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The package planning (chip layout and compaction) problem can be stated in terms of an optimization
problem. The goal is to find the relative placement and shapes of the chips in a way that minimizes the
total chip area subject to linear and nonlinear constraints. The constraints arise from geometric design
rules, distance and connectivity requirements between various components, area and communication
costs and other designer-specified requirements. The problem has been addressed in various settings. It is
of unusual computational difficulty due to the nonconvexities involved. This paper presents a new
mixed-integer nonlinear programming formulation for simultaneous chip layout and two-dimensional
compaction. Global optimization algorithms are developed for this model as well as for an existing
formulation for the chip compaction problem. These algorithms are implemented with the global opti-
mization software BARON and illustrated by solving several example problems.
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1 INTRODUCTION

When designing the layout of chips in an electronic package, several issues must be
addressed. Issues such as wireability (wire routing), pin order, and package area all
introduce constraints to the overall goal of optimizing the package plan. Often,
when the design cycle is in its earliest stages, the designer is faced with an inadequate
description of the constraints. The initial layout and partitioning decisions based on
inadequate knowledge of the constraints can have expensive consequences at later
stages of the design cycle. This situation necessitates the development of a package
planner that the designer can employ to aid in assessing the consequences of choices
made in the initial stage of the design cycle.

The chip layout and compaction problem can be stated in terms of an optimiz-
ation problem. The goal is to find the arrangement of chips on a plane so that the
chip area is minimized, subject to linear and nonlinear constraints. The constraints
arise from several, often conflicting, design objectives that include issues of geomet-
ric design (chip aspect ratios, chip area, etc.), wireability (maximum wire distances,
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connectivity between chips), and other design constraints identified by the
designer. The compaction problem is a special case of the problem, obtained
once the relative position (layout) of chips has been decided. The compaction
problem arises in optimizing planar rectangular spaces, such as floor plans for
buildings, as well as for electronic planar packages.

Problems related to chip layout and compaction have been addressed in the facil-
ities location area (Love et al.'®; Mirchandani and Francis'®; Francis et al”) and
mostly in the circuit design area (Soukup®®; Otten??2%; Ciesielski and Kinnen:;
Heller er al.®; Maling et al.'”; Stockmeyer®!; Kedem and Watanabe'?; Watanabe??;
Hu and Kuh'!; Preas and Lorenzetti?®; Wolf and Dunlop3*; Hill e al.?; Lengauer!>;
Onodera et al.?'; Sutanthavibul et al*?; Bamji and Varadarajan'; Yao et al.?).
The version of the problem that is addressed here has as an objective the
minimization of the package area. The problem is of unusually high computational
difficulty due to the number and kind of constraints required. A typical problem
may have the following constraints: the chips on the perimeter of the package must
supply enough space for the package input/outputs, neighboring chips must supply
enough places on their common edge to accommodate any wiring between them, the
wiring itself must be routed in such a way as to minimize wire length (delay)
and area, and the aspect ratios of all chip areas must be within specified intervals.
The problem differs substantially from the typical “close packing of rectangular
blocks of fixed shape” problem as the dimensions of the package as well as of the
package internals (such as chip and wiring space) are only constrained, not fixed.
By casting the problem in terms of constraints, rather than fixed dimensions,
the designer has greater freedom to manipulate the internals of the package. There-
fore, the design problem is represented more accurately than in the close packing
formulation.

When formulated as an optimization model, the problem does not easily fall into
the domain of problems solved by linear or standard nonlinear programming tech-
niques. Many nonconvexities are present in the optimization formulation. This is
not surprising as even some special cases of the circuit layout and compaction
problem are NP-complete (Lengauer’*'#). Even the problem of one- or two-dimen-
sional compaction of rectangular chips of fixed dimensions is NP-complete in the
strong sense as it is equivalent to the 3-PARTITION problem (Doenhardt and
Lengauer®). As a result of its difficulty, thus far only heuristics and optimization
approaches to simplified versions of the problem have been developed for optimal
package planning. With the exception of very small problems, VLSI layout and
‘compaction is always performed in a hierarchical fashion. The package is par-
titioned into blocks and each block is laid out individually. Then placement and
routing of the overall package are addressed (e.g. Wolf and Dunlop3; Bamji and
Varadarajan'; Yao et al.>*). Most approaches focus on planar package plans. Planar
package plans are characterized by the property that a layout arrangement exists
such that no two wires on the board will cross. However, nonplanar package plans
can be planarized by the introduction of “wire macros” at the wire intersections
(Heller et al®). In an effort to obtain optimal planar package plans under the
constraints described above, Maling et al.'” developed a solution technique that is
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divided into three phases. Each phase is more tractable and can be solved using
more or less standard (convex) optimization techniques. First, the algorithm ad-
dresses the problem of package constraints by finding a large set of layouts that
satisfy the perimeter and area constraints of the chip macros. Then, the remaining
constraints are used to modify and select from this set of solutions. As the second
phase of this approach requires the solution of a nonconvex bilinear program sub-
ject to bilinear constraints, no guarantees for global optimality were offered. This
formulation i1s posed as an unsolved problem in a recent collection of global opti-
mization problems (Floudas and Pardalos®).

Research in the global optimization area has intensified recently (e.g. Horst and
Tuy!?; Pardalos and Horst**) and the new algorithms seem more suitable to address
difficult global optimization problems that arise from engineering applications. This
paper describes the package planning problem, presents several illustrative example
problems, and develops global optimization approaches for obtaining optimal
planar package plans. The problem statement is presented in Section 2. A mixed-
integer nonlinear programming (MINLP) formulation is developed in Section 3.
This model solves the layout and compaction problem simultaneously and guaran-
tees a global optimal solution as opposed to the decomposition approach of Maling
et al.'” which is reviewed in Section 4. As both approaches of Sections 3 and 4
require the solution of nonconvex optimization models, Section 5 develops global
optimization algorithms for these models. These algorithms are shown to be conver-
gent. In addition, for the problem of Maling et al.!’, a convexifying transormation is
presented which allows for an efficient solution of problems from the literature by
means of geometric programming techniques. The branch-and-reduce global opti-
mization algorithm of Ryoo and Sahinidis®®2” is used and the algorithms developed
are implemented with the global optimization software BARON (Sahinidis?®). Sev-
eral examples are‘used to illustrate the problem and the proposed algorithms in
Section 6, followed by the conclusions in Section 7.

2 PROBLEM STATEMENT

The problem studied in this paper involves a number of chips that are to be laid on
a board. The objective 1s to minimize the overall dimensions of the package layout.
There are several constraints that must be enforced when constructing the layout of
the package plan. They are listed as follows:

e Contiguity between macros must be enforced (a macro is defined as a physical
implementation of a high level function, i.e. a group of chips). This constraint
requires that there be enough space for wire routes between chips on the
package. Each chip has a certain number of Input/Outputs (I/Os) on each side
of the chip, so contiguous macro I/Os must have matched orders. These con-
straints will be referred to as contiguity constraints.

e The aspect ratio of each macro must fall within a certain interval.

e Adjacency relations describing the relative placement of chips must be enforced.
This is required to allow certain interconnections.
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e Perimeter constraints must be enforced. This means that the perimeter must be
able to accommodate the macro I/Os that lead off the board. These constraints
will be referred to as perimeter constraints.

e In certain cases, it 1S important to be able to specify that the center of a certain
chip should be at the same height as the center of another. For example, when
one designs a cell that is to be replicated many times, the center of an input
node should be at the same height as the center of an output node.

Figure 1 provides ar illustrative example from Maling et al.'”. Figure la presents
a block diagram of chips and their communication buses (or lines). The block
diagram can be represented by an undirected planar graph, as shown in Figure 1b.
There are six chips in this example denoted by A, B, C, D, E and F with minimal
area requirements of 30, 20, 20, 25, 15, and 20 units, respectively. The links between
rectangles of the block diagram (edges in the graph) represent connections between
chips. Weights are assigned to these links and correspond to the number of wires
between the two corresponding chips on the block diagram. These give rise to mini-
mal requirements for shared edges between the corresponding chips. For example,
chips A and B of this example must share an edge of length at least equal to 5 units.
Edges incident to only one chip represent connections to the outside of the package
and imply that the corresponding chip must be on the perimeter of the package.

Planar graphs such as the one of Figure 1b have the property that they have
planar dual graphs (as in Figure 1c). A planar original graph (POG) is related to its
dual in the following way:
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Figure 1 (a) Block diagram of 6 chips and communication lines. (b) The corresponding planar original
graph. (c) One possible rectangular dual graph.
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e An area (or mesh) inside the dual corresponds to a node of the POG.

e A node of the dual corresponds to a mesh of the POG.

e The area outside the dual corresponds to an explicit or implicit POG node at
infinity.

The edge separating two adjacent areas of the dual corresponds to the bus
(wires) joining two corresponding nodes of the POG.

The discussion will be restricted to the geometric realizations of duals that are
rectangular in shape. This is not a restrictive assumption as rectangles can serve as
building blocks in the modelling of several objects:

e An L-shaped object can be decomposed into two perpendicular rectangular
segments. _
e Il-shaped and H-shaped objects can be decomposed into three appropriately

interconnected rectangles.
e A frame can be decomposed into four appropriately interconnected rectangles.

Note that in all these cases, it is necessary to develop a model with the ability to
enforce constraints that certain rectangles have a prerequired relative placement,
share a certain edge and have certain of their corner points coincide.

From now on, it will be assumed that the problem information is provided
through a description of the block diagram in terms of its undirected planar graph.
Weights assigned to the edges correspond to the number of wires between the two
corresponding chips on the block diagram while the weights of the nodes represent
the size (area) of the chip itself. Given the planar original graph (POG), there exists
one or more rectangular dual graphs (RDG). The only constraints enforced when
producing these RDGs are the continuity constraints. There must exist an edge
between two rectangles of the RDG that must have length equal to or greater than
the bundle size (number of wires) between the two corresponding nodes (chips) of
the POG. Hence, every set of two nodes that are connected by communication lines
in the POG must have a shared edge between the two corresponding rectangles of
the RDG. When the area and perimeter constraints are enforced, different RDGs
will have different dimensions. The problem is then to generate the RDG morpho-

logy with minimum package area.

3 MINLP FORMULATION

The goal of the package planner is to locate the positions of all the rectangles in the
plane, so that certain constraints are satisfied and the package has minimum overall
dimensions. In developing the model, the indices i and j will be used to denote
rectangles (i, j=1,...,n). Let x{ and y¢ denote the x and y coordinates, respectively,
of the center of rectangle i. Similarly, let x; and y, denote the x and y dimensions
(width and height), respectively, of rectangle i. Finally, let x, and y, denote the x and
y dimensions (width and height), respectively, of the overall package. The following
model can be used:

min x,y, (D)
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In (1), the area of the overall package is minimized. Constraint (2) ensures that no
two rectangles overlap. This is accomplished by requiring the rectangle centers to be
at a distance no smaller than one half of the sum of the lengths of their sides. It is
sufficient to enforce this requirement in either the x or the y direction. For those
rectangles with a requirement that they share an edge, constraint (3) must be in-
cluded. Here, R;; is the minimum required length of the shared edge between rec-
tangles i and j. Also, the set R={(i,j):1<i<j<nmR, ;> 0} includes all pairs of
rectangles with shared edge requirements. The effect of the first three relationships in
(3) is that the top (or bottom) edge of rectangle i touches the bottom (or top) edge of
rectangle j while at the same time the shared edge is of length at least equal to R;;
The last three relationships of (3) enforce a similar constraint on the side edges of
rectangles i and j. Constraint (4) requires the area of rectangle i to be at least equal
to its minimal requirement A4;. Simple bounds for the problem variables are given in
(5-6) and constraints that force all rectangles to lie in the positive quadrant are
provided in (7-8). The model also includes additional feasibility constraints (9).
These can, for example, include perimeter constraints for each rectangles as well as
constraints on the aspect ratio of each rectangle. Constraints required for the
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modelling on L-, H-, I1- or other similar objects discussed in the previous section
can also be included in (9). Even the requirement that a frame-like object be empty
can be modelled by introducing a dummy rectangle and requiring its corner points
to coincide with certain corner points of the four rectangles modelling the frame. All
these constraints are linear. As long as (9) is linear or convex, the specific form of
these constraints does not matter for the rest of the paper. Sometimes, but not
always, it is known a priori which of the two possible edges (x or y) two rectangles
must share. This implies that certain disjunctions can be simplified. Finally, (10) and
(11) simply require all the rectangles to be within the package.

In order to explicitly model the disjunctions in the above model and eliminate
some of the nonlinearities involved in the absolute values, binary variables will be
introduced. By convention, chip j is “to the right of or above” chip i (denoted by
Jj>i) if x§—x{ > (x; + x;) /2 and/or yj— yi = (y; + y;) /2. Two sets of binary variables
can now be defined as follows:

1if i
= 1<i<i<
i {0 if i A
1af [y — v = (v, + v)/2
B — = yil =iy l<i<j<n
! 0 if |x§—x§| =(x; +x,)/2

These binaries model the relative orientation of rectangles. In particular, rectangle j
is “to the right of or above” rectangle i if «;;=1, and “to the left of or below” if
o;; = 0. More precisely, if o;; =1, then f;; =1 means that j is “above” i while g,;=0
means that j is “to the right of” i. Similarly, if «;;=0, then ;=1 means that j is
“below” i while f,;=0 means that j is “to the left of” i. For rectangle pairs with
shared edge requirements, the binaries §;; model whether two rectangles touch along
the x (B;;=1) or y(B;;=0) direction. Let M be a sufficiently large positive constant.
Using these binary variables, the package planning problem can be restated as a
mixed-integer nonlinear programming model:

(P1) min x,y,
subject to
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Yoz Vit y/2 1<i<n (15)
a;€{0,1} I<i<j<n
B;€{0,1} I1<i<j<n

and constraints (4-9).

It can be easily verified that (12) and (13) enforce (2) and (3), respectively, and that,
due to (14) and (15), both (10) and (11) will be satisfied at the optimal solution of
model P1. The model has the following additional features:

e It performs simultaneous chip layout and compaction while considering a large
number of design constraints.

e It permits rectangle j to be both above (or below) and to the right (or left) of
rectangle i, thereby, allowing all possible configurations among rectangles.

e It allows rotation of rectangles of fixed area. This is a consequence of the fact
that chip dimensions (height and width) are not fixed but simply constrained by
the areas.

In addition, it is a simple exercise to extend the model to handle the following
situations:

e Upper bounds for the areas can be included. This, in combination with the
lower bounds, allows the modelling of rectangles of fixed size. Rectangle dimen-
sions can also be fixed by fixing the corresponding x and y variables. Therefore,
the model can handle any combination of rigid and flexible rectangles.

e For those (usually few) rectangles required to be on the perimeter of the pack-
age, it is straightforward to introduce additional binary variables and linear
constraints into the model in order to enforce that at least one of following
constraints holds: x{ > x;/2, x{ + x; /2= x,, yi =y, /2, Vi + y;/2 > Vp

Several integer programming approaches to the package planning problem have
been proposed in the literature, most notably the ones by Kedem and Watanabe!2
and Sutanthavibul er al.*? As these approaches are linear, several simplifying as-
sumptions had to be made for their derivation. For example, the areas (or even the
dimensions) of the rectangles are fixed and, in general, nonlinear constraints were
approximated by linear ones. Therefore, the proposed approach has several advan-
tages from the modelling point of view. On the other hand, similar to previous integer
programming approaches, the computational complexity of the present model is ex-
ponential. It is therefore best utilized when incorporated in a hierarchical design
approach based on the sequential solution of small components of a large circuit.

The model consists of two parts: an integer part and a continuous part. This is not
surprising as the chip layout problem also consists of two parts: relative placement
of chips and chip dimensions. Each part of the problem carries its own contribution
to the difficulties associated with solving this model. There are nonconvexities due
to the integrality requirements as well as due to the presence of the bilinear terms in
the objective and the constraints. The next section reviews a decomposition ap-
proach that tries to separate the discrete from the continuous parts of the problem.
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4 SEQUENTIAL SOLUTION TECHNIQUE

A sequential solution technique that can be divided into three phases was developed
by Maling et al.'” Each phase is more tractable and can be solved using known
techniques. First, their algorithm finds a large set of layouts that satisfy the continu-
ity requirements for chip macros. Then, they attempt to satisfy perimeter and area
constraints while they minimize the package area. Their algorithm can be inter-
preted as a sequence of the following steps:

Step 1.

Step 2.

Step 3.

An assumption 1s made as to which rectangles define the corners of the chip
(it can be two, three, or four rectangles). Note that the choice is arbitrary
and that different choices will lead to different solutions.

Let [ denote the angles of the RDG and k denote the meshes of the POG
(nodes of RDG). Use d, to denote the number of angles of the RDG node k&
and define the following parameters:

1 if angle!lis in rectangle i
a., = .
70 otherwise

b — 1 if angle!/is in RDG node k
0 otherwise

Observe that a mesh in the RDG (node in POG) must have exactly four
right angles since only rectangular RDGs are considered here. Also, each of
the m nodes in the RDG (mesh in POG) has 2 or 4 right angles depending
on whether it corresponds to a “T” (T") or a “plus” (-+) configura-
tion. Then, all possible layouts can be found by solving the following
equations:

Xa“z,:4 1<i<n
]

Ybyz=d, 1<i<m
P

where z, = 1 or 0, represents an RDG angle of 90 or 180 degrees, respective-
ly. All solutions to these equations must be obtained in terms of the z,
variables to provide all possible RDG morphologies. Note that although
the above assignment-type of constraints are easy to solve, it 1s necessary to
find all their possible solutions. Solving these equations amounts to fixing
the binaries of the MINLP model P1 in a way that guarantees that the
contiguity constraints are satisfied.

The previous step provides all possible RDG morphologies under the
contiguity requirements. It remains to determine the dimensions of the
rectangles so that the package dimensions are minimized while the area
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constraints for the rectangles are satisfied. Maling et al.'” proposed a
model using perimeter constraints for the package:

(P2) min ) x,y
1= 1

subject to
L(x,y) <0 (16)

and constraints (4-6)

The variables of this model have the same interpretation as in model P1. Con-
straints (16) include equalities to enforce perimeter constraints for the package so
that variables x, and y, do not have to be included in the model. Constraints (16)
also include inequalities that require that there be sufficient overlap among certain
rectangle edges. Model P2 is best illustrated by an example. For the POG of
Figure 1b, one possible RDG layout is shown in Figure lc. For this layout, the
problem of finding the dimensions of the package is as follows:

(P2-1) min x4y, + Xgyp + Xc Ve + XpVp + Xpyp + XrpYVr

subject to \
Xp = Xg
X4+ Xp=Xp+ Xp=X,=Xp
X4+ Xp=Xc+ Xp (17)
Ye=JVr
YatVptYe=Yp+ Vet Ve=Va+Vpg=VYp+ Vgj
‘Xg—Xe =1
Xp— X } (18)
Ya—yp=1
xy > (30,20,20,25,15,20) (19)
x >(5,5,2,4,4,5) (20)
y = (5,2,5,4,5,5) (21)

The equalities (17) in model P2-1 enforce the requirement that all slices of the
package in the x- or in the y- direction must have lengths equal to the package
dimensions (width or height). These constraints were obtained by eliminating x, and
y, from the following system of equations which follows from Figure lc:

Xe+ Xp=X,

Xp+ Xg=X,

x[.: + XA = xp

Xp+X,=X,
Vet Ye+¥p=Y,
Yetygt+ya=DY,
Yet Y+ Ya=Y,
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The inequalities in (18) require that there be sufficient overlap among certain
rectangle edges. Although these constraints have been written only for two pairs of
rectangles (A-C and A-D), it can be easily verified that the remaining requirements
are implied by the rest of the problem constraints and the bounds. In general, (18)
needs to include the requirements for shared edges only for those rectangles ar-
ranged in an “alternating-T" (VL). Finally, inequality (19) for the product is to be
interpreted component-wise and enforces the area constraints for rectangles.

Note that the constraint set of the bilinear model P2 is separable with the only
exception of the area constraints (19). Furthermore, P2 can be reduced to an opti-
mization problem with a bilinear objective if x, and y, are not eliminated from the
problem. In either case, model P2 involves nonconvexities in the objective as well as
in the constraints. For this reason, Maling et al.'” developed a heuristic, Simplex-
based approach for the solution of this optimization problem.

From the modelling point of view, the solution space of the sequential approach is
more restricted than in model P1. This is because, in deriving P2, the solutions are
restricted to the case for which the sums of the sizes (widths or heights) of individual
rectangles along any slice (horizontal or vertical) of the total package are equal to
the package dimensions. In this way, no uncovered areas are allowed within the
package. From the computational point of view, there are two main difficulties
associated with the sequential approach. First, Steps | and 2 must explicitly enumer-
ate all of the possible chip layouts. Second, the last step of the sequential method
requires the solution of a nonconvex optimization problem. Yet, the algorithm
developed by Maling et al. provides a means of rapid computation of gross conse-
quences on the optimal layout plan given the basic information that is usually
available at an early stage of the design cycle. One can arbitrarily make an assign-
ment in Step 1, obtain a few solutions in Step 2 and solve the model of Step 3 to
derive a feasible sdlution to the problem. The sequential solution technique can
therefore be used as an initialization heuristic to provide a good upper bound that
will assist in the solution of the MINLP model P1. For this reason, the next section
addresses the solution of model P2 to global optimality.

5 GLOBAL OPTIMIZATION ALGORITHMS

The two previous sections presented approaches to the package planning problem.
Both approaches require the solution of nonconvex optimization models. Among
several methods, given a nonconvex minimization problem, branch-and-bound
methods can be used in order to develop lower and upper bounds of the optimal
objective function value over subregions of the search space. Certain subregions are
then dynamically refined while others are excluded from consideration based on
optimality and feasibility criteria. Critical to the success of these methods is the
tightness of the lower bounding procedures used. As the lower bounds are developed
over a range of values of the variables involved, they become tighter as the search is
confined to smaller subregions. The approach taken here is one that emphasizes the
development of tighter lower bounds for the problem through the reduction of the
range of the problem variables. As the algorithm will be used in the context of two
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different models, 1t is stated here in its most generic form. Let P denote the global
minimization problem to be solved: min f(x) subject to g(x) <0, xeX. Also, let P, be
a relaxation of P, obtained by relaxing some of the constraints and/or underestimat-
ing the objective function of P. At each iteration, the algorithm updates a list, 2, of
subregions (each denoted by the subscript i) of the feasible space and relaxations (P))
of the nonconvex problem over these subregions. The algorithm can be represented
by a search tree. Simple subproblems (relaxations) are solved at each node of the
tree. Their solution provides lower bounds, L, which can be used to exclude nodes
in the tree from further consideration. This is achieved by comparing these lower
bounds to the best current upper bound, U. At all times the global minimum is
bounded between the lowest lower bound, L, and the value, U, of the best found
feasible solution:

Initialization

Put P, on the list 2 of active subproblems. Select the convergence parameter ¢. Set
the lower bound L = — oo, and the upper bound U = + 0.

Iterative Step

1. Subproblem Selection If the list 2 of active subproblems is empty, stop: the
current best solution is optimal. Else, choose from # the subproblem P; with the
smallest lower bound and remove it from the list Z. Goto 2.

2. Pre-Processing Use optimality-based and feasibility-based tests to tighten vari-
able bounds as much as possible for subproblem P, Goto 3.

3. Lower Bounding Solve P, or bound its solution from below. Let L, be this lower
bound. If the, solution x’, found for P; is feasible for P and f(x') < U update
U «f(x%), make x' the current best solution, and remove from # all those sub-
problems P; for which L; > U —e&. If L;> U —¢, Goto 1. Else, let L be equal to
the smallest of all L; and Goto 4.

4. Upper Bounding Do local search or other heuristic(s) to find a feasible solution
for problem P. If found, update U and the current best solution, and remove from
# all those subproblems P; for which L;> U —e&. Goto 5.

5. Post-Processing Use optimality-based and feasibility-based tests to strengthen
the bounds of as many variables as possible. If Steps 4 or 5 were successful in
improving U, apply strengthening tests to all subproblems currently in 2, other-
wise apply strengthening only to P, If this step was successful in reducing the
variable bounds for P, reconstruct P, using the new bounds and Goto 3. Else,
Goto 6.

6. Branching Select one of the problem variables that appear in nonconvex terms
that are not satisfied at the relaxed solution of P,. Split the range of this variable
into two subregions: one to the right and one to the left of the relaxed problem
solution. Generate two corresponding subproblems, P, , P, , place them on the list
2, and Goto 1.

Implementation details as well as general purpose range reduction tests are
discussed in Ryoo and Sahinidis®”?®. The next subsection develops the problem
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specific relaxations, branching rules and range reduction tests required for models
Pl and P2.

5.1 Relaxations

With the exception of the integrality requirements in P1, the remaining nonconvexi-
ties in models P1 and P2 are due to the bilinear terms in the objective and the
constraints. To develop the relaxations, use i1s made of the well known fact that
using lower and upper bounds of the participating variables, bilinear terms of the
form xy can be underestimated and overestimated by convex and concave functions,
respectively, as follows (see, e.g. McCormick'®):

xy =max {y¥x + xVy — xV ¥ ylx + xby — xby*} }

. (22)

xy<min{x"y + yVx—xFyY ylx +xYy -yt xY}

To avoid the nondifferentiabilities introduced by the min/max operators, each
product xy is replaced by a new variable w and the following constraint set is
introduced:
w=ypVx+xVy—xUyv
w=ylx + xby — xtyt
w<xEy+yUx —xkyv
w<yEx +xVy— ptxv

{w(x,y)<0}:=

Then, the proposed relaxations P1, and P2, of P1 and P2, respectively, are as
follows:

(P1,) min w,
subject to

Wy (X, 1) <0

wix,y) <0 1<i<n
w, = A, 1<i<n
OSaU.Sl I<igj<n
0<B;<1 I<i<j<gn
and constraints (5-9), (12—15).
(P2,) min ) w;
i=1
subject to
wi(x,y) <0 1<i<n
w. = A 1<i<gn

and constraints (5), (6), (16).

In contrast to the original models, the relaxations are convex. In fact, P2,
is always an LP and Pl, will be linear as long as (9) involves only linear con-
straints. Linearity is a major advantage in the context of branch-and-bound-based
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algorithms as it greatly facilitates the solution of the relaxed problems as the search
proceeds down the tree. Note that the relaxations increase the size of the original
nonconvex formulations. In particular, n + 1.variables and 2 (n + 1) constraints must
be introduced to model P1 while n variables and 2n constraints must be introduced
to model P2. As the increase of problem size is modest, these relaxations are easy to
implement. For this reason, the development of alternative relaxations was not
explored, although several possibilities exist (e.g. McCormick'®; Sherali and

Alameddine??).

5.2 Branching rules

Branching is required whenever the approximators in the solution of the relaxed
problem violate the original problem functions. Let o*, p*, x* y* w* denote the
solution of the relaxed problem at any iteration of the algorithm. In terms of the
binary variables, a;; and ﬁ,.j, there is a violation if their values are not integer. Define
the violations (v}; and vf) as decreasing functions of the difference of the correspond-
ing binary variables from 0.5:

vi=min(ef 1 —o¥) 1<i<j<n (23)

vl =min (%1 - %) 1<i<j<n (24)

In terms of the continuous problem variables, the violations can be defined as
follows. If wk=x¥*y¥ there is no violation. Otherwise, assign a violation of
[w¥ — x¥ y¥| to both x; and y;

v =|wF —x¥y¥ 1<i<n
vr=wE —x¥ ¥ 1<i<n

The last two equations represent a standard means of defining violations for bilinear
terms and do not take into account the size of the interval of the corresponding
variables. In order to create more balanced search trees, the above violations are
weighted with the length of the smallest interval that will result after branching on

the corresonding variable:
vy =min(x{ —x¥ x* — xF) x |w¥ — x¥ p¥  1<i<n (25)
0! = min (3 — yE,yF — yF) x [wE —xFp¥| 1<i<n (26)

Once the violations are calculated, the variable with the largest violation is se-
lected for branching. For this variable, its feasible region is partitioned into two
subregions, one to the right and one to the left of the relaxed problem solution. Note
that it is not necessary to consider both x; and y; for branching. Branching on only
one of these variables is sufficient for convergence of the algorithm as, for a suffi-
ciently detailed subdivision of the range of one of the two variables, the bilinear term
x; y; becomes linear and thus a convex function in the other variable (see also Sherali
and Alameddine®®). Nevertheless both types of variables are candidates for branch-
ing as it is not clear a priori which type of branching will have the largest impact on
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the value of the relaxation. For the same reason, no preference is given to the integer
variables over the continuous variables for branching.

5.3 Range reduction tests

If a feasible solution (upper bound) is available for the problem, the reduced costs of
the relaxed problem can be used to fix the values of the integer variables of the
problem. It is also possible to use marginal values to restrict the range (as opposed
to fixing) of continuous variables. This is possible only for those variables that hit an
upper or lower bounding constraint at the relaxed problem solution. For those that
do not, it 1s possible to temporarily fix them at a bound and perform similar range
reduction tests. All these tests are described in detail in Ryoo and Sahinidis®®27 and
can be applied to any nonconvex problem for which a convex (non)linear relaxation
is at hand. They are therefore used with models P1 and P2.

In addition, the range of variables can be reduced using problem specific
constraints. In particular, nonconvex constraints can be used to preprocess and
postprocess a node. These relationships are easy to develop. For example, from the
area requirement: x,y; > A,= x; > A,;/y; which implies that, if y/ is a valid upper
bound for the height y,, then a valid lower bound for the width x; is 4,/y". Similarly,
a known upper bound U for the objective function can be used to derive bounds:

in))i< U=x,y,<U~- Z xi)’i=>xk<<u_ Z x{‘)’.")/)’:{

ik i#k

Although the above relationships are very simple, their importance is that they
often capture the effect of nonconvexities of the problem that are ignored by the
convex relaxations. Particularly useful is the use of these range reduction rules in
order to dynamically update the value of the big-M in the MINLP model during the
course of the algorithm. This greatly reduces the difference between the upper and
lower bounds and expedites the search.

5.4 Correctness of the Algorithm

To prove correctness of the algorithm, two results must be established: validity of
the lower bounding operation and convergence of the algorithm. First, it must be
shown that the relaxations provide lower bounds which are nondecreasing functions
of the size of the feasible region over which the relaxation is defined (this is the
requirement of step k.4 of page 115 of the prototype branch-and-bound algorithm
of Horst and Tuy'®). These results have already been established (McCormick!8;
Sherali and Alameddine?®) for the inequalities (22) used here to approximate the
bilinear terms and they are well known in the integer programming literature for
relaxing a 0—1 variable in the continuous range from 0 to 1. Therefore, it suffices to
prove convergence of the algorithm. Definition 1, Definition 2 and Theorem 1
correspond, respectively, to Definition IV .4, Definition I1V.6 and Theorem 1V.3 from
Horst and Tuy'® and will be used in the proof:
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Definition 1. A bounding operation is called consistent if at every step any
unfathomed partition element can be further refined, and if, whenever an infinitely
decreasing sequence of partition sets emanating out of a parent set converges to a
certain limit set, the upper bound over this limit set also converges to the lower
bound of the objective over the parent set.

Definition 2. A selection operation is said to be bound improving if, at least each
time after a finite number of steps, at least one partition element where the actual
lower bound is attained is selected for further partition in the algorithm.

Theorem 1: In the infinite branch-and-bound procedure, suppose that the bounding
operation is consistent and the selection operation is bound improving. Then the pro-
cedure is convergent. O

Further refinement in Definition 1 above is to be interpreted as meaning that a
subproblem in the list 2 of currently active problems can be either fathomed or else
further partitioned using the branching rules of Section 5.2. The limit behavior of
the bounds in the second part of Definition 1 is implied if, whenever a decreasing
sequence of partition sets converges to a certain limit set, the lower bounds over this
limit set also converge to the exact minimum of the objective over this limit set.

Lemma 1. Let » be the maximum of all violations calculated in Egs. (23-26).
Then, the solution to the current subproblem is feasible to the original nonconvex
problem if only if v =0.

Proof: If v=0, then all the violations are zero. This means that all binary
variables have assumed 0-1 values in the relaxation. It also means that
w¥ = x* y¥ for all possible i. Therefore, the relaxed problem solution satisfies the
nonconvex problem constraint set. Conversely, if there 1s a violation, then at least
one of the right hand sides of Eqgs. (23)-(26) will be positive and, therefore, their
maximum will also be positive. 0

Lemma 2. Consider an infinite sequence of nested partitions of the feasible
region. Then, the algorithm develops lower and upper bounds for this region whose
difference tends to zero.

Proof: This is a consequence of the rectangular subdivisions used by the algo-
rithm. Recall that the interval of the variable corresponding to the maximum viol-
ation is split into two parts. Therefore, in the limit, the interval of a variable
becomes a point. Now observe that, if both the lower and upper bound of a variable
coincide, the underestimators in (22) become an exact representation of the product.
Therefore, the current subproblem solution becomes feasible to the nonconvex prob-
lem and the lower and upper bounds for this partition converge. In the case that
binary variables are present in the model (model P1), the argument is simpler as
branching leads to complete removal of nonconvexities and there is only a finite
number of possible partitions. |

Theorem 2: The bounding operation of the proposed algorithm is consistent.

Proof: Lemma 1 guarantees that, if an unfathomed subproblem cannot be
fathomed in the current iteration, there is a positive violation in Eqs. (23-26). If the
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maximum violation arises from Eq. (23), this means there is a fractional binary
variable and branching will further refine the feasible space by considering the cases
of this binary being equal to 0 or 1. On the.other hand, if the maximum violation
occurs in Egs. (24-26), then there i1s a corresponding x or y variable that is not at
one of its bounds. Otherwise, (22) provides an exact represention of the bilinear term
and the corresponding violation would have to be zero. Without loss of generality,
assume the maximum violation corresponds to variable x whose relaxed problem
value is x*. Then, x* < x* < xV. Therefore, branching will again create two feasible
regions (one to the left and one to the right of x*) that are strictly smaller than the
feasible region of the parent node. It can be concluded that the bounding operation
satisfies the first part of Definition 1. The second part follows directly from

Lemma 2. 0
Theorem 3:  The proposed algorithm is convergent.

Proof: According to the selection operation used by the algorithm (best bound
first), in every iteration, a partition element where the actual lower bound is attained
is selected for further partition. Therefore, the selection operation is bound improv-
ing. As, in addition, the bounding operation is consistent from Theorem 2, conver-
gence of the algorithm follows directly from Theorem 1. . 0

Remark 1. The argument in the proof of Theorem 2 is still valid for any x*
which is such that x* < x* < xV. For example, the midpoint can be used, or the value
corresponding to a known local minimum which is suspected to be the global
solution. In the latter case, this branching rule makes the underestimators exact at
the candidate solution and is, therefore, expected to expedite the search.

Remark 2. Theorem 3 establishes convergence of the algorithm at the limit. This
implies that, since there are nonconvexities in the constraint set, in the worst case
only a near-feasible, near-optimal solution can be guaranteed. Of course, if the
algorithm terminates finitely, the solution is guaranteed to be a global minimum,
since the lower bounding procedure is valid. In practice, it has been found that the
algorithm always converges to the global solution finitely. This is demonstrated in
Section 6. In addition, for special cases of model P2, the following transformation
can be used and leads to a very efficient solution approach by means of convex

optimization techniques.

5.5 A Convexifying Transformation

Assume that the overlap constraints (of the type (18)) of model P2 are of the
following form:

x;—x,=R, (i,j)eR,<R 27)

i 12 ij
=

yi—y;=zR; (i,j)eR, &R (28)

i
Denote by S, and S, the number of all different slices of the RDG in x and y
direction, respectively. In this case, instead of model P2, the following more general
formulation can be used:
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(P3) min x,y,

Subject to
Z_x,—<xp 1 <k<S,
iely
Yoyi<y, 1<k<S,
iel}
Xy, =2 A, 1 <ign
xE<x; <xV 1<i<n
yisyisyl l<isn

and constraints (27-28).

As all rectangle dimensions have to be strictly positive, P3 can be restated as a
geometric program: ‘

(P4) min x,y,

Subject to

Y (xi/x,) <1 1<k<S,
ielf

> iy, <1 I<k<S,
ie 1}

Aif(xiy) <1 I<i<n
xF/x; <1 1<i<n
'xi/xxygl I<isn
Y{‘/)’igl I<i<n
iyl <1 1<i<n
xi/x;+R/x; <1 (i,j)eR, =R
yilvi+ Ry/y; <1 (1,j)eR, =R

Since all the coefficients in the left-hand-sides of the constraints of P4 as well as in
its objective are positive, this geometric program can be convexified by the well
known exponential transformation of variables. In this way, the convexified problem
can be solved by standard NLP techniques to yield the global optimum of P2. In
general, though, the overlap constraints (27-28) will include a sum of variables
added to x; and y; in the left-hand-side, thereby rendering the transformation non
applicable.

6 COMPUTATIONAL EXPERIENCE

6.1 Implementation

The proposed global optimization algorithms were implemented using BARON
(Ryoo and Sahinidis?®?”). BARON is a general purpose global optimization soft-
ware for solving nonlinear and mixed-integer nonlinear programs. Its optimization
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strategy integrates conventional branch-and-bound with a wide variety of range
reduction tools and branching rules. The user provides only the problem-specific
subroutines for lower and upper bounding.. The implementation was done on a
SUN SPARC Station 2 with 32 MB of RAM using the GAMS (Brooke et al.?)
version of BARON. The commercial LP software CPLEX* was used to solve the
relaxed LPs and MINOS (Murtagh and Saunders®®) was used to locally minimize
the nonconvex NLPs. In solving all problems, the algorithms were terminated when
the absolute difference between the upper and lower bounds for the optimal objec-

tive was within 10~ 7.

6.2 Sequential Approach Example Problems

Consider the POG of Figure 1. There are five RDG morphologies corresponding to
this circuit as shown in Figure 2. These were obtained by solving the layout equa-
tions of Step 2 of the sequential approach of Section 4. Each of these RDGs gives
rise to one example of model P2. The first example corresponds to Figure 1c¢ and
gives rise to model P2-1 which was detailed in Section 4. The remaining RDGs of
Figure 2 give rise to four additional examples. All examples share the same objective
function but have different constraint sets corresponding to the different package

layout:
Example 1:
(P2-1) min  x,y,+xpyg+ XcYc+ Xpyp + Xpyp + Xp Y

Subject to constraints (17-21).

Example 2:
(P2-2) min  x,y,+ Xpyp+ Xcyc+ Xpyp+ Xgyp + XpVr
Subject to
Xgt+ Xp=Xc+ Xp=>Xp=Xp

X4+ Xp=Xc+ Xp

Ya=JYp

A |D A |D AlD A |[D Al D
s lEllB|E g LE B |E . E
cCl! F c | F c|F C| F c F
RDG-1 RDG-2 RDG-3 RDG-4 RDG-5

Figure 2 Five graphical RDG solutions to the layout equations.
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Yat Vgt Ye=yp+yp+Vp=Yp+yc=Yye+ yp
X,—xg =1
ye—Ye =1

and constraints (19-21).

Example 3:
(P2-3) min X,y + Xyp+ XcYe + XpYp + XpVp + Xp Yy
Subject to
Xp=X¢
Xp+ Xg=Xe+ Xp=>Xp = Xp
XgF+ Xp=Xe+ Xp=>X, = X¢
Xgt+Xp=Xc+ Xp=Xp=Xp

Yat+typgtYe=Yp+ypg+yr

ye—Yye=1
Yet+yp—yr=1
Ya—yp=1

and constraints (19-21).

Example 4:
(P2-4) min  x,y,+ Xpyp+ XcYc + Xpyp + XpYp + XpYp
Subject to
Xp+ Xp=Xc+ Xp
X4+ Xp=Xc+ Xp
Ya=Jp
YatVp=Yp+ Ye=Vpg= Vg
Yat¥ptYc=Ypt Vet Ve=Yc=Vr

Xp— Xc

VoWV

1
X,—xp=1
and constraints (19-21).
Example 5:

(P2-5) min  x,y,+ Xpyp + XcYe + XpYp + Xp Ve + Xp Yy

Subject to

Xp= X¢
X4+ Xp=Xc+ Xp

X4+ Xp=Xc+ Xp
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Ypt+ Yo = Vg
Yat Vgt Ve=Yp+Vpe+Vpr=Y,s=Vp+ Vg

Xp—x, 21

and constraints (19-21),

6.3  Computational Results with Bilinear Model

Computational results with the example problems of the previous section are pre-
sented in Table 1. For each problem, the table presents the total number of nodes in
the search tree, the node in which the optimal solution was found and the maximum
number of nodes that had to be stored in memory at any point during the search. In
all cases, using the solution of the root node relaxation as a starting point, local
minimization led to the global minimum at the root node. Also, the CPU time
averages about 1 sec. The row labeled “Objective” denotes the value of the global
optimum while “Initial Bound” indicates the value of the relaxed problem at the
root node. The last row of the table is defined as:

“%gap” = 100 (“Objective” — “Initial Bound”) /“Objective”

This gap averages about 2.5% indicating that the relaxations are fairly accurate
descriptions of model P2. However, this is not indicative of the difficulty of the
package planning problem as, in deriving P2, the relative orientations of the chips
have already been decided.

In addition to solving the above examples globally, local minima have been
sought. In particular, GAMS/MINOS (Brooke et al.?) was used with 100 different
randomly generated starting points for each example. In all cases, MINOS con-
verged to the global solution. This is not surprising in light of the discussion of
Section 5.5. It can be easily verified that the overlap constraints for these examples
are of the form or can be brought into the form assumed in Section 5.5. Therefore,
all these problems can be solved globally through the convexifying transformation
and possess unique local minima. This result indicates that solving the bilinear
models P2 in practice with a standard NLP code might be easy due to the absence
of multiple local minima. Recall, however, that the convexifying transformation does

Table1 Computational requirements of bilinear model P2.

Example Problem

1 2 3 4 5
Nodes total 3 9 5 9 15
Nodes Optimal 1 1 1 1 1
Nodes memory 2 4 3 4 7
CPU sec 0.5 0.8 0.8 1 1.5
Objective 146.25 172.50 160.00 162.50 192.50
Initial Bound 143.56 168.04 156.89 158.00 186.13

1.84 2.59 1.94 277 3.31

% gap
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not apply to all cases. In addition, P2 models only the continuous part of the
problem and the relative positions of the chips were fixed in deriving P2. The effect
of different chip orientations is shown in Table 2 where the solutions for the five
examples are presented. It can be seen that the total package areas range from
146.25 for RDG-1 to 192.50 for RDG-5. The difference between the worse and best
RDG is more than 30% indicating the importance of sampling all possible RDGs. In
other words, it seems that different layouts may have a dramatic Impact on the
package area.

6.4 Computational Results with MINLP Model

In addition to generating all possible RDGs and solving model P2 for each of them,
the MINLP model P1 has also been solved directly for the example problem of
Figure 1. This approach alleviates the need for assuming the corner rectangles of the
package. The MINLP model involved 30 binary variables, 26 continuous variables
and 155 constraints. The LP relaxation contained 63 variables and 183 constraints.
By noting that the edge-sharing requirements between rectangles define the relative
positions of most of them, most of the binaries were fixed thus reducing the number
of binary variables down to only 6 (two for each of the rectangle pairs A~E, B-E
and B-F). The process of identifying the binary variables that can be fixed was
completely automated. The solution of this model required 13 CPU sec. The root
node relaxation had a value of 95 indicating a large gap of 35% when compared to
the optimal solution of 146.25 (the same as with the sequential method of the
Section 6.3). However, the range reduction tests were able to quickly reduce the gap.
After the solution of the two descendant nodes of the root problem (i.e. after the

Table 2 Global solutions of example problems.

Example Problem

1 2 3 4 5

X, S 6 S 6 5

Xg 5 5 5 5 6

Xc 4 5 5 4 6

Xp 4 4 5 4 6

Xg 4 5 5 5 6

Xp 5 5 5 6 5

Va 7.25 6.25 6 6.25 9.1667

Ve 4 6 5 5 3.333

Ye 5 5 5 5 5

Vb 6.25 6.25 5 6.25 4.1667

Ve 5 5 5 5 5

Vi 5 6 6 5 8.333
Area of chip A 36.25 375 30 375 4583
Area of chip B 20 30 25 25 20
Area of chip C 20 25 25 20 30
Area of chip D 25 25 25 25 25
Area of chip E 20 25 25 25 30
Area of chip F 25 30 30 30 41.667

Package Area 146.25 172.50 160.00 162.50 192.50
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third iteration of the algorithm), the lower bound was improved to 137. The search
tree took only 47 nodes, the optimum was found at iteration 9 and at most 9 nodes
had to be stored in memory at any point during the search.

7 CONCLUSIONS

This paper addressed the chip layout and compaction problem. A MINLP formula-
tion was proposed for simultaneous layout and two-dimensional compaction. This
formulation allows for the dimensions of the chips to be merely constrained and not
fixed. The model also incorporates a great variety of design constraints that arise
from geometric design rules, distance and connectivity requirements between vari-
ous components of the circuit, area and communication costs and other designer-
specified requirements. A convergent global optimization algorithm was developed
for the MINLP model as well as for a related bilinear programming formulation.
The bilinear formulation arises as a subproblem in a sequential approach to the
package planning problem that decomposes the layout from the packing decisions.
Despite the theoretical difficulties associated with the problem, promising computa-
tional results were obtained using the global optimization software BARON to find
the optimal layout and shape of a small circuit from the literature. It would be
interesting to test the proposed algorithm on larger circuits. This will require the
development of a careful computational implementation for handling the data struc-
tures of the algorithm, the development of specialized algorithms for efficiently solving
all the subproblems, and also the interfacing of the algorithm with wire routing
algorithms from the literature. Also, the extension of the MINLP formulation to the
three dimensional case seems to be of interest for plant design and layout applications.
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