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Abstract 
 

This paper summarizes the research conducted on two parallel and complementary thrusts: cognitive state 

assessment (CSA) and mitigations development for augmented Cognition Systems. Cognitive workload classification 

research has been largely been limited to laboratory contexts with well defined tasks. However, as the technology 

matures, it is important to evaluate real-time, EEG- and ECG-based cognitive workload classification techniques 

when they are fully subject to the noise, motion, weather, and wide range of physical and cognitive tasks inherent in 

dismounted operational environments. The hardware and software infrastructure must reliably collect clean sensor 

data, mobile processing is needed to log and process the data, and the experimental design must reliably put 

participants in the cognitive states of interest. As mitigations mature, automation etiquette plays an important role 

in ameliorating the negative effects of strongly adaptive systems. In addition to the practical and system 

configuration challenges faced when moving from the laboratory to field studies, there are issues of experimental 

control and the characterization of cognitive state in less constrained task environments. A key component of an 

evaluation is to compare the classification results with "ground truth," i.e. the actual workload experienced by the 

participant. While in the laboratory it is possible to develop simple tasks where workload is manipulated precisely 

and consistently, in an unconstrained field environment it becomes substantially harder to manipulate workload 

precisely and to interpret and assess a user's true cognitive state without compromising operational realism. 

Advances in experimental design, data collection protocols, signal processing, classification, mitigation strategies, 

and experimental ground truth methodology successfully enabled classification of cognitive workload level in an 

unconstrained, fully-mobile, free-play operation with Soldiers executing missions in a challenging urban terrain 

environment. 

 

 

1 INTRODUCTION 

 

1.1 Adaptive Automation  

 

Adaptive systems must make timely decisions on how best to use varying levels of (adaptive) automation to provide 

support in a joint human-automation system. Adaptive automation, where the automation adapts during execution to 

the current task environment, can either provide adaptive aiding, which makes a certain component of a task 

simpler, or can provide adaptive task allocation, which shifts an entire task from a larger multitask context to 

automation (Parasuraman, Mouloua, & Hilburn, 1999). In order for an adaptive system to decide when to intervene, 

it must have some model of the context of operations, be it a functional model of system performance, or possibly a 

model of the operator's functional state. Many adaptive systems derive their inferences about the cognitive state of 

the operator from mental models, performance on the task, or from external factors related directly to the task 

environment (Wickens & Hollands, 2000). For example, work in the 1980s in the field of "Associate Systems" 

developed human-adaptive, information and automation management technology, which were designed to share a 

common understanding of the mission, the current state of the world, the platform, and the operator him- or herself. 

Associate systems then used that shared knowledge to plan and suggest courses of action and to adapt information 

displays and the behaviour of automation to better serve the inferred operator intent and needs (Miller & Dorneich, 

2006).  The primary means used in associate systems programs to infer operator intent was logical deduction based 

on knowledge of the mission plan and the functional capabilities of the platform (Geddes, 1985).  
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While measurement of performance on the task can respond to unpredictable changes in the cognitive state of the 

operator, the method is only as good as the ability to measure performance (Scerbo, Freeman, Mikulka, Parasuraman 

et al, 2001). The use of behavioural responses to track cognitive function requires regular or periodic performance 

assessments to keep an updated assessment on performance capabilities. Many systems provide few opportunities to 

track overt responses to monitor operator performance (Parasuraman, 2003). Additionally, diagnosing cognitive 

state degradation via performance degradation occurs "after the fact" and thus an opportunity to proactively adapt 

the system to maintain performance is limited. Modelling techniques are only as good as the underlying model, and 

susceptible to model brittleness. Brittleness occurs whenever solutions are subject to system modelling assumptions 

that are necessarily an incomplete representation of the world (i.e. the system model does not account for all 

possible scenarios) and therefore subject to erroneous solutions when an important, but un-modelled, feature of the 

problem space impacts the choice of optimal solution (Smith, McCoy, & Layton, 1997). The more complex the task 

environment, the greater likelihood that the model will not have been designed to anticipate all aspects of human 

operator performance.  

 

The aim of Augmented Cognition systems is to use physiological and neurophysiological sensors to detect the 

cognitive state of the operator - states where human cognitive resources may be inadequate to cope with relevant 

task demands. The goal is to enhance human performance when task-related demands surpass the human’s current 

cognitive capacity, which fluctuates subject to fatigue, stress, overload, or boredom. Neurophysiologically and 

physiologically triggered adaptive automation offers many advantages over the more traditional approaches to 

automation by basing estimates of operator state on directly sensed data. These systems offer the promise of 

leveraging the strengths of humans and machines by augmenting human performance with automation specifically 

when assessed human cognitive capacity falls short of the demands imposed by task environments. With more 

refined estimates of the operator’s cognitive state, measured in real-time, adaptive automation also offers the 

opportunity to provide aid even before the operator knows he or she is getting into trouble. This approach does not 

require instrumentation of systems to record behavioural actions required for task model-based systems. 

 

The potential applications of augmented cognition cover a wide range of human-computer joint cognitive systems. 

One such application would be a closed loop adaptive system to help optimize performance of a stationary operator. 

For instance, such systems may include operators who interact with information displays, such as a unmanned air 

vehicle (UAV) ground control station operator (Snow, Barker, O’Neill, Offer, & Edwards, 2006), or an operator of a 

weapon control system such as the Tactical Tomahawk (Tremoulet, Barton Craven, Gifford, Morizio, et al., 2006). 

Other uses include using AugCog technologies for studying skill acquisition during telerobotic arm training (Krebs, 

et al., 1998). Cognitive state assessments during training could also be used to diagnose student difficulties in real-

time and provide appropriate context-specific assistance to learners (Mathan & Dorneich, 2005). There are many 

mobile contexts in which knowledge of instantaneous cognitive state can be used to drive adaptive systems. Yet 

moving these technologies to mobile contexts remains a challenge if they are to be used in these types of operational 

environment. Examples include pilots, dismounted soldiers, ground vehicle operators, (Macuda, et al., 2006; 

Schnell, et al., 2006, Snow et al., 2006, Dorneich, et al., 2005).  In all cases, if a truly adaptive system that manages 

information flow is implemented, the ability to operate in a dynamic operational situation along with a high degree 

of fidelity in the cognitive state assessment and temporal resolution is needed. 

 
1.2 Dismounted Soldier Domain 

 
The U.S. Department of Defense (DoD) has embarked on a process of change called Transformation to create a 

highly responsive, networked, joint force capable of making swift decisions at all levels and maintaining 

overwhelming superiority in any battle space (Parmentola, 2004). In response, the U.S. Army is shaping its Future 

Force to be smaller, lighter, faster, and smarter than its predecessor. One of the core capabilities of the 

Transformation is the availability of netted communications enabling information sharing and real-time 

collaboration enhancing the kind of situational understanding that drives decisive actions. The Future Force Warrior 

will have unparalleled connectivity to build situation awareness right down to the individual soldier. Mission 

success will be dependent on the individual Warfighter’s ability to sort through the vast array of continuous 

information flow afforded by a full range of netted communications.  

 

The increase in information flow will not come without a cost, however. Effective use of these information sources 

is constrained by the limitations of the human cognitive system. The real-time, dynamic exchange of information in 
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a netted communications environment can be expected to increase the likelihood of information overload such that 

the postulated information superiority becomes rather a profound liability. The potential data overload coupled with 

the efficiency of information flow required in executing Army doctrine, places on over-reliance of critical 

information throughput on a single point of contact, the individual Soldier. One way to ensure that Soldiers are 

supported appropriately is to develop adaptive information management systems to support superior situation 

awareness on the battlefield. The efficacy of such a system is contingent on reliable and timely cognitive 

assessment. 

 

Conducting military manoeuvres in operational environments, such as urban terrain, often does not allow an 

individual to remain stationary and can demand simultaneous cognitive and physical activity. Consequently, 

difficulties related to processing of physiological signals in real-world settings include factors associated with both 

participant motion and the operational environment itself. In harsh environments, Soldiers are subject to extremes of 

motion, multiple physical and mental stressors, and a wide range of cognitive activities (long periods of vigilance 

punctured by extreme periods of activity). Thus any approach to real-time assessment of cognitive state has to be 

robust to motion and noise artefacts. 

 
1.3 Challenges Inherent in Mobile Cognitive State Classification 

 
The effectiveness of neurophysiologically triggered adaptive systems hinges on reliable and effective signal 

processing, accurate cognitive state classification, and well-designed mitigation strategies. While this presents a 

difficult technical challenge in any context, these concerns are particularly pronounced in a system designed for 

mobile contexts. Assessment of an operator's state can be notably more difficult if the operator is permitted to move 

freely to perform cognitive tasks in conjunction with physical tasks. What is already a difficult problem – gathering 

clean and robust signals upon which to classify cognitive state – is further complicated by signal artifacts induced by 

motion.  

 

Given the potential of augmented cognition systems in mobile contexts, methods have been developed to classify 

cognitive state in ambulatory contexts. This paper will describe the challenges inherent in mobile cognitive state 

classification, including the ability to collect robust and clean signals, the ability to create a mobile computing and 

data processing infrastructure, the ability to reliably classify cognitive state, and the ability to experimentally assess 

the accuracy and specificity of the algorithms in a mobile operational setting. The work described in this paper was 

developed for the dismounted Soldier – potentially one of the harshest, most mobile application domains for 

cognitive state estimation. Any cognitive state classification solution in this domain must be portable, efficient, and 

robust to extremes of conditions and motion. A robust solution that meets the challenges of this domain would result 

in techniques that are applicable to almost any other domain where motion is a key component of the operator's 

work environment.  

 
1.3.1 Hardware 

 

Sensors will have to be ruggedized and miniaturized as Augmented Cognition systems transition to the field. In 

addition, mobile processing requirements will have to be minimized. 

 
1.3.2 Software: Real-Time Signal Processing Challenges 

 
Utilization of research methods involving EEG in mobile operational environments necessitates the use of real-time 

algorithms for signal detection and removal of artifacts. Although real-time signal processing and classification of 

the EEG has been implemented previously (Gevins & Smith, 2003; Berka, Levendowski, Cvetinovic, Petrovic, et 

al., 2004), it has not been realized in a truly mobile, ambulatory environment. 

 

Inferring cognitive state from non-invasive neurophysiological sensors is a challenging task even in pristine 

laboratory environments. High-amplitude artifacts ranging from eye blinks to muscle artifacts and electrical line 

noise can easily mask the lower amplitude electrical signals associated with cognitive functions. These concerns are 

particularly pronounced in the context of ongoing efforts to realize neurophysiologically driven adaptive automation 

for the dismounted ambulatory soldier. In addition to the typical sources of signal contamination, mobile 
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applications must consider the effects of artifacts induced by shock, cable movement, and gross muscle movement. 

Specifically, artifacts related to participant motion include high-frequency muscle activity, verbal communication, 

and ocular artifacts consisting of eye movements and blinks; whereas artifacts related to the operational environment 

include instrumental artifacts such as electrical noise that created interference with the EEG signal (c.f. Kramer, 

1991). 

 

1.3.3 Experimental Assessment: Scenario Design Challenges 

 

In addition to the practical and system configuration challenges faced when moving from the laboratory to field 

studies, there are issues of experiment control and the characterization of cognitive state in less constrained 

environments. It is essential to select tasks that are both operationally relevant and afford reasonable adaptations that 

improved performance. In the laboratory, it is possible to develop simple tasks where workload is manipulated 

precisely and consistently. Additionally, a user’s performance can be collected and evaluated accurately. This makes 

it relatively easy to establish ground truth about a user’s likely workload. However, when developing operationally 

relevant tasks in a field environment, it becomes substantially harder to manipulate workload precisely and to 

interpret and assess a user’s performance without compromising operational realism.  

 

2 METHOD 

 

2.1 Augmented Cognition System  

 

The Augmented Cognition closed-loop integrated prototype (CLIP) is depicted in Figure 1. The architecture is made 

up of three principal components: the cognitive state assessor, the augmentation manager, and the display and 

automation systems. These systems interact with the environment (either a virtual environment in early evaluations, 

or the real operational environment). The Cognitive State Assessor (CSA) combines all the psychophysical signals, 

and after processing them to remove noise artifacts, classifies cognitive state. The Augmentation Manager receives 

the cognitive state assessment, and in conjunction with any other context information available to it, makes 

decisions are made on how to adapt the work environment (via interface or automation management) to optimize 

joint human-automation performance. The Augmentation Manager invokes mitigations, either by changing the way 

information is displayed on the Human Machine Interface (e.g. changing the modality of incoming radio messages 

to text), or by invoking automation to take over parts or all of certain tasks (e.g., invoking a tactile navigation cueing 

system).  

 

 

Platform 

HMI 

World 
State 

Human Input 
Control 
Actions 

Automation 

Interface 
Manager 
determine  
modality 

 

Automation 
Manager 

task sharing, 
task offloading, 

task mgmt, 

Context Manager 

Sensors 
EEG, ECG 

neuro- and physiological state 

Augmentation Manager 

Automation 
Effects 

Sensed 
World 
State 

HMI 
State 

HMI 
Control 

Automation 
State 

Automation 
Control Signal 

Processing 

Classification 

 Environment 
Virtual or Actual 

Cognitive State 
Assessor 

Displays 

 

Figure 1. CLIP architecture. 

 
2.2 Research plan 

 
The research done to address many of the challenges described above focused on two parallel and complementary 

thrusts: cognitive state assessment (CSA) and mitigations (see Figure 2). Each iteration builds on the lessons learned 

from the previous iteration, with the goal of moving both CSA and mitigation technologies from the lab to the field. 
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Iteration 1 of the program was dedicated to proving that it was possible to reliably determine cognitive state in real 

time based on brain imaging (e.g., fNIR), external brain monitoring (e.g., EEG), body sensing (e.g., ECG-based 

arousal), and eye measures (e.g., pupillary reflexes), and to close the loop by driving adaptive automation with 

assessments of operator cognitive state. Phases 2-4 then continuously added realism by moving evaluations from a 

stationary virtual environment to a (semi-)mobile VE, outside to the field, and finally to the real operational 

environment. Throughout the phases, cognitive state classification has been matured from a laboratory, stationary 

setup with 32 EEG leads to a wireless mobile system with six leads. Multiple mitigations were explored throughout 

the phases, covering the gamut from task offloading, task sharing, and task and information scheduling to modality 

management.  

Iteration 1

Close the loop
CLIP in VE

Many Gauges

Iteration 2

Explore Mitigations
CLIP in VE, 

Many mitigations

Iteration 2

CSA in Motion
CVE Motion Capture Lab

Iteration 3

CSA Outside
Mobile and Untethered

Iteration 3

Operational Metrics
CLIP Outside and Mobile

Iteration 4

CSA in Field
Operational Environment

Cognitive State Assessment (CSA) Development

Mitigations Development

Iteration 1

CSA feasibility
Many small teams

 

Figure 2. Spiral development over two principle research thrusts. 

3 RESULTS 

 

Iteration 1 CSA was the culmination of several years of research by many researchers (St. John, Kobus, & Morrison, 

2003). Honeywell became involved in the Augmented Cognition Program in the Iteration 1 Mitigations 

Development phase by building a closed look system. .Space limitations preclude a discussion of each experiment 

over the four iterations. However, Table 1 briefly describes each experiment, the conditions under which it was 

conducted, and some results. The final column provides a reference where the reader can find more detailed 

descriptions of each experiment.  

Table 1. Overview of experiments that developed CSA and Mitigations from the lab to the field. 

Exp. CSA Mit. Env. Results Reference 
Iteration 1 

CSA 

20 Individual Cognitive 

gauges 

None Desktop PC 

task 

11 of 20 gauges tested" 

successfully identified changes in 

cognitive activity during the task" 

St. John, Kobus, & 

Morrison, 2003 

Iteration 1 
Mitigation 

Engagement Index, 
Arousal Gauge, Stress 

Gauge, XLI Gauge, 

P300 Gauge 

Communications 
Scheduler (CoS) 

Virtual 
Environment 

(VE) 

Under high workload conditions, 
the communications scheduler 

produced better situation 

awareness 

Dorneich, Whitlow, 
Ververs, Carciofini, 

& Creaser, 2004 

Iteration 2 

CSA 

Engagement Index, 

Arousal Gauge, XLI 

Gauge  

CoS Motion 

Capture VE 

Gauges in combination 

successfully drove mitigations; 

able to classify despite mobility. 

Whitlow, Ververs, 

Buchwald, & Pratt, 

2005 

Iteration 2 
Mitigation 

Engagement Index, 
Arousal Gauge, Stress 

Gauge, XLI Gauge, 

P300 Gauge 

CoS; Tactile 
Navigation 

Cueing; Medevac 

Asst; Target 
Detection 

VE All Mitigations improved 
performance (e.g. 100% 

improvement in message 

comprehension; 125% in situation 
awareness;  

Dorneich, Whitlow, 
Mathan, Carciofini, 

& Ververs, 2005 

Iteration 3 

CSA 

Engagement Index, 

Arousal Gauge 

None Outside 

(grassy field) 

Successfully collected usable data 

out in the field; identified the need 
for real-time artifact detection and 

removal 

Dorneich, Whitlow, 

Mathan, Ververs, 
Pavel, & Erdogmus, 

2005 
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Iteration 3 

Mitigation 

pattern classification 

approaches driven by 

estimates of spectral 
power from EEG  

CoS;  

Tactile Navigation 

Cueing 

Outside 

(grassy, 

wooded field) 

significant improvement due to 

mitigations on tasks with 

operational relevance, in a mobile 
setting 

Dorneich, Ververs, 

Mathan, Whitlow, 

Carciofini, &  
Reusser, 2006 

Iteration 4 

CSA 

Support vector machine 

based on spectral power 
from EEG; fused EEG 

and ECG classification 

Open-loop 

feedback of 
cognitive state to 

commander 

Aberdeen 

Proving 
Grounds 

MOUT site 

From 83% to 95% base 

classification accuracy for fused 
EEG and ECG 

Mathan, Whitlow, 

Dorneich, & Ververs, 
2007 

 

3.1 Hardware 

 
In Iterations 1, 2, and 3 the EEG collection system was a 32-channel BioSemi system where the sensors were cabled 

to a stand alone box. However, for Iterations 3 and 4 we migrated to a six-channel wireless EEG cap manufactured 

by Advanced Brain Monitoring (ABM) that was integrated into Honeywell’s information architecture. The move to 

wireless helped considerably in reducing noise artifacts induced by events like cable-sway, as well as facilitating a 

mobile ensemble that could be integrated into a single backpack on a Soldier. 

 

ECG signals were collected on various devices. In Iterations 1 and 2, ECG was collected on both a custom mobile 

Arousal Meter hardware, and with Cardiax PC ECG device running CardioSoft software. Iteration 3 used only the 

mobile Arousal Meter hardware. In Iteration 4, ECG was collected from the Hidalgo's Vital Signs Detection System 

(VSDS), a Bluetooth enabled system integrated into the Army's Warfighter Physiological Status Monitoring system. 

Since the classification algorithms are agnostic to the source of the signals, we were able to choose the hardware that 

produced the best signal quality in the environment in which it was being tested. 

 

The Mitigations Development Iteration 1 evaluation was conducted on seven high-powered PCs wired together to 

run the five cognitive gauges, the architecture that synchronized all the signals, the ECG and EEG collection 

systems, the virtual environments, and the Communications Scheduler (mitigation). Each new evaluation's 

requirements drove a consolidation and reduction in the processing power and number of computers, until the final 

Iteration 4 evaluation was run on one mobile computer where all sensors communicated wirelessly. 

 

3.2 Software 

 

Artifact detection and reduction, necessary to create a "clean" signal that can be classified, is driven by a 

consideration of the characteristics of the noise artifacts themselves. How the noise artifacts are handled depends on 

where the noise lies in the frequency band in relation to the signal (see Figure 3).  

 

  
signal 

noise 

out of band? 

within band? 

filter 

noise 
sensor? 

subtract noise 

Exclude signal 

yes 

no 
 

Figure 3. Artifact detection and reduction depends on the characteristics of the noise in relation to the signal. 

Noise signals that lie out of the band of the signal of interest can be removed with filtering. Out-of-band artifacts, 

such as DC drift and 60Hz line noise, typically have well-known characteristics, and can be filtered out easily. Noise 

artifacts that lie within the same band as the signal require more sophisticated artifact detection and reduction. If the 

noise can be measured (e.g. eye blinks measured via a dedicated ocular sensor), the sensor data can be subtracted to 

de-contaminate the signal. However, when the noise cannot be directly measured, adaptive filtering can be applied 

to estimate the noise. When adaptive filtering is not feasible, the noise should be detected and the resultant data 

rejected so as not to compromise downstream classification. Signal processing approaches are specific to the signal 

type, and dependent on factors such as signal-to-noise ration and how specific artifacts affect the signal of interest.  

 

The classification approach evolved over the iterations. Initial iterations focused on individual cognitive gauges, 

each driven from a subset of available physiological and neurophysiological signals. While the gauges as a group 

were moderately successful in driving the mitigations of the evaluations in Iterations 1 and 2, they did not show the 
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kind of reliability and specificity needed to make moment-to-moment decisions based on cognitive state. Iterations 3 

focused on pattern recognition algorithms that improved the accuracy and reliability of cognitive state assessment, 

but still required lengthy training sessions. (Mathan, Mazaeva, Whitlow, Adami, et al., 2005). Iteration 4 focused on 

discriminate function analyses approach, and was employed in the fully operational, mobile task evaluation. The 

approach used a support vector machine to discriminate between periods of low and high workload (Mathan, 

Dorneich, Whitlow, & Ververs 2007). In addition, the Iteration 4 CSA approach explored fusing EEG and ECG 

sensor data. Sensor fusion utilizes multiple sources of sensor data to create the fusion at the sensor level before the 

discriminate features are calculated. Composite classifiers employ multiple classifiers, where the output of each 

classifier is used to create a final determination (Dorneich, Mathan, Ververs & Whitlow, 2007). For more detail, see 

the companion paper in these proceedings (Mathan, Whitlow, Dorneich, & Ververs, 2007). 

 

The mitigations development produced many lessons learned. Moment-to-moment, real-time, cognitive state 

assessment enables systems adaptation on the same time scale. Hence there is the potential for "strong" automation 

to mitigate undesirable situations where the cognitive state of the operator is misaligned with the current task 

demands. Like work in Associate systems, Augmented Cognition systems have principally targeted “higher 

criticality” applications, where consequences of error can have larger and more immediate consequences to the 

operator making decisions and taking actions (Miller & Dorneich, 2006).  While the management of automation 

intervention promises to help users perform critical tasks under extreme task contexts, like any complex automated 

system, they have the potential to hurt task performance in a variety of ways. The nature of Augmented Cognition 

adaptive systems mitigation is that they are "turned on and off" as needed, depending on the operators' cognitive 

state and context. By delegating critical aspects of complex tasks to autonomous automation components, these 

systems run the risk of introducing many of the problems observed in traditional human-automation interaction 

contexts.  This is only exacerbated in situations where the system is making independent decisions on when to 

invoke automation. Specific strategies to minimize the negative impact of automation were developed as part of the 

mitigations design. Automation etiquette therefore is an important aspect of mitigations design (Mathan & Dorneich, 

2005). 

 

3.2.1 Experimental Assessment 

 

In order to calculate the accuracy of the classification approach, classifier results are compared to "ground truth." 

Ground truth is defined as the actual workload experienced by the participant at any given moment. The output of 

the classifier at any moment is then compared to the ground truth to determine the accuracy of the classifier. 

Experiments in the early iterations benefited from a task environment that afforded control over the task 

environment. From simple, well understood laboratory tasks (e.g. n-back tasks, cue and respond tasks, memory 

tasks) the task environment migrated to more operational tasks that were less controllable. By iteration 4, where 

participants were conducting normal military tasks in a free-play environment, experimenters no longer had control 

over task loads, or the ability to introduce workload probes without disrupting the free flow of events. 

 

The principal issue in scenario/task design is to create detectable and sustained (5-10 minutes) of high or low 

workload multiple times within any single data collection session. Ground Truth was difficult to obtain directly from 

task characteristics, as discussed above. Thus indirect methods must be used.  There are two classes of indirect 

methods: observation and subject self-reporting. Often human experts can observe the experiment and determine 

ground truth based on their knowledge of the task demands and the demonstrated behaviour of the subject. Subjects 

can do a post-scenario cognitive walkthrough, often with time-stamped videos, and report their self-assessment of 

their level of cognitive workload. These methods can be used individually or together to produce ground truth. 

 

There are two important considerations when using either or both techniques. First, both the ground truth data and 

the classification data must be on a common (and accurate) time-stamp system, to allow for a moment-to-moment 

determination of classification accuracy. Second, subjects doing self assessments should have "high workload" and 

"low workload" defined in an understandable manner. Operationally, low workload can be defined as times when 

the participant would have been able to take on additional cognitive tasks. High workload can be defined as times 

when it was not possible for the participant to take on any additional tasks and in fact was not able to handle the 

current task load to the best of his or her ability. 
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4 DISCUSSION 

 

Over the course of the development of augmented cognition adaptive systems for mobile settings, lessons have been 

learned in five key areas. Mobility requires thorough advanced signal processing algorithms which are essential for 

the use of the measurement of cognitive metrics, particularly in the harsh operational environment to remove or 

identify noise artifacts.  There is not a one size fits all approach to cognitive state classification. Individualized 

measurements are necessary for each individual. In addition, due to the non-stationary of physiological data over 

time regular baselines will need to be captured to obtain high level of classification accuracy. There is a need to 

further ruggedize the physiological and neurophysiological sensors and sensor system to enable deployment of this 

capability. The assessment of classification effectiveness will always require the evaluation to capture context of the 

mission and task as well as user feedback as a basis of ground truth information. In addition to a complete 

understanding of the target environment, thorough interviews with participants and multiple raters of ground truth 

classification will help minimize any error in cognitive state classification due to poor insight into the cognitive 

loading requirements of the task environment. Finally, mitigation must be developed with a strong sense of 

automation etiquette since these systems run the risk of introducing many of the problems observed in traditional 

human-automation interaction contexts, but in a more exacerbated fashion due the strong, moment-to-moment 

automation interventions made possible by a reliable assessment of cognitive state. 
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