
200 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

A System Design Framework-Driven Implementation
of a Learning Collaboratory

Michael C. Dorneich

Abstract—This paper describes a design process to support
the development of a learning collaboratory, a distributed,
computer-based, virtual space for learning and work. A learning
collaboratory: as a distributed distance learning environment,
offers tremendous opportunities to expand the way people teach
and learn and to broaden educational opportunities to an ever
increasing range of learners. The challenge is to design distance
learning technologies that engender meaningful learning experi-
ences that take full advantage of the power of computer-mediated
communication to support innovative learner-centered and collab-
orative interactions between students, teachers, subject experts,
and resources. The first half of this paper describes the Learning
Collaboratory Design Framework (LUCIDIFY), a design process
that integrates methods and concepts from cognitive systems
engineering, theories of learning and instruction, distributed com-
puting, and computer-supported collaborative learning (CSCL) to
guide the principled design of learning collaboratories. The second
half of the paper describes how LUCIDIFY was used in the design
and implementation of the Collaborative Learning Environment
for Operational Systems (CLEOS), a learning collaboratory for
teachers, students, and practitioners in the physical sciences,
in particular for NMR spectroscopy and X-ray diffraction ex-
periments. CLEOS features two virtual instrument tutorials,
an asynchronous messaging system, a project-based design and
management application, and a collaborative multi-user domain
infrastructure.

Index Terms—Abstraction hierarchy, collaborative learning en-
vironment, collaboratory, distributed computing.

I. INTRODUCTION

T HE emergence of computer technology has had profound
implications for instruction. Early efforts consisted of

practical instructional software applications designed around
classroom needs and focused on the transmission or delivery
of knowledge to the student. Subsequent work in intelligent
tutoring attempted to emulate the behavior of skilled human
tutors in software. More recent work has focused on collabo-
rative learning processes, and the idea of acollaboratory(i.e.,
collaborative laboratory) as a virtual space for learning and
work. This paper describes a conceptual framework to guide
the design of a learning collaboratory.

The design of a collaborative learning environment should
promote mutually beneficial interactions between students,
teachers, and practitioners. It should foster a community of

Manuscript received July 7, 2000; revised March 31, 2002. This paper was
recommended by Associate Editors P. M. Jones and C. W. Mitchell.

M. C. Dorneich was with the Department of Mechanical and Industrial En-
gineering, University of Illinois, Urbana, IL 61801, USA. He is now with Hon-
eywell Laboratories, Honeywell International, Minneapolis, MN 55418 USA
(e-mail: michael.dorneich@honeywell.com).

Publisher Item Identifier S 1083-4427(02)06004-6.

participants who are bound by a common interest. If the users
of the environment find software applications and people that
are beneficial, then the community will grow. The ability to
nurture and sustain a community of learners, teachers, and
practitioners facilitates the long-term usefulness and ongoing
evolution of the learning environment.

The developer of a learning collaboratory has many chal-
lenges in the process of creating a virtual learning environment
and nurturing a user community. The challenge to the developer
of such a learning collaboratory is to understand the subject do-
main, the user community, how to best support learning in this
environment, how to best support user interactions, and how to
provide enough value for all users.

The developer of a learning collaboratory needs to consider
types of knowledge that need to be captured and modeled:
the work domain (i.e., “the [goals, resources, and constraints]
within which the work takes place” [[43, p. 28])] of the partic-
ular discipline (i.e., “what to teach” in NMR spectroscopy, for
example), the work domain of instruction (i.e., “how to support
effective learning” where high level goals involve teaching
and instruction), and the more traditional work domain of the
collaborative systems developer (i.e., “what to design”).

The primary mission of a learning collaboratory is to teach
learners to master subject material and techniques and to de-
velop learning and teamwork skills. Different levels of com-
petence may require different pedagogical support. The devel-
opment of the novice participant into an expert is a process
that goes through many stages and so the learning collaboratory
must scaffold the development process by providing flexible in-
structional support at every level of the process of learning.

A learning collaboratory, as a distributed distance learning
environment, offers tremendous opportunities to expand the
way people teach and learn, and to broaden educational oppor-
tunities to an ever increasing range of learners. Additionally, a
learning collaboratory can serve as an environment to explore
opportunities for novel instructional techniques, collaboration
among both students and teachers, and the delivery potential
of student tutorial applications and educational content. Thus
the developer of a learning collaboratory can explore a wide
range of pedagogical strategies of learning, with collaborative
pedagogical strategies being especially germane.

Collaboration, especially in support of learning, is a defining
aspect of a learning collaboratory. Technology to facilitate com-
munication is a vital part of enabling a community of learners to
grow within the virtual environment. The developer must con-
sider how to best utilize collaborative technologies to create
an environment that support collaboration between community
members.

1083-4427/02$17.00 © 2002 IEEE

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 201

This paper describes the Learning Collaboratory Design
Framework (LUCIDIFY), which explicitly addresses the four
needs outlined above: modeling domain knowledge, charac-
terizing the user community, explicit support for collaborative
learning pedagogies, and collaboration support for a heteroge-
neous user community. The next section will delve more deeply
into the motivations and background of the design of a learning
collaboratory. Section III will describe LUCIDIFY and the
human-centered design processes that will facilitate design of
a learning collaboratory. LUCIDIFY is a general framework
for the design of any learning collaboratory. The remainder of
the paper will describe how LUCIDIFY was used in the design
and implementation of an actual learning collaboratory: the
Collaborative Learning Environment for Operational Systems
(CLEOS). More specifically, Section IV will describe and
define the scope of CLEOS, identify the design goals, and
detail the process by which LUCIDIFY was used to design
CLEOS. Section V will describe the architecture of CLEOS,
and briefly introduce the software applications that populate the
learning collaboratory. Finally, Section VI will describe some
implementation details of CLEOS and how CLEOS addresses
issues of distributed computing and issues of collaboration.

II. BACKGROUND

A collaboratory is a virtual environment that uses tech-
nology to mediate communication of nonco-located colleagues
who share common interests, tasks, or research areas.A
collaborative virtual environmentis defined by Jones as “an
interactive, computer-generated environment that incorporates
some level of semantics of work practice and supports multiple
human users both synchronously and asynchronously.” [32,
p. 1]. Synchronous communication refers to simultaneous,
“real-time” interaction (e.g., talking on the phone), while
asynchronous communication does not happen at the same
time (e.g., communicating via e-mail over the course of a day).
Technology and software applications allow participants to
collaborate and share access to information, instrumentation,
and colleagues [22], [33], [39], [55]. Alearning collaboratory
is a collaborative virtual environment where students, teachers,
and experts in field or domain work together in a variety of
ways to support student learning. In an educational setting,
there are multiple reasons to support distributed instruction.
Distributed, collaborative educational software applications can
provide a wide range of students with increased instructional
facilities and learning opportunities that are significantly
different than the traditional teacher-centered lecture format.
A learning collaboratory, with an emphasis on collabora-
tion among learners engaged in realistic experiences rather
than passive listening, shifts the emphasis of learning from
teacher-centered (activity centered on the teacher, where
students passively listen) to learner-centered (students actively
engaged in learning activities, where teacher is facilitator of
student activity). The challenge is to design distance learning
technologies that engender effective learning experiences that
do not just mimic existing teacher-centered learning practices,
but take full advantage of the power of computer-mediated
communication to support innovative learner-centered and

collaborative interactions between students, teachers, subject
experts, and resources. Thus, a learning collaboratory can be
a useful augment to traditional teaching methods. As financial
resources become increasingly scarce, providing affordable
and direct access to educational resources becomes important
in maintaining a high level of education. Furthermore, if
a learning community is defined not only as students and
teachers, but as practitioners and researchers as well, then
supporting interaction among these parties is likewise critical.
In settings where collaboration is an important and natural
mechanism for learning and instruction, learners can acquire
valuable team skills, something that is often cited as a particular
deficiency with graduating college students [63].

The learning collaboratory design framework to be intro-
duced in this paper starts with a vision of the future with a more
learner-centered approach to instruction. Rather than students
learning in isolation, group-based learning is emphasized. Stu-
dents who previously were disenfranchised now have multiple
avenues to learn, with flexible instruction methods that can be
more closely tailored to individual learning styles. Rather than
spending the majority of their time reading books and working
through paper examples, students are exposed to and engage in
a broader range of learning activities. The learning activities
take the form of realistic practice of the phenomenon (if not in
a real setting, then in a realistic simulation of the setting). For
example, virtual instruments (e.g., computer-based tutoring
systems) provide a meaningful context in which to learn
operational procedures. Computers are used to actively engage
students, rather than being just another passive information
resource. Technologies enable a wider community to develop,
providing learners with more opportunities to collaborate
and interact with peers, students, and experts. Providing
mechanisms to support communication between students en-
genders an environment where students have opportunities for
peer-to-peer learning as well as apprenticeship learning with a
“more capable peer” [59]. This increases a student’s access to
different types of instructional resources. Finally, teachers can
use this same technology to collaborate with other teachers,
learning from each other and even collaboratively developing
curricula.

A wide range of issues must be addressed in building a
learning collaboratory, including cognitive systems engineering
issues in analyzing a work domain (i.e., “the [goals, resources,
and constraints] within which the work takes place” [43, p. 28]),
pedagogical issues in supporting effective distance learning
through realistic experiences, distributed computing issues in
managing data and processes in a heterogeneous computing
environment, and methodological issues in designing and
evaluating a learning collaboratory. This paper addresses these
issues in a proposed conceptual framework, LUCIDIFY. This
conceptual framework is used to design a software system
that is a learning collaboratory for the physical sciences,
the collaborative learning for operational systems (CLEOS).
CLEOS is a distributed collaborative software application
for teaching the procedures and theory of physical science
experiments. As such, it provides a virtual environment where
nonco-located learners can gather to learn about spectroscopy
and X-Ray diffraction via two collaborative computer-based

202 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

tutorial systems (the collaborative virtual spectrometer (CVS)
and the virtual X-ray diffractometer (VXRD). Project-based
and collaborative learning is supported via the collaborative
tutorials and a learning project management application (the
tool for organizing and supervising projects (TOSP), where
groups track progress of their projects and teachers collaborate
to create projects. Students working individually with a tutoring
system may interact with experts via an asynchronous mes-
saging system (the Question Board [QB]). Students working
together in groups synchronously use the tutoring systems,
real-time discussion capabilities, and the QB to communicate.

III. L EARNING COLLABORATORY DESIGNFRAMEWORK

The use of Collaboratories to facilitate learning via heteroge-
neous, distributed knowledge networks was first proposed at a
National Science Foundation workshop in 1989, then later pro-
moted in a policy statement by the National Research Council in
1993 [33]. The term “Collaboratory” (i.e., Collaborative Labo-
ratory) is used to describe a new kind of virtual environment, and
is defined as “a tightly coupled knowledge network supported
by advanced internet-based, computing and collaboration tech-
nologies. These technologies typically include digital libraries,
synchronous and asynchronous collaboration tools, and on-line
instrumentation including remote sensing, modeling and simu-
lation, and data analysis tools” [33].

Other definitions abound [55], [39], [22]; they have in
common the idea that technology can be used to mediate
communication of nonco-located colleagues in an environ-
ment dedicated to a specific group, topic, or research area.
Technology and software applications allow participants to
collaborate and share access to information, instrumentation,
and colleagues. Early examples of successful collaborato-
ries include the Upper Atmospheric Research Collaboratory
(UARC) [55], the Learning Through Collaborative Visual-
ization (CoVis) Project [11], the Environmental Molecular
Sciences Collaboratory [47], the International Personality Item
Pool [25], TANGO [56], Keck Observatory Collaboratory
[36], and the Collaboratory for Microscopic Digital Anatomy
(CDMA) [25].

LUCIDIFY is a framework for design that combines methods
to structure domain knowledge, represent navigational strate-
gies, characterize expertise, and support collaborative learning
and work. The framework, represented in Fig. 1, is a collection
of methods and procedures that can be used to guide a princi-
pled design.

LUCIDIFY represents a generic set of guidelines to be used
when designing a learning collaboratory. The bottommost level,
Domain Knowledge, of Fig. 1, refers to a structured representa-
tion of “what to teach”. This representation provides a basis for
making knowledge inspectable and sharable. Learning can be
accomplished in a virtual environment by situating the problem
solving or learning experience in a realistic simulation of the
domain, and thus an articulated domain model is a key com-
ponent for the proposed design framework. The work domain
can be represented via an abstraction hierarchy [42], [43], [57].
Problem-solving strategies can be represented as navigational
strategies through the user’s conception of the work domain.

Fig. 1. Learning Collaboratory Design Framework.

The next level of Fig. 1, Characterization of Expertise, refers
to characterizing the capabilities of the learner by understanding
the expertise levels of the learners in order to support their stage
in the learning. Multi-stage expertise models can be used to
model the capabilities of users. Bloom’s taxonomy is an ex-
ample of a model of learner behaviors. By modeling both learner
capabilities and behaviors, developers of a learning collabo-
ratory can explicitly design applications that support users at
multiple levels of expertise with support for multiple types of
learning behavior.

The third layer of Fig. 1, Pedagogical Strategies, refers to
which pedagogical strategies will be supported in the learning
collaboratory design. Since a learning collaboratory is by its na-
ture a distributed collaborative system, consideration of collabo-
rative learning pedagogies play an important role in determining
how to teach a wide range of students in a virtual environment.
Apprenticeship Learning and Cooperative Learning are but two
examples of the host of collaborative learning strategies that that
the collaboratory developer may what to consider.

Finally, the topmost layer of Fig. 1, Collaboration Support,
refers to the developer’s task of supporting collaboration in a
distributed learning environment. Since collaboration is so im-
portant in how students are taught, multiple forms of collabora-
tion are included in the design of the collaboratory: synchronous
collaboration for real-time (simultaneous) interaction and asyn-
chronous collaboration for collaboration that takes place at dif-
ferent times.

Note that the learning collaboratory is explicitly designed for
a heterogeneous user population, including students, teachers,
and experts (hence the different stick figures atop Fig. 1). The
learning collaboratory design should account for all classes
of users (not just students) and support teacher activities,
encourage experts to interact with the community, as well as
support the targeted student population.

LUCIDIFY maps out the high-level issues that must be ad-
dressed when designing any learning collaboratory. To sum-
marize, the approach taken in this work rests on four concep-
tual areas: 1) mapping the domain of practice in a structured

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 203

way, with explicit consideration of strategies of domain under-
standing; 2) characterization of capabilities of the learner; 3)
pedagogical support for situated practice in an realistic domain;
and 4) collaboration as a mechanism for effective learning and
work. Situated collaborative learning in an environment of real-
istic practice is the goal of a design based on this framework.

A. Domain Knowledge

Many factors must be considered when designing a collab-
orative learning environment. High level goals of the learning
environment, general functions the environment is to support,
a characterization of the user community, and a pedagogy of
learning. Domain knowledge is a critical component of educa-
tional technologies; an explicit representation of “what to teach”
provides a basis for making knowledge inspectable and sharable
in a collaborative learning environment. Thus modeling of the
domain at many levels of abstraction is a key component for the
proposed design framework. One well-developed framework for
modeling domain knowledge at multiple levels of abstraction is
theabstraction hierarchy[42], [43], [57].

The abstraction hierarchy (AH) is used to represent the
means-end (causal) structure of the domain of practice. The
abstraction hierarchy provides a rich representation of the work
domain at multiple levels of abstractions and is ideally suited
to map the domain’s goals, values and priorities, functions,
activities, and resources in a meaningful way. An AH typically
has five “levels” (or rows of elements), where each level
represents an entire description of the system at one level of
abstraction [45].

1) Functional purposesare the goals, across the work do-
main, of interest to anyone with a stake in the organiza-
tion.

2) Value and priority measuresindicate how well the func-
tional purposes are served by the purpose-related func-
tions.

3) Purpose-related functionsare the “general” functions of
the work domain that are carried out in order to achieve
the functional purposes.

4) Object-related functionsdescribe the activities and pro-
cesses that use the physical objects to achieve the pur-
pose-related functions.

5) Physical objectsare the resources or physical objects of
the domain.

One critical feature of an abstraction hierarchy is that ele-
ments at different levels are linked by causal (means–end) re-
lationships. Properties at one level satisfy the functions at the
level above and provide the reasons for the functions at the
level immediately below. The links between the elements of
different levels represent the relationship of the connected el-
ements. When considering an element at one level, connections
upward answer the question “why” and connections downward
answer the question “how.” The AH itself provides a useful
metric of completeness of description in that each component
must have connections in both directions.

Typically, the AH has been used to describe simulations of
specific engineering systems (i.e., [5], [44], [58]). Rather than
describing work domains, the typical use of AH has been to de-

scribe “isolated engineered instantiations and their “local” pro-
duction goals under which these systems are operating within
their respective work domains.” ([45, p. 1]). The AH is more
than a systems analysis tool for literal physical systems; it is
a tool to model the work domain in which the system was de-
signed to operate. Rasmussen defines a work domain as “the
landscape within which the work takes place.” ([43, p. 28])

There are several types of knowledge that need to be captured
and modeled: the work domain of the particular discipline (i.e.,
“what to teach” in NMR spectroscopy, for example), the work
domain of instruction (i.e., “how to support effective learning”
where high level goals involve teaching and instruction), and
the more traditional work domain of the systems developer (i.e.,
“what to design”). The abstraction hierarchy can be seen as a
conceptual representation of a domain of knowledge.

In addition to learning the structure of the domain, it is im-
portant for learners to learn how to solve problems as they “nav-
igate” their knowledge of the domain. Traditionally, descrip-
tions ofnavigational knowledgestages are used to explain how
people learn to navigate in a geographical domain. In this work,
the idea of “navigational knowledge” is used as a metaphor
for expertise, i.e., the ability of a student to learn to navigate
through a conceptual domain of knowledge. Thus the metaphor
employed is stages in which someone may learn to navigate
their conceptual representation (map) of the domain. Each stage
can be considered a phase of learning [3] and a characterization
of current knowledge. Thorndyke [51] identifies three types of
navigation knowledge [61].

1) Landmark Knowledge: orientation exclusively via highly
salient visual landmarks. This provides a skeletal frame of
reference around which the following phases of learning
are built upon. The analogy here is that a novice or ap-
prentice learner knows only a few facts and enough con-
nections between them to effectively solve problems.

2) Route Knowledge: understanding is characterized by the
ability to navigate from one location to another. Route
knowledge, a highly egocentric frame of reference, is
based on recognition of visual features, and categorical
statements of action. The analogy here is that moderately
skilled learners are able to follow certain routes or
strategies when solving problems, but quickly “lose their
way” when the problem changes in unexpected ways.

3) Survey Knowledge: knowledge resides in an internalized
“cognitive map” [52], as an analog to a true physical map.
Survey knowledge is a world-based frame of reference.
The analogy here is that the learner has progressed to the
point where a conceptual map of the environment begins
to form, and further skill acquisition expands and deepens
the conceptual representation of the domain.

Learning is a process that follows a path from present knowl-
edge to the incorporation of new concepts within the existing
structure of their knowledge representation. If the goal of in-
struction is to expand the conceptual representation (e.g., in
scope, interconnections of concepts, and richness) of the learner,
then the instruction pedagogy must consider the capabilities and
strategies of the learner. In addition, the teaching of new strate-
gies to the learner may be as important as the teaching of the

204 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

concepts themselves. This interaction of knowledge of the struc-
ture of the domain knowledge with the learner’s strategies of
action form the basis of a characterization of the user’s capabil-
ities within the domain of practice.

B. Characterization of Expertise

Modeling of the domain at many levels of abstraction and the
identification of problem solving strategies are key components
for the proposed design framework, considering the hypothe-
sized ways in which expertise develops, i.e., from low level de-
tails to greater levels of abstractions. A property of expertise is
the use of abstract representations of the domain, rather than de-
tailed or low-level representations [62].

When studying how a learner migrates from novice to ex-
pert, an effective representation of expertise is necessary. Many
researchers have created models of expertise [38], [19], [21]
that describe the characteristics of experts [48], [62], [41] and
novices [38] as well as their problem-solving strategies [48],
[4]. Early models of expertise focused on identifying differences
between novices and experts, without considering the stages
in between [21]. The maturation of from novice to expert in-
volves shifts in domain knowledge, problem-solving strategies,
and levels of abstraction.

Thus the evolution of expertise can be framed in terms of
a description of the person’s conceptual representation of the
domain and their strategies for action. Different levels of com-
petence may require different pedagogical support. The devel-
opment of the novice participant into an expert is a process
that goes through many stages. A guiding principle of the LU-
CIDIFY approach is to scaffold the development process by pro-
viding flexible instructional support at every level of expertise.

C. Pedagogical Strategies

Pedagogical strategies (i.e., strategies of instruction) are
based on theories of learning. Examples of learning theories
that are collaborative in nature include situated action theory,
apprenticeship learning, problem-based learning, and cooper-
ative learning.Situated action theory emphasizes the local
management of activity as mediated by relevant environmental
cues [50], [1]. The implications for learning are that appro-
priate actions are generated from a recognition of appropriate
opportunities given the context.Apprenticeship learning is
a means through which situated learning can occur, where
apprentices are active participants in an activity, usually with
an expert. Apprentices’ process of learning moves from pe-
ripheral to full participation in the activities of a community of
practice, as the expert “fades” from engagement of the activity.
Problem-based learning is an example of a collaborative,
learner-directed method of instruction where a small team of
students, together with a tutor or coach, learn in the process of
working through a problem [37].Cooperative learning is a
more general strategy in which students work together toward
similar goals. Cooperative learning views learning as a process
of active construction of knowledge, and that process can be
facilitated by social interaction. Cooperative learning tends to
happen naturally when students have face-to-face interactions,
such as learning that occurs around a table in a student study
group. Social skills themselves should be nurtured and explic-

itly monitored by the teacher. The teacher’s role is to act as
a monitor of group interactions and to provide students with
suggestions on social skills. The students themselves are also
responsible for monitoring and evaluating their own progress
in both the academic and social processes within the group [29]
(as cited in [30], also see [49]).

A related alternative view of instruction is organized around
Bloom’s Taxonomy of cognitive learning [6]. Learning is
demonstrated by knowledge recall and the intellectual skills
of comprehending information, organizing ideas, analyzing
and synthesizing data, applying knowledge, choosing among
alternatives in problem-solving, and evaluating ideas or actions.

D. Collaboration Support

Collaboration, especially in support of learning, is a defining
aspect of the design framework. Technology to facilitate
communication is a vital part of enabling a community of
learners to grow within the virtual environment. Apprenticeship
learning emphasizes the interaction between expert and learner
as the fundamental building block of the learning process. Thus
collaboration, cooperation, and communication between expert
and apprentice is important. Collaborative learning, for instance
teams of students working together on a project, is another
explicit design goal. Cooperative learning emphasizes the ben-
efits of face-to-face interaction between students. In a virtual
environment, face-to-face interaction is usually not possible,
and is replaced by computer-mediated communication. Thus it
is important to identify what aspects of face-to-face interaction
support group learning and design a system to support those
aspects.

Collaboration can take many forms, and require various
technologies in their support. Learners can collaborate synchro-
nously or asynchronously. They can collaborate by engaging
in the same activity, or they can each work on interacting
but separate activities in pursuit of a larger goal. They can
share equipment, or coordinate their use of separate tools. The
approach outlined here makes every attempt to provide an
environment where participants can learn while engaging in
meaningful activities in an realistically represented domain.
Situating learning activities in authentically simulated practice
grounds much of the instructional practice.

E. Iterative Design Processes

A wide range of issues must be addressed in building a
learning collaboratory, including cognitive systems engineering
issues in analyzing a work domain, pedagogical issues in
supporting effective distance learning in an realistic manner,
distributed computing issues in managing data and processes in
a heterogeneous computing environment, and methodological
issues in designing and evaluating a learning collaboratory. LU-
CIDIFY gives structure to the design process by giving explicit
consideration to these areas of design, and suggesting modeling
tools to address these issues. Associated with LUCIDIFY are
a series of human-centered design processes that have proven
effective in the process of designing a learning collaboratory.

The principle philosophy driving the design approach is the
notion that the needs of the community and the tasks they per-
form are of paramount importance. Thus, the users who are and

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 205

will be performing the tasks are the greatest source of informa-
tion and understanding of the tasks themselves. Consequently,
in the early stages of development effort, much of the focus is on
constructing an understanding of the requirements of the tasks
and the community. Developing models of the organization via
the abstraction hierarchy is part of this process. The elements of
the organization are identified and codified as a set of objects in
the object-oriented modeling approach. Activities within the do-
main of practice are identified, and models of system use are de-
veloped. All of this is done with as much input as possible from
the potential users of the design, for example learning commu-
nity members such as teachers, students, and experts. Thus there
is a heavy task focus to the participatory design [40] aspects
of the design process. Models of user activities (encapsulated
use scenarios) and functions (captured by the AH), are created,
which in turn helps drive the development of software applica-
tions to support practice. Rapid prototyping [40], with formative
evaluations [53] as an integral part of the iterative process, helps
to further develop robust models of use. The scenario-driven de-
sign approach [7] helps operationalize what is learned about the
activities of the community in the form of technological soft-
ware applications to support that activity.

IV. A PPLICATION OFLUCIDIFY TO THE DESIGN OFCLEOS

’The design framework described in Section III has been ap-
plied toward the design and implementation of educational tech-
nical interventions such as tutorial software, educational collab-
oratories, and systems that foster organizational learning. This
section introduces CLEOS, an implemented learning collabo-
ratory whose design and implementation was based on LU-
CIDIFY. This section describes the system scope, design goals,
and the design process of CLEOS.

A. System Definition

As a testbed for the design framework, CLEOS has been
developed. CLEOS is a virtual environment that endeavors to
build and nurture a community of learners separated by time
and space. As a learning collaboratory, its educational focus
is teaching students the theory and practice of experiments
in the physical sciences. Specifically, CLEOS supports the
teaching of the underlying theory and operational procedures
of experiments in NMR Spectroscopy and X-Ray Diffraction.
Student learners in the collaboratory will find two tutoring
systems: an NMR spectroscopy tutoring system (CVS), and
an X-Ray Diffraction tutoring system (VXRD). Instructors in
the collaboratory will find a software application to support
project-based learning via a project management tool tool to
organize and supervise projects (TOSP) that helps instructors
create and manage multiple student projects. All collaboratory
participants will find an asynchronous communication mes-
saging system (QB) to help experts, instructors, and learners
ask and answer questions posed to the community, as well as
software applications to support communication and access to
information. These software applications are developed with
the explicit goal of supporting a wide range of potential users
of the system, including practitioners, teachers, students, and
researchers. It is a distributed system, so users of CLEOS

Fig. 2. A use scenario for CLEOS.

are geographically dispersed, making use of local computing
resources and the Internet to connect to CLEOS and interact
with other nonco-located community members.

B. Design Goals

The overarching goal of the design of CLEOS is to create
an effective virtual learning community. Software applications
within CLEOS will support mutually beneficial interactions be-
tween all members of the learning community, including prac-
titioners, instructors, learners, and researchers. There are three
principle types of design goals in the development of CLEOS:
educational, methodological, and technical.

From an educational standpoint, the goal of the design is to
create a virtual learning community centered around CLEOS.
A distributed, collaborative educational learning environment
such as CLEOS can provide a wide range of students with in-
creased instructional facilities and learning opportunities that
are significantly different than the traditional teacher-centered
lecture format. A learning collaboratory, with its emphasis on
collaboration among learners engaged in authentically simu-
lated experience, shifts the emphasis of learning from teacher-
centered (passive) to learner-centered (active participation by
the learner). Fig. 2 describes a scenario that illustrates the scope
of CLEOS by describing a typical interaction between commu-
nity members collaborating on an experiment together.

The challenge is to design distance learning technolo-
gies that engender meaningful learning experiences that do
not just mimic existing teacher-centered learning practices,
but take full advantage of the power of computer-mediated
communication to support innovative learner-centered and
collaborative interactions between students, teachers, subject
experts, and resources. Thus a learning collaboratory can be a
useful augment to traditional teaching methods. In addition,
the support of learning does not stop with support of student
activities. Software applications within CLEOS will also
support instructor activities as they develop teaching materials
for the learners in the community.

From a methodological viewpoint, the goal of the design of
CLEOS, and its constituent components, is to operationalize
concepts and techniques within LUCIDIFY, upon which the de-
sign is based.

It became clear early in the project that the success of any
software developed would depend on the currency of the data
within the system. In order to facilitate adoption of the software
applications, the developers felt that users efforts in working
with the system should be rewarded in kind with benefit to their
work [24]. Thus an explicit design goal emerged indicating that

206 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

Fig. 3. Initial abstraction hierarchy for CLEOS.

a user who needed to input and maintain information should
realize a concomitant benefit in doing so.

Finally, from a technical standpoint, the goal of the design
of CLEOS is to build an extensible software system that allows
users to adapt their environment in a way that best supports the
work on which they are collaborating. In addition, the software
components of CLEOS should be extensible from a programmer
point of view such that the software infrastructure can grow to
meet the needs of a changing user community and expand to
provide more functionality to the users as the community ma-
tures.

C. Design Process

LUCIDIFY was used to guide the design of the component
systems and overall architecture of CLEOS. An initial AH in
Fig. 3, describes the pedagogical, collaborative, and social work
domain of CLEOS.

There are several stakeholders who goals, values, and activ-
ities are represented in the AH. These stakeholders include the
some obvious and some not so obvious ones.

• Instructors—people who populate the environment with
educational material, facilitate learning, and guide a lot of
the learner activity,

• Learners—users who come to learn about NMR spec-
troscopy and X-Ray diffraction, and

• Experts—people who act as resources to expert knowl-
edge, and who answer questions.

• Educational Researchers—CLEOS is after all a testbed
for researching learning and collaboration in a distributed
computing environment,

• Software Developers—who are responsible for designing
and implementing the original system, as well as continu-
ously extending the functionality, scope, and capabilities
of the system as the community matures, and

• Hosting Organization—which must gain enough of sense
of success to justify continued hosting of the learning en-
vironment.

The functional purposes level of the AH describes the goals
shared by all stakeholders of CLEOS. Varied priorities and
values of stakeholders are represented at the Value of Priorities
level of the AH. It is these values and priorities that the stake-
holders use to judge the success or failure of reaching their
goals. The Purpose-Related Functions of the AH encapsulate
the general functions that will be used to satisfy the Functional
Purposes, subject to the values and priorities used as metrics.
It is here, in the case of CLEOS, drivers toward specific peda-
gogical strategies are captured. The Object-Related Functions
detail the activities that CLEOS will support in order to realize
the Purpose-Related Functions. The bottom-most level, the
Physical Objects, of the AH in Fig. 3 is underspecified due
to space constraints. The elements to be found in this level
should really be the specific features within the applications
(objects) that comprise CLEOS. Thus when it is asked how will
CLEOS support learning through expert demonstrations (an
Object-Related Function), the answer is the “Observe Expert”
feature of the tutoring applications of CVS and VXRD.

It is through careful articulation of the AH in Fig. 3 that the
features, instructional pedagogies, and collaboration aspects of
the elements of CLEOS are designed in a principled way. Gaps
in the AH (missing links in either direction) identify gaps in
CLEOS’s ability to realize the stated functional purposes, and
leads the developer to revise and iterate the design. As more is

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 207

learned, as the community matures, and as CLEOS is expanded,
the AH will be modified as well to track the evolution of the
work domain.

Abstraction hierarchies are typically characterized by five
levels of abstraction. Often, a second dimension, a part–whole
decomposition, is modeled. The abstraction hierarchy in Fig. 3
does have a second dimension, but rather than a part-whole
decomposition, it is a characterization of three “categories”
within the AH. The categories are: community, instruction, and
collaboration. In some sense, one could draw three separate
AHs, one for each category. However, during the course of the
design and development of CLEOS, it became clear just how
inter-dependent these three categories were as part of the de-
sign. The elements at the abstraction levels within any category
are highly linked, yet there are strong links connecting elements
of one category to the elements at another abstraction level of
another category. Community impacts instruction by providing
a learning environment and functions that support learning.
Clearly, collaboration has a strong impact on instructional and
community functions.

The interweaving of community, instruction, and collabora-
tion directly impacts the design of CLEOS. Each instructional
software application (CVS, VXRD, QB, and TOSP) has use
models that include stand-alone and collaborative modes. It
is important to consider these use-models in the context of a
community of learners, and design the interactions between the
people, software applications, and environment to support the
overall design goals of CLEOS. The next section details the
architecture and software components of CLEOS.

V. CLEOS: DESCRIPTION

This section describes the system architecture of CLEOS,
based on a multi-user domain (MUD) that facilitates a sense of
presence between community members, as well as serving as
the communications infrastructure of the learning collaboratory.
CLEOS, as a learning collaboratory dedicated to the teaching of
NMR spectroscopy and X-Ray diffraction.

A. System Architecture

CLEOS is a virtual learning environment. The user inter-
acts with a virtual “space,” navigating rooms and interacting
with other users. Within the environment, users will find soft-
ware tutorial applications that allow for multiple users to op-
erate the same tutorial. Fig. 4 illustrates the system architecture
of CLEOS as a set of functional layers.

The topmost layer in Fig. 4 are the users within CLEOS, a
diverse collection from students to teachers to experts in the
field.

The Application Layer is a set of applications with which
the users can interact. These applications are the software tools
within CLEOS that support learning. Currently, there are four
applications: two virtual instrument tutorials, the CVS and
VXRD; an asynchronous messaging system, the QB; and a
project-management application, the TOSP.

The User Interface Level is the graphical user interface of
CLEOS itself. Users interact directly with the CLEOS Interface
to navigate within the virtual environment, to communicate in

Fig. 4. System architecture of CLEOS.

real-time with other users, and to launch the applications de-
scribed in the Application Layer.

The Communication Infrastructure Layer is the heart of the
CLEOS system. The infrastructure is based on MudSpot, a
MUD that is responsible for managing the spatial environment,
creating servers to allow multiple users to collaborate via an
application, and managing communication between users.

Finally, the Data storage layer is the collection of databases
that serve the various applications found in the application layer.
The components of CLEOS, and the communication between
components (denoted as the arrows in Fig. 4) will be described
in more detail in the following sections.

B. Communication Infrastructure Layer

The Communication Infrastructure Layer of CLEOS
facilitates the communication between users in a virtual en-
vironment where users can collaborate with each other while
using synchronously collaborative software applications. The
client/server paradigm [20] forms the basis of synchronously
collaborative software applications. The heart of the infrastruc-
ture for CLEOS is a MUD called MudSpot. This section will
briefly introduce MUDs in general, and then discuss MudSpot
in particular.

1) Multi-user domains:A MUD program is a shared virtual
environment that enables multiple people to interact and com-
municate synchronously [12], [13]. Usually, such environments
are Internet-accessible with text-mediated communication. A
user of a MUD controls a character, and he or she defines the
characteristics (or description) of that character. To the user, a
MUD looks like a series of rooms connected by exits. People
and places (rooms) have descriptions, usually in the form of text.
It is through these descriptions that the environment takes on a
distinctive characteristic, which serves as the backdrop for the
interactions between people. Communication is mediated by a
series of commands that allow users to speak to each other, or
to perform certain actions. These actions range from “saying”
something, to “grinning,” to navigating between rooms.

An extension of MUDs are MUD object-oriented (MOOs)
[12], [54] that allow users to create rooms, exits, things (ob-
jects), and verbs. In MOOs, the users are also the programmers
of the environment, in a more direct way than with MUDs. MOO
users augment and increase the functionality of the virtual space,

208 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

and thus MOOs are constructed social spaces that undergo a dy-
namic process of continual evolution [54].

MUDs and MOOs have been created and used for social
interaction, play, and increasingly, for education. What is it
about MOOs that make them appealing for education? Dis-
tance learning situations are characterized by a “class” where
teachers and students are isolated and instruction involves
simply watching teachers on TV screens. The ability to bring
the “class” together where they can interact synchronously
allows students to become active rather than passive members
of the class. Students can gather in a virtual environment and
interact in real time with their teachers and each other. Peer
collaboration and an active learning environment can foster
learning the subject manner, and also build useful team-building
and collaboration skills. Additionally, rather than receiving
class material through the mail, the possibility exists to inte-
grate the educational material into the virtual environment.
Students can download materials as needed, whenever needed.
Finally, virtual environments for learning make it possible for
students from a wide array of physical locations to meet with
highly qualified teachers [2].

2) MudSpot: MudSpot is an extensible MUD that forms
the infrastructure of CLEOS. It is through MudSpot that users
communicate and work together on tutorial and other software
tools. MudSpot is an extension of Flanagan’s JavaMUD [23].
The key enrichment that MudSpot provides its users is the
ability to dynamically expand the virtual environment by
adding rooms, things, and software applications. It is the
ability to run collaborative software applications from within
the environment that makes MudSpot a virtual environment
for collaborative work. MudSpot provides explicit support
for task collaboration through task-defined workrooms and
classrooms that mediate the interaction between users [28]. In
fact, MudSpot renders a shift of its occupants fromusers to
collaborators.

MudSpot, like most MUDs, consists of “people,” “places,”
and “things.” Particular to MudSpot is the idea of specific room
types. Some of the “things” within MudSpot are collaborative
software applications, specifically dedicated servers for col-
laborative software that allow two or more client applications
to synchronize. In Fig. 4, two users each have started running
their own versions of the CVS (tutorial) Application. These
two applications are both hooked up to a single CVS server
within MudSpot (the users are in the same “virtual room”
within CLEOS) and so whenever one user modifies something
on the CVS Application, the other user’s CVS application is
immediately updated, via the Server, to reflect the change.
Within MudSpot there can be many instantiations of a server,
each server dedicated to the group of users collaborating with a
software application. In addition to the objects within MudSpot,
the user has the ability to perform certain actions. The user can,
for instance, speak to others in the room, or can launch client
applications (software).

MudSpot is a shared environment that consists of several
types of rooms. The type of room defines what sort of activities
occur there, and what sort of software applications (generally
collaborative) are available for use. In addition to a generic
room, there are two specialized rooms currently available in

MudSpot. Aworkroom is envisioned as a place where users
meet to collaborate on some task. The type of task will most
probably depend on the types of software applications that are
available in that room. Aclassroomis an area where students
work together on some learning activity. Users of MudSpot
have the ability to create any of these types of rooms as they
wish, as well as creating exits from one room to another.
Interestingly, the network of exits between rooms may be such
that no two dimensional maps of the virtual space can be drawn.

3) An Extensible Environment:A key feature of MudSpot
is its extensibility. There are really two fundamentally different
types of extensibility MudSpot has to offer: 1) user extensibility
and 2) programmer extensibility.

User extensibility is the type of extensibility afforded by
MUD/MOO environments. Users can add rooms at will, naming
and describing them as they wish. The richness of the resulting
environment is a testament to the personal creativity invested
into it by the users as they create their work environment.

Programmer extensibility is a result of the way MudSpot
was designed. It has been programmed in such a way that it is
relatively straightforward to customize and extend its capabil-
ities. User commands can be added. Different room types can
be added. Most importantly, it is straightforward to add col-
laborative software applications directly into MudSpot. In ad-
dition, there are software hooks to allow external programs to
be launched from within MudSpot. CVS, TOSP, VXRD, and
the QB are examples of programs written independently from
MudSpot, and yet with a minimum of overhead, incorporated
into the environment. The applications found in CLEOS is the
subject of the next section.

C. Applications Layer

CLEOS is a virtual learning environment containing software
applications to enhance learning. Students can find software
tutorial applications to teach NMR spectroscopy (CVS)
and VXRD. Teachers and students can create and modify
project-based learning modules via TOSP. Finally, students can
ask and answer questions via the QB.

1) Collaborative Virtual Spectrometer:The CVS [16], illus-
trated in Fig. 5, represents a computer-based instructional tutor
to educate students on the procedures involved in conducting a
basic, generalized NMR spectroscopy experiment. As a poten-
tial component of a learning collaboratory, CVS was designed
with explicit consideration of collaboration. In keeping with the
design criteria in LUCIDIFY, several models of synchronous
and asynchronous collaboration are supported. The CVS tuto-
rial is designed to be used in three ways: 1) as a stand-alone
tutorial system that works one-on-one with a student user; 2) in
an asynchronous collaborative effort via the QB;and 3) and as a
software application that can be synchronously shared by mul-
tiple students working on different machines, where each user’s
copy of CVS is synchronized with the others in real-time.

The CVS Tutorial was developed under LUCIDIFY and thus
its design explicitly support the pedagogical strategies of ap-
prenticeship-style instruction and exploratory learning. Support
for active contextualized learning [26] lends itself well for the
teaching of procedural knowledge and operational skills [9].

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 209

Fig. 5. Collaborative virtual spectrometer.

Vygotskian theories of learning stress that individuals gain skills
by engaging in tasks with an “adult or more capable peer” [59].
In general, four overlapping stages of pedagogy can be identi-
fied [10]: (1) Modeling, through the observation of expert per-
formances, (2) Coaching, with expert guidance and help, (3)
Fading, where expert assistance is gradually withdrawn, and (4)
Reflecting, student self-monitoring and reflecting upon past per-
formances. The role of the expert is to provide appropriate “scaf-
folding” for the student apprentice.

There are two major modes of instruction in CVS: 1) “observe
expert” and 2) “act as an apprentice”. Additionally, tools for ex-
ploration and reflection exist as options to explore related the-
oretical concepts and ask “what if” questions [31]. The “more
info” option present the student with a context-relevant list of
theoretical concepts (“What is this and why is it important?”)
and hypothetical situations (“What if ?”). The “Let Me Try”
option provides guidance via a checklist of procedures related
to the current context. The “Show Me” option allows students
to return to the demonstration mode of “Observe Expert” of the
particular lesson. Fig. 5 illustrates the CVS in “Act as Appren-
tice” mode.

The typical user of the CVS tutorial would be an under-
graduate college student with little or no expertise in NMR
spectroscopy, but with a grasp of basic science, chemistry and
physics. It is the goal of the software to guide the development
of expertise in both the theory of NMR spectroscopy and the
operational procedures involved in conducting a spectroscopy
experiment. The goal of CVS is to raise the user’s level of
expertise to the point where he or she is competent enough to
run an experiment on actual machinery (which is expensive and
therefore requires that only trained experimenters are allowed
to use it). The design of CVS is based on the Collaborative
Apprenticeship Learning Object Toolkit, a library of Java
objects for the building of collaborative tutorial software. A
detailed discussion of CALOT and the design of CVS is beyond
the scope of this paper, and the reader is referred to [18] and
[17] respectively.

Fig. 6. Virtual X-Ray Diffractometer.

2) Virtual X-Ray Diffractometer:The VXRD, illustrated
in Fig. 6, represents a computer-based instructional tutor to
educate students on the theory and procedures involved in
conducting a basic generalized X-ray diffraction experiment.
VXRD, like CVS, is a CALOT-based system [18] designed
under guidance of LUCIDIFY, and so it supports two modes
of instruction, “Observe Expert” and “Act as an Apprentice.”
VXRD can be used in the same ways that CVS is used.

3) The Question Board:One of the key goals of LUCIDIFY
is to support asynchronous collaboration to enable collaborative
learning. Thus a central goal in the development of the CVS and
the VXRD is to use its web-based technology to create mecha-
nisms for collaborative learning software applications. The QB,
illustrated in Fig. 7, was developed in order to provide a forum
for asynchronous communication between students. The QB is
a messaging system that allows students to post messages to
a central server, which then makes all messages available for
general inspection. Students can read other student’s messages,
and reply if they wish. Through this messaging system, students
can communicate asynchronously as they hold discussions on
topics of interest, ask and answer questions, and generally in-
form and learn from each other. In this way peer-to-peer learning
is enabled. The QB d takes this concept one step further by
allowing the students to attach to their message a snapshot of
the CALOT-based tutorial system under operation. Students can
highlight, with transparent colored boxes, portions of the snap-
shot in order to draw attention to salient features germane to
their question or comment. Thus, students have a common ob-
ject which they can annotate and share in the course of a discus-
sion.

The QB is designed to be used in two ways: 1) in an asyn-
chronous collaborative effort during the operation of a CALOT-
based tutorial, and 2) and as a tool to inspect an archive of sub-
ject- specific communication within CLEOS. The QB acts as
a simple mechanism to help students contact each other and
communicate about their common task: working through the tu-
torial. This form of loose collaboration facilitates peer-to-peer

210 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

Fig. 7. Question Board.

learning while still placing most of the responsibility of working
through the tutorial on the individual student.

In the context of CLEOS, the QB can also be used as a sepa-
rate program. All the various forms of the QB (embedded in tu-
torials like CVS or VXRD, and stand-alone versions) are served
through the same database, and so all comments and questions
are inspectable. Thus the QB provides some initial simple mech-
anisms for asynchronous collaborative learning, including an
“organizational memory” of comments from previous students,
educators, and others, such as bulletin boards and organized an-
notations.

4) Tool for Organizing and Supervising Projects:TOSP, il-
lustrated in Fig. 8, is a project management and organizational
information software application built upon the SPOT software
libraries [27]. The SPOT libraries model the components of a re-
search organization as a series of objects, e.g., projects, people,
events, skills, activities, roles, deliverables. TOSP builds upon
these descriptions an environment where these objects can be
visualized, manipulated, and edited. The stand-alone version of
TOSP allows the user to work with the data in the database.
TOSP can also be used as a distributed, synchronously collab-
orative tool. Additionally, different sets of users can use TOSP:
instructors can collaborate while designing a project, student
teams can collaborate as they work through a project, and others
can inspect the activities and progress of projects.

D. User Interface Layer

The graphical user interface (GUI), illustrated in Fig. 9, is or-
ganized in such a way as to reflect the multiple perspectives and
roles a user plays within the CLEOS community, as identified
in the abstraction hierarchy in Fig. 3. The GUI presents three
windows: 1) Community Information, 2) Discussion Area, and
3) Toolbar.

Fig. 8. Tool for Organizing and Supervising Projects.

Fig. 9. CLEOS graphical user interface.

The community information window depicts information
about the people, places, and things in the user’s present loca-
tion. The name of the current room, and a list of the people in
the room, is displayed. Exits, contained in a pull down menu,
are labeled with the direction and destination. Selecting an exit
will cause the user to move through it to another room. Finally,
a list of the things in the room is given. In Fig. 9, the user is in a
classroom where servers for a whiteboard, CVS and TOSP are
running. People in that room will most likely be collaborating
on one or several of the software applications in the room.

Thediscussion areais where users in a room can communi-
cate to each other. At the bottom of the area, users input their
commands. Directly above the input field is the instruction area
where, in red, the system prompts the user for specific input by
displaying instructions. Finally, the large text area displays the
running conversation. System (informational) messages are dis-
played in italics, user names (when speaking) are displayed in
bold.

TheToolbar contains buttons for each software application
that is available in CLEOS. Which software application can be
used collaboratively depends on which servers(s) are running

DORNEICH: A SYSTEM DESIGN FRAMEWORK-DRIVEN IMPLEMENTATION 211

Fig. 10. CLEOS, object-centered perspective.

in the room in which the user is currently located. The QB is
executable anywhere, since it is simply an external window into
the message database. The two tutorial software applications,
CVS and VXRD, have QBs incorporated within them as well,
and when launched from a tutorial, have the ability to take screen
captures of the tutorial interface.

The next section discusses the implementation details of
CLEOS, discussed from two stakeholder perspectives (user and
developer), and how CLEOS is designed to address issues of
community, collaboration, and instruction.

VI. CLEOS: IMPLEMENTATION

A learning collaboratory is by definition a collaborative,
distributed application. Addressing distributed computing
issues such as system partitioning, persistence, multithreading,
coordination, communication protocol, and security are vital to
the success of a learning collaboratory. The design, implemen-
tation and evaluation of a learning collaboratory depends on
distributed computing issues such as information sharing, main-
taining user identities, communication, and performance. Some
of these issues are addressed by the choice of programming
language, and in this case Java is well suited for collaborative
distributed applications. Java supports many types of network
communications, contains many classes that support filtering
and preprocessing incoming and outgoing message streams,
and supports capabilities such as distributed objects, remote
connections to database servers, and directory services. Java’s
distributed-object scheme called remote method invocation
(RMI)], provides the basic elements needed to construct a
distributed application.

A. CLEOS Architecture

CLEOS as a software system is the syntheses of all the sys-
tems described in Section IV. There are two perspectives from
which one can look at the architecture of CLEOS: 1) object-cen-
tric perspective and 2) user-perspective.

Theobject-centric perspective, illustrated in Fig. 10, is the
perspective of the collaboratory software developer. CLEOS is
composed of MudSpot, CVS, VXRD, TOSP, QB, and more.

MudSpot provides four key types of software objects:
MudSpotServer, MudSpotRoom, MudSpotClassroom, and
MudSpotPerson. The MudSpotServer keeps track of all the
rooms and all the people. Each user in CLEOS is represented by
a MudSpotPerson. Each place in CLEOS is either a MudSpot-
Room or a MudSpotClassroom. A MudSpotClassroom has in it
three servers (for applications CVS, TOSP, and VXRD), each
of which were spawned when the MudSpotClassroom was
created. These servers service any client applications that have

Fig. 11. CLEOS from a user-centered perspective.

been launched by users within that room. Each room keeps
pointers to all the MudSpotPerson(s) in it, and exits lead from
one room to another. It is by travelling through exits that users
can move from one room to another.

Theuser-perspective, illustrated in Fig. 11, is the perspective
of the user of the CLEOS system. What the users “see” is a series
of interconnected rooms. The user may encounter other people
in a room, and can chat with them directly. When in a room
with the appropriate server running, the user is able to launch
a collaborative software application that will synchronize with
others using that same application in this room. Users can access
the QB from any room. Additionally, the QB can be launched
from within a tutorial software application, and then also has the
ability to render a screen capture of the Lesson Window within
that tutorial.

B. Addressing the Issues in Distributed Computing

System partitioning is the issue of how to distribute
the system among the available computing resources [20].
CLEOS, as a highly distributable system, contains Objects
within MudSpot (e.g., MudSpotServer, MudSpotRooms, client
applications, servers) that need not run on the same computers.
CLEOS does not fit into the traditional server/client paradigm
since some objects act as both a server and a client. The system
has been successfully operated using a group of computers in
Minnesota and Illinois simultaneously.

Persistenceis the ability to save changes to data from one
session to another [20]. User initiated changes to the CLEOS
environment (e.g., the addition of a MudSpotClassroom) can
be saved for future sessions. The TOSP and QB databases are
updated with each change the user makes.

Multithreading refers to the ability to run multiple threads of
control in the same process on the same machine. Each applica-
tion, each MudSpotRoom, each server application, each client
application, runs as its own process, lessening the need for mul-
tiple threads within the process. Some software applications,
like the CLEOS interface, and the QB when used in conjunc-
tion with a tutorial system, run in their own threads.

Multiprocessing is the use of multiple computers (pro-
cessors) in a distributed application. CLEOS is inherently
distributed since multiple, nonco-located community members
each interact with the community using their own computing
resources.

Coordination is the ability of users and their associated soft-
ware applications in a system to interact to reach their goals.
How much shared state information to invest with each user,
versus how much communication between users, are some of
the dimensions in coordination. CLEOS allows for synchronous
communication between users in the same room as they “talk”

212 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 2, MARCH 2002

to each other, and thus users can work out their own ways of co-
ordinating their activities. It would be inappropriate, given the
use-model that drives CLEOS, for the system design toa priori
enforce certain modes of coordination between users.

Communication protocol is the way various system ele-
ments communicate with each other [20]. CLEOS, being an
amalgam of several different systems, has many protocols with
which to communicate (e.g., HTTP, Java Serialization, Java
RMI).

Security is always vital to the health of a collaborative dis-
tributed application. The CLEOS application itself, being a pro-
totype, has no security built into it, but has “hooks” where se-
curity checks can be implemented.

C. Addressing Issues of Collaboration

Communication needs of users are serviced in both
synchronous and asynchronous ways. Direct synchronous
communication occurs as users “talk” to each other within
a MudSpotRoom. Asynchronous task-focused discussion is
supported through the question and answer abilities of the QB.
Synchronous collaboration on tutorial software applications is
possible via the server/client paradigm that forms the basis of
the tutorial systems found in CLEOS.

User identities are maintained via the presence associated
with users and things within CLEOS. CLEOS keeps an updated
list of all the people, places, and things in a MudSpotRoom.
Each user is represented by a MudSpotPerson, complete with
name and description. All discussions are tagged with the user’s
name as they contribute to the conversation. These description
and naming features are meant to help users keep oriented with
the people, places, and things within their environment.

State information is somewhat dynamic in a system like
CLEOS. Conversations and system messages appear in a text
area, so users can follow conversations and activities. All users
in a room share the state information of that room. In the QB,
new questions are immediately posted to the database, so all
information is current. In TOSP, with its central database, all
information should be concurrent in all the TOSP applications
running.

Performance is always an issue in a system with multiple
users. If the performance is poor, users will be frustrated. As
of the writing of this paper, CLEOS runs with few noticeable
delays on a system comprising of a Sun Microsystems Sparc20
workstation (in Minnesota) and two Sun Microsystems Ultra 1
workstations (in Illinois).

VII. CONCLUSION

LUCIDIFY is a framework for the design of a learning
collaboratory. The challenge to the developer of such a learning
collaboratory is to understand the domain, the user community,
how to best support learning in this environment, how to best
support user interactions, and how to provide enough value for
all users. The design framework LUCIDIFY suggests modeling
techniques and design considerations that guide the learning
collaboratory developer address the many challenges in the
process of creating a virtual learning environment and nurturing
a user community. This framework includes consideration of

the domain, the user profile, the learning pedagogies employed,
and explicit consideration of the type of collaboration tech-
nologies required. In addition, this paper has demonstrated the
use of LUCIDIFY in the design and implementation of the
CLEOS. The design of CLEOS can serve as an example of how
collaborative, distributed computing technology can be used to
support learning in a distributed environment.

ACKNOWLEDGMENT

The author would like to thank the following people for their
contributions to this work: P. Jones, J. Jacobs, B. O’Keefe, M.
Twidale, and P. DeLisle. The author would also like to thank C.
Hayes, S. Whitlow, D. V. Reising, and the anonymous reviewers
for their thorough and extremely helpful comments on the man-
uscript.

REFERENCES

[1] P. E. Agre and D. Chapman, “Pengi: An implementation of a theory of
activity,” in Proc. AAAI’87, Seattle, WA, 1987, pp. 268–272.

[2] (1998) Why Use a MOO for Education?. Athena Univ.. [Online]. Avail-
able: [Online] Available: http://www.athena.edu/campus/moo.html

[3] J. R. Anderson,Cognitive Psychology. New York: Academic, 1979.
[4] , Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum, 1993.
[5] A. M. Bisantz and K. J. Vicente, “Making the abstraction hierarchy con-

crete,”Int. J. Hum.-Comp. Stud., vol. 40, no. 1, pp. 83–117, 1994.
[6] B. Bloom, Taxonomy of Educational Objectives Book 1 Cognitive Do-

main. New York: Longmans, Green, 1956.
[7] J. M. Carroll, Ed.,Scenario-Based Design: Envisioning Work and Tech-

nology in System Development. New York: Wiley, 1995.
[8] G. Chin, “Management of boundary objects in a shared information

space for a public works organization,” Ph.D. dissertation, Dept. Mech.
Ind. Eng., Univ. Illinois, Urbana, 1997.

[9] R. W. Chu, C. M. Mitchell, and P. M. Jones, “Using the operator function
model and OFMspert as the basis for an intelligent tutoring system: To-
ward a tutor/aid paradigm for operators of supervisory control systems,”
IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 1054–1075, July 1995.

[10] A. Collins, J. S. Brown, and S. E. Newman, “Cognitive apprenticeship:
Teaching the craft of reading writing, and arithmetic,” inCognition
and Instruction: Issues and Agendas, L. B. Resnik, Ed. Hillsdale, NJ:
Lawrence Erlbaum, 1987.

[11] (1997) CoVis Web Pages. Northwestern Univ., Evanston, IL. [Online].
Available: [Online] Available: http://www.covis.nwu.edu/info/covis-
info.html

[12] P. Curtis, “MUDDING: Social phenomena in text-based virtual reality,”
in Proc. Directions and Implications of Advanced Computing (DIAC-92)
Symp., Berkeley, CA, May 1992.

[13] MUD’s Grow up: Social Virtual Reality in the Real World, P. Curtis and
D. A. Nichols. (1993, May 3). [Online]. Available: [Online] Available:
ftp://ftp.lambda.moo.mud.org/pub/MOO/papers/MUDsGrowUp.txt

[14] S. J. Derry and S. P. Lajoie, “A middle camp for (un)intelligent instruc-
tional computing: An introduction,” inComputers as Cognitive Tools, S.
P. Lajoie and S. J. Derry, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1993,
pp. 1–14.

[15] L. Deter, M.S. thesis, Dept. Mech. Ind. Eng., Univ. Illinois, Urbana,
1999.

[16] M. C. Dorneich and P. M. Jones, “The UIUC virtual spectrometer: A
java-based collaborative learning environment,”J. Eng. Educ., vol. 90,
no. 4, pp. 721–728, Oct. 2001.

[17] M. C. Dorneich, “System design framework for a learning collabora-
tory,” Ph.D. thesis, Dept. Mech. Ind. Eng., Univ. Illinois, Urbana, 1999.

[18] M. C. Dorneich and P. M. Jones, “The systematic application of the ap-
prenticeship learning pedagogy to computer tutorial design,”Proc. 2000
IEEE Int. Conf. Syst., Man, Cybern., Oct. 8–11, 2000.

[19] H. L. Dreyfus and S. E. Dreyfus,Mind Over Machine. New York: New
York Free Press, 1986.

[20] J. Farley,Java Distributed Computing. Cambridge, MA: O’Reilly,
1998.

[21] C. Fiebig, “Development of Expertise in Complex Domains,” M.S.
thesis, Dept. Comp. Sci., Univ. Illinois, Urbana, 1997.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

