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Abstract 

 

Timely and efficient processing of complex imagery is a vital aspect of important domains such as intelligence 

image analysis. As technological developments lower the cost of gathering and storing imagery, the cost of 

searching through large image sets for important information has been growing substantially. This paper 

demonstrates the feasibility of using neurophysiological signals associated with early perceptual processing to 

identify critical information within large image sets efficiently. Experimental results show that a combination of 

neurophysiological signals called evoked response potentials and overt physical responses, detected in conjunction 

with high speed presentation of images, provide a basis for detecting targets within large image sets efficiently and 

accurately. Experimental evaluations of neurophysiologically driven image triage show over a five-fold, statistically 

significant, reduction in the time required to detect targets at high accuracy levels compared to conventional broad 

area image analysis. 

 

 

1 INTRODUCTION 

 

The problem of searching for targets in vast collections of imagery is one that affects practitioners in a variety of 

domains – from medical diagnosis to intelligence image analysis.  Advances in imaging and storage technology have 

served to lower the cost of collecting and storing high volumes of imagery. However, the cost of searching through 

large sets of imagery for important information can often be substantial. In many domains, such as intelligence 

analysis, effective search currently requires the expertise of highly skilled analysts who search though sequences of 

images in a relatively slow manner.  Unfortunately, the availability of skilled analysts is simply insufficient to cope 

with the volume of imagery to be analyzed (Kenyon, 2003). As a result, most intelligence imagery goes without 

visual examination. 

 

The problems just highlighted have led to calls for effective triage techniques that can be used to rapidly screen high 

volumes of imagery and identify a subset of images that merit careful scrutiny by an image analyst (Kenyon, 2003).  

A triage process trades off specificity in favor of sensitivity. The triage process is a fast, preliminary examination of 

images that serves to identify most targets, often with several false positives. Computer vision systems have been 

employed towards this end (e.g. Collins 2000). However, in many contexts, these systems fall short of the sensitivity 

and specificity that humans display. They also fail to generalize to the extent that human analysts do.  

 

Recently, researchers have begun exploring the feasibility of triage systems that leverage human visual processing 

capabilities, while raising the efficiency associated with the manual search process. One promising avenue for 

realizing an efficient triage system may lie in electroencephalogram (EEG) signals recorded in conjunction with 

rapid serial visual presentation (RSVP) of images. For example, Thorpe and colleagues asked participants to detect 

images of animals in a sequence of nature scenes presented for 20 milliseconds per image. Using EEG sensors, 

researches were able to detect a brain signal known as an evoked response potential (ERP) within 150 ms of the 

onset of target stimuli (Thorpe, Fize & Marlot, 1996). These findings point to the potential for using 

neurophysiological signals -- specifically evoked response potentials -- as a way to detect targets within high speed 

sequences of images. 



1.1 Evoked Response Potentials 

 

Evoked response potentials refer to a morphological change in EEG waveforms in response to task-relevant stimuli. 

They are typically measured by inspecting EEG activity within a window of several hundred milliseconds following 

critical events. Figure 1 shows EEG activity at a particular sensor following a non task-relevant stimulus (distractor) 

and a task-relevant stimulus (target). The x-axis depicts the progression of time following the stimulus in 

milliseconds — the zero point corresponds to the onset of a stimulus. The wave form associated with the target 

shows a pronounced amplitude perturbation following stimulus onset.  

 

 

Research suggests that ERPs reflect the activity of underlying cognitive processes necessary for processing and 

coordinating a response to task-relevant stimuli. The brain’s response to critical events, such as the presence of 

targets, may begin in frontal areas — generating top-down, intent information — and propagate to sensorimotor 

areas – triggering events that regulate bottom up information transmission through sensory and response selection 

areas (Makeig, Westerfield, Jung, Enghoff, & Townsend, 2002) 

 

ERPs are difficult to detect. These signals typically range in amplitude from approximately 1 to 10 microvolts, while 

background EEG activity may range from 10 to 100 microvolts. Common events such as eye blinks or facial muscle 

activity can completely obscure ERPs. In order to deal with such an inherently low signal to noise ratio, ERP 

detection has relied on a strategy of trial averaging. Under this strategy, an experimental stimulus is presented to a 

participant several times. The waveforms elicited by each stimulus are averaged. Background EEG washes out in the 

averaging process, and the event induced activity becomes prominent.   

 

While integrating information across repeated presentations of a stimulus is an effective way to identify ERPs, it is 

an impractical strategy for application domains, such as a triage platform. Repeated presentation of stimuli 

compromises the efficiency of the search process. In domains where efficient ERP detection is critical, accurate 

detection of ERPs within a single trial becomes necessary. Recently, researchers have developed promising 

approaches for single-trial ERP detection (e.g. Parra et al., 2003 and Gerson, Parra, & Sajda, 2005). Instead of 

integrating sensor data over time, they rely on integrating information spatially, across EEG sensors. It has been 

shown that spatial integration of EEG data around a window of a few hundred milliseconds following an image 

trigger can provide a basis for accurate single trial ERP detection (Mathan et al, 2006). Both linear and non linear 

classification approaches are effective in detecting ERPs based on spatio-temporal activation patterns across sensors.  

 

1.2 Neurophysiologically Triggered Image Triage 

 

Recently, researchers have begun exploring the feasibility of using ERPs to detect targets within high speed 

presentation of images.  These studies show promising results. For example, in a recent study, the authors of this 

paper asked participants to detect boats and ships within a sequence of images extracted from a broad area satellite 

image of a peninsula (Mathan et al, 2006).  The image was provided by the National Geospatial-Intelligence 

Agency. Qualitative analysis of the neurophysiological data revealed a clear pattern of spatio temporal EEG activity 

approximately 250 ms following stimulus onset that could serve to discriminate between images containing targets 

from distractors. The analysis also revealed that trial-to-trial variability of EEG samples associated with each image 

class (target vs. distractor) was low relative to the variability between classes.   

 

Figure 1: Baseline EEG (left) EEG segment containing an Evoked Response Potential (right) 



The study just described also examined the feasibility of accurate single-trial detection of ERPs in the context of 

complex satellite imagery. The study included three twenty minute sessions of image analysis spanning the course of 

an hour.  A support vector machine classifier trained on data from the first twenty minute session was able to 

classify samples from the third twenty minute session with a very high degree of accuracy (area under the receiver 

operator characteristic curve of 0.90 or higher). This is an important finding from a practical perspective. Prior work 

had largely focused on data collected over the span of sessions separated by under 10 minutes. However, analysts 

anecdotally report analyzing imagery for spans of approximately an hour. This pilot study also demonstrated that 

reliable single trial ERP based target detection was possible with relatively practical 32 electrode EEG systems 

compared to much of the prior work in this area that has focused on arrays of 64 electrodes or higher.   

 

While studies point to the feasibility of using neurophysiological signals associated with perceptual judgments for 

image triage, the relative efficiency of neurophysiologically driven image triage to conventional broad area image 

analysis tools is generally unknown. The research reported below compares the efficiency gains associated with 

neurophysiological image triage to target detection using conventional image analysis tools. 

 

 

2 Method 
 

This paper focuses on an experiment comparing the efficiency of searching for targets within broad area satellite 

images using two techniques: broad area search using geo spatial image analysis tools, and search using a 

combination of neurophysiological signals and overt physical responses in the context of the rapid serial visual 

presentation (RSVP) modality. The experimental evaluation employed a single factor (broad area vs. RSVP search), 

between-subjects experimental design. 

 

2.1 Imagery 

 

Participants in both the broad area and RSVP search conditions searched for three types of targets in a broad area 

satellite image of a peninsula. Imagery was provided by the national geospatial intelligence agency (NGA). For the 

RSVP condition, the broad area image was decomposed into 783 image chips. These chips were also provided by 
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single EEG site. 



the NGA. Besides rescaling the chips so that each chip could be viewed at a glance, the chipped images were not 

digitally manipulated in any way. Participants were asked to detect three types of targets at three different scales: 3 

golf courses that spanned four of more chips, an oil storage depot that spanned two chips, and an oil tanker that was 

fully contained within a chip. 

 

2.2 Baseline 

 

In the baseline condition, participants used a geospatial analysis tool called GlobalMapper (Global Mapper Software 

LLC, Olathe, Kansas), that allows high resolution satellite imagery to be efficiently searched and annotated. 

GlobalMapper provides zoom and pan controls to search large high resolution images. Participants were given as 

much time as they wished to become familiar with the tool in the context of a broad area satellite image that was not 

the focus of this experiment. All participants were shown prototype images depicting the targets and told exactly 

how many instances of each target were present in the broad area image.  The prototype images consisted of the 

targets participants were looking for, but with some of the surrounding geographical contextual features removed. 

 

Seventeen participants, recruited from the population of engineers and scientists at Honeywell Laboratories, 

participated in the experiment. Participants were asked to try to detect targets as quickly as possible. However, no 

time limits were placed on the search. Participants could detect targets in any order they wished and the time elapsed 

from the beginning of the experiment was logged with each target detected.  

 

2.3 RSVP search 

 

In the RSVP condition, image chips described above were presented to participants at rates rates of: 75, 100, 150 

and 200 milliseconds per image. Images were presented in short bursts or trial blocks that were approximately 5 

seconds in duration (Figure 2 - right). Participants were asked to indicate the presence of a target with a key press. 

Consecutive trial blocks were separated by a fixation screen of user controlled duration in order to break monotony 

and minimize possible eye strain. 

 

2.3.1 Display 

 

Images were presented on a 21 inch, CRT monitor. Images were 400 x 400 pixels in size and presented on a screen 

of 1240 x 768 pixel resolution.  Participants were able to position themselves at a comfortable distance from the 

 

Figure 4: Figure 2: Global Mapper, a broad area image analysis tool (left). Image presentation using the 

RSVP modality (right) 



screen. All images shared a relatively similar level of luminance and were presented using a script developed for 

Presentation, a stimulus presentation tool developed by Neurobehavioral Systems, Albany, CA. 

 

2.3.2 Data Acquisition 
 

EEG was collected using the BioSemi Active Two amplifier (BioSemi, Amsterdam, Netherlands) using 32 

electrodes. Channels were sampled at 256 Hz. Triggers sent by the Presentation script to mark the onset of target and 

distractor stimuli were received by the BioSemi system over a parallel port and recorded concurrently with EEG 

signals. User key presses, indicating the presence of targets, were also recorded using the BioSemi system. EEG was 

Bandpass filtered between 1 Hz and 30 Hz, using an 8th order Butterworth digital filter.  

 

 

2.3.3 Participants and Session Structure 

 

Six participants, graduate students from Oregon Health and Science University, participated in the study. The RSVP 

experimental sessions were structured in two phases: a training phase designed to familiarize participants with 

detecting targets under different RSVP rates and a performance phase. In the training phase, participants viewed 

images in five second trial blocks. These blocks contained non-target images drawn randomly from the peninsula 

chip set. One of the target prototypes was randomly inserted into half the trial blocks. Participants responded with a 

key press as soon as a target was detected.  Participants received feedback on their responses at the end of each trial 

block. In performance mode participants the chips were presented in the natural spatial order in which they occur in 

the broad area image. Participants received no feedback in performance mode.  RSVP rates in training and 

performance modes included 75ms, 100ms, 150ms, and 200ms per image.  

 

2.3.4 Data Segmentation and Classification 

 

As mentioned earlier, a trigger or brief pulse was sent to the EEG amplifier with each image that was displayed to 

the participant. The EEG amplifier also recorded pulses associated with key presses. A segment of EEG data and 

key press data was extracted around each image trigger. These segments, referred to as epochs, contained a second 

of EEG and key press data on either side of each image trigger. EEG and key press epochs associated with target 

images and non-target images were extracted from the training phase data.  

 

Epochs extracted from training phase data were used for classifier training. A support vector machine (SVM) [2] 

classifier trained on training phase data was used to classify epochs associated with each image in performance 

mode. Support vector machines are a widely-used linear machine learning technique that relies on ideas from 

statistical learning theory to provide good generalization performance. Support vector machines can also be used in 

the context of problems that are not linearly separable by projecting data into a higher dimensional space where the 

data may be linearly separable.  A non-linear support vector machine with a radial basis function kernel was used in 

this study. 

   

 

3 Results 
 

3.1 Baseline: Broad Area Image Analysis 

 

All 17 participants in the baseline condition were able to detect each of the five targets in the broad area satellite 

image. On average participants took 11.14 min to detect all targets, (SD = 6.24 min). Participant performance ranged 

from a minimum of 3.68 minutes to a maximum of 24.1 minutes, with a median detection time of 11.18 min. It is 

important to note that these times may under estimate the time required to process the broad area image in realistic 

search contexts. Participants knew exactly how many targets were in the image and could terminate the search as 

soon as all targets were found. In the absence of knowledge about the precise number of targets – which is typically 

the case in many application contexts -- it may take subjects considerably longer to terminate the search. 

 

There were differences in the time taken to detect various types of targets. Golf courses that are clearly visible 

without magnification were detected most easily by most participants. The oil tanker and oil storage depot required a 



systematic search of the image with magnification and panning – it took participants several times longer to detect 

these targets compared to golf courses.  

 

 

3.2 RSVP Search 

 

For each participant, two support vectors machines were trained based on training phase RSVP data: one based on 

EEG epochs, the other based on key press epochs.  These classifiers were used to classify performance phase images 

based on an analysis of both EEG and key press epochs. The output from the EEG and key press classifiers were re-

scaled to lie between 0 and 1. The outputs from the two classifiers were fused using a weighted combination of the 

output of each classifier. Outputs of the EEG classifier were weighted twice as high as the key press classifier. The 

fused values are also rescaled to lie between 0 and 1 and are interpreted as approximate indicators of the probability 

of a given image being a target.  

 

Probability values that lie in the immediate vicinity of key presses were rendered on a contour map. Contour clusters 

served to indicate the most likely location of targets. These contour maps could be overlaid on a broad area image – 

users can identify targets by zooming into high probability regions.  Figure 5 depicts a probability map for one 

participant: white squares denote location of targets; colored contour areas depict likely location of targets estimated 

by the classifiers.  

 

 

 

3.2.1 RSVP Search Performance 

 

Each participant scanned the broad area image twice in performance mode at each RSVP rate (75ms, 100ms, 150ms 

and 200ms per image). The analysis reported here focuses on performance associated with the fastest performance 

rate for each participant. The fastest available rate for 5 out of 6 participants was 75ms per image (0:58 minutes to 

 
Figure 5: Contour map displaying regions likely to contain targets. White boxes, displayed here for the 

reader and not shown to participants, depict locations of targets in the image. These contours could be 

overlaid on the broad area satellite image and point to areas that the analyst should scrutinize closely. 



process 783 chips in a systematic sweep of the broad area image). The fastest available rate for one participant was 

150ms because of data lost due to logging errors (1:56 minutes to process 783 chips).  

 

High probability clusters that overlap target locations are counted as detections in this analysis. False alarm rates 

were low for most participants: ranging from 0 to a maximum of 4 clusters. The median false positive cluster rate 

was 0.  

 

Table 1 depicts the peak accuracy level reached after each pass or sweep for each participant – the table also depicts 

the time elapsed for each pass. The table indicates that all participants cross the 80% accuracy level within two 

passes. Four out of six participants cross the 100% detection threshold within two passes.   

 

 

Table 1: RSVP mode performance for each RSVP participant. Table depicts detection accuracy and elapsed 

time associated with each pass. 

 

As figure 6 depicts, participants in the baseline condition took 7.20 minutes on average (SD = 4.55 minutes) to reach 

the 80% target detection level, compared to 1.33 minutes in the RSVP condition (SD = 0.51 minutes).  These 

differences were statistically significant: F (1, 21) = 9.63; p = .0053. Four out of six participants in the RSVP 

condition reached the 100% detection level within two passes. As figure 6 depicts, RSVP participants who reached 

the 100% detection level within two passes took 1.5 minutes on average (SD = 0.57 minutes), compared to an 

average of 11.6  in the baseline condition (SD = 6.25 minutes) [ F(1,19) = 10.10; p = .0049 ]. 

  

 

4 Discussion 
 

The results presented above show a substantial efficiency gain associated with the RSVP condition. The analysis 

reveals a 5 fold reduction in the time required for target detection at the 80% level in the RSVP condition compared 

to the baseline. The analysis also reveals a 7-fold reduction in the time required to reach the 100% detection level in 
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Figure 6: comparison of time required to reach 80% detection level (left) and 100% detection level (right) in baseline 

and RSVP conditions. Error bars denote standard deviation. 



the RSVP condition. These findings demonstrate the viability of neurophysiologically triggered image triage as a 

human computer interaction modality for searching through high volumes of imagery efficiently.  Processing images 

at the rates reported here would allow tens of thousands of images to be screened with a high degree of accuracy 

within the span of an hour.  

 

It is important to note that the time required to identify targets in the baseline condition are likely to be an 

underestimate. Subjects were told exactly how many targets were present in the image. They could terminate the 

search as soon as all targets had been found. Without this information, subjects would have had to engage in more 

exhaustive scrutiny of the broad area image before terminating the search.   

 

While the efficiency gains presented here are quite large, two out of the six participants failed to detect more than 

80% of the targets following two passes in the RSVP condition. There are several factors that could have contributed 

to this outcome: 

 

 First, participants had difficulty detecting targets that were offset from the center of the screen. There were 

two types of targets that posed the most difficulty for targets in the RSVP condition: a golf course and the 

oil tanker. The problematic golf course lay in the boundary between four chips. Visual features of course 

occupied the periphery of each chip, making it harder to detect if a user was fixating on the center of the 

screen. Similarly, the oil tanker was offset from the center of the screen and occupied a relatively small 

proportion of the image.  Practical implementations of RSVP based triage systems should consider chips 

with overlapping content or employ intelligent image segmentation and orienting algorithms as a pre-

processing step.  

 

 Second, a variety of user states can affect the ability of a user to detect targets within high speed sequences 

of images. It is natural for attention levels to wax and wane over the course of an analysis session. Events 

such as eye blinks that occur several times a minute and last several hundred milliseconds can prevent 

several images from being processed appropriately. Inappropriate gaze and head orientations can also 

compromise effective processing. User state monitoring algorithms that detect sub-optimal user states 

could play a mitigating role.  For example, presentation rates of images could be varied to match the 

processing capacity of users. Additionally, images that are judged to be inappropriately processed could be 

flagged for follow-on review. 

 

 Third, familiarity with the RSVP presentation modality may have implications for triage performance. Our 

participants were naïve with respect to processing high speed analysis of images. It is conceivable that 

performance could improve as a function of training and experience. It is also possible that individual 

differences in the ability to detect targets within high speed sequences of images could preclude some 

users from being effective in RSVP tasks.  

 

Future efforts will seek to extend the work reported here by evaluating the efficiency of RSVP based triage with 

trained image analysts. Our focus will also shift to developing and evaluating software algorithms that monitor the 

state of the user and adapt the system to mitigate the impact of sub-optimal states. 
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