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This paper describes an evaluation conducted with a full platoon of 32 Soldiers at Aberdeen Proving
Grounds' MOUT site in Aberdeen, MD. The objective was to assess the cognitive workload classification
techniques driven by neuro-physiological (EEG) and physiological (ECG) sensors. In a first ever evaluation
of real-time cognitive monitoring in the harsh operational environment, the assessment culminated in a three
phase, 24-hour mission consisting of a coordinated Route Reconnaissance, a Cordon and Search of a
village, and a Hasty Defense operation. Task load levels were manipulated by introducing unexpected and
unplanned events requiring re-planning and extensive coordination by the leadership (high task load) as
well as lulls in the activity in which part missions were executed flawlessly with little variations on the
preplanned, well versed drill (low task load). Four leaders (Platoon Leader, Platoon Sergeant, Squad Leader
1, and Squad Leader 2) were equipped with sensors to measure and output cognitive state in real-time. The
fused EEG and ECG workload classification approach reached 95% accuracy depending on the individual
and the amount of data used to train the classifier. This level of success implies that Augmented Cognition
workload assessment tools enable the ability to move beyond subjective workload rating scales, such as
NASA TLX and Cooper Harper ratings, to more objective measurements of real-time cognitive state
metrics in almost any conceivable operational environment.

INTRODUCTION

Work in the field of Augmented Cognition began by
establishing the ability to classify cognitive processing
(attention, working memory, executive function, and sensory
memory) with laboratory tasks known as Psych 101 tasks.
Gradually over the past three years, researchers have moved
from the laboratory environment to the field environment,
introducing the artifacts (motion, electrical, networking traffic
and disconnects) and stressors (information overload, physical
load, competition, and threat of pain) inherent in the
operational environment to which the technology would be
transitioned. This paper describes an assessment of the ability
to classify cognitive workload level in an unconstrained, free-
play operation with Soldiers executing missions in an urban
terrain environment. An evaluation was conducted with a
platoon of Soldiers at Aberdeen Proving Grounds' MOUT
(Military Operations in Urban Terrain) site in Aberdeen, MD.
The objective was to assess the cognitive workload
classification techniques driven by neuro-physiological (EEG)
and physiological (ECG) sensors. In a first ever evaluation of
real-time cognitive monitoring in the harsh operational
environment, the assessment culminated in a three phase, 24-
hour mission consisting of a coordinated Route
Reconnaissance, a Cordon and Search of a village, and a Hasty
Defense operation. Task load levels were manipulated.
Unexpected and unplanned events required re-planning and
extensive coordination by the leadership, and resulted in a high
task load period. Low task load periods consisted of lulls in
the activity, or missions that were executed flawlessly with
little variations on the preplanned, well versed drill. Four
leaders (Platoon Leader, Platoon Sergeant, Squad Leader 1,
and Squad Leader 2) were equipped with sensors to measure
and output cognitive state in real-time.

Realizing the vision of an augmented cognition system in
the context of an ambulatory Soldier has been constrained by
several challenges. First, as Schmorrow and Kruse (2002)
noted, processing and analysis of neurophysiological data have
been largely conducted off-line by researchers and
practitioners. However, in order for Augmented Cognition
technologies to work in practical settings, effective and
computationally efficient artifact reduction and signal
processing solutions are necessary. Second, inferring the
cognitive state of users demands pattern recognition solutions
that are robust to noise and the inherent nonstationarity in
neurophysiological signals (Popivanov & Mineva, 1999).
Third, understanding the fluctuations of cognitive state in
applied environments requires the development of means to
collect reliable neurophysiological data outside the laboratory.
Fourth, experiments must be designed, often under conflicting
constraints (e.g. operational realistic tasks vs. well-understood,
controlled lab tasks), to effectively evaluate classification
accuracy. Finally, compact and robust form factors (e.g., size,
weight, ruggedness) associated with neurophysiological
sensors and processors are a matter of critical concern.

The use of EEG as the basis for cognitive state
assessment was motivated by characteristics such as good
temporal resolution, low invasiveness, low cost, and
portability. While EEG offers several benefits, there are
shortcomings related to the noise artifacts described above and
the nonstationarity of the neural signal pattern over time.
Despite these challenges, research has shown that EEG activity
can be used to assess a variety of cognitive states that affect
complex task performance. These include working memory
(Gevins & Smith, 2000), alertness (Makeig & Jung, 1995),
executive control (Garavan, Ross, Li, & Stein, 2000), and
visual information processing (Thorpe, Fize, & Marlot, 1996).
These findings point to the potential for using EEG
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measurements as the basis for driving adaptive systems that
demonstrate a high degree of sensitivity and adaptability to
human operators in complex task environments.

SYSTEM DESCRIPTION

The system constructed to assess cognitive state
classification algorithms consists of 1) sensors to collect raw
physiological (ECG) and neuro-physiological (EEG) data, 2)
mobile semi-rugged computer platforms to process the raw
sensor data into cognitive state classification assessments, 3) a
wireless data infrastructure to send the classification
assessment of subordinates to leaders, 4) signal processing to
process the raw sensor data and remove/flag any compromised
data, and 5) real-time cognitive state classification.

Sensors

EEG data were collected from the Advanced Brain
Monitoring (ABM) EEG sensor headset (Figure 1 left).
Differential EEG were sampled from six bipolar channels
CzPOgz, FzPOz, F3Cz, F3F4, FzC3, C3C4 at 256 samples per
second with a bandpass from 0.5 Hz and 65 Hz (at 3 dB
attenuation) obtained digitally with Sigma-Delta A/D
converters. Quantification of EEG in real-time was achieved
using signal analysis techniques to identify and decontaminate
eye blinks, and identify and reject data points contaminated
with electromyography (EMG), amplifier saturation, and/or
excursions due to movement artifacts (see Berka, 2004).

o

Figure 1. EEG (left) and ECG (right) sensors.

The Hidalgo Vital Signs Detection System (VSDS, see
Figure 1 right) measures heart rate, respiration rate, and body
motion and position. The evaluation utilized the ECG
waveform (2 Views, sampled at 256 Hz) and the three-axis
accelerometry waveforms (sampled at 25.6 Hz) signals.

Mobile Processing and Wireless Data Network

Each of the four primary Soldier participants (PL, PSG,
SL1, and SL2) was followed by a member of the experimental
personnel in the role of "shadower." Each shadower carried a
specially designed backpack (based on the MOLLE system)
that contained a Panasonic Toughbook CF-51 equipped to
receive Bluetooth communication from the subject's EEG,
ECG, wireless mic, and head-tracking systems. Each shadower

remained within the 30 meter range of their participant to
ensure Bluetooth connectivity. Additionally, the shadower
wore a Web-cam and logged video to the Toughbook. The
participant wore a wireless mic, and the resultant audio stream
was multiplexed into the Web-cam video In addition to
logging the data, the raw sensor data were processed on the
Toughbook using Cognitive State Classification algorithms to
produce a real-time assessment of the subject's cognitive state.
That cognitive state assessment was then transmitted to the
base station via the wireless data network that employed a 900
MHz radio modem system (Figure 2).
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Figure 2. Data is transmitted from sensors (Soldier) to
processor (shadower) to the base station.

Signal Processing

Decontaminated EEG was segmented into overlapping
256 data-point windows called overlays. An epoch (the
temporal window of analysis) consisted of three consecutive
overlays. Fast-Fourier Transform (FFT) was applied to each
overlay of the decontaminated EEG signal multiplied by the
Kaiser window (o = 6.0) to compute the power spectral
densities (PSD). The PSD values were adjusted to take into
account zero values inserted for artifact contaminated data
points. The PSD between 70 and 128 Hz was used to detect
EMG artifact. Overlays with excessive EMG artifacts or with
fewer than 128 data points were rejected. The remaining
overlays were then averaged to derive PSD for each epoch
with a 50% overlapping window. Epochs with two or more
overlays with EMG or missing data were classified as invalid.
For each channel, PSD values were derived for each one-Hz
bin from 3 Hz to 40 Hz and the total PSD from 3 to 40 Hz.
Relative power variables were also computed for each channel
and bin using the formula (total band power/total bin power).

Real-Time Cognitive State Classification

Estimates of spectral power formed the input features to a
pattern classification system. The classification system used
parametric and nonparametric techniques to assess the likely
cognitive state on the basis of spectral features; i.e. estimate
Dp(cognitive state | spectral features). The classification
process relied on probability density estimates derived from a
set of spectral samples. These spectral samples were gathered
in conjunction with tasks that were as close as possible to the
eventual task environment.
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The classification system utilized a support vector
machine (SVM) to discriminate between low and high task
load. Support vector machines are linear classifiers that use a
quadratic optimization procedure to find an optimal orientation
and location for a discriminating hyperplane between two
classes. The optimization procedure finds a location and
orientation for the hyperplane that lies as far away as possible
from examples in each class that are likely to be confused with
each other. Separating hyperplanes that are identified using
this procedure has been shown to maximize generalization
performance (Vapnick, 1999). Although they are linear
classifiers, SVMs can be used to solve non-linear problems by
means of the so-called kernel trick. Data that may not be
linearly separable in the original feature space can be projected
into a high dimensional space where the data may be linearly
separable. The SVM used in this effort employed a radial basis
function kernel with a kernel parameter of 1 and a slack
parameter of 0.05.

METHOD

Objective

The principal hypothesis tested was as follows: the
Cognitive State Classification algorithms would be able to
differentiate periods of high and low cognitive workload using
a combination of physiological (ECG) and neuro-physiological
(EEG) sensors. Classification analysis focused on how well
can the classifier discriminate between workload classes in an
inherently noisy and dynamic environment?

Participants

The evaluation utilized a full Platoon if 32 Soldiers from
the North Carolina National Guard (NCNG) Combined Arms
Battalion, as shown in Figure 3.
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Figure 3. Platoon participants and their equipment.
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Data were collected from four participants: the Platoon Leader
(PL), the Platoon Sergeant (PSG), the Squad One Leader
(SL1), and the Squad Two Leader (SL2). Opposition Forces
(OPFOR) were staffed by remaining members of the NCNG.
The NCNG Company Commander acted as the CO.

Tasks

There were two principal phases of the 12-day training
session where experimental data was. During the period

between days 3-10, the platoon conducted part-mission
training where they repeated a set of tasks for a 3-4 hour
period. The tasks changed each day. The final day of the
experiment was a 24-hour full mission training session,
divided into three 8-hour phases: 1) conduct dismounted
movement along the lines of communication to objective to
ensure routes are free of mines and obstacles (during a Skm
night march, an IED detonated along their path), 2) conduct a
Cordon and Search of the Objective to kill, capture, or expel
opposition forces operating in this urban area, as well as to
capture and destroy any explosives uncovered, and 3) defend
Objective for an extended period and reported any enemy
activity in and around this key terrain.

While this evaluation focused primarily on the PL, PSG,
SL1, and SL2, the activities of subordinates and responses
from senior leaders had a direct impact on their stress levels.
There were a host of stressors that the platoon-level training
exercise used in the MOUT facility, summarized in Table 1.

Table 1. Stressors in a MOUT environment.

Category Example Stressors

Loss of sight Distributed squads

Confusion Changes in the plans, conditions, and mission;
Loss of communications

Realism Extended operational period (e.g. 24 hours of
operation) in the Urban Facility

Fatigue Extended movement to the facility followed by

an assault and then occupation of the site for
long periods in a defensive posture

Uncertainty, Use of OPFOR to prevent friendly forces from
Threat gaining control of the Urban Facility to "hit" the
friendly forces at different times

Evaluation Stress | Use of simunitions (soap bullets that sting)

Surprise Impose unexpected elements that affect plan

Severe Weather Periods of high heat, humidity, intense rainfall

Procedure

The independent variable in the evaluation was workload
(all phases). The experimental scenarios were manipulated to
ensure definable periods of high and low cognitive workload.
Periods of low workload could include completing initial
paperwork, reporting activities, pre-planning, long hasty
defense position, consolidation/transition, after action, and
periods of low activity during missions. High workload
periods were characterized by multiple task performance under
time pressure and fatigue. Examples of high workload were re-
planning due to change in circumstance (e.g. enemy location,
available squads, loss of communication, etc.), directing squad
movements during pre-assault, squads in assault, managing
multiple communications (i.e. responding to commanders,
squad leaders, or other platoon leaders), or call for
fires/backup. Stressors that contributed to high workload
included a degree of frustration or stress, loss of
communication, lack of asset availability, and loss of situation
awareness of squad locations and activities.
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Data Analysis

The metric used to evaluate classification performance is
the Area under the Receiver Operating Characteristic (ROC)
curve (see Duda, Stork, & Hart, 2001). ROC curves plot true
positives (on the y-axis) against false positives (on the x-axis)
as a threshold for discriminating between targets and
distracters is varied. It is widely used to evaluate human and
machine signal detection capabilities. The ROC curve provides
a way to assess the degree of overlap between the output of a
classifier for two classes of data. Perfect classification
produces an area under the curve value (Az) of 1.0, while
chance performance produces an Az value of 0.5.

Ground Truth

In order to calculate the accuracy of the classification
approach, classifier results are compared to "ground truth."
Ground truth is defined as the actual physical and cognitive
workload experienced by the participant at any given moment.
Ground truth is difficult to obtain in an experiment such as this
one, for several reasons. Firstly, the experiment was conducted
in a free play environment fi scenarios were not scripted, tasks
were not known a priori, and participants (and opposing
players) were free to conduct the overall mission in whatever
manner they chose, Thus, unlike a controlled experiment, the
experimenters where not able to vary workload directly by
imposing a rigid, well understood task structure. Secondly,
performance measures where ill-defined at best, and did not
offer a systematic method for deriving workload. Thirdly,
there were limited opportunities to probe the participants
during the missions to gauge their workload. Occasionally the
company commander would (under experimenter direction),
ask the PL or PSG for a isituation reporti (SITREP), and
reaction time and content could be evaluated to gauge the
participantis current workload. But this was not sufficient for
the resolution of ground truth needed i a moment to moment
assessment of the actual workload of the subject. Finally, the
level of cognitive workload induced in a participant is a
function of not only the task load, but of factors such as stress,
fatigue, training, experience, and individual differences in
capabilities. Thus there was no way to directly correlate task
load to workload in a systematic way to derive ground truth.

Therefore a process was developed utilizing experts
raters to review the data to make a subjective assessment of the
participantis ground truth workload on a moment-to-moment
basis. Multiple data sources were captured during the
experiment. Raters reviewed video streams (continuous video
of the subject and intermittent video of the platoon), taking
into account the various other data sources (notes from central
observer, real-time annotations from shadower, post-scenario
cognitive walkthroughs with subjects, and questionnaires), to
make a moment to moment assessment of the cognitive
workload being experienced by the participant at any given
timestamp. The result was a time stamped series of blocks of
low, medium, or high cognitive workload. Physical load was
also assessed by the experts.

For both physical and cognitive workload, states were
labeled, and well as the expert assessment of workload.

For Physical load states included: crouching, prone,
kneeling, seated, standing, milling, walking, running,
lifting, climb up/down ladder, climb up/down stairs,
dragging stuff/body. Physical load was assessed to be either
HIGH (running, lifting, dragging) or LOW (everything else).

Cognitive states included planning, movement,
giving/receiving orders, receiving information, clearing
building, responding to enemy, respond to civilians, report,
respond to action, defend, secure, request, maintain vigilance,
prepare equipment, and after action review. Subtasks to these
high level tasks were also identified. No attempt was made to
be complete, nor was this list of states structured as taxonomy.
Rather the states were derived bottomis up from the data
sources, and the list served as a common vocabulary for expert
raters. Cognitive workload was defined as HIGH or LOW.
LOW cognitive workload was defined as participants doing
very little, or mundane tasks, and they could easily take on
additional tasks. HIGH cognitive workload was defined as the
participant unable to take on any additional tasks or to handle
current task load.

The expert raters considered the multiple data sources,
and created a spreadsheet with moment-to-moment
assessments of both cognitive and physical workload. The
rules of the process dictated that a new row was created for the
spreadsheet whenever the participant does any one of the
following: charges physical state (e.g. transition from standing
to crouching), starts a new task (e.g. starts responding to
enemy while shouting orders), changes physical load (e.g.
LOW to HIGH), or changes cognitive workload (e.g. HIGH to
LOW).

Once two experts have reviewed the video, the individual
ratings are combined into a spreadsheet and the degree of
agreement is calculated on a second-by-second scale. Areas of
disagreement are flagged for joint review. If the two raters
cannot agree on a final workload coding, a third expert is
asked to ibreak the tiei. This option was never needed. The
reconciled ratings are then finalized and used as the basis, or
ground truth, of the classifier accuracy.

RESULTS

Ground Truth Inter-rater reliability

Two experts independently performed the ground truth
analysis described above. For the data sets analyzed (about 9.8
hours of data), agreement between the raters was high
(physical load 94.0%, cognitive workload 83.6%). A final,
canonical, assessment of ground truth was created by
reconciling of the two individual expert's assessments.

Classifier Accuracy

One strategy for dealing with momentary fluctuations in
classification accuracy is to median filter the output of the
classifier over different time windows. One consequence of
temporal smoothing of classifier output is to introduce a lag in
the decision process. Our analysis considered the trade off in
accuracy with various temporal windows.
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Figure 4. EEG based classification accuracy for the PL
(left) and the PSG (right).

Figure 4 (left) illustrates base EEG classification
accuracy for the platoon leader (PL) ranged from 76% (using
2-fold cross validation) to 83% (using 10-fold cross
validation). Base results for the platoon sergeant (PSG) ranged
from 66% (2-fold) to 75% (10-fold), as seen in Figure 4
(right). One strategy for robust classification in noisy field
environments is to fuse data from multiple sources. Such an
approach exploits the joint strengths of different data sources
while minimizing their individual weaknesses. The fusion of
cardiac (inter-beat interval) data provided a substantive boost
to overall classification performance i these improvements
were most pronounced for PSG, as seen in Figure 5. Base
classification for PL went up to 87% (2-fold) and 95% (10-
fold). Base classification for PSG went up from to 83% (2-
fold) and 86% (10-fold) respectively.
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Figure 5. Classification accuracy for the fused sensor data
for the PL (left) and the PSG (right).

DISCUSSION

With efficiency advances in signal processing and
classification techniques, the paring down to the most effective
and practical physiologically based sensing technologies, and
the miniaturization of the sensing components, there has been
a remarkable transformation from the laboratory based system
to the current mobile classification ensemble. Developments in
dry electrodes and helmet integration will further the capability
to deploy these systems in operational environments.
Additional work to further enhance the situational
understanding of the individual soldiers will be to couple the
cognitive state information with context aware sensors to truly
gain the total picture. Context gathered from such sensors as
accelerometers indicating body position and/or rifle position
will be able to further inform whether the Soldier's current
cognitive state is appropriate matched to the situation.

In conclusion, the authors believe this work represents
the first demonstration of robust real-time cognitive state
classification in the harsh operational MOUT environment.
Furthermore, the workload classification accuracies obtained

match that of the more pristine laboratory environment despite
the motion, noise, and physical challenges posed by collecting
physiological data in the field during real operations.
Additionally, classification accuracy is equivalent to the inter-
rater reliability between two expert human raters. The findings
have implications for the use of physiological monitoring as a
workload assessment tool to replace or enhance the use of
more subjective tools such the NASA TLX and Cooper Harper
ratings. This evaluation has proven that real-time workload
assessment can be successfully used in the harsh and
unforgiving military operational environment.
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