This is page i
Printer: Opaque this

STATISTICAL METHODS FOR QUALITY
ASSURANCE:
Basics, Measurement, Control, Capability, and
Improvement

Stephen B. Vardeman and J. Marcus Jobe

September 27, 2007



ii



Contents

Preface v
1 Introduction
1.1 The Nature of Quality and the Role of Statistics . . . . . .. ... .. 1
1.2 Modern Quality Philosophy and Business Practice Improvement Strate-
gIES . . e e e 3
1.2.1 Modern Quality Philosophy and a Six-Step Process-Oriented
Quality Assurance Cycle . . . . . .. ... .. ... ..... 3
1.2.2  The Modern Business Environment and General Business Process
Improvement . . . . .. ... ... ... 7
123 SomeCaveats . . . . . . ... ... ... ... ... ... 10
1.3 Logical Process Identification and Analysis . . . . .. ... ... .. 12
1.4 Elementary Principles of Quality Assurance Data Collection . . . . . 15
1.5 Simple Statistical Graphics and Quality Assurance . . .. ... ... 19
1.6 Chapter Summary . . . . . . . . . .. .. . 25
1.7 Chapter l Exercises . . . . . . . . . . ... 25
2 Statistics and Measurement 33
2.1 Basic Concepts in Metrology and Probability Modeling of Measure-
ment ... 33
2.2 Elementary One- and Two-Sample Statistical Methods and Measure-
MENt . . . .. e e e 39
2.2.1 One-Sample Methods and Measurement Error. . . . . . . .. 39
2.2.2  Two-Sample Methods and Measurement Error . . . . . . . . 45
2.3 Some Intermediate Statistical Methods and Measurement . . . . . . . 53
2.3.1 A Simple Method for Separating Process and Measurement
Variation . . . . ... ... 53

2.3.2  One-Way Random Effects Models and Associated Inference . 56

This is page iii
Printer: Opaque this



iv

24 GaugeR&R Studies. . . . .. ... ... oL 63
2.4.1 Two-Way Random Effects Models and Gauge R&R Studies . 63
242 Range-Based Estimation . . . . .. ... ........... 66
243 ANOVA-Based Estimation . . . .. ... ........... 69
2.5 Simple Linear Regression and Calibration Studies . . . . . . ... .. 76
2.6 Measurement Precision and the Ability to Detect a Change or Difference 82
2.7 R&R Considerations for Go/No-Go Inspection . . . . ... ... .. 91
2.7.1  Some Simple Probability Modeling . . . .. ... ...... 91
2.7.2  Simple R&R Point Estimates for 0/1 Contexts . . . . . . . .. 92

2.7.3  Application of Inference Methods for the Difference in Two
Binomial "p’s" . .. . ... 95
2.8 ChapterSummary . . . . . . . . . . ... e 97
2.9 Chapter 2EXercises . . . . . . . . . . i 97
Process Monitoring 119
3.1 Generalities About Shewhart Control Charting . . . . . ... .. ... 119
3.2 Shewhart Charts for Measurements/"Variables Data" . . . . . .. .. 125
3.2.1 Charts for Process Location . . . . ... ........... 125
3.2.2 Charts for Process Spread . . . . . ... ... ... ... .. 131
323 Whatifn=1? . . ... ... . . ... 136
3.3 Shewhart Charts for Counts/"Attributes Data" . . . . . . .. ... .. 141
3.3.1 Charts for Fraction Nonconforming . . . ... ... ..... 141
3.3.2 Charts for Mean Nonconformities per Unit . . . . . ... .. 145
3.4 Patterns on Shewhart Charts and Special Alarm Rules . . . . . . . .. 150
3.5 The Average Run Length Concept . . . . . . .. ... ... ... .. 158
3.6 Statistical Process Monitoring and Engineering Control . . . . . . . . 164
3.6.1 Discrete Time PID Control . . . . . . ... ... ....... 164
3.6.2 Comparisons and Contrasts . . . . ... ........... 171
3.7 ChapterSummary . . . . . . . . . .. ... 174
3.8 Chapter3Exercises . . . . . . . . . .. ... 174
The First Appendix 205

Index 206



This is page v
Printer: Opaque this

Preface

This is the preface. More here later.



vi



CHAPTER 1

Introduction

This opening chapter first introduces the subject of quality assurance and the relation-
ship between it and the subject of statistics in Section 1.1. Then Section 1.2 provides
context for the material of this book. Standard emphases in modern quality assurance
are introduced and a six-step process-oriented quality assurance cycle is put forward as
a framework for approaching projects in this field. Some connections between modern
quality assurance and popular business process improvement programs are discussed
next. Some of the simplest quality assurance tools are then introduced in Sections
1.3 through 1.5 . There is a brief discussion of process mapping/analysis in Section
1.3,.discussion of some simple principles of quality assurance data collection follows
in Section 1.4, and simple statistical graphics are considered in Section 1.5.

1.1 The Nature of Quality and the Role of Statistics

This book’s title raises at least two basic questions: "What is ‘quality’?" and "What do
‘statistical methods’ have to do with assuring it?"

Consider first the word "quality." What does it mean to say that a particular good is
a quality product? And what does it mean to call a particular service a quality service?
In the case of manufactured goods (like automobiles and dishwashers), issues of relia-
bility (the ability to function consistently and effectively across time), appropriateness
of configuration, and fit and finish of parts come to mind. In the realm of services (like
telecommunications and transportation services) one thinks of consistency of avail-
ability and performance, esthetics, and convenience. And in evaluating the "quality"
of both goods and services, there is an implicit understanding that these issues will be
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2 Chapter 1. Introduction

balanced against corresponding costs to determine overall "value." Here is a popular
definition of quality that reflects some of these notions.

Definition 1 Quality in a good or service is fitness for use. That fitness includes as-
pects of both product design and conformance to the (ideal) design.

Quality of design has to do with appropriateness; the choice and configuration of
features that define what a good or service is supposed to be like and is supposed to do.
In many cases it is essentially a matter of matching product "species" to an arena of use.
One needs different things in a vehicle driven on the dirt roads of the Baja peninsula
than in one used on the German autobahn. Vehicle quality of design has to do with
providing the "right" features at an appropriate price. With this understanding, there
is no necessary contradiction between thinking of both a Rolls Royce and a Toyota
economy car as quality vehicles. Similarly, both a particular fast food outlet and a
particular four star restaurant might be thought of as quality eateries.

Quality of conformance has to do with living up to specifications laid down in
product design. It is concerned with small variation from what is specified or expected.
Variation inevitably makes goods and services undesirable. Mechanical devices whose
parts vary substantially from their ideal/design dimensions tend to be noisy, ineffi-
cient, prone to breakdown, and difficult to service. They simply don’t work well. In
the service sector, variation from what is promised/expected is the principal source of
customer dissatisfaction. A city bus system that runs on schedule every day that it is
supposed to run can be seen as a quality transportation system. One that fails to do so
cannot. And an otherwise elegant hotel that fails to ensure the spotless bathrooms its
customers expect will soon be without those customers.

This book is concerned primarily with tools for assuring quality of conformance.
This is not because quality of design is unimportant. Designing effective goods and
services is a highly creative and important activity. But it is just not the primary topic
of this text.

Then what does the subject of statistics have to do with the assurance of quality of
conformance? To answer this question, it is helpful to have clearly in mind a definition
of statistics.

Definition 2 Statistics is the study of how best to

1. collect data,
2. summarize or describe data, and

3. draw conclusions or inferences based on data,

all in a framework that recognizes the reality and omnipresence of variation.

If quality of conformance has to do with small variation and one wishes to assure
it, it will be necessary to measure, monitor, find sources of, and seek ways to reduce
variation. All of these require data (information on what is happening in a system
producing a product) and therefore the tool of statistics. The intellectual framework
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of the subject of statistics, emphasizing as it does the concept of variation, makes it a
natural for application in the world of quality assurance. We will see that both simple
and also somewhat more advanced methods of statistics have their uses in the quest to
produce quality goods and services.

Section 1.1 Exercises

1. "Quality" and "statistics" are related. Briefly explain this relationship, using the
definitions of both words.

2. Why is variation in manufactured parts undesirable? Why is variation undesir-
able in a service industry?

3. If a product or service is designed appropriately, does that alone guarantee qual-
ity? Why or why not?

4. If a product or service conforms to design specifications, does that alone guar-
antee quality? Why or why not?

1.2 Modern Quality Philosophy and Business Practice
Improvement Strategies

The global business environment is fiercely competitive. No company can afford to
"stand still" if it hopes to stay in business. Every healthy company has explicit strate-
gies for constantly improving its business processes and products.

Over the past several decades, there has been a blurring of distinctions between
"quality improvement" and "general business practice improvement." (Formerly, the
first of these was typically thought of as narrowly focused on characteristics of manu-
factured goods.) So there is now much overlap in emphases, language, and methodolo-
gies between the areas. The best strategies in both arenas must in the end boil down to
good methodical/scientific data-based problem solving.

In this section we first provide a discussion of some elements of modern quality
philosophy and an intellectual framework around which we have organized the topics
of this book (and that can serve as a road map for approaching quality improvement
projects). We then provide some additional discussion and critique of the modern gen-
eral business environment and its better known process improvement strategies.

1.2.1 Modern Quality Philosophy and a Six-Step Process-Oriented
Quality Assurance Cycle

Modern quality assurance methods and philosophy are focused not (primarily) on prod-
ucts, but rather on the processes used to produce them. The idea is that if one gets
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processes to work effectively, resulting products will automatically be good. On the
other hand, if one only focuses on screening out or reworking bad product, root causes
of quality problems are never discovered or eliminated. The importance of this process
orientation can be illustrated by an example.

Example 3 Process Improvement in a Clean Room. One of the authors of this text
once toured a "clean room" at a division of a large electronics manufacturer. Integrated
circuit (IC) chips critical to the production of the division’s most important product
were made in the room and it was the bottleneck of the whole production process for
that product. Initial experience with that (very expensive) facility included 14% yields
of good IC chips, with over 80 people working there trying to produce the precious
components.

Early efforts at quality assurance for these chips centered on final testing and sorting
good ones from bad. But it was soon clear that those efforts alone would not produce
yields adequate to supply the numbers of chips needed for the end product. So a project
team went to work on improving the production process. The team found that by care-
fully controlling the quality of some incoming raw materials, adjusting some process
variables, and making measurements on wafers of chips early in the process (aimed at
identifying and culling ones that would almost certainly in the end consist primarily
of bad chips) the process could be made much more efficient. At the time of the tour,
process improvement efforts had raised yields to 65% (effectively quadrupling produc-
tion capacity with no capital expenditure!), drastically reduced material waste, and
cut the staff necessary to run the facility from the original 80 to only eight technicians.
Process-oriented efforts are what enabled this success story. No amount of attention
to the yield of the process as it was originally running would have produced these
important results.

It is important to note that while process-oriented quality improvement efforts have
center stage, product-oriented methods still have their place. In the clean room of Ex-
ample 3, process improvement efforts in no way eliminated the need for end-of-the-line
testing of the IC chips. Occasional bad chips still needed to be identified and culled.
Product-oriented inspection was still necessary, but it alone was not sufficient to pro-
duce important quality improvements.

A second important emphasis of modern quality philosophy is its customer orien-
tation. This has two faces. First, the final or end user of a good or service is viewed as
being supremely important. Much effort is expended by modern corporations in seeing
that the "voice of the customer" (the will of the end user) is heard and carefully consid-
ered in all decisions involved in product design and production. There are many com-
munication and decision-making techniques (such as "quality function deployment")
that are used to see that this happens.

But the customer orientation in modern quality philosophy extends beyond concen-
tration on an end user. All workers are taught to view their efforts in terms of processes
that have both "vendors" from whom they receive input and "customers" to whom they
pass work. One’s most immediate customer need not be the end user of a company
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product. But it is still important to do one’s work in a way that those who handle one’s
personal "products" are able to do so without difficulties.

A third major emphasis in modern quality assurance is that of continual improve-
ment. What is state-of-art today will be woefully inadequate tomorrow. Consumers
are expecting (and getting!) ever more effective computers, cars, home entertainment
equipment, package delivery services, and communications options. Modern quality
philosophy says that this kind of improvement must and will continue. This is both a
statement of what "ought" to be, and a recognition that in a competitive world, if an
organization does not continually improve what it does and makes, it will not be long
before aggressive competition drives it from the marketplace.

This text presents a wide array of tools for quality assurance. But students do not
always immediately see where they might fit into a quality assurance/improvement
effort or how to begin a class project in the area. So, it is useful to present an outline for
approaching modern quality assurance that places the methods of this book into their
appropriate context. Table 1.1 on page 6 presents a six-step process-oriented quality
assurance cycle (that is the intellectual skeleton of this book) and the corresponding
technical tools we discuss.

A sensible first step in any quality improvement project is to attempt to thoroughly
understand the current and ideal configurations of the processes involved. This matter
of process mapping can be aided by very simple tools like the flowcharts and Ishikawa
diagrams discussed in Section 1.3.

Effective measurement is foundational to efforts to improve processes and prod-
ucts. If one cannot reliably measure important characteristics of what is being done
to produce a good or service, there is no way to tell whether design requirements are
being met and customer needs genuinely addressed. Chapter 2 introduces some basic
concepts of metrology and statistical methodology for quantifying and improving the
performance of measurement systems.

When adequate measurement systems are in place, one can begin to collect data on
process performance. But there are pitfalls to be avoided in this collection, and if data
are to be genuinely helpful in addressing quality assurance issues, they typically need
to be summarized and presented effectively. So Sections 1.4 and 1.5 contain discus-
sions of some elementary principles of quality assurance data collection and effective
presentation of such data.

Once one recognizes uniformity as essentially synonymous with quality of confor-
mance (and variation as synonymous with "unquality"), one wants processes to be
perfectly consistent in their output. But that is too much to hope for in the real world.
Variation is a fact of life. The most that one can expect is that a process be consistent
in its pattern of variation, that it be describable as physically stable. Control charts are
tools for monitoring processes and issuing warnings when there is evidence in process
data of physical instability. These essential tools of quality assurance are discussed in
Chapter 3.

Even those processes that can be called physically stable need not be adequate for
current or future needs. (Indeed modern quality philosophy views a/l processes as in-
adequate and in need of improvement!) So it is important to be able to characterize
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TABLE 1.1. A Six-Step Process-Oriented Quality Assurance Cycle (and Corresponding Tools)

Chapter 1. Introduction

Step

Tools

Attempt a logical analysis of how
a process works (or should work)
and where potential trouble spots,
sources of variation, and data
needs are located.

Flowcharts (§1.3)
Ishikawa/fishbone/cause-and-effect
diagrams (§1.3)

Formulate appropriate (customer-
oriented) measures of process
performance and develop
corresponding measurement
systems.

Basic concepts of measurement/
metrology (Ch. 2)

Statistical quantification of
measurement precision (Ch. 2)
Regression and calibration (Ch. 2)

Habitually collect and summarize
process data.

Simple quality assurance data
collection principles (§1.4)
Simple statistical graphics (§1.5)

Assess and work toward process
stability.

Control charts (Ch. 3)

Characterize current process and
product performance.

Statistical graphics for process
characterization (§4.1)

Measures of process capability and
performance and their estimation
(§4.2,§4.3)

Probabilistic tolerancing and
propagation of error (§4.4)
Estimation of variance components

(§4.5)

Work to improve those processes
that are unsatisfactory.

Design and analysis of experiments
(Ch. 5, Ch. 6)
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TABLE 1.2. Elements of TQM Emphasis
Customer focus
Process/system orientation
Continuous improvement
Self-assessment and benchmarking
Change to flat organizations "without barriers"
"Empowered" people/teams and employee involvement
Management (and others’) commitment (to TQM)
Appreciation/understanding of variability

NN R DD

in precise terms what a process is currently doing and to have tools for finding ways
of improving it. Chapter 4 of this text discusses a number of methods for quantifying
current process and product performance, while Chapters 5 and 6 deal with methods
of experimental design and analysis especially helpful in process improvement efforts.

The steps outlined in Table 1.1 are a useful framework for approaching most process-
related quality assurance projects. They are presented here not only as a road map for
this book, but also as a list of steps to follow for students wishing to get started on a
class project in process-oriented quality improvement.

1.2.2 The Modern Business Environment and General Business
Process Improvement

Intense global competition has fueled a search for tools to use in improving all aspects
of what modern companies do. At the same time, popular understanding of the realm
of "quality assurance" has broadened substantially in the past few decades. As a result,
distinctions between what is the improvement of general business practice and what
is process-oriented quality improvement have blurred. General business emphases and
programs like Total Quality Management, ISO 9000 certification, Malcolm Baldrige
Prize competitions, and Six Sigma programs have much in common with the kind of
quality philosophy just discussed.

TQM

Take for example, "TQM," an early instance of the broad business influence of modern
quality philosophy. The name Total Quality Management was meant to convey the no-
tion that in a world economy, successful organizations will manage the totality of what
they do with a view toward producing quality work. TQM was promoted as appropriate
in areas as diverse as manufacturing, education, and government. The matters listed in
Table 1.2 came up most frequently when TQM was discussed.

Items 1,2, and 3 in Table 1.2 are directly related to the emphases of modern qual-
ity assurance discussed above. The TQM process orientation in 2 is perhaps a bit
broader than the discussion of the previous subsection, as it sees an organization’s
many processes fitting together in a large system. (The billing process needs to mesh
with various production processes, which need to mesh with the product-development
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process, which needs to mesh with the sales process, and so on.) There is much plan-
ning and communication needed to see that these work together in harmony within a
single organization. But there is also recognition that other organizations, external sup-
pliers and customers, need to be seen as part of "the system." A company’s products
can be only as good as the raw materials with which it works. TQM thus emphasized
involving a broader and broader "superorganization" (our terminology) in process- and
system-improvement efforts.

In support of continual improvement, TQM proponents emphasized knowing what
the "best-in-class" practices are for a given business sector or activity. They promoted
benchmarking activities to find out how an organization’s techniques compare to the
best in the world. Where an organization was found to be behind, every effort was
to be made to quickly emulate the leader’s performance. (Where an organization’s
methodology is state of the art, opportunities for yet another quantum improvement
were to be considered.)

It was standard TQM doctrine that the approach could only be effective in orga-
nizations that are appropriately structured and properly unified in their acceptance of
the viewpoint. Hence, there was a strong emphasis in the movement on changing cor-
porate cultures and structures to enable this effectiveness. Proponents of TQM si-
multaneously emphasized the importance of involving all corporate citizens in TQM
activities, beginning with the highest levels of management, and at the same time re-
ducing the number of layers between the top and bottom of an organization, making it
more egalitarian. Cross-functional project teams composed of employees from various
levels of an organization (operating in consensus-building modes, with real authority
not only to suggest changes but to see that they were implemented, and drawing on
the various kinds of wisdom resident in the organization) were standard TQM fare.
One of the corporate evils most loudly condemned was the human tendency to create
"little empires" inside an organization that in fact compete with each other, rather than
cooperate in ways that are good for the organization as a whole.

In a dimension most closely related to the subject of statistics, the TQM movement
placed emphasis on understanding and appreciating the consequences of variability. In
fact, providing training in elementary statistics (including the basics of describing vari-
ation through numerical and graphical means, and often some basic Shewhart control
charting) was a typical early step in most TQM programs.

TQM had its big names like W.E. Deming, J.M. Juran, A.V. Feigenbaum, and P.
Crosby. There were also thousands of less famous individuals, who in some cases
provided guidance in implementing the ideas of more famous quality leaders, and in
others provided instruction in their own modifications of the systems of others. The
sets of terminology and action items promoted by this diverse set of individuals varied
consultant to consultant, in keeping with the need for them to have unique products to
sell.

Six Sigma

Fashions change and business interest in some of the more managerial emphases of
TQM have waned. But interest in business process improvement has not. One particu-
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larly popular and long-lived form of corporate improvement emphasis goes under the
name "Six Sigma." The name originated at Motorola Corporation in the late 1980’s.
Six Sigma programs at General Electric, AlliedSignal and Dow Chemical (among other
leading examples) have been widely touted as at least partially responsible for impor-
tant growth in profits and company stock values. So huge interest in Six Sigma pro-
grams persists.

The name "Six Sigma" is popularly used in at least three different ways. It refers to:

1. a goal for business process performance,
2. astrategy for achieving that performance for all of a company’s processes, and

3. an organizational, training and recognition program designed to support and im-
plement the strategy referred to in 2.

As a goal for process performance, the "Six Sigma" name has a connection to the nor-
mal distribution. If a (normal) process mean is set 60 inside specifications/requirements
(even should it inadvertently drift a bit, say by as much as 1.5¢0) the process produces
essentially no unacceptable results. As a formula for organizing and training to im-
plement universal process improvement, Six Sigma borrows from the culture of the
martial arts. Properly trained and effective individuals are designated as "black belts,"
"master black belts," and so on. These individuals with advanced training and demon-
strated skills lead company process improvement teams.

Here, our primary interest is in item 2 in the foregoing list. Most Six Sigma programs
use the acronym DMAIC and the corresponding steps

1. Define

2. Measure
3. Analyze
4. Improve

5. Control

as a framework for approaching process improvement. The Define step involves setting
the boundaries of a particular project, laying out the scope of what is to be addressed,
and bringing focus to a general "we need to work on X" beginning. The Measure step
requires finding appropriate responses to observe, identifying corresponding measure-
ment systems, and collecting initial process data. The Analyze step involves producing
data summaries and formal inferences adequate to make clear initial process perfor-
mance. After seeing how a process is operating, there comes an /mprovement effort.
Often this is guided by experimentation and additional data collected to see the effects
of implemented process changes. Further, there is typically an emphasis on variation
reduction (improvement in process consistency). Finally, the Six Sigma 5-step cycle
culminates in process Control. This means process watching/monitoring through the
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TABLE 1.3. DMAIC and Statistics
Element Statistical Topics

e Measurement concepts
e Data collection principles
Measure e Regression and linear calibration
e Modeling measurement error
o Inference in measurement precision studies
e Descriptive statistics
e Normal plotting and capability indices
o Statistical intervals and testing
e Confidence intervals and testing
e Regression analysis and response surface methods
e Probabilistic tolerancing
e Confidence intervals and testing
e Factorial and fractional factorial analysis
Control e Shewhart control charts

Analyze

Improve

routine collection of and attention to process data. The point is to be sure that im-
provements made persist over time. Like this book’s six step process oriented quality
assurance cycle in Table 1.1, the Six Sigma 5-step DMAIC cycle is full of places where
statistics is important. Table 1.3 shows where some standard statistical concepts and
methods fit into the DMAIC paradigm.

1.2.3 Some Caveats

This book is primarily about technical tools, not philosophy. Nevertheless, some com-
ments about proper context are in order before launching into the technical discussion.
It may at first seem hard to imagine anything unhappy issuing from an enthusiastic uni-
versal application of quality philosophy and process improvement methods. Professor
G. Box, for example, referred to TQM in such positive terms as "the democratization of
science." Your authors are generally supportive of the emphases of quality philosophy
and process improvement in the realm of commerce. But it is possible to lose perspec-
tive, and by applying them where they are not really appropriate, to create unintended
and harmful consequences.

Consider first the matter of "customer focus." To become completely absorbed with
what some customers want amounts to embracing them as the final arbiters of what is
to be done. And that is a basically amoral (or ultimately immoral) position. This point
holds in the realm of commerce, but is even more obvious when a customer-focus
paradigm is applied in areas other than business.

For example, it is laudable to try to make government or educational systems more
efficient. But these institutions deal in fundamentally moral arenas. We should want
governments to operate morally, whether or not that is currently in vogue with the ma-
jority of (customer) voters. People should want their children to go to schools where
serious content is taught, real academic achievement is required, and depth of char-
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acter and intellect are developed, whether or not it is a "feel-good" experience and
popular with the (customer) students, or satisfies the job-training desires of (customer)
business concerns. Ultimately, we should fear for a country whose people expect other
individuals and all public institutions to immediately gratify their most trivial whims
(as deserving customers). The whole of human existence is not economics and com-
merce. Big words and concepts like "self-sacrifice," "duty," "principle," "integrity," and
so on have little relevance in a "customer-driven" world. What "the customer" wants is
not always even consistent, let alone moral or wise.

Preoccupation with the analysis and improvement of processes and systems has al-
ready received criticism in business circles, as often taking on a life of its own and
becoming an end in itself, independent of the fundamental purposes of a company.
Rationality is an important part of the human standard equipment and it is only good
stewardship to be moderately organized about how things are done. But enough is
enough. The effort and volume of reporting connected with planning (and documenta-
tion of that planning) and auditing (what has been done in every conceivable matter)
has increased exponentially in the past few years in American business, government,
and academia. What is happening in many cases amounts to a monumental triumph of
form over substance. In a sane environment, smart and dedicated people will naturally
do reasonable things. Process improvement tools are sometimes helpful in thinking
through a problem. But slavish preoccupation with the details of how things are done
and endless generation of vision and mission statements, strategic plans, process analy-
ses, outcome assessments, and so forth can turn a relatively small task for one person
into a big one for a group, with an accompanying huge loss of productivity.

There are other aspects of emphases on the analysis of processes, continuous im-
provement, and the benchmarking notion that deserve mention. A preoccupation with
formal benchmarking has the natural tendency to produce homogenization and the
stifling of genuine creativity and innovation. When an organization invests a large ef-
fort in determining what others are doing, it is very hard to then turn around and say
"So be it. That’s not what we’re about. That doesn’t suit our strengths and interests.
We’ll go a different way." Instead, the natural tendency is to conform, to "make use"
of the carefully gathered data and strive to be like others. And frankly, the tools of
process-analysis applied in endless staff meetings are not the stuff of which first-order
innovations are born. Rather, those almost always come from really bright and moti-
vated people working hard on a problem individually and perhaps occasionally coming
together for free-form discussions of what they’ve been doing and what might be pos-
sible.

In the end, one has in the quality philosophy and process improvement emphases
introduced above a sensible set of concerns, provided they are used in limited ways, in
appropriate arenas, by ethical and thinking people.

Section 1.2 Exercises

1. A "process orientation" is one of the primary emphases of modern quality assur-
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ance. What is the rationale behind this?
2. How does a "customer focus" relate to "quality"?
3. What are motivations for a corporate "continuous improvement" emphasis?
4. Why is effective measurement a prerequisite to success in process improvement?

5. What tools are used for monitoring processes and issuing warnings of apparent
process instability?

6. If a process is stable or consistent, is it necessarily producing high quality goods
or services? Why or why not?

1.3 Logical Process Identification and Analysis

Often, simply comparing "what is" in terms of process structure to "what is supposed to
be" or to "what would make sense" is enough to identify opportunities for real improve-
ment. Particularly in service industry contexts, the mapping of a process and identifica-
tion of redundant and unnecessary steps can often lead very quickly to huge reductions
in cycle times and corresponding improvements in customer satisfaction. But even
in cases where how to make such easy improvements is not immediately obvious, a
process identification exercise is often invaluable in locating potential process trouble
spots, possibly important sources of process variation, and data collection needs.

The simple flowchart is one effective tool in process identification. Figure 1.1 is a
flowchart for a printing process similar to one prepared by students (Drake, Lach, and
Shadle) in a quality assurance course. The figure gives a high-level view of the work
flow in a particular shop. Nearly any one of the boxes on the chart could be expanded
to provide more detailed information about the printing process.

People have suggested many ways of increasing the amount of information pro-
vided by a flowchart. One possibility is the use of different shapes for the boxes on
the chart, according to some kind of classification scheme for the activities being por-
trayed. Figure 1.1 uses only three different shapes, one each for input/output, decisions,
and all else. In contrast, Kolarik’s Creating Quality: Concepts, Systems, Strategies and
Tools suggests the use of seven different symbols for flowcharting industrial processes
(corresponding to operations, transportation, delays, storage, source inspection, SPC
charting, and sorting inspection). Of course, many schemes are possible and poten-
tially useful in particular circumstances.

A second way to enhance the analytical value of the flowchart is to make good
use of both spatial dimensions on the chart. Typically, top-to-bottom corresponds at
least roughly to time order of activities. That leaves the possibility of using left-to-
right positioning to indicate some other important variable. For example, a flowchart
might be segmented into several "columns" left to right, each one indicating a different
physical location. Or the columns might indicate different departmental spheres of
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responsibility. Such positioning is an effective way of further organizing one’s thinking
about a process.

Another simple device for use in process identification/mapping activities is the
Ishikawa diagram (otherwise known as the fishbone diagram or cause-and-effect
diagram). Suppose one has a desired outcome or (conversely) a quality problem in
mind, and wishes to lay out the various possible contributors to the outcome or prob-
lem. It is often helpful to place these factors on a tree-like structure, where the further
one moves into the tree, the more specific or basic the contributor becomes. For ex-
ample, if one were interested in quality of an airline flight, general contributors might
include on-time performance, baggage handling, in-flight comfort, and so on. In-flight
comfort might be further amplified as involving seating, air quality, cabin service, etc.
Cabin service could be broken down into components like flight attendant availability
and behavior, food quality, entertainment, and so on.

Figure 1.2 is part of an Ishikawa diagram made by an industrial team analyzing an
injection molding process. Without this or some similar kind of organized method of
putting down the various contributors to the quality of the molded parts, nothing like an
exhaustive listing of potentially important factors would be possible. The cause-and-
effect diagram format provides an easily made and effective organization tool. It is an
especially helpful device in group brainstorming sessions, where people are offering
suggestions from many different perspectives in an unstructured way, and some kind
of organization needs to be provided "on the fly."

Man Machine Environment

Cure Time Shot Time N
Humidity

Temperatures

Clamp Pressure Cleanliness

Shift
Knowledge of
Standards

Pumps Air Flow

Mix Pressure Consistency

Holding Tanks

Trainin:
9 Temperature

> Molded Part

Dimensional Consistency
Flatness
Cleanliness

Mold Volume

Shelf Life

Alignment

Solvent

Number of

Cavities Pigment

Handling Water Content

Sealoff o
Reactivity

Location
Temperature

Tooling Materials

FIGURE 1.2. Cause-and-effect diagram for an injection molding process
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Section 1.3 Exercises

1. The top-to-bottom direction on a flowchart usually corresponds to what impor-
tant aspect of process operation?

2. How might a left-to-right dimension on a flowchart be employed to enhance
process understanding?

3. What are other names for an Ishikawa diagram?

4. Name two purposes of the Ishikawa diagram.

1.4 Elementary Principles of Quality Assurance Data
Collection

Good (practically useful) data do not collect themselves. Neither do they magically
appear on one’s desk, ready for analysis and lending insight into how to improve
processes. But it sometimes seems that little is said about data collection. And in prac-
tice, people sometimes lose track of the fact that no amount of clever analysis will make
up for lack of intrinsic information content in poorly collected data. Often, wisely and
purposefully collected data will carry such a clear message that they essentially "ana-
lyze themselves." So we make some early comments here about general considerations
in quality assurance data collection.

A first observation about the collection of quality assurance data is that if they are to
be at all helpful, there must be a consistent understanding of exactly how they are to be
collected. This involves having operational definitions for quantities to be observed
and personnel who have been well-trained in using the definitions and any relevant
measurement equipment. Consider, for example, the apparently fairly "simple" prob-
lem of measuring "the" diameters of (supposedly circular) steel rods. Simply handed
a gauge and told to measure diameters, one would not really know where to begin.
Should the diameter be measured at one identifiable end of the rods, in the center, or
where? Should the first diameter seen for each rod be recorded, or should perhaps the
rods be rolled in the gauge to get maximum diameters (for those cases where rods are
not perfectly circular in cross section)?

Or consider a case where one is to collect qualitative data on defects in molded
glass automobile windshields. Exactly what constitutes a "defect"? Surely a bubble
one inch in diameter directly in front of the driver’s head position is a defect. But
would a 10~*-inch diameter flaw in the same position be a problem? Or what about
a one-inch diameter flaw at the very edge of the windshield that would be completely
covered by trim molding? Should such a flaw be called a defect? Clearly, if useful data
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are to be collected in a situation like this, very careful operational definitions need to
be developed and personnel need to be taught to use them.

The importance of consistency of observation/measurement in quality assurance
data collection cannot be overemphasized. When, for example, different technicians
use measurement equipment in substantially different ways, what looks (in process
monitoring data) like a big process change can in fact be nothing more than a change
in the person doing the measurement. This is a matter we will consider from a more
technical perspective Chapter 2. But here we can make the qualitative point that if
operator-to-operator variation in measuring is of the same magnitude as important
physical effects, and multiple technicians are going to make measurements, operator
differences must be reduced through proper training and practice before there is reason
to put much faith in data that are collected.

A second important point in the collection of quality assurance data has to do with
when and where they are gathered. The closer in time and space that data are taken to
an operation whose performance they are supposed to portray, the better. The ideal here
is typically for well-trained workers actually doing the work or running the equipment
in question to do their own data collection. There are several reasons for this. For one
thing, it is such people who are in a position (after being trained in the interpretation
of process monitoring data and given the authority to act on them) to react quickly
and address any process ills suggested by the data that they collect. (Quick reaction to
process information can prevent process difficulties from affecting additional product
and producing unnecessary waste.) For another, it is simply a fact of life that data col-
lected far away in time and space from a process rarely lead to important insights into
"what is going on." Your authors have seen many student groups (against good advice)
take on company projects of the variety "Here are some data we’ve been collecting for
the past three years. Tell us what they mean." These essentially synthetic postmortem
examinations never produce anything helpful for the companies involved. Even if an
interesting pattern is found in such data, it is very rare that root causes can be identified
completely after the fact.

If one accepts that much of the most important quality assurance data collection will
be done by people whose primary job is not data collection but rather working in or
on a production process, a third general point comes into focus. That is that routine
data collection should be made as convenient as possible and where at all feasible, the
methods used should make the data immediately useful. These days, quality assur-
ance data are often entered as they are collected (sometimes quite automatically) into
computer systems that produce real-time displays intended to show those who gathered
them their most important features.

Whether automatic or pencil-and-paper data recording methods are used, thought
needs to go into the making of the forms employed and displays produced. There
should be no need for transfer to another form or medium before using the data. Figure
1.3 is a so-called two-variable "check sheet." Rather than making a list of (x,y) pairs
and later transferring them to a piece of graph paper or a computer program for making
a scatterplot, use of a pencil-and-paper form like this allows immediate display of any
relationship between = and y. (Note that the use of different symbols or even colors
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FIGURE 1.3. Check sheet for bottle mass and width of bottom piece for 18 PVC bottles

can carry information on variables besides = and y, like time order of observation.)
The point here is that if one’s goal is process improvement, data are for using, and
their collection and immediate display needs to be designed to be practically effective.

A fourth general principle of quality assurance data collection regards adequate doc-
umentation. One typically collects process data hoping to locate (and subsequently
eliminate) possible sources of variation. If this is to be done, care needs to be taken
to keep track of conditions associated with each data point. One needs to know not
only that a measured widget diameter was 1.503 mm, but also the machine on which
it was made, who was running the machine, what raw material lot was used, when it
was made, what gauge was used to do the measuring, who did the measuring, and so
on. Without such information there is, for example, no way to ever discover consistent
differences between two machines that contribute significantly to overall variation in
widget diameters. A sheet full of numbers without their histories is of little help in
quality assurance.

Several additional important general points about the collection of quality assurance
data have to do with the volume of information one is to handle. In the first place,
a small or moderate amount of carefully collected (and immediately used) data will
typically be worth much more than even a huge amount that is haphazardly collected
(or never used). One is almost always better off trying to learn about a process based
on a small data set collected with specific purposes and questions in mind than when
rummaging through a large "general purpose" database assembled without the benefit
of such focus.

Further, when trying to answer the question "How much data do I need to...?"
one needs at least a qualitative understanding (hopefully gained in a first course in
statistics) of what things govern the information content of a sample. For one thing
(even in cases where one is gathering data from a particular finite lot of objects rather
than from a process) it is the absolute (and not relative) size of a sample that governs
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its information content. So blanket rules like "Take a 10% sample" are not rational.
Rather than seeking to choose sample sizes in terms of some fraction of a universe of
interest, one should think instead in terms of 1) the size of the unavoidable background
variation and of 2) the size of an effect that is of practical importance. If there is no
variation at all in a quantity of interest, a sample of size n = 1 will characterize it
completely! On the other hand, if substantial variation is inevitable and small overall
changes are of practical importance, huge sample sizes will be needed to illuminate
important process behavior.

A final general observation is that one must take careful account of human nature,
psychology, and politics when assigning data collection tasks. If one wants useful
information, he or she had better see that those who are going to collect data are con-
vinced that doing so will genuinely aid (and not threaten) them, and that accuracy is
more desirable than "good numbers" or "favorable results." People who have seen data
collected by themselves or colleagues used in ways that they perceive as harmful (for
instance, identifying one of their colleagues as a candidate for termination) will simply
not cooperate. Nor will people who see nothing coming of their honest efforts at data
collection. People who are to collect data need to believe that these can help them do a
better job and help their organization be successful.

Section 1.4 Exercises

1. Why is it more desirable to have data that provide a true picture of process be-
havior than to obtain "good numbers" or "favorable results"?

2. What personnel issues can almost surely guarantee that a data collection effort
will ultimately produce nothing useful.?

3. Why is it important to have agreed upon operational definitions for characteris-
tics of interest before beginning data collection?

4. Making real use of data collected in the past by unnamed others can be next to
impossible Why?

5. How can the problem alluded to in question 4 be avoided?

6. A checksheet is a simple but informative tool. How many variables of potential
interest can a form like this portray?

7. What is another virtue of a well-designed checksheet (besides that alluded to in
question 6)?

8. Is a large volume of data necessarily more informative than a moderate amount?
Explain.
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1.5 Simple Statistical Graphics and Quality Assurance

The old saying "a picture is worth a thousand words" is especially true in the realm
of statistical quality assurance. Simple graphical devices that have the potential to be
applied effectively by essentially all workers have a huge potential impact. In this sec-
tion, the usefulness of simple histograms, Pareto charts, scatterplots, and run charts in
quality assurance efforts is discussed. This is done with the hope that readers will see
the value of routinely using these simple devices as the important data organizing and
communication tools that they are.

Essentially every elementary statistics book ever written has a discussion of the mak-
ing of a histogram from a sample of measurements. Most even provide some termi-
nology for describing various histogram shapes. That background will not be repeated
here. Instead we will concentrate on the interpretation of patterns sometimes seen on
histograms in quality assurance contexts, and on how they can be of use in quality
improvement efforts.

Figure 1.4 is a bimodal histogram of widget diameters.

] HHHHHHH

FIGURE 1.4. A bimodal histogram

Observing that the histogram has two distinct "humps" is not in and of itself particu-
larly helpful. But asking the question "Why is the data set bimodal?" begins to be more
to the point. Bimodality (or multimodality) in a quality assurance data set is a strong
hint that there are two (or more) effectively different versions of something at work
in a process. Bimodality might be produced by two different workers doing the same
job in measurably different ways, two parallel machines that are adjusted somewhat
differently, and so on. The systematic differences between such versions of the same
process element produce variation that often can and should be eliminated, thereby im-
proving quality. Viewing a plot like Figure 1.4, one can hope to identify and eliminate
the physical source of the bimodality and effectively be able to "slide the two humps
together" so that they coincide, thereby greatly reducing the overall variation.

The modern trend toward reducing the size of supplier bases and even "single sourc-
ing" has its origin in the kind of phenomenon pictured in Figure 1.4. Different suppliers
of'a good or service will inevitably do some things slightly differently. As a result, what
they supply will inevitably differ in systematic ways. Reducing a company’s number of
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vendors then has two effects. Variation in the products that it makes from components
or raw materials supplied by others is reduced and the costs (in terms of lost time and
waste) often associated with switchovers between different material sources are also
reduced.

Other shapes on histograms can also give strong clues about what is going on in a
process (and help guide quality improvement efforts). For example, sorting operations
often produce distinctive truncated shapes. Figure 1.5 shows two different histograms
for the net contents of some containers of a liquid. The first portrays a distribution that
is almost certainly generated by culling those containers (filled by an imprecise filling
process) that are below label contents. The second looks as if it might be generated
by a very precise filling process aimed only slightly above the labeled contents. The
histograms give both hints at how the guaranteed minimum contents are achieved in
the two cases, and also a pictorial representation of the waste produced by imprecision
in filling. A manufacturer supplying a distribution of net contents like that in the first
histogram must both deal with the rework necessitated by the part of the first distrib-
ution that has been "cut off" and also suffer the "give away cost" associated with the
fact that much of the truncated distribution is quite a bit above the label value.

Figure 1.6 is a histogram for a very interesting set of data from Engineering Statis-
tics and Quality Control by I.W. Burr. The very strange shape of the data set almost
certainly also arose from a sorting operation. But in this case, it appears that the cen-
ter part of the distribution is missing. In all probability, one large production run was
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made to satisfy several orders for parts of the same type. Then a sorting operation
graded those parts into classes depending upon how close actual measurements were
to nominal. Customers placing orders with tight specifications probably got (perhaps
at a premium price) parts from the center of the original distribution, while others with
looser specifications likely received shipments with distributions like the one in Figure
1.6.

Marking engineering specifications on a histogram is a very effective way of com-
municating to even very nonquantitative people what is needed in the way of process
improvements. Figure 1.7 on page 22 shows a series of three histograms with specifi-
cations for a part dimension marked on them. In the first of those three histograms, the
production process seems quite "capable" of meeting specifications for the dimension
in question (in the sense of having adequate intrinsic precision), but clearly needs to be
"reaimed" so that the mean measurement is lower. The second histogram portrays the
output of a process that is properly aimed, but incapable of meeting specifications. The
intrinsic precision is not good enough to fit the distribution between the engineering
specifications. The third histogram represents data from a process that is both properly
aimed and completely capable of meeting specifications.

Another kind of bar chart that is quite popular in quality assurance contexts is the so-
called Pareto diagram. This tool is especially useful as a political device for getting
people to prioritize their efforts and focus first on the biggest quality problems an
organization faces. One makes a bar chart where problems are listed in decreasing order
of frequency, dollar impact, or some other measure of importance. Often, a broken
line graph indicating the cumulative importance of the various problem categories is
also added to the display. Figure 1.8 on page 22 shows a Pareto diagram of assembly
problems identified on a production run of 100 pneumatic hand tools. By the measure
of frequency of occurrence, the most important quality problem to address is that of
leaks.

The name "Pareto" is that of a mathematician who studied wealth distributions and
concluded that most of the money in Italy belonged to a relatively few people. His
name has become associated with the so-called "Pareto principle" or "80-20 principle."
This states that "most" of anything (like quality problems or hot dog consumption)
is traceable to a relatively few sources (like root causes of quality problems or hot
dog eaters). Conventional wisdom in modern quality assurance is that attention to the
relatively few major causes of problems will result in huge gains in efficiency and

Capability of a
Process to Meet
Specifications
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quality.

Discovering relationships between variables is often important in discovering means
of process improvement. An elementary but most important start in looking for such
relationships is often the making of simple scatterplots (plots of (x, y) pairs). Consider
Figure 1.9. This consists of two scatterplots of the numbers of occurrences of two
different quality problems in lots of widgets. The stories told by the two scatterplots
are quite different. In the first, there seems to be a positive correlation between the
numbers of problems of the two types, while in the second no such relationship is
evident. The first scatterplot suggests that a single root cause may be responsible for
both types of problems and that in looking for it, one can limit attention to causes that
could possibly produce both effects. The second scatterplot suggests that two different
causes are at work and one will need to look for them separately.
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FIGURE 1.9. Two scatterplots of numbers of occurrences of manufacturing defects

It is true, of course, that one can use numerical measures (like the sample correlation)
to investigate the extent to which two variables are related. But a simple scatterplot can
be understood and used even by people with little quantitative background. Besides,
there are things that can be seen in plots (like, for example, nonlinear relationships)
that will be missed by looking only at numerical summary measures.

The habit of plotting data is one of the best habits a quality engineer can develop.
And one of the most important ways of plotting is in a scatterplot against time order
of observation. Where there is only a single measurement associated with each time
period and one connects consecutive plotted points with line segments, it is common
to call the resulting plot a run chart. Figure 1.10 on page 24 is a run chart of some
data studied by a student project group (Williams and Markowski). Pictured are 30
consecutive outer diameters of metal parts turned on a lathe.

Investigation of the somewhat strange pattern on the plot led to a better understand-
ing of how the turning process worked (and could have led to appropriate compen-
sations to eliminate much of the variation in diameters seen on the plot). The first
15 diameters generally decrease with time, then there is a big jump in diameter, af-
ter which diameters again decrease. Checking production records, the students found
that the lathe in question had been shut down and allowed to cool off between parts
15 and 16. The pattern seen on the plot is likely related to the dynamics of the lathe
hydraulics. When cold, the hydraulics did not push the cutting tool into the workpiece
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FIGURE 1.10. A run chart for 30 consecutive outer diameters turned on a lathe

as effectively as when they were warm. Hence the diameters tended to decrease as the
lathe warmed up. (The data collection in question did not cover a long enough period
to see the effects of tool wear, which would have tended to increase part diameters as
the length of the cutting tool decreased.) If one knows that this kind of phenomenon
exists, it is possible to compensate for it (and increase part uniformity) by setting ar-
tificial target diameters for parts made during a warm-up period below those for parts
made after the lathe is warmed up.

Section 1.5 Exercises
1. In what ways can a simple histogram help in evaluating process performance?
2. What aspect(s) of process performance can not be pictured by a histogram?

3. The run chart is a graphical representation of process data that is not "static";
it gives more than a snapshot of process performance. What about the run chart
makes it an improvement over the histogram for monitoring a process?

4. Consider Figure 1.7. The bottom histogram appears "best" with respect to being
completely within specification limits and reasonably mound-shaped. Describe
run charts for two different scenarios that could have produced this "best" his-
togram and yet reflect undesirable situations, i.e., an unstable process.

5. What is the main use of a Pareto diagram?

6. What is the rationale behind the use of a Pareto diagram?
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1.6 Chapter Summary

Modern quality assurance is concerned with quality of design and quality of confor-
mance. Statistical methods, dealing as they do with data and variation, are essential
tools for producing quality of conformance. Most of the tools presented in this text
are useful in the process-oriented approach to assuring quality of conformance that is
outlined in Table 1.1. After providing general background on modern quality and busi-
ness process improvement emphases, this chapter has introduced some of simple tools.
Section 1.3 considered elementary tools for use in process mapping. Important quali-
tative principles of engineering and quality assurance data collection were presented in
Section 1.4. And Section 1.5 demonstrated how effective simple methods of statistical
graphics can be when wisely used in quality improvement efforts.

1.7 Chapter 1 Exercises

1. An engineer observes several values for a variable of interest. The average of
these measurements is exactly what the engineer desires for any single response.
Why should the engineer be concerned about variability in this context? How
does the engineer’s concern relate to product quality?

2. What is the difference between quality of conformance and quality of design?

3. Suppose 100% of all brake systems produced by an auto manufacturer have been
inspected and meet safety standards. What type of quality is this? Why?

4. Describe how a production process might be characterized as exhibiting quality
of conformance but potential customers are wisely purchasing a competitor’s
version of the product.

5. In Example 3, initial experience at an electronics manufacturing facility involved
14% yields of good IC chips.

a) Explain how this number (14%) was probably obtained.
(a) Exp (14%) was p y

(b) Describe how the three parts of Definition 2 are involved in your answer
for part (a).

6. The improved yield discussed in Example 3 came as a result of improving the
chip production process. Material waste and the staff necessary to run the fa-
cility were reduced. What motivation do engineers have to improve processes
if improvement might lead to their own layoff? Discuss the issues this matter
raises.
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. Suppose an engineer must choose among vendors 1, 2, and 3 to supply tubing

for a new product. Vendor 1 charges $20 per tube, vendor 2 charges $19 per
tube, and vendor 3 charges $18 per tube. Vendor 1 has implemented the Six-
Step Process-Oriented Quality Assurance Cycle (and corresponding tools) in
Table 1.1. As a result, only 1 tube in a million from vendor 1 is nonconforming.
Vendor 2 has just begun implementation of the six steps and is producing 10%
nonconforming tubes. Vendor 3 does not apply quality assurance methodology
and has no idea what percent of its tubing is nonconforming. What is the price
per conforming item for vendors 1, 2, and 3?

. The following matrix (suggested by Dr. Brian Joiner) can be used to classify pro-

duction outcomes. Good result of production means there is a large proportion
of product meeting engineering specifications. (Bad result of production means
there is a low proportion of product meeting requirements.) Good method of
production means that quality variables are consistently near their targets. (Bad
method of production means there is considerable variability about target val-
ues.)

Result of Production

Good Bad
. Good 1 2
Method of Production Bad 3 7

Describe product characteristics for items produced under circumstances corre-
sponding to each of cells 1, 2, 3, and 4.

. Plastic Packaging. Hsiao, Linse, and McKay investigated the production of

some plastic bags, specifically hole positions on the bags. Production of these
bags is done on a model 308 poly bag machine using preprinted, prefolded plas-
tic film delivered on a roll. The plastic film is drawn through a series of rollers
to punches that make holes in the bag lips. An electronic eye scans the film after
it is punched and triggers heated sills which form the seals on the bags. A con-
veyor transports the bags to a machine operator who counts and puts them onto
wickets (by placing the holes of the bags over 6-inch metal rods) and then places
them in boxes. Discuss how this process and its output might variously fall into
the cells 1, 2, 3, or 4 in problem 8.

10. Consider again the Plastic Packaging case of problem 9.

(a) Who is the immediate customer of the hole-punching process?

(b) Is it possible for the hole-punching process to produce hole locations with
small variation and yet still produce a poor quality bag? Why or why not?

(c) After observing that 100 out of 100 sampled bags fit over the two 6-inch
wickets, an analyst might conclude that the hole-punching process needs
no improvement. Is this thinking correct? Why or why not?
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(d) Hsiao, Linse, and McKay used statistical methodologies consistent with
steps 1, 2, 3, and 4 of the Six-Step Process-Oriented Quality Assurance
Cycle and detected unacceptable variation in hole location. Would it be
advisable to pursue step 6 in Table 1.1 in an attempt to improve the hole-
punching process? Why or why not?

Hose Skiving. Siegler, Heches, Hoppenworth, and Wilson applied the Six-Step
Process-Oriented Quality Assurance Cycle to a skiving operation. Skiving con-
sists of taking rubber off the ends of steel-reinforced hydraulic hose so that cou-
plings may be placed on these ends. A crimping machine tightens the couplings
onto the hose. If the skived length or diameter are not as designed, the crimping
process can produce an unacceptable finished hose.

(a) What two variables did the investigators identify as directly related to prod-
uct quality?

(b) Which step in the Six-Step Cycle was probably associated with identifying
these two variables as important?

(¢) The analysts applied steps 3 and 4 of the Six-Step Cycle and found that for
a particular production line, aim and variation in skive length were satis-
factory. (Unfortunately, outside diameter data were not available, so study
of the outside diameter variable was not possible.) In keeping with the doc-
trine of continual improvement, steps 5 and 6 were considered. Was this a
good idea? Why or why not?

Engineers at an aircraft engine manufacturer have identified several "givens"
regarding cost of quality problems. Two of these are "Making it right the first
time is always cheaper than doing it over" and "Fixing a problem at the source is
always cheaper than fixing it later." Describe how the Six-Step Process-Oriented
Quality Assurance Cycle in Table 1.1 relates to the two givens.

A common rule of thumb for the cost of quality problems is the "rule of 10."
This rule can be summarized as follows (in terms of the dollar cost required to
fix a nonconforming item):

Design Production _ Assembly /Test Field
$1 $10 $100 $1000

Cost history of nonconforming parts for an aircraft engine manufacturer has been
roughly as follows:
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Nonconforming Item Found Cost to Find and Fix
At production testing $200
At final inspection $260
At company rotor assembly $20,000
At company assembly teardown $60, 000
In customer’s airplane $200, 000
At unscheduled engine removal $1, 200,00

(a) For each step following "at production testing," calculate the ratios of "costs
to find and fix" to "cost to find and fix at production testing."

(b) How do the ratios in (a) compare to the rule of 10 summarized in the four-
box schematic?

(c) What does your response to (b) suggest about implementation of step 3 of
the Six-Step Cycle of Table 1.1?

The following quotes are representative of some engineering attitudes toward
quality assurance efforts. "Quality control is just a police function.”" "The quality
control people are the ones who come in and shoot the wounded." "Our machin-
ists will do what’s easiest for them, so we’ll start out with really tight engineering
specifications on that part dimension."

(a) How might an engineer develop such attitudes?

(b) How can quality engineers personally avoid these attitudes and work to
change them in others?

Brush Ferrules. Adams, Harrington, Heemstra, and Snyder did a quality im-
provement project concerned with the manufacture of some paint brushes. Bris-
tle fibers are attached to a brush handle with a so-called "ferrule." If the ferrule
is too thin, bristles fall out. If the ferrule is too thick, brush handles are dam-
aged and can fall apart. At the beginning of the study there was some evidence
that bristle fibers were falling out. "Crank position," "slider position," and "dwell
time" are three production process variables that may affect ferrule thickness.

(a) What feature should analysts measure on each brush in this kind of prob-
lem?

(b) Suggest how an engineer might evaluate whether the quality problem is
due to poor conformance or to poor design.

(c) From the limited information given above, what seems to have motivated
the investigation?

(d) The students considered plotting the variable identified in (a) versus the
time at which the corresponding brush was produced. One of the analysts
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suggested first sorting the brushes according to the different crank posi-
tion, slider position, and dwell time combinations, then plotting the vari-
able chosen in (a) versus time of production on separate graphs. The others
argued that no insight into the problem would be gained by having separate
graphs for each combination. What point of view do you support? Defend
your answer.

Window Frames. Christenson, Hutchinson, Mechem, and Theis worked with
a manufacturing engineering department in an effort to identify cause(s) of vari-
ation and possibly reduce the amount of offset in window frame corner joints.
(Excessive offset had previously been identified as the most frequently reported
type of window nonconformity.)

(a) How might the company have come to know that excessive offset in corner
joints was a problem of prime importance?

(b) What step in the Six-Step Cycle corresponds to your answer in (a)?

(¢) The team considered the following six categories of factors potentially con-
tributing to unacceptable offset: 1) measurements, 2) materials, 3) workers,
4) environment, 5) methods, 6) machines. Suggest at least one possible
cause in each of these categories.

(d) Which step in the Six-Step Cycle of Table 1.1 is most clearly related to the
kind of categorization of factors alluded to in part (c)?

Machined Steel Slugs. Harris, Murray, and Spear worked with a plant that
manufactures steel slugs used to seal a hole in a certain type of casting. The
group’s first task was to develop and write up a standard operating procedure
for data collection on several critical dimensions of these slugs. The slugs are
turned on a South Bend Turrett Lathe using 1018 cold rolled steel bar stock.
The entire manufacturing process is automated by means of a CNC (computer
numerical control) program and only requires an operator to reload the lathe with
new bar stock. The group attempted to learn about the CNC lathe program. It
discovered it was possible for the operator to change the finished part dimensions
by adjusting the offset on the lathe.

(a) What benefit is there to having a standard data collection procedure in this
context?

(b) Why was it important for the group to learn about the CNC lathe program?
Which step of the Six-Step Cycle is directly affected by their knowledge
of the lathe program?

Cut-Off Machine. Wade, Keller, Sharp, and Takes studied factors affecting
tool life for carbide cutting inserts. The group discovered that "feed rate" and
"stop delay" were two factors known by production staff to affect tool life. Once
a tool wears a prescribed amount, the tool life is over.
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(a) What steps might the group have taken to independently verify that feed
rate and stop delay impact tool life for carbide cutting inserts?

(b) What is the important response variable in this problem?
(c) How would you suggest that the variable in (b) be measured?

(d) Suggest why increased tool life might be attractive to customers using the
inserts.

Potentiometers. Chamdani, Davis, and Kusumaptra worked with personnel
from a potentiometer assembly plant to improve the quality of finished trim-
ming potentiometers. The fourteen wire springs fastened to the potentiometer
rotor assemblies (produced elsewhere) were causing short circuits and open cir-
cuits in the final potentiometers. Engineers suspected that the primary cause of
the problems was a lack of symmetry on metal strips holding these springs. Of
concern was the distance from one edge of the metal strip to the first spring and
the corresponding distance from the last spring to the other end of the strip.

(a) Suggest how the assembly plant might have discovered the short and open
circuits.

(b) Suggest how the plant producing the rotor assemblies perhaps became
aware of the short and open circuits (the production plant doesn’t test every
rotor assembly). (Hint: Think about one of the three important emphases of
modern quality philosophy. How does your response relate to the Six-Step
Cycle in Table 1.1?)

(c) If "lack of symmetry" is the cause of quality problems, what should hence-
forth be recorded for each metal strip inspected?

(d) Based on your answer to (c), what measurement value corresponds to per-
fect symmetry?

"Empowerment" is a term frequently heard in today’s organizations in relation
to process improvement. Empowerment concerns moving decision-making au-
thority in an organization down to the lowest appropriate levels. Unfortunately,
the concept is sometimes employed only until a mistake is made, then a severe
reprimand occurs and/or the decision-making privilege is moved back up to a
higher level.

(a) Name two things that are lacking in an approach to quality improvement
like that described above. (Hint: Consider decision-making resulting from
empowerment as a process.)

(b) How does real, effective (and consistent) empowerment logically fit in the
Six-Step Quality Improvement Cycle?

Lab Carbon Blank. The following data were provided by L. A. Currie of the
National Institute of Standards and Technology (NIST). The data are preliminary
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and exploratory, but real. The unit of measure is "instrument response" and is
approximately equal to one microgram of carbon. (That is, 5.18 corresponds
to 5.18 instrument units of carbon and about 5.18 micrograms of carbon.) The
responses come from consecutive tests on "blank" material generated in the lab.

Test Number 1 2 3 4 5 6 7
Measured Carbon 5.18 1.91 6.66 1.12 279 391 287

Test Number 8 9 10 11 12 13 14
Measured Carbon 4.72 3.68 3.54 2.15 282 4.38 1.64

(a) Plot measured carbon content versus order of measurement.

(b) The data are ordered in time, but (as it turns out) time intervals between
measurements were not equal (an appropriate plan for data collection was
not necessarily in place). What feature of the plot in (a) might still have
meaning?

(c) If one treats the measurement of lab-generated blank material as repeat
measurements of a single blank, what does a trend on a plot like that in
(a) suggest regarding variation of the measurement process? (Assume the
plot is made from data equally spaced in time and collected by a single
individual.)

(d) Make a frequency histogram of these data with categories 1.00-1.99, 2.00—
2.99, etc.

(e) What could be missed if only a histogram was made (and one didn’t make
a plot like that in (a)) for data like these?
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CHAPTER 2

Statistics and Measurement

Good measurement is fundamental to quality assurance. That which cannot be mea-
sured cannot be guaranteed to a customer. If Brinell hardness 220 is needed for certain
castings and one has no means of reliably measuring hardness, there is no way to pro-
vide the castings. So most successful companies devote substantial resources to the
development and maintenance of good measurement systems. In this chapter, we con-
sider some basic concepts of measurement and discuss a variety of statistical tools
aimed at quantifying and improving the effectiveness of measurement.

The chapter begins with an exposition of basic concepts and introduction to proba-
bility modeling of measurement error. Then elementary one- and two-sample statistical
methods are applied to measurement problems in Section 2.2. Section 2.3 considers
how slightly more complex statistical methods can be used to quantify the importance
of sources of variability in measurement. Then Section 2.4 discusses studies conducted
to evaluate the sizes of unavoidable measurement variation and variation in measure-
ment chargeable to consistent differences between how operators use a measurement
system. Section 2.6 considers how measurement precision effects one’s ability to de-
tect differences between process conditions. Finally, the chapter concludes with a brief
section on contexts where "measurements" are go/no-go calls on individual items.

2.1 Basic Concepts in Metrology and Probability Mod-
eling of Measurement

Metrology is the science of measurement. Measurement of many physical quantities
(like lengths from inches to miles and weights from ounces to tons) is so commonplace

This is page 33
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FIGURE 2.1. Brinell hardness measurements made on three different machines

that we think little about basic issues involved in metrology. But often engineers are
forced by circumstances to leave the world of off-the-shelf measurement technology
and devise their own instruments. And frequently because of externally imposed qual-
ity requirements for a product, one must ask "Can we even measure that?" Then the
fundamental issues of validity, precision, and accuracy come into focus.

Definition 4 4 measurement or measuring method is said to be valid if it usefully or
appropriately represents the feature of the measured object or phenomenon that is of
interest.

Definition 5 4 measurement system is said to be precise if it produces small variation
in repeated measurement of the same object or phenomenon.

Definition 6 4 measurement system is said to be accurate (or sometimes unbiased) if
on average it produces the true or correct values of quantities of interest.

Validity is the first concern when developing a measurement method. Without it,
there is no point in proceeding to consider precision or accuracy. The issue is whether
a method of measurement will faithfully portray the quantity of interest. When devel-
oping a new pH meter, one wants a device that will react to changes in acidity, not
to changes in temperature of the solution being tested or to changes in the amount of
light incident on the container holding the solution. When looking for a measure of
customer satisfaction with a new model of automobile, one needs to consider those
things that are important to customers. (For example, number of warranty service calls
per vehicle is probably a more valid measure of customer satisfaction or aggravation
with a new car than warranty dollars spent per vehicle by the manufacturer.)

Precision of measurement has to do with getting similar values every time a partic-
ular measurement is done. A bathroom scale that can produce any number between
1501b and 160 Ib when one gets on it repeatedly is really not very useful. After estab-
lishing that a measurement system produces valid measurements, consistency of those
measurements is needed. Figure 2.1 portrays some hardness measurements made by
a group of students (Blad, Sobotka, and Zaug) on a single metal specimen with three
different hardness testers. The figure shows that the Dial Rockwell tester produced the
most consistent results and would therefore be termed the most precise.
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Precision is largely an intrinsic property of a measurement method or device. There
is not really any way to "adjust" for poor precision or to remedy it except to 1) overhaul
or replace measurement technology or to 2) average multiple measurements. In this lat-
ter regard, the reader should be familiar with the fact from elementary statistics that if
Y1, Y2, - ., Yn can be thought of as independent measurements of the same quantity,
each with some mean p and standard deviation o, then the sample mean, y, has ex-
pected or average value y and standard deviation o /1/n. So people sometimes rely on
multiple measurements and averaging to reduce an unacceptable precision of individ-
ual measurement (quantified by o) to an acceptable precision of average measurement
(quantified by o/+/n).

But even validity and precision together don’t tell the whole story regarding the
usefulness of real-world measurements. This can be illustrated by again considering
Figure 2.1. The Dial Rockwell tester is apparently the most precise of the three testers.
But it is not obvious from the figure what the truth is about "the" real Brinell hard-
ness of the specimen. That is, the issue of accuracy remains. Whether any of the three
testers produces essentially the "right" hardness value on average is not clear. In order
to assess that, one needs to reference the testers to an accepted standard of hardness
measurement.

The task of comparing a measurement method or device to a standard one and,
if necessary, working out conversions that will allow the method to produce "cor-
rect" (converted) values on average is called calibration. In the United States, the
National Institute of Standards and Technology (NIST) is responsible for maintaining
and disseminating consistent standards for calibrating measurement equipment. One
could imagine (if the problem were important enough) sending the students’ specimen
to NIST for an authoritative hardness evaluation and using the result to calibrate the
testers represented in Figure 2.1. Or more likely, one might test some other specimens
supplied by NIST as having known hardnesses, and use those to assess the accuracy of
the testers in question (and guide any recalibration that might be needed).

An analogy that is sometimes helpful in remembering the difference between ac-
curacy and precision of measurement is that of target shooting. Accuracy in target
shooting has to do with producing a pattern centered on the bull’s eye (the ideal). Pre-
cision has to do with producing a tight pattern (consistency). Figure 2.2 on page 36
illustrates four possibilities for accuracy and precision in target shooting.

Probability theory provides a helpful way to describe measurement error/variation.
If a fixed quantity z called the measurand is to be measured with error (as all real-
world quantities are) one might represent what is actually observed as

y=x+e¢€ 2.1

where € is a random variable, say with mean ¢ and standard deviation o,easurement-
Model (2.1) says that the mean of what is observed is

Py =T +3. (2.2)

If § = 0, the measurement of x is accurate or unbiased. If ¢ is not 0, it is called the
measurement bias. The standard deviation of y is (for fixed x) the standard devia-
tion of €, Teasurement- SO Tmeasurement quantifies measurement precision in model
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FIGURE 2.2. Measurement/target-shooting analogy
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FIGURE 2.3. The distribution of a measurment y of a quantity = where measurment bias is §
and standard deviation of measurment is & measurement

(2.1). Figure 2.3 pictures the probability distribution of y and the elements x, J, and
O measurement -

Ideally, § is O (and it is the work of calibration to attempt to make it 0). At a mini-
mum, measurement devices are designed to have a linearity property. This means that
over the range of measurands a device will normally be used to evaluate, if its bias is
not 0, it is at least constant (i.e.  does not depend upon ). This is illustrated in Figure
2.4 (where we assume that the vertical and horizontal scales are the same).

Thinking in terms of model (2.1) is especially helpful when the measurand z itself
is subject to variation. For instance, when parts produced on a machine have varying
diameters z, one might think of model (2.1) as applying separately to each individual
part diameter. But then in view of the reality of manufacturing variation, it makes
sense to think of diameters as random, say with mean f,, and standard deviation o,
independent of the measurement errors. This combination of assumptions then implies
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FIGURE 2.4. Measuement device "linearity" is bias constant in the measurand

(for a linear device) that the mean of what is observed is

y =ty + 0 (23)

and the standard deviation of what is observed is

oy =1/02+ o2 2.4)

measurement *

A nonzero J is still a measurement bias, but now observed variation across parts is
seen to include one component due to variation in x and another due to measurement
error. The relationships (2.3) and (2.4) between the distributions of measurement error
(¢) and item-to-item variation in the measurand (x) and the distribution of the observed
measurements (y) are pictured in Figure 2.5.

measurement

[ 2 2
O-y = O-x + O-measuremenl

0 ¢ My fy = +6

FIGURE 2.5. Random measurement error (maroon) and part variation (maroon) combine to
produce observed variation (black)

Left-to-right on Figure 2.5, the two distributions in maroon represent measurement
error (with bias § > 0) and measurand variation, that combine to produce variation in
y represented by the distribution in black. It is the middle (maroon) distribution of z
that is of fundamental interest and the figure indicates that measurement error will both
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tend to shift location of that distribution and flatten it in the creation of the distribution
of y. It is only this last distribution (the black one) that can be observed directly, and
only when both § and o easurement are negligible (close to 0) are the distributions of
x and y essentially the same.

Observe that equation (2.4) implies that

— 2
Ox = 0-'52/ ~ Omeasurement *
This suggests a way of estimating o, alone. If one has (single) measurements y for
several parts that produce a sample standard deviation s, and several measurements
on a single part that produce a sample standard deviation s, then a plausible estimator
of o, is

0, = 4/max (0, 52— 52) . (2.5)

In the next sections, we will explore the use of reasoning like this, formulas like (2.5),
and the application of elementary confidence interval methods to quantify various as-
pects of measurement precision and bias.

Section 2.1 Exercises

1. Ina calibration study one compares outputs of a measurement device to "known"
or "standard" values. What purpose does this serve?

2. Pellet Densification. Crocfer, Downey, Rixner, and Thomas studied the densifi-
cation of NdyOg. Pellets of this material were fired at 1400°C for various lengths
of time and the resulting densities measured (in g/cc). In this context, what are
the measurand (), y, €, and §?

3. Suppose that in the context of problem 2, five pellets were fired and their densi-
ties were each measured using a single device. Further, assume the measurement
device has constant bias. How many measurands (x’s), y’s, €’s, and &’s are there
in this setting?

4. In the study of problem 2, the purpose was to evaluate the effect of firing on
pellet density. Each of the pellets fired had different original densities (that were
not recorded). Does the measurement protocol described in problem 2 provide
data that track what is of primary interest, i.e. does it produce a valid measure of
firing effect? What additional data should have been collected? Why?

5. In the context of problem 2, the density of a single pellet was repeatedly mea-
sured five times using a single device. How many measurands (x’s), y’s, €’s, and
0’s are there in this setting?
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6. In the context of problem 2 suppose that the standard deviation of densities from
repeated measurements of the same pellet with the same device is v/2.0. Suppose
further that the standard deviation of actual densities one pellet to the next (the
standard deviation of measurands) is v/1.4. What should one then expect for a
standard deviation of measured density values pellet to pellet?

7. Consider the five pellets mentioned in problem 3. Density measurements simi-
lar to the following were obtained by a single operator using a single piece of
equipment with a standard protocol under fixed physical circumstances:

6.5,6.6,4.9,5.1, and 5.4 .

(a) What is the sample standard deviation of the n = 5 density measurements?

(b) In the notation of this section, which of oy, 0, Or O measurement 15 legiti-
mately estimated by your sample standard deviation in (a)?

8. Again consider the five pellets of problem 3 and the five density values recorded
in problem 7.

(a) Compute the average measured density.

(b) Assuming an appropriate model and using the notation of this section, what
does your sample average estimate?

2.2 Elementary One- and Two-Sample Statistical Meth-
ods and Measurement

Elementary statistics courses provide basic inference methods for means and stan-
dard deviations based on one and two normal samples. (See, for example, Sections
6.3 and 6.4 of Vardeman and Jobe’s Basic Engineering Data Collection and Analy-
sis.) In this section use elementary one- and two-sample confidence interval methods
to study in the simplest contexts possible 1) how measurement error influences what
can be learned from data and 2) how basic properties of that measurement error can be
quantified. Subsequent sections will introduce more complicated data structures and
statistical methods, but the basic modeling ideas and conceptual issues can most easily
be understood by first addressing them without unnecessary (and tangential) complex-

1ty.

2.2.1 One-Sample Methods and Measurement Error

"Ordinary" confidence interval formulas based on a model that says that 1, ya, ..., Yn
are a sample from a normal distribution with mean p and standard deviation o are
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These are mathematically straightforward, but little is typically said in basic courses
about the practical meaning of the parameters 1 and o. So a first point to make here is
that sources of physical variation (and in particular, sources of measurement error and
item-to-item variation) interact with data collection plans to give practical meaning to
"u" and "o." This in turn governs what of practical importance can be learned from
application of formulas like (2.6) and (2.7).

Two Initial Applications

Figures 2.6 and 2.7 are schematic representations of two different ways that a single
"sample" of n observed values y might arise. These are

1. repeat measurements on a single measurand made using the same device, and

2. single measurements made on multiple measurands coming from a stable process
made using the same device.

Notice that henceforth we will use the language "device" as shorthand for a fixed com-
bination of physical measurement equipment, operator identity, measurement proce-
dure, and surrounding physical circumstances (like time of day, temperature, etc.). We
will also use the shorthand "y;’s ~ ind(u, )" for the model statement that observations
are independent with mean p and standard deviation 0. And in schematics like Figures
2.6 and 2.7, the rulers will represent generic measurement devices, the spheres generic
measurands, and the factories generic processes.

The case represented in Figure 2.6 also corresponds to Figure 2.3 (where "mea-
surement" variation is simply that inherent in reuse of the device to evaluate a given
measurand). The case represented in Figure 2.7 also corresponds to Figure 2.5 (where
again "measurement" variation is variation inherent in the "device" and now real part-
to-part variation is represented by o,.). Consider what formulas (2.6) and (2.7) provide
in the two situations.



Chapter 2. Statistics and Measurement 41

y's ~ ind (x+6,0,.)

FIGURE 2.6. A single sample derived from n repeat measurements made with a fixed device on
a single measurand
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FIGURE 2.7. A single sample derived from single measurements made with a fixed device on
each of n different measurands from a phsyically stable process

First, if as in Figure 2.6 n repeat measurements of a single measurand, y1, yo, . . . , Yn,
have sample mean 7 and sample standard deviation s, applying the ¢ confidence inter-
val for a mean, one gets an inference for

4+ 0 = measurand plus bias .
So

1. in the event that the measurement device is known to be well-calibrated (one is
sure that 6 = 0, there is no systematic error), the limits ¥ & ¢s/+/n based on
v = n — 1 df are limits for x, and

2. in the event that what is being measured is a standard for which x is known,
one may use the limits

(T — o) £ t—e

NG

(once again based on v = n — 1 df) to estimate the device bias, §.



42 Chapter 2. Statistics and Measurement

Further, applying the x? confidence interval for a standard deviation, one has an infer-
ence for the size of the device "noise," o device-

Next consider what can be inferred from single measurements made on n different
measurands yi,yo,...,Yy, from a stable process with sample mean § and sample
standard deviation s as illustrated in Figure 2.7. Here

1. the limits § + ts/+/n (for t based on v = n — 1 df) are limits for
1, + 6 = the mean of the distribution of true values plus bias ,

and

2. the quantity s estimates o, = /02 + 03, that we met first in display (2.4)
and have noted really isn’t of fundamental interest. So there is little point in
direct application of the x? confidence limits (2.7) in this context.

Example 7 Measuring Concentration. Below are n = 5 consecutive concentration
measurements made by a single analyst on a single physical specimen of material using
a particular assay machine (the real units are not available, so for sake of example,
let’s call them "moles per liter,” mol/ ).

1.0025, .9820, 1.0105, 1.0110, .9960

These have mean y = 1.0004mol/ 1 and s = .0120mol/ 1. Consulting a x? table like
Table A.3 using v = 5 — 1 = 4 df, we can find 95% confidence limits for o geyice (the
size of basic measurement variability) as

[ 4 [ 4 .
.0120 11143 and .0120 81 e .0072mol/ 1 and .0345mol/ 1.

(One moral here is that ordinary small sample sizes give very wide confidence limits
for a standard deviation.) Consulting a t table like Table A.4 also using 4 df, we can
find 95% confidence limits for the measurand plus instrument bias (x + 6) to be

0120
Vi

Note that if the measurements in question were done on a standard material "known"
to have actual concentration 1.0000 mol/ 1, these limits then correspond to limits for
device bias of

1.0004 £ 2.776

i.e. 1.0004mol/1+.0167mol/1.

0.0004 mol/14 .0167mol/ 1.
Finally, suppose that subsequently samples from n = 20 different batches are ana-

lyzed and y = 9954 and s, = .0300. The 95% t confidence limits

9954 + 2.093M i.e. 9954 £ .0140

V20

are for i, + 0, the process mean plus any device bias/systematic error.
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Application to a Sample Consisting of Single Measurements of a Single Measur-
and Made Using Multiple Devices (From a Large Population of Such Devices)

The two cases illustrated by Figures 2.6 and 2.7 do not begin to exhaust the ways that
the basic formulas (2.6) and (2.7) can be applied. We present two more applications of
the one-sample formulas, beginning with an application where single measurements of
a single measurand are made using multiple devices (from a large population of such
devices).

There are contexts in which an organization has many "similar" measurement de-
vices that could potentially be used to do measuring. In particular, a given piece of
equipment might well be used by any of a large number of operators. Recall that we
are using the word "device" to describe a particular combination of equipment, people,
procedures, etc. used to produce a measurement. So, in this language, different oper-
ators with a fixed piece of equipment are different "devices." A way to compare these
devices would be to use some (say n of them) to measure a single measurand. This is
illustrated in Figure 2.8.

é‘l ’ O-de\ ice
< >
é‘2 >0 device
X iw >V |
O . VS
511 > O device
Q P > ),

[ . 2 2
yis - lnd (X+/,l5, Vaé‘ +6device)

FIGURE 2.8. A single sample consisting of n single measurements of a fixed measurand made
with each of n devices (from a large population of such devices with a common precision)

In this context, a measurement is of the form
y=x+e,

where ¢ = § + €, for § the (randomly selected) bias of the device used and €* a
measurement error with mean 0 and standard deviation o geyice (representing a repeat
measurement variability for any one device). So one might write

y=x+0+¢€.

Thinking of x as fixed and § and €* as independent random variables (6 with mean
15, the average device bias, and standard deviation o5 measuring variability in device
biases) the laws of mean and variance from elementary probability then imply that

Py =2+ ps +0 =2+ s (2.8)
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and

oy = \/0 toltol, = \/a§ ol 2.9)

as indicated on Figure 2.8. The theoretical average measurement is the measurand plus
the average bias and the variability in measurements comes from both variation in
device biases and the intrinsic imprecision of any particular device.

In a context where a schematic like Figure 2.8 represents a study where several
operators each make a measurement on the same item using a fixed piece of equipment,

the quantity
2 2
\/ Os + 0 device

is a kind of overall measurement variation that is sometimes called "orgr," the first
"R" standing for repeatability and referring to o gevice (a variability for fixed operator
on the single item) and the second "R" standing for reproducibility and referring to
os (a between-operator variability).

With p,, and o, identified in displays (2.8) and (2.9), it is clear what the one sample
confidence limits (2.6) and (2.7) estimate in this context. Of the two, interval (2.7) for
"o" is probably most important, since o, is interpretable in the context of an R&R
study, while p,, typically has little practical meaning. It is another question (that we
will address in future sections with more complicated methods) how one might go
about separating the two components of o, to assess the relative sizes of repeatability
and reproducibility variation.

Application to a Sample Consisting of Differences in Measurements on Multiple
Measurands Made Using Two Devices (Assuming Device Linearity)

Another way to create a single sample of numbers is this. With two devices available
and n different measurands, one might measure each once with both devices and create
n differences between device 1 and device 2 measurements. This is a way of potentially
comparing the two devices and is illustrated in Figure 2.9.

In this context, a difference is of the form

d=y1—y2=@+e)—(r+e)=€a—c

and (again applying the laws of mean and variance from elementary probability) it

follows that
_ _ 2 2
Hqg = 01 — d2 and 0d = \/ Odevicel + 0 device2

as indicated on Figure 2.9. So applying the ¢ interval for a mean (2.6), the limits

— S
d+t—
NG

provide a way to estimate §; — Jo, the difference in device biases.
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3 dy =Y, — Y

L dy =Y, = Vn d,s
b : dn = yln _y2n

! : 2 2
di S ~ lnd (51 _52’ \/Gdevicel + O-devicez )

FIGURE 2.9. A single sample consisting of n differences of single measurements of n measur-
ands made using 2 devices (assuming device linearity)

2.2.2 Two-Sample Methods and Measurement Error

Parallel to the one-sample formulas are the two-sample formulas of elementary statis-
tics. These are based on a model that says that

Y11, Y12, - - > Yin, a0d Y21, %22, ..., Y2n,

are independent samples from normal distributions with respective means p; and p,
and respective standard deviations o1 and o9. In this context, the so-called "Satterth-
waite approximation" gives limits

L [s?  s2
Ty —To + 4/ 2L 1+ 22
Y1 — Ya " +

for estimating gy — po , (2.10)
T2

where appropriate "approximate degrees of freedom" for £ are

2
)
D= e . @.11)

(=2 (ma— Dnj

(This method is one that you may not have seen in an elementary statistics course,
where often only methods valid when one assumes that 01 = o5 are presented. We use

Confidence
Limits for a
Differrence in
Normal Means

Satterthwaite
Degrees of
Freedom for
Formula (2.10)
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this method not only because it requires less in terms of model assumptions than the
more common formula, but also because we will have other uses for the Satterthwaite
idea in this chapter, so it might as well be met first in this simple context.) It turns
out that min ((n; — 1), (ne — 1)) < P, so that a simple conservative version of this
method uses degrees of freedom

" =min ((ny — 1), (ny — 1)) . (2.12)
Further, in the two-sample context, there are elementary confidence limits
1 1
S and S for 7
52 \/F(n171),(n271),upper 52 \/F(nlfl),(ngfl),lower 02
(2.13)

(and be reminded that F(,,, _1),(ny—1)jower = 1/F(ny—1),(n1—1).upper SO that standard F’
tables like Table A.5 giving only upper percentage points can be employed).

Application to Two Samples Consisting of Repeat Measurements of a Single Mea-
surand Made Using Two Different Devices

One way to create "two samples" of measurements is to measure the same item repeat-
edly with two different devices. This possibility is illustrated in Figure 2.10.

Direct application of the two-sample confidence interval formulas here shows that
the two-sample Satterthwaite approximate ¢ interval (2.10) provides limits for

fy — po = (z+61) — (z +02) = 61 — 02
(the difference in device biases), while the F' interval (2.13) provides a way of com-
paring device standard deviations o geyice1 and o gevice2 through direct estimation of

O devicel

O device2

This data collection plan thus provides for straightforward comparison of the basic
characteristics of the two devices.

Example 8 Measuring Styrofoam "Packing Peanut" Size. In an in-class measure-
ment exercise, two students used the same caliper to measure the "size" of a single Sty-
rofoam "packing peanut" according to a class-standard measurement protocol. Some
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................. > yll
..................... » y12 }J—}]jsl
.............................. > Vin
.............................. » y21
..................... » y22 }J—/z’sz
.............................. » yznz

yi's ~ ind (X+6,,04. ) independent of

\ .
VyiS ~ ind (x+5276device2)

FIGURE 2.10. Two samples consisting of 1 and ns measurements of a single measurand with
two devices

summary statistics from their work follow.

Student 1 Student 2

ny = 4 Ng = 6

Y, = 1.42cm Yy = 1.44cm
s1 =.20cm Sso = .40 cm

In this context, the difference in the two measurement "devices" is the difference in
"operators" making the measurements. Consider quantifying how this difference affects
measurement.

To begin, note that from formula (2.11)

(20 (40)2)°
-
~ 77

(.20)* (.40)*
A-1) @)  (6-1)(6)

>
I

or using the more conservative display (2.12) one gets
P =min((4-1),(6-1))=3

So (rounding the first of these down to 7) one should use either 7 or 3 degrees of
freedom with formula (2.10). For sake of example, using U™ = 3 degrees of freedom,
consulting Table A.4, the upper 2.5% point of the t distribution with 3 df is 3.182.
So 95% confidence limits for the difference in biases for the two operators using this
caliper are

(:20)>  (.40)?

142 —1.44 £ 31824/ —— + ——
4 + 6
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ie.
—.02cm £+ .61cm

The apparent difference in biases is small in comparison to the imprecision associated
with that difference.

Then, since from Table A.5 the upper 2.5% point of the F3 5 distribution is 7.764
and the upper 2.5% point of the I 5 distribution is 14.885, 95% confidence limits for
the ratio of standard deviations of measurement for the two operators are

.20 1
40 7.764

2
and Tg -4/14.885

ie.
.19 and 1.93
Since this interval covers values both smaller and larger than 1.00, there is in the

limited information available here no clear indicator of which of these students is the
most consistent in his or her use of the caliper in this measuring task.

Application to Two Samples Consisting of Single Measurements Made With Two
Devices On Multiple Measurands From a Stable Process (Only One Device Being
Used for a Given Measurand)

There are quality assurance contexts in which measurement is destructive (and cannot
be repeated for a single measurand) and nevertheless one needs to somehow compare
two different devices. In such situations, the only thing that can be done is to take
items from some large pool of items or from some stable process and (probably after
randomly assigning them one at a time to one or the other of the devices) measure
them and try to make comparisons based on the resulting samples. This possibility
is illustrated in Figure 2.11. This is a schematic for two samples consisting of single
measurements made with two devices on multiple measurands from a stable process
(only one device used for a given measurand).

Direct application of the two-sample Satterthwaite approximate ¢ interval (2.10) pro-
vides limits for

py = po = (Hy +01) — (y + 02) = 61 — 02

(the difference in device biases). So, in even in contexts where measurement is de-
structive, it is possible to compare device biases. It’s worth contemplating, however,
the difference between the present scenario and the immediately preceding one (repre-
sented by Figure 2.10).

The measurements y in Figure 2.10 are less variable than are the measurements y
here in Figure 2.11. This is evident in the standard deviations shown on the figures and
follows from the fact that in the present case (unlike the previous one) measurements
are affected by unit-to-unit/measurand-to-measurand variation. So all else being equal,
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/,lx Y Gx xl 5[ ’O-devicel
% ' _
SS ylasl
jooooodl
ST
Vs,

@) & !
y,'s ~ ind ( U+ O AOL+ T ) independent of
y2i's - lnd (lux + 52’ V 03 + O-jeviCCZ )

FIGURE 2.11. Two samples consisting of single measurments made on ni + n2 measurands
from a stable process, n1 with device 1 and no with device 2

one should expect limits (2.10) applied in the present context to be wider/less infor-
mative than when applied to data collected as in the last application. That should be
in accord with intuition. One should expect to be able to learn more useful to compar-
ing devices when the same item(s) can be remeasured than when it (they) can not be
remeasured.

Notice that if the F' limits (2.13) are applied here, one winds up with only an indirect
comparison of Tgeyice1 and O gevice2, since all that can be easily estimated (using the

limits (2.13)) is the ratio
[ ~2 2
Oz + O gevicel
[ ~2 2
0% + O device2

and NOT the (more interesting) ratio o'gevice1 /O device2-

Application to Two Samples Consisting of Repeat Measurements Made With One
Device On Two Measurands

A basic activity of quality assurance is the comparison of nominally identical items.
Accordingly, another way to create two samples is to make repeated measurements on
two measurands with a single device. This is illustrated in Figure 2.12 on page 50.

In this context,

py — po = (21 +0) — (22 +0) = 21 — 2

so that application of the two-sample Satterthwaite approximate ¢ interval (2.10) pro-
vides limits for the difference in the measurands, and a direct way of comparing the
measurands. The device bias affects both samples in the same way and "washes out"
when one takes a difference. (This, of course, assumes that the device is linear, i.e.
that the bias is constant.)
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y's ~ ind (x,+6,0,,.) independent of

' .
y2i S ~ ll'ld (x2 + 59 O-device)

FIGURE 2.12. Two samples consisting of repeat measurments made with one device on two
measurands

Application to Two Samples Consisting of Single Measurements Made Using a
Single Device on Multiple Measurands Produced by Two Stable Processes

Another basic activity of quality assurance is the comparison of nominally identical
processes. Accordingly, another way to create two samples is to make single mea-

surements on samples of measurands produced by two processes. This possibility is
illustrated in Figure 2.13.

M504 X, o O device
gS% Q@ NV
: 7z N8y
fonopodl 4 xn] .................................... (%
I A In
M350, X y
m+1
SS% Ol ............... 2N > y21
; : : V2,8,
fooopodl 4 xn,+r12'_m 5 >y
T () 2n,

'S ~ ind (,uvl +0,4/0; +0'deme) independent of

Yy's ~ ind (:sz +5’M)

FIGURE 2.13. Two samples consisting of single measurements made using a single device on
multiple measurands produced by two stable processes

In this context,

p = fo = (g +0) = (Hgg +0) = fiyg — Hyo
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so that application of the two-sample Satterthwaite approximate ¢ interval (2.10) pro-
vides limits for the difference in the process mean measurands and hence a direct way
of comparing the processes. Again, the device bias affects both samples in the same
way and "washes out" when one takes a difference (still assuming that the device is
linear, i.e. that the bias is constant).

If the F' limits (2.13) are applied here, one winds up with only an indirect compari-
son of 0,1 and 0,2, since what can be easily estimated is the ratio

/2 2
Oz1 + 0 device
/ 2 2
022 + 0 device

and not the practically more interesting 0,1 /0 2.

Section 2.2 Exercises

1. Consider again the Pellet Densification case of problem 7 in Section 2.1. Sup-
pose the five data values 6.5,6.6,4.9, 5.1, and 5.4 were measured densities for
a single pellet produced by five different operators using the same piece of
measuring equipment (or by the same operator using five different pieces of
equipment—the two scenarios are conceptually handled in the same way). Use
the notation of this section (x, 9, fi5, 05, and Tdevice) below.

(a) What does the sample average of these five data values estimate?
(b) What does the sample standard deviation of these five data values estimate?

(c) Which of the two estimates in (a) and (b) is probably more important?
Why?

2. Return again to the context of problem 7 of Section 2.1. Suppose the original
set of five data values 6.5,6.6,4.9,5.1, and 5.4 was obtained from five different
pellets by operator 1 using piece of equipment 1. Using a second piece of equip-
ment, operator 1 recorded densities 6.6,5.7,5.9,6.2, and 6.3 for the same five
pellets. So, for pellet 1, "device 1" produced measurement 6.5 and "device 2"
produced 6.6; for pellet 2, "device 1" produced measurement 6.6 and "device 2"
produced 5.7, and so on.

(a) Give the five differences in measured densities (device 1 minus device 2).
Calculate the sample average difference. What does this estimate? (Hint:
Consider §’s .)

(b) Calculate the sample standard deviation of the five differences (device 1
minus device 2). What does this estimate? (Hint: Consider the o gevice’s.)

(c) Find 90% confidence limits for the average difference in measurements
from the two devices.
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. Suppose the two sets of five measurements referred to in problems 1 and 2 ac-

tually came from one pellet, i.e., operator 1 measured the same pellet five times
with piece of equipment 1 and then measured that same pellet five times with
piece of equipment 2.

(a) Find a 95% confidence interval for the ratio of the two device standard
deviations (0 gevicel /T device2)- What do your limits indicate about the con-
sistency of measurements from device 1 compared to that of measurements
from device 2?

(b) Find a 95% two-sample Satterthwaite approximate ¢ interval for the differ-
ence in the two device averages (device 1 minus device 2). If your interval
were to include 0, what would you conclude regarding device biases 1 and
2?

. Consider now the same ten data values referred to in problems 2 and 3, but a dif-

ferent data collection plan. Suppose the first five data values were measurements
on five different pellets by operator 1 using piece of equipment 1 and the sec-
ond set of data values was for another set of pellets by operator 1 using piece of
equipment 2. Assume both sets of pellets came from the same physically stable
process.

(a) What does the sample standard deviation from the first set of five data
values estimate?

(b) What does the sample standard deviation from the second set of five data
values estimate?

(c) What does the difference in the two sample average densities estimate?

. Reflect on problems 3 and 4. Which data-taking approach is better for estimating

the difference in device biases? Why?

. In the same Pellet Densification context considered in problems 1 through 5,

suppose one pellet was measured five times by operator 1 and a different pellet
was measured five times by operator 1 (the same physical equipment was used
for the entire set of 10 observations). What is estimated by the difference in the
two sample averages?

. Once again in the context of problems 1 through 6, suppose the first five data

values were measurements on five different pellets made by operator 1 using
piece of equipment 1 and the second five were measurements of a different set
of pellets by operator 1 using piece of equipment 1. Assume the two sets of
pellets come from different firing methods (method 1 and method 2). Assume
the two firing processes are physically stable.

(a) Find the two-sample Satterthwaite approximate ¢ interval (method 1 minus
method 2) for the difference in the process mean measurands.
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(b) In words, what does the interval in (a) estimate? In symbols, what does the
interval in (a) estimate?

(c) With this approach to data taking, can either device bias be estimated di-
rectly? Why or why not?

8. Still in the context of problems 1 through 7, density measurements similar to
the values 6.5,6.6,4.9,5.1, and 5.4 were obtained for five different pellets by
a single operator using a single piece of measuring equipment under a standard
protocol and fixed physical circumstances. Use the ¢ confidence interval for a
mean and give 95% confidence limits for the mean of the distribution of true
densities plus measurement bias.

9. Suppose the five measurements in problem 8§ are repeat measurements from only
one pellet, not from five different pellets.

(a) Use the x? confidence limits for a standard deviation (from elementary
statistics) and give a 95% confidence interval for oy easurement-

(b) Use the ¢ confidence interval formula for a mean from elementary statistics
and give 95% confidence limits for the (single) true pellet density plus
measurement bias.

2.3 Some Intermediate Statistical Methods and Mea-
surement

Through reference to familiar elementary one- and two-sample methods of statistical
inference, Section 2.2 illustrated the basic insight that:

How sources of physical variation interact with a data collection plan gov-
erns what of practical importance can be learned from a data set, and in
particular, how measurement error is reflected in the data set.

In this section we consider some computationally more complicated statistical meth-
ods and what they provide in terms of quantification of the impact of measurement
variation on quality assurance data.

2.3.1 A Simple Method for Separating Process and Measurement
Variation

In Section 2.1 we essentially observed that

1. repeated measurement of a single measurand with a single device allows one to
estimate device variability, and
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2. single measurements made on multiple measurands from a stable process allow
one to estimate a combination of process and measurement variability,

and remarked that these facts suggest formula (2.5) as a way to estimate a process
standard deviation alone. Our first objective in this section is to elaborate a bit on this
thinking.

lu x? O-X 59 Gdcvicc

SsSS

joooopod
i me

y's ~ ind ( U, +0,\ o+ 00 ) independent of

2] :
yi S ~ lnd (xn+l +§’ o-dcvicc)

FIGURE 2.14. Schematic of a data collection plan that allows evaluation of o, without inflation
by measurement variation

Figure 2.14 is a schematic of a data collection plan that combines elements 1 and
2 above. Here we use the notation y for the single measurements on 7 items from the
process and the notation 3’ for the m repeat measurements on a single measurand.
The sample standard deviation of the y’s, s, is a natural empirical approximation for
0y = /02 4 03 and the sample standard deviation of the y'’s, s, is a natural em-
pirical approximation for ogeyice. That suggests that one estimate the process standard
deviation with

6, = \/max (0,52 — s?) (2.14)

as indicated in display (2.5). (The maximum of 0 and sg — 52 under the root is there
simply to ensure that one is not trying to take the square root of a negative number in
the rare case that s exceeds s,.) &, is not only a sensible single number estimate of 0,
but can also be used to make approximate confidence limits for the process standard

deviation. The so-called Satterthwaite approximation suggests that one use
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Z and Gy — (2.15)
Xupper Xiower

Oz

as limits for o, where appropriate approximate degrees of freedom # to be used find-
ing x? percentage points are

L E— (2.16)

Example 9 (Example 7 Revisited.) In Example 7, we considered m = b measure-
ments made by a single analyst on a single physical specimen of material using a par-
ticular assay machine that produced s = .0120 mol/ 1. Subsequently, specimens from
n = 20 different batches were analyzed and s,, = .0300 mol/ 1. Using formula (2.14),
an estimate of real process standard deviation uninflated by measurement variation is

Gy = \/max (0, (.0300)% — (.0120)2> = .0275mol/1

and this value can used to make confidence limits. By formula (2.16) approximate
degrees of freedom are

(.0275)*

(.0300)* , (.0120)% 11.96 .
ot 4

f/:

So rounding down to v = 11, since the upper 2.5% point of the X3, distribution is
21.920 and the lower 2.5% point is 3.816, by formula (2.15) approximate 95% confi-
dence limits for the real process standard deviation (o) are

[ 11 11
.0275 51.920 and .0275 3316

.0195mol/1 and .0467mol/1.

ie.

Satterthwaite
Approximate
Confidence
Limits for a
Process
Standard
Deviation

Satterthwaite
Approximate df
for Use With
Limits (2.15)
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2.3.2 One-Way Random Effects Models and Associated Inference

One of the basic models of intermediate statistical methods is the so-called "one-way
random effects model" for I samples of observations

Y11,Y125 - - -y Ying
Y21,Y22, -+ Y2n,

Yr1,Yrz2,-- - Yiny

This model says that the observations may be thought of as

Yij = M + €ij

where the ¢;; are independent normal random variables with mean 0 and standard
deviation o, while the I values p, are independent normal random variables with mean
1 and standard deviation o, (independent of the €’s). (One can think of I means y;
drawn at random from a normal distribution of y,;’s, and subsequently observations
y generated from [ different normal populations with those means and a common
standard deviation.) In this model, the three parameters are o (the "within group"
standard deviation), o,, (the "between group" standard deviation), and 1 (the overall
mean). The squares of the standard deviations are called "variance components" since
for any particular observation, the laws of expectation and variance imply that

py = p+0=p and ai:aiJraz

(i.e. 07, and o* are components of the variance of ).
Two quality assurance contexts where this model can be helpful are where

1. multiple measurands from a stable process are each measured multiple times
using the same device, and

2. asingle measurand is measured multiple times using multiple devices.

These two scenarios and the accompanying parameter values are illustrated in Figures
2.15 and 2.16.

There are well-established (but not altogether simple) methods of inference associ-
ated with the one-way random effects model, that can be applied to make confidence
intervals for the model parameters (and inferences of practical interest in metrological
applications). Some of these are based on so-called ANOVA methods and the one-way
ANOVA identity that says that with

yi — fni;ylpn = ;Tli, and y= :L;nzyzu

it is the case that
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FIGURE 2.15. Multiple measurands from a stable process each measured multiple times using

the same device
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FIGURE 2.16. A single measurand measured multiple times using multiple devices
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Y Wi =0 =D @ -0+ > (i —7)° @2.17)
i, i i
or in shorthand "sum of squares" notation
SSTot = SSTr + SSE (2.18)

SSTot is a measure of overall raw variability in the whole data set. SSTot isn — 1
times the overall sample variance computed ignoring the boundaries between samples.
SSE is a measure of variability left unaccounted for after taking account of the sample
boundaries, and is a multiple of a weighted average of the I sample variances. SST'r
is a measure of variation in the sample means 7, and is most simply thought of as the
difference SSTot — SSE. The "sums of squares" SSFE and SSTr have respective
associated degrees of freedom n — I and I — 1. The ratios of sums of squares to their
degrees of freedom are called "mean squares" and symbolized as

SSE and MSTr = MSTr

MSE =
s n—1I I-1

(2.19)

Confidence limits for the parameter o2 of the one-way random effects model can be
built on the error mean square. A single-number estimate of o is

MSE

Q»
I

(2.20)

and confidence limits for o are

. In—1 o In—1
o 5 and g 5
Xupper Xiower

where the appropriate degrees of freedom are v = n — I. Further, in the case that all
n;’s are the same, i.e. n; = m for all ¢, the Satterthwaite approximation can be used
to make fairly simple approximate confidence limits for . That is, a single number
estimator of o, is

(2.21)
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1
Ou= \/ max (0, MSTr — MSE) , (2.22)
m
and with approximate degrees of freedom
m? .64
= L 2.23
YT MST?  MSE? (223)
I-1 n—1
approximate confidence limits for o, are
Gy | — and Gy —— (2.24)
Xupper Xiower

Operationally, the mean squares implicitly defined in displays (2.17) through (2.19)
are rarely computed "by hand." And given that statistical software is going to be used,
rather than employ the methods represented by formulas (2.20) through (2.24), more
efficient methods of confidence interval estimation can be used. High quality statistical
software (like the open source command line driven R package or the commercial
menu driven JMP package) implements the best known methods of estimation of the
parameters o, 0, and u (based not on ANOVA methods, but instead on computation-
ally more difficult REML methods) and prints out confidence limits directly.

Example 10 Part Hardness. Below are m = 2 hardness values (in mm) measured
on each of I =9 steel parts by a single operator at a farm implement manufacturer.

Part 1 2 3 4 5 6 7 8 9
330 3.20 3.20 3.25 3.25 330 3.15 3.25 3.25
3.30 3.25 3.30 3.30 3.30 3.30 3.20 3.20 3.30

This is a scenario of the type illustrated in Figure 2.15. Either working "by hand"
with formulas (2.17) through (2.19) or reading directly off a report from a statistical
package

MSE = .001389 and MSTr = .003368

One-Way
ANOVA-based
Estimator

for o,

Satterthwaite
Approximate df
for Use With
Limits (2.24)

One-Way
ANOVA-based
Confidence
Limits for o,
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So using formulas (2.20) and (2.21) (here n = mlI = 18 so that error degrees of
freedom aren — I = 18 — 9 = 9) 95% confidence limits for 0 yevice (= 0 here) are

/9 /9
v.001389 19023 and +/.001389 3700

.026 mm and .068 mm

Further, using formulas (2.22) through (2.24), Satterthwaite degrees of freedom for &,
are

ie.

(22) (4 (.003368 —.001389))" ot
(.003368)>  (.001389)>
9-1 18—-9
and rounding down to 2 degrees of freedom, approximate 95% confidence limits for o
(= o, here) are

ﬁ:

\/ L (003368 001389)\/ 2 and \/ L (1003368 — .001389) | —
— . — . an — (. —. —_—
2 7.378 2 051

ie.
016 mm and .197 mm

The JMP package (using REML methods instead of the Satterthwaite approximation
based on ANOVA means squares) produces limits for o,

Omm and /.0027603 = .053 mm

These more reliable limits at least confirm that the simpler methods "get into the right
ballpark" in this example.

What is clear from this analysis is that this is a case where part-to-part varia-
tion in hardness (measured by o) is small enough and poorly determined enough
in comparison to basic measurement noise (measured by 0 geyice estimated as .03726 =
v/.001389) that it is impossible to really tell its size.

Example 11 Paper Weighing. Below are m = 3 measurements of the weight (in g)
of a single 20 c;a x 20 cm piece of 201b bond paper made by each of I = 5 different
technicians using a single balance.

Operator 1 2 3 4 5
3.481 3.448 3.485 3475 3.472
3.477 3472 3464 3.472 3.470
3.470 3470 3477 3473 3.474

This is a scenario of the type illustrated in Figure 2.16 and further illustrates the
concepts of repeatability (fixed device) variation and reproducibility (here, device-to-
device, i.e. operator-to-operator) variation first discussed on page 44. Use of the JMP
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statistical package (and REML estimation) with these data produces 95% confidence
limits for the two standard deviations o5 (= o, here) and 0 gevice (= o here). These

place
0< o5 <V4.5x1075=.0067¢g
0057g = /3.2 X 107° < Ogevice < V.0002014 = .0142¢

with 95% confidence. This is a case where repeatability variation is clearly larger than
reproducibility (operator-to-operator) variation in weight measuring. If one doesn’t
like the overall size of measurement variation, it appears that some fundamental change
in equipment or how it is used will be required. Simple training of the operators aimed
at making how they use the equipment more uniform (and reduction of differences be-
tween their biases) has far less potential to improve measurement precision.

and

Section 2.3 Exercises

1. Fiber Angle. Grunig, Hamdorf, Herman, and Potthof studied a carpet-like prod-
uct. Fiber angles (to the backing) were of interest. Operator 1 obtained the values
19, 20, 20, and 23 (in degrees) from four measurements of fiber angle for a sin-
gle specimen. This same operator then measured fiber angles once each for three
other specimens of the "carpet" and obtained the values 20, 15 and 23.

(a) Using the methods of this section, give an estimate of the specimen-to-
specimen standard deviation of fiber angle.

(b) Give the appropriate "approximate degrees of freedom" associated with
your estimate from (a). Then find a 95% confidence interval for the specimen-
to-specimen fiber angle standard deviation.

2. Continue with the Fiber Angle case of problem 1. Operator 2 obtained the fiber
angle measurements 20, 25,17, and 22 from the first specimen mentioned in
problem1 and operator 3 obtained the values 20, 19, 15, and 16. (Fiber angle for
the same specimen was measured four times by each of the three operators.) As
before, all measurements were in degrees. The data summaries below are from
use of the JMP statistical package with these n = 12 measurements of fiber
angle for this specimen. Use them to answer (a) through (c). (The estimates and
confidence intervals in the second table are for variances, not standard devia-
tions. You will need to take square roots to get inferences for standard devia-
tions.)

ANOVA Table
Source SS df MS
Operator 28.66 2 14.33
Error 60 9 6.66
Total 88.66 11
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REML Variance Component Analysis
Random Effect VarComponent 95% lower 95% upper
Operator 1.92 —5.27 9.11
Error 6.66 3.15 22.22

(a) Give an appropriate single number estimate of O epeatability. Determine
95% confidence limits for device (repeatability) standard deviation, o rcpeatability -

(b) From the computer output, give the appropriate estimate of 0'reproducibility -
Give 95% confidence limits for oreproducibility -

(c) Based on your answers to (a) and (b), where would you focus measurement
improvement efforts?

3. Continuing with the Fiber Angle case, in addition to the repeat measurements
19, 20, 20, and 23 made by operator 1 on specimen 1, this person also measured
angles on 2 other specimens. Four angle measurements on specimen 2 were
15,17, 20, and 20 and four angle measurements on specimen 3 were 23, 20, 22,
and 20. The data summaries below are from use of the JMP statistical package
with these n = 12 measurements for these three specimens. Use them to answer
(a) through (c). (The estimates and confidence intervals in the second table are
for variances, not standard deviations. You will need to take square roots to get
inferences for standard deviations.)

ANOVA Table
Source SS df MS
Specimen 23.17 2 11.58
Error 33.75 9 3.75
Total 56.92 11

REML Variance Component Analysis
Random Effect VarComponent 95% lower 95% upper
Specimen 1.96 3.78 7.69
Error 3.75 1.77 12.5

(a) Give an appropriate single number estimate of ggevice. Determine 95%
confidence limits for device variation, o gevice-

(b) From the computer output, give an appropriate estimate of . Give 95%
confidence limits for o .

(c) Based on your answers to (a) and (b), does it seem possible to determine
fiber angle for a fixed specimen with acceptable precision? (Hint: Consider
the sizes of the estimated 0 gevice and o,.)
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2.4 Gauge R&R Studies

We have twice made some discussion of "gauge R&R," first on page 44 in the con-
text of comparison of two operators and then in Example 11, where three operators
were involved. In both cases, only a single part (or measurand) was considered. In a
typical industrial gauge R&R study, each of J operators uses the same gauge or mea-
surement system to measure each of I parts (common to all operators) a total of m
different times. Variation in measurement typical of that seen in the m measurements
for a particular operator on a particular part is called the repeatability variation of
the gauge. Variation which can be attributed to differences between the .J operators is
called reproducibility variation of the measurement system.

This section considers the analysis of such full-blown gauge R&R studies involving
a total of mI.J measurements. We begin with a discussion of the two-way random
effects model that is commonly used to support analyses of gauge R&R data. Then
primarily for ease of exposition and making connections to common analyses of gauge
R&R studies, we discuss some range-based statistical methods. Finally, we provide
what are really superior analyses, based on ANOVA calculations.

2.4.1 Two-Way Random Effects Models and Gauge R&R Studies

Typical industrial gauge R&R data are conveniently thought of as laid out in the cells of
a table with I rows corresponding to parts and J columns corresponding to operators.

Example 12 Gauge R&R for a 1-Inch Micrometer Caliper. Heyde, Kuebrick, and
Swanson conducted a gauge R&R study on a certain micrometer caliper as part of a
class project. Table 2.1 shows the data that the J = 3 (student) operators obtained,
each making m = 3 measurements of the heights of I = 10 steel punches.

Notice that even for a given punch/student combination, measured heights are not
exactly the same. Further, it is possible to verify that averaging the 30 measurements

TABLE 2.1. Measured Heights of 10 Steel Punches in 10~2 Inch

Student 1 Student 2 Student 3
Punch 1 496,496,499 497,499,497 497,498,496
Punch 2 498,497,499 498,496,499 497,499, 500
Punch 3 498,498,498 497,498,497 496,498,497
Punch 4 497,497,498 496,496,499 498,497,497
Punch 5 499,501,500 499,499,499 499,499, 500
Punch 6 499,498,499 500,499,497 498,498, 498
Punch 7 503,499,502 498,499,499 500,499, 502
Punch 8 500,499,499 501,498,499 500, 501,499
Punch 9 499,500,499 500,500,498 500,499, 500
Punch 10 497,496,496 500,494,496 496,498,496
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made by student I, a mean of about .49853 in is obtained, while corresponding means
for students 2 and 3 are respectively about 49813 in and .49840 in. Student 1 may
tend to measure slightly higher than students 2 and 3. That is, by these rough "eyeball”
standards, there is some hint in these data of both repeatability and reproducibility
components in the overall measurement imprecision.

To this point in our discussions of R&R, we have not involved more than a single
measurand. Effectively, we have confined attention to a single row of a table like Table
2.1. Standard industrial gauge R&R studies treat multiple parts as a way of making
sure that reliability of measurement doesn’t vary unacceptably across parts. So here
we consider the kind of multiple-part case represented in Table 2.1.

The model most commonly used in this context is the so-called "two-way random
effects model" that can be found in many intermediate-level statistical methods texts.
(See, for example, Section 8.4 of Vardeman’s Statistics for Engineering Problem Solv-
ing.) Let

Yijr = the kth measurement made by operator j on part ¢ .

The model is

Yijk = p+a; + B+ af; + €k (2.25)

where p is an (unknown) constant, the «; are normal random variables with mean 0
and variance 02, the 3 ,; are normal random variables with mean 0 and variance a%, the
aB; ; are normal random variables with mean 0 and variance ai 8 the €5, are normal
random variables with mean 0 and variance o2, and all of the a’s, 3’s, a/3’s, and €’s
are independent. In this model, the unknown constant p is an average (over all pos-
sible operators and all possible parts) measurement, the «’s are (random) effects of
different parts, the 3’s are (random) effects of different operators, the a/3’s are (ran-
dom) joint effects peculiar to particular partxoperator combinations, and the €’s are
(random) measurement errors. The variances o2, 0%, Ji 3, and o? are called "variance
components" and their sizes govern how much variability is seen in the measurements
Yijk-

Consider a hypothetical case with I = 2, J = 2, and m = 2. Model (2.25) says that
there is a normal distribution with mean 0 and variance oi from which «; and a are
drawn. And there is a normal distribution with mean 0 and variance a% from which
and 3, are drawn. And there is a normal distribution with mean 0 and variance o2 P
from which a3, @814, @851, and o35, are drawn. And there is a normal distribution
with mean 0 and variance o2 from which eight €’s are drawn. Then these realized
values of the random effects are added to produce the eight measurements as indicated
in Table 2.2.

Either directly from equation (2.25) or as illustrated in Table 2.2, according to the
two-way random effects model the only differences between measurements for a fixed
partxoperator combination are the measurement errors €. And the variability of these
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TABLE 2.2. Measurements in a Hypothetical Gauge R&R Study
Operator 1 Operator 2

Y111 = p+ o1 + B+ afq; + e Y121 = p+ag + By + afy + e
Part 1

Y2 = p+ a1 + By + afyy + €2 Y122 = p+ a1 + By + By + €122

Y211 = p+ ax + By + afy + e Y221 = [+ g + By + afyy + €221
Part 2

Yo12 = fb+ a2 + B1 + afy; + €212 Y222 = [+ g + By + afigy + €222

is governed by the parameter o. That is, o is a measure of repeatability variation in this
model, and one objective of an analysis of gauge R&R data is to estimate it.

Then, if one looks at a fixed "part ¢" (row 7), the quantity  + a; is common across
the row. In the context of a gauge R&R study this can be interpreted as the value of
the ith measurand (these vary across parts/rows because the a; vary). Then, still for a
fixed part 4, it is the values 3; + af3,; that vary column/operator to column/operator.
so in this gauge R&R context, this quantity functions as a kind of part-i-specific oper-
ator bias. (More on the qualifier "part-i-specific” in a bit.) According to model (2.25),
the variance of 3; + af3;; is 0‘% + o2 3> 80 an appropriate measure of reproducibility

variation in this model is
O reproducibility = 1/ O%’ + 0'35 . (226)

According to the model, this is the standard deviation that would be experienced by
many operators making a single measurement on the same part assuming that there
is no repeatability component to the overall variation. Another way to say the same
thing is to recognize this quantity as the standard deviation that would be experienced
computing with long-run average measurements for many operators on the same part.
That is, the quantity (2.26) is a measure of variability in operator bias for a fixed part
in this model.

As long as one confines attention to a single row of a standard gauge R&R study, the
one-way random effects model and analysis of Section 2.3 are relevant. The quantity
Oreproducibility here is exactly os from application of the one-way model to a single-
part gauge R&R study. (And the present o is exactly ogevice.) What is new and at
first perhaps a bit puzzling is that in the present context of multiple parts and display
(2.26), the reproducibility variation has two components, oz and o,3. This is because
for a given part ¢, the model says that bias for operator j has both components 3, and
af;;. The model terms a3, ; allow "operator bias" to change part-to-part/measurand-
to-measurand (an issue that simply doesn’t arise in the context of a single part study).
As such, they are a measure of non-linearity (bias non-constant in the measurand) in
the overall measurement system. Two-way data like those in Table 2.1 allow one to
estimate all of 0 reproducibility; 73 and o4, and all else being equal, cases where the
0 g component of 0 reproducibility 1 Small are preferable to those where it is large.

The quantity

_ 2 2 _ 2
OR&R = UE + Joeﬁ + o= \/Ureproducibility + o? (227)

Reproducibility
Standard
Deviation in the
Two-Way
Model

Combined
R&R
Standard
Deviation
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is the standard deviation implied by the model (2.25) for many operators each making a
single measurement on the same part. That is, quantity (2.27) is a measure of the com-
bined imprecision in measurement attributable to both repeatability and reproducibility
sources. And one might think of

2 2 2
0’2 0'2 Jreproducibility 0/3 + JCVB
_ and - (2.28)
72 02+ 02+ o2 o2 0%+ 0%, + o2
R&R B af R&R B af

as the fractions of total measurement variance due respectively to repeatability and
reproducibility. If one can produce estimates of o and oreproducibility, €stimates of
these quantities (2.27) and (2.28) follow in straightforward fashion.

It is common to treat some multiple of orgr (often the multiplier is six, but some-
times 5.15 is used) as a kind of uncertainty associated with a measurement made using
the gauge or measurement system in question. And when a gauge is being used to
check conformance of a part dimension or other measured characteristic to engineer-
ing specifications (say, some lower specification L and some upper specification U)
this multiple is compared to the spread in specifications. Specifications U and L are
numbers set by product design engineers that are supposed to delineate what is required
of a measured dimension in order that the item in question be functional. The hope is
that measurement uncertainty is at least an order of magnitude smaller than the spread
in specifications. Some organizations go so far as to call the quantity

6oRr&R
U-L
a gauge capability (or precision-to-tolerance) ratio, and require that it be no larger
than .1 (and preferably as small as .01) before using the gauge for checking confor-
mance to such specifications. (In practice, one will only have an estimate of orgR
upon which to make an empirical approximation of a gauge capability ratio.)

GCR =

(2.29)

2.4.2 Range-Based Estimation

Because range-based estimation (similar to, but not exactly the same as what follows)
is in common use for the analysis of gauge R&R studies and is easy to describe, we
will treat it here. In the next sub-section, better methods based on ANOVA calculations
(and REML methods) will be presented.

Consider first the estimation of . Restricting attention to any particular part x operator
combination, say part ¢ and operator j, model (2.25) says that observations obtained for
that combination differ only by independent normal random measurement error with
mean 0 and variance 0. That suggests that a measure of variability for the ij sam-
ple might be used as the basis of an estimator of ¢. Historical precedent and ease of
computation suggest measuring variability using a range (instead of a sample standard
deviation or variance).

So let R;; be the range of the m measurements on part ¢ by operator j. The expected
value of the range of a sample from a normal distribution is a constant (depending upon



Chapter 2. Statistics and Measurement 67

m) times the standard deviation of the distribution being sampled. The constants are
well known and called dy. (We will write d2(m) to emphasize their dependence upon
m and note that values of dy(m) are given in Table A.1.) It then follows that

ER;j = d2(m)o,
which in turn suggests that the ratio
da(m)

is a plausible estimator of o. Better yet, one might average these over all I x J
partx operator combinations to produce the range-based estimator of o,

. R
Orepeatability — W . (230)

Example 13 (Example 12 continued.) Subtracting the smallest measurement for each
partxoperator combination in Table 2.1 from the largest for that combination, one
obtains the ranges in Table 2.3 on page 68. The 30 ranges in Table 2.3 have mean
R = 1.9. From Table A.1, d2(3) = 1.693. So using expression (2.30) an estimate of o,
the repeatability standard deviation for the caliper used by the students, is

R 1.9

a'repeatability = m = m =1.12x 1072 in.

(Again, this is an estimate of the (long-run) standard deviation that would be experi-
enced by any particular student measuring any particular punch many times.)

Consider now the standard deviation (2.26) representing the reproducibility portion
of the gauge imprecision. It will be convenient to have some additional notation. Let

Y;; = the (sample) mean measurement made on part ¢ by operator j (2.31)

and

A, = mjax Yij — mjln Uij
= the range of the mean measurements made on part 7 .

Notice that with the obvious notation for the sample average of the measurement errors
€, according to model (2.25)

Range-Based
Estimator for
Repeatability
Standard
Deviation
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TABLE 2.3. Ranges of 30 Partx Operator Samples of Measured Punch Heights
Punch Student1 Student2 Student3

p—
w
N}
[\

S ORI A WN
=== R =N = O N
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N =N WO~ DN W

(==Y

Thus, for a fixed part i these means y,; vary only according to independent normal
random variables ; + af3;; + €;; that have mean 0 and variance a% +02 5T a?/m.
Thus their range, A;, has mean

EA; = dg(J)\/a% +ols+o%/m.

This suggests A;/d(J), or better yet, the average of these over all parts i, A/da(J),

as an estimator of \/ O’% + 02 g+ o2/m. This in turn suggests that one can estimate

o% +02 5 +0?%/m with (A/dy(J))?. Then remembering that R/da(m) = Grepeatability
is an estimator of ¢, an obvious estimator of J% + 0(21 3 becomes

2 2

(@)~ (@) 23

The quantity (2.32) is meant to approximate 0% + 02 3> Which is nonnegative. But
the estimator (2.32) can on occasion give negative values. When this happens, it is
sensible to replace the negative value by 0, and thus expression (2.32) by

(0. (25) () ) @

So finally, an estimator of the reproducibility standard deviation can be had by taking
the square root of expression (2.33). That is, one may estimate the quantity (2.26) with

- = .2
. - A 1 ([ R
Oreproducibility = 4 | INaX <07 (dQ(J)) - E (dg (m)) ) . (2.34)
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TABLE 2.4. Partx Operator Means and Ranges of Such Means for the Punch Height Data
Punch (4) Yi1 Yio Yi3 A,
1 497.00 497.67 497.00 .67

2 498.00 497.67 498.67 1.00
3 498.00 497.33 497.00 1.00
4 49733 497.00 49733 .33
5 500.00 499.00 499.33 1.00
6 498.67 498.67 498.00 .67
7 501.33 498.67 500.33 2.67
8 499.33 499.33 500.00 .67
9 499.33 499.33 499.67 .33
10 496.33 496.67 496.67 .33

Example 14 (Examples 12 and 13 continued.) Table 2.4 organizes y,; and A; values

for the punch height measurements of Table 2.1. Then A = 8.67/10 = .867, and since
J =3,d2(J) = d2(3) = 1.693. So using equation (2.34),

1 = maxoﬁ2—1£2
reproducibility = ) 1.693 3 1.693 ’

v/max(0,—.158) ,

0.

This calculation suggests that this is a problem where o appears to be so large that
the reproducibility standard deviation cannot be seen above the intrinsic "noise" in
measurement conceptualized as the repeatability component of variation. Estimates of
the ratios (2.28) based on G repeatability A1d O reproducibility would attribute fractions 1
and O of the overall variance in measurement to respectively repeatability and repro-
ducibility.

2.4.3 ANOVA-Based Estimation

The formulas of the previous sub-section are easy to discuss and use, but they are not
at all the best available. Ranges are not the most effective tools for estimating nor-
mal standard deviations. And the range-based methods have no corresponding way for
making confidence intervals. More effective (and computationally more demanding)
statistical tools are available and we proceed to discuss some of them.

An I x J xm data set of y;;;’s like that produced in a typical gauge R&R study is of-
ten summarized in a so-called two-way ANOVA table. Table 2.5 on page 70 is a generic
version of such a summary. Any decent statistical package will process a gauge R&R
data set and produce such a summary table. As in one-way ANOVA, "mean squares"
are essentially sample variances (squares of sample standard deviations). M S A is es-
sentially a sample variance of part averages, M S B is essentially a sample variance of
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TABLE 2.5. A Generic Gauge R&R Two-Way ANOVA Table

Source SS df MS

Part SSA I1-1 MSA=SSA/(I-1)

Operator SSB J—1 MSB=S8SB/(J—-1)
PartxOperator SSAB (I —1)(J—-1) MSAB=SSAB/(I—-1)(J-1)
Error SSE IJ(m—1) MSE =SSE/IJ(m—1)

Total SSTot IJm—1

operator averages, M SE is an average of within-cell sample variances, M ST ot isn’t
typically calculated, but is a grand sample variance of all observations.

For purposes of being clear (and not because they are typically used for "hand cal-
culation") we provide formulas for sums of squares. With cell means y;; as in display
(2.31) define row and column averages and the grand average of these

_ 1 _ _ 1 _ _ 1 _
Yi. = jzyij and y ; = jzyij and y = ﬁzyij :
J i ij
Then the sums of squares are

SSTot = Z(yijk—?..)za

ijk
SSE = Z(yijk —@'j)Q ;
ijk
SSA = mJY @ -7)?,
SSB = mIY (7, ~5)%, and
i
ij

= SSTot—SSE - SSA—-SAB

Corresponding degrees of freedom and mean squares are

dfE = (m—1)1J and MSE =SSE/(m—1)1J,

dfA = I-1and MSA=SSA/(I—1),

dfB = J—1and MSB=SSB/(J—1), and

dfAB = (I—1)(J—1) and MSAB = SSAB/ (I —1)(J —1) .

Example 15 In-Class Gauge R&R Study. The data in Table 2.6 were collected in an
in-class gauge R&R exercise where I = 4 Styrofoam packing peanuts were measured
for size (in in) by J = 3 students m = 2 times apiece using the same inexpensive
caliper. The JMP statistical package produces the sums of squares

SSA = .00241250,S5S5B = .00080833,SSAB = .00072500,

SSE = .00035000, and SSTot = .00429583
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TABLE 2.6. Data from a Small In-Class Gauge R&R Study
Operator 1 Operator 2  Operator 3

Part1 .52, 52 54, 53 55, .55
Part2  .56,.55 54,.54 55, .56
Part3  .57,.56 55, .56 57, .57
Partd  .55,.55 54, .55 56, .55

for these data that can be used as raw material for making important inferences for
the R&R study based on model (2.25). Corresponding means squares are

MSE = .00035000/ (2 — 1) (4) (3) = .00002917 ,

MSA = 00241250/ (4 — 1) = .00080417 ,

MSB = .00080833/ (3 — 1) =.00040417 , and
MSAB = .00072500/ (4 — 1) (3 — 1) = .00012083 .

High quality statistical software (like JMP or R)will automatically produce REML-
based estimates and confidence intervals for the variance components 2, 0'[23, a? 3, and
o2. As the quantities afepmducibinty and 0% are a bit specialized (being of interest
in our R&R application of the two-way random effects model, but not in other com-
mon applications) inferences for them are not automatically available. It is possible,
but usually not convenient, to use the output of REML analyses to make inferences for
these more specialized quantities. So here we will provide formulas for ANOVA-based
estimators of o, Oreproducibility, and orgr and appropriate Satterthwaite approximate
degrees of freedom for making confidence limits. (Where readers know how to obtain
REML-based estimates and intervals, our recommendation is to use them in preference
to ANOVA-based estimators that follow.)

Single number estimators for the quantities of most interest in a gauge R&R study
are

&repealability =0=VMSE ; (235) ANOVA-Based
Estimator for
Repeatability
Standard
Deviation

mli ml Estimator for
Reproducibility
Standard
Deviation

MSB I-1 1 )
O reproducibility = \/ max (07 il ( ) MSAB — — MS E) , (2.36) ANOVA-Based

and
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1 I—-1 -1
Fram = \/ —~ MSB+——-MSAB+ " MSE. (2.37)
ml I m

m

Confidence limits based on any of these estimators are of the generic form (already
used several times in this chapter)

nsn

14

nan
non

Hé_"

and (2.38)

2
X upper Xiower

non nan

where "6" is one of the estimators, "0" is a corresponding (exact or "Satterthwaite
approximate") degrees of freedom, and the x? percentage points are based on "0." So
it only remains to record formulas for appropriate degrees of freedom. These are

Vrepeatability = 1J (m - ]-) , (2.39)
~4
o ducibiliy = O reproducibility
reproducipilr - 2
(spyr  (SER2) | (usey’
ml + + m
J—1 " (I-1)(J-1)  TJ(m-1)
_ é-1Z*Jchrcoducibility (2 40)
1 MSB? (I —1)MSAB? MSE? T
m2 \I2(J — 1) 2(J-1) IJ(m—1)

and
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4
OR&R

(MSB)Q (%)2 (M)Q

§ s iy ey ey iy ¥

~4

_ OR&R
1 ( MSB? (I —1) MSAB? (ml)MSE2>' (241)

rU-n ru-n ° 1J

VR&R =

m2

Formulas (2.36), (2.40), (2.37) and (2.41) are tedious (but hardly impossible) to use
with a pocket calculator. But a very small program, MathCAD worksheet, or spread-
sheet template can be written to evaluate the estimates of standard deviations and ap-
proximate degrees of freedom from the sums of squares, m, I, and J.

Example 16 (Example 15 continued.) A two-way random effects analysis of the data
of Table 2.6 made using the JMP statistical package produces REML-based confi-
dence limits of

0 and +/.0001359, ie., Oin and .012in for og

and
0 and v.0001152, i.e, Oin and .01lin for o.g .

There is thus at least the suggestion that a substantial part of the reproducibility vari-
ation in the data of Table 2.6 is a kind of non-constant bias on the part of the student
operators measuring the peanuts.

Using formulas (2.35), (2.36), and (2.37) it is possible to verify that in this problem

&repeatability = 6 =.0054011in s
(}reproducibility = .009014in 5 and
orer = -0llin.

Using formulas (2.39), (2.40), and (2.41) these have corresponding degrees of freedom

Vryepeatability = (4) (3) (2 - 1) =12 s
l)repraducibility = 4.04 s and
Urer = T7.45.

So (rounding degrees of freedom down in the last two cases) using the limits (2.38),
95% confidence limits for o repeaiabiliny are

12 12
53337 @4 005401/ =y

.005401

Degrees of
Freedom for
Use With
Formulas
(2.37) and
(2.38)
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ie.
.00391in and .0089in ,

approximate 95% confidence limits for 0 reproqucivitisy are

4 [ 4
. 14 . 144/ —
0090 11143 and .0090 Py

.0054in and .0259in ,

ie.
and approximate 95% confidence limits for oprer are

7 7
011 0114 ) ——
011/ 5013 “ 91 1500

.0073in and .0224in .

ie.

These intervals show that none of these standard deviations are terribly well-determined
(degrees of freedom are small and intervals are wide). If better information is needed,
more data would have to be collected. But there is at least some indication that
O repeatability ANA O reproducibitiny are roughly of the same order of magnitude. The caliper
used to make the measurements was a fairly crude one, and there were detectable dif-
ferences in the way the student operators used that caliper.

Suppose, for sake of example, that engineering requirements on these Styrofoam
peanuts were that they be of size .50in+.051in. In such a context, the gauge capability
ratio (2.29) could be estimated to be between

6(.0073) _ .

6 (.0224)
-, o 13
65 — .55 3

65— .55

These values are not small. (See again the discussion on page 66.) This measurement
"system" is not really adequate to check conformance to even these crude +.05in
product requirements.

Some observations regarding the planning of a gauge R&R study are in order at
this point. The precisions with which one can estimate o, O eproducibility, and orgr
obviously depend upon I, J, and m. Roughly speaking, precision of estimation of
o is governed by the product (m — 1)IJ, so increasing any of the "dimensions" of
the data array will improve estimation of repeatability. However, it is primarily .J that
governs the precision with which oreproducibility and orgr can be estimated. Only
by increasing the number of operators in a gauge R&R study can one substantially
improve the estimation of reproducibility variation.

While this fact about the estimation of reproducibility is perfectly plausible, its im-
plications are not always fully appreciated (or at least not kept clearly in mind) by
quality assurance practitioners. For example, many standard gauge R&R data collec-
tion forms allow for at most J = 3 operators. But three is a very small sample size
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when it comes to estimating a variance or standard deviation. So although the data in
Table 2.1 are perhaps more or less typical of many R&R data sets, the small (J = 3)
number of operators evident there should not be thought of as in any way ideal. To
get a really good handle on the size of reproducibility variation, many more operators
would be needed.

Section 2.4 Exercises

1. Consider again the situation of problem 3 of the Section 2.3 exercises and the

data from the Fiber Angle case used there. (Operator 1 measured fiber angle
for 3 different specimens 4 times each.) Recast that scenario into the two-way
framework of this section.

(a) Give the values of I, J, and m.
(b) Find a range-based estimate of o gevice -

(c) Find a range-based estimate of o ,.

. Based only on the data of problem 3 of the Section 2.3 exercises, can oreproducibility
be estimated? Why or why not?

. Consider again the situation of problems 2 and 1 of the Section 2.3 exercises and
the data from the Fiber Angle case used there. (Fiber angle for specimen 1 was
measured 4 times by each of operators 1, 2, and 3.) Recast that scenario into the
two-way framework of this section.

(a) Give the values of I, J, and m.
(b) Find a range-based estimate of 0yepeatability -
(c) Find arange-based estimate of 0reproducibility -

(d) Based only on the data considered here, can o, be estimated? Why or why
not?

. Washer Assembly. Sudam, Heimer and Mueller studied a clothes washer base
assembly. Two operators measured the distance from one edge of a washer base
assembly to an attachment. For a single base assembly, the same distance was
measured four times by each operator. This was repeated on 3 different base
assemblies. The target distance was 13.320 with an upper specification of U =
13.42 and a lower specification of of L = 13.22. A standard gauge R & R study
was conducted and data like those below were obtained. (Units are 10~! in.)

Operator 1 Operator 2
Part1 13.285,13.284,13.283,13.282 13.284,13.288,13.287,13.283
Part2 13.298,13.293,13.291,13.291 13.297,13.292,13.292, 13.293
Part3 13.357,13.356,13.354,13.356  13.355,13.354,13.352, 13.357
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(a) What were the values of I, J, and m in this study?

(b) Based on the ANOVA table for the data given below, find the estimates for
Orepeatability ;0 reproducibility; ad OR&R -

(c) Give 95% confidence limits for o yepeatability » Treproducibility and OR&R.-

(d) Find 95% confidence limits for the GCR. (Hint: Use the last of your an-
swers to (c).)

ANOVA Table
Source SS df MS
Part 0236793 2 .0118396
Operator .0000007 1 .0000007
PartxOperator .0000106 2 .0000053
Error .0000895 18 .0000050
Total .0237800 23

2.5 Simple Linear Regression and Calibration Studies

Calibration is an essential activity in the qualification and maintenance of measurement
devices. In a calibration study, one uses a measurement device to produce measure-
ments on "standard" specimens with (relatively well-) "known" values of measurands,
and sees how the measurements compare to the known values. If there are systematic
discrepancies between what is known to be true and what the device reads, a conver-
sion scheme is created to (in future use of the device) adjust what is read to something
that is hopefully closer to the (future) truth. A slight extension of "regression" analysis
(curve fitting) as presented in an elementary statistics course is the relevant statistical
methodology in making this conversion. (See, for example, Section 9.1 of Vardeman
and Jobe’s Basic Engineering Data Collection and Analysis.) This section discusses
exactly how regression analysis is used in calibration.

Calibration studies employ true/gold-standard-measurement values of measurands
2 and "local" measurements y. (Strictly speaking, y need not even be in the same
units as x.) Regression analysis can provide both "point conversions" and measures of
uncertainty (the latter through inversion of "prediction limits"). The simplest version of
this is where observed measurements are approximately linearly related to measurands,
ie.

Yy~ B+ b

This is "linear calibration." The standard statistical model for such a circumstance is

y=PB¢+ Bz +e (2.42)

for a normal error ¢ with mean 0 and standard deviation o. (o describes how much
y’s vary for a fixed x, and in the present context typically amounts to a repeatability
standard deviation.) This model can be pictured as in Figure 2.17.
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>

X

FIGURE 2.17. A schematic of the usual simple linear regression model (2.42)

For n data pairs (z;,y;), simple linear regression methodology allows one to make
confidence intervals and tests associated with the model, and prediction limits for a
new measurement Ypey, associated with a new measurand, Tey. These are of the form

(xnew - *’E)Z

2i(zi — 2)?

where the least squares line is § = by + b1x and spr (a "line-fitting" sample standard
deviation) is an estimate of o derived from the fit of the line to the data. Any good
statistical package will compute and plot these limits as functions of x ey along with a
least squares line through the data set.

1
(bo + b1Znew) ESLEF \/1 + - + (2.43)

Example 17 Measuring Cr®" Concentration With a UV-vis Spectrophotometer. The
data below were taken from a Web page of the School of Chemistry at the University
of Witwatersrand developed and maintained by Dr. Dan Billing. They are measured
absorbance values, y, for n = 6 solutions with "known" Cr8* concentrations, x (in
mg/ 1), from an analytical lab.

x 0 1 2 4 6 8
y .002 .078 .163 .297 .464 .600

Figure 2.18 on page 78 is a plot of these data, the corresponding least squares line,
and the prediction limits (2.43).

What is here of most interest about simple linear regression technology is what it says
about calibration and measurement in general. Some applications of inference methods
based on the model (2.42) to metrology are the following.

Prediction
Limits
for Ynew in SLR



Confidence
Limits for o in
Model (2.42)

Coversion
Formula for
a Future
Measurment,
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FIGURE 2.18. Scatterplot of the Cr®" Concentration calibration data, least squares line, and
prediction limits for ynew

1. From a simple linear regression output,

n

1
SLF =VMSE = 5 Z (yi — g]i)2 = "root mean square error" (2.44)

n—
i=1

is an estimated repeatability standard deviation. One may make confidence in-
tervals for o = O repeatabiliy based on the estimate (2.44) using v = n — 2 degrees
of freedom and limits

-2 -2
SLF TLT and SLF nT . (245)
Xupper Xlower

2. The least squares equation §j = by + by can be solved for x, giving

new b
inew = Yne by 0 (246)

as a way of estimating a new "gold-standard" value (a new measurand, Tpey)
from a measured local value, ey
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3. One can take the prediction limits (2.43) for ynew and "turn them around" to
get confidence limits for the ., corresponding to a measured local ,ey. This
provides a defensible way to set "error bounds" on what y,e, indicates about

Tnew -

4. In cases (unlike Example 17) where y and x are in the same units, confidence
limits for the slope 3, of the simple linear regression model

SLF

> (zi — )’

by £t (2.47)

provide a way of investigating the constancy of bias (linearity of the measure-
ment device in the sense introduced on page 36). That is, when x and y are in
the same units, 5; = 1.0 is the case of constant bias. If confidence limits for /3,
fail to include 1.0, there is clear evidence of device nonlinearity.

Example 18 (Example 17 continued.) Use of the JMP statistical package with the
data of Example 17 produces

y = .0048702 + .0749895x with s;,r = .007855 .

We might expect a local (y) repeatability standard deviation of around .008 (in the y
absorbance units). In fact, 95% confidence limits for o can be made (using n — 2 = 4
degrees of freedom and formula (2.45)) as

[ 4 [ 4
.007855 11143 and .007855 =1

.0047 and .0226 .

ie.

Making use of the slope and intercept of the least squares line, a conversion formula
for going from Ype,, 10 Tye, s (as in display (2.46))

5 Ynew = .0048702
e 0749895 ’

So, for example, a future measured absorbance of Y., = .20 suggests a concentration

of

Fnew = T 0749895

Finally, Figure 2.19 on page 80 is a modification of Figure 2.18 that illustrates how
the plotted prediction limits (2.43) provide both 95% predictions for a new measure-
ment on a fixed/known measurand and 95% confidence limits on a new measurand,

.20 — .0048702

Confidence
Limits for 3, in
Model (2.42)
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FIGURE 2.19. Confidence limits for . based on an observed ynew (and prediction limits
(2.43))

having observed a particular measurement. Reading from the figure, one is "95% sure"
that a future observed absorbance of .20 comes from a concentration between

2.28mg/1 and 2.903mg/1.

Example 19 A Check on Device "Linearity.” A calibration data set due to John Man-
del compared n = 14 measured values y for a single laboratory to corresponding con-
sensus values x for the same specimens derived from multiple labs. (The units are not
available, but were the same for x and y values.) A simple linear regression analysis
of the data pairs produced

SLF
> (i — 55)2

so that (using the upper 2.5% point of the t12 distribution, 2.179, and formula (2.47))
95% confidence limits for 3, are

by = .882 and = .012

882 42.179 (.012)

or

.882 +.026 .
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A 95% confidence interval for 3, clearly does not include 1.0. So bias for the single
laboratory was not constant. (The measurement "device" was not linear in the sense
discussed on page 36.)

Section 2.5 Exercises

1. n = 14 polymer specimens of known weights, x, were weighed and the mea-
sured weights, y, recorded. The following table contains the data. (All units are

g’s.)

x 1 1 3 3 ) ) 7
y 110 .95 298 3.01 5.02 499 697

7 10 10 12 12 14 14
y 710 10.03 9.99 12.00 11.98 14.10 14.00

8

(a) Find the least squares line § = by + by« for these data.

(b) Find the estimated repeatability standard deviation corresponding to your
regression analysis.

(c) Find 95% confidence limits for the y repeatability standard deviation based
on your answer to (b).

2. In the context of problem 1, suppose a new specimen is measured as having a
weight of 6.10 g.

(a) Find the "calibrated weight," Z, corresponding to this new specimen based
on your regression analysis.

(b) Find 95% confidence limits for the slope of the relationship between mea-
sured and actual weight (5;). Does the device used to produce the y mea-
surements have constant bias (is it "linear")? Why or why not?

3. Based on your regression analysis in problem 1, find 95% prediction limits for
the next measured weight for a new specimen with standard known weight of
8g.

4. Would it be wise to use the above regression analyses to adjust a measured spec-
imen weight of ypew = .2 g? Why or why not?
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2.6 Measurement Precision and the Ability to Detect a
Change or Difference

Estimating the repeatability and reproducibility of a gauge or measurement system
amounts to finding a sensible standard deviation (""sigma") to associate with it. Where
only one operator is involved, the repeatability measure, o, is appropriate. Where mul-
tiple operators are going to be used, the measure org g defined in display (2.27) is
more germane. After an appropriate sigma has been identified, it can form the basis of
judgments concerning the adequacy of the gauge or system for specific purposes. For
example, looking at measures like the gauge capability ratio (2.29) is a way of judging
(based on an appropriate sigma) the adequacy of a gauge for the purpose of check-
ing conformance to a set of engineering specifications. In this section, we consider the
slightly different matter of the adequacy of a gauge or measurement system for the
purpose of detecting a change or difference.

The problem of determining whether "something has changed"/"there is a differ-
ence" is fundamental to engineering and technology. For example, in the context of
process monitoring, engineers need to know whether process parameters (e.g., the
mean widget diameter being produced by a particular lathe) are at standard values
or have changed. And, in evaluating whether two machines are producing similar out-
put, one needs to assess whether product characteristics from the two machines are the
same or are consistently different. And, for example, when using hazardous materials
in manufacturing, engineers need to compare chemical analyses for current environ-
mental samples to analyses for "blank" samples, looking for evidence that important
quantities of toxic materials have escaped a production process and thus increased their
ambient level from some "background" level.

For the remainder of this section, let 0 yeasurement Stand for an appropriate standard
deviation for describing the precision of some measurement system. (Depending upon
the context this could be o or orgr from a gauge R&R study.) We will investigate
the impact of 0 easurement ON ONE’s ability to detect change or difference through
consideration of the distribution of the statistic

ynew - yold ’ (248)

where ¥, .., is the sample mean of .y independent measurements taken on a particu-
lar "new" object and 7,4 is the sample mean of n,1q independent measurements taken
on a particular "old" object. This is much like the context of Section 2.2.2, and Fig-
ure 2.20 (which is a slight modification of Figure 2.12) illustrates the situation under
consideration. The related issue issue of how to think about situations where particular
objects being measured are themselves of interest only to the extent that they represent
"new" and "old" conditions that produced them will be considered briefly at the end of
this section.

This discussion will allow the possibility that the information on the "old" object is
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0,0

> measurement

> Yol _
Yold
>y old,ny4
y new, | _
ynew
> ) new,n,

new

independent of

measurement )

Voai$ ~ ind (xold +6,0

+0,0

new measurement )

' .
ynew,is - lnd (x

FIGURE 2.20. no4 measurements on an "old" measurand and n,ew measurements on a "new"
measurand made with a single system with (constant) bias § and measurement standard deviation

O measurement

strong enough that n,1q can be thought of as being essentially infinite, and thus ¥4
essentially equal to the (long-run) mean of old observations, zoq + 0. If Tpew + 9
is the long-run mean (expected value) of the new observations and the new and old
measurements are independent, the random variable in display (2.48) has mean

E@new - yold) = (xnew + 5) - (xold + 5) = Tnew — Told » (2.49)

and variance

_ _ 1 1
Va‘r(ynew - yold) = Urzneasurement ( + ) . (250)

Nnew Nold

When the information on the old object is strong enough to consider n,)q to be essen-
tially infinite, expression (2.50) reduces to

1
Va’r(?new - yold) = J?neasurement ( ) . (251)

Nnew

In the event that it is sensible to think of ¥, .., — ¥, 14 as normally distributed (either
because repeat measurements are themselves approximately normally distributed or
because both npeyw and ngq are large) one then has the picture of the distribution of
Unew — Yolq given in Figure 2.21 on page 84. If 26w = Zo1d, then the normal curve in
the figure is centered at 0. If 2,0 # %14 the normal curve in the figure is centered at
the nonzero difference between the new and old measurands.

Example 20 Chemical Analysis for Benzene. An appropriate standard deviation for
characterizing an industrial laboratory’s precision in a particular analysis for the ben-
zene content of samples of a particular type is 0 measurement = 03 g/ 1. Suppose that
in order to determine whether the amount of benzene in a particular environmental
sample exceeds that in a particular similar "blank” sample (supposedly containing

Mean for the
Random
Variable

ynew - yold

Variance for the
Random
Variable

gnew - ?old
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The Standard Deviation of
ynew - 70Id IS

o 1 +1
measurement 4| — =
Nnew Mold

*new ~ Xold Ynew ~ Yold

FIGURE 2.21. The distribution of ¥, — Y014

only background levels of the substance), the environmental sample will be analyzed
Nnew = 1 time and its measured content compared to the mean measured content from
Nold = D analyses of a single blank sample. Then from equations (2.49) and (2.50) the
random variable o, — Yo1q has mean

E(gnew - yold) = Tnew — Told »

and standard deviation

1 1 6
Var(?new - yold) = Umeasurement\/z = 03\/? =.033u g/l .

Figure 2.22 shows a corresponding probability distribution for the difference Y, .., —
Yo1q assuming that repeat measurements of a given sample are normally distributed.

Note, by the way, that if the information on the blank sample was essentially perfect
and equation (2.51) was relevant, the standard deviation associated With Y., — lold
would be .030ug /1, not much smaller than the .033ug/1 value found here.

The Standard Deviation of
Ynew — Yoid IS .033 ug/|

Frew — Yoy (19!
(xnew 7xold) -.033 / \ (xnevv 7xold) +.033 Pnew = Yola (ug )

FIGURE 2.22. Distribution of §,.,, — ¥4 in the benzene analysis example
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The picture of ¥, ., — Yoiq given in equations (2.49) and (2.50) and Figure 2.21
forms the basis for several common ways of evaluating the adequacy of a measurement
technique to characterize a change or difference. One simple-minded rule of thumb
often employed by analytical chemists is that a difference x,ew — Zo1q needs to be on
the order of 10 times the standard deviation of J,,., — ¥4 before it can be adequately
characterized by a measurement process with standard deviation o easurement USING
sample sizes nyew and no1q. For example, in the benzene analyses of Example 20, with
sample sizes npew = 1 and neq = 5, this rule of thumb says that only increases in real
benzene content on the order of at least

10 x .033 = .33ug/1

can be reliably characterized. This somewhat ad hoc (but nevertheless popular) guide-
line amounts to a requirement that one’s "signal-to-noise ratio" for determination of a
difference (ratio of mean to standard deviation) be at least 10 before being comfortable
with the resulting precision.

A second approach to using the picture of J,.., — ¥4 given in equations (2.49)
and (2.50) and Figure 2.21 to describe one’s ability to detect a difference between
measurands involves some ideas from hypothesis testing. In interpreting an observed
value of ¥,.w — Yo1q» ONE might require that it be of a certain minimum magnitude
before declaring that there is clearly a difference between new and old objects. For the
sake of concreteness, suppose for the rest of this section that one is concerned about
detecting an increase in response. That is, suppose one is interested in detecting the
possibility that z,ew — Zo1g > 0. It then makes sense to set some critical limit, L,
and to only declare that there has been a change (that there is a difference) if

yncw - yold > LC . (252)

If one wishes to limit the probability of a "false positive" (i.e., a type I error) L. should
be large enough that the eventuality (2.52) occurs rarely when in fact z,ew = xo14. For
example, if one may assume that §, .., — 7,4 is essentially normally distributed, it is
possible to use the fact that when x,,cw, = 219 the variable

Ynew — Yold
1 1
O measurementq/ 7, — Tora

is standard normal, to set a value for L.. From a normal table, one may pick a number
z1 so that for standard normal Z, P[Z > z] = «, for a a small number of one’s
choosing. Then setting
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Critical Value
for Normal

ynew - yold
if an Increase in

Response Is 1 1
to Be Detected L¢ = 210 measurement

(2.53)

)
Nnew Nold

the probability of a false positive is no more than a.

Once one has established a critical value L. (using equation (2.53) or otherwise)
it is then reasonable to ask what is the probability of detecting a change of a given
size, or equivalently what size change can be reliably detected. Again, assuming that
Ynew — Yold 18 essentially normally distributed as in Figure 2.21, it is possible to answer
this question. That is, using the normal model, with

z-score for the I
Critical Value 2= — Lo~ @now —Toa) (2.54)

L o 1 1
c measurement Tinow Told

the probability (depending upon zpew — To1a) of declaring that there has been a change
(that there is a difference) is
Probability of
Declaring That
Response Has
Increased (for

Normal

Toos — Tord) v =P[Z > 2], (2.55)
(for Z again standard normal). Or by rewriting equation (2.54), for zo chosen so that
v in display (2.55) is large, one can solve for the size of change in measurand required
to produce a large (at least ) probability of detection, namely

Change in

Measurand

with ~

Probability of

Detection (for 1 1

Normal Tnew — Told = Lc — 220 measurement (2.56)

_ _ Nnew Nold

Ynew — yold)

Notice that in display (2.56) z; is typically negative so that this difference in mea-
surands T,.w — Zo1q is then typically larger than L.

In analytical chemistry, the value of e — Zo1q required to produce a large proba-
bility of detecting an increase in measurand is given a special name.
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Definition 21 For a given standard deviation of measurement 0 yeasurement, Sample
Sizes Npew and nolg, critical value L. and desired (large) probability ~, the lower limit
of detection, L, of a measurement protocol is the smallest difference in measurands
Tnew — Told producing

P[ynew - gold > LC] Z -

When ¥, ., — Yo1q 1S normal and z, is chosen according to display (2.55), equation
(2.56) implies that

1 1
Ld = Lc — 220 measurement +
Nnew

. (2.57)
Told

(where again, 25 is typically negative so that this Lq is then typically larger than L.).
And although there is no requirement that L, be set according to equation (2.53), when
this is used to control the chance of a false positive, equations (2.53) and (2.57) com-
bine to produce

1 1
_|_

(2.58)

Lq = (Zl - 22) O measurement

Mnew Told

Example 22 (Example 20 continued.) Consider again the benzene analysis example.
Suppose that it is desirable to limit the probability of producing a "false positive"
(a declaration that the environmental sample contains more benzene than the blank
sample when in fact there is no real difference in the two) to no more than o« = .10.
Consulting a standard normal table, for Z standard normal, P|Z > 1.282] = .10. So,
using equation (2.53), an appropriate critical value is

11
L = 1.282(.030)/ 7 + ¢ = 042,

Should one wish to evaluate the probability of detecting an increase in real benzene
content of size Tyew — Told = -02u g/ L using this critical value, equations (2.54) and

(2.55) show that with
.042 — .02

= = = — 67,
0304/1 + 1

22

the probability is only about

P[Z > 2] = P|Z > 67] = .2514.

Lower Limit of
Detection (for
Normal

ynew - gold)

Lower Limit of
Detection if
Equation (2.53)
is Used to Set
the Critical
Value and
Equation (2.55)
is Used
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There is a substantial (75%) chance of failing to identify a .02 g/ lincrease in benzene
content beyond that resident in the blank sample. This unpleasant fact motivates the
question "How big does the increase in benzene concentration need to be in order
to have a large (say 95%) chance of seeing it above the measurement noise?" Since
consultation of the standard normal table shows that

P[Z > —1.645] = .95,

equations (2.55) and (2.57) imply that for v = .95

+

1
Ld = Tnew — Lold = .042 — (—1645)(030) I

=.096ug/1

ot —

is (in the language of Definition 21) the lower limit of detection in this situation. A real
increase in benzene content must be of at least this size for there to be a large (95%)
chance of "seeing" it through the measurement noise.

The particular example used in the foregoing discussion of the implications of equa-
tions (2.49) and (2.50) and Figure 2.21 is from analytical chemistry. But the basic
method illustrated is perfectly general and could, for example, be equally well applied
to the consideration of the implications of measurement precision for one’s ability to
detect a difference in diameters of two particular parts turned on a lathe.

It is, however, an extremely important distinction that the discussion thus far in this
section has been phrased in terms of detecting a difference between two particular ob-
jects and not between processes or populations standing behind those objects. Example
20 concerns comparison of a particular environmental sample and a particular blank
sample. It does not directly address the issue of how the population of environmental
samples from a site of interest compares to a population of blanks. Similarly, in a man-
ufacturing context, comparisons based on the foregoing material would concern two
particular measured parts, not the process conditions operative when those parts were
made. The point here is that only measurement variation has been taken into account,
and not object-to-object variation for processes or populations the measured objects
might represent. (And unless there is no "within-population" or "process" variation,
detection of a difference between an old and a new object is not the same as detection
of a difference between old and new population or process means.)

The problem of comparing two processes or populations while admitting the reality
of measurement noise was first raised in Section 2.2.2. Figure 2.23 is a slight modifica-
tion of Figure 2.13 from that section and represents the scenario under consideration.

In this second context, the difference in sample means (2.48) has mean

E(ynew - yold) = (/J’znew + 5) - (lu’rold + 5) = Hznew — Hzold »

the difference in process or condition mean measurands. The variance of the difference



Chapter 2. Statistics and Measurement 89

/uxold ’ O-xold
5
5

~D1<
fopooodl
| SR (:>

qunew > axnew

33%

fopooodl
oM

ynew

new

2
measurement

+0

xold

You;'S ~ ind (/lmld +6,4o. ) independent of

] . 2 2
ynew,i S ~ lnd (quncw + 5’ \/O-)mew + O-measuremem )

FIGURE 2.23. noq measurements on an "old" process and mnew measurements on a "new"
process made with a single system with (constant) bias § and measurement standard deviation
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is
o

2 2 2 2
rnew + O measurement + 0 zold + 0 measurement

Nnew Nold

2 2
_ 0_2 < 1 + 1 )+ 0 znew 4 O 2old
- measurement
Nnew Nold Nnew Nold

Var (?new - ?old) =

and (of course) item-to-item/measurand-to-measurand variability is reflected in g, ., —
Yo1q- In the event that the "old" and "new" processes have comparable values of o,
the formulas and language in this section can be reinterpreted to allow application
to the problem of detecting changes in a process or population mean, by replacing

O measurement Wlth

2 2
\/Ux + O measurement

Otherwise, a separate development of formulas is required. For example, if in the con-
text of Example 20, blank samples are more homogeneous than are field samples from
a particular site, an analysis parallel to that in this section but based on the two different
values for o, will be needed for application to the problem of comparing a site mean
benzene level to a blank mean level.

Section 2.6 Exercises

1. An analyst can tolerate only a .01 (1%) chance of falsely concluding that a mea-
surand associated with a field sample exceeds that for a blank (should those
actually be the same).
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(a) In the context of the discussion of this section, what value of z; is then
appropriate?

(b) The analyst was also interested in identifying the smallest positive differ-
ence in measurands (ZTfelq — Thlank) for which there is probability of only
.05 of incorrectly concluding the difference is zero or negative. What value
should this person use for z?

(¢) Using your values for z; and 25 from (a) and (b) above and equation (2.58),
what is the lower limit of detection for this scenario if only single measure-
ments are made on both the field sample and the blank? (Your answer will
be a multiple of o easurement-)

2. Dimethyl Phenanthrene (DMP4) Atmospheric Blank. Currie, et al. presented
the paper "Impact of the Chemical and Isotopic Blank on the Interpretation of
Environmental Radiocarbon Results" at the International Radiocarbon Confer-
ence in Glasgow, Scotland, August 1994. Their presentation included discussion
of six measurements of the DMP4 content of an atmospheric field filter blank.
(DMP4 is a product of softwood pyrolysis.) The six responses in nanograms
(1079 g) were

8.25, 7.30, 7.27, 6.54, 6.75 and 7.32.

Suppose here that one analyst measured the DMP4 field filter blank all six times
with the same instrument.

(a) Find the sample standard deviation of these values. In terms of the gauge
R&R material of Section 2.4, what does this sample standard deviation
estimate? In parts (b), (c) and (d) below, use this estimate as if it were the
true value of o easurement-

(b) Find a critical limit, L., if the probability of a false positive detection is to
be 10% and both a field sample and a (new) blank are to be measured once.

(c) Find a lower limit of detection where the probability of a false positive
detection is 10% and the probability of a false negative is to be 5% for a
difference in measurands at the lower limit of detection. (Suppose as in
part (b) that both a field sample and a new blank are to be measured once.)

(d) Continuing under the assumption that a single individual made all six mea-
surements, what must be true about the measurement method if the sample
standard deviation in (a) is reasonably thought of as estimate of "o easurement "' ?
(Consider the ideas of Section 2.4.)
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2.7 R&R Considerations for Go/No-Go Inspection

Ideally, observation of a process results in quantitative measurements. But there are
some contexts in which all that is determined is whether an item or process condi-
tion is of one of two types, that we will for the present call "conforming" and "non-
conforming." It is, for example, common to check the conformance of machined metal
parts to some engineering requirements via the use of a "go/no-go gauge." (A part is
conforming if a critical dimension fits into the larger of two check fixtures and does not
fit into the smaller of the two.) And it is common to task human beings with making
visual inspections of manufactured items and producing a "OK/Not-OK" call on each.

Engineers are sometimes then called upon to apply the qualitative "repeatability"
and "reproducibility" concepts of metrology to such Go/No-Go or "0/1" contexts. One
wants to separate some measure of overall inconsistency in 0/1 "calls" on items into
pieces that can be mentally charged to inherent inconsistency in the equipment or
method, and the remainder that can be charged to differences between how operators
use it. Exactly how to do this is presently not well-established. The best available statis-
tical methodology for this kind of problem is more complicated than can be presented
here (involving so-called "generalized linear models" and random effects in these).
What we can present is a rational way of making point estimates of what might be
termed repeatability and reproducibility components of variation in 0/1 calls. (These
are based on reasoning similar to that employed in Section 2.4.2 to find correct range-
based estimates in usual measurement R&R contexts.) We then remind the reader of
elementary methods of estimating differences in population proportions and point out
their relevance in the present situation.

2.7.1 Some Simple Probability Modeling

To begin, think of coding a "non-conforming" call as "1" and a "conforming" call as
"0," and having J operators each make m calls on a fixed part. Suppose that .J operators
have individual probabilities py, pe,...,ps of calling the part "non-conforming" on
any single viewing, and that across m viewings

X; = the number of non-conforming calls among the m made by operator j

is Binomial (m, p;). We’ll assume that the p; are random draws from some population
with mean 7 and variance v.
The quantity
p; (1 —p;)
is a kind of "per call variance" associated with the declarations of operator j, and
might serve as a kind of repeatability variance for that operator. (Given the value of
pj, elementary probability theory says that the variance of X is mp; (1 — p;).) The
biggest problem here is that unlike what is true in the usual case of gauge R&R for
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measurements, this variance is not constant across operators. But its expected value,
namely

E(p;(1—p;)) = =—Ep;
= m—(v+7°)
= 7(l—m)—vw

can be used as a sensible measure of variability in conforming/non-conforming clas-
sifications chargeable to repeatability sources. The variance v serves as a measure of
reproducibility variance. This ultimately points to

w(1—m)

as the "total R&R variance" here. That is, we make definitions for 0/1 contexts

oagr = (1 —) (2.59)
O'rzepeatability =7 (1 - 7T) - v (2.60)

and
Urzeproducibility =v (2.61)

2.7.2 Simple R&R Point Estimates for 0/1 Contexts
Still thinking of a single fixed part, let

. the number of "non-conforming" calls made by operator j

P = m =

Xj
m

and define the (sample) average and (sample) variance of these,

1 1 J = 2
ﬁ:Jij and Sp:ﬁ (pjfﬁ)
j=1 j=1
It is possible to argue that -
Ep=m
and that
Esg = Varp;
= Varpj+Epj( Ps)
_ mflv+7r(1f7r),
m m
so that i )
m 2 m(l—m
T m—1
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This line of reasoning suggests the simple estimators (still based on a single part)

(2.62)

and

— (2.63)

~5(1-9))

On rare occasions, 2 will exceed p (1 — p), leading to a value of 6 52

~2 o
Ureproducibility = max <O (

reproducibility in dis-

play (2.63) larger than aR&R specified in display (2.62). In those cases we will reduce
reproduublhty t0 Orgr = P (1 —p) and thus produce a final version of the estimator
(2.63)

A . A 1 ~ ~
U?eproducibility = min (Uﬁ&Rv max (0 — ( 5% -p (1 - P)))) . (2.64)

Then from displays (2.62) and (2.64) an obvious estimator of the repeatability variance
is

2 ~2 2
repeatablllty - UR&R reproducibility (265)

Again, the estimators (2.62), (2.64), and (2.65) are based on a single part. Exactly
what to do based on multiple parts (say I of them) is not completely obvious. But in
order to produce a simple methodology, we will simply average estimates made one
part at a time across multiple parts, presuming that parts in hand are sensibly thought
of as a random sample of parts to be checked, and that this averaging is a reasonable
way to combine information across parts.

In order for any of this to have a chance of working, m will need to be fairly large.
The usual gauge R&R "m = 2 or 3" just isn’t going to produce informative results in
the present context. And in order for this to work in practice (so that an operator isn’t
just repeatedly looking at the same few parts over and over and remembering how he
or she has called them in the past) a large value of I may also be needed.

Estimator of
R&R Variance
for a Single
Partin a 0/1
Context

Estimator of
Reproducibility
Variance for a
Single Partin a
0/1 Context

Estimator of
Repeatability
Variance for a
Single Part in a
0/1 Context
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TABLE 2.7. Hypothetical Results of Visual Inspection of 5 Parts by 3 Operators
Operator 1 Operator 2 Operator3  p  p(l—p) s

Part 1 2 4 2 .2667 .1956 .0133
Part 2 .6 6 7 6333 .2322 .0033
Part 3 1.0 8 7 .8333 1389 .0233
Part 4 .1 1 1 1 .0900 0

Part 5 1 3 3 2333 1789 .0133

TABLE 2.8. R&R Cacluations for the Hypothetical Visual Inspection Data
~A2 ~ = ~2 A2
OR&R — P (]- - p) Ureproducibility Jrepeatability

Part 1 .1956 0 .1956
Part 2 2322 0 2322
Part 3 1389 .0105 1284
Part 4 .0900 0 .0900
Part 5 1789 0 1789
Average 1671 .0021 .1650

Example 23 A Simple Numerical Example. For purposes of illustrating the formulas
of this section, we will use a small numerical example due to Prof. Max Morris. Sup-
pose that I = 5 parts are inspected by J = 3 operators, m = 10 times apiece, and
that in Table 2.7 are sample fractions of "non-conforming” calls made by the operators
and a few summary statistics.

The entries in the next to last column of Table 2.7 are 6, values for the 5 parts.

Estimates of &fepmducibm,y are, for example, computed as for Part 1

N 1
O—feproducibility = max <O, 10-1 (10 (0133) 1956))
= 0

2

leaving estimates of G ,opearapiliy

computed as for Part 1

6i?epeatability = .1956 -0
= .1956

The whole set of estimates and their averages are collected in Table 2.8.
Then, for example, a fraction of only

.0021
1671

of the inconsistency in conforming/non-conforming calls seen in the original data
seems to be attributable to clear differences in how the operators judge the parts (dif-
ferences in the binomial "success probabilities" p;). Rather, the bulk of the variance
seems to be attributable to unavoidable binomial variation. The p’s are not close
enough to either 0 or 1 to make the calls tend to be consistent. So the variation seen
in the p’s in a given row is not clear evidence of large operator differences.

=1.3%
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Of course, we need to remember that the computations above are on the variance
(and not standard deviation) scale. On the (more natural) standard deviation scale,
reproducibility variation

v.0021 = .05
and repeatability variation
Vv.1650 = .41

are not quite so strikingly dissimilar.

2.7.3 Application of Inference Methods for the Difference in Two
Binomial "'p’s"

The question of whether call rates for two operators on the same part are really de-

tectably different brings up the elementary statistics topic of estimating the difference

in two binomial parameters, say p; and ps. A common elementary large sample ap-
proximate confidence interval for p; — p- has endpoints

5 (1 — 5 5 (1 — b
ﬁlﬁQiZ\/pl( p1)+P2( P2)_
n1 U»)

But, as it turns out, this formula can fail badly if either p is extreme or either n is small.
So we will use a slight modification that is more reliable, namely

Confidence
Limts for
P1 — P2
s (1— 5 S 1— 5
ﬁ1—ﬁ2iz\/p1( py) | P2(1=P) (2.66)
ny %)
where
Values to Use
in Formula
(2.66)
. nipi+2
;= v T2 2.67
D — (2.67)

That is, under the square root of the usual formula one essentially replaces the p values
with p values derived by adding 2 "successes" in 4 "additional trials" to the counts
used to make up the p values. (This has the effect of making the standard large sample
interval a bit wider and correcting the problem that for small sample sizes and extreme
values of p it can fail to hold its nominal confidence level.)
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Example 24 (Example 23 continued.) Consider again Part 1 from Example 23, and
in particular consider the question of whether Operator 1 and Operator 2 have clearly
different probabilities of calling that part non-conforming on a single call. With p1 =
.2 and py = 4, formula (2.67) says that

~ 2+2 . 4+2
p1 = 054 2857 and py = —— = .4286

so that using formula (2.66) approximate 95% confidence limits for the difference p; —
po are

2857(1— 2 4286 (1 — .42
2- 4+ 1.96\/ 857 857) , 4286( 86)

10 10
ie.
—.24.49
These limits cover 0 and there thus is no clear evidence in the p1 = .2 and p, = 4

values (from the relatively small samples of sizes m = 10) that Operators 1 and 2 have
different probabilities of calling Part 1 non-conforming.

Section 2.7 Exercises

1. Suppose that 10 parts are inspected by 4 operators 16 times apiece. Each inspec-
tion determines whether or not the item is conforming. The counts in the table
below correspond to the numbers of "non-conforming" calls out of 16 inspec-

tions.

Operator 1 Operator 2 Operator 3 Operator 4

Part 1 10 11 11 10
Part 2 11 9 12 10
Part 3 8 8 9 7
Part 4 15 14 14 16
Part 5 12 14 11 12
Part 6 15 15 16 15
Part 7 14 11 14 12
Part 8 16 16 15 15
Part 9 13 15 14 15
Part 10 16 15 16 16

(a) Using the data above, fill in the table below:
Part p p(l—p) 52

1

2

10
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(b) What is the fraction of inconsistency in conforming/non-conforming calls
that can be attributed to clear differences in how the operators judged the
parts (differences in the binomial "success probabilities" p;)? (Make your
answer on the variance scale.)

(c) What is the estimated reproducibility variation (on the standard deviation
scale)?

(d) What is the estimated repeatability variation (on the standard deviation
scale)?

(e) For part 10, give a 90% confidence interval for the difference (operator 1
minus operator 3) in probabilities of a non-conforming call. Does it appear
the operators 1 and 3 have different probabilities of a non-conforming call
on any one of the parts? Why?

2.8 Chapter Summary

This chapter has been concerned with how measurement error impacts what can be
learned from empirical data. It presented some ideas from the probability modeling of
measurement variation, and considered how the interpretation of elementary statistical
inferences is affected by measurement error. Then a variety of more advanced statistical
tools were discussed, because of their usefulness in quantifying, partitioning, and (in
some cases) removing the effects of measurement variation in quality assurance and
improvement projects.

2.9 Chapter 2 Exercises

1. Does a perfectly calibrated device return measurements of a measurand that are
completely free of error? Explain.

2. Is a standard (an item with corresponding "known" measurand) needed in both
device calibration and estimation of g gevice? If not, which requires a standard?
Explain.

3. A measurement device may have a bias as large as 1 unit (in absolute value)
and a device standard deviation as large as 1 unit. You measure x and observe
y = 10. If you believe in the simple (normal) measurement model and want
to report an interval you are "at least 99% sure" contains x, you should report
what limits? (Hint: Before measurement, how far do you expect y to be from x
with the indicated worst possible values of absolute bias and standard deviation?
Interpret "99% sure" in "plus or minus 3 standard deviations" terms.)
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. The same axel diameter is measured n; = 25 times with device #1 and ny, =

25 times with device #2, with resulting means and standard deviations §; =
2.001in,y, = 2.004in,s; = .003in, and so = .004 in. The upper 2.5% point
of the Fy4 24 distribution is about 2.27.

(a) Give 95% confidence limits for the difference in device biases.

(b) Give 95% confidence limits for the ratio of the two device standard devia-
tions.

(c) Is there a clear difference in device biases based on your interval in (a)?
Why or why not?

(d) Is there a clear difference in device standard deviations based on your in-
terval in (b)? Why or why not?

. Two different (physically stable) production lines produce plastic pop bottles.

Suppose n; = 25 bottles from line #1 and ny = 25 bottles from line #2 are
burst-tested on a single tester, with resulting means and standard deviations y; =
201psi, o = 202psi, s1 = 3psi, and so = 4psi.

(a) Give a 95% confidence interval for the difference between the mean burst
strengths for lines #1 and #2 (line #1 minus line #2).

(b) Give a 95% confidence interval for the ratio of burst strength standard de-
viations (line #1 divided by line #2). The upper 2.5% point of the Fo4 24
distribution is about 2.27.

(c) Is there a clear difference between mean burst strengths? Why or why not?

(d) Is there a clear difference between the consistencies of burst strengths?
Why or why not?

. Using a single tester, a single metal specimen was tested for Brinell hardness 20

times with resulting sample standard deviation of hardness 10HB. Subsequently,
40 different specimens cut from the same ingot of steel have sample standard
deviation of measured hardness 20HB (using the same tester).

(a) Give 95% confidence limits for a "test variability" standard deviation.

(b) Give approximate 95% confidence limits for a specimen-to-specimen stan-
dard deviation of actual Brinell hardness.

. An ANOVA analysis of a gauge R&R data set produced 6rgr = 53 (in appropri-

ate units) and Urgr = 3. In these units, engineering specifications on a critical
dimension of a machined steel part are nominal + 200. Give approximate 95%
confidence limits for a GCR (gauge capability ratio) for checking conformance
to these specifications.

. 95% confidence limits for a particular gauge capability ratio are 6 to 8. What

does this indicate about the usability of the gauge for checking conformance to
the specifications under consideration?
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Below is an analysis of variance table from a calibration study. The data were
light intensities, y (in unspecified analyzer units) for specimens of known Ri-
boflavin concentration x (in pg/ ml).

ANOVA Table
Source SS df MS
Model  10946.445 1 10946.445
Error 27.155 8 3.4
Total 10973.6 9

Parameter estimates for the simple linear regression model were by = 6.4634
and b; = 129.1768.

(a) Give a 95% confidence interval for a repeatability standard deviation for
this analyzer.

(b) Suppose a new specimen with unknown concentration is analyzed and
Ynew = 79 is observed. Give a single number estimate of the concentra-
tion in that specimen.

The final step in the production of some glass vials is a visual inspection presently
carried out by human inspectors. A particular single vial (marked in an "invis-
ible" ink that can be seen only under ultraviolet light) known to be defective is
repeatedly run through the inspection process among a large number of newly
produced vials. In fact, each of 5 company inspectors sees that vial 10 times in a
company study. Below are the rates at which that vial was identified as defective
by the various operators ( "1.0" means 100%.)

6,.9,.9,1.0,1.0

(a) What two values of p reflect perfect consistency of "defective/non-defective"
calls made by a particular inspector?

(b) What distribution models the number of correct "defective" calls made by
a particular inspector?

(¢) On the scale of (estimated) variances (not standard deviations), what is the
fraction of overall variation seen in the "defective/non-defective" calls for
this vial that should be attributed to operator-to-operator differences?

(d) Give 95% confidence limits for the long run difference in proportions of
"defective" calls for the first operator (that made 6 out of 10 "defective"calls)
and the last operator (who made all "defective"calls).

Laser Metal Cutting. Davis, Martin and Popinga used a Ytterbium Argon gas
laser to make some cuts in 316 stainless steel. Using 95 MJ/pulse and 20 Hz
settings on the laser and a 15.5 mm distance to the steel specimens (set at a
45° angle to the laser beam) the students made cuts in specimens using 100,
500, and 1000 pulses. The measured depths of four different cuts (in machine
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units) at each pulse level are given below (assume the same operator made all
measurements and that repeatability variation is negligible here).

100 Pulses 500 Pulses 1000 Pulses
7.4,8.6,5.6,8.0 24.2,29.5,26.5,23.8 33.4,37.5,35.9,34.8

(a) What is the response variable in this problem?

(b) Give the sample average values for the 100, 500, and 1000 pulse levels.
Calculate the sample range for the data at each pulse level. Give estimates
of the standard deviation of cut depth for each level of pulse, first based on
the sample range and then using the sample standard deviation. (You will
have two estimates for each of the three population standard deviations.)

(c) Assuming variability is the same for all three pulse levels, give an estimate
of the common standard deviation based on the three sample ranges.

(d) The concepts of measurement validity, precision, and accuracy are dis-
cussed in Section 2.1. The analysts decided to report the average cut depth
for the different pulse levels. This averaging can be thought of in terms of
improving which of 1) validity, 2) precision, or 3) accuracy (over the use
of any single measurement)? The concept of calibration is most closely
associated with which of the three?

12. Fiber Angle. Grunig, Hamdorf, Herman, and Potthoff studied a carpet-like prod-
uct. They measured the angle at which fibers were glued to a sheet of base ma-
terial. A piece of finished product was obtained and cut into five sections. Each
of the four team members measured the fiber angle eight times for each section.
The results of their measuring are given below (in degrees above an undisclosed
reference value). A corresponding ANOVA table is also given.

(a) Say what each term in the equation y;j, = pu + a; + B; + aB;; + €ijk
means in this problem (including the subscripts i, j, and k).
(b) Using ranges, estimate the repeatability and reproducibility standard devi-

ations for angle measurement. Based on this analysis what aspect of the
measuring procedure seems to need the most attention? Explain.

(c) Using ANOVA-based formulas, estimate the repeatability and reproducibil-
ity standard deviations for angle measurement. Is this analysis in essential
agreement with that in part (b)? Explain.

(d) Using your answer to (c), give an estimate of the standard deviation that
would be experienced by many analysts making a single measurement on
the same angle (in the same section) assuming there is no repeatability
component to the overall variation.

(e) Specifications on the fiber angle are nominal £+ 5 °. Estimate the gauge
capability ratio using first ranges and then ANOVA-based estimates. Does
it appear this measurement method is adequate to check conformance to
the specifications? Why or why not?
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Angle Analyst 1 Analyst 2 Analyst 3 Analyst 4
1 19,20,20,23 20,25,17,22 20,19,15,16  10,10,10,5
20,20,20,15 23,15,23,20 20,19,12,14 5,5,5,5
2 15,17,20,20 15,13,5,10 15,20,14,16 10,10,10,10
10,15,15,15  §,8,10,12  13,20,15,15 10,15,15,10
3 23,20,22,20 20,23,20,20 15,20,22,18 10,10,10,15
25,22,20,23 23,23,22,20 15,20,16,20 15,10,10,10
4 15,16,22,15 20,22,18,23 13,13,15,20 5,10,10,10
15,15,22,17 23,23,24,20 11,20,13,15 10,10,10,10
5 20,20,22,20 18,20,18,23 10,14,17,12  5,10,10,10
27,17,20,15 20,20,18,15 11,10,15,10 10,10,10,10
ANOVA Table
Source SS df MS
Angle 390.913 4 97.728
Analyst 2217.15 3 739.05
AnglexAnalyst 797.788 12 66.482
Error 971.75 140  6.941
Total 4377.6 159

13. Refer to the Fiber Angle case in problem 12.

(a) Is it preferable to have eight measurements on a given section by each
analyst as opposed to, say, two measurements on a given section by each
analyst? Why or why not?

(b) For a given number of angle measurements per analystx section combina-
tion, is it preferable to have 4 analysts instead of 2, 6, or 8?2 Why or why
not?

(c) When making angle measurements for a given section, does it matter if
the angle at a fixed location on the piece is repeatedly measured, or is it
acceptable (or even preferable?) for each analyst to measure at 8 different
locations on the section? Discuss.

(d) Continuing with (c), does it matter that the locations used on a given section
varied analyst to analyst? Why or why not?

14. Bolt Shanks. A 1-inch micrometer is used by an aircraft engine manufacturer to
measure the diameter of a body-bound bolt shank. Specifications on this dimen-
sion have been set with a spread of .002 in. Three operators and ten body-bound
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bolt shanks were used in a gauge R&R study. Each bolt shank was measured
twice by each operator (starting with part 1 and proceeding sequentially to part
10) to produce the data below (in inches). A corresponding ANOVA table is
provided as well (SS’s and MS’s are in 10~ in?.).

Part Operator A Operator B Operator C

1 3473 .3467 3472
3473 .3465 3471
2 3471 .3465 3471
3471 .3464 3471
3 .3472 .3467 3471
.3472 .3464 3471
4 .3474 .3470 .3473
.3475 .3470 3474
5 3474 .3470 3473
3474 .3470 .3473
6 .3472 .3463 3471
3472 .3464 3471
7 3473 .3465 3472
3473 .3469 3471
8 3474 .3470 .3473
.3473 .3470 .3473
9 .3472 .3465 .3472
3472 .3466 3471
10 3474 .3470 3474
3474 .3470 3473

ANOVA Table for Diameter (1st set of Data)

Source SS df MS
Part 1.3 9 145
Operator 3.7 2 1.89
PartxOperator ~ .321 18 .0178
Error 195 30 .0065
Total 5.601 59

(a) Plot the bolt shank diameter measurements versus part number using a
different plotting symbol for each operator. (You may wish to also plot
partxoperator means and connect consecutive ones for a given operator
with line segments.) Discuss what your plot reveals about the measurement
system.

(b) Find an ANOVA-based estimate of repeatability standard deviation..

(c) Find an ANOVA-based estimated standard deviation for measurement as-
suming there is no repeatability component of variation.
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(d) Using your answers to (b) and (c), estimate the percent of total measure-
ment variance due to repeatability.

(e) Using your answers to (b) and (c), estimate the percent of total measure-
ment variance due to reproducibility.

(f) Discuss the relationship of your plot in () to your answers to (b) through
().

(g) Find an ANOVA-based estimate of the gauge capability ratio. Is the mea-
surement process acceptable for checking conformance to the specifica-
tions? Why or why not?

15. Refer to the Bolt Shanks case in problem 14. The data below are from three new
operators with a different set of ten body-bound bolt shanks (numbered as part
11 through part 20). An appropriate ANOVA is also provided for these new data
(units for the SS’s and MS’s are 1076 in?).

Part Operator D Operator E Operator F

11 .3694 .3693 .3693
.3694 .3693 .3693
12 .3693 .3693 .3692
.3693 .3692 .3692
13 .3698 .3697 .3697
.3697 .3697 .3697
14 .3697 .3698 3697
.3696 3697 .3697
15 .3694 .3695 .3695
.3693 .3695 .3694
16 .3692 .3692 .3692
.3693 .3692 .3691
17 .3696 .3695 .3695
.3696 .3695 .3695
18 3697 .3696 .3696
.3696 .3696 .3696
19 .3697 .3696 .3695
.3696 .3695 .3696
20 3697 3697 .3698
3697 .3698 .3697

ANOVA Table for Diameter (2nd set of Data)

Source SS df MS

Part 2.08 9 231
Operator .016 2 .008
PartxOperator .0873 18 .00485
Error .07 30 .00233

Total 2.254 59
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(a) Answer (a) through (g) from problem 14 for these new data.

(b) Are your answers to (a) qualitatively different than those for problem 14?
If your answer is yes, in what ways do the results differ, and what might be
sources of the differences?

(c) Do conclusions from this R&R study indicate a more consistent measure-
ment process for body-bound bolt shanks than those in problem 14? Why
or why not?

16. Transmission Gear Measurement. Cummins, Rosario, and Vanek studied two

gauges used to measure ring gear height and bevel gear height in the production
of transmission differentials. (Ring gear height and bevel gear height determine
the milling points for the customized transmission housings, creating the hori-
zontal location in the housing and the "tightness" of the casing against the differ-
ential.) A test stand (hydraulically) puts a 1000 pound force on the differential.
This force is used to keep the differential from free spinning while allowing spin
with some force applied. A 3 in Mitoya digital depth micrometer and a 6 in Mi-
toya digital depth micrometer were used to make the measurements. Vanek used
the 3in micrometer and took two ring gear height measurements on differen-
tial 8D4. Using the same 3 in Mitoya micrometer, Cummins made two ring gear
height measurements on the same part. Vanek then took two bevel gear height
measurements with the 6 in Mitoya micrometer on the same differential. Cum-
mins followed with the same 6in micrometer and took two bevel gear height
measurements on differential 8D4. This protocol was repeated two more times
for the differential 8D4. The whole procedure was then applied to differential
31D4. The data follow. ANOVAs are given for both the ring gear data (SS and
MS units are 10~*in?) and the bevel gear data (SS and MS units are 10~ in?).

Ring Gear Heights (inches) Bevel Gear Heights (inches)
(3 in Mitoya Micrometer) (6 in Mitoya Micrometer)

Vanek  Cummins Vanek  Cummins

8D4  1.88515  1.88470 8D4  5.49950  5.49850

1.88515  1.88470 5.49985  5.49945

1.88540  1.88380 5.49975  5.49945

1.88530  1.88510 5.50000  5.50005

1.88485  1.88435 5.49930  5.50070

1.88490  1.88450 5.49945  5.49945

31D4 1.88365  1.88270 31D4  5.49785  5.49700

1.88370  1.88295 5.49775  5.49710

1.88330  1.88235 5.49765  5.49615

1.88325  1.88235 5.49750  5.49615

1.88270  1.88280 5.49670  5.49595

1.88265  1.88260 5.49680  5.49620
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ANOVA Table for Ring Gear Height

Source SS df MS
Differential .219 1 .219
Operator .021 1 .021
Differential xOperator .0000042 1 .0000042
Error .0249 20 .00124
Total 2644 23

ANOVA Table for Bevel Gear Height

Source SS df MS
Differential 4.44 1 4.44
Operator .148 1 .148
Differential xOperator ~ .124 1 124
Error .50 20 .02752
Total 5.262 23

(a) Consider the ring gear heights measured with the 3 in Mitoya micrometer.
Give the values of m, I, and J.

(b) In the context of the ring gear height measurements, what do m, I, and J
represent?

(c) Give an ANOVA-based estimated repeatability standard deviation for ring
gear height measuring. Find a range-based estimate of this quantity.

(d) Give an ANOVA-based estimated reproducibility standard deviation for
ring gear height measuring.

(e) The upper and lower specifications for ring gear heights are respectively
1.921in and 1.88in. If the company requires the gauge capability ratio to
be no larger than .05, does the 3 in Mitoya micrometer, as currently used,
seem to meet this requirement? Why or why not?

(f) Repeat (a) through (e) for bevel gear heights measured with the 6 in Mitoya
micrometer. Lower and upper specifications are respectively 5.50in and
5.53 in for the bevel gear heights.

17. Computer Locks. Cheng, Lourits, Hugraha, and Sarief decided to study "tip di-
ameter" for some computer safety locks produced by a campus machine shop.
The team began its work with an evaluation of measurement precision for tip
diameters. The following data are in inches and represent two diameter measure-
ments for each of two analysts made on all 25 locks machined on one day. An ap-
propriate ANOVA is also given. (The units for the SS’s and MS’s are 10~*in?.)
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Part  Lourits Cheng

1 .375,.375 374, .374
2 .375,.375  .377,.376
3 .375,.373  .374,.375
4 375,.373  .375,.374
5 374,.374 374, .374
6 .374,.374 374, .375
7 .374,.375  .375,.376
8 .374,.375 374, .373
9 374,.374  .375,.375

10 .374,.374 .374,.374
11 .375,.373 .374,.374
12 .375,.374 .376,.374
13 .376,.373 .373,.374
14 .373,.373 .379,.374
15 .372,.373 .374,.373
16  .373,.373 .374,.374
17 .373,.373 .374,.373
18  .373,.373 .373,.373
19 .373,.373 .376,.373
20 .373,.373 .373,.373
21 .374,.374 .374,.375
22 .375,.375 .374,.377
23 .375,.375 .376,.377
24 .376,.375 .376,.374
25 .374,.374 .374,.375

ANOVA Table for Diameter

Source SS df MS
Part b8 24 0242
Operator 0625 1 .0625
Partx Operator 22 24 .00917
Error 445 50 .0089
Total 1.3075 99

(a) Organizations typically establish their own guidelines for interpreting the
results of gauge R&R studies. One set of guidelines is below. (66 epeatabitity/ (U — L)
expressed as a percentage is sometimes called the "% gauge" for repeatabil-
ity. 68 reproducibility/ (U — L) expressed as a percentage is sometimes called
the "% gauge" for reproducibility.)
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% gauge Rating
33% unacceptable

20% marginal
10% acceptable
2% good
1% excellent

Suppose that specifications for the lock tip diameters are .375+.002 in. Ac-
cording to the guidelines above and using ANOVA-based estimates, how
does the diameter measuring process "rate" (based on "% gauge" for re-
peatability and "% gauge" for reproducibility)? Why?

(b) Find expressions for Y erator1 @0 Yoperatore @8 functions of the model
terms used in the equation y;jx = p1 + ; + B; + afB;; + €ijk.

(c) Continuing with (b) and applying logic consistent with that used to develop
equation (2.30), what does [Jperator1 — Yoperatora|/d2(2) estimate in terms
of 02,03, 024, and 0*?

18. Refer to the Computer Locks case in problem 17. Consider the measurements
made by Lourits. The sample average tip diameter for the ith randomly selected
lock measured by Lourits can be written (holding only Lourits fixed) as

YiLourits = M+ 0 + ﬂLourits + aﬂiLourits + €iLourits -

(a) What is the random portion of ;1 o urits?

(b) In terms of 0%, 07, 03, and 07,5, give the variance of your answer to part

(a).
(c) Letting I' be the range of the 25 variables T, its» What does T'/da(25)
estimate?

(d) Give the observed numerical value for I /d2(25) considered in part (c).

(e) Interms of 02,02, 0[23, and Ui 3> What is the variance of (different) lock tip
diameters as measured by a single operator (say Lourits) assuming there is
no repeatability variation?

(f) Interms of 0, 02,073, and 07,5, what is the variance of (single) diameter

measurements made on (different) lock tips made by the same operator (say
Lourits)? (Hint: This is your answer to (e) plus the repeatability variance,
a?)

(g) Using the Lourits data, find a range-based estimate of the repeatability vari-
ance.

(h) Using the Lourits data, find a range-based estimate your answer to (e).
(Hint: Use your answers for (d) and (g) appropriately.)

(i) Using the Lourits data, estimate your answer to (f). (Hint: Use your an-
swers for (h) and (g) appropriately.)
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19. Implement Hardness. Olsen, Hegstrom, and Casterton worked with a farm im-
plement manufacturer on the hardness of a steel part. Before process monitoring
and experimental design methodology were considered, the consistency of rele-
vant hardness measurement was evaluated. Nine parts were obtained from a pro-
duction line and three operators agreed to participate in the measuring process
evaluation. Each operator made two readings on each of nine parts. The data
below are in mm. An appropriate ANOVA is given (the units for the SS’s and

MS’s are mm?.)

Part Operator A Operator B Operator C
1 3.30 3.25 3.30
3.30 3.30 3.30
2 3.20 3.20 3.15
3.25 3.30 3.30
3 3.20 3.20 3.25
3.30 3.20 3.20
4 3.25 3.20 3.20
3.30 3.25 3.20
5 3.25 3.10 3.20
3.30 3.10 3.15
6 3.30 3.30 3.25
3.30 3.20 3.20
7 3.15 3.10 3.15
3.20 3.20 3.20
8 3.25 3.20 3.20
3.20 3.20 3.25
9 3.25 3.20 3.30
3.30 3.30 3.40
ANOVA Table for Hardness
Source df MS
Part 8 .01104
Operator 2 .00889
Partx Operator 16 .00259
Error 27 .002130
Total 59

(a) Say what each term in equation (2.25) means in the context of this problem.
(b) What are the values of I, J, and m in this study?

(c) Give an ANOVA-based estimate of the repeatability standard deviation, .
(d) Give an ANOVA-based estimate of the reproducibility standard deviation,

Oreproducibility -
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(e) Estimate the gauge capability ratio using the an ANOVA-based calculation
if specifications on the hardness of this part are nominal £+ 10 mm.

(f) Using the corporate gauge rating table given in problem 17, rate the re-
peatability and the reproducibility of the hardness measurement method.

(g) Does it appear the current measuring process is adequate to check confor-
mance to nominal £ 10 mm hardness specifications? Why or why not?

20. Refer to the Implement Hardness case in problem 19.

(a) Suppose each operator used a different gauge to measure hardness. How
would this affect the interpretation of your calculations in exercise (2.19)?

(b) If it were known that measuring alters the part hardness in the vicinity of
the point tested, how should this be addressed in a gauge R&R study?

(c) When an operator measures the same part two times in a row, it is likely
the second measurement is "influenced" by the first in the sense that there
is psychological pressure to produce a second measurement like the initial
one. How might this affect results in a gauge R&R study? How could this
problem be addressed/eliminated?

21. Is it important to include an evaluation of measuring processes early in a quality
improvement effort? Why or why not?

22. Management tells engineers involved in a quality improvement project "We did
a gauge R&R study last year and the estimated gauge capability ratio was .005.
You don’t need to redo the study." How should the engineers respond and why?

23. Paper Weight. Everingham, Hart, Hartong, Spears, and Jobe studied the top
loading balance used by the Paper Science Department at Miami University,
Oxford, Ohio. Two 20 cm x 20 cm (400 cm?) pieces of 20 1b bond paper were cut
from several hundred feet of paper made in a departmental laboratory. Weights
of the pieces obtained using the balance are given below in grams. The numbers
in parentheses specify the order in which the measurements were made. (Piece 1
was measured 15 times, 3 times by each operator. That is, piece 1 was measured
Ist by Spears, 2nd by Spears, 3rd by Hart,...,14th by Hartong, and lastly by
Jobe.) Different orders were used for pieces 1 and 2, and both were determined
using a random number generator. Usually, the upper specification minus the
lower specification (U — L) is about 4 g/ m? for the density of this type of paper.
An appropriate ANOVA is given below (units for the SS’s and MS’s are g?).
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Piece  Hartong Hart Spears Everingham Jobe
1 (14)3.481  (3)3.448 (1) 3.485 (13) 3.475  (10) 3.472
(12) 3.477  (9)3.472  (2) 3.464 (4)3.472  (5)3.470
(7)3.470  (6) 3.470 (11)3.477 (8)3.473 (15) 3.474
2 (1)3.258 (13)3.245  (7) 3.256 (6)3.249 (11)3.241

(2)3.254 (12)3.247 (5)3.257  (15)3.238  (8) 3.250
(3)3.258  (9)3.239 (10)3.245  (14)3.240  (4) 3.254

ANOVA Table for Weight
Source SS df MS
Piece 3738 1 .37386
Operator .00061 4 .000152
PiecexOperator .00013 4 .000032
Error .00095 20 .000047
Total 37555 29

(a) What purpose is potentially served by randomizing the order of measure-
ment as was done in this study?

(b) Give the table of operator x piece ranges, R;;.

(c) Give the table of operator x piece averages, ¥, ;.

(d) Give the ranges of the operator x piece means, A;.

(e) Express the observed weight range determined by Spears for piece 2 in
g/m2. (Note: 10 cm? = 1 m?.)

(f) Find a gauge repeatability rating based on ranges. (See part (a) of problem
17.) Pay attention to units.

(g) Find a gauge reproducibility rating based on ranges. (Again see part (a) of
problem 17 and pay attention to units.)

(h) Calculate an estimated gauge capability ratio. Pay attention to units.

(i) What minimum value for (U — L) would guarantee an estimated gauge
capability ratio of at most .1?

(j) Using ANOVA-based estimates, answer (¢)-(h).

(k) Using ANOVA-based estimates, give an exact 95% confidence interval for
O repeatability- YOu units should be g/ m?.

() Using the ANOVA-based estimates, give 95% approximate confidence lim-
its fOr T reproducibility- Your units should be g/ m?.

24. Paper Thickness. Everingham, Hart, Hartong, Spears, and Jobe continued their

evaluation of the measuring equipment in the Paper Science Lab at Miami Uni-
versity by investigating the repeatability and reproducibility of the TMI auto-
matic micrometer routinely used to measure paper thickness. The same two
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20 cm x 20 cm pieces of 20 1b bond paper referred to in problem 23 were used
in this study. But unlike measuring weight, measuring thickness alters the prop-
erties of the portion of the paper tested (by compressing it and thus changing
the thickness). So, an 8 x 8 grid was marked on each piece of paper. The cor-
responding squares were labeled 1,2,...,64 left to right, top to bottom. Ten
squares from a given piece were randomly allocated to each operator (50 squares
from each piece were measured). Because so many measurements were to be
made, only the "turn" for each analyst was determined randomly, and each oper-
ator made all 10 of his measurements on a given piece consecutively. A second
randomization and corresponding order of measurement was made for piece 2.
Hartong measured 3rd on piece 1 and 5th on piece 2, Hart was Ist on piece
1 and 3rd on piece 2, Spears was 5th and 4th, Everingham was 2nd and 2nd,
and Jobe was 4th and 1st. The data follow (in mm). The numbers in parenthe-
sis identify the squares (from a given piece) measured. (Thus, for piece 1, Hart
began the measurement procedure by recording thicknesses for squares 51, 54,
18, 63,...,7, then Everingham measured squares 33, 38, ..., 5, etc. After the
data for piece 1 were obtained, measurement on piece 2 began. Jobe measured
squares 9, 3, . . ., 22 then Everingham measured squares 43, 21, ..., 57, etc.) An
appropriate ANOVA is also given (units for the SS’s and MS’s are mm?).

Piece Hartong Hart Spears  Everingham Jobe

1 (14).201  (51).195 (48).192 (33).183 (43) .185
(25).190 (54) .210 (58).191 (38) .189  (40) .204
(17).190 (18).200 (15).198 (36) .196  (49) .194
(21).194  (63) .203 (55) .197 (3).195 (12).199
(83).212  (20).196 (44) .207 (59).192  (29).192

(16) .209 (50).189 (23) .202 (45).195 (13).193
(47).208 (31).205 (64) .196 (41).185 (56) .190

(42) .192 (37).203 (57) .188 ) .193  (2).195

(22) .198 (34).195 (26) .201 (62) .194  (8).199
(35.191 (7).186 (1).181 (5).194  (6).197

2 (5).188 (14) .186 (55) .177 (43).179  (9).191
(16) .173  (24).171  (51).174 (21).194  (3) .180
(11).188 (62).178 (36) .184 (18) .187 (42) .194
(47).180 (34).175 (12).180 (39).175 (50) .183
(25).178 (29).183 (38).179 (6) .173  (53).181
(15).188 (10).185 (41) .186 (7) .179  (17) .188

(56) .166  (30).190 (63) .183 (64).171 (33).188

(26) .173  (40) .177 (45) .172 (54) .184 (23) .173
(8).175 (58).184 (31).174 (59) .181 (60) .180

(52).183 (13).186  (2).178 (57).187 (22).176




112

Chapter 2. Statistics and Measurement

ANOVA Table for Thickness

Source SS df MS
Piece 00557 1 .00557
Operator .00018 4 .000045
PiecexOperator ~ .00028 4  .00007
Error .003986 90 .000044
Total .010013 99

(a) Say what each term in equation (2.25) means in the context of this problem.
(b) How is this study different from a "garden variety" gauge R&R study?

(c) Will the nonstandard feature of this study tend to increase, decrease, or
have no effect on the estimate of the repeatability standard deviation? Why?

(d) Will the nonstandard feature of this study tend to increase, decrease, or
have no effect on the estimated standard deviation of measurements from
a given piece across many operators? Why?

(e) Give the ANOVA-based estimated standard deviation of paper thickness
measurements for a fixed piecexoperator combination, i.e., approximate
the repeatability standard deviation assuming that square-to-square varia-
tion is negligible.

(f) Give the ANOVA-based estimated standard deviation of thicknesses mea-
sured on a fixed piece across many operators. (The quantity being estimated
should include but not be limited to variability for a fixed piece x operator
combination.) That is, approximate the reproducibility standard deviation
assuming square-to-square variation is negligible.

(g) What percent of the overall measurement variance is due to repeatability?
What part is due to reproducibility?

25. Paper Burst Strength. An important property of finished paper is the force

(Ib/ in?) required to burst or break through it. Everingham, Hart, Hartong, Spears,
and Jobe investigated the repeatability and reproducibility of existing measure-
ment technology for this paper property. A Mullen tester in the Miami University
Paper Science Department was studied. Since the same two 20 cm x 20 cm pieces
of paper referred to in problems 23 and 24 were available, the team used them in
its gauge R&R study for burst strength measurement. The burst test destroys the
portion of paper tested, so repeat measurement of exactly the same paper spec-
imen is not possible. Hence, a grid of 10 approximately equal-sized rectangles,
10 cm x 4 cm (each large enough for the burst tester), was marked on each large
paper piece. Each of the analysts was assigned to measure burst strength on two
randomly selected rectangles from each piece. The measurement order was also
randomized among the five operators for each paper piece. The data obtained are
below. The ordered pairs (a, b) specify the rectangle measured and the order of
measurement. (For example, the ordered pair (2,9) in the top half of the table in-
dicates that 8.81b/in? was obtained from rectangle number 2, the 9th rectangle
measured from piece 1.) An ANOVA table for this study is also provided.
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Piece  Hartong Hart Spears  Everingham Jobe
1 9,2)13.5 (6,6)10.5 (4,8)12.9 2,9)8.8 (3,10)124
(7,5)14.8 (5,1)11.7 (1,4)12.0 (8,3)13.5 (10,7) 16.0

2 (3,9)11.3 (1,8)14.0 (5,6)13.0 6,7)12.6  (2,1)11.0
(8,10)12.0 (7.5 125 (9,3)13.1 (4,2)12.7 (10,4) 10.6

ANOVA Table for Burst Strength

Source SS df MS
Piece .b445 1 5445
Operator 2692 4 6730
PiecexOperator  24.498 4 6.1245
Error 20.955 10 2.0955
Total 48.6895 19

In the following, assume that specimen-to-specimen variation within a given
piece of paper is negligible.

(a) To what set of operators can the conclusions of this study be applied?

(b) To what set of paper pieces can the conclusions of this study correctly be
applied?

(c) What are the values of I, J, and m in this study?
(d) Give an ANOVA-based estimate of the repeatability standard deviation, o.

(e) Give another estimate of the repeatability standard deviation, o, this time
based on ranges.

(f) Find an ANOVA-based estimate of 0rcproducibility-
(g) Find another estimate of 0 rcproducibility, this one based on ranges

(h) Estimate the standard deviation of single burst measurements on a fixed
piece of paper made by many operators, orgr.

26. Paper Tensile Strength. The final type of measurement method studied by Ever-
ingham, Hart, Hartong, Spears, and Jobe in the Paper Science Lab at Miami
University was that for paper tensile strength. Since the burst tests discussed in
problem 25 destroyed the 20 cm x 20 cm pieces of 20 1b bond paper referred to
there, two new 20 cm X 20 cm pieces of paper were selected from the same run
of paper. Ten 15 mm X 20 cmstrips were cut from each 20 cm x 20 cm piece.
Each set of ten strips was randomly allocated among the five operators (2 strips
per operator for each set of ten). The order of testing was randomized for the ten
strips from each piece, and the same Thwing-Albert Intellect 500 tensile tester
was used by each operator to measure the load required to pull apart the strips.
The data appear below in kg. (Consider, for example, the data given for piece
1, Hartong, (9,2) 4.95. A 4.95 kg load was required to tear strip number 9 from
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piece 1 and the measurement was taken second in order among the ten strips
measured for piece 1.) Since the testing destroyed the strip, the analysts had to
assume strip-to-strip variation for a given piece to be negligible. An appropriate
ANOVA is also given below (units for SS’s and MS’s are kg?).

Piece Everingham Hart Hartong Spears Jobe
1 2,8)4.34 (1,54.34 (9,2)4.95 (6,6)4.03 (10,4)4.51
8,10)4.71  (4,3)4.61 (7,7)4.53 (3,9)3.62  (5,1)4.56

2 (4,7)5.65 (6,6)4.80 (1,1)4.38 (22)4.65 (9,5 4.30
(8,9)4.51 (10,8)4.75 (3,3)3.89 (54)5.06 (7,10)3.87

ANOVA Table for Tensile Strength

Source SS df MS
Piece 13778 1 1378
Operator 69077 4 17269
PiecexOperator 1.88967 4 .47242
Error 1.226 10 1226
Total 3.9442 19

(a) Make a table of load averages, y,;, for the 10 operatorxpiece combina-
tions.

(b) Plot the load averages ¥;; versus piece number for each of the operators
(connect the two ;s for each operator).

(c) Suppose the target tensile strength for strips of 20 1b bond paper is 4.8 kg.
Typically, upper and lower specifications for paper properties are set 5%
above and below a target. Estimate the gauge capability ratio under these
conditions, using ANOVA-based calculations.

(d) If upper and lower specifications for tensile strength of 201b bond paper
are equal distances above and below a target of 4.8 kg, find the upper and
lower limits such that the estimated gauge capability ratio is .01.

(e) Redo part (d) for an estimated gauge capability ratio of .1.

() Is it easier to make a gauge capability ratio better (smaller) by increasing
its denominator or decreasing its numerator? Will your answer lead to a
more consistent final product? Why or why not?

27. Thorium Detection. In the article "Limits for Qualitative Detection and Quanti-

tative Determination,”" which appeared in Analytical Chemistry in 1968, L. Cur-
rie reported some experimental observations in the spectrophotometric determi-
nation of thorium using thorin. The response variability from measurements on
"blank" material was observed to be essentially the same as that from any (fixed)
sample of interest, and extensive analysis of blank material produced a standard
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deviation of measurement (0 measurement) Of around .002. The absorbance re-
sponse for a field sample is typically expressed as the measured response minus
that of a blank, and in these terms a response for a particular sample of interest
was .006.

(a) If an analyst is willing to tolerate a 5% risk of incorrectly concluding that
a sample contains more thorium than is present in blank material, give the
critical limit L.. For the sample mentioned above, what conclusion does
one reach using this critical limit? (Here, both nye, and ngq are 1.)

(b) Suppose one can tolerate only a 1% chance of incorrectly concluding there
is more thorium in a sample than in a blank. Give the corresponding critical
limit and say what conclusion would be reached about a sample with a
response of Ynew = Yorq + -006.

(c) What risk level corresponds to a critical limit of .006?
(d) What model assumptions must be made in order to answer (a) through (c)?

(e) Suppose one can tolerate a 5% risk of incorrectly concluding a sample
contains more thorium than a blank and the critical value from (a) will
be employed. What is the value A (expressed in terms of an excess over
the mean value for a blank) such that the chance of not detecting a mean
absorbance of at least A (and corresponding thorium content above that of
the blank material) is only 5%?

(f) In the vocabulary of Section 2.6 what is A in part (¢)?
28. Refer to the Thorium Detection case in problem 27.

(a) Consider part (e) in problem 27. Another analyst can tolerate only a 1%
risk for both types of possible errors. Find A for this analyst.

(b) Currie stated that the calibration factor used to translate absorbance read-
ings to concentration values for thorium is about £ = 58.2 1/ g. (An ab-
sorbance value divided by k gives a corresponding concentration.) Express
your value for part (e) of problem 27 in 1 g/ 1. (Note that 11 g is 10~ g.)

(c) Express your answer to part (a) of this problem in p g/ 1.

(d) Find an increase in thorium concentration (over that in a blank) that is 10
times the standard deviation of the difference in a field sample reading and
a blank reading (that is, 100 yeasurement V' 1 + 1). EXpress your answer in
absorbance units and then in 1 g/ 1.

29. Carbon Atmospheric Blank. Currie, et al. presented the paper "Impact of the
Chemical and Isotopic Blank on the Interpretation of Environmental Radiocar-
bon Results" at the International Radiocarbon Conference in Glasgow, Scotland,
August 1994. Part of their presentation included discussion of six carbon con-
tent measurements made on a single urban atmospheric aerosol field filter blank.
These six responses (in i g) were (in the order produced)
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95.6, 73.1, 56.9, 114.4, 42.3, and 35.6.

(a) Give an estimate of 0 easurement (USINg a sample standard deviation). Use
this estimate in the balance of this problem as if it were exactly o easurement -

(b) Assuming measured carbon follows a normal distribution, find a critical
limit, L., for determining whether a single measurement from a field sam-
ple indicates a carbon content in excess of that in a blank (that will also be
measured once). Use 2.5% for the probability of incorrectly deciding that
there is more carbon in the field sample than in the blank.

(c) What additional assumption (beyond normality) must hold for your answer
in (b) to be valid?

(d) Suppose now that every blank has the same and known amount of carbon.
Using your answer to (a) as the standard deviation of a single field sample
measurement, find a critical limit for deciding if the average of two mea-
surements on a field sample indicates carbon in excess of that in any blank.
Use 1% as the largest risk of incorrectly deciding that the sample contains
excess carbon that can be tolerated. (The intention here is that nye,, = 2
and Nold = OO)

(e) Find a lower limit of detection based on your estimate in (a). In making
this calculation use a 5% risk of incorrectly concluding a field sample con-
tains more carbon than a blank (of unknown content). Also use 5% for the
probability that a field sample at the lower limit of detection will fail to
produce a difference exceeding the critical value. (Suppose that both the
field sample and the blank will be measured once.)

(f) Let the two risks in (e) be 2.5%. Find a lower limit of detection.

(g) As the two risk levels decrease, what happens to the lower limit of detec-
tion? Explain in the context of this problem.

30. Refer to the Carbon Atmospheric Blank case in problem 29. As in problem 29,
assume that the estimate from part (a) is in fact exactly equal to oeasurement-

(a) Find the increase in carbon content that is 10 times the (estimated) standard
deviation of the difference between the measured carbon content for a sin-
gle field sample and that from a single blank. (That is, find 100 measurement v'1 + 1.)
(b) Suppose many measurements from the same blank are available. Answer
part (a) under these new conditions, if the difference of interest is that be-
tween a single field sample measurement and the average of the large num-

ber of measurements on a single blank. (That is, find 100 yeasurement 1/ 1 + é )

(c) Does knowing the true carbon content of a blank affect the lower limit of
detection? Why or why not? (Hint: consider a single field sample measure-
ment and a single blank measurement. Find the lower limit of detection us-
ing, say, 5% risks. Compute lower limits of detection both when the blank
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content is considered to be known and then when it is unknown. Knowing
the true content of a blank means that 1,9 = 00. )

31. Dimethyl Phenanthrene (DMP4) Atmospheric Blank. The presentation re-
ferred to in problem 29 also included a discussion of six measurements of the
DMP4 content of an atmospheric field filter blank. (DMP4 is a product of soft-
wood pyrolysis.) The six responses in nanograms (10~ g) were

(a)

(b)

(©)

8.25,7.30,7.27,6.54,6.75 and 7.32 .

Suppose the first two measurements above were taken by operator 1, the
second two by operator 2, and the last two readings by operator 3, but
the same blank and measuring instrument were involved in each of the
three pairs of measurements. Find an appropriate range-based estimate of
O measurement = OR&R- 1IN the rest of this problem use this estimate as if it

Tt — 2 2
were perfeCt‘ (Hll’lt. OR&R™ \/Urepeatability + Ureproducibility‘)

Find a critical limit, L., if the probability of a false positive is to be 10%
and a randomly selected analyst is to measure a single response on both a
field sample and a new blank.

Continuing with the scenario in (a), find a lower limit of detection where
the probability of a false positive detection is 10% and the probability of a
false negative is 5% for true content at the lower limit of detection.

32. In the context of Section 2.6, consider a situation where the probabilities of both
a false positive and a false negative (when the new mean is at the lower limit of
detection) are set at .05.

(a)

(b)

Make a 2 x 2 table giving formulas for critical limits in column 1 and
formulas for lower limits of detection in column 2, where row 1 in the
table corresponds to the case of one measurement from a field sample and
one from a blank and row 2 in the table corresponds to one measurement
from a field sample and a large number from a single blank.

Add an additional column to the table in (a). Fill in this column with ex-
pressions for 10 times the standard deviation of Y14 — Ubjank-

33. Lab Carbon Blank. The following data were provided by L. A. Currie of the
National Institute of Standards and Technology (NIST). The data are prelimi-
nary and exploratory, but real. The unit of measure is "instrument response" and
is approximately equal to 1 g of carbon. That is, 5.18 corresponds to 5.18 in-
strument units of carbon or about 5.184 g of carbon. The responses come from
blank material generated in the lab.
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Test Number 1 2 3 4 5 6 7
Measured Carbon 5.18 1.91 6.66 1.12 279 391 2287

Test Number 8 9 10 11 12 13 14
Measured Carbon 4.72 3.68 354 2.15 282 4.38 1.64

(a) Plot measured carbon content versus order of measurement.

(b) The data are ordered in time, but intervals between measurements are not
equal and an appropriate plan for obtaining data was not necessarily in
place. What feature of the plot in (a) might still have meaning?

(c) If one treats the measurement of lab-generated blank material as repeated
measurements of a single blank, what does a trend on a plot like that in
(a) suggest regarding O repeatability ? (Assume the plot is made from data
equally spaced in time and collected by a single individual.)

(d) Make a frequency histogram of these data with categories 1.00 — 1.99,
2.00 — 2.99, etc.

(e) What could be missed in a gauge R&R study if order of measurement was
important (and one didn’t make a plot like that in (a)) for data like these?



CHAPTER 3

Process Monitoring

This chapter discusses the important topic of process monitoring using so-called "con-
trol charts." These are devices for the routine and organized plotting of process per-
formance measures, with the goal of identifying process changes. When these are
detected, those running the process can either intervene and set things aright (if the
change is detrimental) or try to make permanent the source of an unexpected process
improvement.

The discussion begins with some control charting philosophy. Then the standard
Shewhart control charts for both measurements/"variables data" and counts/"attributes
data" are presented in consecutive sections. A fourth section discusses qualitative in-
terpretation and practical implications of patterns sometimes seen on Shewhart charts,
and some sets of rules often applied to check for such patterns. Then there is a pre-
sentation of the so-called Average Run Length concept that can be used to quantify
what a particular process monitoring scheme can be expected to provide. Finally, the
chapter closes with a section clarifying the relationship between "statistical process
control" and "engineering control" and presenting some basic concepts of so-called
PID engineering control schemes.

3.1 Generalities About Shewhart Control Charting

Section 1.2.1 introduced the notion of process "stability" as consistency over time in
the pattern of process variation. Walter Shewhart, working at Bell Labs in the late
1920s and early 1930s, developed an extremely powerful and simple tool for investi-
gating whether a process can be sensibly thought of as stable. He called it a "control

This is page 119
Printer: Opaque this
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chart." Nearly 80 years after the fact, your authors would prefer (for reasons laid out in
Section 3.6) that Shewhart had chosen instead the name "monitoring chart." Neverthe-
less, this book will use Shewhart’s terminology and the "monitoring chart" terminology
interchangeably.

Shewhart’s fundamental conceptualization was that while some variation is inevitable
in any real process, overall variation seen in process data can be decomposed as

Shewhart’s o . L - .
Grand observed variation = baseline variation + variation that can be eliminated .  (3.1)

ConceptuahzatlonShewhart conceived of baseline variation as that variability in production and measure-
ment which will remain even under the most careful process monitoring and appropri-
ate physical intervention. It is an inherent property of a combination of system config-
uration and measurement methodology that cannot be reduced without basic changes
in the physical process or how it is run or observed. This variation is sometimes called
variation due to "system" or "common" (universal) causes. Other names for it that will
be used in this book are "random" or "short-term" variation. It is the kind of vari-
ation expected under the best of circumstances, measuring item-to-consecutive-item
produced on a production line. It is variation that comes from many small, unname-
able, and unrecognized physical causes. When only this kind of variation is present,
it is reasonable to call a process "stable" and model observations on it as independent
random draws from a fixed population or universe.

The second component of overall variability portrayed in equation (3.1) is that which
can potentially be eliminated by careful process monitoring and wise physical inter-
vention (when such is warranted). This has variously been called "special cause" or
"assignable" cause variation, "nonrandom" and "long-term" variation. It is the kind of
systematic, persistent change that accompanies real (typically unintended) physical al-
teration of a process (or the measurement system used to observe it). It is change that is
large enough that one can potentially track down and eliminate its root cause, leaving
behind a stable process.

If one accepts Shewhart’s conceptualization (3.1), the problem then becomes one of
detecting the presence of the second kind of variation so that appropriate steps can be
taken to eliminate it. The Shewhart control chart is a tool for making such detection.

The basic working of Shewhart’s charting method is this. One periodically takes
samples from the process of interest (more will be said later about the timing and na-
ture of these samples) and computes a statistic meant to summarize process behavior
at the period in question. Values of the statistic are plotted against time order of ob-
servation and compared to so-called control limits drawn on the chart. These separate
Control Limits  values of the statistic that are plausible if the process is in fact stable, from those that

are rare or implausible under this scenario. As long as the plotted points remain inside
the control limits, one presumes that all is well (the process is stable) and does not
intervene in its workings. (This is an oversimplification of how these charts are often
used that will be corrected in Section 3.4. But for the time being this simplified pic-
ture will suffice.) When a point plots outside control limits, there is an indication that
a physical change has probably taken place and that intervention is appropriate. Fig-
ure 3.1 shows a generic Shewhart control chart where the plotted statistic is (), upper
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and lower control limits are UC Lg and LC' L¢ respectively, and there is one "out of
control" point.

Upper Control Limit

Lower Control Limit

“'Out of Control” Point—""
| | | | | | |
1 2 3 4 5 6 7
Time

oo}

9 10 M

FIGURE 3.1. Generic Shewhart control chart (for a statistic Q)

There are many different kinds of Shewhart charts, corresponding to various choices
of the plotted statistic, (). Some of these chart types will be discussed in the next two
sections. But before moving to discussion of specific charts, several generalities remain
to be considered. First, there is the question of how one sets the control limits, UCLq
and LCLg.

Shewhart’s suggestion for setting control limits was essentially the following. If
one can model the process output under stable conditions (i.e., if one can specify a
sensible probability distribution for individual observations made on the process) then
probability theory can often be invoked to produce a corresponding distribution for
. Then small upper and lower percentage points for this distribution can provide
the necessary control limits. The thinking is that only rarely will values outside these
be seen under stable process conditions. Further, rather than working explicitly with
probability tables or formulas for a distribution of (), one often simply makes use of
the fact that for many probability distributions most of the probability is within three
standard deviations of the mean. So, if 1, and o are respectively a stable-process
mean and standard deviation for ), then common control limits are

UCLQ = pg + 30@ and LCLQ =g — 30@ . (3.2)

Further, it is common to draw in a "center line" on a Shewhart control chart at

CLg = g - (3.3)

To make this discussion slightly more concrete, consider briefly the situation where
the plotted statistic is the sample mean of n individual measurements, () = . If the
process output can be modeled as independent selections from a distribution with mean
w and standard deviation o, the statistic = has a distribution with mean p = pz = p

Generic
3-sigma
Control Limits

Generic
Center Line
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and standard deviation o = oz = o /+/n. Then applying relationships (3.2) and (3.3)
it follows that typical control limits for Z are

g

vn

g

UCLz = 3
Zz ,U+ \/ﬁ,

and LCLz=p—3 3.9
with a center line drawn at .

Display (3.4) helps bring into focus another general issue regarding Shewhart con-
trol charting. As in limits (3.4), process parameters (like ;o and o) typically appear in
formulas for control limits. Values for them must come from somewhere in order to
apply a control chart, and there are two possibilities in this regard. Sometimes past
experience with a process, engineering standards, or other considerations made prior
to process monitoring specify what values should be used. This kind of situation is
commonly known as a standards given scenario. In other circumstances, one has no
information on a process outside a series of samples that are presented along with the
question "Is it plausible that the process was physically stable over the period repre-
sented by these data?" In such a case, all that one can do is tentatively assume that
in fact the process was stable, make provisional estimates of process parameters and
plug them into formulas for control limits, and apply those limits to the data in hand
as a means of criticizing the tentative assumption of stability. This kind of situation is
sometimes called an as past data scenario, and will often be referred to in this text as
a retrospective scenario.

The difference between what is possible in standards given and retrospective con-
texts can be thought of in terms of two different questions addressed in the two situa-
tions. In a standards given context, with each new sample one can face the question

"Are process parameters currently at their standard values?"

In a retrospective context, one can only wait until a number of samples have been
collected (often, a minimum of 20-25 time periods is recommended) and then looking
back over the data ask the question

"Are these data consistent with any fixed set of process parameters?"

Having introduced the notion of control limits, it is important to warn readers of
a common pitfall. That is the confusion that students (and even practicing engineers)
often have regarding the much different concepts of control limits and engineering
specifications. Control limits have to do with assessing process stability. They refer
to a statistic (). They are usually derived from what a process has done in the past
or is currently doing. On the other hand, engineering specifications have to do with
assessing product acceptability or functionality. They almost always refer to individual
measurements. They are usually derived from product performance requirements, and
may have little or nothing to do with the inherent capability of a process to produce a
product meeting those requirements.

Despite these real differences in meaning, people often confuse these concepts (for
example, applying specifications to sample means as if they were control limits, or ar-
guing that since a mean or individual is inside control limits for Z, the product being
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monitored is acceptable). But it is vital that these notions be kept separate and applied
in their proper contexts. (Notice that a process that is stable and producing @’s in-
side appropriate control limits need not be producing mostly acceptable product. And
conversely, a process may produce product that is acceptable by current engineering
standards, but nevertheless be very unstable!)

Another issue needing some general discussion here is the matter of sampling. How
should one go about gathering the data to be used in control charting? This matter in-
cludes the issue sometimes referred to as rational subgrouping or rational sampling.
When one is collecting process-monitoring data, it is important that anything one in-
tends to call a single "sample" be collected over a short enough time span that there
is little question that the process was physically stable during the data collection pe-
riod. It must be clear that an "independent draws from a single population/universe"
model is appropriate for describing data in a given sample. This is because the vari-
ation within such a sample essentially specifies the level of background noise against
which one looks for process changes. If what one calls "samples" often contain data
from genuinely different process conditions, the apparent level of background noise
will be so large that it will be hard to see important process changes. In high-volume
manufacturing applications of control charts, single samples (rational subgroups) typi-
cally consist of n consecutive items taken from a production line. On the other hand, in
extremely low-volume operations, where one unit might take many hours to produce
and there is significant opportunity for real process change between consecutive units,
the only natural samples may be of size n = 1.

Once one has determined to group only observations close together in time into
samples or subgroups, there is still the question of how often these samples should be
taken. When monitoring a machine that turns out 1000 parts per hour, where samples
are going to consist of n = 5 consecutive parts produced on the machine, does one
sample once every minute, once every hour, once every day, or what? An answer to
this kind of question depends upon what one expects in terms of process performance,
and the consequences of process changes. If the consequences of a process change
are disastrous, one is pushed toward frequent samples. The same is true if significant
process upsets are a frequent occurrence. On the other hand, if a process rarely expe-
riences changes and even when those occur only a moderate loss is incurred when it
takes a while to discover them, long intervals between samples are sensible. Various
operations-research type attempts have been made to provide quantitative guidelines
in answer to this sampling frequency question, but these have proved largely unsatis-
factory for practice. But the qualitative matters noted here clearly need to be the major
considerations as looks for an appropriate sampling frequency for process monitoring.

As a final matter in this introductory discussion of Shewhart charting philosophy we
should say what control charting can and cannot reasonably be expected to provide.
It can signal the need for process intervention and can keep one from ill-advised and
detrimental over-adjustment of a process that is behaving in a stable fashion. But in
doing so, what is achieved is simply reducing variation to the minimum possible for
a given system configuration (in terms of equipment, methods of operation, methods
of measurement, etc.). Once that minimum has been reached, what is accomplished
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is maintaining a status quo best possible process performance. (Remember, for exam-
ple, the use of the "control" step in the six-sigma paradigm discussed on page 10.) In
today’s global economy, standing still is never good enough for very long. Achieving
process stability provides a solid background against which to evaluate possible in-
novations and fundamental/order-of-magnitude improvements in production methods.
But it does not itself guide their discovery. Of the tools discussed in this book, it is the
methods of experimental design and analysis covered in Chapters 5 and 6 that have the
most to say about aiding fundamental innovations.

Section 3.1 Exercises

1.

2.

What can control charting contribute to a process improvement effort?

What is the difference between "standards given" and "retrospective" control
charting?

What is the difference between common cause and special cause variation?
Which type of variation are control charts designed to detect?

What happens to the control limits (3.4) for an T chart as the subgroup size gets
large?

How do you expect the behavior of a control charting scheme to change if a
value smaller than 3 is used in limits (3.2)?

How do you expect the behavior of a control charting scheme to change if a
value larger than 3 is used in limits (3.2)?

If the plotted statistic Q is inside appropriately constructed control limits (indi-
cating that a process is stable), does that necessarily imply that the process is
producing acceptable product? Briefly explain.

. If the plotted statistic Q is regularly outside appropriately constructed control

limits (indicating that a process is unstable), does that necessarily imply that the
process is producing unacceptable product? Briefly explain.

The same item is being produced on two production lines. Every 15 minutes 5
items are sampled from each line and a feature of interest is measured on each
item. Some statistic Q is calculated for each set of 5 measurement from each line
and plotted versus time. Analyst 1 puts all 10 items together into a single group
(5 from line 1 and 5 from line 2), calculates a value of the statistic O and plots it.
(This person says, "After all, isn’t a larger sample size better?") Analyst 2 keeps
the data from the two different lines separate and makes a different control chart
for each production line.

(a) What subgroup size is Analyst 1 using?



Chapter 3. Process Monitoring 125

(b) What subgroup size is Analyst 2 using?

(c) Which analyst is making the most appropriate chart? Why? (Hint: Consider
the concept of rational subgrouping.)

3.2 Shewhart Charts for Measurements/'" Variables Data"

This section considers the problem of process monitoring when the data available are
measurements (as opposed to counts or the kind of 0/1 calls considered in Section 2.7).
Sometimes the terminology "variables data" is used in this context. In such situations, it
is common to make charts for both the process location and also for the process spread
(size of the process short-term variability). So this section will consider the making of
T and median (Z) charts for location, and R and s charts for spread.

3.2.1 Charts for Process Location

The most common of all Shewhart control charts is that for means of samples of n
measurements, the case where () = 7. As was discussed in the previous section (and
portrayed in display (3.4)), the fact that sampling from a distribution with mean p
and standard deviation o produces sample averages with expected value p = p and
standard deviation oz = o /+/n suggests standards given Shewhart control limits for
z

g

NG

g

UCsz 3 9
At NG

and LCLz =p—3 3.9

and center line at

CL;ZM

Example 25 Monitoring the Surface Roughness of Reamed Holes. Dohm, Hong,
Hugget, and Knoot worked with a manufacturer on a project involving roughness mea-
surement after the reaming of preformed holes in a metal part. Table 3.1 contains some
summary statistics (the sample mean T, the sample median x, the sample range R, and
the sample standard deviation s) for 20 samples (taken over a period of 10 days) of
n = 5 consecutive reamed holes.

Standards
Given T Chart
Control Limits

Standards
Given T Chart
Center Line
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Suppose for the time being that standards (established on the basis of previous expe-
rience with this reaming process) for surface roughness are p = 30 and o = 4. Then,
standards given control limits for the T values in Table 3.1 are

4
UCLy; = 30 + 3— = 35.37
V5

and
4

LCL; = 30 — 3
’ NG

=24.63.

Figure 3.2 is a standards given T chart for the surface roughness measurements. Based
on this chart, one would detect the fact that the reaming process is not stable at stan-
dard process parameters as early as the second sample. Several of the sample means
fall outside control limits, and had the control limits been applied to the data as they
were collected, the need for physical intervention would have been signaled.

50
2]
8
o
=
2 40—
[
a 30 V 7
: v
g F------ N LCL;
20 —
p
| | |
5 10 15 20
Sample

FIGURE 3.2. Standards given T chart for surface roughness

In order to make a retrospective T chart one must derive estimates of the process
parameters p and o from data in hand (temporarily assuming process stability) and
plug them into the formulas (3.5). There are many possible ways of doing this, each
leading to slightly different retrospective control limits. Here only the most common
ones will be considered and we begin with the matter of estimating .

Let r stand for the number of samples available in a retrospective T chart analysis.
One way of estimating a supposedly common process mean for the r periods is to
simply average the r sample means. Standard control charting practice is to use
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TABLE 3.1. Summary Statistics for 20 Samples of 5 Surface Roughness Measurements on

Reamed Holes (1 in)

Sample T z R s
1 346 35 9 34
2 46.8 45 23 8.8
3 326 34 12 4.6
4 426 41 6 2.7
5 266 28 5 24
6 296 30 2 0.9
7 33.6 31 13 6.0
8 282 30 5 25
9 258 26 9 3.2
10 326 30 15 7.5
11 340 30 22 9.1
12 348 35 5 19
13 36.2 36 3 1.3
14 274 23 24 9.6
15 272 28 3 1.3
16 328 32 5 22
17 31.0 30 6 25
18 338 32 6 27
19 308 30 4 16
20 21.0 21 2 1.0

IR
T = " ;ml

as an estimator of x in making retrospective control limits for .

An answer to the question of how to estimate o is not quite so obvious. The estimator
of o with the best theoretical properties is obtained by pooling the r sample variances
to obtain (in the constant sample size case)

r
2 _ 1 2
Spooled - r Si s

i=1

and then taking the square root. However, this method is not common in practice (due
to historical precedent). Instead, common practice is to use estimators based on the
average sample range or the average sample standard deviation.

Consider first the estimation of o based on

Average
Sample Mean
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R:

S|

=1

As in the discussion of range-based estimation in gauge R&R on page 67, if process
output is normally distributed at time period ¢,

ERZ = ng’

R;
E(2) =o.
<d2> 7

(The dependence of d2 on n is not being displayed here, since there is no chance of
confusion regarding which "sample size" is under discussion.) So assuming the process
is stable over all r periods, all sample sizes are n, and that a normal distribution governs
the data generation process,

and thus

R

da
is a sensible estimator of o. Plugging this and Z into the standards given control limits
for = provided in display (3.5) one obtains retrospective Shewhart control limits for z,

- R — R
UCLy =T+ 3 d LCLz=7% -3 . 3.6
e ™ v (3.6)
Further, one can define a constant A (depending upon n) by
3
A =
2 dg\/ﬁ )
and rewrite display (3.6) more compactly as
UCLz =T + AsR and LCLy =T — A3R. (3.7)

Values of A5 can be found in the table of control chart constants, Table A.1.
As an alternative to estimating o on the basis of sample ranges, next consider esti-
mating o based on the average sample standard deviation,
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5 — 1 Z s; . Average
Uil Sample
Standard
] o ] o Deviation
When sampling from a normal distribution with standard deviation o, the sample stan-
dard deviation, s, has a mean that is not quite . The ratio of the mean of s to ¢ is
commonly called c4. (¢4 depends upon the sample size and again is tabled in Table
A.1, but it will not be necessary to display the dependence of ¢4 on n.) Thus, if one
assumes that process output is normally distributed at period 7,
E <S1) =o0.
Cq
So assuming the process is stable over all r periods, all sample sizes are n, and that a
normal distribution governs the data generation process,
s
C4
is a sensible estimator of o. Plugging this and T into the standards given control limits
for = provided in display (3.5) one obtains retrospective Shewhart control limits for =,
UCLz =7 +3 5 d LCLz =T -3 5 (3.8)
T =I an T =X — . .
cay/n ca/n
Further, one can define another constant A3 (depending upon n) by
3
A =
3 Ca \/ﬁ )
and rewrite display (3.8) more compactly as
_ _ Retrospective
UCLy =7+ A3s  and  LCLz =7 — A35. (3.9)  Control Limits
for  Based on
the Average
Values of Az can also be found in the table of control chart constants, Table A.1. Standard
Deviation

Example 26 (Example 25 continued.) Returning to the reaming study, from Table 3.1

=32.1,R =8.95and 5 =3.76 .

Sl
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Further, for n = 5 (which was the sample size used in the study) Table A.1 shows that
Ag = .577 and A3 = 1.427. Thus, from formulas (3.7), retrospective control limits for
T based on R are

UCLz = 32.1 + .577(8.95) = 37.26 and LCLz = 32.1 —.577(8.95) =26.94 .
And from formulas (3.9), retrospective control limits for T based on's are
UCLz = 32.1 4+ 1.427(3.76) = 37.47 and LCLz = 32.1 — 1.427(3.76) = 26.73 .

Figure 3.3 shows the retrospective T control chart with control limits based on R. It
is clear from this chart (as it would be using the limits based on s) that the reaming
process was not stable over the period of the study. The mean measured roughness
fluctuated far more than one would expect under any stable process model.
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FIGURE 3.3. Retrospective Z chart for surface roughness

T charts are by far the most common charts for monitoring process location, but
there is an alternative worth mentioning. That is to use sample medians in place of
sample means (Z in place of ). This alternative has the advantage of requiring less in
the way of computational skills from those who must compute the values to be plotted,
but has the drawback of being somewhat less sensitive to changes in process location
than the = chart.

The basic probability facts that lead to control limits for & concern sampling from a
normal distribution. For a sample of size n from a normal distribution with mean y and
standard deviation o, the random variable = has mean p; = p and standard deviation
0z = kog = ko//n for a constant x (depending upon n). Table 3.2 gives a few
values of k.

Applying these facts about the probability distribution of Z under a normal process
model and the generic Shewhart control limits given in display (3.2) produces stan-
dards given control limits for &
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TABLE 3.2. Ratios x Between oz and oz When Sampling from a Normal Distribution
n 3 ) 7 9 11 00
k1160 1.197 1.214 1.223 1.229 +/w/2

o o —_—
UCL; = i+ 3’%% and LCL; = p — 3/1% . (3.10) Stgndards
Given Control
Limits for
Retrospective limits can be made by replacing p and o with any sensible estimates. Medians

Example 27 (Examples 25 and 26 continued.) Returning to the reaming study, sup-
pose once more that process standards are |1 = 30 and o = 4. Then for samples of
size n = b (like those used in the students’ project) control limits for sample medians
are

4

UCL; = 30 + 3(1.197)—
V5

= 36.42

and

4
LCL; =30 — 3(1'197)ﬁ — 23.58..

Had these limits been applied to the data of Table 3.1 as they were collected, the need
for physical intervention would have been signaled as early as the second sample.

3.2.2 Charts for Process Spread

Our exposition of control charts for measurements began with the = chart for loca-
tion because it is surely the single most commonly used process monitoring tool, and
because facts from elementary probability can be invoked to quickly motivate the no-
tion of control limits for . However, in practice it is often important to deal first with
the issue of consistency of process spread before going on to consider consistency of
process location. After all, such consistency of spread (constancy of o) is already im-
plicitly assumed when one sets about to compute control limits for Z. So it is important
to now consider charts intended to monitor this aspect of process behavior. The discus-
sion here will center on charts for ranges and standard deviations, beginning with the
range chart.

In deriving R/ds as an estimator of o we have employed the fact that when sampling
from a normal universe with mean y and standard deviation o,

ER = pp =dyo . (3.11)

The same kind of mathematics that stands behind relationship (3.11) can be used to also
derive a standard deviation to associate with R. (This is a measure of spread for the
probability distribution of R, which is itself a measure of spread of the sample.) It turns
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out that the standard deviation of R is proportional to o. The constant of proportionality
is called d3 and is tabled in Table A.1. (Again, d3 depends on n, but it will not be useful
to display that dependence here.) That is,

op=ds0o . (3.12)

Now the relationships (3.11) and (3.12) together with the generic formula for She-
whart control limits given in display (3.2) and center line given in display (3.3) imply
that standards given control limits for R are

UCLgr = (dg + 3d3)0 and LCLR = (d2 — 3d3)0 (3.13)

with a center line at

CLp = dso . (3.14)

Further, if one adopts the notations Dy = dy+3d3 and D1 = ds — 3d3 the relationships
(3.13) can be written somewhat more compactly as

UCLr = Dy and  LCLp = Dio. (3.15)

Values of the constants D7 and D, may again be found in the table of control chart
constants, Table A.1.

It is instructive to look at the tabled values of D;. There are no tabled values for
sample sizes n < 6. For such sample sizes the difference do — 3d3 turns out to be
negative. Since ranges are nonnegative, a negative lower control limit would make no
sense. So standard practice for n < 6 is to use no lower control limit for R.

Consider also the implications of the fact that for n > 6, one typically employs
a positive lower control limit for R. This means that it is possible for an R chart to
signal an "out of control" situation because R is foo small. This fact sometimes causes
students consternation. After all, isn’t the goal to produce small variation? Then why
signal an alarm when R is small? The answer to this conundrum lies in remembering
precisely what a control chart is meant to detect, namely process instability/change. 1t
is possible for unintended causes to occasionally act on a process to reduce variability.
A lower control limit on an R chart simply allows one to detect such happy events. If
one can detect such a change and identify its physical source, there is the possibility of
making that assignable cause part of standard practice and the accompanying decrease
in o permanent. So, the practice of using positive lower control limits for R when n is
sufficiently big is one that makes perfectly good practical sense.
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Example 28 (Examples 25 through 27 continued.) Consider once more the reaming
example of Dohm, Hong, Hugget, and Knoot from a standards given perspective with
o = 4. For samples of size n = 5, Table A.1 provides the values ds = 2.326 and
Dy = 4.918. So using formulas (3.14) and (3.15), standards given control chart values
for R are

UCLgi = 4.918(4) = 19.7 and CLr =2.326(4) =9.3.

Figure 3.4 is the corresponding standards given control chart for the students’ ranges.

There are three out-of-control points on the chart, the first coming as early as the sec-

ond sample. The reaming process did not behave in a manner consistent with the c = 4

standard over the period of the study. Samples 2, 11, and 14 simply have too much in-

ternal variability to make consistency of o at the value 4 believable. One wonders if
perhaps the reamer was changed in the middle of these samples, with the effect that
some holes were very rough while others were very smooth.

UCLy

15

N
o

CLyg

Range of Surface
Roughness Measurements

€]

o

5 10 15 20
Sample

FIGURE 3.4. Standards given R chart for surface roughness

Retrospective control limits for R come about by plugging an estimate for o derived
from samples in hand into the formulas (3.14) and (3.15). A particularly natural choice
for an estimator of ¢ in this context is R/d. Substituting this into relationship (3.14),
one gets the perfectly obvious retrospective center line for an R chart,

CLr =R. (3.16)

Further, substituting R/ds into equations (3.15) for o, one gets retrospective control
limits for R

R R
UCLg = Do | == and LCLr=D; | —] . (3.17)
do dy

Retrospective
R Chart
Center Line
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And adopting the notations Dy = Dy/ds and D3 = D1 /ds, it is possible to write the
relationships (3.17) more compactly as

UCLr=DsR and LCLp=DsR. (3.18)

As is by now to be expected, the constants D3 and D, are tabled in Table A.1. And the
table contains no values of D3 for n < 6.

Example 29 (Examples 25 through 28 continued.) Recall that the 20 samples in
Table 3.1 have R = 8.95 and note that for n = 5, Dy = 2.114. So from displays (3.16)
and (3.18) a retrospective control chart for the ranges (based on R/ds as an estimator
of o) has center line at

CLr =R =28.95
and upper control limit
UCLg = D4R = 2.114(8.95) = 18.9.

A plot of this retrospective R chart would look very little different from Figure 3.4. The
same three ranges plot outside control limits. Not only is a "o constant at 4" view of the
students’ data not plausible, but neither is a "o constant at some value" view. There is
solid evidence of reaming process instability in the ranges of Table 3.1. The short-term
process variability changes over time.

The R chart is the most common Shewhart control chart for monitoring process
spread. It requires very little from its user in the way of calculations, is based on a
statistic that is very easy to understand, and is firmly entrenched in quality assurance
practice dating from the days of Shewhart himself. There is, however, an alternative to
the R chart that tends to detect changes in process spread more quickly, at the price of
increased computational complexity. Where the quantitative sophistication of a user is
high and calculations are not a problem, the s chart is a viable competitor for the R
chart.

The fact that (when sampling from a normal distribution)

Es = cy0, (3.19)

has already proved useful when making retrospective control limits for = based on .
The same kind of mathematics that leads to relationship (3.19) can be used to find
the standard deviation of s (based on a sample from a normal universe). (This is a
measure of spread for the probability distribution of the random variable s, that is
itself a measure of spread of the sample.) It happens that this standard deviation is a
multiple of o. The multiplier is called c5 and it turns out that c5 = /1 — cﬁ. That 1s,

os=o04/1—c=cs0. (3.20)
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Now relationships (3.19) and (3.20) together with the generic Shewhart control lim-
its and center line specified in displays (3.2) and (3.3) lead immediately to standards
given control limits and center line for an s chart. That is,

UCLg = (¢4 + 3c5)0 and  LCLs = (¢4 — 3c5)0 (3.21)

and

CL, = cyo . (3.22)

Further, if one adopts the notations Bg = ¢4+ 3¢5 and Bs = ¢4 — 3¢5, the relationships
(3.21) can be written as

UCL, = Bgo and LCL, = Bso . (3.23)

Values of the constants Bs and Bg may again be found in the table of control chart
constants, Table A.1. For n < 5 there are no values of Bs given in Table A.1 because
for such sample sizes ¢4 — 3¢5 is negative. For n > 5, Bj is positive, allowing the s
chart to provide for detection of a decrease in o (just as is possible with an R chart and
n > 6).

Retrospective control limits for s can be made by substituting any sensible estimate
of ¢ into the standards given formulas (3.23) and (3.22). A particularly natural choice
in this context is §/c4. Substituting this into relationship (3.23), one gets the obvious
retrospective center line for an s chart

CL,=5. (3.24)

Further, substituting 5/¢4 into equations (3.23) for o produces retrospective control
limits for s

s s
UCL,; = Bg () and LCLs; = Bs () . (3.25)

Cq Cq

And adopting the notations By = Bg/c4 and B3 = Bs/cy, it is possible to write the
relationships (3.25) more compactly as

Standards
Given s Chart
Center Line

Standards
Given s Chart
Control Limits

Retrospective s
Chart Center
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UCL, = B,5 and  LCL, = B35. (3.26)

As usual, the constants B3 and B, are tabled in Table A.1, and the table contains no
values of B3 forn < 5.

Example 30 (Examples 25 through 29 continued.) The 20 samples in Table 3.1 have
5 = 3.76. For n = 5, B4y = 2.089. So from displays (3.24) and (3.26) a retrospective
control chart for the standard deviations (based on 3/cy as an estimator of o) has
center line at

CL; =5=3.76

and upper control limit
UCL, = B4s = 2.089(3.76) = 7.85 .

Figure 3.5 is a retrospective s chart for the sample standard deviations of Table 3.1.
It carries the same message as does a retrospective analysis of the sample ranges for
this example. Not only is a "o constant at 4" view of the students’ data not plausible,
neither is a "o constant at some value" view. There is solid evidence of reaming process
instability in the standard deviations of Table 3.1.

i
o

UCLg

CLy

Standard Deviation of
Surface Roughness

5 10 15 20
Sample

FIGURE 3.5. Retrospective s chart for surface roughness

3.2.3 Whatifn =1?

To call n observations a "sample" or a "rational subgroup" is to implicitly guarantee
that they were collected under essentially constant process conditions. The discussion
in Section 3.1 has already raised the possibility (particularly in some low volume pro-
duction contexts) that a natural sample or subgroup size can be n = 1. Sometimes it is
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simply not safe to assume that even two successive process outcomes are necessarily
generated under the same conditions.

There are two commonly raised questions about control charting for measurements
when n = 1. These are

1. Exactly what should one chart (in particular, should one chart so-called "moving
ranges")? and

2. How does one estimate a process standard deviation, o?

We consider these questions before closing this section on Shewhart charting for mea-
surements data.

Where rational subgroups are of size n = 1 there is really only one possible choice
for a plotted statistic (), namely . One can "transform" the most natural measurement
to some other scale (for example, by taking logarithms) but ultimately it is Q) = =
that is available for plotting. However, people used to making = and R chart (or
and s chart) pairs in cases where 7 > 1 sometimes reason that it might be useful to
supplement an x chart (or individuals chart) with a chart on which one plots moving
ranges

MR; = |z; — 21

The most commonly suggested version of this is where standards given control limits
for x (the limits (3.5) for T when n = 1)

UCL, =p+30c and LCL, =p—3c (3.27)

are used together with
UCLygr = Dyo (3.28)

(for D+ based on the pseudo-sample size of n = 2). This practice turns out to pro-
duce a very large "false alarm rate" when in fact the process is stable. And attempts
to remedy this by applying control limits looser than (3.27) and (3.28) are typically
not repaid with improved ability to detect process changes over what is available using
only an x chart with limits (3.27). Adding a moving range chart to an individuals chart
just turns out to be a bad idea that should probably disappear from control charting
practice. There is, to our knowledge, only one circumstance in which adding the mov-
ing range chart to an individuals chart makes sense. That is a case where the departure
from stable process behavior that one fears and needs to detect is one of oscillation

Moving Range
for an tth
Observation, x;

Standards
Given Control
Limits for
Individuals, =
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in consecutive individuals. There, a moving range chart is (not surprisingly) more ef-
fective than the individuals chart at "seeing" the non-standard process behavior. To be
absolutely explicit, in cases where n = 1, the best thing to do about control charting
is typically to use only an individuals chart with corresponding control limits (3.27).

Consider then the second question above. When n = 1, there are no sample ranges
or standard deviations to use in estimating o. In fact, there is no really honest way to es-
timate a process standard deviation unless one has a sample or samples with n > 2. But
some "dishonest" methods are less dishonest than others, and the best known method
(the least dishonest method) is based on an average of moving ranges of successive
observations. (Notice that this is not a matter of process monitoring based on moving
ranges, but rather using moving ranges to estimate process standard deviation.)

The rationale for using moving ranges of successive observations in estimating o
is this. If process conditions can change observation to observation, observations will
vary not only because o # 0, but because the process mean changes. However, it is
not unreasonable to expect the variability in pairs of successive observations to be less
affected by mean changes than the variability of any other type of group of observations
that could be made up. It is thus reasonable to use moving ranges to make an estimate of
process standard deviation. While such an estimate is potentially inflated by variation
in the process mean, it can be expected to be less so than any other estimate one might
make.

The exact form of estimator of o we’ll use (based on samples of size n = 1) is

MR

Q»
I

(3.29)

where dj is for "sample size" 2 (as there are 2 observations represented in each moving
range). This is a conservative estimator, as it will tend to over-estimate o when g is not
constant. But it is the best one available.

Example 31 A Numerical Example. Consider the 8 successive observations in the
table below and the corresponding 7 moving ranges.

Sample 1 2 3 4 5 6 7 &8
x 5 3 9 10 17 4 6 2
MR 2 6 1 7 13 2 4

The values 5,3,9,10,17,4, 6,2 certainly vary because o # 0. They may vary be-
yond what can be attributed to inherent process short term variability if 1 is not con-
stant. That is, the 7 moving ranges should not be thought of as honest sample ranges,
but as potentially over-representing o. Nevertheless, the best available estimate of o

Chart Only x
Whenn =1
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in this n = 1 context is from formula (3.29)

. MR

o = d—2
. (246+1+T7+134+244)/7
o 1.128
= 4.43.

Section 3.2 Exercises

1. Some specialized containers are produced by a process that runs 8 hours per
day. Nine containers are sampled hourly, each day for five days. The distance
from the bottom of the container to the container’s handle is of interest. The
target value for this dimension is 4 cm. and the process standard deviation for
this quality dimension is .1 cm. (This is known from extensive experience with
the process.)

(a) What is a subgroup in this context? What is the subgroup size? How many
subgroups make up the entire study?

(b) Give control limits for process monitoring when subgroup averages are
plotted versus time.

(c) In addition to the chart in (b), a control chart for short term process vari-
ation is to be made. Suppose that only subgroup average and the smallest
and largest values in a subgroup are available for analysis. What subgroup
statistic can be used to do the charting? Give appropriate control limits and
center line for the chart.

(d) Are the limits in (b) and (c) standards given or retrospective limits? Why?

(e) Suppose both the charts in (b) and (c) indicate that the process is stable. Is
it then possible that any plotted subgroup mean is outside the limits from
(b)? Is it possible that there are plotted values on the second chart outside
control limits from (c)? Explain.

2. Continue in the context of problem 1, except now assume that no target value for
the critical dimension or process standard deviation have previously been estab-
lished..The average of the » = 40 subgroup averages was 3.9 ci, the average of
the subgroup ranges was .56 cm,. and the average of the 40 subgroup standard
deviations was .48 cm.

(a) Find control limits and center line to assess the consistency of "hourly vari-
ation" quantified as subgroup ranges.

(b) Find control limits and center line to assess the consistency of process
aim hour-to-hour based on subgroup averages. (Estimate the "within hour"
standard deviation based on subgroup ranges.)
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(c) Repeat (a), except now use the subgroup standard deviations instead of
ranges.

(d) Repeat (b), except now use the subgroup standard deviations to estimate
the "within hour" standard deviation.

(e) Suppose that none of the charts in (a) to (d) suggests lack of process sta-
bility (so that it makes sense to talk about a single process mean and single
process standard deviation). Give a valid estimate of the process average
distance from container bottom to the handle. Give two valid estimates of
the standard deviation of the distance from the container bottom to the han-
dle. (Provide both the formulas you use and numerical answers.)

3. Below are sample means and standard deviations from 10 samples, each of size
n=4.

Sample 1 2 3 4 5 6 7 8 9 10 Sum

T 0 79 71 77 52 54 64 65 58 6.8 65.8
S 15 31 34 11 14 10 25 .7 14 11 17.2

(a) Suppose process standards u = 6.0 and ¢ = 1.5 are provided. Find the
standards given center line and control limits for an T chart. If these limits
had been applied to the values in the table as they were collected, would
there have been out-of-control signals?

(b) Using the standards in (a) find the standards given center line and control
limits for an s chart. If these limits had been applied to the values in the
table as they were collected, would there have been out-of-control signals?

(c) Suppose that the standards in (a) were not available. Make retrospective
charts and assess whether there is evidence of process instability in the
values in the table.

(d) What is an estimate of o based on the average sample standard deviation?
Use this estimate and estimate the mean of a range for an additional sample
of size n = 6.

4. Transmission Housings. Apple, Hammerand, Nelson and Seow analyzed data
taken from a set of "Series 42" transmission housings. One critical dimension
they examined was the diameter for a particular hole on the side cover of the
housing. A total of 35 consecutively produced housings were examined and the
corresponding « = hole diameter measured and recorded (in inches). Specifi-
cations for the diameter were 3.7814 4 .002 in. Below are the first 10 recorded
diameters. Summary statistics for all 35 housings are >z = 132.319in and
S MR =.024721in.
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Housing 1 2 3 4 5 6 7 8
T 3.7804 3.7803 3.7806 3.7811 3.7812 3.7809 3.7816 3.7814

9 10
3.7809 3.7814

(a) What is a subgroup here and what is the subgroup size?

(b) The 35 consecutive hole diameters produce how many moving ranges?

(c) Compute the first two moving ranges.

(d) Make an estimate of . Use your estimate and the sample mean diameter
to replace process parameters in the limits (3.27). Are the resulting limits
for individuals standards given or retrospective limits? Why? Apply your

limits to the first 10 hole diameters. Do these values provide evidence of
process instability?

3.3 Shewhart Charts for Counts/'" Attributes Data"

The control charts for measurements introduced in Section 3.2 are the most impor-
tant of the Shewhart control charts. Where it is at all possible to make measurements,
they will almost always provide more information on process behavior than will a cor-
responding number of qualitative observations. However, there are occasions where
only attributes data can be collected. So this section presents Shewhart control chart-
ing methods for such cases. The section considers charting counts and corresponding
rates of occurrence for nonconforming items (or defectives) and for nonconformities
(or defects). The case of so-called np charts and p charts for "percent nonconforming"
(or percent defective) contexts is treated first. Then follows a discussion of ¢ and u
charts for "nonconformities per unit" (or defects per unit) situations.

3.3.1 Charts for Fraction Nonconforming

Consider now a situation where one periodically samples n items or outcomes from
a process and (making careful use of operational definitions) classifies each one as
"nonconforming" or "conforming." (The old terminology for these possibilities is "de-
fective" and "nondefective." The newer terminology is used in recognition of the fact
that some kinds of failures to meet inspection criteria do not render a product func-
tionally deficient. There is also reluctance in today’s litigious society to ever admit that
anything produced by an organization could possibly be "defective.")
Then let

X = the number nonconforming in a sample of n items or outcomes (3.30)

and

X . . .
p = — = the fraction nonconforming in a sample of n items or outcomes . (3.31)
n
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Shewhart np charts are for the plotting of Q = X, and p charts are for the monitoring
of Q = p. Both are based on the same probability model for the variable X. (The fact
that p is simply X divided by n implies that control limits for p should simply be those
for X, divided by n.) Under stable process conditions for the creation of the n items or
outcomes in a sample (under the assumption that the sample in question is a rational
subgroup) it is reasonable to model the variable X with a binomial distribution for
n "trials" and "success probability," p, equal to the process propensity for producing
nonconforming outcomes.

Elementary properties of the binomial distribution can be invoked to conclude that

px =EX=np and ox=+VVarX = /np(l —p). (3.32)
Then the mean and standard deviation in display (3.32) and the generic Shewhart con-
trol limits and center line specified in displays (3.2) and (3.3) lead to standards given

control limits for both X and p. That is,

CLx =np (3.33)

while

UCLx :np+3\/m LCLx =np—3+/np(l —p). (3.34)

and

And dividing the expressions (3.33) and (3.34) through by n, one arrives at standards
given values for p,

CL; = p, (3.35)

1-— 1—
UCL@:p—FS\/p(Tp) and LCL,;:p—ZM/Z%.

(3.36)
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TABLE 3.3. Counts and Fractions of Nonconforming Pellets in Samples of Size 30

Sample X p Sample X p
1 14 .47 14 9 .30
2 20 .67 15 16 .53
3 17 .57 16 16 .53
4 13 .43 17 15 .50
5 12 .40 18 11 .37
6 12 40 19 17 .57
7 14 .47 20 8 .27
8 15 .50 21 16 .53
9 19 .63 22 13 .43
10 21 .70 23 16 .53
11 18 .60 24 15 .50
12 14 .47 25 13 43
13 13 .43

Example 32 Monitoring the Fraction Nonconforming in a Pelletizing Process.
Kaminiski, Rasavaghn, Smith, and Weitekamper worked with a manufacturer of hexam-
ine pellets. Their work covered a time period of several days of production. Early
efforts with the pelletizing machine (using shop standard operating procedures) pro-
duced a standard fraction nonconforming of approximately p = .60. On the final day
of the study, after adjusting the "mix" of the powder being fed into the machine, the
counts and proportions of nonconforming pellets in samples of size n = 30 portrayed
in Table 3.3 were collected.

From equations (3.34), standards given control limits for the numbers of noncon-
forming pellets in the samples represented by Table 3.3 are

UCLx = 30(.6) + 31/30(.6)(.4) = 26.05

and
LCLx = 30(.6) — 31/30(.6)(.4) = 9.95,

and from display (3.33) a center line at
CLx =30(.6) =18

is in order. Figure 3.6 on page 144 is the standards given np control chart for the data
of Table 3.3.

It is evident from Figure 3.6 that the pelletizing process was not stable at the stan-
dard value of p = .60 on the final day of the students’ study. Notice that there are two
out-of-control points on the chart (and most of the plotted points run below the center
line established on the basis of the standard value of p). The message that was deliv-
ered at samples 14 and 20 (if not even before, on the basis of the plotted values running
consistently below 18) was one of clear process improvement, presumably traceable to
the change in powder mix.
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FIGURE 3.6. Standards given np chart for counts of nonconforming pellets

Example 32 nicely illustrates the fact that a positive lower control limit on an np
chart or on a p chart makes perfectly good sense in terms of allowing identification of
unexpectedly good process output. Remember that the objective of Shewhart charting
is to detect process instability/change. On occasion, that change can be for the good.

Retrospective control limits for X or p require that one take the data in hand and
produce a provisional estimate of (a supposedly constant) p for plugging into formulas
(3.33) through (3.36) in place of p. If samples (of possibly different sizes) are available
from r different periods, then a most natural estimator of a common p is the pooled
sample fraction nonconforming

>oi_imipi ..y X;  total nonconforming

Ppooled = S S ni total of the sample sizes

(3.37)

Example 33 (Example 32 continued.) Returning again to the pelletizing example, the
counts of nonconforming pellets in Table 3.3 total to 367. There were 30(25) = 750
pellets inspected, so from relationship (3.37), Ppooleda = 367/750 = .4893. Substi-
tuting this into equations (3.33) and (3.34) in place of p, one arrives at retrospective
values

CLx = 30(.4893) = 14.68 ,
UCLy = 30(.4893) + 3+/30(.4893)(.5107) = 22.89 ,

and
LCLx = 30(.4893) — 31/30(.4893)(.5107) = 6.47 .

Figure 3.7 is a retrospective np chart made using these values and the data of Table
3.3. The figure shows that although it is not plausible that the pelletizing process was
stable at the standard value of p (.60) on the final day of the students’ study, it is
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plausible that the process was stable at some value of p, and .4893 is a reasonable
guess at that value.
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FIGURE 3.7. Retrospective np chart for counts of nonconforming pellets

A few words need to be said about cases where sample sizes vary in a fraction non-
conforming context. In such situations, it makes much more sense to plot p values than
it does to plot X’s based on differing sample sizes. Then at least, one has a constant
center line (given by expression (3.35)). Of course, the control limits represented in
display (3.36) will vary with the sample size. Equations (3.36) show that the larger
the sample size, the tighter will be the control limits about the central value p. This
is perfectly sensible. The larger the sample, the more information about the current
process propensity for producing nonconforming outcomes, and the /ess variation one
should allow from the central value before declaring that there is evidence of process
instability.

3.3.2 Charts for Mean Nonconformities per Unit

A second kind of situation leading to count and rate data that is fundamentally dif-
ferent from the fraction nonconforming scenario is the so-called "mean nonconfor-
mances/nonconformities per unit" ("or mean defects per unit") situation. In such a
context, one periodically selects k inspection units from a process output and counts

X = the total number of nonconformities on the & units (3.38)

(older terminology for nonconformities is "defects" or "flaws"). In cases where k is
always equal to 1, the count X itself is plotted and the resulting chart is called a ¢
chart. Where k varies and/or is not equal to 1, it is common to plot instead

X
U= 7= the sample mean nonconformities per unit (3.39)

and the resulting chart is called a u chart.
Control limits for ¢ and u charts are based on the Poisson process model. If one
assumes that under stable process conditions the generation of nonconformities can be
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described by a Poisson process with (constant) rate parameter A, the number of defects
on one inspection unit has a Poisson distribution with mean A. And X, the number of
defects on k inspection units, is a Poisson random variable with mean £A. Thus, under
stable process conditions

ox = VVar X = VKA.

So using facts (3.40) and the generic Shewhart control limits and center line specified
in displays (3.2) and (3.3), in the c¢ chart situation (k = 1) standards given values are

iy =EX =k\  and (3.40)

CLx =\, (3.41)

and

UCLx =A+3VA and  LCLx =X —3VA. (3.42)

It follows from the definition of @ in display (3.39) and relationships (3.40) that

by =Eu =\ and 0y =VVaru = \/i (3.43)

Then using again the generic Shewhart control limits and center line and applying the
facts (3.43), standards given values for a u chart are

(3.44)

and

(3.45)

UCL; = XA+ 3\/5 and LCLy = )\ — 3\/5.

Notice that in the case k£ = 1, the u chart control limits reduce (as they should) to the
c chart limits.
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TABLE 3.4. Counts and Occurrence Rates of Outlet Leaks Found in 18 Daily Samples of Radi-

ators
Day X (leaks) £k (radiators) u (leaks/radiator)

1 14 39 .36
2 4 45 .09
3 5 46 A1
4 13 48 27
5 6 40 15
6 2 58 .03
7 4 50 .08
8 11 50 22
9 8 50 .16
10 10 50 .20
11 3 32 .09
12 11 50 22
13 1 33 .03
14 3 50 .06
15 6 50 A2
16 8 50 .16
17 5 50 .10
18 2 50 .04

Retrospective control limits for X or u require that one take the data in hand and
produce a provisional estimate of (a supposedly constant) A for plugging into formulas
(3.41), (3.42), (3.44), and (3.45) in place of \. If data from r different periods are avail-
able, then a most natural estimator of a common A is the pooled mean nonconformities
per unit

(3.46)

Example 34 Monitoring the Number of Leaks in Assembled Radiators. The article
"Quality Control Proves Itselfin Assembly," by Wilbur Burns (veprinted from Industrial
Quality Control) in Volume 2, Number 1 of Quality Engineering, contains a classic set
of data on the numbers of leaks found in samples of auto radiators at final assembly.
These are reproduced in Table 3.4.

This is a nonconformities per unit situation. Each unit (each radiator) presents the
opportunity for the occurrence of any number of leaks, several units are being in-
spected and the total number of leaks on those units is being counted. The leaks per
radiator are calculated as in display (3.39), and if one wishes to investigate the statis-
tical evidence for process instability, a u chart is in order.

Pooled Mean
Nonconformities
Per Unit
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FIGURE 3.8. Retrospective u chart for rates of radiator outlet leaks

The article gives no shop standard value for A\, so consider a retrospective analysis
of the data in Table 3.4. There are 116 total leaks represented in Table 3.4, and 841
radiators were tested. So from relationship (3.46)

« 116
pooled = &ﬂ = .138,
and a center line for a retrospective u chart for these data can be drawn at this value.
From equations (3.45) (using .138 for \) the control limits change with k, larger k
leading to tighter limits about the center line. As an example of using equations (3.45),
note that for those U values based on tests of k = 50 radiators

138
UCL; = .138+ 3 0 " .296 .

On the other hand, since the formula (3.45) for LC Ly produces a negative value for
the intrinsically nonnegative u, no lower control limit would be used for U based on 50
radiators. (As a matter of fact, no k in Table 3.4 is large enough to lead to the use of a
lower control limit.)

Figure 3.8 is a retrospective u chart for the radiator leak data. It shows that the
initial day’s experience does not "fit" with the subsequent 17 days. There is evidence of
process change/instability, and appearances are that things improved in the radiator
assembly process after the first day.

This section opened with the disclaimer that where possible, the charts for mea-
surements introduced in the previous section should be used in preference to the ones
presented here. That advice bears repeating. The two examples in this section are rea-
sonably convincing, but they are so in part because the relevant fraction nonconforming
and mean nonconformities per unit are fairly large. Modern business pressures make
standard defect rates in the "parts per million" range common. And there is really no
way to effectively monitor processes that are supposed to have such performance with
attributes control charts (sample sizes in the millions would be required for effective
detection of even doubling of defect rates!).
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Section 3.3 Exercises

1. In a packaging department of a food processor, types of packaging "imperfec-
tions" are carefully defined, and include creases, holes, printing smudges, and
broken seals. 30 packages each hour are sampled and X = the total number of
imperfections identified on the 30 packages is recorded. On average about .05
imperfections per package have been seen in the past. Below are data from 7
hours one day in this department.

Hour 1 2
0

3 4 5 6 7
X 1 2 0 1 1 3

(a) Are the data above variables or attributes data? Why?

(b) What distribution (fully specify it, giving the value of any parameter(s))
can be used to model the number of imperfections observed on a single
package?

(c) What is the expected total number of imperfections observed on a set of 30
boxes? What probability distribution can be used to model this variable?

(d) What is the standard deviation of the total number of imperfections on 30
boxes?

(e) Find the standards given control limits and center line for a chart based on
the data above, where the plotted statistic will be X/30. Do any values of
X /30 plot outside of your control limits?

(f) What is the name of the type of chart you made in (e)?

(g) Suppose no standard is given for the rate of imperfections. Using values
above, find appropriate retrospective control limits and center line for plot-
ting X/30.

2. Consider a variant of problem 1 where any package with at least one imperfec-
tion (a crease, a hole, a smudge, or broken seal) is considered to be noncon-
forming. Reinterpret the values X in the table of problem 1 as counts of non-
conforming packages in samples of size 30. Suppose that in the past .05 (5%) of
packages have been nonconforming.

(a) Does this variant of problem 1 involve variables data or attributes data?
Why?

(b) What probability distribution (fully specify it, giving the value of any pa-
rameter(s)) can be used to model the number of nonconforming packages
in a sample of 30?
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(c) What is the mean number of nonconforming packages in a sample of 30?

(d) What is the standard deviation of the number of nonconforming packages
in a sample of 30?

(e) Find the standards given control limits and center line for monitoring the
proportion of nonconforming packages in samples of size 30.

(f) Repeat (e) for monitoring the number of nonconforming packages in sam-
ples of size 30.

(g) Suppose no standard is given for the fraction of nonconforming packages.
Based on the data in the table above, find appropriate retrospective control
limits and center line for an np chart.

3.4 Patterns on Shewhart Charts and Special Alarm
Rules

To this point all we have discussed doing with values @ plotted a Shewhart chart is
to compare them to control limits one at a time. If that were the whole story, there
would be little reason to actually make the plots. Simple numerical comparisons would
suffice. But the plots offer the possibility of seeing other important things in process
monitoring data besides only where points plot outside control limits. And it is standard
control charting practice to examine Shewhart control charts for these other kinds of
indications of process change. The purpose of this section is to discuss some types of
revealing patterns that occasionally show up on control charts (providing both jargon
for naming them and discussion of the kinds of physical phenomena that can stand
behind them) and to provide some sets of rules that can be applied to identify them.

Under stable process conditions (leading to (Q’s that can be modeled as independent
and identically distributed), one expects to see a sequence of plotted values that

1. are without obvious pattern or trend,
2. only on rare occasions fall outside control limits,
3. tend to cluster about the center line, about equally often above and below it, but

4. on occasion approach the control limits.

(The tacit assumption in most applications is that the stable process distribution of () is
reasonably "mound shaped" and centered at the chart’s center line.) When something
other than this kind of "random scatter" picture shows up on a control chart, it can be
possible to get clues to what kinds of physical causes are acting on the process, that
can in turn be used in process improvement efforts.

On occasion one notices systematic variation/cycles, regular "up then back down
again" patterns on a Shewhart chart like those pictured on Figure 3.9. This suggests
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that there are important variables acting on the process whose effects are periodic.
Identification of the period of variation can give one strong hints where to start looking
for physical causes. Examples of factors that can produce cycles on a Shewhart chart
are seasonal and diurnal variables like ambient temperature. And sometimes regular
rotation of fixtures or gages or shift changes in operators running equipment or making
measurements can stand behind systematic variation.

Temp

66 68 70 72 74

Hour

FIGURE 3.9. A plot of factory ambient temperature vs time exhibiting systematic variation or
cycles

While systematic variation is variation of the "second kind" on the right side of equa-
tion (3.1), it may not always be economically feasible to eliminate it. For example, in
some applications it may be preferable to live with effects of ambient temperature
rather than try to control the environment in which a process operates. But recognition
of its presence at least allows one to intelligently consider options regarding reme-
dial measures, and to mentally remove that kind of variation from the baseline against
which one looks for the effects of other special causes.

Instability is a word that has traditionally been applied to patterns on control charts
where many points plot near or beyond control limits. This text has used (and will
continue to use) the word to refer to physical changes in a process that lead to individual
points plotting outside of control limits. But this second usage refers more to a pattern
on the chart, and specifically to one where points outside of control limits are very
frequent. Figure 3.10 on page 152 contrasts variation on a Shewhart chart that one
expects to see, to a pattern of instability. Standing behind such a pattern can be more
or less erratic and unexpected causes, like different lots of raw material with different
physical properties mixed as process input.

Another important possible cause of many points at or beyond control limits is that
of unwise operator over-adjustment of equipment. Control charting is useful both be-
cause it signals the existence of conditions that deserve physical intervention, and
because it tells one to leave equipment untouched when it seems to be operating as
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FIGURE 3.10. Two Z charts, the second of which shows "instability"

consistently as possible. When that "hands-off" advice is not followed and humans tin-
ker with physically stable processes, reacting to every small appearance of variation,
the end result is not to decrease process variation, but rather to increase it. And such
fiddling can turn a process that would otherwise be generating plotted values inside
control limits into one that is regularly producing @Q’s near or beyond control limits.

Changes in level are sometimes seen on control charts, where the average plotted
value seems to move decisively up or down. The change can be sudden as pictured on
Figure 3.11 and traceable to some basic change at the time of the shift. The introduction
of new equipment or a clear change in the quality of a raw material can produce such
a sudden change in level.
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FIGURE 3.11. A sudden change in level of part hardness
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A change in level can also be like that pictured in Figure 3.12, more gradual and
attributable to an important cause starting to act at the beginning of the change in
level, but so to speak "gathering steam" as time goes on until its full effect is felt.
For example, effective worker training in machine operation and measuring techniques
could well begin a gradual decrease in level on an R chart, that over time and with
practice will reach its full potential for reducing observed variation.
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FIGURE 3.12. A gradual change in level of part hardness

Where a gradual change in level does not end with stabilization around a new mean,
but would go on unabated in the absence of physical intervention, it is traditional to
say that there is a trend on a control chart. Figure 3.13 pictures such a trend on a run
chart.
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FIGURE 3.13. A run chart with an unabated trend
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Many physical causes acting on manufacturing processes will produce trends if they
remain unaddressed. An example is tool wear in machining processes. As a cutting tool
wears, the parts being machined will tend to grow larger. If adjustments are not made
and the tool is not periodically changed, machined dimensions of parts will eventually
be so far from ideal as to make the parts practically unusable.

There is another phenomenon that occasionally produces strange-looking patterns
on Shewhart control charts. This is something the early users of control charts called
the occurrence of mixtures. These are the combination of two or more distinct patterns
of variation (in either a plotted statistic (), or in an underlying distribution of individual
observations leading to Q) that get put together on a single control chart. In "stable"
mixtures, the proportions of the component patterns remain relatively constant over
time, while in "unstable" versions the proportions vary with time.

Where an underlying distribution of observations has two or more radically different
components, a plotted statistic () can be either unexpectedly variable or surprisingly
consistent. Consider first the phenomenon of unexpectedly large variation in ) trace-
able to a mixture phenomenon. Where blunders like incomplete or omitted manufac-
turing operations or equipment malfunctions lead to occasional wild individual obser-
vations and correspondingly wild values of @, the terminology freaks is often used.
The resulting impact of mixing normal and aberrant observations can be as pictured
in Figure 3.14. Where individual observations or values of ) of a given magnitude
tend to occur together in time as pictured in Figure 3.15, the terminology grouping
or bunching is common. Different work methods employed by different operators or
changes in the calibration of a measurement instrument can be responsible for group-
ing or bunching. So, how mixture phenomena sometimes lead to unexpectedly large
variation on a control chart is fairly obvious.

24
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FIGURE 3.14. An example of a pattern that could be described as exhibiting "freaks" (and the
corresponding histogram)

How a mixture can lead to unexpectedly small variation in a plotted statistic is more

I
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FIGURE 3.15. A run chart showing grouping or bunching

subtle, but very important. It involves a phenomenon sometimes known in quality as-
surance circles as stratification. If an underlying distribution of observations has radi-
cally different components, each with small associated variation, and these components
are (wittingly or unwittingly) sampled in a systematic fashion, a series of plotted values
(2 with unbelievably small variation can result. One might, for example, be sampling
different raw material streams or the output of different machines and unthinkingly
calling the resulting values a single "sample" (in violation, by the way, of the notion of
rational subgrouping). The result can be a Shewhart control chart like the one in Figure
3.16.

Mean
50
|
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FIGURE 3.16. Unexpectedly small variation on an T chart, potentially due to stratification

To see how stratification can lead to surprisingly small variation in @, consider the
case of a p chart and a hypothetical situation where a 10-head machine has one com-
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TABLE 3.5. Western Electric Alarm Rules
A single point outside 3 sigma control limits

2 out of any 3 consecutive points outside 2 sigma limits on one side of center
4 out of any 5 consecutive points outside 1 sigma limits on one side of center
8 consecutive points on one side of center

TABLE 3.6. Alarm Rules from Duncan’s Quality Control and Engineering Statistics
A single point outside 3 sigma control limits
A run of 7 consecutive points up, down or on one side of center
2 consecutive points outside 2 sigma limits
4 consecutive points outside 1 sigma limits
"Obvious" cycles up and down

pletely bad head and 9 perfect ones. If the items from this machine are taken off the
heads in sequence and placed into a production stream, "samples" of 10 consecutive
items will have fractions defective that are absolutely constant at p = .10. A p chart
for the process will look unbelievably stable about a center line at .10. (A similar hy-
pothetical example involving  and R charts can be invented by thinking of 9 of the 10
heads as turning out widget diameters of essentially exactly 5.000, while the 10th turns
out widget diameters of essentially exactly 7.000. Ranges of "samples" of 10 consecu-
tive parts will be unbelievably stable at 2.000 and means will be unbelievably stable at
5.200.)

So, too much consistency on a control chart is not cause for rejoicing and relaxation.
When plotted points hug a center line and never approach control limits something is
not as it should be. There may be a simple blunder in the computation of the control
limits, or the intrinsic variation in the process may be grossly overestimated. (For ex-
ample, an excessive standard value for o produces  and R chart control limits that are
too wide and plotted points that never approach them under stable conditions.) And on
occasion stratification may be present. When it is and it goes unrecognized, one will
never be in a position to discover and eliminate the cause(s) of the differences between
the components of the underlying distribution of observations. In the 10-head machine
example, someone naively happy with the "p constant at .10" phenomenon will never
be in a position to discover that the one head is defective and remedy it. So, a chart

TABLE 3.7. Nelson’s Alarm Rules from the Journal of Quality Technology
A single point outside 3 sigma control limits
9 consecutive points on one side of center
6 consecutive points increasing or decreasing
14 consecutive points alternating up and down
2 out of any 3 consecutive points outside 2 sigma limits on one side of center
4 out of any 5 consecutive points outside 1 sigma limits on one side of center
15 consecutive points inside 1 sigma limits
8 consecutive points with none inside 1 sigma limits
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that looks too good to be true is as much a cause for physical investigation as is one
producing points outside control limits.

Once one recognizes the possibility of looking for patterns on a Shewhart control
chart, the question becomes exactly what to consider to be an occurrence of a pattern.
This is important for two reasons. In the first place, there is the matter of consistency
within an organization. If control charts are going to be used by more than one person,
those people need a common set of ground rules for interpreting the charts that they
together use. Second, without a fair amount of theoretical experience in probability
and/or practical experience in using control charts, people tend to want to "see" patterns
that are in actuality very easily produced by a stable process.

Since the simple "one point outside control limits" rule is blind to the interesting
kinds of patterns discussed here and there is a need for some standardization of the
criteria used to judge whether a pattern is present, organizations often develop sets
of "special checks for unnatural patterns" for application to Shewhart control charts.
These are usually based on segmenting the set of possible ()’s into various zones de-
fined in terms of multiples of o, above and below the central value y. Figure 3.17
shows a generic Shewhart chart with typical zones marked on it.

HQ + SGQ ———————————— UCLQ

Po+20p———— — — — — — — — —
PBo + 0 = == == = = = = — — — — —

Ho-Coppm——— = — — — —
B - ZGQ ————————————
Pop-30pp———— — — — — — — — — LCL,

FIGURE 3.17. Generic Shewhart control chart with "zones" marked on it

By far the most famous set of special checks is the set of "Western Electric Alarm
Rules" given in Table 3.5. They are discussed extensively in the Statistical Quality
Control Handbook published originally by Western Electric and later by AT&T. Two
other possible sets of rules, one taken from A.J. Duncan’s excellent Quality Control
and Industrial Statistics and the other published by Lloyd Nelson in the Journal of
Quality Technology in 1984, are given in Tables 3.6 and Table 3.7 respectively. The
reader should be able to see in these sets of rules attempts to provide operational defin-
itions for the kinds of patterns discussed in this section. It is not at all obvious which set
should be considered best, or even what are rational criteria for comparing them and
the many other sets that have been suggested. But the motivation behind them should
be clear.
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Section 3.4 Exercises

1. When a process is stable, what do you expect to see on a control chart for a
statistic QQ?

2. What motivates the use of multiple rules for identifying out of control situations?

3. When "extra alarm rules" (beyond the "single point outside 3 sigma control lim-
its" rule) are used in process monitoring, do you expect the frequency of false
alarms to decrease, stay the same. or increase? (A "false alarm" occurs when the
chart signals, but no physical special cause can be identified.)

3.5 The Average Run Length Concept

Realizing that alternative schemes for issuing out-of-control signals based on process-
monitoring data are possible, the need arises to quantify what a given scheme can be
expected to do. For example, to choose intelligently between the sets of alarm rules in
Tables 3.5 through 3.7, one needs some way of predicting behavior of the alternative
monitoring schemes. The most effective tool available for making this kind of predic-
tion is the "Average Run Length" (ARL) notion. This section introduces the concept
and illustrates it in some very simple situations.

Consider a context where based on values of () plotted at periods 1,2,3,... one
will monitor a process until an out-of-control signal is issued. Let

T = the period at which the process-monitoring scheme first signals . (3.47)

T is arandom variable and is called the run length for the scheme. The probability dis-
tribution of 7 is called the run length distribution, and the mean or average value of
this distribution is called the Average Run Length (ARL) for the process-monitoring
scheme. That is,

ARL =ET = puy . (3.48)

It is desirable that a process monitoring scheme have a large ARL when the process is
stable at standard values for process parameters, and small ARLs under other condi-
tions.

Finding formulas and numerical values for ARLs is not usually elementary. Some
advanced probability and numerical analysis are often required. But there is one kind of
circumstance where an explicit formula for ARLs is possible and we can illustrate the
meaning and usefulness of the ARL concept in elementary terms. That is the situation
where
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1. the process-monitoring scheme employs only the single alarm rule "signal the
first time that a point @) plots outside control limits," and

2. it is sensible to think of the process as physically stable (though perhaps not at
standard values for process parameters).

Under condition 2, the values 01, @2, @3, . .. can be modeled as independent random
variables with the same individual distribution, and the notation

q = P[Q1 plots outside control limits] (3.49)

will prove useful.
In this simple case, the random variable 7" has a geometric distribution with proba-
bility function

[ gl =)t fort=1,2,3,...
ft) = { 0 otherwise

It then follows from the properties of the geometric distribution and relationship (3.48)
that

ARL —ET = ». (3.50)

Example 35 Some ARLs for Shewhart © Charts. To illustrate the meaning of rela-
tionship (3.50) consider finding ARLs for a standards given Shewhart T chart based on
samples of size n. = 5. Note that if standard values for the process mean and standard
deviation are respectively y and o, the relevant control limits are

g

V5

g

UCLz = pu+3
: /5

and LCLz=p—3
Thus, from equation (3.49)

o o
=Plz<pu—-—3—% or T > —|—3]
q [ K 75 Iz 75
First suppose that "all is well" and the process is stable at standard values of the
process parameters. Then elementary probability shows that ji. = p and oz = o /\/5

and if the process output is normal, so also is the random variable T. Thus

g

V5

q:l—P{,u—?) <x<,u—|—30] :1—P{—3<x_”<3}

VB o/V5

Probability of
an Immediate
Alarm

ARL for a“One
Point Outside
Control
Limits”
Scheme
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can be evaluated using the fact that
T—p
Z =
o/ V5

is a standard normal random variable. Using a normal table with an additional signif-
icant digit beyond the one in this text it is possible to establish that

q=1-P[-3< Z < 3] =.0027

to 4 digits. Therefore, from relationship (3.50) it follows that

ARL = 370 .

1
0027
The interpretation of this is that when all is OK (i.e., the process is stable and para-
meters are at their standard values), the T chart will issue (false alarm) signals on
average only once every 370 plotted points.

In contrast to the situation where process parameters are at their standard values,
consider next the possibility that the process standard deviation is at its standard value
but the process mean is one standard deviation above its standard value. In these cir-
cumstances one still has oz = o /\/5, but now i~ = pu -+ o (u and o are still the
standard values of respectively the process mean and standard deviation). Then,

V5 N

p=30/V6—(nto) T—(pto) _p+30/V5—(n+o)
a/\Vb a/\Vb a/\V5 ’

= 1-P[-5.24< Z < .76],

= .2236.

<zT<p+3

B
Il

1—P[,u—3

= 1-P

Figure 3.18 illustrates the calculation being done here and shows the roughly 22%
chance that under these circumstances the sample mean will plot outside T chart con-
trol limits. Finally, using relationship (3.50),

1

= —— =4.5.
.2236 g

That is, if the process mean is off target by as much as one process standard deviation,
then it will take on average only 4.5 samples of size n = b to detect this kind of
misadjustment.

Example 35 should agree completely with the reader’s intuition about "how things
should be." It says that when a process is on target, one can expect long periods be-
tween signals from an T chart. On the other hand, should the process mean shift off
target by a substantial amount, there will typically be quick detection of that change.
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Standard Mean Shifted Mean

FIGURE 3.18. Two distributions for = and standard given control limits

Example 36 Some ARLs for Shewhart c Charts. As a second example of the meaning
of equation (3.50), consider finding some ARLs for two different versions of a Shewhart
c chart when the standard rate of nonconformities is 1.5 nonconformities per unit. To
begin, suppose that only one unit is inspected each period. Using relationships (3.42)
with \ = 1.5, it follows that since 1.5 — 3v/1.5 < 0 no lower control limit is used for
the number of nonconformities found on an inspection unit, and

UCLx =15+3V1.5=52.
So, for this situation
g=P[X >52]=1-P[X <5].

Consider evaluating q both when the nonconformity rate is at its standard value (of
A = 1.5 nonconformities per unit) and when it is at three times its standard value
(i.e., is 4.5 nonconformities per unit). When the rate is standard, one uses a Poisson
distribution with mean 1.5 for X and finds

1
g=1—P[X <5]=.005 and ARL = —— =200.
.005
When the rate is three times standard, one uses a Poisson distribution with mean 4.5

for X and finds

1
¢=1-PX<5/=298 and ARL= .o =34,

That is, completely in accord with intuition, the mean waiting time until an alarm is
much smaller when quality deteriorates than when the process defect rate is standard.

Now suppose that two units will be inspected each period. One can then either use
a u chart, or equivalently simply apply a c chart where the standard value of A is 3.0
nonconformities per two units. Applying this second way of thinking and relationships
(3.42) with X\ = 3.0, it follows that since 3.0 — 3v/3.0 < 0 no lower control limit is
used for the number of nonconformities found on two inspection units, and

UCLx =3.0+3v3.0=82.
So, for this situation

g=P[X >82=1-P[X <38].
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TABLE 3.8. ARLs for Two ¢ Chart Monitoring Schemes for a Standard Nonconformity Rate of
1.5 Defects per Unit
Standard 3x Standard
Defect Rate  Defect Rate
1 Unit Inspected 200 3.4
2 Units Inspected 250 1.8

Consider again the ARLs both where the nonconformity rate is at its standard value
(of X = 3.0 nonconformities per two units) and where it is at three times its standard
value (i.e., is 9.0 nonconformities per two units). When the rate is standard, one uses
a Poisson distribution with mean 3.0 for X and finds

1
g=1—-P[X <8 =.004 and ARL = 001~ 250.

When the rate is three times standard, one uses a Poisson distribution with mean 9.0

for X and finds

1
—1— P[X < 8] = 545 d ARL= — =18
q (X =8 an 545

Table 3.8 summarizes the calculations of this example. It shows the superiority of the
monitoring scheme based on two units rather than one unit per period. The two-unit-
per-period monitoring scheme has both a larger ARL when quality is standard and a
smaller ARL when the nonconformity rate degrades by a factor of 3.0 than the one-
unit-per-period scheme. This, of course, does not come without a price. One must do
twice as much inspection for the second plan as for the first.

Examples 35 and 36 illustrate the ARL concept in very simple contexts that are
covered by an elementary formula. Where the rules used to convert observed values
Q1,Q2,Qs3, ... into out-of-control signals or the probability model for these variables
are at all complicated, explicit formulas and elementary computations are impossible.
But it is not necessary to understand the nature of the numerical analysis needed to
compute ARLs for more complicated cases to appreciate what an ARL tells one about
a monitoring scheme.

For example, a paper by Champ and Woodall appearing in Technometrics in 1987
considered ARL computations for monitoring schemes using various combinations of
the four Western Electric alarm rules. Example 35 showed the "all OK" ARL for an
T chart scheme using only the "one point outside 3oz control limits" rule to be about
370. When all four Western Electric rules are employed simultaneously, Champ and
Woodall found that the = chart "all OK" ARL is far less than 370 (or what naive users
of the rules might expect), namely approximately 92. The reduction from 370 to 92
shows the effects (in terms of increased frequency of false alarms) of allowing for
signs of process change in addition to individual points outside control limits.
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Section 3.5 Exercises
1. Interpret the terms "ARL" and "All OK ARL."

2. What kind of ARL does one want under a "stable at standard parameter val-
ues" process model? What kind of ARL does one hope to have under any other
circumstance?

3. n = 4 values are sampled every hour from a process that under "All OK sta-
ble process" conditions produces observations x that are normal mean 20 and
standard deviation 4. A typical Shewhart & chart is set up.

(a) What is the All OK ARL of the monitoring scheme?

(b) An upward shift in the process mean of at least 1 unit occurs while the
process standard deviation variation does not change. At worst, how many
hours on average will pass before this change produces a subgroup average
outside the control limits?

4. Consider a production process where one item (the subgroup size is 1) is periodi-
cally sampled and the number of nonconformities is observed. Suppose standard
nonconformity rate per item is A = 4.

(a) Find the All OK ARL.
(b) Find the ARL if an increase to a rate of A = 8 occurs.

(c) Answer (a) and (b) if two items make up each subgroup.

5. Control charting Method A is preferred to Method B relative to an "All OK" and
some "not All OK" process conditions. Which of the following is true?

(a) ARLy > ARLg when "Allis OK" and ARLA > ARLg when "All is not
OK".

(b) ARLs > ARLg when "All is OK" and ARLs < ARLg when "All is not
OK".

(¢) ARLA < ARLg when "All is OK" and ARLs > ARLg when "All is not
OK".

(d) ARLs < ARLg when "All is OK" and ARL, < ARLg when "All is not
OK".

6. Process standards are ;» = 100 and o = 7 and observations from the process are
normally distributed. A Shewhart = chart is being considered for use in monitor-
ing the process.

(a) The charts with n = 5 and n = 10 will have different control limits. Why?

(b) The charts with n = 5 and n = 10 will have the same ARL if process
parameters remain at standard values. Why?
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3.6 Statistical Process Monitoring and Engineering Con-
trol

We have said that "Statistical Process Control" is really better called "Statistical Process
Monitoring." "Engineering Control" is a very important subject that is largely distinct
from the considerations laid out thus far in this chapter. Unfortunately, there has been
a fair amount of confusion about what the two methodologies offer, how they differ,
and what are their proper roles in the running of industrial processes. This section is
intended to help readers better understand the relationship between them. It begins
with an elementary introduction to one simple kind of engineering control, called PID
control. It then proceeds to a number of general comments comparing and contrasting
statistical process monitoring and engineering control.

3.6.1 Discrete Time PID Control

Engineering control has to do with guiding processes by the deliberate manipulation
of appropriate process parameters. For example, in a chemical process, a temperature
in a reaction vessel might be kept constant by appropriate manipulation of the position
of an inlet steam valve. A very common version of engineering control in industry can
be represented in terms of a feedback control diagram like that in Figure 3.19.

Noise ;
NN\, Physical Y N
Process I
A
X Control T
—

Algorithm

FIGURE 3.19. Schematic of an engineering feedback control system

In Figure 3.19, a process outputs a value of a variable Y, which is fed into a control
algorithm along with a value of a target T for the next output, resulting in a value for
some manipulated process variable X, which together with (unavoidable) noise (some-
how) produces a subsequent value of Y, and so on. Depending upon what is known
about the various elements in Figure 3.19, different means of choosing a control algo-
rithm can be applied. A method that requires very little in the way of detailed knowl-
edge about how X or the noise impact Y is that of Proportional-Integral-Derivative
(PID) control.

The discussion here will treat the discrete time version of PID control. So consider
discrete integer times ¢t = 1,2,3,... (typically evenly spaced in real time) and as in
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Figure 3.19, suppose that

Y (t) = the value of the controlled or output variable at time ¢ ,

=
I

the value of a target for Y at time ¢, and
X(t) = the value of a (manipulated) process variable that is

chosen after observing Y (¢) .

A control algorithm converts knowledge of Y (1),Y(2),...,Y (¢) and T'(s) for all s
into a choice of X (). For example, in machining Y (¢) could be a measured widget
diameter, T'(¢) a target diameter, and X (¢) a cutting tool position. A control algorithm
orders a tool position in light of all past and present diameters and all targets for past,
present, and future diameters.

The practice of PID control does not typically invest much effort in modeling ex-
actly how changes in X get reflected in Y. (If the goal of a study was to understand
that relationship, tools of regression analysis might well be helpful.) Nevertheless, in
understanding the goals of engineering control, it is useful to consider two kinds of
process behavior with which engineering control algorithms must sometimes deal.

For one thing, some physical processes react to changes in manipulated variables
only gradually. One behavior predicted by many models of physical science is that
when initially at "steady state" at time #(, a change of AX in a manipulated variable
introduces a change in the output at time ¢ > t( of the form

AY () = Y (t) - Y(to) = GAX (1 _exp (“T“)» . (350
for process-dependent constants GG and 7. Figure 3.20 shows a plot of AY in display
(3.51) as a function of time. In cases where relationship (3.51) holds, G is the limit of
the ratio AY/AX and is called the control gain. 7 governs how quickly the limiting
change in Y is reached (7 is the time required to reach a fraction 1 — e~! = .63 of the
limiting change in Y'). It is called the time constant for a system obeying relationship
(3.51).
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FIGURE 3.20. Change in the output Y (initially at steady state) in response to a AX change in
the manipulated variable X
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Another phenomenon that is sometimes part of the environment in which engineer-
ing control systems must operate is that of dead time or delay between when a change
is made in X and when any effect of the change begins to be seen in Y. If there are §
units of dead time and thereafter a relationship similar to that in equation (3.51) holds,
one might see a pattern like that shown in Figure 3.21 following an adjustment A X
made at time ¢y on a process at steady state at that time.
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FIGURE 3.21. Change in the output Y (initially at steady state) in response to a AX change in
the manipulated variable at time ¢, if there are § units of dead time

Of course, not all physical systems involve the kind of gradual impact of process
changes illustrated in Figure 3.20, nor do they necessarily involve dead time. (For
example, real-time feedback control of machine tools will typically involve changes in
tool positions that take their full effect "immediately" after being ordered.) But where
these phenomena are present, they increase the difficulty of finding effective control
algorithms, the dead time problem being particularly troublesome where § is large.

To get to the point of introducing the general PID control algorithm, consider a
situation where it is sensible to expect that increasing X will tend to increase Y. Define
the observed "error" at time ¢,

and the first and second differences of errors

and
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AE(t) = A(AE(t)) = AE(t) — AE(t — 1) .

With some additional algebra

AE(t) = (E(t) - E(t—1)) - (BE(t—1) — E(t - 2))
= E{t)-2Et-1)+E(t—-2).

Then, for constants «1, 2, and k3, a PID control algorithm sets

AX(t) = k1 AE(t) + ke E(t) + k3 A%E(t) . (3.52)

(In cases where Y tends to increase with X, the constants x1, k2, and k3 are typically
nonnegative.) The three terms summed on the right of equation (3.52) are respectively
the proportional, integral, and derivative parts of the control algorithm.

Example 37 PID Control of Final Dry Weight of 201b Bond Paper. Through the
kind cooperation of the Miami University Paper Science Laboratory and Mr. Doug
Hart, Research Associate at the lab, one of your authors was able to help implement a
PID controller on a 13 in Fourdrinier paper-making machine. This machine produces
paper in a long continuous sheet beginning with vats of pulp mix. The final dry weight
of paper is measured as the paper leaves the machine and can be controlled by the
rate at which a Masterflex peristaltic pump delivers pulp mix to the machine. A manual
knob is used to vary the pump speed and can be adjusted in "ticks." (Each 1-tick change
corresponds approximately to a change of pump speed equal to .2% of its maximum
capacity.) Past experience with the machine indicated that for 20 1b bond pulp mixture,
a I-tick increase in pump speed produces approximately a .3 g/ m? increase in paper
dry weight. But unavoidable variations in the process (including the "thickness" of the
mix available to the pump) produce variation in the paper dry weight and need to be
compensated for by varying the pump speed.

Since there is over a 4min lag between when a pump speed change is made and
when paper affected by the speed change reaches the scanner that measures dry weight
at the end of the machine, measurements and corresponding adjustments to pump speed
were made only once every 5 min. (This choice eliminates the effect of dead time on the
control algorithm, which would be a concern if measurements and adjustments were
made closer together.) Some experimentation with the machine led to the conclusion
that a sensible PID control algorithm for the machine (using the 5-minute intervals
and measuring the control variable changes in terms of ticks) has

k1 = .83, ko =1.66, and k3 = .83

Second
Difference in
Errors at
Time ¢

PID Control
Algorithm
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TABLE 3.9. PID Control Calculations for the Control of Paper Dry Weight (7, Y, £, AE and
A%E in g/m? and AX in ticks)
Period,t T(t) Y(t) E(t) ABE(t) A2E(t)  AX(t) = .83AE(%)
+1.66E(t) + .83A2E(t)

1 70.0 65.0 5.0

2 70.0 67.0 3.0 -2.0

3 70.0 68.6 1.4 —1.6 4 1.328
4 70.0 68.0 2.0 .6 2.2 5.644
5 70.0 67.8 2.2 2 -4 3.486
6 70.0 69.2 .8 —-14 —1.6 —1.162
7 70.0 706 —.6 —-1.4 0 —2.158
8 70.0 69.5 5 1.1 2.5 3.818
9 70.0 703 -3 -8 -1.9 —2.739
10 70.0 707 =7 -4 4 —1.162
11 70.0 70.1 -1 .6 1.0 1.162

in formula (3.52). Table 3.9 shows an actual series of dry weight measurements and

PID controller calculations made using these constants. (Since it was impossible to

move the pump speed knob in fractions of a tick, the actual adjustments applied were

those in the table rounded off to the nearest tick.) The production run was begun with

the knob (X)) in the standard or default position for the production of 201b bond paper:
For example, fort = 3,

E3)=T(3)-Y(3)=170.0 - 68.6 = 1.4,
AE(3)=E(3) - FE(2) =14-3.0=—1.6,
A’E(3) = AE(3) — AE(2) = —1.6 — (—2.0) = 4,

and so the indicated adjustment (increment) on the pump speed knob is AX (3) =
83AE(3) + 1.66E(3) + .83A%E(3) = .83(—1.6) + 1.66(1.4) + .83(.4) = 1.328
ticks. (As actually implemented, this led to a 1-tick increase in the knob position after
measurement 3.)

It is useful to separately consider the proportional, integral, and derivative parts of
algorithm (3.52), beginning with the integral part. With ko > 0, this part of the algo-
rithm increases X when F is positive and thus 7" > Y. It is this part of a PID control
algorithm that reacts to (attempts to cancel) deviations from target. Its function is to
try to move Y in the direction of T'.

To grasp why k2 E(t) might be called the "integral" part of the control algorithm,
consider a case where both x; = 0 and k3 = 0 so that one has an "integral only"
controller. In this case (supposing that Y (¢)’s and T'(¢)’s with ¢ < 1 are available so
that one can begin using relationship (3.52) at time ¢t = 1), note that

> AX(s)=ra Y E(s). (3.53)
s=1
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But the sum on the left of equation (3.53) telescopes to X (t) — X (0) so that one has

X(t) = X(0) + k2 Y _ E(s).

That is, the value of the manipulated variable is X (0) plus a sum or "integral" of the
erTor.

"Integral only" control (especially in the presence of a large time constant and/or
large dead time) often tends to overshoot target values and set up oscillations in the
variable Y. The proportional and derivative parts of a PID algorithm are meant to re-
duce overshoot and damp oscillations. Consider next the proportional term from equa-
tion (3.52), namely k1 AE(t).

The proportional part of a PID control algorithm reacts to changes in the error. In
graphical terms, it reacts to a nonzero slope on a plot of E(t) versus ¢. Where k1 > 0,
this part of the algorithm increases X if the error increases and decreases X if
decreases. In some sense, this part of the algorithm works to hold the error constant
(whether at 0 or otherwise).

When k7 and k4 have the same sign, the proportional part of a PID control algorithm
augments the integral part when F is moving away from 0 and "brakes" or cancels part
of the integral part when E is moving toward 0. Figure 3.22 pictures two plots of Y ()
versus ¢ for cases where the target T is constant. In the first plot, Y is approaching
T from below. E(t) > 0 while AE(t) < 0. This is a case where the proportional
part of the algorithm brakes the integral part. In the second plot, Y is above T and
diverging from it. There, both E(t) < 0 and AE(t) < 0, and the proportional part of
the algorithm augments the integral part. The braking behavior of the proportional part
of a PID algorithm helps to resist the kind of oscillation/overshoot problem produced
by "integral only" control.

E(H) <0 .
E(t-1)<0 AE(®) <0
ThEL - - - & & — TL &€ _ _ _ __ _ { _________
t)>0
>~ )(t)><0 >~
| | | | | | | |
t-3 -2 t-1 t t-3 -2 t-1 t
Time Time

FIGURE 3.22. Two plots of Y against time

To see why 1 AE(t) might be called the "proportional" part of the control algo-
rithm, consider a case where both ko = 0 and k3 = 0 so that one has a "proportional
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only" controller. In this case (supposing that Y (¢)’s and T'(t)’s with ¢ < 1 are available
so that one can begin using relationship (3.52) at time ¢t = 1),

t

Y AX(s)=r1 Y AE(s). (3.54)

s=1
But the sums on both sides of equation (3.54) telescope, so that one has
X(t) = X(0) — k1 E(0) + k1 E(t).

That is, the value of the manipulated variable is X (0) — 1 £(0) plus a term "propor-
tional" to the error.

Finally, consider the derivative part of the algorithm (3.52), namely k3 A E(t). This
part of the algorithm reacts to curvature or changes in slope on a plot of F(t) versus
t. That is, it reacts to changes in AE(t). If a plot of errors versus ¢ is linear (AE(t)
is constant), this part of the algorithm does nothing to change X. If k3 > 0 and a plot
of errors versus t is concave up, the derivative part of algorithm (3.52) will increase
X (and thus Y, decreasing E), while if the plot is concave down it will decrease X.
For constant target 7T, this will tend to "straighten out" a plot of E(t) or Y'(¢) versus ¢
(presumably then allowing the proportional part of the algorithm to reduce the slope to
0 and the integral part to put the process on target). Once again, since "integral only"
control often produces unwanted oscillations of Y™ about a target, and it is impossible
to oscillate without local curvature in a plot of E¥ or Y versus ¢, the derivative part
of the algorithm can be considered as corrective to a deficiency in the naive "integral
only" idea.

The rationale for calling x3 A2 E(t) the "derivative" part of the PID algorithm (3.52)
is similar to the arguments made about the other two parts. Namely, if 1 and ko are
both 0 (so that one has "derivative only" control),

t t
> AX(s)=rs Yy A’E(s). (3.55)
s=1 s=1
Telescoping both sides of equation (3.55) one then has

X(t) = X(O) — I€3AE(0) + H3AE(t),

and the value of the manipulated variable is X (0) — k3 AE(0) plus a term proportional
to the change in (or "derivative" of) the error.

The primary practical problem associated with the use of PID controllers is the mat-
ter of choosing the constants k1, k2, and k3, sometimes called respectively the propor-
tional, integral, and derivative gains for the control algorithm. In simple situations
where engineers have good mathematical models for the physical system involved,
those can sometimes provide at least starting values for searches to find good values of
these constants. Where such models are lacking, various rules of thumb aid searches
for workable values of k1, ko, and x3. For instance, one such rule is to initially set x1
and k3 to zero, increase ko till oscillations occur, then halve that value of x5 and begin
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searching over x; and k3. And it is pretty clear that in systems where a relationship
like (3.51) holds, the gains x1, k2, and k3 should be inversely proportional to G. Fur-
ther, conventional wisdom also says that in systems where there is dead time § > 0,
the control gains should decrease (exponentially?) in 6. (One should not be changing
a manipulated variable wildly if there’s to be a long delay before one gets to measure
the impact of those changes and to begin to correct any unfortunate effects one sees.)

Ultimately, the matter of finding good values for the gains 1, k2, and kg3 is typ-
ically a problem of empirical optimization. Section 6.2 of this book discusses some
experimental strategies in process optimization. These can be applied to the problem
of finding good constants k1, k2, and k3 in the following way. For given choices of the
constants, one may run the process using the PID controller (3.52) for some number of
periods, say m. Then a sensible figure of merit for that particular set of constants is the
random variable

§= =3 (Ew),

t=1

the average squared error. The empirical optimization strategies of Section 6.2 may
then be applied in an attempt to find a set of values for x1, k2, and k3 with minimum
associated mean for .S, u,. Chapter problems 38 through 44 describe how the average
squared error idea was used to arrive at the control algorithm of Example 37.

3.6.2 Comparisons and Contrasts

The PID ideas just discussed are not the only ones used to produce engineering con-
trol algorithms. For example, where good models are available for both uncontrolled
process behavior and for the impact of control actions on process outputs, mathemat-
ically optimal control algorithms (that need not be of the PID type) can sometimes
be derived. And the introduction just given completely ignores real issues like the
multivariate nature of most industrial applications. (The Y and X just considered are
one-dimensional, while real process outputs and possible manipulated variables are of-
ten multidimensional.) But the foregoing brief discussion is intended only to give the
reader enough of an idea of how engineering control operates to allow the following
comments on the proper roles of engineering control and statistical process monitoring
to make sense.

The relative merits of the two methodologies when applied in production contexts
have been at times been hotly debated by their proponents. On some occasions, zealots
on one side or the other of the debate have essentially claimed that their methods are
universally applicable and those of the other side are either without merit or are sim-
ply a weak version of their own. The truth is that the methods of statistical process
monitoring and engineering control are not competitors. They are in fact, completely
complementary, each having its own purposes and appropriate areas of application.
When applied to the running of industrial processes, both are aimed at the reduction
of unwanted variability. In many applications, they can and should be used fogether
in an effort to reduce process variation and improve quality, engineering control help-
ing to create stable conditions that are monitored using statistical process monitoring
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methods.

In cases where a process is already physically stable about a target value, statistical
process monitoring tools should only infrequently (and wrongly) signal the need for
intervention, and engineering control is of no help in reducing variation. That is, in the
classical stable process situation, tweaking process parameters can only make variation
worse, not better. On the other hand, if successive observations on a process look as if
they are dependent, or if they have means (either constant or moving) different from a
target, engineering control may be able to improve process performance (uniformity of
output) essentially by canceling predictable misadjustments of the process. Statistical
process monitoring will then protect one from unexpected process changes.

Table 3.10 puts side by side a number of pairs of statements that should help the
reader keep clear the basic differences between engineering control and statistical
process monitoring as they are applied to industrial processes. The late Dr. Bill Tucker
was fond of saying "You can’t steer a car with statistical process control and you can’t
fix a car with engineering control." His apt and easily remembered analogy brings into
focus the differences in intent of the two methodologies.

Section 3.6 Exercises

1. The target value for a process output variable, Y, is 4 units, and a controllable
process parameter X is thought to impact Y in a direct fashion. In 3 successive
periods Y (1) = 2,Y (2) = 1, and Y (3) = 0. You may finish filling in a table
like that below to help you answer this question.

Period,t T(t) Y(t) E(t) AE(t) A%E(t) AX(t)

1 2
2 1
3 0

(a) What are your values of T (¢) here? What is the practical meaning of this
variable?

(b) What values do you get for E(t), AE(t) and A? E(t) here? Describe what
these are measuring.

(c) Use control gains k1 = .8, ko = 1.6, and k3 = 1.9 and compute a PID
control action AX (3) to be taken after observing Y (3).

(d) How will this table and future values of Y be used to extend the PID control
of part (c¢) beyond period 3?

2. In the context of problem 1, suppose that no one is really sure whether Y is
affected by changes in X, or if it is, whether the relationship is "direct" or "in-
verse."

(a) Speculate on what might happen if the PID controller of part (¢) above is
implemented where Y is completely unrelated to X. What might happen
if in fact Y is inversely related to X?
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TABLE 3.10. Contrasts Between Engineering Control and Statistical Process Control for Indus-
trial Processes

Engineering Control

Statistical Process Control

In a typical application, there is a sensor on a
process and an electromechanical adjustment
mechanism that responds to orders (for
change of some process parameter) sent by a
computer "brain" based on signals from the
Sensor.

This is an adjustment/compensation
methodology. Formulas prescribe explicit
reactions to deviations from target.

This is a methodology for ongoing small
process adjustments.

There is an explicit expectation of process
instability/drift in this methodology.

This is typically computer (or at least
mechanically) controlled.

The ultimate effect is to keep a process
optimally adjusted.

This is often "tactical" and applied to process
parameters.

In its "optimal stochastic control" version,
this is what one does within a particular
probability model (for process behavior) to
best exploit the probabilistic predictability of
a process.

This is either manual or automatic plotting
of process performance statistics to warn of
process changes.

This is a detection methodology. Corrective
measures for process changes that are
detected are not specified.

There is a tacit assumption here that wise
intervention following detection of a process
change will set things perfectly aright (for an
extended period).

There is a tacit assumption here of process
stability over long periods.

There is typically a human agent involved in
monitoring and interventions.

The ultimate effect is to warn of the presence
of sources of special cause variation, to help

identify them, and to lead to their permanent
removal.

This is often "strategic" and applied to final
quality variables.

This is what one does to monitor for "the
unexpected" (departures from a stable
process model of expected behavior).
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(b) How would you propose to figure out what, if any, PID control based on X
might be fruitful?

3. In what sense are control charts tools for "controlling" a process? In what mean-
ing of the word "control" are they not tools for controlling a process?

3.7 Chapter Summary

Shewhart control charts are an engineer’s most widely applicable and easily under-
stood process-monitoring tools. The first four sections of this chapter have introduced
these charts for both variables data and attributes data, considered their use in both
standards given and retrospective contexts, and discussed their qualitative interpreta-
tion and supplementation with sets of "extra alarm rules." Table 3.11 summarizes many
of the standard formulas used in the making of elementary Shewhart charts.

TABLE 3.11. Formulas for Shewhart Control Charting

Standards Given Retrospective

Chart Q g 0Q UCLg LCLg UCLy LCLg
T T o/v/n w+30/vn w—30/\/n T+AsR T—AR
T+A35  T—As3

Median & p ko /\/n w+ 3ka//n w—3k0/\/n

R R dzO’ d30’ DQJ D10 D4E Ddﬁ

S S c40 Cc50 Bgo Bso B,s Bss

np X np /np(1-p) np+3y/np(l—p) np—3ynp(l—p)  (usePpooled forp)

p p D \/@ p+3\/@ p73\/@ (use Ppooled for p)
c X A VA A+ 3V A= 3V (use Xpooled for \)

U U A \/% A+ 3\/% A — 3\/% (use Xpooled for \)

The final two sections of the chapter have provided context and perspective for the
study of Shewhart charts and other process-monitoring tools. Section 3.5 introduced
the ARL concept as a means of quantifying the likely performance of a monitoring
scheme. Section 3.6 contrasted methods and goals of "engineering control" with those
of process monitoring when they are both applied in production.

3.8 Chapter 3 Exercises

1. What is the purpose of control charting? What is suggested by out-of-control
signals?
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11.

12.

13.

14.

15.

16.
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What makes step 3 in the quality assurance cycle presented in Chapter 1 difficult
in service contexts? Explain.

Why is it essential to have a clear understanding of what constitutes a noncon-
formance if a Shewhart c or u chart is to be made?

Is control charting most directly concerned with "quality of design" or with
"quality of conformance" ?

. Distinguish between "control limits" and "specification limits" for variables data.

Explain the difference between "control limits" and "specification limits" in an
attributes data setting.

Explain the ARL concept in terms that a person with no statistical training could
understand.

. When designing a control chart, what kinds of ARL values are desirable for

an on-target process? For an off-target process? Explain why your answers are
correct from an economic point of view.

State why statistical methodology is an unavoidable part of quality assurance
practice. (Review Chapter 1.)

Sometimes the plotted statistics appearing on a Shewhart control chart hug (or
have little scatter around) a center line. Explain why this is not necessarily a
good sign.

Uninformed engineers sometimes draw in lines on Shewhart Z charts at engi-
neering specifications for individual measurements. Why is that bad practice?

It is common to hear people imply that the job of control charts is to warn of
degradation in product quality. Do you agree with that? Why or why not?

What is the purpose of sets of "extra alarm rules" like the Western Electric rules
presented in Section 3.4?

What (relevant to quality improvement efforts) does a multimodal shape of a
histogram for a part dimension suggest? (Review Chapter 2.)

In colloquial terms, the language "control" chart perhaps suggests a plot associ-
ated with continuous regulatory efforts. Is understanding correct? Why or why
not? Suggest a better term than "control chart."

Journal Diameters. Below are some summary statistics (means and standard
deviations) for journal diameters of tractor axles as the axles come off an au-
tomatic grinding machine. The statistics are based on subgroups of size n = 4
pieces taken once per hour. The values listed are in millimeters. Specifications
on the journal diameter are from 44.975 mm to 44.990 mm.



176

Chapter 3. Process Monitoring

Subgroup T S Subgroup T S
1 44.9875 .0029 11 44.9815 .0017
2 44.9813 .0025 12 44.9815 .0017
3 44.9808 .0030 13 44.9810 .0024
4 44.9750 .0000 14 44.9778 .0021
5 44.9783 .0039 15 44.9748 .0024
6 44.9795 .0033 16 44.9725 .0029
7 44.9828 .0021 17 449778 .0021
8 44.9820 .0024 18 44.9790 .0034
9 449770 .0024 19 44.9785 .0010
10 44.9795 .0010 20 44.9795 .0010

Note that > T = 899.5876 and ) s = .0442.

(a)
(b)
(©)
(d)

(e)

®

(@

(h)

Are the above attributes data or variables data? Why?
Make a retrospective s chart for these values.
Make a retrospective T chart for these values.

What do these charts indicate (in retrospect) about the stability of the grind-
ing process?

Based on your conclusion in (d), can the fraction of journal diameters that
currently meet specifications be reliably estimated? Why or why not?

Independent of your conclusion in (d), if one judged the process to be sta-
ble based on the 20 subgroups summarized above, what could be used as
an estimate of the fraction of journal diameters that currently meet spec-
ifications? (Give a number based on a normal distribution assumption for
diameter measurements.)

Suppose that henceforth (into the future) this process is to be monitored
using subgroups of size n = 5. Give control limits for a (standards given)
median chart based on the mid-specification (giving the center line) and
your estimated process standard deviation from (b).

Give control limits for future monitoring of sample ranges (use your esti-
mated process standard deviation from (b) as a future standard value and
assume n = b).

17. Refer to the Journal Diameter case introduced in problem 16. Sometimes sub-
group size is not constant. When using standard deviations from subgroups of
varying sizes ni, no, ..., n,. to estimate o, there are several possibilities. Of com-
monly used ones, the one with the best theoretical properties is

R e T R E
pooled (n171)+(n2*1)++(n7"71)
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Another possibility is
-1 -1 r—1)s,
(m—Ds1  (2—Dsz (2 —1)s
5= ca(n) ca(n2) ca(ny)

n+ng+---+n,—r

(Since sample sizes vary in this development, we are displaying the dependence
of ¢4 on sample size here.) The most appropriate estimator of a common mean,
1, when sample sizes vary is

ni1xT1 + NoTo + - - - + Ny T
ni+ng oo tne

Epooled =

Consider the subgroup means and standard deviations given in problem 16. Sup-

pose subgroups were of size n = 4 except for the ones indicated in the following

table.

Subgroup Sample Size

1 2
8
10
15
18
19
20

O W W Ut oo N

(a) Find values for spooled, 7, and Tpooled-

(b) Give two estimates of 1) the standard deviation of a subgroup mean when
n = 2 and 2) the standard deviation of a subgroup standard deviation when
n = 2. (Hint: VarZ; = 02 /n; and Var s; = 02(1 — c3(n;)).)

(c) With the new subgroup sizes, consider two retrospective control charts, one
chart appropriate for assessing the constancy of variability of axle jour-
nal diameters and the other for monitoring average axle journal diameter.
Would the control limits be constant across time for the two charts? (There
is no need to actually make them here.) Why or why not? (See (a) and (b).)

(d) Do the center lines for the two charts in (c) change depending on subgroup
size? (Again, there is no need to make the charts.) Why or why not?

18. Rolled Paper. Shervheim and Snider did a project with a company that cuts
rolled paper into sheets. The students periodically sampled n = 5 consecutive
sheets as they were cut and recorded their actual lengths, y. Data from 20 sub-
groups are summarized below. (Measurements corresponding to the values in the
table were in 64ths of an inch above nominal, i.e., x = y — nominal.)

(a) Make a retrospective s chart.

(b) Make a retrospective T chart.
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(©)

(d)
(e)

&)

(2

(h)

What do these charts indicate (in retrospect) about the stability of the cut-
ting process?

Give an estimate of the process standard deviation based on s.

If one judges the process to be stable and sheet length to be normally dis-
tributed, estimate the fraction of sheets below nominal in length. (Hint:
Find P(z < 0) by transforming to a standard normal random variable Z.)

Subgroup T ]

1 12.2 .84
2 112 1.64
3 10.6  2.07
4 12.2 2.49
5 11.2 .84
6 12.6  1.82
7 122 295
8 13.6  1.67
9 122 1.30
10 104 1.52
11 104 1.95
12 10.6  1.67
13 104  1.67
14 12.0 291
15 11.2 .84
16 10.6  1.82
17 104 1.14
18 9.8  2.17
19 9.6 2.07
20 106 1.95

224.0 35.33

Each .251n that the cutting process mean is above nominal represents a
$100,000/year loss to the company from product "given away." On the
other hand, the company wants to be sure that essentially no sheets are
produced with below-nominal lengths (so they want 1, > 30). With this
in mind, what adjustment in mean length do you suggest, and what yearly
savings or additional cost do you project if this adjustment is made?

Suppose that the adjustment you recommend in (f) is made and henceforth
the cutting process is to be monitored based on samples of size n = 3.
What are standards given control limits for future monitoring of = and s?

Suppose that while using your Z chart from (g) the process mean suddenly
drops to the point where 1% of the sheets produced are below nominal
in length. On average, how many samples will be required to detect this?
(Hint: find the "new " that will make P(xz < 0) = .01, then using it
find P(z < LCL) + P(z > UCL).) How does this compare in terms of
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quickness of detection to a scheme (essentially a p chart) that signals the
first time a sample of n = 3 contains at least one sheet with below-nominal
length?

19. Refer to the Rolled Paper case in problem 18. Again use the means and standard
deviations given there, but suppose that the number of sheets per subgroup was
not constant. Instead, suppose subgroups contained 5 sheets except for the ones
indicated in the following table.

Subgroup Subgroup Size
3 7
6
10
14
17
19
20

SN W N

(a) Compute ZTpoolea and two different estimates of o. (See problem 17.)

(b) For a subgroup size of n = 7, give two estimates of 1) the standard de-
viation of a subgroup mean and 2) the standard deviation of a subgroup
standard deviation. (Hint: Var Z; = 0 /n; and Var s; = 02(1 — c3(n;)).)

(c) With the variable subgroup sizes, consider two retrospective control charts,
one s chart and one x chart. Would the control limits be constant across
time for either chart? (There is need to make the charts.) Why or why not?
(See (a) and (b).)

(d) Do the center lines for the two charts in (c) remain across subgroup sizes?
(Again, there is no need to make the charts.) Why or why not?

20. U-bolt Threads. A manufacturer of U-bolts for the auto industry measures and
records thread lengths on bolts that it produces. Eighteen subgroups, each of n =
5 consecutive bolts, were obtained and actual thread lengths y were measured.
These can be expressed as deviations from nominal by transforming x = y —
nominal. Some summary statistics are indicated below (the units are .001 in
above nominal).

(a) Estimate the supposedly common subgroup standard deviation, o, using 1)
the subgroup ranges (R;) and 2) the subgroup standard deviations (s;).

(b) Find control limits for the subgroup ranges. (Use the estimate of o based
on the s;.)

(c) Find control limits for the subgroup standard deviations. (Use the estimate
of o based on the s;.)

(d) Plot the ranges and standard deviations on Shewhart charts using the ret-
rospective limits from (b) and (c). Is it plausible that variability of thread
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length was constant from sampling period to sampling period? Why or why

not?

(e) Find retrospective control limits for the subgroup means. (Use your esti-
mate of o based on the s;.) Plot the means on a Shewhart chart with these

limits.

Subgroup Thread Length z s T R
1 11,14,14,10,8 11 261 114 6
2 14,10,11,10,11 11 164 112 4
3 8,13,14,13,10 13 2,51 116 6
4 11,8,13,11,13 11  2.05 11.2 5
5 13,10,11,11,11 11 110 112 3
6 11,10,10,11,13 11 1.22 11.0 3
7 8,6,11,11,11 11  2.30 94 5
8 10,11,10,14,10 10 1.73 11.0 4
9 11,8,11,8,10 10  1.52 96 3
10 6,6,11,13,11 11  3.21 94 7
11 11,14,13,8,11 11 230 114 6
12 8,11,10,11,14 11 217 108 6
13 11,11,13,8,13 11  2.05 11.2 5
14 11,8,11,11,11 11 134 104 3
15 11,11,13,11,11 11 89 114 2
16 14,13,13,13,14 13 bh 134 1
17 14,13,14,13,11 13 122 130 3
18 13,11,11,11,13 11 1.10 11.8 2

202 31.51 2004 74

(f) Setting the center line at Z, find upper and lower control limits for the sub-
group medians. (Use your estimate of o based on the s;.) Plot the medians
on a Shewhart chart with these limits.

(g) What do the charts in (¢) and (f) suggest about the threading process?

(h) A U-bolt customer requires that essentially all U-bolt thread lengths are
within .011 in of nominal. Assuming bolt manufacturing continues as rep-
resented by the values in the table, will the customer be satisfied with cur-
rent production? Why or why not? Give a quantitative defense of your an-
swer assuming normality of thread length. (Hint: Find P(—11 < = < 11).)

21. Refer to the U-bolt Threads case in problem 20. Problem 17 presented ways of

(n1 — I)Rl

(712 — 1)R2

d2 (nl)

dg (ng)

(nr -

dg ('I”LT)

1R,

ny+ng+---+n.—r

estimating o when 7 subgroups are of varying size n;. The formulas there are
based on subgroup sample standard deviations s;. Another expression sometimes
used to estimate the process standard deviation is based on ranges, namely
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Consider the subgroup means and ranges given in problem 20 and suppose that
subgroups consisted of n = 5 bolts except for the subgroups indicated in the
following table:

Subgroup Subgroup Size
2 8
5
6
7
11
14
15
18

NN ~JWN D

(a) Give Tpooled and three estimates of o. Base two of the estimates of o on
the subgroup standard deviations and the other on the ranges.

(b) Find three estimates of the standard deviation of a subgroup mean when
n = 8. Base two of the estimates on subgroup standard deviations and one
on the ranges. (Hint: Var z; = 02 /n;.)

(c) Find three estimates of the standard deviation of each subgroup sample
standard deviation when n = 8. Base two of the estimates on subgroup
standard deviations and one on the ranges. (Hint: Var s; = 0%(1—c3(n;)).)

(d) Find an estimate of the standard deviation of each subgroup range when
n = 8. Base the estimate on the subgroup ranges. (Hint: Var R; = d3(n;)o?.)

(e) Consider retrospective = and R charts using the new configuration of sub-
group sizes. (There is no need to make the charts here.) Would control
limits for either chart be constant across time? Why or why not?

(f) Are the center lines for the charts referred to in (e) constant across sub-
groups? Why or why not?

22. Turning. Allan, Robbins, and Wycoff worked with a machine shop that employs
a CNC (computer numerically controlled) lathe in the machining of a part for a
heavy equipment manufacturer. Some summary statistics for a particular part
diameter () obtained from 25 subgroups of n = 4 parts turned on the lathe are
given below. The units are inches.

(a) Find retrospective control limits for the values (both means and ranges).
What do the T and R values indicate about the stability of the turning
process?

(b) Suppose that one wishes to apply the four Western Electric alarm rules to
the T values. Specify the different zones to be used for the mean diame-
ters. Are any of the rules violated in the first 10 samples? (If you find any
violations, say which rule is violated for the first time where.)
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Subgroup T R
1 1.18093 .0001
2 1.18085 .0002
3 1.18095 .0002
4 1.18063 .0008
5 1.18053 .0007
6
7
8

1.18053 .0005
1.18058 .0005
1.18195 .0001

9 1.18100 .0003
10 1.18095 .0001
11 1.18095 .0006
12 1.18098 .0001
13 1.18123  .0009
14 1.18128 .0002
15 1.18145 .0007
16 1.18080 .0003
17 1.18100 .0000
18 1.18103 .0001
19 1.18088 .0003
20 1.18100 .0000
21 1.18108 .0002
22 1.18120 .0004
23 1.18088 .0002
24 1.18055 .0022
25 1.18100 .0004

29.52421 .0101

(¢) Give an estimate of the process short-term standard deviation derived from
the ranges (use all 25 subgroups) and the assumption that o is constant over
the study period.

(d) Engineering specifications on the diameter in question were in fact 1.1809 &£ .005 in.
Suppose that over short production runs, diameters can be described as
normally distributed and that your estimate of ¢ from (c) is an appropriate
description of the variation seen in short runs. Give an estimate of the best
possible fraction of diameters meeting specifications available using this
particular lathe.

(e) Make further use of your estimate of ¢ from (c), and set up control limits
that could be used in the future monitoring of the process standard devia-
tion via Shewhart charting of s based on samples of size n = 5.

(f) Again use your estimate of ¢ from (c) and consider future monitoring of ©
based on samples of size n = 4 using "3 sigma" limits and a center line at
the target diameter, 1.1809. Assuming diameters are normally distributed,



Chapter 3. Process Monitoring 183

on average how many subgroups would be required to detect a change in
mean diameter, u, from 1.1809 to 1.1810?

23. Refer to the Turning case in problem 22. Problem 21 presented a method for
estimating o based on ranges of subgroups of varying size. Use that method in
this problem. Use again the subgroup means and ranges given in problem 22 and
suppose all subgroups were of size n = 4 parts except for the ones indicated in
the following table.

Subgroup Subgroup Size
1
4
5
9

11
13
15
16
17
18

NCO DN WU I N O W

(a) Give Zpooled and an estimate of o.

(b) Find an estimate of the standard deviation for a subgroup mean, T;, when

n="T.
(c) Find an estimate of the standard deviation for a subgroup range, R;, when
n=".

(d) Consider retrospective = and R charts using the new configuration of sub-
group sizes. (There is no need to make the chart here.) Are the control
limits for the two charts constant across subgroups? Why or why not?

(e) Are the center lines for the charts considered in (d) constant across sub-
groups? Why or why not?

24. Package Sorting. Budworth, Heimbuch, and Kennedy analyzed a company’s
package sorting system. As packages arrive at the sorting system, they are placed
onto trays and the bar codes affixed to the packages are scanned (in an operation
much like the scanning process at a grocery store checkout). Bar code identifi-
cation numbers begin with the zip code of the package destination. This permits
packages to be sorted into 40 bins, each of which represents a different bulk
mail center (BMC) or auxiliary service facility (ASF). All packages in a given
bin are shipped by truck to the same mail center. The bulk transportation of these
packages is much cheaper than if they were mailed directly by the nearest U.S.
Post Office. The large number of BMC packages handled daily by the company
produces tremendous cost savings.

Initially, the team tackled the so-called "no chute open" problem. When one of
the BMC bins is full and packages destined for that bin cannot be dropped into
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it. They end up in a "no chute open" bin. This eventuality produced many inef-
ficiencies and even shutdowns of the entire system. In fact, the system was shut
down about 10 min/day on average because of this problem. This lost time cost
the company the ability to process about 400 packages/day, and accumulated
over a year, this represents a serious loss. The team decided to document the
number of packages per shift dumped in the "no chute open" bin. The data they
collected are below.

Number in

"No Chute
Date  Shift Open" Bin
10/16 1 1510
10/17 3 622
10/18 1 2132
10/18 2 1549
10/19 1 1203
10/19 2 2752
10/19 3 1531
10/20 1 1314
10/20 2 2061
10/20 3 981
10/21 1 1636
10/21 2 2559
10/21 3 1212
10/22 1 2016
10/22 2 2765
10/22 3 574

(a) Is this an attributes data problem or a variables data problem? Why?
(b) What constitutes a "subgroup" in the context of this problem?

(c) What probability model is a possible description of the number of packages
routed to the "no chute open" bin during a given shift?

(d) Assuming the sorting process is stable, estimate the average number of
packages routed to the "no chute open" bin during a particular shift. Esti-
mate the standard deviation of the number of packages routed to the "no
chute open" bin. These estimates should be consistent with your answer to
().

(e) Was the number of packages in the "no chute open" bin apparently constant
except for random fluctuation? Why or why not? Defend your answer using
a control chart.

25. Refer to the Package Sorting case in problem 24. Budworth, Heimbuch, and

Kennedy were told that the sorting system was set up to let a package circle on
the conveyor belt for 10 cycles (once each cycle the package would fall into the
correct chute if that chute was not occupied). If after 10 cycles the correct chute
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was always occupied, a package would be consigned to the inefficient "no chute
open" bin. Upon observing the system in operation, the team immediately recog-
nized packages dropping into the "no chute open" bin after only 2 or 3 cycles.
Management was notified and the programming of the system was corrected.
The team gathered the data below after the correction.

Number in

"No Chute
Date  Shift Open "Bin
10/23 1 124
10/24 3 550
10/25 1 0
10/25 2 68
10/25 3 543
10/26 1 383
10/26 2 82
10/26 3 118

(a) Extend the control limits from your chart in part (e) of problem 24. Plot
the data above on the same chart. Does it appear the system change was
effective? Why or why not?

(b) Make a chart to assess stability of the number of packages in the "no chute
open" bin using only the data above. Does it appear the system was stable?
Why or why not?

(c) Has the team solved the problem of a large number of packages in the "no
chute open" bin? Defend your answer.

26. Refer to the Package Sorting case of problems 24 and 25. Budworth, Heimbuch,
and Kennedy also investigated the performance of the package scanning equip-
ment. Just as items at a cashier’s scanner often are not read on the first scan, so
too were bar codes on packages not necessarily read on the first or second scan.
Label damage and incorrect orientation, erroneous codes, and some simply un-
explained failures all produced "no read" packages. If a package was not read on
the first pass, it continued on the carousel until reaching a second scanner at the
end of the carousel. Failure to read at this second scanner resulted in the package
being dropped into a "no read" bin and scanned manually with a substantial loss
in efficiency. The team took data over 30 consecutive one-minute periods on the

variables
n = the number of packages entering the system during the 1 min period ,
X1 = the number of those packages failing the first scan, and

X5 the number of those packages failing both scans .

The values they recorded follow.
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Minute n X1 X2 Minute n X1 X2
1 54 10 2 16 66 17 0
2 10 3 2 17 56 11 3
3 55 22 3 18 26 6 1
4 60 18 5 19 30 6 0
5 60 12 1 20 69 14 1
6 60 14 1 21 58 23 )
7 37 14 0 22 51 18 5
8 42 17 1 23 32 15 1
9 38 20 10 24 44 23 4
10 33 6 2 25 39 13 2
11 24 6 3 26 26 3 1
12 26 7 b) 27 41 17 1
13 36 12 0 28 51 25 )
14 32 10 3 29 46 18 1
15 83 25 2 30 59 23 6

(a) What constitutes a "subgroup" in this problem?
(b) Is this an attributes data or a variables data problem? Why?

(c) Make a retrospective control chart to assess consistency of the proportion
of packages failing both scans and comment on what it indicates.

(d) Make a retrospective control chart to assess consistency of the proportion
of packages that are not read on the first scan and comment on what it
indicates.

(e) Make a retrospective control chart to assess consistency of the proportion
of all packages in a given minute that are not read on the first scan and are
read on the second scan. Comment on what it indicates.

(f) Calculate the proportions of those packages failing the first scan that also
fail the second scan.

(g) Make a retrospective control chart to assess consistency of the proportions
in (f). Comment on what it indicates.

27. Jet Engine Visual Inspection. The data below are representative of counts of

nonconformances observed at final assembly at an aircraft engine company. Sup-
pose that one final assembly is inspected per day.

(a) Is this a variables data problem or is it an attributes data problem? Explain.
(b) In the context of the problem, what is a "subgroup"?

(c) What probability distribution is a likely model for counts of nonconfor-
mances on these engines? Defend your answer.

(d) Find an estimated mean number of visually identified nonconformances
and the corresponding estimated standard deviation.
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Number of Number of Number of
Day Nonconformances Day Nonconformances Day Nonconformances
7/5 15 7/15 18 7/29 16
7/6 19 7/16 4 8/1 30
7/7 12 7/19 16 8/2 34
7/8 24 7/20 24 8/3 30
7/9 18 7/21 16 8/4 40
7/10 10 7/22 12 8/5 30
7/11 16 7/25 0 8/6 36
7/12 26 7/26 16 8/8 32
7/13 16 7/27 26 8/9 42
7/14 12 7/28 12 8/10 34

(e) Find appropriate upper and lower control limits and center line to apply
to the counts. Make the corresponding control chart for these data. Does
it appear that the process was stable over the period of the study? Why or
why not? Identify any out-of-control points. Apply Nelson’s rules.

(f) Suppose two inspectors were involved in the data collection. Briefly dis-
cuss what must be true (in terms of data collection protocol) to assure that
the chart and analysis in (e) are credible.

28. Refer to the Jet Engine Visual Inspection case in problem 27.

(a) When possible causes for out-of-control points on a control chart are ad-
dressed and physically eliminated, it is common practice to discard the data
associated with those out-of-control points and recalculate control limits.
Apply this thinking to part (e) of problem 27, assuming causes of the out-
of-control points have been addressed (you should "throw out" July 16, 25
and August 1 through 10—a total of 11 out of 30 points).

(b) Suppose the following data are obtained in visual inspection of final engine
assemblies over the next three days.

Assemblies Number of
Day Inspected Nonconformances
1 8
2 31
3 26

(Partial inspection of final engine assemblies could possibly occur because
of unforeseen labor problems. More than one engine assembly might be
inspected on days 2 and 3 to, in some sense, make up for the partial inspec-
tion on day 1.) Using the information from (a) above, find control limits
for nonconformance rates on these three days (don’t use the number of
nonconformances during these 3 new days to find the limits). Also give the
center line and three plotted values (nonconformances per engine assembly

inspected).

(c) Do your values from part (b) suggest process instability? Explain.
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(d) Your center line should be constant across the three days represented in (b).
Why is this?

29. The number of standard units inspected may vary from period to period. Let

X; = the number of nonconformances observed at period 7,
k; = the number of standard units inspected at period 7, and
a; = Xi/k;.

The following values were obtained over 9 periods.

7 1 2 3 4 5 6 7 8 9
ki 1 2 1 3 2 1 1 3 1
U 0 300 0 133 400 O O .67 1.00

(a) From these values, what conclusions can you make about stability of the
process being monitored? Make the appropriate control chart.

(b) Suppose that in the future k; will be held constant at 1 and that 2.4 noncon-
formances per inspection unit will be considered to be "standard quality."
Find the probability of an out-of-control signal on a 3-sigma Shewhart con-
trol chart, if the true nonconformance rate is at the standard quality level
(A = 2.4). Find the probability of an out-of-control signal if the true non-
conformance rate changes to A = 4.8. (Remember that the Poisson(u)
probability function is P(X = z) = (exp (—p) p*) /z!.)

(c) Suppose that in the future k; will be held constant at 2. Find the probability
of an out-of-control signal if the true nonconformance rate is at the standard
quality level (A = 2.4). Find the probability of an out-of-control signal if
the true nonconformance rate changes to A = 4.8

(d) Compare your answers to (b) and (c). Which subgroup size (k = 1 or
k = 2) is more appealing? Why?

30. Electrical Switches. The following scenario is taken from an aircraft engine
company’s training material. One hundred electrical switches are sampled from
each of 25 consecutive lots. Each sampled switch is tested and the sample num-
bers failing are recorded below.

(a) Find the sample fractions of switches failing the test.

(b) What is a plausible probability model for describing the count of switches
in a particular sample failing the test? Explain.

(c) Plot the number failing versus the sample period. Plot an appropriate center
line and control limits on the same graph.

(d) What does your plot in (c) monitor here?



Chapter 3. Process Monitoring 189
(e) Interpret your plot in (c). Identify any out-of-control points.

Sample Number Failing Sample Number Failing

1 11 14 18
2 9 15 7
3 15 16 10
4 11 17 8
5 22 18 11
6 14 19 14
7 7 20 21
8 10 21 16
9 6 22 4
10 2 23 11
11 11 24 8
12 6 25 9
13 9

(f) What is the usual name of the chart you prepared in part (c)?

(g) Suppose causes for out-of-control points identified in (e) are identified and
physically removed. It would then make sense to delete the out-of-control
points and recalculate limits. Do this recalculation and redo (c¢). You should
have identified and eliminated 2 out-of-control points.

(h) Suppose the number of switches sampled and the number failing for the
next three consecutive lots are as follows.
Number Sampled Number Failing

75 8
144 12
90 11

Using your estimated fraction failing from (g) as a standard for judging
these samples, find control limits and center lines appropriate for the three
new "number failing" data points. Are the three sets of control limits and
center lines the same? Why is this to be expected?

31. A data set in the book Elementary Statistical Quality Control by Burr indicates
that in the magnaflux inspection for cracks in a type of malleable casting, about
p ~ .11 of the castings will have detectable cracks. Consider the examination of
12 such castings. Let X be the number of castings from the set of 12 identified
as being cracked.

(2) Find P[X = 5].
(b) Find P[X > 5].
(¢) Find EX.

(d) Find Var X.
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(e) Ten sets of 12 castings are to be inspected. What is the probability that at
least one set of 12 will have one or more cracked castings?

32. Plastic Packaging. This is a plastic packaging case investigated by Hsiao, Linse

and McKay. Plastic bags were supposed to hold three bagels each. An ideal bag
is 6.75in wide, has a 1.51in lip, and has a total length of 12.5in (including the
lip). The ideal hole positions are on the lip. The hole position on selected bags
was measured as the distance from the bottom of the bag to the hole. Five bags
were obtained at six times on each of three days. Hole position, bag width, bag
length, and lip width were measured and recorded for each bag. The data for
hole position (in inches) are below.

Time Hole Position
10:10 am  1.87500, 1.84375, 1.87500, 1.84375, 1.84375
10:25 am  1.90625, 1.90625, 1.90625, 1.87500, 1.90625
10:55am  1.87500,1.93750, 1.93750, 1.93750, 1.96875
11:12am  2.09375,2.12500, 2.21875, 2.15625, 2.12500
11:35am  2.00000, 2.00000, 2.00000, 2.00000, 2.03125
11:41 am 1.87500, 1.90625, 1.90625, 1.87500, 1.93750
8:15am 1.62500, 1.62500, 1.59375, 1.65625, 1.59375
8:54am 1.62500, 1.62500, 1.59375, 1.68750, 1.65625
9:21am 1.62500, 1.59375, 1.62500, 1.59375, 1.62500
9:27 am  1.62500, 1.59375, 1.62500, 1.65625, 1.65625
9:51am  1.56250, 1.59375, 1.56250, 1.56250, 1.56250
9:58 am  1.56250, 1.56250, 1.56250, 1.53125, 1.56250
10:18 am  1.50000, 1.56250, 1.53125, 1.53125, 1.50000
10:33 am  1.53125,1.53125,1.53125, 1.53125, 1.50000
10:45 am  1.50000, 1.53125, 1.50000, 1.53125, 1.46875
11:16 am  1.50000, 1.50000, 1.50000, 1.53125, 1.50000
11:24 am 1.53125,1.53125, 1.50000, 1.50000, 1.50000
11:39 am  1.50000, 1.50000, 1.53125, 1.53125, 1.53125
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(a) What is a natural subgroup in this situation?

(b) How many items are in each subgroup described in (a)? How many sub-
groups are there here in total?

(c) Calculate the subgroup means and subgroup ranges.

(d) Make a retrospective control chart for mean hole position. Give the center
line, control limits, and zone limits.

(e) Make a retrospective control chart for variability in position using your
values from (c). Give the control limits and zone limits.

(f) What is the usual name of the chart in (d)? What is the usual name of the
chart in (e)?
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(g) Isitimportant which of the charts developed in (d) and (e) is analyzed first?
Why or why not?

(h) Find the estimated standard deviation of hole position based on the ranges.
33. Refer to the Plastic Packaging case in problem 32.

(a) Calculate the 18 subgroup means and 18 subgroup ranges.

(b) For each day separately, make retrospective control charts for mean hole
position. Give center lines, control limits, and zone limits. What do these
charts suggest about process performance?

(c) For each day separately, make retrospective control charts for variability of
hole position.

(d) Based on your answer to (c), is variability of hole location constant within
any one of the days? Why or why not?

(e) According to your charts in (c), is there a day in which a single standard
deviation of hole position is plausible? Why or why not?

(f) Suppose your answer in (e) is "yes" for each day. Find estimated ¢’s for
the three different days treated separately. (Base your estimates on sample
ranges.)

(g) Comment on how your estimates in (f) compare to the estimate in part (h)
of problem 32.

34. Refer to the Plastic Packaging case in problems 32 and 33. The ideal lip width
is 1.5in. The lip width data below (in inches) were taken on the same bags
represented in problem 32.

(a) Is this a variables data or an attributes data scenario? Why?
(b) Find the subgroup means, ranges, and standard deviations.

(c) Make retrospective control charts for lip width variability and lip width
mean based on the sample ranges.

(d) In view of the appearance of your chart for variability of lip width, does
it make sense to seriously examine the chart for mean lip width? Why or
why not?

(e) Instead of making the completely retrospective charts asked for in (c), is it
possible to incorporate some "standards" information and make a different
chart for mean lip width? Explain.

(f) Instead of treating all 18 samples at once as in part (c), for each day sep-
arately, make retrospective R and T charts. What are your conclusions
regarding process stability for each day separately?
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Day Time Lip Width
10:10am  1.75000, 1.62500, 1.62500, 1.65625, 1.62500
10:25am  1.62500, 1.62500, 1.62500, 1.65625, 1.65625
10:55am  1.53125,1.53125, 1.50000, 1.50000, 1.50000
11:12am  1.40625,1.43750, 1.43750, 1.46875, 1.46875
11:35am  1.46875,1.46875,1.46875,1.46875, 1.40625
11:41 am 1.43750,1.43750, 1.46875, 1.50000, 1.46875
8:15am 1.37500,1.40625,1.37500, 1.40625, 1.37500
8:54am 1.37500,1.43750,1.43750,1.40625, 1.40625
9:21am 1.40625,1.37500, 1.43750, 1.40625, 1.40625
9:27am 1.50000, 1.46875, 1.43750, 1.46875, 1.43750
9:51 am 1.43750,1.43750, 1.43750, 1.43750, 1.43750
9:58 am  1.53125,1.46875,1.53125,1.50000, 1.53125
10:18am  1.53125,1.56250, 1.50000, 1.50000, 1.53125
10:33 am  1.50000, 1.53125, 1.53125, 1.50000, 1.50000
10:45am  1.34375,1.34375,1.34375, 1.37500, 1.37500
11:16 am  1.46875,1.46875,1.46875,1.43750, 1.43750
11:24am  1.37500, 1.40625, 1.40625, 1.40625, 1.40625
11:39am  1.43750,1.43750, 1.40625, 1.37500, 1.43750

(g) Find three daily estimated lip width standard deviations. How do these
estimates compare to that calculated when the complete set of data is used?
(See (c) above.)

(h) Would there be advantages to using subgroup standard deviations instead
of subgroup ranges in parts (c) and (f) above? Explain.
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35. Refer to the Plastic Packaging case in problem 32.

(a) Make a control chart for the standard deviation of hole position. Is short
term variation stable?

(b) Make a control chart for mean hole position based on subgroup standard
deviations. Is process aim stable?

(c) For each day separately, make charts for the standard deviation of hole
position. Is short term variation stable for each day?

(d) For each day separately, make charts for mean hole position (use an esti-
mate of o based on the subgroup standard deviations). Is process aim stable
for each day?

(e) For each of (a), (b), (c), and (d), was it helpful to use the subgroup standard
deviations instead of the subgroup ranges as in problem 32? Why or why
not?

36. Refer to the Hose Skiving case of problem 11 in the Chapter 1 exercises. The
plant works two shifts/day. Five hoses were sampled every two hours from each
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of three production lines and skive length, y measured. Specifications for skive
length are target + .032 inches. The values (z = y — target) in the accompa-
nying tables are in units of .001 in above target.

(2)

(b)

(©)

Explain (possibly using the notions of "rational subgrouping" and "strat-
ification") why it would not make good sense to combine data taken at a
particular time period from the three different production lines to make a
single "sample." (Particularly in cases where it is only possible to select a
single item from each line at a given time period, the urge to make such a
"sample" is strong, and this kind of error is a common one.)

Compute the 48 sample means and ranges for the data given here Then
separately for lines 1, 2, and 3 make an Z chart and an R chart. Comment
on what they indicate about the stability of the skiving process on the three
lines over the two days of this study.

One could think about plotting all 48 sample means on a single chart, for
example plotting means from lines 1, 2, and 3 in that order at a given time
period. Discuss why that is not a terribly helpful way of summarizing the
data. (Will it be easier or harder to see trends for a given production line on
this kind of plot or on the separate charts of part (b)?)

Line 1 Line 2 Line 3
Day Time Skive Length Skive Length Skive Length
1 8:00 am 3,2,4,-5,2 -17,3,2,10,4 -3,-95,7,10,3
1 10:00 am 5,—4,-3,0,-2 13,3,-2,12,15 3,95,5,8,1
1 12:00 pm —5,5,5,-3,2 14,6,10,5,1 3,6,6,5,5
1 2:00 pm —2,5,4,-3,2 7,2,10,16,13 5,—2,5,4,6
1 4:00 pm -10,2,1,2,1 —15,-12,-2,-4,0 2,5,4,1,1
1 6:00pm  —5,—6,—3, 37 -7 —4,—-6,—-4,—-4,4 2,1,0,1,1
1 8:00 pm -5,0,-3,-3,-8 2,-5,-5,-3,—4 1,3,5,—-6,-10
1 10:00 pm  —5,-10,10,—-9,-3 0,-1,-2,-1,0 —7,—5,4,2,-9
2 8:00 am 2,4,1,0,-5 15,2,16,10, 14 18, 15 5,3,4
2 10:00 am -3,3,-4,5,3 12,4, -10,10, -3 3,2, — 2
2 12:00 pm —5,—7,6,8,—10 1,-7,4,-5,-9 4,2, , 1,3
2 2:00 pm 3,—4,4, 6 -3 -6,8,-95,18,20 6,5,4,2,5
2 4.00pm -10,-7,-3,-1,-3 —2,—4,-5,-1,-3 2,0,1,-3,5
2 6:00 pm 0,-1,-6,-2,0 —2,-2,-2,—4, -2 2,—5,-7,-3,-5
2 8:00 pm 2,4,-2,-3,5 0,27 1,-1,-2 —6,-3,-10,—-4,-7
2 10:00 pm 1,0,-1,7,—5 1,-2,0,-1,-1 0,—4,-7,-10,-2

37. Consider the following hypothetical data from a process where T'(t) is the target
value, Y (¢) is the realized value of the characteristic of interest, F(t) = T'(t) —
Y(t), AE(t) = E(t) — E(t — 1), and A2E(t) = AE(t) — AE(t — 1). APID
controller AX (t) = k1 AE(t) + ko E(t) + k3 A? E(t) has been used.
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Period,t T(t) Y(t) E(t) AE() A%E(t) AX(t)
1 4 2 2
2 4 1 3 1
3 4 0 4 1 0 18
4 4 2 2 -2 -3 1
5 4 2 2 0 2
6 4 3 1 -1 -1
7 5 3 2 1 2
8 5 4 1 —1 -2
9 5 5 0 -1 0
10 5 6 -1 —1 0
11 5 6 -1 0 1
12 5 6 —1 0 0

(a) What does AX (t) represent? Was the adjustment A X (3) made before or
after observing Y (3) = 0?

(b) Suppose the integral gain in the control algorithm is 4. What are the pro-
portional and derivative gains?

(c) Using your answer in (b), find the complete set of AX (¢)’s.

(d) Find the average squared error for the last 9 periods, the last 8 periods, . . .,
and the last 3 periods.

(e) Make a plot of your values from (d) as follows. Label the horizontal axis
with ¢. For ¢ = 4 plot the average squared error for periods 4 through 12,
for t = 5 plot the average squared error for periods 5 through 12, ..., for
t = 10 plot the average squared error for periods 10 through 12. Does the
appearance of this plot give you hope that any transient or "startup" effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance? Explain.

38. Paper Dry Weight. Before progressing to the collection of the data in Table

3.9, several different PID algorithms were tried. Miami University Paper Sci-
ence Lab Research Associate Doug Hart set up the paper-making machine with
1% de-inked pulp stock to produce 20 Ib bond paper. No filler was used. Then
Jobe and Hart began an investigation into how to best control the dry weight
variable. Twelve periods of data were obtained to benchmark the process behav-
ior without any pump speed adjustments. (It is well known that the pump speed
does affect final dry weight.) A standard setting of 4.5 (45% of maximum speed
that was known to produce paper with a dry weight in the vicinity of the target
of 70 g/ m?) was used. Paper dry weight measurements were made at roughly
5 min intervals, and these are presented below as Y (¢). Units are g/ m?.
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Time Period,t T(t) Y(t) E(t)

8:45 1 70 753 —5.3
8:50 2 70 758 —5.8
8:55 3 70 731 -=3.1
9:00 4 70 724 -24
9:05 5 70 735 —=3.5
9:10 6 70 728 2.8
9:15 7 70 726 —2.6
9:20 8 70 717 -—1.7
9:25 9 70  69.8 2
9:30 10 70 66.9 3.1
9:45* 11 70 7.9 -9
9:50 12 70 7.7 1.7

(a) Plot the measured values Y (¢) versus ¢.
(b) Plot the errors E(t) versus t.

(c) Find the average squared error for periods 1 through 12, for periods 2
through 12,. . ., for periods 10 through 12.

(d) Make a plot of your values from (c) fort = 1,2, ..., 10. (At time ¢ plot the
average squared error for periods ¢ through 12.)

39. Refer to the Paper Dry Weight case of problem 38. Hart informed Jobe that for
every 5-tick increase on the speed pump dial, paper dry weight increases about
1.5 g/ m?. This means that in rough terms, to increase a dry weight by 1 g/ m?,
an increase of pump speed setting of about 3.33 ticks is needed.

(a) If one were to consider an "integral only" version (a k1 = k3 = 0 version)
of the control equation (3.52) for use with the paper-making machine, why
might ko = 3.33 be a natural first choice? (X is in ticks, while 7" and Y’
are in g/ m?.)

(b) The "integral only" controller of part (a) was used for 7 time periods and
paper dry weight data collected. This is summarized in the table below.
Fill in the AX (¢) and E(t) columns in that table for ¢ = 1,2,...,8. (The
machine was running without adjustment with X set at 4.5 until 9:55. The
measurements were taken far enough apart in time that the entire effect of
a pump speed change ordered on the basis of data through a given period
was felt at the next measuring period.)

(c) Plot Y (¢) versus t.
(d) Plot E(t) versus t.

(e) Find the average squared error for periods 2 through 8, for periods 3 through
8,..., for periods 6 through 8.
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Time Period,t T(t) Y(t) E() AX(¢)

9:55 1 70 721
10:08 2 70 70.6
10:14 3 70 713
10:25 4 70 67.1
10:32 5 70 715
10:38 6 70 70.3
10:44 7 70 68.4
10:50 8 70 717

(f) Make a plot of your values from (e) for ¢ = 2,...,6. (At time ¢ plot the
average squared error for periods ¢ through 8.) Does the appearance of
this plot give you hope that any transient or "startup" effects have been
eliminated before the last few periods and that those periods adequately
represent control algorithm performance?

40. Refer to the Paper Dry Weight case in problems 38 and 39. At 10:50 the speed
pump dial was set back to 4.5 (45%) and left there for 5 min in order to return
the system to the benchmark conditions of problem 38. A new coefficient ko
in an integral control algorithm was adopted and beginning at 10:55 this new
adjustment algorithm was employed for 7 periods with results summarized in
the following table.

Time Period,t 7T(t) Y(t) E(t) AX(t)

10:55 1 70 720 -2 =3.32
11:01 2 70 717
11:13 3 70 711
11:19 4 70  68.8
11:25 5 70  69.6
11:31 6 70 718
11:37 7 70 68.2
11:43 8 70  69.7

(a) Find the value of the new coefficient k2 used by Jobe and Hart. Then fill in
the E(t) and AX (¢) values in the table fort = 2,...,8.

(b) Plot Y(t) versus t.
(c) Plot E(t) versus t.

(d) Find the average squared error for periods 2 through 8, for periods 3 through
8,. .., for periods 6 through 8.

(e) Make a plot of your values from (d) for t = 2,...,6. (At time ¢ plot the
average squared error for periods ¢ through 8.) Does the appearance of
this plot give you hope that any transient or "startup" effects have been
eliminated before the last few periods and that those periods adequately
represent control algorithm performance?
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41. Refer to the Paper Dry Weight case of problems 38, 39, and 40. After mak-
ing the measurement at 11:43 indicated in problem 40, the speed pump dial was
again set back to 4.5 and left there for 5 min (from 11:44 to 11:49). (This was
again done to in some sense return the system to the benchmark conditions.) Hart
and Jobe decided to include both integral and proportional terms in a new control
equation and ko = 1.66 and k; = .83 were selected for use in equation (3.52).
(The same integral control coefficient was employed, and a proportional coef-
ficient half as large as the integral coefficient was added.) This new adjustment
algorithm was used to produce the values in the table below.

Time Period,t 7T(t) Y(t) E() AE(t) AX(?)

11:49 1 70 70.9 -9

11:54 2 70 703 -3 .6 0
11:59 3 70 68.8

12:06 4 70 70.0

12:12 5 70  69.6

12:18 6 70 69.3

12:24 7 70 68.4

12:30 8 70 68.4

12:36 9 70 69.8

(a) Find the values of E(t), AE(t), and AX (¢) for periods 3 through 9.
(b) Plot Y'(¢) versus t.
(c) Plot E(t) versus t.

(d) Find the average squared error for periods 3 through 9, for periods 4 through
9,..., for periods 7 through 9.

(e) Make a plot of your values from (d) for ¢t = 3,...,7. (At time ¢ plot the
average squared error for periods ¢ through 9.) Does the appearance of
this plot give you hope that any transient or "startup" effects have been
eliminated before the last few periods and that those periods adequately
represent control algorithm performance?

42. Refer to the Paper Dry Weight case of problems 38 through 41. Yet another
control algorithm was considered. x; from problem 41 was halved and the coef-
ficient k5 was left at 1.66. The pump speed dial was set to 4.5 at 12:37. There-
after, the new "PI" control algorithm was used to produce the values in the table
below.

(a) Find E(t) for all 9 periods and AE(t) and the corresponding AX (¢) for
periods 2 through 9.

(b) Plot Y'(¢) versus t.
(c) Plot E(t) versus t.
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(d) Find the average squared error for periods 3 through 9, for periods 4 through
9, ..., for periods 7 through 9.

Time Period,t 7T(t) Y(t) E() AE(t) AX(t)

12:42 1 70  66.2
12:45 2 70 66.4
12:51 3 70 67.2
12:58 4 70  69.4
1:04 5 70 69.5
1:10 6 70 69.2
1:16 7 70 70.1
1:22 8 70 66.2
1:29 9 70 717

(e) Make a plot of your values from (d) for t = 3,...,7. (At time ¢ plot the
average squared error for periods ¢ through 9.) Does the appearance of
this plot give you hope that any transient or "startup" effects have been
eliminated before the last few periods and that those periods adequately
represent control algorithm performance?

Refer to Example 37.

(a) Plot Y (¢) versus t.
(b) Plot E(¢) versus t.

(c) Find the average squared error for periods 4 through 11, for periods 5
through 11,..., for periods 9 through 11.

(d) Make a plot of your values from (c) for ¢t = 4,...,9. (At time ¢ plot the
average squared error for periods ¢ through 11.) Does the appearance of
this plot give you hope that any transient or "startup" effects have been
eliminated before the last few periods and that those periods adequately
represent control algorithm performance?

Refer to the Paper Dry Weight case and specifically the plots in problems 38(d),
39(%), 40(e), 41(e), 42(e), and 43(d). Which control equation seems to be best in
terms of producing small average squared error?

Rewrite the PID control equation (3.52) so that A X () is expressed in terms of a
linear combination of E(t), E(t—1), and E(t— 2), the current and two previous
errors.

Fill levels of jelly jars are of interest. Every half hour, three jars are taken from a
production line and net contents measured and recorded. The range and average
of these three measurements are calculated and plotted on charts. One of these
charts is intended to monitor location of the fill distribution and the other is
useful in monitoring the spread of the fill distribution.
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(a) What is the name for the chart used to monitor location of the fill level
distribution?

(b) What is the name for the chart used to monitor spread of the fill level dis-
tribution?

(c) What is the name and value of the tabled constant used to make retrospec-
tive control limits for process location?

(d) What are the names and values of the two tabled constants used to make
retrospective control limits for process spread or short term variability?

(e) In this context, what constitutes a natural subgroup?

(f) Give an expression for the usual estimate of process short-term variability
(o) based on an average of subgroup ranges..

Consider again the scenario of problem 46. Suppose that instead of ranges and
averages, sample standard deviations and averages are computed and plotted.

(a) What is the name and value of the tabled constant used to make retrospec-
tive control limits for process location?

(b) What are the names and values of the two tabled constants used to make
retrospective control limits for process spread or variability?

(c) Give an expression for the usual estimate of process short-term variability
(o) based on an average of subgroup standard deviations.

Consider again the scenario of problems 46 and 47 and suppose that instead of
three jars, 10 jars are sampled every half hour. Redo problems 46 and 47 with
this change. For a given set of ranges or standard deviations say which sets of
retrospective control limits are wider apart with this new sample size.

Consider again the scenario of problems 46 and 47 and suppose that instead of
plotting averages to monitor location, the decision is made to plot medians. What
multiple of o (or an estimate of this quantity) would be used to set control limits
for medians around some central value in the case that n = 3? In the case that
n=11?

Consider drained weights of the contents of cans of Brand X green beans. Be-
lievable values for the process mean and standard deviation of these weights are
21.00z and 1.00z respectively. Suppose that in a Brand X canning factory, 8 of
these cans are sampled every hour and their net contents determined. Sample
means and ranges are then computed and used to monitor stability of the filling
process.

(a) What is the name and value of the multiplier of ¢ = 1.0 that would be used
to establish a center line for sample ranges?

(b) What are the names and values of the multipliers of ¢ = 1.0 that would be
used to establish upper and lower control limits for sample ranges?
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(c) What center line and control limits should be established for sample means?

Consider again the situation of problem 50, but suppose that instead of ranges
and averages, sample standard deviations and averages are computed and plot-
ted. Answer the questions posed in problem 50 in this case.

Consider again the situation of problems 50 and 51 and suppose that instead of
8 cans, only 5 cans are sampled every hour. Redo problems 50 and 51 with this
change. Say which sets of control limits are wider apart with this new sample
size.

Electronic Card Assemblies. In a 1995 article in Quality Engineering, Ermer
and Hurtis discussed applications of control charting to the monitoring of solder-
ing defects on electronic card assemblies. One assembly technology they studied
was pin-in-hole (PIH) technology, which uses wave soldering to secure compo-
nents to printed circuit boards after the leads of components have been inserted
through holes drilled in the boards. The most common types of soldering defects
encountered using this technology are "shorts" (unwanted electrical continuity
between points on an assembly) and "opens" (the absence of desired electrical
continuity between points on an assembly).

Production of a particular card is done in "jobs" consisting of 24 cards. All cards
from a job are tested and a count is made of the total number defects found on
the job. What type of probability model might plausibly be used to describe the
number of defects found on a given job? What type of control chart might you
use to monitor the production of soldering defects? Suppose that records on 132
jobs show a total of 2 defects recorded. What retrospective control limits might
then be applied to the 132 different counts of defects? Does a job with any defect
at all signal a lack of control?

Milling Operation. A student group studied a milling operation used in the pro-
duction of a screen fixture mounting. Of primary importance was a "deviation
from flatness" measurement. The units of measurement were .001 in. In the past,
deviations from flatness had an average of 2.45 and a standard deviation of 1.40.
What do the values of these and the fact that deviation from flatness can not be
negative suggest about the plausibility of a normal model for deviation from flat-
tness? For what follows temporarily put aside any misgivings you might rightly
have.

(a) Set up standards given control limits for process location. (Monitoring is
to be done on the basis of subgroups of size one.)

(b) Ten consecutive mountings produced the deviation from flatness values
below (units are .001 in).

5,4.5,2.0,2.0,3.0,3.0,2.0,4.5,3.0,0.0
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Together with the limits in (a), use these data values to make a control
chart for monitoring process aim. Has there been a process change away
from the standards? Why or why not?

(c) Find the moving ranges of adjacent observations and the mean of these 10
observations.

(d) Make a retrospective individuals chart using the moving ranges and grand
average of the 10 data values. Give the center line and control limits. What
do you conclude based on this chart?

55. Refer to the Milling Operation case in problem 54.

(a) For purposes of process monitoring only, let a target deviation from flat-
ness be ;1 = 5, and suppose the process standard deviation is o = 1.40, as
in problem 54. (In functional terms a 0 deviation from flatness is ideal.)
Compute control limits for individuals based on this set of standards. Give
the center line and control limits.

(b) Plot the individuals from problem 54(b) using your new limits from (a).
Does it appear that there has been a process change from standard condi-
tions? Why or why not?

(c) Discuss the practical meaning of the terms "stability," "shift," and "out-of-
control" in light of part (b) and (d) of problem 54 and part (b) above.

56. Refer to the Lab Carbon Blank case in problem 21 of Chapter 1 and problem
29 of Chapter 2. Suppose that repeated measurements of the same blank are
normally distributed. For convenience, the data are repeated here.

Test Number 1 2 3 4 5 6 7
Measured Carbon 5.18 1.91 6.66 1.12 279 391 2287

Test Number 8 9 10 11 12 13 14
Measured Carbon 4.72 3.68 3.54 2.15 2.82 4.38 1.64

(a) Find retrospective control limits and center line for the sequence of mea-
surements. Use "3 sigma" limits.

(b) Plot the individual responses versus time and compare them to the limits
found in (a). Do you detect any measurement process instability? Why or
why not?

(c) Give an estimated mean measured carbon content. Give an estimated stan-
dard deviation of measured carbon content, M R/1.128.

57. Refer to the Lab Carbon Blank case of problem 56. Suppose the nominal or
"real" carbon content is 1.0.

(a) Find control limits and center line to apply to the data of problems 56. Use
3 sigma limits and M R in place of a real average range (R) in the formula
for retrospective limits. Make use of the nominal value 1.0 in place of 7.
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(b) Plot the x values from problem 56 and compare them to your limits from
(a), i.e., make an individuals chart.

(c) What dilemma is revealed by your chart in (b) above and problem 56(b)?
Discuss this using phrases such as "consistency of location," "shift in the
mean," "off-target process," and "unstable process."

Refer to the Lab Carbon Blank case in problems 56 and 57. It is unknown
whether the carbon measurements were made by the same person or by as many
as 14 different people. What configuration of operators would be most effective
in isolating instrument changes in the measurement of carbon content? Defend
your answer in terms of the concept of "sources of variability."

Consider the analysis of a series of samples some time after their collection.

(a) What might be learned from an analysis based on standards given control
charts?

(b) What might be learned from an analysis instead using retrospective limits
on the control charts?

Refer to the Paper Dry Weight case in problem 38. Recall that the target for
dry weight of 201b bond paper is 70 g/ m?2. The pump speed controlling the
flow of liquid pulp mixture onto the conveyor-roller mechanism was held fixed
at 4.5 (45% of maximum flow) in the production of the data in problem 38. As-
sume that under stable process conditions dry weights are normally distributed.
The dry weight of a sample was recorded for each of 12 consecutive samples,
approximately equally spaced in time.

(a) Find control limits to apply to the data of problem 38. Use the nominal dry
weight of 70 as a target value and employ M R/1.128 as an estimate of o.
Does the process appear to be stable? Why or why not?

(b) 100 measurements correspond to how many subgroups in the context of
problem 38?

(c) Suppose that the limits of (a) are applied to the future monitoring of indi-
viduals. About what ARL is produced if o is as in part (a), but p increases
from its standard value by 3.5 g/ m?? Assume the process is stable and dry
weights are normally distributed.

(d) If completely retrospective control limits were used (Z was used in place
of the target value for dry weight) would your conclusion in (a) change?
Why or why not?

Transmission Housings. Apple, Hammerand, Nelson and Seow analyzed data
taken from a set of 35 transmission housings. In addition to the side cover hole
diameter considered in problem 4 of Section 2 of this chapter, they also examined
upper bore hole diameters on the transmission housings. For y the hole diamter
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in inches, the values below concern x = (y — 3.5000) x 10, diamters stated
in ten thousandths of an inch above 3.5000 in. Specification limits for the upper
bore hole diameter were 3.502 £ .002 in.(Below, 19 represents y = 3.5019, 28
represents y = 3.5028, etc.)

Measured Diameter 19 28 25 22 18 20 20 14 20 12 16 16
Transmission Housing 1 2 3 4 5 6 7 8 9 10 11 12

Measured Diameter 22 22 22 21 23 21 20 18 18 18 12 11
Transmission Housing 13 14 15 16 17 18 19 20 21 22 23 24

Measured Diameter 13 12 16 12 10 20 21 15 28 26 24
Transmission Housing 25 26 27 28 29 30 31 32 33 34 35

(a) What is the subgroup size?

(b) Give appropriate retrospective lower and upper control limits and center
line for monitoring the hole diameters.

(c) What does the chart using on your limits from (b) indicate about the stabil-
ity of the upper bore hole diameter production process? Why?





