∑
n=0

pn(µ) = 1 (2)

Using (1) and (2), one can get explicit form of p(µ) as follows:

pn(µ) = pN (µ)
N∏

i=n+1

µi n = 0, 1, . . . , N − 1 (3)

where

pN (µ) = [1 + µN + µNµN−1 + · · ·+ µNµN−1 . . . µ1]−1. (4)

As mentioned earlier, we consider two cases for the action space set:

Case 1: unbounded action space A = [0,∞),

Case 2: bounded action space Ā = [0, µ̄], for some µ̄ > 0. (5)

The upper bound on the buffer overflow rate is β ∈ [0, 1]. Hence, an admissible policy µ in each of

the two cases would be a vector µ = (µ1, . . . , µN ), that satisfies all the conditions above and satisfies

pN (µ) ≤ β (note that the rate at which jobs are rejected is modeled here as pN (µ) as in [3]). More

specifically, the set of admissible policies are:

Case 1: Ω = {µ ∈ RN : µn ∈ A\{0} for n = 1, . . . , N, pN (µ) ≤ β},

Case 2: Ω̄ = {µ ∈ RN : µn ∈ Ā\{0} for n = 1, . . . , N, pN (µ) ≤ β}. (6)

There is a cost component for making jobs wait for service in the system (holding cost) as well as a

cost for providing higher service rates (service/effort cost). We model the holding cost incurred when

the queue length is n as hn for n = 0, 1, . . . , N and assume 0 ≤ h0 ≤ h1 ≤ · · · ≤ hN < ∞. The service

cost is given by c(x) per unit time for providing service rate x. We assume that c(x) is a continuous,

differentiable function. Moreover, it is assumed to be increasing and strictly convex in x with c(0) = 0.

The controller’s objective (in each case, see (5)) is to minimize, the long-run average cost:

z(µ) =
N∑
n=1

pn(µ) [c(µn) + hn] + p0(µ)h0, (7)
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over all admissible policy µ in Ω (in Case 1 ) or in Ω̄ (in Case 2 ). We also denote the optimal long-run

average cost rate for both cases as follows:

Case 1: z∗ ≡ inf{z(µ) : µ ∈ Ω}, Case 2: z̄∗ ≡ inf{z(µ) : µ ∈ Ω̄}. (8)

In the rest of the chapter, we describe a method for finding optimal policies in each case, which are

defined as a policy µ∗ ∈ Ω such that z(µ∗) = z∗ for Case 1 and a policy µ̄∗ ∈ Ω̄ such that z(µ̄∗) = z̄∗

for Case 2.

Remark 1 To solve Case 1 with unbounded action space, we need to assume (as in [8]) an additional

assumption on c(x):

lim
w→∞

inf{c(x)x−1 : x ∈ A, x ≥ w} =∞ (9)

We do not need such condition in Case 2. We will discuss what happens if this condition is not satisfied

in Case 1 in the discussion in Appendix A at the end of the chapter.

For the rest of the chapter, we refer to the problem in this section as the “main problem”(as opposed

to the “auxiliary problem”described and solved in the next section).

2.3 Auxiliary Problem

For solving the main problem, the theory of dynamic programming is not directly applicable be-

cause of the constraint on overflow probability. Hence, as in [3] we will utilize the constrained MDPs

(see [2]) to convert our problem to an auxiliary problem, which is solvable using dynamic programming

techniques. We replace the constraint on the overflow probability by a penalty cost for rejecting jobs

(when buffer is full) as a Lagrangian component of the cost function and solve this modified problem by

solving the corresponding Bellman equations. In next section, we will use the solution to this modified

problem to provide answers to our main problem described earlier.

In the auxiliary problem, the description about the queueing system in Section 2.2 stays the same

(in both cases), except for the definition of admissible control vector µ and the form of the cost function
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as follows. We assume that an admissible control vector µ = (µ1, . . . , µN ) takes values in

Case 1: Ω′ = {µ ∈ RN : µn ∈ A\{0} for n = 1, . . . , N},

Case 2: Ω̄′ = {µ ∈ RN : µn ∈ Ā\{0} for n = 1, . . . , N}. (10)

Clearly, any policy µ from above sets is still ergodic and subsequently equations (1) and (2) remain

valid. Also, for a fixed rejection penalty κ > 0, the modified objective function γ(µ) is defined as:

γ(µ) =
N∑
n=1

pn(µ)[c(µn) + hn] + p0(µ)h0 + pN (µ)κ (11)

We also define optimal policies (of the auxiliary problem) and costs, in each case, as follows.

Case 1: γ∗ ≡ inf{γ(µ) : µ ∈ Ω′}, µ∗ ≡ arg min{γ(µ) : µ ∈ Ω′},

Case 2: γ̄∗ ≡ inf{γ(µ) : µ ∈ Ω̄′}, µ̄∗ ≡ arg min{γ(µ) : µ ∈ Ω̄′}. (12)

Before we solve the auxiliary problem, we introduce two key functions for our analysis. In each of

the two cases, for y ≥ 0, define

Case 1: φ(y) ≡ sup
x∈A
{xy − c(x)}, ψ(y) ≡ arg max

x∈A
{xy − c(x)}, (13)

Case 2: φ̄(y) ≡ sup
x∈Ā
{xy − c(x)}, ψ̄(y) ≡ arg max

x∈Ā
{xy − c(x)}. (14)

More details on these functions can be found in [8] and [3]. The following key properties of these

functions have been proved in these papers and we will be using them without proof for our analysis.

Fig. 2.2 gives an example of how these functions behave in the two cases.

Proposition 2 In Case 1: φ(.) is continuous, non-decreasing and convex on [0,∞) with φ(y) = 0

and limy→∞ φ(y) =∞. Moreover, it is strictly convex and strictly increasing on [c′(0),∞).

In Case 2: φ̄(.) is continuous, non-decreasing and convex on [0,∞) with φ̄(y) = 0 and limy→∞ φ̄(y) =∞.

Specifically, it is strictly convex and increasing on [c′(0), c′(µ̄)] and is an affine function on (c′(µ̄),∞).

In addition, as established in [8] and [3], since c(.) is assumed to be continuous, strictly convex

and increasing, we have that c′−1(.) is a continuous and increasing function. As a result, the functions
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0
y

φ
(y

)

c
′(0)

(a) φ in Case 1

0
y

ψ
(y

)
c
′(0)

(b) ψ in Case 1

0
y

φ̄
(y

)

c
′(0) c

′(µ̄)

(c) φ̄ in Case 2

0
y

ψ̄
(y

)

c
′(0) c

′(µ̄)

µ̄

(d) ψ̄ in Case 2

Figure 2.2: Illustration of φ, ψ and the corresponding φ̄, ψ̄ functions in two cases
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ψ(.), ψ̄(.) are continuous and non-decreasing on [0,∞) and can be written explicitly as

ψ(y) =


0 if 0 ≤ y ≤ c′(0)

(c′)−1(y) if y > c′(0)

(15)

and

ψ̄(y) =



0 if 0 ≤ y ≤ c′(0)

(c′)−1(y) if c′(0) < y < c′(µ̄)

µ̄ if y ≥ c′(µ̄)

(16)

In addition, the following holds.

φ(y) =

∫ y

0
ψ(u)du, φ̄(y) =

∫ y

0
ψ̄(u)du. (17)

2.3.1 Solution of the Auxiliary Problem

2.3.1.1 Bellman Equations

This section provides Bellman equations on both cases as a starting step toward computation of

optimal policies.

Case 1: In this case, the Bellman equations are similar to those in [8] with appropriate modifications

for our problem settings. Using continuous-time MDPs (CTMDPs) theory one can write Bellman

equations for relative cost functions denoted by νn:

ν1 = ν0 + γ − h0, (18a)

νn = min
x∈A

{
c(x) + hn − γ + νn+1 + xνn−1

1 + x

}
, n = 1, . . . , N − 1, (18b)

νN = min
x∈A

{
c(x) + hN + κ− γ

x
+ νN−1

}
. (18c)

Here νn shows the optimal cost for the shortest path stochastic control problem starting from state

n until next time the system is in state m as a reference state. To justify the equations intuitively,

note that when the system is in state n 6= N the average time spent on that state is 1
1+x . Then with
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probability of 1
1+x an arrival occurs before departure and occurrence of departure before arrival has

probability of x
1+x . Also in state n = N we are sure that no arrival happens as new arrivals will be

rejected. The average time the system stays in state N is 1
x and with probability of 1, the system moves

to state N − 1.

Now setting yn = νn− νn−1 for n = 1, . . . , N and using the special functions introduced in (13)-(14)

as in [8], the equations (18a)-(18c) reduce to:

y1 = γ − h0, (19a)

yn+1 = max
x∈A
{xyn − c(x)} − hn + γ = φ(yn) + γ − hn, n = 1, . . . , N − 1, (19b)

κ = max
x∈A
{xyN − c(x)} − hN + γ = φ(yN ) + γ − hN . (19c)

Case 2: In this case, since the action space is bounded, it is possible to equalize the average time

between transitions. One can use theory of CTMDPs along with uniformization techniques (see [3]) to

write the Bellman equations for relative cost functions ν̄n:

ν̄1 = ν̄0 + γ̄ − h0, (20a)

ν̄n = min
x∈Ā

{
c(x) + hn − γ̄ + xν̄n−1 + ν̄n+1 + (µ̄− x)ν̄n

1 + µ̄

}
, n = 1, . . . , N − 1, (20b)

ν̄N = min
x∈Ā

{
c(x) + hN + κ− γ̄ + xν̄n−1 + (µ̄− x)ν̄N

µ̄

}
. (20c)

In fact we are using uniformization to convert our CTMDP to a discrete-time MDP (DTMDP) by

accelerating the transition rates that are small on average; therefore, the transition rate is 1 + µ̄ in

all states. Having this done, we need to take into account possibility of staying at same state after

transition (see [5] for more details).

Defining ȳn as ȳn = ν̄n − ν̄n−1 and using the special functions introduced in (13)-(14) as in [3], we

can rewrite (20a)-(20c) as

ȳ1 = γ̄ − h0, (21a)

ȳn+1 = max
x∈Ā
{xȳn − c(x)} − hn + γ̄ = φ̄(ȳn) + γ̄ − hn, n = 1, . . . , N − 1, (21b)

κ = max
x∈Ā
{xȳN − c(x)} − hN + γ̄ = φ̄(ȳN ) + γ̄ − hN . (21c)
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Note that the equations (19a)-(19c) and (21a)-(21c) are quite similar; therefore, we can exploit sim-

ilar strategy to characterize the optimal policy in both cases.

2.3.1.2 The Verification Theorem

This section states and proves the “verification theorem”, which helps us in characterizing the

optimal policies through solutions of the Bellman equations in each case.

Theorem 3 In Case 1: If there exists a γ <∞ and vector y ∈ RN+ such that the equations (19a)-(19c)

are satisfied, then for any arbitrary ergodic policy µ we have

γ ≤ γ(µ) (22)

and subsequently γ ≤ γ∗. Let µ∗n = ψ(yn) for n = 1, . . . , N , where ψ is as defined in (13). If the policy

µ∗ is ergodic, then it is an optimal policy, i.e. γ(µ∗) = γ∗ = γ.

In Case 2: If there exists a γ̄ <∞ and vector ȳ ∈ RN+ such that the equations (21a)-(21c) are satisfied,

then for any arbitrary ergodic policy µ we have

γ̄ ≤ γ(µ) (23)

and subsequently γ̄ ≤ γ̄∗. Let µ̄∗n = ψ̄(ȳn) for n = 1, . . . , N , where ψ̄ is as defined in (14). If the policy

µ̄∗ is ergodic, then it is an optimal policy, i.e. γ(µ̄∗) = γ̄∗ = γ̄.

Proof. We only prove the theorem for Case 1 as the proof for the other case is nearly identical.

Using (13) one can write

xyn − c(x) ≤ φ(yn) for x ≥ 0 and n = 1, . . . , N (24)

Since (24) is valid for all x ≥ 0 we replace it with µn, the nth component of arbitrary ergodic policy µ.

Then using (19b) and (19c) one concludes that

µnyn − c(µn) ≤ yn+1 + hn − γ for n = 1, . . . , N − 1 (25)

µNyN − c(µN ) ≤ κ+ hN − γ (26)
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Note that the policy µ is ergodic; therefore, one can always find a p(µ) satisfying (1) and (2). We are

allowed to multiply both sides of (25) by pn(µ) and then sum over all equations. Then, by (1) and after

simplification and rearranging we have

γ

N−1∑
n=1

pn(µ) ≤
N−1∑
n=1

pn(µ)[c(µn) + hn] + pN (µ)µNyN − p0(µ)y1 (27)

We also multiply both sides of (26) by pN (µ), thus

pN (µ)γ ≤ pN (µ)[c(µN ) + hN ] + pN (µ)κ− pN (µ)µNyN (28)

Finally, one arrives at the following by adding up (28) to (27) and exploiting equations (19a) and (2)

γ ≤
N∑
n=1

pn(µ)[c(µn) + hn] + p0(µ)h0 + pN (µ)κ (29)

The right-hand side of (29) is the long-run average cost rate of our arbitrary policy µ.

To prove optimality of µ∗, one can repeat all these steps by replacing x with µ∗n so that (24) holds

with equality. Having substituted all inequalities with equalities and going through all steps again the

optimality of policy µ∗ is established. 2

2.3.1.3 Policy Characterization

This section suggests the methodology to find the optimal policy for the auxiliary problem.

Case 1: Following our simplified Bellman equations in (19a)-(19c), we can define yn as a function of

γ for n = 1, . . . , N ; therefore, for each γ > c′(0) + h0 we define

y1(γ) = γ − h0 and yn+1(γ) = φ(yn(γ)) + γ − hn for n = 1, . . . , N − 1. (30)

Also the rejection penalty κ can be defined as a function of γ, thus

g(γ) = φ(yN (γ)) + γ − hN (31)

Let γN+1 be the value of γ such that g(γ) = yN (γ). We also define α = g(γN+1). Following the

arguments in [8], one can always find a unique γN+1 when the action space is unbounded. As a result,
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γN+1 and α will be treated as known values hereinafter. It is also showed in the paper that for each

γ > γN+1, one has

0 ≤ c′(0) < y1(γ) ≤ y2(γ) ≤ · · · ≤ yN (γ) (32)

Note that γ > γN+1 guarantees γ > c′(0) + h0. The following result is a direct consequence of (32) and

the monotonicity of ψ function (see the discussion above (15)).

Proposition 4 The following statement holds for each γ on (γN+1,∞),

0 < ψ(y1(γ)) ≤ ψ(y2(γ)) ≤ · · · ≤ ψ(yN (γ)). (33)

Above result shows that for each γ > γN+1, the policy µ∗ = (ψ(y1(γ), . . . , ψ(yN (γ))) derived from

equations (30) is admissible for Case 1. We still need to prove that for each κ > α we can find a unique

value of γ̃ > γN+1 that results in g(γ̃) = κ in (31). In other words, there is a one-to-one mapping

between κ and γ. Having found this unique γ̃, then γ̃ and ỹ = (y1(γ̃), . . . , yN (γ̃)) satisfy (30) and (31).

Lemma 5 is needed to prove this observation.

Lemma 5 Function g(.) is continuous, convex and strictly increasing for any γ > γN+1. In addition,

we have limγ→γN+1 g(γ) = α and limγ→∞ g(γ) = ∞. Moreover, the function g−1(.) is continuous and

strictly increasing on (α,∞). In addition, we have limκ→α g
−1(κ) = γN+1 and limκ→∞ g

−1(κ) =∞

The proof of the first part of the lemma is obvious: It follows from (31) and Proposition 2. The

second part is a result of the relation between a function and its inverse.

As we have established a one-to-one mapping between γ and κ, we define for any κ > α

γ(κ) = g−1(κ) (34)

to emphasize dependency of γ on κ. We also define policy µ∗(κ) ≡ (µ∗1(κ), . . . , µ∗N (κ)) as

µ∗n(κ) = ψ(yn(γ(κ))) for n = 1, . . . , N (35)
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It is clear that γ(κ) and vector (y1(γ(κ)), . . . , yN (γ(κ))) are joint solutions of (19a)-(19c). As we as-

sumed κ > α then (34) guarantees that γ(κ) > γN+1; therefore (33) shows that µ∗(κ) is admissible

and also monotone (by Proposition 4 and Lemma 5). Hence, by Theorem 3, optimality of µ∗(κ) is

confirmed. This is stated below as the theorem for Case 1 of the auxiliary problem.

Theorem 6 The policy µ∗(κ) described in (35) characterizes the optimal policy for each κ > α. More-

over, the policy µ∗(κ) is monotonic in the queue length, i.e.

0 < µ∗1(κ) ≤ µ∗2(κ) ≤ · · · ≤ µ∗N (κ),

and we have γµ∗(κ) = γ∗(κ) = γ∗.

Case 2: As we did in the Case of Case 1 above, we define vector ȳ as a function of γ for γ > c′(0)+h0.

Thus

ȳ1(γ) = γ − h0 and ȳn+1(γ) = φ̄(ȳn(γ)) + γ − hn for n = 1, . . . , N − 1. (36)

Also the rejection penalty κ can be defined as a function of γ, thus

ḡ(γ) = φ̄(ȳN (γ)) + γ − hN (37)

Let γ̄N+1 be the value of γ that gives us ḡ(γ) = ȳN (γ). The following Lemma is proved in Appendix B.

Lemma 7 The value of γ̄N+1 is unique and for each γ > γ̄N+1 we have

0 ≤ c′(0) < ȳ1(γ) ≤ ȳ2(γ) ≤ · · · ≤ ȳN (γ). (38)

The following Proposition follows immediately from (16) and Lemma 7.

Proposition 8 Each γ > γ̄N+1 will result in

0 < ψ̄(ȳ1(γ)) ≤ ψ̄(ȳ2(γ)) ≤ · · · ≤ ψ̄(ȳN (γ)) ≤ µ̄ (39)

Therefore the admissibility of policy µ̄∗ = (ψ̄(ȳ1(γ)), . . . , ψ̄(ȳN (γ))) obtained from (36) is established.

Defining ᾱ = ḡ(γ̄N+1), again we validate the existence of a unique value of γ̃ for which we have ḡ(γ̃) = κ

for each κ > ᾱ. Lemma 9 is stated below without proof as it is similar to Lemma 5.
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Lemma 9 Function ḡ(.) is continuous, convex and strictly increasing for any γ > γ̄N+1. In addition,

we have limγ→γ̄N+1 ḡ(γ) = ᾱ and limγ→∞ ḡ(γ) = ∞. Moreover, the function ḡ−1(.) is continuous and

strictly increasing for any (ᾱ,∞). In addition, we have limκ→ᾱ ḡ
−1(κ) = γ̄N+1 and limκ→∞ ḡ

−1(κ) =∞

Now define for any κ > ᾱ

γ̄(κ) = ḡ−1(κ) (40)

and µ̄∗(κ) ≡ (µ̄∗1(κ), . . . , µ̄∗N (κ)) as

µ̄∗n(κ) = ψ̄(ȳn(γ̄(κ))) for n = 1, . . . , N. (41)

The following result states the optimality of the control µ̄∗(κ) in Case 2 and has proof similar to that

of Theorem 6.

Theorem 10 The policy µ̄∗(κ) defined in (41) characterizes the optimal policy for each κ > ᾱ. More-

over, the policy µ̄∗(κ) is monotonic in the queue length, i.e.

0 < µ̄∗1(κ) ≤ µ̄∗2(κ) ≤ · · · ≤ µ̄∗N (κ) ≤ µ̄,

and we have γµ̄∗(κ) = γ̄∗(κ) = γ̄∗.

2.4 Solution to the Main Problem

In this section, we use the solution to the auxiliary problem described in Section 2.3 to determine

the optimal policy for the main problem. A key step that connects the two problems is the long-run

overflow probability function β(κ) in Case 1 (and β̄(κ) in Case 2) under the optimal policy of the

auxiliary problem µ∗(κ) in Case 1 (and µ̄∗(κ) in Case 2).

Case 1: Using (4) and (35) one can write

β(κ) = [1 + µ∗N (κ) + µ∗N (κ)µ∗N−1(κ) + ...+ µ∗N (κ)µ∗N−1(κ)...µ∗1(κ)]−1, κ > α. (42)

The following proposition describes the behavior of this function β(κ).
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Proposition 10 β(.) is continuous and strictly decreasing on (α,∞). In addition, we have limκ→∞ β(κ) = 0

and there exists a unique κ∗ ∈ (α,∞) such that β(κ∗) = β for β ∈ (0, b), where b = β(α).

Proof. Continuity of ψ(.) function on [0,∞) along with the fact that yn(.) is continuous and its image is

a subset of (c′(0),∞) for γ > γN+1 (c.f. (32)) result in continuity of µ∗n(κ) on (α,∞) for n = 1, . . . , N .

Subsequently, continuity of β(κ) on (α,∞) is confirmed using (42).

To confirm that β(.) is strictly decreasing over (α,∞), one notes that ψ(.) and yn(.) are strictly in-

creasing and it concludes that µ∗n(.) is strictly increasing over (α,∞) for n = 1, . . . , N . Using (42) one

establishes that β(.) is strictly decreasing on (α,∞).

Eventually, as we increase κ infinitely, γ(κ) increases infinitely and as the result yn(γ(p)) and ψ(yn(γ(p)))

go toward infinity for n = 1, . . . , N . Again using (42) one arrives at β(κ)→ 0 as κ→∞. The last part

is obvious from the properties of β established in the first part of the proposition. See Fig. 2.3 for an

illustration of this function. 2

Now we state the main theorem for Case 1. It connects our solution of the auxiliary problem to the

solution of the main problem in Case 1.

Theorem 11 Given a β ∈ (0, b), existence of a unique κ∗ > α that gives us β(κ∗) = β is guaranteed

and policy µ∗(κ∗) is optimal. In addition, we have z(µ∗(κ∗)) = z∗ = γ∗ − βκ∗.

Proof. Proposition 10 validates existence and uniqueness of that κ∗. In addition, from Proposition 4

one can conclude that the policy µ∗(κ∗) is admissible as κ > α. To compare long-run average cost of

µ∗(κ∗) with other admissible policies, let policy µ be an admissible policy for the main problem. Then

from (29) and after rearranging we have

N∑
n=1

pn(µ)[c(µn) + hn] + p0(µ)h0 ≥ γ(κ∗)− pN (µ)κ∗ (43)

From (43) and admissibility of µ

N∑
n=1

pn(µ)[c(µn) + hn] + p0(µ)h0 ≥ γ(κ∗)− βκ∗ (44)
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On the other hand, we have for policy µ∗(κ∗)

N∑
n=1

pn(µ∗(κ∗))[c(µn(κ∗)) + hn] + p0(µ)h0 = γ(κ∗)− βκ∗ (45)

Clearly, (44) and (45) confirms that the cost associated with any arbitrary admissible policy µ is larger

than cost of policy µ∗(κ∗). Hence, by (7) and (11), we conclude that z(µ∗(κ∗)) = z∗ = γ∗ − βκ∗. 2

0 κ

β
(κ

)

α

b

κ∗

β

(a) Case 1

0 κ

β̄
(κ

)

ᾱ

b̄

κ̄

b

β

κ∗

(b) Case 2

Figure 2.3: Comparison of illustrative β and β̄ functions

Case 2: Based on our definition for β̄(κ), (4) and (41) we have

β̄(κ) = [1 + µ̄∗N (κ) + µ̄∗N (κ)µ̄∗N−1(κ) + · · ·+ µ̄∗N (κ)µ̄∗N−1(κ) . . . µ̄∗1(κ)]−1, κ > ᾱ. (46)

Before stating the counterpart of Proposition 10 for Case 2, we define

b =
µ̄− 1

(µ̄)N+1 − 1
, and κ̄ = ḡ

(
c′(µ̄) + h0

)
.

Proposition 12 β̄(.) is continuous and strictly decreasing on (ᾱ, κ̄). In addition, on [κ̄,∞) we have

β̄(κ) = b and and there exists a unique κ̄∗ ∈ (ᾱ,∞) such that β̄(κ̄∗) = β for β ∈ (b, b̄), where b̄ = β̄(ᾱ).

Proof. The proof of continuity is similar to that of β(κ) in Case 1, thus we skip it. To prove that

β̄(κ) = b for κ ≥ κ̄, we just need to confirm that µ̄∗1(κ) = µ̄ for κ = κ̄. By (36) we can write

µ̄∗1(κ̄) = ψ̄(ȳ1(γ̄(κ̄))) = ψ̄(γ̄(κ̄) − h0) = ψ̄(ḡ−1(κ̄) − h0) = ψ̄(ḡ−1(ḡ(c′(µ̄) + h0)) − h0) = ψ̄(c′(µ̄)) = µ̄.
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Then from Theorem 10 we have µ̄∗n(κ) = µ̄ for n = 1, . . . , N and using (46) and some straightforward

calculation, validity of our observation is established for κ = κ̄. Finally, monotonocity of ȳ(.) and ψ̄(.)

generalizes the observation to κ ≥ κ̄.

Finally, we confirm that β̄(.) is strictly decreasing over (ᾱ, κ̄). Using µ̄∗n(κ) = ψ̄(ȳn(γ̄(κ))) along with

the fact that γ̄(.) and ȳ(.) are strictly increasing functions and ψ̄(.) is a non-decreasing one, we conclude

that µ̄∗n(.) is non-decreasing on (ᾱ, κ̄). Exploiting (46) one establishes that β̄(.) is non-increasing on

(ᾱ,∞). Also, since µ̄∗1(κ) = ψ̄(ȳ1(γ̄(κ))) = ψ̄(γ̄(κ) − h0) and γ̄(.) and ψ̄(.) are strictly increasing on

(ᾱ,∞) and (c′(0), c′(µ̄)) respectively, we can induce that µ̄∗1(.) is strictly increasing on (ᾱ, κ̄) and that

concludes that β̄(.) is strictly decreasing on (ᾱ, κ̄). The last part is obvious from the properties of β

established in the first part of proposition. See Fig. 2.3 for an illustration of this function. 2

Finally we state the main theorem for Case 2. The proof is omitted as it is similar to that of

Theorem 11.

Theorem 13 Given a β ∈ (b, b̄), existence of a unique κ̄∗ > ᾱ that gives us β̄(κ̄∗) = β is guaranteed

and policy µ̄∗(κ̄∗) is optimal. In addition, we have z(µ̄∗(κ̄∗)) = z̄∗ = γ̄∗ − βκ̄∗.

2.5 Numerical Examples

In this section, we explore some numerical examples to illustrate the solution methodology described

in the chapter. All the examples are done for both the cases:

Case 1: A = [0,∞) and Case 2: Ā = [0, µ̄] for fixed µ̄ > 0 specified below.

For all the examples, we assume λ = 1 and β ∈ [0, 1] as before and the holding cost function of the

form:

hn = h0 + s(n−M + 1)+, n = 0, 1, . . . , N

with fixed real numbers h0, s ≥ 0 and positive integers N and M .



21

Example 1: For our first example, we consider an exponential form for the service cost and these

specific values for the parameters:

c(x) = ex − 1 with buffer size N = 50, β = 10−20, and h0 = 0, s = 0.1,M = 1.

In addition, we assume µ̄ = 10 for Case 2. With these choices, we get in Case 1:

ψ(y) =


0 if 0 ≤ y ≤ 1

ln(y) if y > 1

and φ(y) =


0 if 0 ≤ y ≤ 1

y ln(y)− y + 1 if y > 1

and in Case 2 :

ψ̄(y) =



0 if 0 ≤ y ≤ 1

ln(y) if 1 < y ≤ e10

10 if y > e10

and φ̄(y) =



0 if 0 ≤ y ≤ 1

y ln(y)− y + 1 if 1 < y ≤ e10

10y + 1− e10 if y > e10

Fig. 2.4(a) plots the optimal service rate for both cases. Comparing the two graphs, we see that it

shows almost the same behavior when the queue length is small - i.e. far from the buffer size N = 50.

As the queue length increases, Case 2 applies larger service rates compared to Case 1 to compensate

for its limitation on applying service rates larger than µ̄ = 10 until it reaches its maximum service rate

at n = 45.

Example 2: For second example, we consider a quadratic cost function and the following values for

the other parameters:

c(x) =
1

2
x2 with N = 10, β = 10−12, and h0 = 0, s = 10,M = 1.

In addition, we take µ̄ = 20 for Case 2. Then, in Case 1 we have for y ≥ 0

ψ(y) = y and φ(y) =
1

2
y2,

and for Case 2 :

ψ̄(y) =


y if 0 ≤ y ≤ 20

20 if y > 20

and φ̄(y) =


1
2y

2 if 0 ≤ y ≤ 20

20y − 200 if y > 20
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Figure 2.4: Optimal policies in three numerical examples for each of the two cases
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Fig. 2.4(b) shows the optimal policy rate in both cases. In this example the difference between κ∗ and κ̄∗

is huge and that makes the optimal rate to reach its maximum very fast (when queue length is around

4) in Case 2.

Example 3: Finally for our third example, we consider the following service cost function and parameter

values:

c(x) = (x+ 1) ln(x+ 1) with N = 5, β = 10−7 and h0 = 0, s = 1,M = 1,

and µ̄ = 50 for Case 2. Then for Case 1 we have

ψ(y) =


0 if 0 ≤ y ≤ 1

ey−1 − 1 if y > 1

and φ(y) =


0 if 0 ≤ y ≤ 1

ey−1 − y if y > 1

and for Case 2:

ψ̄(y) =



0 if 0 ≤ y ≤ 1

ey−1 − 1, if 1 < y ≤ ln(51) + 1

50 if y > ln(51) + 1

and φ̄(y) =



0 if 0 ≤ y ≤ 1

ey−1 − y if 1 < y ≤ ln(51) + 1

50y − 51 ln(51) if y > ln(51) + 1

Fig. 2.4(c) illustrates optimal policy for third example. Note that we have broken vertical axis to make

the figure more clear to reader. The optimal rate in Case 2 reaches close to the maximum (µ̄ = 50)

when the queue-length is around 3.

Comparing the three examples, note that the service cost function has gradual slower rate of growth

from Example 1 - 3, and hence, the rate of change of the optimal control (as a function of the queue-

length) is also smoother in a later example, compared to an earlier one. This effect is more visible when

the optimal rate is closer to the upper bound.

Tables 2.1 and 2.2 summarize our results for both cases respectively considering all three cost

functions c(x) in the three examples above.
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c(x) ex − 1 1
2x

2 (x+ 1) ln(x+ 1)

β 1e− 20 1e− 12 1e− 7

N 50.00000000000000 10.00000000000000 5.000000000000000

M 1.000000000000000 1.000000000000000 1.000000000000000

s 0.100000000000000 10.00000000000000 1.000000000000000

γN+1 2.285307016378286 4.890089061547525 2.297603580454379

α 8.958166186885266 14.82824086628696 3.210938206766867

γ∗ 2.285307017566225 4.890089305336006 2.303829201039988

κ∗ 28.54874985659808 417.3020809625224 9.756135451108200

z∗ 2.285307017280737 4.890089304918704 2.303828225426443

Table 2.1: Computational results for case 1

c(x) ex − 1 1
2x

2 (x+ 1) ln(x+ 1)

β 1e− 20 1e− 12 1e− 7

N 50.00000000000000 10.00000000000000 5.000000000000000

M 1.000000000000000 1.000000000000000 1.000000000000000

s 0.100000000000000 10.00000000000000 1.000000000000000

γ̄N+1 2.285307016378286 4.890089061547525 2.297603580454379

ᾱ 8.958166186885266 14.82824086628696 3.210938206766867

γ̄∗ 2.285307019577728 5.061191089366425 2.578945446808966

κ̄∗ 101524018148.6422 5825230813.475831 24786.09850823848

z̄∗ 2.285307018562488 5.055365858552950 2.576466836958142

Table 2.2: Computational results for case 2

Appendices

A About Remark 1

To investigate the result when the assumption in Remark 1 (see (9)) does not hold, let us first

consider its failure in Case 2. Suppose that we have linear function c(x) = θx with θ > 0. Derived

results in Sections 2.3 and 2.4 shows that the optimal policy would be µ̄∗n = µ̄ for n = 1, . . . , N given

that this policy satisfies the constraint pN (µ̄∗) ≤ β; otherwise there is no feasible solution to our prob-

lem. Additionally, a simple investigation of the average cost of implementing service rate x which is

c(x)
x = θ justifies this result. While the average cost for implementing any service rate x ∈ [0, µ̄] is

equal, it clearly makes sense to apply the largest possible service rate µ̄ to offset the imposed congestion
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costs. Note that although degeneracy can be the case for the auxiliary problem (the situation where

hN+κ < γ̄∗), but it never happens for the main problem as the do-nothing policy is an infeasible solution.

Now we can generalize our result to the Case 1 by having µ̄ → ∞ in Case 2. We have two

interpretations for this case; mathematical and practical. Mathematically speaking, one can infer that

in this case no optimal policy exists since providing service rate with infinite value always dominates

a service rate with finite value. In this case feasibility issues are not our concern as we can always

find µ such that pN (µ) ≤ β for any 0 < β < 1. On the other hand, note that here the controller can

remove j jobs instantly at any time with the cost of jθ. Instantaneous ejection of the arriving jobs is

practically equivalent to give the controller the leverage of rejecting new jobs when the buffer is not

full at cost θ. Practically speaking, this is where we need to switch the problem to a new one. A new

problem that one should design a queue with an optimal buffer size and optimal service rates while

there is a similar-to-our-context constraint on that optimal buffer size. On that problem one can relax

the assumption (9) to the following assumption

lim
w→∞

(inf{c(x)x−1 : x ∈ A, x ≥ w}) ≥ κ̃ (47)

where κ̃ is the rejection cost in that problem. This is where our problem, and those in [8] and [1] overlap

and can be investigated separately.

B Proof of Lemma 7

To verify Lemma 7, it is enough to show the existence of a unique γ̄N+1 be such that ḡ(γ) = ȳN (γ)

and prove that for any γ > γ̄N+1 we have 0 ≤ c′(0) < ȳ1(γ) ≤ ȳ2(γ) ≤ · · · ≤ ȳN (γ). To make it

simple, let us consider the problem with an unlimited buffer size. In other words we have the following

equations:

ȳ1(γ) = γ̄ − h0, (48a)

ȳn+1(γ) = φ̄(ȳn(γ)) + γ̄ − hn (48b)

Furthermore, to facilitate our proof we extend the domain of function φ̄ to R by defining φ̄(y) = 0 for

y < 0. That gives us a sequence of ȳn(.) : R→ R functions that are continuous and strictly increasing.
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Now, set ȳ0 = c′(0) and define the difference of consecutive terms of vector ȳ as

∆n(γ) = ȳn(γ)− ȳn−1(γ) for n ≥ 1 and γ ∈ R (49)

Then immediately we reach the following using (48b).

∆n+1(γ) = φ̄(ȳn(γ))− φ̄(ȳn−1(γ))− (hn − hn−1) for n ≥ 1 and γ ∈ R (50)

Let γn be the root of nth equation, i.e. the solution of ∆n(γ) = 0. We show that a unique sequence of

roots γ1, γ2, . . . , γn exists that are monotone in n. Moreover, we show that

0 ≤ c′(0) = ȳ0(γn) ≤ ȳ1(γn) ≤ ȳ2(γn) ≤ · · · ≤ ȳn−1(γn) = ȳn(γn).

We argue this using induction method. First note that ∆1(γ) = γ − h0 − c′(0) and subsequently

γ1 = h0 + c′(0) which is unique. One notes that ∆1(.) is continuous and strictly increasing over [γ1,∞).

Next we assume that our observations are true for nth equation and will try to extend them to (n+1)th

equation. Therefore, we assume a unique γn such that ∆n(γn) = 0 and γ1 ≤ · · · ≤ γn. Furthermore, on

[γn,∞), ∆n(.) is assumed continuous and strictly increasing. The fact that φ̄ is continuous and strictly

increasing on [c′(0),∞) along with our assumption that ȳn(γ)− ȳn−1(γ) ≥ 0 for γ ≥ γn lead us to infer

that ∆n+1 is continuous, strictly increasing and unbounded on [γn,∞) from (50). As we have extended

our hypothesis to n+ 1 one can infer that for γ ≥ γi we have ȳi(γ) ≥ ȳi−1(γ) and that ends the proof of

monotonocity of ȳn(.) sequence. Moreover, it is immediate from (50) that ∆n+1(γn) = hn−1 − hn ≤ 0.

Exploiting that along with continuity, unboundedness and strict monotoncity of ∆n+1(.) on [γn,∞), we

establish existence of a unique γn+1 ≥ γn such that ∆n+1(γn+1) = 0.

Returning to the problem with limited buffer size N one can immediately see that we can al-

ways find a unique γN+1 value such that ḡ(γN+1) = ȳN (γN+1) and for each γ > γN+1 we have

0 ≤ c′(0) < ȳ1(γ) ≤ ȳ2(γ) ≤ · · · ≤ ȳN (γ). The equality situations happen when the holding cost

remains the same from a state to its immediate larger state (Note that we assumed holding cost vector

to be non-decreasing). 2
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3. GENERAL CONCLUSION

3.1 Conclusion

We showed that Bellman equations for Case 1 with unbounded action space and Case 2 with

bounded action spaces are quite similar and that facilitates exploitation of similar strategy in solving

the problem.

As the strategy for solving the main problem, we introduced an auxiliary problem whose solution is

connected to our main problem solution. We used a Lagrangian cost and replaced it with our constraint

on overflow probability. We provided a verification theorem to facilitate solving this auxiliary problem.

Additionally, A one-to-one mapping between this Lagrangian cost and the upper bound was shown to

exist. Furthermore, we provided the way on how to find this Lagrangian cost value given an upper

bound.

Finally, some numerical examples with different parameters and cost functions were provided to

make the methodology clear and the results were provided.

3.2 Future Study

During this study, we assumed that arrivals happen according to a Poisson process and service rates

are exponentially distributed. This is not always the case in real-world problems and arrivals and service

rates can have a general distribution. Relaxing these assumptions and studying the problem in that

setting could be a possible future direction.

Moreover, we assumed that regardless of waiting times, the customers do not depart the system

without being served (no customer abandonment). Again, this is not always the case and one could

investigate this by assuming a general or exponential distribution for the abandonment.

Combination of exponential or general distribution for arrivals, service rates and customer abandon-
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ment result in many interesting problems to investigate.
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