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Abstract 

The effectiveness of neurophysiologically triggered adaptive systems hinges on reliable and 

effective signal processing and cognitive state classification. While this presents a difficult 

technical challenge in any context, these concerns were particularly pronounced in a system 

designed for mobile contexts. This paper describes a neurophysiologically-derived cognitive 

state classification approach designed for ambulatory task contexts. We highlight signal 

processing and classification components that render the electroencephalogram (EEG) based 

cognitive state estimation system robust to noise. Field assessments show classification 

performance that exceeds 70% for all participants in a context that many have regarded as 

intractable for cognitive state classification using EEG. 

 

Introduction 

Adaptive automation, where the automation adapts during execution to the current task 

environment, can either provide adaptive aiding, which makes a certain component of a task 

simpler, or can provide adaptive task allocation, which shifts an entire task from a larger 

multitask context to automation (Parasuraman, Mouloua, & Hilburn, 1999). Adaptive systems 

must make timely decisions on how best to use varying levels of (adaptive) automation to 

provide support in a joint human-automation system. In order for an adaptive system to decide 

when to intervene, it must have some model of the context of operations, be it a functional model 

of system performance, or possibly a model of the operator's functional state. Currently, many 

adaptive systems derive their inferences about the cognitive state of the operator from mental 

models, performance on the task, or from external factors related directly to the task environment 

(Wickens & Hollands, 2000). For example, Scott (1999) developed the Ground Collision-

Avoidance System (GCAS) for test on a F-16D. GCAS used the projected time until an aircraft 

broke through a pilot-determined minimum altitude as an external condition to infer that a pilot's 

attention was incapacitated, at which point the system would perform a "fly up" evasive 

maneuver to avoid a ground collision. In that case, the automation took over control of the  

aircraft from the pilot.  

Neurophysiologically and physiologically triggered adaptive automation offers many 

advantages over the more traditional approaches to automation by basing estimates of operator 
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state in sensed data directly. These systems offer the promise of leveraging the strengths of 

humans and machines, augmenting human performance with automation specifically when 

assessed human cognitive capacity falls short of the demands imposed by task environments. 

With more refined estimates of the operator's cognitive state, measured in real-time, adaptive 

automation also offers the opportunity to provide aid even before the operator knows he or she is 

getting into trouble.  

Operational Problem 

The aim of augmented cognition research is to use physiological and neurophysiological 

sensors to detect states where cognitive resources may be inadequate to cope with mission 

relevant demands. The goal is to enhance human performance when task-related demands 

surpass the human's assessed current cognitive capacity, which fluctuates subject to fatigue, 

stress, overload, or boredom. Efforts have focused on ways to leverage cognitive state 

information to drive adaptive systems to manage information flow when detected human 

cognitive resources may be inadequate for the tasks at hand.  

The Honeywell team has focused on the dismounted Soldier in the future military. The 

research program described in this article was conducted in support of the U.S Army Future 

Force Warrior (FFW) Advanced Technology Development program. The FFW program seeks to 

push information exchange requirements to the lowest levels, with the goal of enhancing the 

capabilities of a squad so that it can cover the battlefield in the same way that a platoon now 

does. A critical element of the FFW program is a reliance on networked communications and 

high density information exchange. These capabilities are expected to increase situation 

awareness at every level of the operational hierarchy. Introducing information technologies 

within the transformation of the military will facilitate better individual and collaborative 

decision making at every level. However, effective use of these information sources is 

constrained by the limitations of the human cognitive system. This revolutionary concept of 

operations could dramatically increase the likelihood of information overload that could turn the 

postulated information superiority into a profound liability. The potential data overload coupled 

with the efficiency of information flow required in executing Army doctrine, places on over-

reliance of critical information throughput on a single point of contact, the individual warfighter. 

To ensure that warfighters are supported appropriately, there needs to be intelligent information 

management to ensure that the system can support superior situation awareness on the battlefield. 

Adaptive information management systems have an important role in this context. The efficacy 

of such a system is contingent on reliable and timely cognitive assessment. An example 

instantiation of such a system is the Communications Scheduler as described in Dorneich, 

Whitlow, Mathan, Carciofini, & Ververs (2005a). The system changes the information 

presentation (e.g., high priority messages preceded by a priming alert, low priority messages 

delivered via text messages) based on the message priority and cognitive workload of the Soldier 

during critical times. The system not only reduces the overall number of transmissions at key 

moments but also improves the likelihood of receipt of essential information with reduced 

bandwidth and power usage. But such strong mitigations of an adaptive system can only be 

effective if they are properly tuned to the current cognitive capabilities of the user, as well as 

thoroughly evaluated with the anticipated users of the system. An accurate, real-time 

classification of cognitive state of the soldier is an essential first step in this process. 
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Neurophysiologically driven prototypes for regulating information flow were developed 

and tested by a team of researchers led by Honeywell (Dorneich, Whitlow, Ververs, Mathan, 

Raj,  et al., 2004a; Dorneich, Whitlow, Mathan, Ververs, Pavel et al., 2005b) to evaluate the 

potential benefits to the ground Soldier who will receive volumes of information from a variety 

of sensors and sources. Information regarding a Soldier's cognitive state was integrated with 

information systems to manage assets and communications. Cognitive state classification was 

applied to and focused on those Army roles that require significant cognitive processing, 

information integration, and information management on the part of the recipient. Such roles 

include the battlefield Commander, Robotics Non-Commissioned Officer, Platoon Leader, and 

other roles that support the Network Centric Information Environment. The current FFW 

approach to cognitive state assessment relies on cardiac and physical sensors to assess general 

cognitive state based on the level of sleep debt in the last 24 hours and the phase of the circadian 

cycle (Institute of Medicine of the National Academies, 2004). If a truly adaptive system that 

manages information flow is to be implemented, a higher degree of fidelity in the cognitive state 

assessment and temporal resolution is needed. 

Cognitive State Classification Techniques 

Neurophysiological- and physiological-based assessment of cognitive state has been 

captured in several different ways, including but not limited to cardiac measures, 

electroencephalogram (EEG), and functional near-infrared (fNIR) imaging. There is an extensive 

research history of using cardiac, or electrocardiogram (ECG), measures to evaluate cognitive 

activity under a variety of task conditions. Measures include heart-rate variability in the time 

domain to assess mental load (Kalsbeek & Ettema, 1963), tonic heart rate to evaluate impact of 

continuous information processing (Wildervanck, Mulder, & Michon, 1978), variability in the 

spectral domain as an index of cognitive workload (Wilson & Eggemeier, 1991), and T-wave 

amplitude during math interruption task performance (Heslegrave & Furedy, 1979). fNIR 

spectroscopy conducts functional brain studies using wavelengths of light, introduced at the 

scalp, to measure cognition-related hemodynamic changes, and has been used to assess cognitive 

state (Izzetoglu & Bunce, 2004). Other physiological measures used to inform cognitive state 

assessment are galvanic skin response (Verwey & Veltman, 1996), eyelid movement (Stern, 

Boyer, & Schroeder, 1994; Veltman & Gaillard, 1998; Yamada, 1998; Neumann, 2002), pupil 

response (Beatty, 1982; Partala & Surakka, 2003), and respiratory patterns (Porges & Byrne, 

1992; Wientjes, 1992; Backs & Seljos, 1994; Boiten 1998; Veltman & Gaillard, 1998).  

As the gold standard for providing high-resolution spatial and temporal indices of cortical 

electrical activity from scalp electrodes, EEG has been used in the context of adaptive systems. 

For instance, researchers have used the engagement index, developed by NASA, in the context 

of mixed-initiative control of an automated system (Pope, Bogart, & Bartolome, 1995). This 

method uses a ratio of power in common frequency bands (beta / (alpha + theta)), where 

cognitively alert and focused is represented in beta, wakeful and relaxed in alpha, and a 

daydream state in theta. Thereby higher  engagement index values  estimate increased levels of 

task engagement. The efficacy of the engagement index as the basis for adaptive task allocation 

has been experimentally established. For instance, under manipulations of vigilance levels 

(Mikulka, Hadley, Freeman, & Scerbo, 1999) and workload (Prinzel, Freeman, Scerbo, Mikulka, 

& Pope, 2000), an adaptive system effectively detected states where human performance was 

likely to fall, and took steps to allocate tasks in a manner that would raise overall task 

performance. The results associated with the engagement index highlighted the potential benefits 
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of a neurophysiologically triggered adaptive automation. There are several ways in which this 

promising work needs to be extended in order to be effective in the dynamic, ambulatory 

contexts of the research reported here: 

1) Individual Differences. As Scerbo et al. (2001) point out, there were unique individual 

EEG responses to task demands. While the characterization of the relationship between 

engagement and EEG activity in terms of activity within certain frequency bands and sites was 

useful for synthesizing broadly observed trends, a given individual's responses may deviate 

substantially from assumptions derived from averaged data. In response, some researchers have 

called for an approach that was more sensitive to individual variability in EEG expression 

(Mathan, Mazaeva, Whitlow, Adami et al., 2005).  

2) Linear Relationships. The engagement index was based on a linear relationship 

between power estimates at specific frequency bands. However, there are potentially informative 

nonlinear relationships across spectral features at various sites that could help discriminate 

between various cognitive states. Research indicates that more advanced pattern recognition 

techniques, such as multilayer neural networks, could exploit relationships among features that 

do not conform to linearity assumptions (Scerbo, et al., 2001; Wilson & Russell, 2003). 

3) Analysis Windows. The engagement index was designed to estimate cognitive state 

over an analysis window that was close to a minute in duration. Developers of the engagement 

index made no claims about its efficacy at temporal resolutions of a few seconds, or hundreds of 

milliseconds. In the authors' own laboratory experience, the engagement index was reliably able 

to discriminate between periods of high intensity virtual combat and periods of rest in a first 

person video game over the course of analysis windows that spanned minutes, but not at a 

resolution of less than 10 seconds (Dorneich et al., 2004a). The demands of the task environment 

may require techniques that provide reliable cognitive state estimates with a fairly high degree of 

temporal resolution.  

4) Validation Context. Much of the literature associated with cognitive state estimation 

relies on findings from data collected in relatively stationary laboratory settings (Schmorrow & 

Kruse, 2002). Data collection in laboratory environments have several attributes that cannot be 

realized in mobile contexts.. For example: (a) the experimental setup can be controlled in order 

to facilitate better performance, (b) various precautions to improve signal quality can be 

implemented, and (c) large-scale data collection, analysis, and signal processing hardware and 

software can be used. These constraints have to be relaxed in mobile environments. In mobile 

applications, EEG signals can be very noisy and contaminated by a wide range of artifacts. 

Furthermore, the system must be portable and able to work in real-time.  

The work reported here addressed some of the shortcomings highlighted above by 

creating a system that was optimized to the unique EEG spectral characteristics of each 

individual in response to specific task demands. Pattern recognition techniques that make no 

restrictive assumptions about the form of the data being modeled were used. The system 

provided cognitive state estimates at a high degree of temporal resolution, and was designed to 

work in real-time in mobile contexts. Three aspects of the approach are highlighted in the pages 

that follow: hardware integration into a wireless wearable form factor, real-time signal 

processing to detect and correct for artifacts, and a nonlinear classification approach.  

The remainder of this paper is organized as follows. The next section will discuss the 

technical challenges in creating and evaluating robust mobile EEG classification. Preliminary 
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laboratory experiments that formed the foundations of the work discussed in this paper will be 

briefly reviewed. Finally the mobile field evaluation and results will be discussed in detail, 

concluding with a discussion of future directions.  

Technical Challenges 

 Realizing the vision of an augmented cognition system in the context of an ambulatory 

Soldier has been constrained by several challenges. First, as Schmorrow and Kruse (2002) noted, 

processing and analysis of neurophysiological data have been largely conducted off-line by 

researchers and practitioners. However, in order for augmented cognition technologies to work in 

practical settings, effective and computationally efficient artifact reduction and signal processing 

solutions are necessary. Second, inferring the cognitive state of users demands pattern 

recognition solutions that are robust to noise and the inherent nonstationarity in 

neurophysiological signals (Popivanov & Mineva 1999). Third, understanding the fluctuations of 

cognitive state in applied environments requires the development of means to collect reliable 

neurophysiological data outside the laboratory. Fourth, experiments must be designed, often 

under conflicting constraints (e.g. operational realistic tasks vs. well-understood, controlled 

laboratory tasks), to effectively evaluate classification accuracy. Finally, compact and robust 

form factors (e.g., size, weight, ruggedness) associated with neurophysiological sensors and 

processors are a matter of critical concern.  

Real-Time Signal Processing Challenges 

Conducting military maneuvers in operational environments, such as, urban terrain, often 

does not allow an individual to remain stationary and can demand simultaneous cognitive and 

physical activity. Consequently, difficulties related to processing of EEG signals in real-world 

settings include factors associated with both participant motion and the operational environment 

itself. Thus, utilization of research methods involving EEG in operational environments 

necessitates the use of real-time algorithms for signal detection and removal of artifacts. 

Although real-time signal processing and classification of the EEG has been implemented 

previously (Gevins & Smith, 2003; Berka, Levendowski, Cvetinovic, Petrovic et al., 2004), it has 

not been realized in a truly mobile, ambulatory environment. 

Inferring cognitive state from noninvasive neurophysiological sensors is a challenging 

task even in pristine laboratory environments. High amplitude artifacts ranging from eye blinks, 

to muscle artifacts and electrical line noise can easily mask the lower amplitude electrical signals 

associated with cognitive functions. These concerns are particularly pronounced in the context of 

ongoing efforts to realize neurophysiologically driven adaptive automation for the dismounted 

ambulatory Soldier. In addition to the typical sources of signal contamination, mobile 

applications must consider the effects of artifacts induced by shock, cable movement and gross 

muscle movement. Specifically, artifacts related to participant motion include high frequency 

muscle activity, verbal communication and ocular artifacts consisting of eye movements and 

blinks; whereas artifacts related to the operational environment include instrumental artifacts 

such as electrical noise that created interference with the EEG signal (c.f. Kramer, 1991). 

Classification Challenges 

The use of EEG as the basis for cognitive state assessment was motivated by 

characteristics such as good temporal resolution, low invasiveness, low cost, and portability. 
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While EEG offers several benefits, there are shortcomings related to the noise artifacts described 

above and the nonstationarity of the neural signal pattern over time. Despite these challenges, 

research has shown that EEG activity can be used to assess a variety of cognitive states that 

affect complex task performance. These include working memory (Gevins & Smith, 2000), 

alertness (Makeig & Jung, 1995), executive control (Garavan, Ross, Li, & Stein, 2000), and 

visual information processing (Thorpe, Fize, & Marlot, 1996). These findings point to the 

potential for using EEG measurements as the basis for driving adaptive systems that demonstrate 

a high degree of sensitivity and adaptability to human operators in complex task environments.  

Scenario Design Challenges 

In addition to the practical and system configuration challenges faced when moving from 

the laboratory to field studies, there are issues of experimental control and the characterization of 

cognitive state in less constrained environments. It is essential to select tasks that are both 

operationally relevant and afford reasonable adaptations that improved performance. In the 

laboratory it is possible to develop simple tasks where workload is manipulated precisely and 

consistently. Additionally, a user's performance can be collected and evaluated accurately. This 

makes it relatively easy to establish ground truth about a user's likely workload. However, when 

developing operationally relevant tasks in a field environment, it becomes substantially harder to 

manipulate workload precisely and to interpret and assess a user's performance without 

compromising operational realism. The mobile field evaluation reported herein had two 

objectives: first, to determine whether an operationally relevant task load manipulation had a 

measurable impact on a user's workload; second, to establish whether a sensor based 

classification approach could effectively classify a user's workload in a mobile setting.  

System Description 

This section describes the mobile classification hardware and software approaches. 

Subsequent sections will describe how this system was evaluated in a mobile setting. 

Hardware 

The wireless sensor suite employed by Honeywell was assembled using a variety of off-

the-shelf hardware components tied together with a custom agent-based information architecture 

based on the work of the Institute for Human and Machine Cognition (IHMC) (see Dorneich, et 

al., 2004a for more information). EEG data were collected with both a 32-channel BioSemi 

Active Two system as well as a more deployable six-channel EEG sensor headset made by 

Advanced Brain Monitoring (ABM). The BioSemi Active Two system integrates an amplifier 

with an Ag-AgCl electrode, which affords extremely low noise measurements without any skin 

preparation. The ABM system t includes two differential channels (FzPOz and CzPOz) and four 

referential channels (Fz, Cz, POz, and linked mastoids acting as a reference site). 

Information from either EEG systems was processed on a body worn laptop that was 

running the IHMC information architecture. The BioSemi and ABM systems interfaced with the 

laptop via a USB 2.0 port and Bluetooth serial port, respectively. The sensor electronics and the 

laptop were mounted in a backpack worn by the participant (Figure 1). Sensor data were 

collected and processed on the laptop computer during the experiment. 
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Figure 1. Body worn sensor suite and signal processing system. 

Signal Processing 

For the BioSemi Active Two EEG system, vertical and horizontal eye movements and 

blinks were recorded with electrodes below and lateral to the left eye. All channels referenced 

the right mastoid. EEG was sampled at 256Hz from 7 channels (CZ, P3, P4, PZ, O2, P04, F7), 

which  were selected based on a saliency analysis on EEG collected from various participants 

performing cognitive test battery tasks (Russell & Gustafson, 2001). EEG signals were pre-

processed to remove eye blinks using an adaptive linear filter based on the Widrow-Hoff training 

rule (Widrow & Hoff, 1960). Information from the VEOGLB (electrode that measures vertical 

eye activity) ocular reference channel was used as the noise reference source for the adaptive 

ocular filter. DC drifts were removed using high pass filters (0.5 Hz cut-off). A band pass filter 

(between 2 Hz and 50 Hz) was also employed, as this interval was generally associated with 

cognitive activity. The power spectral density (PSD) of the EEG signals was estimated using the 

Welch method (Welch, 1967). The PSD process used one-second sliding windows with 50% 

overlap. PSD estimates were integrated over five frequency bands: 4-8 Hz (theta), 8-12 Hz 

(alpha), 12-16 Hz (low beta), 16-30 Hz (high beta), and 30-44 Hz (gamma). The classifier 

received a PSD feature vector of the five bands as input every 100 milliseconds. The particular 

selection of the frequency bands was based on well-established interpretations of EEG signals in 

prior cognitive and clinical contexts (e.g., Gevins, Smith, McEvoy & Yu, 1997).  

The ABM system supported an independent signal processing stream. Six channels were 

sampled at 256 samples per second with a bandpass from 0.5 Hz and 65 Hz (at 3 dB attenuation) 

obtained digitally with Sigma-Delta A/D converters. Data were transmitted across a BlueTooth 

RF link to the collection laptop via an RS232 interface. Quantification of the EEG in real-time 

was achieved using signal analysis techniques that identified and decontaminated eye blinks, and 

identified and rejected data points contaminated with electromyographic (EMG), amplifier 

saturation, and/or excursions due to movement artifacts (see Berka et al, 2004 for a detailed 

description of the artifact decontamination procedures). Decontaminated EEG was then 

segmented into overlapping 256 data-point windows called overlays. An epoch (the temporal 

window of analysis) consisted of three consecutive overlays. Fast-Fourier Transform (FFT) was 

applied to each overlay of the decontaminated EEG signal multiplied by the Kaiser window (α = 

6.0) to compute the power spectral densities (PSD). The PSD values were adjusted to take into 
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account zero values inserted for artifact contaminated data points. The PSD between 70 and 128 

Hz was used to detect EMG artifact. Overlays with excessive EMG artifacts or with fewer than 

128 data points were rejected. The remaining overlays were then averaged to derive PSD for 

each epoch with a 50% overlapping window. Epochs with two or more overlays with EMG or 

missing data were classified as invalid. For each channel, PSD values were derived for each one-

Hz bin from 3 Hz to 40 Hz and the total PSD from 3 to 40 Hz. Relative power variables were 

also computed for each channel and bin using the formula (total band power/total bin power). 

Real-Time Classification 

Estimates of spectral power formed the input features to a pattern classification system. 

The classification system used parametric and nonparametric techniques to assess the likely 

cognitive state on the basis of spectral features; i.e. estimate p(cognitive state | spectral features). 

The classification process relied on probability density estimates derived from a set of spectral 

samples. These spectral samples were gathered in conjunction with tasks that were as close as 

possible to the eventual task environment.  

The classification system (Figure 2) used a fusion of three distinct classification 

approaches: K nearest neighbor (KNN), Parzen Windows, and Gaussian Mixture Models 

(GMM).  

 
 

 

 

Figure 2. Classification system. 

Gaussian Mixture Models. Gaussian Mixture models provided a way to model the 

probability density functions of spectral features associated with each cognitive state. This was 

accomplished using a superposition of Gaussian kernels. The unknown probability density 

associated with each class or cognitive state was approximated by a weighted linear combination 

of Gaussian density components. Given an appropriate number of Gaussian components and 

appropriately chosen component parameters (mean and covariance matrix associated with each 

component), a Gaussian mixture model can model any probability density to an arbitrary degree 

of precision.  

The parameters associated with component Gaussians were iteratively determined using 

the Expectation Maximization Algorithm (Dempster, Laird, & Rubin, 1977). Once the Gaussian 

parameters were initialized, the system iterated through a two-step procedure for each sample 
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associated with each class. In the first step (expectation step), the system computed the 

probability of a particular training sample belonging to a particular class based on current model 

parameters (posteriori probability). In the maximization step, the model parameters were 

adjusted in the direction of increasing the class membership likelihood.  

Once probability density functions associated with each cognitive state were generated, it 

became possible to classify individual spectral samples. Each spectral vector was attributed to a 

class that had the highest posterior probability of representing it. Posterior probabilities were 

computed using Bayes' rule. For example, Figure 3 shows the probability density functions 

associated with three distinct classes (i.e., cognitive states). These probability densities are 

estimated using three Gaussians. Very high values of the data point x are most likely to have 

come from Class 3, while very low values of x are most likely to have come from Class 1. 

 
 

 

Figure 3. Gaussian mixture models. Small numbers of Gaussian kernels (dotted lines) are used to 

approximate the distribution of features in each class 

K-nearest Neighbor. The K-nearest neighbor approach is a nonparametric technique that 

makes no assumption about the form of the probability densities underlying a particular set of 

data. Given a particular sample x, the classification process identifies k samples whose features 

come closest (as assessed by Euclidian or Mahalanobis distance metrics) to the features 

represented in x. The sample x is assigned the modal class of the nearest k neighbors. For 

example, consider the data point represented by the question mark in Figure 4. Based on k = 5, it 

would be assigned the label associated with the most common class category of its five nearest 

neighbors.  

 

 

Figure 4. K nearest neighbor. A given feature vector is assigned the class label associated with the modal class 

of the n samples that are the most similar to it 
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Parzen Windows. Parzen windows (Parzen, 1967) are a generalization of the k-nearest 

neighbor technique. Instead of choosing the nearest neighbors and assigning a sample x with the 

label associated with the modal class of its neighbors, each vote is weighed by using a kernel 

function. With Gaussian kernels, the weight decreases exponentially with the square of the 

distance. As a consequence, far away points become insignificant. Kernel volumes constrain the 

region within which neighbors are considered. Consequently, Parzen windows are a better choice 

when there are large differences in the variability associated with each class. The data point 

shown in Figure 5 is assigned to the dominant class in its immediate vicinity. 

 
 

 

Figure 5. Parzen windows. Gaussian kernels placed over each data point are used to estimate the distribution 

of features in each class.  

Composite Classifier. These statistical classification techniques were chosen over multi-

layer neural networks because they required minimal training time. KNN and Parzen Windows 

required no training, whereas the expectation-maximization algorithm used to generate GMMs, 

converged relatively quickly. KNN and Parzen Window approaches required all training patterns 

to be held in memory. Every new feature vector had to be compared to each of these patterns. 

However, despite the computational cost of these comparisons at run time, the system was able 

to output classification decisions well within real-time constraints.  

The composite classification system regarded the output from each classifier as a vote for 

the likely cognitive state. The majority vote of the three component classifiers formed the output 

of the composite classifier. Fusing the outputs of multiple classifiers using a voting scheme is a 

widely used strategy to increase the robustness of classification system. The equal weighting of 

different classifiers implicit in the voting scheme reflected the fact that no single classifier 

produced consistently superior results across subjects and tasks in pilot experiments. While 

simple, vote based fusion has been shown to improve the overall performance of classification 

systems (Kittler, Hattef, Duin & Matas, 1998), there are a variety of alternative options for 

combining diverse classifiers. Exploring these options will be an objective of future research.  

A classification decision was output at a rate of 10 Hz. Outputs from the composite 

classifier were passed through a modal filter before an assessment of cognitive state was output 

by the classification system. Modal filtering served to make the cognitive state assessment 

process more robust to undesirable fluctuations in the underlying EEG signal. Modal filtering 

was done over a sliding two-second window with the assumption that cognitive state remains 

stable over that period of time.  
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Laboratory Evaluation 

This section briefly discusses one classification validation experiment conducted in a 

laboratory setting, before moving on to the focus of this paper - mobile field evaluation. The 

laboratory evaluation described here is representative of the multiple preliminary experiments 

conducted to validate the approach described in the previous section. For a more detailed 

discussion of the previous work that provided the foundation of the mobile classification field 

evaluation, see Dorneich, Whitlow, Ververs, Carciofini, & Creaser, 2004b; Erdogmus et al, 

2005;; Lan, Egdogmus, Adami, Pavel, & Mathan, 2005; Mathan, et al., 2005). 

Objective 

The objective of this experiment was to validate the classification approach using a well-

understood laboratory task, the n-back task, that has been used to manipulate working memory 

demands. In addition, two different EEG detection systems were evaluated.  

Participants.  

Data were collected from five participants. All were male researchers at Honeywell. 

Apparatus 

EEG data were collected with both a 32-channel BioSemi Active Two system as well as a 

more deployable six-channel ABM EEG sensor (see System Description section for details). 

Three participants wore the BioSemi system, while two participants wore the ABM system. 

Tasks 

The working memory assessment was conducted using the n-back task. The n-back task 

required participants to process a sequence of letters presented on a computer screen. With every 

presentation of a letter a participant had to both encode the letter in memory, and indicate 

whether the letter corresponds to a letter shown n presentations ago. Working memory load 

encountered by a participant was manipulated by manipulating the value of n. 

Procedure 

Participants were seated and performed the task twice under 1-back and 2-back 

conditions. Data associated with the first performance under the two conditions were used to 

train the classifiers. The classifier was tested with data from the second performance under each 

working memory condition. The features used for classification consisted of estimates of spectral 

power at theta, alpha, beta, and gamma frequency at each EEG site.  

Data Analysis and Results 

The accuracy metric used in our evaluations was derived from a confusion matrix. The 

confusion matrix is a square matrix that allows comparison of the accuracy of a classifier by 

comparing the predicted class membership against actual membership (see Figure 6). Typically 

rows represent the actual class, while columns represent the predicted class. Counts in each cell 

provide an indication of how well the classifier performed on classifying each sample in the data 

set. The counts in each cell are weighted by the total count of the samples in each class, to 

produce the proportion of samples correctly and incorrectly classified. The accuracy metric used 
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here is the average of the values in the diagonal; that is, the average number proportion of 

samples from each class that were correctly classified. See Figure 6 for an example.  

 

Counts Predicted A Predicted B Sum True  Proportions Predicted A Predicted B  

True A 3 1 4  True A 3/4=0.75 1/4-=0.25  

True B 2 20 22  True B 2/22=0.09 20/22=0.91  

Sum Predicted 5 21     Accuracy 0.83 

Figure 6. Confusion matrix. The left table counts the number of samples correctly and incorrectly classified. 

The right table represents the sample proportions (number of samples divided by total population of the true 

class), and derives an accuracy score based on the average of the accuracy value for each class (0.75 and 0.91).  

Data used for training and testing the classification system was drawn from experimental 

sessions that were separated by gaps spanning several minutes. The tasks used for training and 

testing sessions were identical in nature. The metric used to assess the efficacy of the 

classification system was the proportion of testing data correctly classified by the classifier as 

represented by the confusion matrix-derived accuracy metric. The average of the true positive 

and true negative classification rates of the system  reflected both the sensitivity and specificity 

of the classifier. The trained classifier assigned each data sample to the 1-back or 2-back 

category. Results based on chance alone would yield a classification accuracy of 50%. The 

system was able to classify testing data with an average accuracy of 83% (3 participants, s.d. 

10%) with data from the BioSemi system and 75% (2 participants, s.d. 12%) with the ABM 

system (Lan et. al., 2005). The difference in performance associated with the two systems might 

lie in the difference in the number of sensors provided by each system. The challenge for the 

Honeywell team was to test whether the classification method could help up in a mobile, more 

realistic, environment.  

Mobile Field Evaluation: Method 

Objective 

The objectives of the mobile field evaluation were to test the effectiveness of the 

cognitive state classification approaches and assess the impact of mobility on classification 

performance. The tasks were designed to approximate operationally relevant dismounted Soldier 

tasks, while still affording some experimental control. The tasks used in the evaluation required 

the participant to be mobile in all scenarios. The sensors and output of the artifact removal 

algorithms were required to provide the classifiers with good signals to discriminate between the 

low and high workload during completion of the scenarios. It was hypothesized that the scenario 

design would reliably put participants into high or low states of workload. This hypothesis was 

tested as part of the evaluation. If the hypothesis were true, then it was expected that the 

classification algorithms should achieve better-than chance correct correlations between the 

cognitive state classification output and the known levels of task load, based on moment to 

moment classification; however, it was anticipated that signal degradation and loss due to 
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significant artifacts may preclude the levels of classification performance seen during laboratory 

studies.  

Participants 

Eight participants completed the evaluation. All were male between the ages of 21 and 42 

(average = 29.5, standard deviation = 7.8), with between 16 and 21 years of education (avg. = 

18.6, standard deviation = 1.8). None had military experience. All had normal or corrected 20/20 

vision and normal hearing. 

Apparatus 

Efforts focused on deployment of a cognitive state sensor system in a mobile, 

experimental test environment. The primary challenge was fielding an integrated sensing, 

computational and interactive system within a mobile hardware ensemble. The prototype 

ensemble was organized around the U.S Army MOLLE (Modular Lightweight Load-carrying 

Equipment) backpack that provided the framework on which to integrate multiple sensors, 

interface devices, network adapters, and the data collection computer. 

Transitioning from a laboratory environment with computer simulations to a field 

exercise required network communications to support experimental requirements such as 

scripting and stimuli presentation. During the field experiment, a remote computer ran scripts 

that played pre-recorded radio broadcasts to simulate communication traffic to a dismounted 

infantry leader. Initially, all sensed data were transmitted wirelessly to a remote desktop 

computer that calculated the cognitive workload state of the participant  and triggered the 

adaptive automation. The remote computer also logged data for post hoc analysis.  

However, network connectivity and reliability across the experimental test field posed a 

considerable challenge and motivated the migration of all data logging and reasoning to be done 

on the backpack laptop carried by the participant. After streamlining the EEG signal conditioning 

algorithms, migrating all hardware interfaces to the backpack laptop, and integrating and testing 

other external hardware modules, an early system integration test was performed. Subsequently, 

all software components for signal processing, adaptive automation reasoning, and data logging 

were migrated to the backpack computer. 

Tasks 

The design of the scenarios to empirically assess classification accuracy was subject to a 

multitude of sometimes contrary constraints, as noted previously. Tasks were chosen to be 

"classifiable,"  meaning the tasks within the scenario reliably put participants in the cognitive 

workload state of interest. The Honeywell team worked with the US Army Natick Soldier Center 

to develop an operational scenario that closely aligned with operational doctrine, training, and 

execution of military missions. 

Each participant played the role of a platoon leader navigating along a known and secure 

route to an objective, while communicating over the radio. Each of the participants completed 

four experimental trials, each with periods of low and high task loads. The navigation task 

increased the overall task complexity as well as tested the performance of the neurophysiological 

and physiological sensors and cognitive state classifiers while the participant was mobile. In 

addition to navigation, participants performed the following tasks: 
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 Maintain Radio Counts. The participant kept a running total of civilians, enemies, and 

friendlies reported to them over the radio by the company commander, while ignoring the 

counts reported to two other platoon leaders. Periodically the participant was prompted to 

report his counts.  

 

 Mission Monitoring. The participant monitored three virtual squads moving in bounded 

overwatch (one squad moves while the other two squads provide protection). When all 

three squads reported that they were in position, the participant ordered the appropriate 

squad to move forward. The order of the squads reporting in, as well as the squad to 

move forward, was randomized. 

 

 Interruption Task. A series of math problems were periodically (one problem/minute) 

presented to the participants as an interruption task during the scenario. This task was 

representative of any type of unanticipated interruption that requires significant cognitive 

resources and an immediate response from the platoon leader. Once started, participants 

had 10 seconds to answer the problem correctly. 

 

 Maintain Situation Awareness. In addition to the situation awareness they needed to 

perform on the other tasks listed here, participants were asked about the content of 

additional low priority messages they received.  

 

Stressors were used to make the scenarios more representative of the actual environment 

in which Soldiers operate. Stressors included time pressure to complete tasks (for example, the 

count down clock on the mathematical task) and the increased rate of messages in the high task 

load elements of the scenario.. Participants were encouraged to keep moving throughout the 

scenarios. The stress and anxiety brought on by competition was explored by offering a 

monetary award for the highest score at the end of the evaluation. 

Procedures 

Independent Variable. Task load was either high or low. Within each scenario there were 

blocks of high and low task load conditions that lasted approximately five minutes and three 

minutes, respectively. The primary difference between high and low task load periods was the 

pace of radio communications. The composite rate of Maintain Count and Mission Monitoring 

messages was approximately 2.4 times faster in the high task load period (8.7 messages/minute) 

than the low task load period (3.6 messages/minute).  

Experimental Design. This was a single factor (task load block: High/Low) within 

participants design. Each scenario had four task load blocks in a fixed order: High, Low, High, 

Low. 

Training Trials. There were two components to the training that were conducted before 

the participant performed the experimental trials. The first training session was to ensure that all 

participants had a basic familiarity and proficiency with all the tasks they were to perform in the 

experiment. The second training session was to collect data with which to train the cognitive 

state classifiers. After collecting between five and ten minutes of EEG spectra data for both low 

and high task load training conditions, the data were submitted to the composite classification 
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system to identify patterns to distinguish the workload conditions. This was done on the same 

day as the evaluation.  

Experimental Trials. Scenarios were run in a large grassy field surrounded by light forest 

situated behind Honeywell in Northeast Minneapolis, Minnesota. Participants primarily 

interacted with a handheld radio and a Personal Digital Assistant (PDA). Input for the mission 

monitoring and the maintain counts tasks came over their radio and they responded over the 

radio as well. The math interruption task was completed on a PDA. The math interruption task 

occurred at equal frequencies under both task load conditions. At the end of each block, 

participants were asked to fill out subjective workload surveys. 

Data Analysis  

The principal goal of the data analysis was two-fold: 1) determine whether the difference 

in task load invoked a concomitant difference in cognitive workload, and 2) validate that the 

cognitive state classification algorithms can distinguish these differences in task load.  

Subjective workload ratings of mental demand, physical demand, temporal demand, 

performance, effort and frustration were taken via the NASA-TLX Rating scale (Hart & 

Staveland, 1988 . NASA-TLX was given at the end of each experimental task load block. 

Successful cognitive workload manipulation was assessed by comparing the subjective workload 

ratings with the task load manipulation. In addition, objective performance measures on the tasks 

were compared across low and high task load blocks as another indication of differentiated 

workload. Objective measures included: 

 Maintain Counts: Reported vs. actual counts of civilians, enemies, friendlies. 

 Mission Monitoring: Errors in which squad to send forward, and errors in the timing of 

move command. 

 Tertiary Mathematical Task: response time to initiation alert, time to solve the problem, 

and response accuracy. 

 

Classification accuracy was assessed by comparing the cognitive state classification 

accuracy across the low and high task load periods within each block. The classification system 

provided cognitive state assessments every two seconds, providing a moment-to-moment 

assessment. As mentioned earlier, the accuracy metric used to evaluate the classifier was derived 

from a confusion matrix.  

Mobile Field Evaluation: Results 

Subjective Results 

Workload was manipulated by varying the task load (rate of incoming messages) over a 

block of time. The NASA-TLX was administered to confirm the participants experienced a 

change in perceived workload. The TLX scores were compared in the high and low task load 

blocks (see Figure 7). An Analysis of Variance (ANOVA) was performed on the measures to 

study within-participants contrasts. Differences were considered significant for alpha < .05. 

During the high task load blocks, participants recorded a significant increase in mental demand 

(F1,7=13.4, p<.01), temporal demand (F1,7=23.5, p<.01), performance (F1,7=20.0, p<.01), effort 

(F1,7=25.9, p<.01), and frustration (F1,7=15.0, p<.01) as compared to the low task load blocks. 
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The only measure that did not change significantly was physical demand (F1,7=.006, p>.10), 

which was expected since the scenario design did not vary the physical demands in the two task 

load conditions. 
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Figure 7. Subjective assessment of workload in the high and low task load blocks; significant differences 

denoted with an asterisk. 

Performance Results 

Figure 8 illustrates the task-related ANOVA results (alpha < .05) in the low and high task 

load blocks. Participants showed reduced accuracy on the mission monitoring task in the high 

task load periods (67.4%) as compared to the low task load periods (95.8%). This difference was 

significant (F1,7=24.7, p<.01). The difference in the maintain counts performance was not 

significant. On the math interruption task, participants responded faster in the low task load 

block (loss of data left only n=4, so the difference was not significant), while solve time and 

accuracy showed no difference.  
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Figure 8. Task metrics across task load conditions; significant differences denoted with an "*" 

The subjective ratings of workload, as well as the behavioral results from the mission 

monitoring task during the low and high task load blocks, all lend confidence to the hypothesis 

that the scenario design did indeed create two distinct levels of cognitive workload in the 
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participants. The ability of the real-time cognitive state classification system to correctly 

characterize the task load blocks is the topic of the next section. 

Classification Results  

A crucial component of classification in field settings was a systematic procedure for 

selecting a subset of EEG features that was robust to potential artifacts and provided a basis to 

discriminate between workload classes. One way to do this was through an exhaustive selection 

of every possible feature combination drawn from the training data. Then the feature subset 

producing the best classification performance could be selected for classifying cognitive state in 

the field. However such an exhaustive search would result in  2
n
 searches, where n represents the 

number of features. Instead, backward elimination (Langley, 1994) was used, a heuristic 

procedure that searches the space of possible feature subsets to identify those that would provide 

reliable classification. Feature selection was based on the training data that was obtained prior to 

the testing data and under the same task conditions. With an appropriate selection of channels the 

approach was able to classify cognitive state with an accuracy that exceeded 70% for all 

participants. The mean classification accuracy was 74.4% with a standard deviation of 9.01%. 

Classification accuracy as high as 95% was observed for one participant (see Figure 9). Data 

from one participant (s6) were lost because of a system malfunction. Performance with both the 

BioSemi (participants s7 and s8) and ABM (5 participants: s1-s5) system was close to identical 

in the field environment. This finding was in contrast to lab assessments where the 32-channel 

BioSemi system provided better performance relative to the six-channel ABM system (Dorneich 

et al., 2005b). A possible explanation for this discrepancy may be due to differences in the 

hardware design. The large number of relatively unconstrained cables associated with the 

BioSemi might have been susceptible to movement induced vibration, which may have been a 

potential source of noise. Any benefits of additional channels the BioSemi system provided may 

have been lost due to vulnerabilities to these movement artifacts. In contrast, the ABM system 

was specifically designed for mobile use. If these results are replicated with a larger group of 

participants, it suggests the need for hardware specifically designed to withstand the rigors of 

mobility in the field.  
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Figure 9. Moment-to-moment classification accuracy for each participant.  
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Discussion 

Findings 

There were a series of substantial scientific and engineering issues that needed to be 

successfully addressed in order to deliver compelling results for the mobile cognitive state 

classification. First, participants needed to be placed in reliably high and low task loading 

conditions within an operationally relevant mobile task scenario. This was validated across 

multiple performance and subjective measures. These results lent confidence that the 

classification assessment approach was tested against task conditions that were  perceived and 

elicited performance commensurate as low and high cognitive task loads. Second, the evaluation 

confirmed that the signal processing and classification algorithms not only ran on a mobile 

computing platform in real-time, but delivered moment-to-moment cognitive state classification 

performance greater than 70% for all participants. In order to deal with poor signal to noise ratio 

under mobile EEG collection, real-time signal processing was developed to remove eye blinks, 

exclude data contaminated by muscle artifacts, account for eye movements, correct for DC drift, 

eliminate spikes, and remove motion-induced high frequency components. The net result was 

that the signal processing solution preserved sufficient signal quality to decipher differences in 

the EEG spectral dynamics under low and high cognitive loads.  

There are many reasons why these results constituted a significant contribution to the 

emerging field of augmented cognition as well as the broader field of experimental neuroscience. 

First, the granularity of the classification performance was at the two-second resolution and did 

not depend on larger samples to classify disparate states. Classification performance represented 

the percentage of all data samples, approximately 300 in high blocks and 180 in low blocks for 

all participants, that were correctly classified. It was a far more common practice to report 

average classification performance over an entire experimental block or time windows 

substantially greater than two seconds, neither of which was a particularly germane measure 

when evaluating a system that adapts in real-time. 

Second, the task conditions were far more heterogeneous, variable, and ecologically valid 

than was typically seen in prior classification studies where participants performed a single well-

defined laboratory task. In both low and high task conditions, participants were required to 

perform three separate tasks along with requisite task switching and working memory rehearsal. 

As is the case for most ―cognition in the wild,‖ participants adopted different strategies to 

manage the multiple task execution (as evidenced in post-experimental questionnaire responses). 

To achieve reasonably good classification rates under these conditions indicates that the utility of 

EEG in classification was likely to extend to more ecologically valid task conditions. 

Third, the classifiers were trained with data from a distinct period that was completed 

before the test phase. In many classification studies, researchers sample training and test samples 

from the same block, oftentimes from temporally adjacent samples. It is well know that EEG 

baselines drift over time, described as nonstationarity, as is common to many physiological 

processes; therefore, running a classifier on training data from a previous period was a technical 

risk but resulted in validating the approach in a more rigorous manner. 

Fourth, the system used data from relatively few sensor sites, six sites from the ABM 

system and seven from the BioSemi system, since any imagined field deployment needs to 

minimize the number of sensors. Many researchers strive to maximize the number of sensors to 
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insure adequate coverage to provide them with the spatial resolution to capture subtle differences 

across the cortex. These findings suggest that even relatively sparse EEG arrays provide 

sufficient coverage to distinguish between the two task loading conditions. 

Fifth, the current study achieved encouraging classification between two states that are 

very similar in the classes of cognitive processing required, such as working memory, but differ 

substantially in the intensity or tempo of processing required. This suggests that the approach 

detected differences in executive functions that supported the management of multiple tasks over 

time. 

Finally, all of these findings indicate that this reported EEG approach will be an effective 

means of triggering adaptive systems in real world applications. This approach provides the 

temporal resolution to respond to short-term changes in cognitive state that would be required for 

applications such as communications scheduling (Dorneich et al., 2005a). In this study, the 

Communications Scheduler (adaptation) applied messaging techniques that included drawing 

attention to higher priority items with additional alerting tones or visual text messages and 

deferring lower priority messages to a Commander's Display device for later review. 

Communication scheduling significantly increased the accuracy in maintaining counts in high 

task load condition (67.4% accuracy unmitigated, 95.7% mitigated). Likewise, the 

Communications Scheduler significantly increased the accuracy of mission monitoring in high 

task load when mitigation was available (68.2% unmitigated, 95.8% mitigated).  Since the focus 

of this article was the feasibility of assessing cognitive state in a mobile participant, space 

constraints precluded the full discussion of the adaptive automation performance results in the 

current evaluation (see Dorneich et al., 2005b). 

Lessons Learned 

In addition to the performance findings discussed above, many practical lessons were 

learned in the assembling, fielding, and evaluating EEG-based classifiers in a mobile setting. A 

summary of lessons learned in this work is presented in Table 1. 

Table 1. Lessons Learned. 

Area Lesson Learned 

Task definition Consult domain experts. The U.S Army Natick Soldier Center was consulted 

in designing ―operationally relevant" tasks. This not only saved considerable 

time, but results will be better received due to their ecological validity. The use 

of representative tasks lend more confidence that the findings will be 

transferable to actual domain. 

Task definition Baseline tasks early and often to ensure that representative participants 

perform and perceive different task loads as low and high. Initial assumptions 

about what participants could handle in terms of a ―high‖ communications 

tempo were quickly challenged by the data collected with pilot participants. 

Signal 

processing 

Develop capability to collect data in actual environment. A novel stability 

control was created to improve filtering of ocular activity. When faced with the 

extreme artifacts in a mobile environment, most adaptive filters would be 

become unstable and unusable. 

Signal 

processing 

Critically review similar research to understand application to the target 

domain. Findings from prior research were quickly identified as inadequate for 
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identifying relevant EEG sites for use in applied operational domains. Given 

the dynamic, multi-tasking nature of mobile task environment, the limited 

relevance of controlled laboratory studies in down-selecting to a subset of 

channels was discovered. Most studies involved well defined, homogenous, 

stationary tasks that typically reported averaged results and not moment-to-

moment classification accuracy. 

Signal 

processing 

Collect sufficient data to determine how much training data are required to 

provide good classification performance. Use pilot studies to determine how 

much training data were required to provide robust classification performance. 

The amount of data needed varies depending on the nature of the task 

environment, signal to noise ratio, and classification techniques used. 

Classification Fit the approach to the constraints of the environment. Explore multiple 

temporal windows in considering the constraints imposed by the sensor 

density, computational efficiency, precise task adaptation needs, and the high 

degree of classification accuracy during ongoing research studies. 

Classification Determine the ideal number of sensors by considering the processing demands, 

operational environment, and generalizability of the classification across 

multiple situations. It was determined that more sites was not always better for 

machine learning classification. Once the classifier approach goes beyond the 

most informative features (site by frequency band) the classifier begins to 

overfit to noise and degrade classification performance - much like adding 

unnecessary parameters to a regression model. 

System 

Integration 

Ruggedize the equipment for testing in a field environment. Most ruggedized 

laptops not only come with shock-mounted hard drives to protect your data but 

include better thermal management which is sorely lacking in traditional 

laptops (as was found one warm, sunny spring day). 

System 

Integration 

Select an EEG system that pre-amplifies the signal at the electrode site to 

enable low noise measurements. 

Program 

Management 

Whenever possible, simplify the experimental design to reduce complexity of 

conducting field studies. Inevitably the system integration phase will take three 

times longer that expected. By limiting the number of research questions of 

interest and avoiding rolling-up everything in a single study, implementation 

of overall findings for the study are more manageable. This ambitious study 

involved making a novel system fieldable, creating realistic operational tasks 

with separable cognitive task loads, and adapting a classification approach to 

the operationally relevant tasks, all of which seriously challenged timetables, 

budgets, and overall resources. 

Risk 

Management 

Consider an experimental design that includes segments with severable 

benefits (meaning that if something breaks or it starts raining, the data 

collected up to that point was usable) so that a lengthy data collection does not 

become ―all or nothing.‖ With a lengthy, elaborate experiment using an 

elaborate system the probability of running start to finish without some glitch 

approaches zero. 

Participant 

Recruitment 

Within the bounds of any Institutional Review Board (IRB) agreement, recruit 

motivated participants for lengthy experiments of this nature. From the time 

the participant arrived until they cleaned the EEG gel out of their hair, these 
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experimental sessions lasted a minimum of five to seven hours during which 

they wore a 35 lb backpack and an EEG sensor headset with gel, walked the 

navigation course for at least hour, and performed very challenging cognitive 

tasks. Fortunately, this study recruited individuals who were intrinsically 

motivated, competitive, and highly intelligent. 

Limitations 

While the classification results reported here were promising, several shortcomings have 

to be addressed in future work. First, some of the results described here will have to be validated 

against larger groups of participants. Second, while the classification approach seems to 

generalize over periods of time spanning minutes and hours, it remains to be determined whether 

the system can generalize over larger temporal gaps between training and testing. Third, all the 

work reported here has focused on EEG alone; however, considering other information sources 

such as cardiac sensors and fNIR may make cognitive state estimation more robust under 

circumstances where EEG may be compromised. Fourth, all the cognitive state classifiers 

evaluated here use Bayes rule to make decisions about cognitive state based on EEG feature 

vectors. However, making optimal classification decisions within a Bayesian framework also 

requires consideration of the prior probability of various workload states, and the cost of actions 

associated with cognitive state related decisions. The current implementation assumes equal 

priors for each state and does not weigh the cost of actions. Consideration of priors and costs will 

be an important priority as the technology described here is transitioned into an operationally 

relevant system.  

Next Steps 

As the technology transitions from mobile, experimental scenarios to future operational 

integration events, the Honeywell classification approach will be tailored to address likely 

deployment challenges. Feedback from Army partners indicates the Honeywell sensor and 

computational component must address the following high-level requirements: 

 Provide reliable performance under harsh dismounted conditions 

 Integrate with other FFW subsystems in a manner that does not appreciably increase 

weight, size, power consumption, network bandwidth utilization, or computational 

resources 

 Garner very high levels of user acceptance and operational acceptance 

Classification Accuracy 

The classifier approach will continue to be developed to address some of the limitations 

discussed earlier. Evaluating the classification approach with a larger set of users, operating in 

their natural task environment, will be the focus of the next evaluation. In addition, cardiac 

sensors as well as EEG sensors will be assessed with the goal of fusing the sensor streams to 

provide more robust, reliable, and more accurate classification. Future work will also look at the 

consideration of priors and costs in the classification decision.  

System Reliability 

Maintaining system reliability under harsh conditions is the reality of the dismounted 

Soldier domain. In addition to the common challenge for all electronics in the battlefield to be 
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ruggedized, a system that measures neurophysiological signals must confront the considerable 

"noise" introduced by motion, sweating, and muscle activity. The sections above discussed the 

means in which these artifacts were addressed for the participants operating in the mobile, 

multitasking scenarios.  

The next steps to improve system reliability will involve rigorous testing within 

dismounted operational environments that will expose the system to increased physical stress, a 

variety of environmental conditions, and likely introduce new classes of signal artifacts as yet 

not encountered. This would provide an opportunity to improve signal processing by isolating 

and addressing, either by advanced data filtering or physical integration improvements, the new 

sources of noise. 

System Fieldability 

Effective integration with FFW component systems essentially implies the need to 

continue to reduce the hardware, software, computational, and power footprint of the system. In 

a matter of  two years, the computational platform has transitioned from a five-desktop, 

immobile system to a fully wearable, mobile system that relies on only a laptop computer in the 

participant's backpack (see Figure 10). In addition to the dramatic hardware reduction, the 

sensing and signal processing requirements have been streamlined to be tractable on a single, 

standard laptop. There will be continued efforts to streamline the sensing system to insure that it 

is as small, power-efficient and reliable as possible. In the future, much of the signal processing 

and classification calculations could be done on dedicated hardware rather than utilizing software 

processing capacity. The determining factor in the computational load of the classification 

system is the number of sensor sites necessary for robust classification. The fewer sites, the less 

CPU load, the less power, and the smaller the system footprint. Towards that goal, the system 

has transitioned from using the BioSemi Active Two system with 32 channels of EEG to the 

ABM 6-channel sensor headset.  

 

    

Figure 10. Initial (left) and current (right) systems. 
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Furthermore, reducing computational requirements will be explored by encoding 

neurophysiological signal processing onto a hardware system that would require less software 

computation from the FFW wearable computer. Finally, potential network protocols that utilize 

the minimum bandwidth while still transmitting the requisite volume of feedback to provide 

value to the FFW suite will be explored. This requires secure, efficient, and wireless data 

transmission from the integrated sensors to a local signal processor for managing artifacts and 

spectrally decomposing signals for subsequent classification. Ultimately, a fielded FFW 

augmented cognition system will likely require advanced sensors, integrated hardware signal 

processing, and highly efficient software agents running on the FFW mobile computer. Such a 

system would be capable of triggering adaptations to the warfighters task environment based on 

their cognitive state. 

The next steps to improve fieldability includes exploring sensor options that have a 

reduced footprint compared to current sensing systems. For example, free-field or minimal-

preparation EEG electrode-based systems that are easily integrated into a helmet liner or 

embedded within helmet pads will be considered. 

System Form and Function Acceptability 

In order for a system to be successfully fielded, user acceptance is critical to ensure use in 

the battlefield environment. User acceptance for an augmented cognition system includes ease of 

donning and doffing, comfortable integration with Advanced Combat Helmet (ACH), and 

satisfaction of functional expectations. The ACH is the replacement of the old Kevlar Army 

helmet, and is designed to be lighter, stronger, and compatible with current night vision devices, 

communications packages, and nuclear, biological, and chemical defense equipment and body 

armor (Global Security, 2006). Specifically, the system would need to be seamlessly integrated 

into the ACH to a degree that a warfighter could simply don their helmet to enable the sensors 

that are either integrated within the helmet liner or helmet padding, without any adhesives or 

electrolyte gel. The sensor-enabled helmet must be reasonably comfortable to wear for extended 

durations. Finally, the augmented cognition system should deliver value and satisfy functional 

expectations to justify the addition, however small, of power, weight, and computational 

requirements. Initial implementations of the augmented cognition system would involve 

providing cognitive state information to remotely located Commanders or key leadership 

positions to assess the cognitive combat readiness of their subordinates.  

The next step to addressing these challenges is experimentation in an operational 

environment that will further constrain the form and functional requirements. This step will also 

provide a test environment to perform cognitive classification studies with considerably more 

ecological validity, further proving the feasibility and utility of determining cognitive states of 

interest in an operational environment. 

Adaptive System Triggering 

Work continues on building adaptive systems that use cognitive state assessment as 

triggers. Automation is an effective means to allow users to save cognitive resources to allocate 

to other higher priority tasks (Dixon & Wickens, 2004; Rovira, Zinni, & Parasuraman, 2004). 

Using an assessment of the cognitive state of the user to base decisions on when to apply 

automation is one method of adaptive automation. The work described here focuses on real-time 

assessment of a human's capacity to understand and use information while under high task load 
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conditions, where cognitive capacity can fluctuate greatly. In task management, mitigation 

strategies might include intelligent interruption to improve limited working memory, attention 

management to improve focus during complex tasks, or cued memory retrieval to improve 

situational awareness and context recovery. Ultimately, the goals of adaptive automation are 

similar to those of automation in general; improve overall performance while avoiding ―operator 

out of the loop‖ conflicts or mistrust in the automation. Such technologies not only have the 

potential to significantly reduce the strain on the Soldiers' cognitive resources, but they also 

provide the opportunity to improve overall decision making by better managing information flow 

(Schmorrow, Raley, & Ververs, 2004). The overall result is a benefit by making smarter 

decisions about what information gets presented, when it is presented, and how it is presented.  
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